WorldWideScience

Sample records for 1h nuclear magnetic

  1. 1H and 31P nuclear magnetic resonance spectroscopy of erythrocyte extracts in myotonic muscular dystrophy

    International Nuclear Information System (INIS)

    Extracts freshly prepared from erythrocytes of patients with myotonic muscular dystrophy, their unaffected siblings, and normal control subjects were examined with both 1H and 31P nuclear magnetic resonance spectroscopy. A moderate variability was found in the relative amounts of various nonphosphorylated compounds among patients and control subjects; however, no significant differences were found between the groups. As for the phosphorylated compounds, the sum of ADP+ATP was found significantly elevated in the myotonic muscular dystrophy patients

  2. A sup 1 H nuclear magnetic resonance study of structural and organisational changes in the cell

    CERN Document Server

    Tunnah, S K

    2000-01-01

    Increasing importance is being placed on understanding the role of membrane lipids in many different areas of biochemistry. It is of interest to determine what interactions may occur between membrane lipids and drug species. Furthermore, an increasing body of evidence suggests that membrane lipids are involved in the pathology of numerous diseases such as rheumatoid arthritis, cancer and HIV. Clearly, the more information available on the mechanisms involved in diseases, the greater the potential for identifying a cure or even a prevention. sup 1 H nuclear magnetic resonance (NMR) spectroscopy was used to study the alterations in membrane lipid organisation and structure in intact, viable cultured cells. Changes in the sup 1 H NMR spectra and the spin-lattice relaxation measurements of the human K562 and the rat FRTL-5 cell lines were observed on the addition of the fatty acid species: triolein, evening primrose oil, arachidonic acid and ITF 1779. Results indicate that the membrane lipids are reorganised to a...

  3. Characterisation of human embryonic stem cells conditioning media by 1H-nuclear magnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    David A MacIntyre

    Full Text Available BACKGROUND: Cell culture media conditioned by human foreskin fibroblasts (HFFs provide a complex supplement of protein and metabolic factors that support in vitro proliferation of human embryonic stem cells (hESCs. However, the conditioning process is variable with different media batches often exhibiting differing capacities to maintain hESCs in culture. While recent studies have examined the protein complement of conditioned culture media, detailed information regarding the metabolic component of this media is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Using a (1H-Nuclear Magnetic Resonance ((1H-NMR metabonomics approach, 32 metabolites and small compounds were identified and quantified in media conditioned by passage 11 HFFs (CMp11. A number of metabolites were secreted by HFFs with significantly higher concentration of lactate, alanine, and formate detected in CMp11 compared to non-conditioned media. In contrast, levels of tryptophan, folate and niacinamide were depleted in CMp11 indicating the utilisation of these metabolites by HFFs. Multivariate statistical analysis of the (1H-NMR data revealed marked age-related differences in the metabolic profile of CMp11 collected from HFFs every 24 h over 72 h. Additionally, the metabolic profile of CMp11 was altered following freezing at -20°C for 2 weeks. CM derived from passage 18 HFFs (CMp18 was found to be ineffective at supporting hESCs in an undifferentiated state beyond 5 days culture. Multivariate statistical comparison of CMp11 and CMp18 metabolic profiles enabled rapid and clear discrimination between the two media with CMp18 containing lower concentrations of lactate and alanine as well as higher concentrations of glucose and glutamine. CONCLUSIONS/SIGNIFICANCE: (1H-NMR-based metabonomics offers a rapid and accurate method of characterising hESC conditioning media and is a valuable tool for monitoring, controlling and optimising hESC culture media preparation.

  4. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    Science.gov (United States)

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems. PMID:27469092

  5. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    Science.gov (United States)

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems.

  6. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  7. Purity Assessment of Aryltetralin Lactone Lignans by Quantitative 1H Nuclear Magnetic Resonance

    Directory of Open Access Journals (Sweden)

    Yan-Jun Sun

    2015-05-01

    Full Text Available In the present work, a quantitative 1H Nuclear Magnetic Resonance (qHNMR was established for purity assessment of six aryltetralin lactone lignans. The validation of the method was carried out, including specificity, selectivity, linearity, accuracy, precision, and robustness. Several experimental parameters were optimized, including relaxation delay (D1, scan numbers (NS, and pulse angle. 1,4-Dinitrobenzene was used as internal standard (IS, and deuterated dimethyl sulfoxide (DMSO-d6 as the NMR solvent. The purities were calculated by the area ratios of H-2,6 from target analytes vs. aromatic protons from IS. Six aryltetralin lactone lignans (deoxypodophyllotoxin, podophyllotoxin, 4-demethylpodophyllotoxin, podophyllotoxin-7′-O-β-d-glucopyranoside, 4-demethylpodophyllotoxin-7′-O-β-d-glucopyranoside, and 6′′-acetyl-podophyllotoxin-7′-O-β -d-glucopyranoside were analyzed. The analytic results of qHNMR were further validated by high performance liquid chromatography (HPLC. Therefore, the qHNMR method was a rapid, accurate, reliable tool for monitoring the purity of aryltetralin lactone lignans.

  8. Interleaved localized 1H/31P nuclear magnetic resonance spectroscopy of skeletal muscle

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance (NMR) has been used as a spectroscopic method in physics and chemistry before it was developed to become a diagnostic imaging tool in medicine. When NMR spectroscopy is applied to human tissue, metabolism can be studied in normal physiological and pathological states in vivo. Metabolite concentrations and rates can be monitored dynamically and with localization of a defined region of interest. The 'window' which is opened for observation, i.e. which quantities are measured, depends on the nucleus used for RF excitation. Mechanisms of adenosine tri-phosphate (ATP) resynthesis, as a direct source of energy for muscle contraction, are phosphocreatine (PCr) splitting, glycolysis, beta-oxidation and, finally, oxidative phosphorylation. Whilst the dependency of these processes' fractional contribution to muscular energy supply on exercise type and duration is well known, quantitative models of the regulating mechanisms involved are still subject of current research. A large fraction of the established knowledge about metabolism is based on biochemical analysis of tissue acquired invasively (e.g. microdialysis and open-flow microperfusion) or representing averaged metabolic concentrations for the whole body (via serum metabolites or gas exchange analysis). Localized NMR spectroscopy, however, is capable of non-invasively acquiring time-resolved data from a defined volume of interest, in vivo. In contrast to the vast majority of MRS studies investigating metabolism, where spectra of a single nucleus (commonly 1H, 31P or 13C) were acquired or several MR spectra with different nuclei were measured in separate experiments, this work opens an additional 'window' on muscle metabolism by interleaved localized acquisition of 1H and 31P NMR spectra from human calf muscle in vivo, during rest, exercise and recovery, in a single experiment. Using this technique, the time courses of the concentrations of phosphocreatine, inorganic phosphate (Pi), ATP, total

  9. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2) to an...

  10. Application of cryoprobe 1H nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey.

    Science.gov (United States)

    Donarski, James A; Jones, Stephen A; Charlton, Adrian J

    2008-07-23

    Proton nuclear magnetic resonance spectroscopy ((1)H NMR) and multivariate analysis techniques have been used to classify honey into two groups by geographical origin. Honey from Corsica (Miel de Corse) was used as an example of a protected designation of origin product. Mathematical models were constructed to determine the feasibility of distinguishing between honey from Corsica and that from other geographical locations in Europe, using (1)H NMR spectroscopy. Honey from 10 different regions within five countries was analyzed. (1)H NMR spectra were used as input variables for projection to latent structures (PLS) followed by linear discriminant analysis (LDA) and genetic programming (GP). Models were generated using three methods, PLS-LDA, two-stage GP, and a combination of PLS and GP (PLS-GP). The PLS-GP model used variables selected by PLS for subsequent GP calculations. All models were generated using Venetian blind cross-validation. Overall classification rates for the discrimination of Corsican and non-Corsican honey of 75.8, 94.5, and 96.2% were determined using PLS-LDA, two-stage GP, and PLS-GP, respectively. The variables utilized by PLS-GP were related to their (1)H NMR chemical shifts, and this led to the identification of trigonelline in honey for the first time. PMID:18564849

  11. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes.

    Science.gov (United States)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-12-01

    Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2) to anisole (1) causes only small positive changes of 1H NMR chemical shifts (Delta delta Hmeta > Hpara, the experimental O-methylation induced shifts in ortho-disubstituted phenols are largest for Hpara, Delta delta equals; 0.19 +/- 0.02 ppm (n = 11). The differences are due to different conformational behavior of the OH and OCH3 groups; while the ortho-disubstituted OH group remains planar in polyphenols due to hydrogen bonding and conjugative stabilization, the steric congestion in ortho-disubstituted anisoles outweighs the conjugative effects and forces the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent correlation between computed and observed 1H NMR chemical shifts, including agreement between computed and observed chemical shift changes caused by O-methylation. The observed regularities can aid structure elucidation of partly O-methylated polyphenols, including many natural products and drugs, and are useful in connection with chemical shift predictions by desktop computer programs. PMID:17137372

  12. The importance of 1H-nuclear magnetic resonance spectroscopy for reference standard validation in analytical sciences.

    Directory of Open Access Journals (Sweden)

    Dovi Kelman

    Full Text Available This paper highlights the importance of recording at least a (1H nuclear magnetic resonance (NMR spectrum to verify identity of standards used in analyses of organic materials irrespective of source. We show the importance of this approach with an example of a quantitative high-performance liquid chromatography (HPLC study undertaken with green tea extracts that required the use of several polyphenols as standards. In the course of the study one of these standards [(--epigallocatechin, EGC], although having the physical appearance and appropriate HPLC chromatographic behavior of EGC, proved by (1H-NMR to be a completely different class of molecule. For us, this raised significant questions concerning validity of many published pieces of research that used quantitative HPLC methods without first performing rigorous validation of the employed standards prior to their use. This paper clearly illustrates the importance of validation of all standards used in analysis of organic materials by recording at least a (1H-NMR spectrum of them prior to their use.

  13. Establishing 1H nuclear magnetic resonance based metabonomics fingerprinting profile for spinal cord injury: a pilot study

    Institute of Scientific and Technical Information of China (English)

    JIANG Hua; PENG Jin; ZHOU Zhi-yuan; DUAN Yu; CHEN Wei; CAI Bin; YANG Hao; ZHANG Wei

    2010-01-01

    Background Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using 1H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques.Methods Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for 1H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software.Results Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine.Conclusions The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on 1H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.

  14. Identification of Gastric Cancer Biomarkers Using 1H Nuclear Magnetic Resonance Spectrometry.

    Science.gov (United States)

    Ramachandran, Gokula Krishnan; Yong, Wei Peng; Yeow, Chen Hua

    2016-01-01

    Existing gastric cancer diagnosing methods were invasive, hence, a reliable non-invasive gastric cancer diagnosing method is needed. As a starting point, we used 1H NMR for identifying gastric cancer biomarkers using a panel of gastric cancer spheroids and normal gastric spheroids. We were able to identify 8 chemical shift biomarkers for gastric cancer spheroids. Our data suggests that the cancerous and non-cancerous spheroids significantly differ in the lipid composition and energy metabolism. These results encourage the translation of these biomarkers into in-vivo gastric cancer detection methodology using MRI-MS. PMID:27611679

  15. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Modi, S.; Behere, D.V.; Mitra, S. (Tata Institute of Fundamental Research, Bombay (India))

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  16. (1)H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver.

    Science.gov (United States)

    Xu, Chuang; Sun, Ling-Wei; Xia, Cheng; Zhang, Hong-You; Zheng, Jia-San; Wang, Jun-Song

    2016-02-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using (1)H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows. PMID:26732447

  17. (1)H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver.

    Science.gov (United States)

    Xu, Chuang; Sun, Ling-Wei; Xia, Cheng; Zhang, Hong-You; Zheng, Jia-San; Wang, Jun-Song

    2016-02-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using (1)H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

  18. Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm

    Science.gov (United States)

    Harańczyk, H.; Kobierski, J.; Nizioł, J.; Hebda, E.; Pielichowski, J.; Zalitacz, D.; Marzec, M.; El-Ghayoury, A.

    2013-01-01

    The gaseous phase hydration of deoxyribonucleic acid and didecyldimethylammonium chloride (C19H42ClN) complexes (DNA-DDCA) was observed using hydration kinetics, sorption isotherm, and high power nuclear magnetic resonance. Three bound water fractions were distinguished: (i) a very tightly bound water not removed by incubation over silica gel, (ii) a tightly bound water saturating with the hydration time t1h = (0.59 ± 0.04) h, and a loosely bound water fraction, (iii) with the hydration time t2h = (20.9 ± 1.3) h. Proton free induction decay was decomposed into the signal associated with the solid matrix of DNA-DDCA complex (T2S∗≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1∗≈ 100 μs) and from loosely bound water fraction (T2L2∗≈ 1000 μs).

  19. ~1H nuclear magnetic resonance-based metabolomics reveals sex-specific metabolic changes of gastrodin intervention in rats

    Institute of Scientific and Technical Information of China (English)

    Xin; Li; Yuan-Wei; Jia; Jun-Song; Wang; Ming-Hua; Yang; Kelvin; D.G.Wang; Ling-Yi; Kong

    2014-01-01

    Objective:To explore~1H nuclear magnetic resonance-based metabolomics on sex-specific metabolic changes of gastrodin intervention in rats.Methods:In this research,~1H NMR-based metabolomics was used for the first time to investigate metabolic changes following chronic intervention with gastrodin in rats.Results:24 endogenous metabolites were identified.Body weight.daily diet and the total volume of urine in in each day of each rat were measured synchronously.Modifications in 12 metabolites were observsd following gastrodin intervention,indicating gastrodin-induced alterations in carbohydrate and energy metabolism.Interestingly,these metabolic changes were not totally identical in female and male rats.Some metabolic changes arising from gastrodin intervention showed sexual dimorphism including LDL/VLDL and lactate which were on the decrease in the female but on the increase in the male,together with arginine/ornithine,creatine,and glycerol which were on the increase in the female but on the decrease in the male.While the decrease in pyruvate,succinate and glutamate was only shown in the male and the increase in valine,α-ketoglutarate and glucose was only in the female.Conclusions:This resesrch shows the sex-specific metabolic response to GAS intervention,weather GAS is a healthy dietary supplement for the male merits further investigation

  20. Metabolic Alterations of the Zebrafish Brain after Acute Alcohol Treatment by 1H Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Woo

    2013-01-01

    Full Text Available The purpose of this study is to investigate the metabolic alterations associated with acute alcohol treatment in zebrafish by 1H nuclear magnetic resonance spectroscopy (NMRS. The brain metabolism of zebrafish was investigated after acute alcohol treatment (one-hour long exposure of adult fish to 0.00%, 0.25%, 0.50%, or 1.00% ethyl alcohol with whole brain extraction. The results of this study showed that glutamate (Glu was significantly decreased, scyllo-inositol (sIns showed a small apparent increase only in the highest acute treatment dose group, and myoinositol (mIns showed a significant decrease. [Glu]/[tCr] and [mIns]/[tCr] levels were significantly reduced regardless of the alcohol dose, and [sIns]/[tCr] was increased in the highest alcohol treatment dose group. The present NMR study revealed that specific metabolites, such as Glu and mIns, were substantially decreased in case of acute alcohol exposed zebrafish brain.

  1. 1H nuclear magnetic resonance-based metabolomics reveals sex-specific metabolic changes of gastrodin intervention in rats

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Yuan-Wei Jia; Jun-Song Wang; Ming-Hua Yang; Kelvin D G Wang; Ling-Yi Kong

    2014-01-01

    Objective:To explore1H nuclear magnetic resonance-based metabolomics on sex-specific metabolic changes of gastrodin intervention in rats.Methods:In this research,1HNMR-based metabolomics was used for the first time to investigate metabolic changes following chronic intervention with gastrodin in rats.Results:24 endogenous metabolites were identified.Body weight, daily diet and the total volume of urine in in each day of each rat were measured synchronously.Modifications in12 metabolites were observed following gastrodin intervention, indicating gastrodin-induced alterations in carbohydrate and energy metabolism.Interestingly, these metabolic changes were not totally identical in female and male rats.Some metabolic changes arising from gastrodin intervention showed sexual dimorphism includingLDL/VLDL and lactate which were on the decrease in the female but on the increase in the male, together with arginine/ornithine, creatine, and glycerol which were on the increase in the female but on the decrease in the male.While the decrease in pyruvate, succinate and glutamate was only shown in the male and the increase in valine,α-ketoglutarate, glycine and glucose was only in the female. Conclusions:This research shows the sex-specific metabolic response toGAS intervention, weatherGAS is a healthy dietary supplement for the male merits further investigation.

  2. Metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy in postpartum dairy cows with ovarian inactivity.

    Science.gov (United States)

    Xu, Chuchu; Xia, Cheng; Sun, Yuhang; Xiao, Xinhuan; Wang, Gang; Fan, Ziling; Shu, Shi; Zhang, Hongyou; Xu, Chuang; Yang, Wei

    2016-10-01

    To understand the differences in metabolic changes between cows with ovarian inactivity and estrus cows, we selected cows at 60-90 days postpartum from an intensive dairy farm. According to clinical manifestations, B-ultrasound scan, rectal examination, 10 cows were assigned to the estrus group (A) and 10 to the ovarian inactivity group (B). All plasma samples were analyzed by (1)H-nuclear magnetic resonance spectroscopy to compare plasma metabolomic profiles between the groups. We used multivariate pattern recognition to screen for different metabolites in plasma of anestrus cows. Compared with normal estrous cows, there were abnormalities in 12 kinds of metabolites in postpartum cows with ovarian inactivity (|r|> 0.602), including an increase in acetic acid (r = -0.817), citric acid (r = -0.767), and tyrosine (r = -0.714), and a decrease in low-density lipoprotein (r = 0.820), very low-density lipoprotein (r = 0.828), lipids (r = 0.769), alanine (r = 0.816), pyruvate (r = 0.721), creatine (r = 0.801), choline (r = 0.639), phosphorylcholine (r = 0.741), and glycerophosphorylcholine (r = 0.881). These metabolites were closely related to abnormality of glucose, amino acid, lipoprotein and choline metabolism, which may disturb the normal estrus. The decrease in plasma creatine and the increase in tyrosine were new changes for ovarian inactivity of postpartum cows. The decrease in plasma creatine and choline and the increase in tyrosine and p-hydroxyphenylalanine in cows with ovarian inactivity provide new directions for research on the mechanism of ovarian inactivity in cows. PMID:27291083

  3. Metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy in postpartum dairy cows with ovarian inactivity.

    Science.gov (United States)

    Xu, Chuchu; Xia, Cheng; Sun, Yuhang; Xiao, Xinhuan; Wang, Gang; Fan, Ziling; Shu, Shi; Zhang, Hongyou; Xu, Chuang; Yang, Wei

    2016-10-01

    To understand the differences in metabolic changes between cows with ovarian inactivity and estrus cows, we selected cows at 60-90 days postpartum from an intensive dairy farm. According to clinical manifestations, B-ultrasound scan, rectal examination, 10 cows were assigned to the estrus group (A) and 10 to the ovarian inactivity group (B). All plasma samples were analyzed by (1)H-nuclear magnetic resonance spectroscopy to compare plasma metabolomic profiles between the groups. We used multivariate pattern recognition to screen for different metabolites in plasma of anestrus cows. Compared with normal estrous cows, there were abnormalities in 12 kinds of metabolites in postpartum cows with ovarian inactivity (|r|> 0.602), including an increase in acetic acid (r = -0.817), citric acid (r = -0.767), and tyrosine (r = -0.714), and a decrease in low-density lipoprotein (r = 0.820), very low-density lipoprotein (r = 0.828), lipids (r = 0.769), alanine (r = 0.816), pyruvate (r = 0.721), creatine (r = 0.801), choline (r = 0.639), phosphorylcholine (r = 0.741), and glycerophosphorylcholine (r = 0.881). These metabolites were closely related to abnormality of glucose, amino acid, lipoprotein and choline metabolism, which may disturb the normal estrus. The decrease in plasma creatine and the increase in tyrosine were new changes for ovarian inactivity of postpartum cows. The decrease in plasma creatine and choline and the increase in tyrosine and p-hydroxyphenylalanine in cows with ovarian inactivity provide new directions for research on the mechanism of ovarian inactivity in cows.

  4. Early Biomarkers in 1H Nuclear Magnetic Resonance Spectroscopy of Striatal Pathological Mechanisms after Acute Carbon Monoxide Poisoning in Rats

    Institute of Scientific and Technical Information of China (English)

    GUAN Li; LI Zong Yang; ZHANG Yan Lin; CONG Cui Cui; ZHAO Jin Yuan

    2015-01-01

    Objective In vivo Proton Magnetic Resonance Spectroscopy (1H-MRS) can be used to evaluate the levels of specific neurochemical biomarkers of pathological mechanisms in the brain. Methods We conducted T2-Weighted Magnetic Resonance Imaging (MRI) and 1H-MRS with a 3.0-Tesla animal MRI system to investigate the early microstructural and metabolic profiles in vivo in the striatum of rats following carbon monoxide (CO) poisoning. Results Compared to baseline, we found significant cortical surface deformation, cerebral edema changes, which were indicated by the unclear gray/white matter border, and lateral ventricular volume changes in the brain. A significant reduction in the metabolite to total creatine (Cr) ratios of N-acetylaspartate (NAA) was observed as early as 1 h after the last CO administration, while the lactate (Lac) levels increased marginally. Both the Lac/Cr and NAA/Cr ratios leveled off at 6 h and showed no subsequent significant changes. In addition, compared to the control, the choline (Cho)/Cr ratio was slightly reduced in the early stages and significantly increased after 6 h. In addition, a pathological examination revealed mild cerebral edema on cessation of the insult and more severe cerebral injury after additional CO poisoning. Conclusion The present study demonstrated that 1H-MRS of the brain identified early metabolic changes after CO poisoning. Notably, the relationship between the increased Cho/Cr ratio in the striatum and delayed neuropsychologic sequelae requires further research.

  5. High-speed magic angle spinning solid-state 1H nuclear magnetic resonance study of the conformation of gramicidin A in lipid bilayers.

    OpenAIRE

    Bouchard, M.; Davis, J H; Auger, M.

    1995-01-01

    One- and two-dimensional solid-state 1H nuclear magnetic resonance spectra of gramicidin A incorporated in a dimyristoylphosphatidylcholine membrane have been obtained with use of high-speed magic angle spinning. By rotating the sample at 13 kHz, it is possible to observe signals in the 1H spectra between 6.0 and 9.0 ppm attributable to the aromatic protons of the tryptophan residues and the formyl group proton of gramicidin A. Two-dimensional solid-state COSY spectra provided information for...

  6. (1)H-Nuclear magnetic resonance-based metabolic profiling of nonsteroidal anti-inflammatory drug-induced adverse effects in rats.

    Science.gov (United States)

    Um, So Young; Park, Jung Hyun; Chung, Myeon Woo; Choi, Ki Hwan; Lee, Hwa Jeong

    2016-09-10

    Nonsteroidal anti-inflammatory drugs (NSAIDs), which are globally prescribed, exhibit mainly anti-inflammatory and analgesic effects but also can cause adverse effects including gastrointestinal erosions, ulceration, bleeding, and perforation. The purpose of this study was to investigate surrogate biomarkers associated with the gastrointestinal (GI) damage caused by NSAID treatment using pattern recognition analysis of (1)H-nuclear magnetic resonance ((1)H NMR) spectra of rat urine. Urine was collected for 5h after oral administration of the following NSAIDs at low or high doses: acetylsalicylic acid (10 or 200mgkg(-1)), diclofenac (0.5 or 15mgkg(-1)), piroxicam (1 or 10mgkg(-1)), indomethacin (1 or 25mgkg(-1)), or ibuprofen (10, or 150mgkg(-1)) as nonselective COX inhibitors and celecoxib (10 or 100mgkg(-1)) as a COX-2 selective inhibitor. The urine was analyzed using 500MHz (1)H NMR for spectral binning and targeted profiling and the level of gastric damage was examined. The nonselective COX inhibitors caused severe gastric damage while no lesions were observed in the celecoxib-treated rats. The (1)H NMR urine spectra were divided into spectral bins (0.04ppm) for global profiling, and a total of 44 endogenous metabolites were assigned for targeted profiling. Multivariate data analyses were performed to recognize the spectral pattern of endogenous metabolites related to NSAIDs using partial least square-discrimination analysis (PLS-DA). The (1)H NMR spectra clustered differently according to gastric damage score in global profiling. In targeted profiling, the endogenous metabolites of citrate, allantoin, 2-oxoglutarate, acetate, benzoate, glycine, and trimethylamine N-oxide were selected as putative biomarkers for gastric damage caused by NSAIDs. These putative biomarkers might be useful for predicting the risk of adverse effects caused by NSAIDs in the early stage of drug development process.

  7. Metabonomic Analysis of Water Extracts from Different Angelica Roots by 1H-Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pui Hei Chan

    2014-03-01

    Full Text Available Angelica Radix, the roots of the genus Angelica, has been used for more than 2,000 years as a traditional medicine in Eastern Asia. The Chinese Pharmacopoeia records more than 100 herbal formulae containing Angelica roots. There are two common sources of Angelica roots, Angelica sinensis from China and A. gigas from Korea. The two species of Angelica roots differ in their chemical compositions, pharmacological properties and clinical efficacy. 1H-NMR metabolic profiling has recently emerged as a promising quality control method for food and herbal chemistry. We explored the use of 1H-NMR metabolic profiling for the quality control of Angelica Radix. Unlike previous work, we performed the metabolic profiling on hot water extracts, so as to mimic the clinically relevant preparation method. Unsupervised principle component analyses of both the full spectral profile and a selection of targeted molecules revealed a clear differentiation of three types of Angelica roots. In addition, the levels of 13 common metabolites were measured. Statistically significant differences in the levels of glucose, fructose and threonine were found between different sources of Angelica. Ferulic acid, a marker commonly used to evaluate Angelica root, was detected in our samples, but the difference in ferulic acid levels between the samples was not statistically significant. Overall, we successfully applied 1H-NMR metabolic profiling with water extraction to discriminate all three sources of Angelica roots, and obtained quantitative information of many common metabolites.

  8. Quantitative analysis of retinol and retinol palmitate in vitamin tablets using {sup 1}H-nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Hae; Kim, Hye Kyong; Wilson, Erica G.; Erkelens, Cornelis; Trijzelaar, Ben; Verpoorte, Robert

    2004-06-04

    {sup 1}H-NMR spectrometry was applied to the quantitative analysis of Vitamin A in four different types of vitamin tablets without any chromatographic purification or saponification. The experiment was performed analysing the H-15 resonance, which appears at {delta} 4.32 for retinol and {delta} 4.69 for retinol palmitate, well separated from other resonances in the {sup 1}H-NMR spectrum. Compounds were quantified using the relative ratio of the integral of the H-15 signal to that of a known amount of internal standard (200 {mu}g/ml), anthracene. In order to evaluate the feasibility of avoiding the saponification of retinol palmitate in the preparation of samples, several solvents such as dimethylsulfoxide, n-hexane, methanol, water, and 0.1 M of HCl were tested as possible extraction solvents. Among these, dimethylsulfoxide showed the best yield of retinol palmitate. This method, using dimethylsulfoxide extraction and {sup 1}H-NMR, allows rapid and simple quantitation of retinol palmitate in tablets avoiding tedious saponification.

  9. Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance.

    LENUS (Irish Health Repository)

    Brougham, D F

    2011-01-01

    We report the successful classification, by artificial neural networks (ANNs), of (1)H NMR spectroscopic data recorded on whole-cell culture samples of four different lung carcinoma cell lines, which display different drug resistance patterns. The robustness of the approach was demonstrated by its ability to classify the cell line correctly in 100% of cases, despite the demonstrated presence of operator-induced sources of variation, and irrespective of which spectra are used for training and for validation. The study demonstrates the potential of ANN for lung carcinoma classification in realistic situations.

  10. Detection and quantification of phenolic compounds in olive oil by high resolution {sup 1}H nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Christophoridou, Stella [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece); Dais, Photis [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece)], E-mail: dais@chemistry.uoc.gr

    2009-02-09

    High resolution {sup 1}H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The {sup 1}H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard.

  11. Influence of fat and phytosterols concentration in margarines on their degradation at high temperature. A study by (1)H Nuclear Magnetic Resonance.

    Science.gov (United States)

    Sopelana, P; Ibargoitia, María L; Guillén, María D

    2016-04-15

    The objective of this work was to study the influence of several factors, especially fat and phytosterols concentration, on the behavior of margarine under thermo-oxidative conditions. For this purpose, margarines with similar compositions in acyl groups, but differing in the concentration of both fat and phytosterols, were heated at 180°C. The changes in the main components of margarine lipids and the formation of new compounds throughout the thermal treatment were monitored by (1)H Nuclear Magnetic Resonance. The results show that the presence of high concentrations of phytosterols seems to have an antioxidant effect, since it slows down the thermo-oxidation rate of margarine and, consequently, the generation rate and concentrations of secondary oxidation products such as some aldehydes, epoxides and alcohols. The oil-water ratio also seems to have an important effect on margarine behavior, in such a way that the lower the fat concentration is, the higher its thermo-oxidation rate.

  12. Metabolic alterations produced by 3-nitropropionic acid in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization

    International Nuclear Information System (INIS)

    Quantitative high resolution in vitro 1H nuclear magnetic resonance spectroscopy was employed to study the metabolic effects of 3-nitropropionic acid associated with aging from perchloric acid extracts of rat striata. Systemic injection of 3-nitropropionic acid in rats at a dose of 10 mg/kg/day for seven consecutive days significantly impaired energy metabolism in rats one, four and eight months of age, as evidenced by a marked elevation of succinate and lactate levels. However, a significant decrease in N-acetyl-l-aspartate level, a neuronal marker, was observed in four- and eight-month-old rats but not in one-month-old rats. This would indicate that rats at four to eight months are more susceptible to 3-nitropropionic acid than those at one month. A significant decrease in GABA level was observed in four-month-old 3-nitropropionic acid-treated rats, which is consistent with the literature that GABAergic neurons are particularly vulnerable to 3-nitropropionic acid treatment. In addition, glutamine and glutamate levels were markedly decreased at four and eight months in 3-nitropropionic acid-treated rats. Since glutamine is synthesized predominantly in glia, the observation above suggests that 3-nitropropionic acid intoxication may involve perturbation of energy metabolism, glial injury and consequent neuronal damage. Astrocytes which are essential in the metabolism of glutamate and glutamine were used to further assess 3-nitropropionic acid-induced toxicity. Glial proliferation, mitochondrial metabolism and glutamine synthetase activity were all reduced by 3-nitropropionic acid treatment with a concomitant increase, in a dose-dependent manner, of lactate levels, suggesting that 3-nitropropionic acid is also detrimental to astrocytes in vivo and thus may affect metabolic interaction between neurons and glia.These results not only imply that 3-nitropropionic acid blocks energy metabolism prior to exerting neurotoxic damage but also demonstrate that the degree of

  13. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  14. Possibilities and limitations of sup 1 H and sup 13 C nuclear magnetic resonance spectroscopy for the identification and the quantitative determination of some naturally occurring carcinogenic risk factors. [Senecio vulgaris; Senecio vernalis; Senecio jacobaea; Euphorbia ingens

    Energy Technology Data Exchange (ETDEWEB)

    Pieters, L.

    1988-01-01

    The aim of this work was to develop a phytochemical screening method for some selected carcinogenic or tumor-promoting principles in higher plants. The pyrrolizidine alkaloids from some Senecio species (Compositae or Asteraceae), and the diterpene ester from Croton tiglium L. and Euphorbia ingens E. Mey (Euphorbiaceae) were chosen as representatives of both groups. The possibilities and limitations of {sup 1}H and {sup 13}C nuclear magnetic resonance spectroscopy ({sup 1}H and {sup 13}C NMR) for the analysis of mixtures of carcinogenic pyrrolizidine alkaloids were compared with high performance liquid chromatography, and gas chromatography with high performance liquid chromatography, and gas chromatography was well as gas chromatography - mass spectrometry. Senecio vulgaris L., Senecio vernalis Waldst. and Kit. and Senecio jacobaea L. were investigated.

  15. Quantitative nuclear magnetic resonance spectrometry II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by 1H and 31P QNMR spectrometry

    International Nuclear Information System (INIS)

    The purities of the widely-used herbicide glyphosate (N-(phosphonomethyl)glycine), and the insecticide profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) were determined by 1H and 31P quantitative nuclear magnetic resonance (QNMR) spectrometry using an internal standard. QNMR does not need a standard reference of the same target analyte, in contrast to chromatographic methods, but only a compound containing the nucleus of interest. Sodium acetate and sodium phosphate of known purity were chosen as internal standards for 1H NMR and 31P NMR), respectively for the water soluble glyphosate and a single internal standard, trimethyl phosphate for both 1H and 31P NMR quantitative analysis of the organic soluble profenofos. These standards have NMR peaks that do not interfere with those of the analyte, they are chemically inert and are soluble in the deuterated solvent. The average purity of glyphosate obtained by 1H NMR (97.07%, σ=0.68) agreed with that by 31P NMR (96.53%, σ=0.90; ANOVA, P=0.074) for the five batches provided by the manufacturer according to the procedures for chemical registration in Australia. The standard deviations of seven independent analyses of a single batch by 1H NMR and 31P NMR were σ=0.24% and σ=0.33%, respectively, values which confirm the exceptional precision of the method. The purity of profenofos by 1H NMR (94.63%, σ=0.14) also agreed with that by 31P NMR (94.62%, σ=0.59; ANOVA, P=0.97). Uncertainty budgets for the measured purities of glyphosate and profenofos show that the uncertainty in the purity of the internal standard is a major contributor to the uncertainty of the result. NMR was also used to establish the impurity profile of both compounds, and quantify the impurities present

  16. New structural information on a humic acid from two-dimensional 1H-13C correlation solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Mao, J D; Xing, B; Schmidt-Rohr, K

    2001-05-15

    New information on the chemical structure of a peat humic acid has been obtained using a series of two-dimensional 1H-13C heteronuclear correlation solid-state NMR (HETCOR) experiments with different contact times and with spectral editing by dipolar dephasing and 13C transverse relaxation filtering. Carbon-bonded methyl groups (C-CH3) are found to be near both aliphatic and O-alkyl but not aromatic groups. The spectra prove that most OCH3 groups are connected directly with the aromatic rings, as is typical in lignin. As a result, about one-third of the aromatic C-O groups is not phenolic C-OH but C-OCH3. Both protonated and unprotonated anomeric O-C-O carbons are identified in the one- and two-dimensional spectra. COO groups are found predominantly in OCHn-COO environments, but some are also bonded to aromatic rings and aliphatic groups. All models of humic acids in the literature lack at least some of the features observed here. Compositional heterogeneity was studied by introducing 1H spin diffusion into the HETCOR experiment. Comparison with data for a synthetic polymer, polycarbonate, indicates that the separation between O-alkyl and aromatic groups in the humic acid is less than 1.5 nm. However, transverse 13C relaxation filtering under 1H decoupling reveals heterogeneity on a nanometer scale, with the slow-relaxing component being rich in lignin-like aromatic-C-O-CH3 moieties and poor in COO groups.

  17. Arsenic-boron derivatives. Part 5. A /sup 1/H and /sup 11/B nuclear magnetic resonance study of the methylated arsine adducts of boron trihalides

    Energy Technology Data Exchange (ETDEWEB)

    Chehayber, J.M.; Drake, J.E.

    1986-02-17

    The /sup 1/H NMR chemical shifts for the adduct series (CH/sub 3/)/sub n/AsH/sub 3-n/BX/sub 3/ and the /sup 11/B NMR chemical shifts for the adduct series (CH/sub 3/)/sub n/AsH/sub 3-n/BX/sub 3/, (CH/sub 3/)/sub n/AsH/sub 3-n/BX/sub 2/Y and (CH/sub 3/)/sub n/AsH/sub 3-n/BXYZ (where n=1, 2, 3; Xnot =Ynot =Z=Cl, Br or I) have been reported. The values of the chemical shifts are examined in view of their use as indicators of acid-base strength. The /sup 11/B chemical shifts were found to fit Malinowsky's criteria of pairwise additivity.

  18. Liquid chromatography "on-flow" 1H nuclear magnetic resonance on native glycosphingolipid mixtures together with gas chromatography/mass spectrometry on the released oligosaccharides for screening and characterisation of carbohydrate-based antigens from pig lungs.

    Science.gov (United States)

    Bäcker, A E; Thorbert, S; Rakotonirainy, O; Hallberg, E C; Olling, A; Gustavsson, M; Samuelsson, B E; Soussi, B

    1999-01-01

    Glycosphingolipids were prepared from pig lung and pooled into two fractions with (i) or = 3 sugar residues. Oligosaccharides were prepared and used for gas chromatography, gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. The glycolipid fractions i and ii were further characterised and purified using a novel method based on high performance liquid chromatography "on-flow" proton nuclear magnetic resonance. The LC "on-flow" NMR technique showed good chromatographic separation and gave NMR spectral information which could be used as guidance for pooling of the separated mixture glycolipids. Conventional 1H NMR, thin layer immunostaining, gas chromatography, gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry were used to characterise the glycolipids and to validate LC-NMR spectral data.

  19. Multivariate analysis of fingerprinting of majority secondary metabolites of propolis of Costa Rica using proton nuclear magnetic resonance (1H-NMR)

    International Nuclear Information System (INIS)

    Propolis is produced by Apis mellifera bees from resins of plants that are found around the apiary. The chemical composition is highly variable and Costa Rica has reported without studies of characterization to define the types of propolis in the country. 119 samples were collected from beekeeping areas of the country. The spectrum of 1H-NMR and its antioxidant activity against DPPH radical were measured. The spectra have been divided into 243 blocks of 0,04 ppm and processed with the Minitab software for multivariate analysis. 99 of the samples collected were used for construction of models for the valuation of the predictive ability of the model have been used coefficients of determination (R2) of prediction by the software and the remaining 20 samples. The existence of three types of propolis with chemically different metabolomes were determined by principal component analysis (PCA). A prediction model was constructed by analysis of partial least squares (PLS). The prediction model has allowed to classify a propolis according to the level of anti-oxidant activity (AAO), high (type I and II) or low (type III) from the spectrum of 1H-NMR. The R2 has been 0.88 and R2 prediction of 0, 718 for new samples. The n-coniferyl benzoate of group I and nemorosone of the group II as two discriminated antioxidants among the groups I and II were isolated and high concentration levels of these compounds have been differentiated with respect to type III. This has allowed the construction of a linear discriminant model with a success rate of 100% for the samples used for formulation and 92,9 for the prediction of different samples. The classification systems could be applied to the standardization of the quality of propolis from Costa Rica for future medicinal or cosmetic applications that take advantage of its antioxidant properties. Also, the methylated derivative has isolated and identified of the n-coniferyl benzoate thereof propolis than was obtained his counterpart

  20. Nuclear receptor NR1H3 in familial multiple sclerosis

    Science.gov (United States)

    Wang, Zhe; Sadovnick, A. Dessa; Traboulsee, Anthony L.; Ross, Jay P.; Bernales, Cecily Q.; Encarnacion, Mary; Yee, Irene M.; de Lemos, Madonna; Greenwood, Talitha; Lee, Joshua D.; Wright, Galen; Ross, Colin J.; Zhang, Si; Song, Weihong; Vilariño-Güell, Carles

    2016-01-01

    SUMMARY Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS. PMID:27253448

  1. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of {sup 1} H and {sup 13} C of monoterpenes using computational methods; Asignacion inequivoca de las senales del espectro de resonancia magnetica nuclear de {sup 1} H y {sup 13} C de monoterpenos empleando metodos computacionales

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L. [Universidad Nacional Autonoma de Mexico, Instituto de Quimica, A.P. 70213, 04510 Mexico D.F. (Mexico)

    2000-07-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and {alpha}-pinene. The {sup 1} H and {sup 13} C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of {sup 1} H nuclei and qualitatively in the case of {sup 13} C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  2. Detection of kestoses and kestose-related oligosaccharides in extracts of Festuca arundinacea, Dactylis glomerate L. , and Asparagus officinalis L. root cultures and invertase by sup 13 C and sup 1 H nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, K.L.; Feather, M.S.; Gracz, H.; Wong, T.C. (Univ. of Missouri, Columbia (USA))

    1990-04-01

    Previous studies show that {sup 13}C nuclear magnetic resonance spectroscopy can be used to detect and identify mixtures of 1-kestose and neokestose after conversion to the acetate derivatives. In this study, unequivocal assignments are made for the anomeric carbon and proton signals for the above two trisaccharide acetates as well as for 6-kestose hendecaacetate and for nystose tetradecaacetate (a 1-kestose-derived tetrasaccharide). A number of oligosaccharide fractions were isolated from several plant species, converted to the acetates, and nuclear magnetic resonance spectra obtained. Using the above reference data, the following information was obtained. The trisaccharide fraction from Dactylis gomerata L. stem tissue and Asparagus officinalis L. roots contain both 1-kestose and neokestose, and the tetrasaccharide fractions contain three components, one of which is nystose. Penta- and hexasaccharide acetates were also isolated from A. officinalis L. roots and were found to contain, respectively, four and at least five components. All components of both of the above species appear to contain a kestose residue and to be produced by the sequential addition of fructofuranosyl units to these. The trisaccharide fraction from Festuca arundinacea is complex, and contains at least five different components, two of which appear to be 1-kestose and neokestose.

  3. 1H magnetic resonance spectroscopy of the prostate

    International Nuclear Information System (INIS)

    To provide a brief summary of important technical and biochemical aspects and current clinical applications of magnetic resonance spectroscopy (MRS) of the prostate.Material and methods Pertinent radiological and biochemical literature was searched and retrieved via electronic media (medline trademark, pubmed trademark). Basic concepts of MRS of the prostate and its clinical applications were extracted to provide an overview. The prostate lends itself to MRS due to its unique production, storage, and secretion of citrate. While healthy prostate tissue demonstrates high levels of citrate and low levels of choline that marks cell wall turnover, prostate cancer (PCA) utilizes citrate for energy metabolism and shows high levels of choline. The ratio of (choline + creatine)/citrate differentiates healthy prostate tissue and PCA. The combination of magnetic resonance imaging (MRI) and 3-dimensional MRS (3D-MRSI or 3D-CSI) of the prostate localizes PCA to a sextant of the peripheral zone of the prostate with sensitivity/specificity of up to 80/80%. Combined MRI and 3D-MRSI exceed the sensitivity and specificity of sextant biopsy of the prostate. When MRS and MRI agree on PCA presence, the positive predictive value is about 90%. In principle, combined MRI and 3D-MRSI recognize and localize remnant or recurrent cancer after hormone therapy, radiation therapy and cryo-surgery. Since it is non-invasive and radiation-free, combined MRI and 3D-MRSI lends itself to the planning of prostate biopsy and therapy as well as to post-therapeutic follow-up. For broad clinical application, it will be necessary to facilitate MRS examinations and their evaluation and make MRS available to a wider range of institutions. (orig.)

  4. 23Na and 1H NMR Relaxometry of Shale at High Magnetic Field

    CERN Document Server

    Yang, Donghan

    2016-01-01

    Formation evaluation of unconventional reservoirs is challenging due to the coexistence of different phases such as kerogen, bitumen, movable and bound light hydrocarbon and water. Current low-frequency (0.05 T) nuclear magnetic resonance (NMR) laboratory and logging methods are incapable of quantitatively separating the different phases. We demonstrate the utility of high-field (9 T) NMR 2D T1-T2 measurements for separating hydrocarbon and the clay-interacting aqueous phases in shale based on the difference in the frequency dependence of the spin-lattice relaxation time. Furthermore, we demonstrate 23Na NMR as a promising complementary technique to conventional 1H NMR for shale fluid typing, taking advantage of the fact that sodium ions are only present in the aqueous phase. We validate high-field (9 T) 23Na-1H NMR relaxometry for assessing brine-filled porosity and brine salinity in various porous materials, including porous glass, conventional rocks, clays, and shale, and apply it for differentiating hydro...

  5. Nuclear magnetic resonance, fluorescence correlation spectroscopy and time-resolved fluorescence anisotropy studies of intermolecular interactions in bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide and its mixtures with various cosolvents

    Science.gov (United States)

    Sahu, Prabhat Kumar; Nanda, Raju; Seth, Sudipta; Ghosh, Arindam; Sarkar, Moloy

    2016-09-01

    Keeping in mind the potential usefulness of mixed ionic liquid (IL)-cosolvents systems in several industrial applications, intermolecular interactions between a borate-based IL, bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide ([BIMIMDBA][TF2N]), and its binary mixtures with several molecular solvents has been investigated through NMR and fluorescence spectroscopy. Analysis of the 1H chemical shifts (δ/ppm) and translational diffusion coefficients (D) of the IL in different solvent mixtures demonstrate interplay of nonspecific (ion-dipole) and specific (hydrogen bonding) interactions in governing the properties of these mixtures. Fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence anisotropy data provide evidence in favour of different IL-solvent interaction for different IL-cosolvent systems.

  6. 葵花籽油热氧化过程的1H-NMR指纹图谱与LF-NMR弛豫特性研究%1H Nuclear Magnetic Resonance (NMR) Fingerprints and Low-Field-NMR Relaxation Properties of Sunflower Oil during Thermal Oxidation

    Institute of Scientific and Technical Information of China (English)

    卢海燕; 王欣; 赵婷婷; 刘宝林

    2014-01-01

    论文应用1H-NMR研究了葵花籽油65℃贮藏过程中氧化产物(共轭烯、醛类、氧化物、芳香烃、游离酸相对含量)的变化规律,并与低场核磁共振(LF-NMR)弛豫特性中的S21的变化进行了相关性分析.1H-NMR结果表明,在65℃贮藏过程中,油样的初级氧化产物随贮藏时间的延长呈先增加后减小的趋势,与氢过氧化物相比,氢过氧化物-共轭二烯优先降解;次级氧化产物及水解产物如醛、环氧化物、游离脂肪酸等随贮藏时间呈良好指数关系(R2>0.96),芳香烃则随贮藏时间呈先增加后减小的趋势.而LF-NMR检测所得到的油样的S21随贮藏时间延长呈良好的指数增加趋势(R2=0.99).相关性分析表明,氧化物、游离脂肪酸与S21的相关性最高,模型验证合理可靠.该结果可为研究S21特征峰的表征物质、提高LF-NMR油脂品质判别率提供研究参考及有益思路.

  7. A conformational study of the adducts of 2'-deoxythymidine and 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl by sup(1)H and sup(13)C nuclear magnetic resonance

    International Nuclear Information System (INIS)

    γ-Irradiation of oxygen-free, aqueous solutions of 2'-deoxythymidine in the presence of the organic nitroxide free radical, 2,2,6,6-tetramethyl-1,4-piperidone-N-oxyl (TAN) leads to a complex mixture of products in which the TAN moiety is linked to the C5 or C6 position of a 5,6-saturated thymine ring. Extensive sup(1)H and sup(13)C nmr data are provided for the eight TAN-dT adducts which are produced in the largest amounts. The results show that the conformational properties of the sugar moiety are dependent on the point of attachment of the TAN group and the configuration of the standard thymine ring

  8. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    Science.gov (United States)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15–20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  9. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.

    Science.gov (United States)

    Ruggiero, Maria R; Crich, Simonetta Geninatti; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-15

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications. PMID:27265726

  10. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    Science.gov (United States)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  11. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  12. GHz nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  13. 1H-magnetic resonance spectroscopy of vascular endothelial growth factor-induced neuroprotection following acute cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Li Yi; Haiou Zhang; Hao Lei; Li Wei

    2008-01-01

    BACKGROUND: It has become generally accepted that measuring N-acetyI-L-aspartic acid through the use of 1H-magnetic resonance spectroscopy (1H-MRS) could be used to evaluate neuronal injury. OBJECTIVE: To study metabolic changes of N-acetyl-L-aspanic acid surrounding the acute cerebral ischcmia area following vascular endothelial growth factor (VEGF) treatment using 1H-MRS imaging, and to evaluate the neuroprotective effects of VEGE.DESIGN, TIME AND SETTING: Randomly controlled animal study, according to one-factor analysis of variance, was performed at the Shenzhen Hospital of Peking University and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences from August 2003 to December 2005.MATERIALS: Twelve healthy, adult, Sprague Dawley rats were used to establish an ischemia/reperfusion model through the use of middle cerebral artery occlusion. The 4.7T superconducting nuclear magnetic resonance meter was provided by Brucker Company. VEGF164 was purchased from Shenzhen Jingmei Bioengineering Co., Ltd. Titus ancsthesia machine was purchased from Draeger Medical AG & Co. KG.METHODS: The rats were randomly divided into model control (n = 6) and VEGF-injected (n = 6) groups. All animals received 60-minute middle cerebral artery occlusion and 24-hour repcrfusion. Lateral cerebral ventricle injection was performed by stereotaxic technique at respective time points. The VEGF group received 0. 1 μ g/μ L VEGF (5 μL), and the model group received the same amount of normal saline, once daily for 3 days.MAIN OUTCOME MEASURES: Metabolic changes of N-acetyl-L-aspartic acid and lactic acid following cerebral ischemia and reperfusion were detected using 1H-MRS, and the ischemic volume was measured.RESULTS: Twelve rats were included in the final analysis. =H-MRS results revealed that the ischemic volume increased in the control group compared with prior to injection (P < 0.01). In the

  14. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1)

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Nielsen, Finn Cilius; Vinther, Lena;

    2007-01-01

    localization signals (NLSs) in hEXO1. Using fluorescent fusion proteins, we show that the sequence 418KRPR421, which exhibit strong homology to other monopartite NLS sequences, is responsible for correct nuclear localization of hEXO1. This NLS sequence is located in a region that is also required for hEXO1......Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear...... interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin beta/alpha1,3,7 whereas hMSH2 specifically recognizes importin beta/alpha3. Taken together, we infer...

  15. Application of 1H magnetic resonance spectroscopy in diagnosis and differential diagnosis of cerebral infection

    International Nuclear Information System (INIS)

    Objective: To study the application of single voxel proton magnetic resonance spectroscopy in diagnosis and differential diagnosis of cerebral infection according to manifestations of the 8 patients with cerebritis and 13 patients with gliomas. Methods: The patients including 8 cerebral abscess and 13 gliomas were examined with MRS. And the quantity of the NAA, Cho, Cr, Lip, Lac, AA were measured and compared. Results: There were differences between cerebral abscess and tumors on MRS. NAA/Cr and Cho/Cr of abscess were 4.114±3.637 and 3.084±0.933. NAA/Cr and Cho/Cr of tumors were 1.064±0.823 and 5.987±4.380. There was amino acids (AA) could be seen in some of cerebral abscess. Conclusion: 1H magnetic resonance spectroscopy can supply important information in diagnosis cerebral infection and differentiate information with tumor. (authors)

  16. The nuclear reaction n + 3He -> 1H + 3H as proximity reaction

    International Nuclear Information System (INIS)

    The present thesis tries to give by means of the nuclear reaction n + 3He -> 1H + 3H as proximity reaction on the three-particle system 3He + 9Be -> 1H + 3H + 8Be an experimental verification to the second term of a multiple scattering series. The study of these rescattering effects is of great interest for the present theory of the final-state interaction. At three incident energies (7.08 MeV, 8.98 MeV, and 6.37 MeV) to detector telescopes identify the exit channel of the three-particle system in list-mode coincidence experiments according to protons and tritons. Peaks on the kinematical curves occur. The detailed study of their kinematic behaviour allows to exclude the inconcurrence to the proximity reaction lying cascade decays via intermediate states in 4He, 9B, and 11B. Regarding the Coulomb interaction the experimental results can be also explained in the sense of the classical kinematics by the proximity model. (orig.)

  17. Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wei Shen; Zhen Cao; Ke-Zeng You; Zhong-Xian Yang; Ye-Yu Xiao; Xiao-Fang Cheng; Yao-Wen Chen

    2012-01-01

    AIM:To evaluate the feasibility of quantifying liver choline concentrations in both normal and apoptotic rabbit livers in vivo,using 1H magnetic resonance spectroscopy (1H-MRS).METHODS:1H-MRS was performed in 18 rabbits using a 1.5T GE MR system with an eight-channel head/neck receiving coil.Fifteen rabbits were injected with sodium selenite at a dose of 10 μmol/kg to induce the liver cell apoptosis.Point-resolved spectroscopy sequencelocalized spectra were obtained from 10 livers once before and once 24 h after sodium selenite injection in vivo.T1 and T2 relaxation time of water and choline was measured separately in the livers of three healthy rabbits and three selenite-treated rabbits.Hematoxylin and eosin and dUTP-biotin nick end labeling (TUNEL) staining was used to detect and confirm apoptosis.Choline peak areas were measured relative to unsuppressed water using LCModel.Relaxation attenuation was corrected using the average of T1 and T2 relaxation time.The choline concentration was quantified using a formula,which was tested by a phantom with a known concentration.RESULTS:Apoptosis of hepatic cells was confirmed by TUNEL assay.In phantom experiment,the choline concentration (3.01 mmol/L),measured by 1H-MRS,was in good agreement with the actual concentration (3 mmol/L).The average T1 and T2 relaxation time of choline was 612 ± 15 ms and 74 ± 4 ms in the control group and 670 ± 27 ms and 78 ± 5 ms in apoptotic livers in vivo,respectively.Choline was quantified in 10 rabbits,once before and once after the injection with sodium selenite.The choline concentration decreased from 14.5 ± 7.57 mmol/L before sodium selenite injection to 10.8 ± 6.58 mmol/L (mean ± SD,n =10) after treatment (Z =-2.395,P < 0.05,two-sample paired Wilcoxon test).CONCLUSION:1H-MRS can be used to quantify liver choline in vivo using unsuppressed water as an internal reference.Decreased liver choline concentrations are found in sodium selenite-treated rabbits undergoing liver cell

  18. In vivo research in astrocytoma cell proliferation with {sup 1}H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Li, Tao; Chen, Xi-Lan [Renmin Hospital of Wuhan University, Department of Radiology, Wuhan, Hubei Province (China); Huang, Shu-Lan [Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei Province (China)

    2006-05-15

    Assessment of brain tumor proliferative potential provides important prognostic information that supplements standard histopathologic grading. Proton magnetic resonance spectroscopy ({sup 1}H-MRS) gives completely different information, relating to cell membrane proliferation, neuronal damage, energy metabolism and necrotic transformation of brain or tumor tissues. The aim of this study was to investigate the relationship between {sup 1}H-MRS and tumor proliferative potential in astrocytomas. We studied 34 patients with histologically verified astrocytomas using the {sup 1}H-MRS protocol following routine MRI preoperatively. The tumor in 26 of these patients was classified as grade I/II (low grade), and the tumor in the remaining patients as grade III/IV (high grade) according to the World Health Organization classification criteria of nervous system tumors (2000). The tumor in 21 patients was homogeneous astrocytoma, and of these 17 were classified as low grade and 4 as high grade. Expression of proliferating cell nuclear antigen (PCNA) was determined immunohistochemically using streptavidin-biotin-peroxidase complex (SP) staining. The ratios of choline (Cho) to N-acetylaspartate (NAA) and Cho to creatine (Cr) in those with high-grade astrocytomas (n=4) were significantly higher than in those with low-grade astrocytomas (n=17) (t=2.899, P=0.009; t=3.96, P=0.001, respectively), and were found to be significantly correlated with the expression of PCNA in 21 patients with homogeneous astrocytomas (r=0.455, P=0.038; r=0.633, P=0.002, respectively). (orig.)

  19. 1H magnetic resonance spectroscopy studies on subclinical neurocysticercosis%脑实质囊虫病亚临床期的1H-MRS成像研究

    Institute of Scientific and Technical Information of China (English)

    王青; 张承志; 李信响; 徐鲲; 苏洁

    2016-01-01

    Objective: To evaluate the clinical application of single voxel 1H magnetic resonance spectroscopy in diagnosis of subclinical neurocysticercosis. Materials and Methods: One hundred and ten cases of subclinical neurocysticercosis and 130 cases of cerebral cysticercosis (live worms stage) with contrast enhanced single voxel 1H magnetic resonance spectroscopy were screened for this study. Observation of the change in ratio of the lesions of the subclinical neurocysticercosis and some trace metabolites around the lesions was done. Results: The group of subclinical neurocysticercosis has no significant difference with normal control group in various biochemical metabolites. The ratios of NAA/Cho, Cho/Cr and Lip/Cr have statistical significance in the analysis and evaluation of subclinical neurocysticercosis group and live worms stage group. The ratio of NAA/Cho in subclinical neurocysticercosis group is higher than live worms stage group. The ratios of Cho/Cr and Lip/Cr of the former are lower than that of the latter. The ratios of NAA/Cho and Lip/Cr evaluate the differential diagnosis efficiency between subclinical neurocysticercosis stage and live worms stage on ROC curve. Conclusions: 1H-MRS reveals the changes in characteristics of subclinical neurocysticercosis stage and live worms stage so as to evaluate the corresponding diagnosis index of the ratios of NAA/Cho and Lip/Cr, which are of great value to early diagnosis and treatment of the neurocysticercosis.%目的:应用单体素1H-MRS波谱成像前瞻性研究对其脑实质囊虫病亚临床期的诊断价值。材料与方法筛选110例脑实质囊虫病亚临床期为研究对象,并与130例脑实质囊虫病活虫期为对照,进行单体素1H-MRS波谱成像检查,观测脑实质囊虫(亚临床期)病灶及其周围区域某些微量代谢产物比值的变化,并进行对照评价。结果脑实质囊虫病亚临床期与正常镜像区组各生化代谢物比值结果均无显著性差异

  20. Single voxel 1 H magnetic resonance spectroscopy in the diagnosis of musculoskeletal mass lesions

    Directory of Open Access Journals (Sweden)

    Shalini Agarwal

    2014-01-01

    Full Text Available Introduction: In vivo magnetic resonance spectroscopy (MRS is an established technique for evaluation of malignant tumors in brain, breast, prostate, etc., However, its efficacy in the diagnosis of musculoskeletal (MSK mass lesions is yet to be established. We present our experience with MRS of these lesions. Materials and Methods: Magnetic resonance imaging (MRI, dynamic contrast-enhanced MRI and single-voxel 1 H MRS was performed in 30 consecutive patients with histologically proven benign and malignant MSK tumors/mass lesions each, on a 1.5-T magnetic resonance scanner. MRS was performed with echo times (TE of 40, 135 and 270 ms. A clearly identifiable peak at 3.2 ppm in at least two of the three spectra acquired at the three TE was taken as positive for choline. MRS imaging and enhancement patterns were compared in these two groups and were analyzed by a Radiologist blinded to the histopathological findings. Results: Ages of patients in the malignant age group ranged from 2 to 65 years (M: F - 19:11 while that of patients in the benign group ranged from 7 months to 56 years (M: F - 17:13. There were two patients with Type I curve, 18 with Type II curve and 10 with Type III curve on dynamic contrast enhanced images in the malignant group while there were no patients with Type I curve, 5 with Type II curve and 25 with Type III curve in the benign group. The sensitivity of MRS for predicting malignancy was 60%, specificity was 93.33%, positive predictive value was 90%, negative predictive value was 70% and accuracy was 76.66%. Conclusion: MRS is a promising technique for evaluation of MSK mass lesions. The accuracy at present remains low. We recommend that it be used as an adjunct to routine MRI.

  1. {sup 1}H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Orphanidou-Vlachou, E., E-mail: eleni.orphanidou@googlemail.com [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Auer, D., E-mail: dorothee.auer@nottingham.ac.uk [Division of Academic Radiology, School of Medical and Surgical Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); Brundler, M.A., E-mail: marie-anne.brundler@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Davies, N.P., E-mail: nigel.davies@nhs.net [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Jaspan, T., E-mail: tim.jaspan@nuh.nhs.uk [Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); MacPherson, L., E-mail: Lesley.MacPherson@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Natarajan, K., E-mail: Kal.Natarajan@uhb.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); and others

    2013-06-15

    Introduction: Low grade gliomas are the commonest brain tumours in children but present in a myriad of ways, each with its own treatment challenges. Conventional MRI scans play an important role in their management but have limited ability to identify likely clinical behaviour. The aim of this study is to investigate {sup 1}H magnetic resonance spectroscopy (MRS) as a method for detecting differences between the various low grade gliomas and related tumours in children. Patients and methods: Short echo time single voxel {sup 1}H MRS at 1.5 or 3.0 T was performed prior to treatment on children with low grade brain tumours at two centres and five MR scanners, 69 cases had data which passed quality control. MRS data was processed using LCModel to give mean spectra and metabolite concentrations which were compared using T-tests, ANOVA, Receiver Operator Characteristic curves and logistic regression in SPSS. Results: Significant differences were found in concentrations of key metabolites between glioneuronal and glial tumours (T-test p < 0.05) and between most of the individual histological subtypes of low grade gliomas. The discriminatory metabolites identified, such as choline and myoinositol, are known tumour biomarkers. In the set of pilocytic astrocytomas and unbiopsied optic pathway gliomas, significant differences (p < 0.05, ANOVA) were found in metabolite profiles of tumours depending on location and patient neurofibromatosis type 1 status. Logistic regression analyses yielded equations which could be used to assess the probability of a tumour being of a specific type. Conclusions: MRS can detect subtle differences between low grade brain tumours in children and should form part of the clinical assessment of these tumours.

  2. Integration of 3D 1H-magnetic resonance spectroscopy data into neuronavigation systems for tumor biopsies

    Science.gov (United States)

    Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.

    2013-03-01

    Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.

  3. {sup 1}H and {sup 31}P-magnetic resonance spectroscopy of cerebral infarction in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, Manabu; Katayama, Yasuo; Igarashi, Hironaka; Terashi, Akiro [Nippon Medical School, Tokyo (Japan)

    1997-04-01

    Magnetic resonance spectroscopy (MRS) allows the noninvasive study of metabolism in vivo. In order to further understand the time course of biochemical changes during cerebral infarction, we performed the MRS study with pathological analysis. The left middle cerebral artery (MCA) was occluded in spontaneously hypertensive male rats (SHR) by the method of Tamura et al. The spectra were obtained from the infarcted hemisphere by placing the surface coils over the left side of the calvarium. {sup 31}P and {sup 1}H-MRS were performed at 3 hours, 24 hours and 7 days after MCA occlusion. Ischemic lesions caused by the left MCA occlusion extended into the parietal lobe and caudate putamen. After 3 hours of ischemia, vacuolated neurophils and shrunken neurons were observed. At 24 hours, these changes were severe. After 7 days, infiltration of monocytes and capillary hyperplasia were seen, and neurons had disappeared. At the acute stage of ischemia the phosphocreatine/inorganic phosphate (PCr/Pi) peak ratio decreased. After 7 days of ischemia, these changes became obscure. The intracellular pH (pHi) decreased after 3 hours of ischemia and recovered almost to the control level at 24 hours post ischemia. Alkalosis was apparent 7 days after ischemia. This alkalosis might be due to increased permeability of the deteriorated blood brain barrier. Although the lactate level was high 24 hours post ischemia, the pHi was almost normal. The N-acetyl-aspartate/creatine ratio decreased significantly from the acute stage of stroke. This decrease correlated with pathological changes. The correlation of the magnetic resonance spectra with the histological results may open aspects for monitoring stroke therapy and a new approach to tissue characterization. (author)

  4. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    Science.gov (United States)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  5. 1H-Magnetic resonance spectroscopy in Mb. Alzheimer's and MCI patients

    International Nuclear Information System (INIS)

    In this study a proton magnetic spectroscopy was conducted on 38 patients suffering from Alzheimer, 10 patients with MCI (mild cognitive impairment) and 21 elderly controls. The analyzed metabolites were N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (Ins). 1H-MRS was conducted in the cingulated gyri and the centrum semiovale of 38 patients with AD, 10 patients with MCI and 21 elderly controls. A STEAM sequence was used at 1,5 Tesla. The values of NAA, Cho, Cr and Ins were measured and the ratios of NAA/Cr, NAA/Cho, Cho/Cr and Ins/Cr were statistically evaluated. The Ins/Cr Ratio in the posterior cingulated gyrus was significantly lower in the MCI group than in the DAT group (p=0,007), while the decrease of the Ins/Cr Ratio in the compared controls was not significant. The NAA/Cr ratio was not significantly different whether in patients with AD, MCI nor in the examined controls. NAA/Cho and Cho/Cr ratios were likewise not significantly different in the three groups. Our findings of an increased Ins/Cr Ratio in the AD group might indicate the beginning of glial activation in the posterior cingulated gyri. As the other examined ratios were not significantly different among the three groups, our patients may not have suffered significant neuronal loss yet. (author)

  6. Magnetic catalysis in nuclear matter

    OpenAIRE

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2014-01-01

    A strong magnetic field enhances the chiral condensate at low temperatures. This so-called magnetic catalysis thus seeks to increase the vacuum mass of nucleons. We employ two relativistic field-theoretical models for nuclear matter, the Walecka model and an extended linear sigma model, to discuss the resulting effect on the transition between vacuum and nuclear matter at zero temperature. In both models we find that the creation of nuclear matter in a sufficiently strong magnetic field becom...

  7. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  8. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291

  9. Kinetics of the in vivo31P 1H nuclear overhauser effect of the human-calf-muscle phosphocreatine resonance

    Science.gov (United States)

    Bachert, Peter; Bellemann, Matthias E.

    In 31P 1H double-resonance experiments in a 1.5 T whole-body MR system, we observed in vivo the truncated driven, transient, and steady-state 31P- 1H nuclear Overhauser effect of the phosphocreatine resonance in 31P MR spectra of human gastrocnemius muscle. Maximum signal enhancements of 0.52 ± 0.01, 0.20 ± 0.01, and 0.79 ± 0.02 were measured, respectively. Fitting the data with theoretical functions which solve the multispin Solomon equations for N protons (S spins) dipolar coupled to a 31P nucleus (I spin) yields cross-relaxation times {2}/{[Σ i=1-N σIS(i) ] } in the order of 20 s. In vivo experiments are feasible for studying relaxation mechanisms in coupled 31P 1H spin systems in intact tissue.

  10. Interaction of apocytochrome c and derived polypeptide fragments with sodium dodecyl sulfate micelles monitored by photochemically induced dynamic nuclear polarization in 1H NMR and fluorescence spectroscopy

    International Nuclear Information System (INIS)

    The topology of apocytochrome c, the heme-free precursor of the mitochondrial protein cytochrome c, was investigated in a lipid-associated form. For this purpose photochemically induced dynamic nuclear polarization 1H nuclear magnetic resonance (CIDNP 1H NMR) spectroscopy and quenching of tryptophan and tyrosine fluorescence by acrylamide were applied to an apocytochrome c-sodium dodecyl sulfate (SDS) micellar system. A pH titration of the chemical shifts of the histidine C2 proton resonances of apocytochrome c, using conventional 1H NMR, yielded pKa's of 5.9 ± 0.1 and 6.2 ± 0.1, which were assigned to histidine-18 and -33 and histidine-26, respectively. In the presence of SDS micelles an average pKa of 8.1 ± 0.1 was obtained for all histidine C2 protons. Photo-CIDNP enhancements of the histidine, tryptophan, and tyrosine residues, contained in the intact apocytochrome c and in chemically and enzymatically prepared fragments of the precursor, were reduced in the presence of SDS micelles. Similarly, the quenching of the tryptophan fluorescence of the polypeptides by acrylamide was diminished in the presence of SDS. These results indicate the aromatic residues studied are localized in the interface of the SDS micelle

  11. Interaction of apocytochrome c and derived polypeptide fragments with sodium dodecyl sulfate micelles monitored by photochemically induced dynamic nuclear polarization in sup 1 H NMR and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Snel, M.M.E.; Kaptein, R.; de Kruijff, B. (Univ. of Utrecht (Netherlands))

    1991-04-09

    The topology of apocytochrome c, the heme-free precursor of the mitochondrial protein cytochrome c, was investigated in a lipid-associated form. For this purpose photochemically induced dynamic nuclear polarization {sup 1}H nuclear magnetic resonance (CIDNP {sup 1}H NMR) spectroscopy and quenching of tryptophan and tyrosine fluorescence by acrylamide were applied to an apocytochrome c-sodium dodecyl sulfate (SDS) micellar system. A pH titration of the chemical shifts of the histidine C2 proton resonances of apocytochrome c, using conventional {sup 1}H NMR, yielded pK{sub a}'s of 5.9 {plus minus} 0.1 and 6.2 {plus minus} 0.1, which were assigned to histidine-18 and -33 and histidine-26, respectively. In the presence of SDS micelles an average pK{sub a} of 8.1 {plus minus} 0.1 was obtained for all histidine C2 protons. Photo-CIDNP enhancements of the histidine, tryptophan, and tyrosine residues, contained in the intact apocytochrome c and in chemically and enzymatically prepared fragments of the precursor, were reduced in the presence of SDS micelles. Similarly, the quenching of the tryptophan fluorescence of the polypeptides by acrylamide was diminished in the presence of SDS. These results indicate the aromatic residues studied are localized in the interface of the SDS micelle.

  12. A Classical Approach in Simple Nuclear Fusion Reaction 1H2 + 1H3 using Two-Dimension Granular Molecular Dynamics Model

    CERN Document Server

    Viridi, Sparisoma; Waris, Abdul; Perkasa, Yudha Satya

    2011-01-01

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between 1H2 and 1H3 is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary 2He4 nucleus.

  13. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy.

    OpenAIRE

    Orije, Jasmien; Kara, Firat; Guglielmetti, Caroline; Praet, Jelle; Linden, van der, M.; Ponsaerts, Peter; Verhoye, Marleen

    2015-01-01

    Non-invasive measures of well-known pathological hallmarks of multiple sclerosis (MS) such as demyelination, inflammation and axonal injury would serve as useful markers to monitor disease progression and evaluate potential therapies. To this end, in vivo localized proton magnetic resonance spectroscopy ((1)H-MRS) provides a powerful means to monitor metabolic changes in the brain and may be sensitive to these pathological hallmarks. In our study, we used the cuprizone mouse model to study pa...

  14. Nuclear Current and Magnetic Rotation

    Institute of Scientific and Technical Information of China (English)

    PENG Jing; XING Li-Feng

    2009-01-01

    The magnetic rotational bands based on the configuration πh211/2 ⊕Vh-211/2 in 142 Gd are investigated with the newly developed tilted axis cranking relativistic mean field (RMF) theory with and without nuclear current.The effect of the nuclear current is discussed by comparing the total Routhians,single particle levels,electromagnetic transition probabilities B(M1) and B(E2) in self-consistent tilted axis cranking RMF calculation with those obtained without the nuclear current.The nuclear currents are found to play an important role in the magnetic rotation of nuclei.

  15. 1H magnetic resonance spectroscopy of the brain in paediatrics: The diagnosis of creatine deficiencies

    NARCIS (Netherlands)

    Sijens, P.E.; Oudkerk, M.

    2005-01-01

    The diagnosis of creatine deficiencies, a paediatric application of magnetic resonance spectroscopy that has already become a diagnostic tool in clinical practice, is reviewed and illustrated with results from recent examinations

  16. A retunable surface coil for high field 31P and 1H magnetic resonance evaluations of the living mouse leg

    International Nuclear Information System (INIS)

    This study presents a retunable surface coil that can be adjusted to at least two Larmor frequencies sequentially without the need to remove the coil from the magnet and while avoiding interference between channels. A prototype 1H/31P surface coil for the analysis of the in vivo mouse leg under electrical stimulation was designed for operation at 11.75 T. The coil has a high-quality factor of over 100 for both operational frequencies. To demonstrate the capabilities of this simple design, in vivo experiments were conducted to acquire high-resolution 1H images and 31P spectra of the C57BL/6 mouse leg, both with high temporal resolution. Proton diffusion tensor imaging was also performed to evaluate rodent skeletal muscle architecture. This design makes the acquisition of physiological data about both muscle structure and energetics (PCr, ATP and Pi) possible in a single experimental session

  17. High-field (9.4 T) ~1H magnetic resonance microscopy of mouse brain

    Institute of Scientific and Technical Information of China (English)

    丁广良; 胡红兵; 李丽云; 叶朝辉

    1997-01-01

    The FLASH and STEAM pulse sequences were used to perform the microimaging and localized spectroscopy of brain of living and dead mice, respectively. The phase-shift presaturation approach was used to sup-press water NMR signal. The experimental results show that the differences in localized spectra and MR images of brain between live and dead mice can be observed by means of magnetic resonance microscopy.

  18. The use of dynamic nuclear polarization in 1H and 13C solid state NMR

    International Nuclear Information System (INIS)

    The Dynamic Nuclear Polarization (DNP) effect is used at room temperature in combination with 13C NMR. Due to the low natural abundance of 13C spins (1%) the signal is very weak, but when the DNP effect is used the 13C signal can be enhanced and therefore the number of scans and the measuring time considerably reduced. The theory is presented and the experimental set-up is described. Experiments on polystyrene, artificially doped with free radicals are described and it is examined whether the theory of the DNP effect can be used in a quantitative way. Applications of the use of the DNP effect in 13C NMR are shown. Excellent spectra are presented of artificial and natural diamonds, possibly to be used for diamond characterization purposes. 161 refs.; 61 figs.; 3 tabs

  19. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  20. 1H-magnetic resonance spectroscopy screening for animals with acute cerebral infraction suitable for thrombolytic therapy

    Institute of Scientific and Technical Information of China (English)

    Li Yi; Haiou Zhang; Hao Lei; Li Wei

    2007-01-01

    BACKGROUND: As a non-invasive technique which can provide comprehensive biological information, 'H-magnetic resonance spectroscopy ('H-MRS) may provide valuable reference data for irreversible recovery or reversible changes in ischemic tissue after stroke.OBJECTIVE: To monitor and evaluate the effect of the urokinase thrombolytic therapy after experimental acute cerebral ischemia by 'H-MRS technology and investigate its adaptability. DESIGN: Randomly controlled animal study. SETTINGS: Shenzhen Hospital of Peking University and National Key Laboratory of Pattern and Atom & Molecular Physics, Wuhan Physics and Mathematics Institute, Chinese Academy of Science. MATERIALS: Eleven healthy adult Sprague-Dawley (SD) rats, weighing 260 - 300 g and of both genders, were supplied by Experimental Animal Center of Tongji Medical Collage, Huazhong University of Science and Technology [SCXK (e) 2004-007]. 4.7T superconducting nuclear magnetic resonance meter was provided by Brucker Company. METHODS: The experiment was carried out in Shenzhen Hospital of Peking University and National Key Laboratory of Pattern and Atom & Molecular Physics, Wuhan Physics and Mathematics Institute, Chinese Academy of Science from August 2003 to December 2005. ① The rats were randomly divided into 30-minute self-thrombo-embolism group (n =6) and 60-minute self-thrombo-embolism group (n =5). Six rats in 30-minute self-thrombo-embolism group were occluded with clot embolus for 30 minutes and 5 rats in 60-minute self-thrombo-embolism group were occluded for 60 minutes. 10 000 1H/kg urokinase was dissolved in 2 Ml saline and the operation lasted for 5 minutes. ②1H-MRS was performed before thrombolysis and at 3 hours and 24 hours after successful embolization. The metabolic changes of N-acetyl-L-aspartic acid (NAA)/phosphocreatine (PCr) + creatine (Cr), choline phosphate (Cho)/PCr+Cr and lactic acid (Lac)/PCr+Cr in the region of interests were analyzed. ③The T2W image was conducted 24 hours after

  1. Proton magnetic resonance spectroscopy ((1H-MRS reveals geniculocalcarine and striate area degeneration in primary glaucoma.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Glaucoma is a collection of neurodegenerative diseases that affect both the retina and the central visual pathway. We investigated whether metabolites' concentrations changed in the geniculocalcarine (GCT and the striate area of occipital lobe by proton magnetic resonance spectroscopy ((1H-MRS, suggesting neurodegeneration of the central visual pathway in primary glaucoma. METHODOLOGY/PRINCIPAL FINDINGS: 20 patients with glaucoma in both eyes were paired with 20 healthy volunteers in same gender and an age difference less than 3 years. All the participants were examined by MR imaging including T1 Flair, T2 FSE and (1H-MRS. The T1 intensity and T2 intensity of their GCTs and striate areas were measured. The ratio of N-acetylaspartate (NAA/Creatine (Cr, Choline (Cho/Cr, glutamine and glutamate (Glx/Cr were derived by multi-voxels (1H-MRS in the GCT and the striate area of each brain hemisphere. The T1 intensity and T2 intensity had no difference between the groups. Significant decreases in NAA/Cr and Cho/Cr but no difference in Glx/Cr was found between the groups in both the GCT and the striate area. CONCLUSIONS/SIGNIFICANCE: Primary glaucoma affects metabolites' concentrations in the GCT and the striate area suggesting there is ongoing neurodegenerative process.

  2. The classification of benign and malignant human prostate tissue by multivariate analysis of {sup 1}H magnetic resonance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P.; Smith, I.; Leboldus, L.; Littman, C.; Somorjai, L.; Bezabeh, T. [Institute for Biodiagnostic, National Research Council, Manitoba (Canada)

    1998-04-01

    {sup 1}H magnetic resonance spectroscopy studies (360 MHz) were performed on specimens of benign (n = 66) and malignant (n = 21) human prostate tissue from 50 patients and the spectral data were subjected to multivariate analysis, specifically linear-discriminant analysis. On the basis of histopathological assessments, an overall classification accuracy of 96.6 % was achieved, with a sensitivity of 100 % and a specificity of 95.5 % in classifying benign prostatic hyperplasia from prostatic cancer. Resonances due to citrate, glutamate, and taurine were among the six spectral subregions identified by our algorithm as having diagnostic potential. Significantly higher levels of citrate were observed in glandular than in stromal benign prostatic hyperplasia (P < 0.05). This method shows excellent promise for the possibility of in vivo assessment of prostate tissue by magnetic resonance. (author)

  3. Non-invasive assessment of hepatic fat accumulation in chronic hepatitis C by {sup 1}H magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krssak, Martin [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); Hofer, Harald [Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna (Austria); Wrba, Fritz [Department of Clinical Pathology, Medical University of Vienna (Austria); Meyerspeer, Martin [MR Centre-of-Excellence, Department of Radiodiagnostics, Medical University of Vienna (Austria); Center for Biomedical Engineering and Physics, Medical University of Vienna (Austria); Brehm, Attila [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center of Diabetes Research and Department of Medicine/Metabolic Diseases, Heinrich Heine University, Duesseldorf (Germany); Lohninger, Alfred [Department of Medical Chemistry, Center for Physiology and Pathophysiology, Medical University of Vienna (Austria); Steindl-Munda, Petra [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); MR Centre-of-Excellence, Department of Radiodiagnostics, Medical University of Vienna (Austria); Moser, Ewald [MR Centre-of-Excellence, Department of Radiodiagnostics, Medical University of Vienna (Austria); Center for Biomedical Engineering and Physics, Medical University of Vienna (Austria); Ferenci, Peter [Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna (Austria); Roden, Michael, E-mail: michael.roden@ddz.uni-duesseldorf.d [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center of Diabetes Research and Department of Medicine/Metabolic Diseases, Heinrich Heine University, Duesseldorf (Germany)

    2010-06-15

    Background: Liver biopsy is the standard method for diagnosis of hepatic steatosis, but is invasive and carries some risk of morbidity. Aims and methods: Quantification of hepatocellular lipid content (HCL) with non-invasive single voxel {sup 1}H magnetic resonance spectroscopy (MRS) at 3 T was compared with histological grading and biochemical analysis of liver biopsies in 29 patients with chronic hepatitis C. Body mass index, indices of insulin resistance (homeostasis model assessment index, HOMA-IR), serum lipids and serum liver transaminases were also quantified. Results: HCL as assessed by {sup 1}H MRS linearly correlated (r = 0.70, p < 0.001) with histological evaluation of liver biopsies and was in agreement with histological steatosis staging in 65% of the patients. Biochemically assessed hepatic triglyceride contents correlated with HCL measured with {sup 1}H MRS (r = 0.63, p < 0.03) and allowed discriminating between none or mild steatosis versus moderate or severe steatosis. Patients infected with hepatitis C virus genotype 3 had a higher prevalence of steatosis (62%) which was not explained by differences in body mass or whole body insulin resistance. When these patients were excluded from correlation analysis, hepatic fat accumulation positively correlated with insulin resistance in the remaining hepatitis C patients (HCL vs. HOMA-IR, r = 0.559, p < 0.020, n = 17). Conclusion: Localized {sup 1}H MRS is a valid and useful method for quantification of HCL content in patients with chronic hepatitis C and can be easily applied to non-invasively monitoring of steatosis during repeated follow-up measurements in a clinical setting.

  4. IN VIVO 1H MAGNETIC RESONANCE SPECTROSCOPY IN EVALUATION OF HEPATOCELLULAR CARCINOMA AND ITS EARLY RESPONSE TO TRANSCATHETER ARTERIAL CHEMOEMBOLIZATION

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Wei-jun Peng; Pei-jun Wang; Ya-jia Gu; Wen-tao Li; Liang-pin Zhou; Feng Tang; Guo-ming Zhong

    2006-01-01

    Objective To investigate the value of in vivo proton magnetic resonance spectroscopy (MRS) in the assessment of hepatocellular carcinoma (HCC) and monitor its metabolic change shortly after transcatheter arterial chemoembolization (TACE).Methods In this prospective study,28 consecutive patients with large HCC (≥3 cm in diameter) confirmed by fine needle aspiration biopsy were recruited.The 1H MRS of all hepatic lesions and some uninvolved liver parenchyma were performed with 1.5T whole body MR scanner.Among them,15 cases were evaluated again about one week after TACE.The main metabolites such as choline and lipid before and after interventional therapy were measured to assess the early response of the tumor.Results The technical success rate of 1H MRS in liver was high (33/41,80%),closely related to breath motion,location of lesion,and size of voxel.In spectra,the choline compound peak of HCC elevated compared with uninvolved liver parenchyma.After TACE,both the amplitude and the area of choline resonance peak significantly descended (choline-to-lipid ratios from 0.352±0.080 to 0.167±0.030,P=0.026;from 0.205±0.060 to 0.070±0.020,P=0.042,respectively);yet lipid resonance peak ascended.Conclusions In vivo 1H MRS is technically feasible for the evaluation of large focal hepatic lesions,however,the reproducibility and stability are not as good as routine MR scan.1H MRS can monitor the early stage metabolic changes of HCC after TACE but limitation like quantification still exists.

  5. The search for negative amplitude components in quasi-continuous distributions of relaxation times: the example of 1H magnetization exchange in articular cartilage and hydrated collagen

    International Nuclear Information System (INIS)

    When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with α1H ratio, α. The solid-to-liquid exchange times are found to be in the range from 10 ms to a few tens of ms at all hydration levels. The results may be of interest for the application of magnetization exchange contrast in the imaging of articular cartilage

  6. Magnetometer of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    We present a nuclear magnetic resonance magnetometer that measures magnetic fields, between 2,500 gauss and 5,000 gauss, with an accuracy of a few parts per million. The circuit of the magnetometer, based on a marginal oscillator, permits a continuous tunning in the frequency range comprised between 10.0 MHz, with a signal to noise ratio of about 20. The radiofrequency amplifier is of the cascode type in integrated circuit and it operates with two 9V batteries. The modulation is at 35 Hz and it is provided by an external oscillator. The instrument is compact, inexpensive and easy to operate; it can also be used for didactic purposes to show the phenomenon of magnetic nuclear resonance and its main characteristics. (author)

  7. Absolute hydrogen depth profiling using the resonant $^{1}$H($^{15}$N,$\\alpha\\gamma$)$^{12}$C nuclear reaction

    CERN Document Server

    Reinhardt, Tobias P; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-01-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used $^{1}$H($^{15}$N,$\\alpha\\gamma$)$^{12}$C reaction, resonant at 6.4\\,MeV $^{15}$N beam energy. Here, the strongly anisotropic angular distribution of the emitted $\\gamma$-rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38$\\pm$0.04) and (0.80$\\pm$0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0$\\pm$1.5)\\,eV, 10\\% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known $\\gamma$-ray detection efficiency. Finally, the absolute approach i...

  8. Absolute hydrogen depth profiling using the resonant 1H(15N, αγ)12C nuclear reaction

    Science.gov (United States)

    Reinhardt, Tobias P.; Akhmadaliev, Shavkat; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-08-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used 1 H(15 N, αγ)12 C reaction, resonant at 6.4 MeV 15 N beam energy. Here, the strongly anisotropic angular distribution of the emitted γ -rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38 ± 0.04) and (0.80 ± 0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0 ± 1.5) eV, 10% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known γ -ray detection efficiency. Finally, the absolute approach is illustrated using two examples.

  9. Evaluation of invasiveness of astrocytoma using {sup 1}H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Li, Chuanfu; Ma, Xiangxing; Meng, Xiangshui; Feng, Dechao [Shandong University, Department of Radiology, Qilu Hospital, Jinan (China); Liu, Ying [Shandong University, Department of Radiology, Qilu Hospital, Jinan (China); Anhui Provincial Hospital, MRI Department, Hefei (China); Li, Li [Shandong University, Department of Pathology, Qilu Hospital, Jinan (China)

    2007-11-15

    Even low-grade astrocytomas infiltrate the entire brain, a feature that precludes their successful therapy. So to assess the invasive potential of astrocytoma is very important. The aim of this study was determine whether there is a significant correlation between the results of {sup 1}H-magnetic resonance spectroscopy ({sup 1}H-MRS) and tumor invasive potential of astrocytoma, which is reflected by expression of matrix metalloproteinase-2 (MMP-2). The {sup 1}H-MRS spectra of 41 histologically verified astrocytomas were obtained on a 3-T MR scanner. According to the World Health Organization classification criteria for central nervous system tumors, there were 16 low-grade astrocytomas (2 pilocytic astrocytomas, 14 grade II astrocytomas) and 25 high-grade astrocytomas (5 anaplastic astrocytomas, 20 glioblastomas).The choline/N-acetylaspartate (Cho/NAA) and choline/creatine (Cho/Cr) ratios were calculated. Of the 41 astrocytomas, 19 (8 low-grade and 11 high-grade) were analyzed immunohistochemically. Expression of MMP-2 was determined using streptavidin-peroxidase complex (SP) staining which was quantified by calculating its calibrated opacity density (COD) using an image analysis system. The correlations between metabolite ratios and the quantitative data from the immunohistochemical tests in the 19 astrocytomas were determined. The Cho/NAA and Cho/Cr ratios of high-grade astrocytoma were both significantly greater than those of low-grade astrocytoma (t = -6.222, P = 0.000; t = -6.533, P = 0.000, respectively). MMP-2 COD values of high-grade astrocytomas were also significantly greater than those of low-grade astrocytomas (t = -5.892, P = 0.000). There were strong positive correlations between Cho/NAA ratio and MMP-2 COD (r = 0.669, P = 0.002), and between Cho/Cr ratio and MMP-2 COD (r = 0.689, P = 0.001). {sup 1}H-MRS is helpful in evaluating the invasiveness of astrocytomas and predicting prognosis preoperatively by determining the Cho/NAA and Cho/Cr ratios

  10. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad;

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to char...... a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging....

  11. Thin film hydrogen depth profiling using the 1H(15N,αγ)12C nuclear reaction

    International Nuclear Information System (INIS)

    An analytical method for hydrogen depth profiling in materials has been developped using the 1H(15N,αγ) nuclear reaction. Without elemental interferences less than 1014 at/cm2, are detectable in the surface layer, the lowest in depth concentration range reaching easily 0,1 at. %. Moreover concentration profiles obtained in a non-destructive manner have a typical depth resolution ranging from approximately 50 A at the surface to approximately 400 A to a 8000 A depth, the analyzing depth being at least one micron. Such an analytical tool has required the development of a multiply charged ion source and a specially designed irradiation-detection system. Two important physical phenomena have been investigated regarding their connection to the analysis. The first one deals with the evolution of the hydrogen attached to the surface in function of the bombarding ion dose. Such variations have been interpreted in the frame of a model based on adsorption and radiolysis of the hydrogen species under beam impact, allowing related cross sections to be extracted. A remarkable agreement with the experimental results is pointed out. The second phenomenon in depth hydrogen departure under beam impact, is fortunately not so systematic. From various correlations it apears that ionisation of weakly bound hydrogen is responsible for the observed effect but one cannot so infer of the destructive character of the method

  12. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  13. Brain temperature measured by 1H-magnetic resonance spectroscopy in acute and subacute carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Brain temperature (BT) is associated with the balance between cerebral blood flow and metabolism according to the ''heat-removal'' theory. The present study investigated whether BT is abnormally altered in acute and subacute CO-poisoned patients by using 1H-magnetic resonance spectroscopy (MRS). Eight adult CO-poisoned patients underwent 3-T magnetic resonance imaging in the acute and subacute phases after CO exposure. MRS was performed on deep cerebral white matter in the centrum semiovale, and MRS-based BT was estimated by the chemical shift difference between water and the N-acetyl aspartate signal. We defined the mean BT + 1.96 standard deviations of the BT in 15 healthy controls as the cutoff value for abnormal BT increases (p < 0.05) in CO-poisoned patients. BT of CO-poisoned patients in both the acute and subacute phases was significantly higher than that of the healthy control group. However, BT in the subacute phase was significantly lower than in the acute phase. On the other hand, no significant difference in body temperature was observed between acute and subacute CO-poisoned patients. BT weakly correlated with body temperature, but this correlation was not statistically significant (rho = 0.304, p = 0.2909). The present results suggest that BT in CO-poisoned patients is abnormally high in the acute phase and remains abnormal in the subacute phase. BT alteration in these patients may be associated with brain perfusion and metabolism rather than other factors such as systemic inflammation and body temperature. (orig.)

  14. Brain temperature measured by {sup 1}H-magnetic resonance spectroscopy in acute and subacute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Shunrou; Nishimoto, Hideaki; Murakami, Toshiyuki; Ogawa, Akira; Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Yoshioka, Yoshichika [Osaka University, Laboratory of Biofunctional Imaging, WPI Immunology Frontier Research Center, Osaka (Japan); Matsuda, Tsuyoshi [MR Applications and Workflow Asia Pacific, GE Healthcare Japan, Tokyo (Japan); Beppu, Takaaki [Iwate Medical University, Department of Neurosurgery, Morioka, Iwate (Japan); Iwate Medical University, Department of Hyperbaric Medicine, Iwate (Japan)

    2016-01-15

    Brain temperature (BT) is associated with the balance between cerebral blood flow and metabolism according to the ''heat-removal'' theory. The present study investigated whether BT is abnormally altered in acute and subacute CO-poisoned patients by using {sup 1}H-magnetic resonance spectroscopy (MRS). Eight adult CO-poisoned patients underwent 3-T magnetic resonance imaging in the acute and subacute phases after CO exposure. MRS was performed on deep cerebral white matter in the centrum semiovale, and MRS-based BT was estimated by the chemical shift difference between water and the N-acetyl aspartate signal. We defined the mean BT + 1.96 standard deviations of the BT in 15 healthy controls as the cutoff value for abnormal BT increases (p < 0.05) in CO-poisoned patients. BT of CO-poisoned patients in both the acute and subacute phases was significantly higher than that of the healthy control group. However, BT in the subacute phase was significantly lower than in the acute phase. On the other hand, no significant difference in body temperature was observed between acute and subacute CO-poisoned patients. BT weakly correlated with body temperature, but this correlation was not statistically significant (rho = 0.304, p = 0.2909). The present results suggest that BT in CO-poisoned patients is abnormally high in the acute phase and remains abnormal in the subacute phase. BT alteration in these patients may be associated with brain perfusion and metabolism rather than other factors such as systemic inflammation and body temperature. (orig.)

  15. Wide-range nuclear magnetic resonance detector

    Science.gov (United States)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  16. Introduction to Nuclear Magnetic Resonance

    Science.gov (United States)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  17. Evanescent Waves Nuclear Magnetic Resonance.

    Science.gov (United States)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging.

  18. Nuclear magnetic ordering in silver

    International Nuclear Information System (INIS)

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of 109Ag. The critical temperature is found to 700 pK, and the critical field is 100 μT. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs

  19. Nuclear magnetic ordering in silver

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K.

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of {sup 109}Ag. The critical temperature is found to 700 pK, and the critical field is 100 {mu}T. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs.

  20. The search for negative amplitude components in quasi-continuous distributions of relaxation times: the example of {sup 1}H magnetization exchange in articular cartilage and hydrated collagen

    Energy Technology Data Exchange (ETDEWEB)

    Fantazzini, Paola; Galassi, Francesca [Department of Physics, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Bortolotti, Villiam [Department of DICAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna (Italy); Brown, Robert J S [953 West Bonita Avenue, Claremont, CA 91711-4193 (United States); Vittur, Franco, E-mail: paola.fantazzini@unibo.it [Department of Life Sciences, University of Trieste, via Giorgeri 1, 24137 (Italy)

    2011-06-15

    When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T{sub 1} relaxation data are obtained for low-mobility ('solid') macromolecular {sup 1}H and for higher-mobility ('liquid') {sup 1}H by the separation of these components in free induction decays, with {alpha} denoting the solid/liquid {sup 1}H ratio. When quasi-continuous distributions of relaxation times (T{sub 1}) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T{sub 1}, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with {alpha}>1, the exchange leads to small negative peaks at short T{sub 1} times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with {alpha}<<1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit

  1. Protein dynamics from nuclear magnetic relaxation.

    Science.gov (United States)

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  2. Diagnosis of breast tumors with 1H-MRS and dynamic contrast-enhanced magnetic resonance imaging%联合应用1H-MRS与MR动态增强成像诊断乳腺肿瘤

    Institute of Scientific and Technical Information of China (English)

    周欣; 张婷婷; 胡国清

    2012-01-01

    Objective To compare the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) alone and combined with 1 H-MRS in diagnosis of breast tumors. Methods ' H-MRS and DCE-MRI of 50 patients with breast tumors including 33 malignant lesions and 17 benign lesions were retrospectively analyzed. The diagnostic results of ' H-MRS and DCE-MRI were compared with pathological and clinical follow-up results. All patients underwent pre-enhanced conventional scanning, 1 H-MRS scanning and DCE-MR scanning after injection of contrast agent. The type of time-intensity curves (TIC) and display of choline (Cho) peak for all lesions were calculated. Results The diagnostic sensitivity, specificity and accuracy rate for TIC alone was 100% (33/33), 58. 82% (10/17) and 66. 00% (33/50), respectively, while was 100% (33/33), 88.24% (15/17) and 96.00% (48/50) respectively for combined application of 1H-MRS and DCE-MRI. There was statistical difference in diagnostic specificity and accuracy rate between the two methods (both P<0. 02). Conclusion DCE-MRI has lower specificity and accuracy rate for diagnosis of breast tumors. Combination of ' H-MRS and DCE-MRI can improve the diagnostic accuracy rate of breast tumors.%目的 比较应用MR动态增强成像(DCE-MRI)与联合应用1H-MRS及DCE-MRI对乳腺肿瘤的诊断价值.方法 回顾性分析50例乳腺肿瘤患者的1H-MRS及DCE-MRI表现,包括恶性肿瘤33例,良性肿瘤17例,并与病理及临床随诊结果进行对比.对所有患者分别行常规扫描、1H-MRS扫描及注射对比剂后动态增强扫描,分析时间-信号曲线(TIC)类型和胆碱(Cho)峰的显示情况.结果 以TIC类型判断肿瘤的良恶性,诊断的敏感度为100%(33/33),特异度为58.82%(10/17),准确率为66.00%(33/50);应用1H-MRS联合DCE-MRI诊断的敏感度为100%(33/33),特异度为88.24%(15/17),准确率为96.00%(48/50),与单纯DCE-MRI诊断的特异度和准确率差异有统计学意义(P均<0.02).结论 DCE

  3. γ-Fe2O3:A magnetic separable catalyst for synthesis of 5-substituted 1H-tetrazoles from nitriles and sodium azide

    Institute of Scientific and Technical Information of China (English)

    Gang Qi; Yong Dai

    2010-01-01

    An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported using γ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized conditions,the moderate to good yields(71-95%)can be obtained.The catalyst can be easily separated by a magnet and reused for several circles.

  4. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study

    OpenAIRE

    HATTINGEN, ELKE; Jurcoane, Alina; Bähr, Oliver; Rieger, Johannes; Magerkurth, Jörg; Anti, Sandra; Steinbach, Joachim P.; Pilatus, Ulrich

    2011-01-01

    Bevacizumab shows unprecedented rates of response in recurrent glioblastomas (GBM), but the detailed mechanisms are still unclear. We employed in vivo magnetic resonance spectroscopic imaging (MRSI) and quantitative magnetic resonance imaging to investigate whether bevacizumab alters oxygen and energy metabolism and whether this effect has antitumoral activity in recurrent GBM. 31P and 1H MRSI, apparent diffusion coefficient (ADC), and high-resolution T2 and T2′ mapping (indirect marker of ox...

  5. Quantitative {sup 1}H and hyperpolarized {sup 3}He magnetic resonance imaging: Comparison in chronic obstructive pulmonary disease and healthy never-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Owrangi, Amir M., E-mail: aowrangi@robats.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Graduate Program in Biomedical Engineering, The University of Western Ontario, London (Canada); Wang, Jian X., E-mail: jxwang@robats.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Applied Science Laboratories, General Electric Healthcare (Canada); Wheatley, Andrew, E-mail: awheat@imaging.robarts.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); McCormack, David G., E-mail: David.Mccormack@lhsc.on.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Division of Respirology, Department of Medicine, The University of Western Ontario, London (Canada); Parraga, Grace, E-mail: gparraga@robats.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Graduate Program in Biomedical Engineering, The University of Western Ontario, London (Canada); Department of Medical Imaging, The University of Western Ontario, London (Canada); Department of Medical Biophysics, The University of Western Ontario, London (Canada)

    2014-01-15

    Objective: The aim of this study was to quantitatively evaluate the relationship between short echo time pulmonary {sup 1}H magnetic resonance imaging (MRI) signal intensity (SI) and {sup 3}He MRI apparent diffusion coefficients (ADC), high-resolution computed tomography (CT) measurements of emphysema, and pulmonary function measurements. Materials and methods: Nine healthy never-smokers and 11 COPD subjects underwent same-day plethysmography, spirometry, short echo time ((TE) = 1.2 ms) {sup 1}H and diffusion-weighted hyperpolarized {sup 3}He MRI (b = 1.6 s/cm{sup 2}) at 3.0 T. In addition, for COPD subjects only, CT densitometry was also performed. Results: Mean {sup 1}H SI was significantly greater for never-smokers (12.1 ± 1.1 arbitrary units (AU)) compared to COPD subjects (10.9 ± 1.3 AU, p = 0.04). The {sup 1}H SI AP-gradient was also significantly greater for never-smokers (0.40 AU/cm, R{sup 2} = 0.94) compared to COPD subjects (0.29 AU/cm, R{sup 2} = 0.968, p = 0.05). There was a significant correlation between {sup 1}H SI and {sup 3}He ADC (r = −0.58, p = 0.008) and significant correlations between {sup 1}H MR SI and CT measurements of emphysema (RA{sub 950}, r = −0.69, p = 0.02 and HU{sub 15}, r = 0.66, p = 0.03). Conclusions: The significant and moderately strong relationship between {sup 1}H SI and {sup 3}He ADC, as well as between {sup 1}H SI and CT measurements of emphysema suggests that these imaging methods and measurements may be quantifying similar tissue changes in COPD and that pulmonary {sup 1}H SI may be used to monitor emphysema as a complement to CT and noble gas MRI.

  6. Quantitative 1H and hyperpolarized 3He magnetic resonance imaging: Comparison in chronic obstructive pulmonary disease and healthy never-smokers

    International Nuclear Information System (INIS)

    Objective: The aim of this study was to quantitatively evaluate the relationship between short echo time pulmonary 1H magnetic resonance imaging (MRI) signal intensity (SI) and 3He MRI apparent diffusion coefficients (ADC), high-resolution computed tomography (CT) measurements of emphysema, and pulmonary function measurements. Materials and methods: Nine healthy never-smokers and 11 COPD subjects underwent same-day plethysmography, spirometry, short echo time ((TE) = 1.2 ms) 1H and diffusion-weighted hyperpolarized 3He MRI (b = 1.6 s/cm2) at 3.0 T. In addition, for COPD subjects only, CT densitometry was also performed. Results: Mean 1H SI was significantly greater for never-smokers (12.1 ± 1.1 arbitrary units (AU)) compared to COPD subjects (10.9 ± 1.3 AU, p = 0.04). The 1H SI AP-gradient was also significantly greater for never-smokers (0.40 AU/cm, R2 = 0.94) compared to COPD subjects (0.29 AU/cm, R2 = 0.968, p = 0.05). There was a significant correlation between 1H SI and 3He ADC (r = −0.58, p = 0.008) and significant correlations between 1H MR SI and CT measurements of emphysema (RA950, r = −0.69, p = 0.02 and HU15, r = 0.66, p = 0.03). Conclusions: The significant and moderately strong relationship between 1H SI and 3He ADC, as well as between 1H SI and CT measurements of emphysema suggests that these imaging methods and measurements may be quantifying similar tissue changes in COPD and that pulmonary 1H SI may be used to monitor emphysema as a complement to CT and noble gas MRI

  7. Nuclear magnetic resonance studies of erythrocyte membranes

    NARCIS (Netherlands)

    Chapman, D.; Kamat, V.B.; Gier, J. de; Penkett, S.A.

    1968-01-01

    The use of nuclear magnetic resonance spectroscopy for studying molecular interactions in biological membranes has been investigated using erythrocyte membrane fragments. Sonic dispersion of these fragments produces a sharp and well-defined high-resolution nuclear magnetic resonance spectrum. The sp

  8. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    Science.gov (United States)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  9. NUCLEAR MAGNETIC RESONANCE STUDIES OF URANOCENES

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Wayne D.; Streitwieser, Jr., Andrew

    1979-12-01

    In the past several years a substantial amount of work has been devoted toward evaluation of the contact and pseudocontact contributions to the observed isotropic shifts in H nuclear magnetic resonance (NMR) spectra of uranium(IV) organometallic compounds. One reason for interest in this area arises from using the presence of contact shifts as a prcbe for covalent character in the uranium carbon bonds in these compounds. Several extensive {sup 1}H NNR studies on Cp{sub 3} U-X compounds and less extensive studies on uranocenes have been reported. Interpretation of these results suggests that contact shifts-contribute significantly to the observed isotropic shifts. Their presence has been taken as indicative of covalent character of metal carbon bonds in these systems, but agreement is not complete. In this paper we shall review critically the work reported on uranocenes in the light of recent results and report recent work on attempted separation of the observed isotropic shifts in alkyluranocenes into contact and pseudocontact components.

  10. Contribution to nuclear magnetic resonance imager using permanent magnets

    International Nuclear Information System (INIS)

    After some recalls of nuclear magnetic resonance, ways to get a stable and homogeneous magnetic field are studied with permanent magnets. Development of correction coils on integrated circuits has been particularly stressed. Gradient coil specific systems have been studied taking in account ferromagnetic material presence. Antenna system has been improved and possibility of image obtention with the prototype realized has been shown

  11. Prospects for Sub-Micron Solid State Nuclear Magnetic Resonance Imaging with Low-Temperature Dynamic Nuclear Polarization

    OpenAIRE

    Thurber, Kent R.; Tycko, Robert

    2010-01-01

    We evaluate the feasibility of 1H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol/water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 µl sample yields a 1H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With...

  12. A Metabolic Study on Colon Cancer Using 1H Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zahra Zamani

    2014-01-01

    Full Text Available Background. Colorectal carcinoma is the third cause of cancer deaths in the world. For diagnosis, invasive methods like colonoscopy and sigmoidoscopy are used, and noninvasive screening tests are not very accurate. We decided to study the potential of 1HNMR spectroscopy with metabolomics and chemometrics as a preliminary noninvasive test. We obtained a distinguishing pattern of metabolites and metabolic pathways between colon cancer patient and normal. Methods. Sera were obtained from confirmed colon cancer patients and the same number of healthy controls. Samples were sent for 1HNMR spectroscopy and analysis was carried out Chenomex and MATLAB software. Metabolites were identified using Human Metabolic Data Base (HDMB and the main metabolic cycles were identified using Metaboanalyst software. Results. 15 metabolites were identified such as pyridoxine, orotidine, and taurocholic acid. Main metabolic cycles involved were the bile acid biosynthesis, vitamin B6 metabolism, methane metabolism, and glutathione metabolism. Discussion. The main detected metabolic cycles were also reported earlier in different cancers. Our observations corroborated earlier studies that suggest the importance of lowering serum LCA/DCA and increasing vitamin B6 intake to help prevent colon cancer. This work can be looked upon as a preliminary step in using 1HNMR analysis as a screening test before invasive procedures.

  13. Parahydrogen enhanced zero-field nuclear magnetic resonance

    CERN Document Server

    Theis, Thomas; Kervern, Gwendal; Knappe, Svenja; Kitching, John; Ledbetter, Micah; Budker, Dmitry; Pines, Alex

    2011-01-01

    Nuclear magnetic resonance (NMR), conventionally detected in multi-tesla magnetic fields, is a powerful analytical tool for the determination of molecular identity, structure, and function. With the advent of prepolarization methods and alternative detection schemes using atomic magnetometers or superconducting quantum interference devices (SQUIDs), NMR in very low- (~earth's field), and even zero-field, has recently attracted considerable attention. Despite the use of SQUIDs or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared to conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated via parahydrogen induced polarization (PHIP), enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H J-couplings in compounds with 13C in natural abundance in a single transient. The resulting spectra display distinct features that have straightforward interpretation and can be...

  14. Reduction in temporal N-acetylaspartate and creatine (or choline) ratio in temporal lobe epilepsy: does this 1H-magnetic resonance spectroscopy finding mean poor seizure control?

    OpenAIRE

    Mendes-Ribeiro, J.; Soares, R.,; Simoes-Ribeiro, F.; Guimaraes, M

    1998-01-01

    BACKGROUND—Proton magnetic resonance spectroscopy (1H-MRS) is a potentially useful tool in the in vivo investigation of brain metabolites in intractable temporal lobe epilepsy (TLE). Focal N-acetylaspartatate (NAA) reductions have been correlated with mesial temporal sclerosis (MTS) in surgically resected epileptogenic foci.
OBJECTIVE—To evaluate the abnormalities in the metabolites NAA, creatine+ phosphocreatine (Cr), and choline containing compounds (Cho) in the tempora...

  15. 1H magnetic resonance spectroscopy and diffusion weighted imaging findings of medulloblastoma in 3.0T MRI A retrospective analysis of 17 cases

    Institute of Scientific and Technical Information of China (English)

    Guangyao Wu; Haopeng Pang; Prasanna Ghimire; Guobing Liu

    2012-01-01

    1H magnetic resonance spectroscopy and diffusion weighted imaging features of the cerebellar vermis in 17 medulloblastoma patients were retrospectively analyzed, and 17 healthy volunteers were selected as controls. 1H magnetic resonance spectroscopy showed that in all 17 medulloblastoma patients, N-acetyl aspartate and creatine peaks were significantly decreased, the choline peak was significantly increased, and there was evidence of a myo-inositol peak. Further, 11 patients showed a low taurine peak at 3.4 ppm, five patients showed a lipid peak at 0.9–1.3 ppm, and three patients showed a negative lactic acid peak at 1.33 ppm. Compared with the control group, the ratios of N-acetyl aspartate/choline and N-acetyl aspartate/creatine were significantly decreased, and the ratio of choline/creatine was increased, in medulloblastoma patients. Diffusion weighted imaging displayed hyperintensity and decreased apparent diffusion coefficient in medulloblastoma patients. These findings indicate that 1H magnetic resonance spectroscopy and diffusion weighted imaging are useful for qualitative diagnosis of medulloblastoma.

  16. Nuclear Magnetic Resonance Imaging: Current Capabilities

    OpenAIRE

    Davis, Peter L.; Crooks, Lawrence E.; Margulis, Alexander R.; Kaufman, Leon

    1982-01-01

    Nuclear magnetic resonance imaging can produce tomographic images of the body without ionizing radiation. Images of the head, chest, abdomen, pelvis and extremities have been obtained and normal structures and pathology have been identified. Soft tissue contrast with this method is superior to that with x-ray computerized tomography and its spatial resolution is approaching that of x-ray computerized tomography. In addition, nuclear magnetic resonance imaging enables us to image along the sag...

  17. A survey on quantitative analysis of organic compounds by nuclear magnetic resonance (NMR) spectroscopy

    International Nuclear Information System (INIS)

    Nuclear Magnetic Resonance (NMR) spectroscopy is known as a powerful analytical technique, which is used to determine the structure of small and macro organic compounds. In recent years, 1H NMR is being recognized more and more as a quantitative analytical method, which is based on the principle where the area under a 1H NMR signal peak in solution state is proportional to the number of nuclei contributing to the peak. In this report, the basic concepts, developmental history and current state of the quantitative 1H NMR (qNMR) method are described. Furthermore, future prospect of the qNMR method is presented. (author)

  18. Metabolic Changes in Rats with Photochemically Induced Cerebral Infarction and the Effects of Batroxobin: A Study by Magnetic Resonance Imaging, 1H- and 31P- Magnetic Resonance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    管兴志; 吴卫平; 匡培根; 匡培梓; 高杨; 管林初; 李丽云; 毛希安; 刘买利

    2001-01-01

    Metabolic changes in rats with photochemically induced cerebral infarction and the effects of batroxobin were investigated 1, 3, 5 and 7 days after infarction by means of magnetic resonance imaging (MRI), 1H- and 31P- magnetic resonance spectroscopy (MRS). A region of T2 hyperintensity was observed in left temporal neocortex in infarction group and batroxobin group 1, 3, 5 and 7 days after infarction. The volume of the region gradually decreased from 1 day to 7 days after infarction. The ratio of NAA/Cho+Cr in the region of T2 hyperintensity in the infarction group was significantly lower than that in the corresponding region in the sham-operated group 3, 5 and 7 days after infarction respectively (P<0.05). Lac appeared in the region of T2 hyperintensity in the infarction group 1, 3, 5 and 7 days after infarction, but it was not observed in the corresponding region in sham-operated group at all time points. Compared with the sham-operated group, the ratios of bATP/PME+PDE and PCr/PME+PDE of the whole brain in the infarction group were significantly lower 1, 3 and 5 days after infarction respectively (P<0.05), and the ratio of bATP/PCr also was significantly lower 1 day after infarction (P<0.05). Batroxobin significantly decreased the volume of the region of T2 hyperintensity 1 and 3 days after infarction (P<0.05), significantly increased the ratio of NAA/Cho+Cr in the region 5 and 7 days after infarction (P<0.05), significantly decreased the ratios of Lac/Cho+Cr and Lac/NAA in the region 5 and 7 days after infarction (P<0.05), and significantly increased the ratios of bATP/PME+PDE and bATP/PCr in the whole brain 1 day after infarction (P<0.05). The results indicated that the infracted region had severe edema, increased Lac and apparent neuronal dysfunction and death, and energy metabolism of the whole brain decreased after focal infarction, and that batroxobin effectively ameliorated the above-mentioned abnormal changes.

  19. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  20. Design and test of a double-nuclear RF coil for 1H MRI and 13C MRSI at 7 T

    Science.gov (United States)

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7 T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7 T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7 T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7 T.

  1. Design and test of a double-nuclear RF coil for (1)H MRI and (13)C MRSI at 7T.

    Science.gov (United States)

    Rutledge, Omar; Kwak, Tiffany; Cao, Peng; Zhang, Xiaoliang

    2016-06-01

    RF coil operation at the ultrahigh field of 7T is fraught with technical challenges that limit the advancement of novel human in vivo applications at 7T. In this work, a hybrid technique combining a microstrip transmission line and a lumped-element L-C loop coil to form a double-nuclear RF coil for proton magnetic resonance imaging and carbon magnetic resonance spectroscopy at 7T was proposed and investigated. Network analysis revealed a high Q-factor and excellent decoupling between the coils. Proton images and localized carbon spectra were acquired with high sensitivity. The successful testing of this novel double-nuclear coil demonstrates the feasibility of this hybrid design for double-nuclear MR imaging and spectroscopy studies at the ultrahigh field of 7T. PMID:27078089

  2. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  3. Proton magnetic resonance spectroscopy (1H MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization

    International Nuclear Information System (INIS)

    Our objective was to evaluate the usefulness of proton magnetic resonance spectroscopy (1H MRS) in categorizing brain tumours. In vivo single-voxel 1H MRS at an echo time of 136 ms was performed in 108 patients with brain neoplasms that included 29 meningiomas (MEN), 15 low-grade astrocytomas (LGA), 12 anaplastic astrocytomas (AA), 25 glioblastomas (GBM) and 27 metastases (MET). Time-domain fitted areas of nine resonances were evaluated in all spectra. Twenty-five additional tumours were prospectively included as independent test set. Differences in at least two resonances were found in all pairwise comparisons of tumour groups except in GBM vs MET. Large lipid resonance at 1.30 ppm was found to be characteristic of GBM and MET, and alanine was characteristic of MEN. Significant differences were found between LGA and AA in choline-containing compounds and total creatine resonances. When implemented in a stepwise algorithm, these findings correctly classified 84% (21 of 25) tumours in the independent test set. Some additional utility was found in glycine/myo-inositol at 3.55 ppm for bilateral differentiation between GBM and MET (9 of 11, 82% correct classification in the test set). 1H MRS provides useful information to categorize the most common brain tumours that can be implemented in clinical practice with satisfactory results. (orig.)

  4. The Response of RIF-1 Fibrosarcomas to the Vascular-Disrupting Agent ZD6126 Assessed by In Vivo and Ex Vivo1H Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Basetti Madhu

    2006-07-01

    Full Text Available The response of radiation-induced fibrosarcoma1 (RIF-1 tumors treated with the vascular-disrupting agent (VDA ZD6126 was assessed by in vivo and ex vivo1H magnetic resonance spectroscopy (MRS methods. Tumors treated with 200 mg/kg ZD6126 showed a significant reduction in total choline (tCho in vivo 24 hours after treatment, whereas control tumors showed a significant increase in tCho. This response was investigated further within both ex vivo unprocessed tumor tissues and tumor tissue metabolite extracts. Ex vivo high-resolution magic angle spinning (HRMAS and 1H MRS of metabolite extracts revealed a significant reduction in phosphocholine and glycerophosphocholine in biopsies of ZD6126-treated tumors, confirming in vivo tCho response. ZD6126-induced reduction in choline compounds is consistent with a reduction in cell membrane turnover associated with necrosis and cell death following disruption of the tumor vasculature. In vivo tumor tissue water diffusion and lactate measurements showed no significant changes in response to ZD6126. Spin-spin relaxation times (T2 of water and metabolites also remained unchanged. Noninvasive 1H MRS measurement of tCho in vivo provides a potential biomarker of tumor response to VDAs in RIF-1 tumors.

  5. Pulsed nuclear-electronic magnetic resonance

    CERN Document Server

    Morley, Gavin W; Mohammady, M Hamed; Aeppli, Gabriel; Kay, Christopher W M; Jeschke, Gunnar; Monteiro, Tania S

    2011-01-01

    Pulsed magnetic resonance is a wide-reaching technology allowing the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip either dilute electronic or nuclear spins is orders of magnitude shorter than their decoherence times, leading to several schemes for quantum information processing with spin qubits. We investigate instead the novel regime where the eigenstates approximate 50:50 superpositions of the electronic and nuclear spin states forming "nuclear-electronic" qubits. Here we demonstrate quantum control of these states, using bismuth-doped silicon, in just 32 ns: orders of magnitude shorter than previous experiments where pure nuclear states were used. The coherence times of our states are over four orders of magnitude longer, being 1 ms or more at 8 K, and are limited by the naturally-occurring 29Si nuclear spin impurities. There is quantitative agreement between our experiments and no-free-parameter anal...

  6. Progress in nuclear magnetic resonance spectroscopy

    CERN Document Server

    Emsley, J W; Sutcliffe, L H

    2013-01-01

    Progress in Nuclear Magnetic Resonance Spectroscopy, Part 1 is a two-chapter text that reviews significant developments in nuclear magnetic resonance (NMR) applications.The first chapter discusses NMR studies of molecules physisorbed on homogeneous surfaces. This chapter also describes the phase changes in the adsorbed layer detected by following the variation in the NMR parameters. The second chapter examines the process to obtain a plotted, data reduced Fourier transform NMR spectrum. This chapter highlights the pitfalls that can cause a decrease in information content in a NMR spectrum. The

  7. (1)H-NMR and charge transport in metallic polypyrrole at ultra-low temperatures and high magnetic fields.

    Science.gov (United States)

    Jugeshwar Singh, K; Clark, W G; Ramesh, K P; Menon, Reghu

    2008-11-19

    The temperature dependence of conductivity, proton spin relaxation time (T(1)) and magnetoconductance (MC) in metallic polypyrrole (PPy) doped with PF(6)(-) have been carried out at mK temperatures and high magnetic fields. At T50 K-relaxation is due to the dipolar interaction modulated by the reorientation of the symmetric PF(6) groups following the Bloembergen, Purcell and Pound (BPP) model. The data analysis shows that the Korringa ratio is enhanced by an order of magnitude. The positive and negative MC at TmK is due to the contributions from weak localization and Coulomb-correlated hopping transport, respectively. The role of EEI is observed to be consistent in conductivity, T(1) and MC data, especially at T<1 K. PMID:21693848

  8. Nuclear magnetic resonance of thermally oriented nuclei

    International Nuclear Information System (INIS)

    The more recent developments in the spectroscopy of Nuclear Magnetic Resonance on Oriented Nuclei (NMRON) are reviewed; both theoretical and experimental advances are summarised with applications to On-Line and Off-Line determination of magnetic dipole and electric quadrupole hyperfine parameters. Some emphasis is provided on solid state considerations with indications of where likely enhancements in technique will lead in conventional hyperfine studies. (orig.)

  9. DIFFERENTIATION BETWEEN BENIGN PROSTATIC HYPERPLASIA AND PROSTATE CANCER IN THE TRANSITIONAL ZONE EVALUATED BY 1H MAGNETIC RESONANCE SPECTROSCOPIC IMAGING

    Institute of Scientific and Technical Information of China (English)

    Sa-ying Li; Min Chen; Rui Wang; Cheng Zhou

    2007-01-01

    To quantitatively evaluate the metabolic changes of benign prostatic hyperplasia (BPH) and prostate cancer in the transitional zone using magnetic resonance spectroscopic imaging ( MRSI), and to analyze the characteristics and differences of the spectra in this zonal area.Methods Eighteen patients with prostate cancer in the transitional zone underwent magnetic resonance imaging( MRI)/MRSI examinations. The ( Choline + Creatine)/Citrate (CC/Ci) ratio and the Choline/Creatine (Cho/Cr) ratio were evaluated in each voxel with cancer or BPH confirmed by pathological results. Discriminant analysis was used to determine the power of the two ratios in differentiation between cancer and BPH.Results The CC/Ci ratio and Cho/Cr ratio for cancer voxels were significantly higher than those in the voxels with BPH in the transitional zone ( CC/Ci: 2.36 ± 1.31 vs. 0.85 ± 0.29, P < 0.01; Cho/Cr: 4.14 ± 1.79 vs. 1.26 ±0.45, P < 0.01 ). As for the discriminant function with the CC/Ci ratio and the Cho/Cr ratio, the specificity, sensitivity, and accuracy were 98.6%, 85.7%, 92.9% respectively for the differentiation between cancer and BPH.Conclusions The prostate cancer is characterized by higher CC/Ci ratio and Cho/Cr ratio compared to BPH in the transitional zone. Both CC/Ci ratio and Cho/Cr ratio have high specificity, sensitivity, and accuracy in their discriminative power between cancer and BPH in this zonal area.

  10. Whole-brain patterns of (1)H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies.

    Science.gov (United States)

    Su, L; Blamire, A M; Watson, R; He, J; Hayes, L; O'Brien, J T

    2016-01-01

    Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB. PMID:27576166

  11. Metabolite concentrations in supraventricular white matter from teenage to early old age: A short echo time 1H magnetic resonance spectroscopy (MRS) study

    Energy Technology Data Exchange (ETDEWEB)

    Raininko, Raili (Dept. of Radiology, Uppsala Univ., Uppsala (Sweden)), e-mail: raili.raininko@radiol.uu.se; Mattsson, Peter (Dept. of Neuroscience, Neurology, Uppsala Univ., Uppsala (Sweden))

    2010-04-15

    Background: Age- and sex-related changes of metabolites in healthy adult brains have been examined with different 1H magnetic resonance spectroscopy (MRS) methods in varying populations, and with differing results. A long repetition time and short echo time technique reduces quantification errors due to T1 and T2 relaxation effects and makes it possible to measure metabolites with short T2 relaxation times. Purpose: To examine the effect of age on the metabolite concentrations measured by 1H MRS in normal supraventricular white matter using a long repetition time (TR) and a short echo time (TE). Material and Methods: Supraventricular white matter of 57 healthy subjects (25 women, 32 men), aged 13 to 72 years, was examined with a single-voxel MRS at 1.5T using a TR of 6000 ms and a TE of 22 ms. Tissue water was used as a reference in quantification. Results: Myoinositol increased slightly and total N-acetyl aspartate (NAA) decreased slightly with increasing age. Glutamine/glutamate complex (Glx) showed U-shaped age dependence, with highest concentrations in the youngest and oldest subjects. No significant age dependence was found in total choline and total creatine. No gender differences were found. Macromolecule/ lipid (ML) fractions were reliably measurable only in 36/57 or even fewer subjects and showed very large deviations. Conclusion: The concentrations of several metabolites in cerebral supraventricular white matter are age dependent on 1H MRS, even in young and middle-aged people, and age dependency can be nonlinear. Each 1H MRS study of the brain should therefore take age into account, whereas sex does not appear to be so important. The use of macromolecule and lipid evaluations is compromised by less successful quantification and large variations in healthy people

  12. Metabolite concentrations in supraventricular white matter from teenage to early old age: A short echo time {sup 1}H magnetic resonance spectroscopy (MRS) study

    Energy Technology Data Exchange (ETDEWEB)

    Raininko, Raili [Dept. of Radiology, Uppsala Univ., Uppsala (Sweden)], e-mail: raili.raininko@radiol.uu.se; Mattsson, Peter [Dept. of Neuroscience, Neurology, Uppsala Univ., Uppsala (Sweden)

    2010-04-15

    Background: Age- and sex-related changes of metabolites in healthy adult brains have been examined with different {sup 1}H magnetic resonance spectroscopy (MRS) methods in varying populations, and with differing results. A long repetition time and short echo time technique reduces quantification errors due to T1 and T2 relaxation effects and makes it possible to measure metabolites with short T2 relaxation times. Purpose: To examine the effect of age on the metabolite concentrations measured by 1H MRS in normal supraventricular white matter using a long repetition time (TR) and a short echo time (TE). Material and Methods: Supraventricular white matter of 57 healthy subjects (25 women, 32 men), aged 13 to 72 years, was examined with a single-voxel MRS at 1.5T using a TR of 6000 ms and a TE of 22 ms. Tissue water was used as a reference in quantification. Results: Myoinositol increased slightly and total N-acetyl aspartate (NAA) decreased slightly with increasing age. Glutamine/glutamate complex (Glx) showed U-shaped age dependence, with highest concentrations in the youngest and oldest subjects. No significant age dependence was found in total choline and total creatine. No gender differences were found. Macromolecule/ lipid (ML) fractions were reliably measurable only in 36/57 or even fewer subjects and showed very large deviations. Conclusion: The concentrations of several metabolites in cerebral supraventricular white matter are age dependent on 1H MRS, even in young and middle-aged people, and age dependency can be nonlinear. Each 1H MRS study of the brain should therefore take age into account, whereas sex does not appear to be so important. The use of macromolecule and lipid evaluations is compromised by less successful quantification and large variations in healthy people.

  13. magnetic order studied by nuclear methods

    CERN Document Server

    Reichl, C

    2001-01-01

    investigated within the frame of this work. The studies on the highly concentrated deuterides revealed a gradual loss in local field due to a distribution of 'local Curie temperatures' depending on the number of Fe neighbours and their distances from the Moessbauer nucleus. On rising the temperature, during a magnetic transition, an increasing number of Fe sites with different local environment loose their hyperfine fields, whereas bulk measurements showed a relatively sharp, however, incomplete transition. By using a combination of neutron diffraction- and muon spin relaxation studies the complex magnetic phase diagram of the system Ce(Rh,Ru) sub 3 B sub 2 , where weak magnetic moments exist, could be studied. There, transitions from para- to ferromagnetism, and more complicated magnetic structures could be observed. Due to the existence of several isotopes of B and Ru, each carrying different nuclear spins and magnetic moment, particularly complicated second moment simulations for interpreting the muon data...

  14. Chronic Cocaine Use and Its Association with Myocardial Steatosis Evaluated by 1H Magnetic Resonance Spectroscopy in African Americans

    Science.gov (United States)

    Lai, Shenghan; Gerstenblith, Gary; Li, Ji; Zhu, Hong; Bluemke, David A.; Liu, Chia-Ying; Zimmerman, Stefan L.; Chen, Shaoguang; Lai, Hong; Treisman, Glenn

    2014-01-01

    Objectives Cardiac steatosis is a manifestation of ectopic fat deposition and is associated with obesity. The impact of chronic cocaine use on obesity measures and on the relationship between obesity measures and cardiac steatosis is not well-characterized. The objectives of this study were to compare obesity measures in chronic cocaine users and non-users, and to explore which factors, in addition to obesity measures, are associated with myocardial triglyceride in African Americans (AAs), using noninvasive magnetic resonance spectroscopy (MRS). Methods Between June 2004 and January 2014, 180 healthy AA adults without HIV infection, hypertension and diabetes were enrolled in an observational proton MRS and imaging study investigating factors associated with cardiac steatosis. Results Among these 180 participants, 80 were chronic cocaine users, and 100 were non-users. The median age (with IQR) was 42 (34-47) years. Obesity measures trended higher in cocaine users than non-users. The median myocardial triglyceride was 0.6% (IQR:0.4-1.1%). Among the factors investigated, years of cocaine use, leptin and visceral fat were independently associated with myocardial triglyceride. BMI and visceral fat, which were significantly associated with myocardial triglyceride in non-cocaine users, were not associated with myocardial triglycerides content in cocaine users. Conclusions This study shows (1) cocaine users may have more fat than nonusers and (2) myocardial triglyceride is independently associated with duration of cocaine use, leptin, and visceral fat in all subjects, while leptin and HDL-cholesterol, but not visceral fat or BMI, in cocaine users, suggesting that chronic cocaine use may modify the relationships between obesity measures and myocardial triglyceride. PMID:25325298

  15. Nuclear Magnetic Resonance Technology for Medical Studies.

    Science.gov (United States)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  16. Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.A.; Jackman, R.J.; Whitesides, G.M. [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Olson, D.L.; Sweedler, J.V. [Beckman Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1997-05-01

    This letter describes a method for producing conducting microcoils for high resolution proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopy on nanoliter volumes. This technique uses microcontact printing and electroplating to form coils on microcapillaries. Nuclear magnetic resonance spectra collected using these microcoils, have linewidths less than 1 Hz for model compounds and a limit of detection (signal-to-noise ratio=3) for ethylbenzene of 2.6 nmol in 13 min. {copyright} {ital 1997 American Institute of Physics.}

  17. Phosphonate Based High Nuclearity Magnetic Cages.

    Science.gov (United States)

    Sheikh, Javeed Ahmad; Jena, Himanshu Sekhar; Clearfield, Abraham; Konar, Sanjit

    2016-06-21

    Transition metal based high nuclearity molecular magnetic cages are a very important class of compounds owing to their potential applications in fabricating new generation molecular magnets such as single molecular magnets, magnetic refrigerants, etc. Most of the reported polynuclear cages contain carboxylates or alkoxides as ligands. However, the binding ability of phosphonates with transition metal ions is stronger than the carboxylates or alkoxides. The presence of three oxygen donor sites enables phosphonates to bridge up to nine metal centers simultaneously. But very few phosphonate based transition metal cages were reported in the literature until recently, mainly because of synthetic difficulties, propensity to result in layered compounds, and also their poor crystalline properties. Accordingly, various synthetic strategies have been followed by several groups in order to overcome such synthetic difficulties. These strategies mainly include use of small preformed metal precursors, proper choice of coligands along with the phosphonate ligands, and use of sterically hindered bulky phosphonate ligands. Currently, the phosphonate system offers a library of high nuclearity transition metal and mixed metal (3d-4f) cages with aesthetically pleasing structures and interesting magnetic properties. This Account is in the form of a research landscape on our efforts to synthesize and characterize new types of phosphonate based high nuclearity paramagnetic transition metal cages. We quite often experienced synthetic difficulties with such versatile systems in assembling high nuclearity metal cages. Few methods have been emphasized for the self-assembly of phosphonate systems with suitable transition metal ions in achieving high nuclearity. We highlighted our journey from 2005 until today for phosphonate based high nuclearity transition metal cages with V(IV/V), Mn(II/III), Fe(III), Co(II), Ni(II), and Cu(II) metal ions and their magnetic properties. We observed that

  18. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    Science.gov (United States)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  19. Nuclear magnetic resonance spectroscopy of single subnanoliter ova

    CERN Document Server

    Grisi, Marco; Guidetti, Roberto; Harris, Nicola; Boero, Giovanni

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is, in principle, a promising candidate to study the intracellular chemistry of single microscopic living entities. However, due to sensitivity limitations, NMR experiments were reported only on very few and relatively large single cells down to a minimum volume of 10 nl. Here we show NMR spectroscopy of single ova at volume scales (0.1 and 0.5 nl) where life development begins for a broad variety of animals, humans included. We demonstrate that the sensitivity achieved by miniaturized inductive NMR probes (few pmol of 1H nuclei in some hours at 7 T) is sufficient to observe chemical heterogeneities among subnanoliter ova of tardigrades. Such sensitivities should allow to non-invasively monitor variations of concentrated intracellular compounds, such as glutathione, in single mammalian zygotes.

  20. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  1. Thin layer and nuclear magnetic resonance magnetometers

    International Nuclear Information System (INIS)

    In the first part of this text, magnetometers with sensitive elements in the form of thin cylindrical ferromagnetic layers are described. These layers are anisotropic, uniaxial, C orientated and single domains. In the second part of the text, the principles of the nuclear magnetic resonance magnetometer realized at the LETI are presented. This instrument is accurate, of high efficiency, and isotropic. Very small variations in magnetic field intensity (10-7 oersteds) can be detected with a 1Hz pass band at zero frequency

  2. Nuclear magnetic ordering ''avant toute chose''

    International Nuclear Information System (INIS)

    We give an overview of the research initiated at Saclay to study cooperative phenomena between nuclear spins in the presence of a high magnetic field. These systems exhibit a wealth of different orderings including antiferromagnetism, ferromagnetism with domains and transverse structures rotating about the static magnetic field. These states have been characterized by NMR of the ordered nuclei, NMR of dilute probe nuclei, double resonance methods and neutron diffraction. Some related phenomena involving the coupling of spins with the lattice are reported. Finally we outline future experiments which will benefit of the insight brought by the study of dipolar ordering. (authors). 30 refs., 11 figs

  3. Nuclear magnetic resonance properties of lunar samples.

    Science.gov (United States)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  4. Thermal Transition of Ribonuclease A Observed Using Proton Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    闫永彬; 罗雪春; 周海梦; 张日清

    2001-01-01

    The thermal transition of bovine pancreatic ribonuclease A (RNase A) was investigated using proton nuclear magnetic resonance (NMR). Significant resonance overlap in the large native protein limits accurate assignments in the 1H NMR spectrum. This study proposes extending the investigation of large proteins by dynamic analysis. Comparison of the traditional method and the correlation coefficient method suggests successful application of spectrum image analysis in dynamic protein studies by NMR.

  5. Experimental test of nuclear magnetization distribution and nuclear structure models

    Energy Technology Data Exchange (ETDEWEB)

    Beirsdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lopez-Urrutia, J Crespo R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Utter, S. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-02-26

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron' s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to

  6. Experimental test of nuclear magnetization distribution and nuclear structure models

    International Nuclear Information System (INIS)

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  7. Characterization of Maytenus ilicifolia samples by {sup 1}H NMR relaxation in the solid state; Caracterizacao dos constituintes polimericos da Maytenus ilicifolia por relaxacao nuclear de {sup 1}H por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Preto, Monica S. de M.; Tavares, Maria I.B., E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano. Lab de Ressonancia Magnetica Nuclear; Sebastiao, Pedro J.O. [Departamento de Fisica, Instituto Superior Tecnico, Lisboa (Portugal)

    2011-07-01

    The Maytenus ilicifolia (espinheira-santa) is a popular medicinal plant with different uses. It is native of South America and can be found in Brazil. In the Brazilian market it is possible found products labeled as M. ilicifolia. So far, the studies published in the literature involve the modification of the natural materials and do not concern the comparison between commercial the raw natural materials. Different non-destructive NMR techniques can be used to study natural materials. In this work it is presented a characterization study by Fast Field Cycling of the {sup 1}H spin-lattice relaxation time (T{sub 1}) NMR, in the frequency range 100 khz-10 MHz. The results obtained in two commercial M. ilicifolia samples and one control sample collected in natura are compared. It was intended to study the possibility to elaborate a characterization method using FFCNMR suitable for the verification of authenticity and/or evaluation of tampering on products. The differences detected by FFCNMR relaxometry were confirmed by thermogravimetric analysis and infrared spectroscopy. (author)

  8. Two-Dimensional Nuclear Magnetic Resonance Structure Determination Module for Introductory Biochemistry: Synthesis and Structural Characterization of Lyso-Glycerophospholipids

    Science.gov (United States)

    Garrett, Teresa A.; Rose, Rebecca L.; Bell, Sidney M.

    2013-01-01

    In this laboratory module, introductory biochemistry students are exposed to two-dimensional [superscript 1]H-nuclear magnetic resonance of glycerophospholipids (GPLs). Working in groups of three, students enzymatically synthesized and purified a variety of 2-acyl lyso GPLs. The structure of the 2-acyl lyso GPL was verified using [superscript…

  9. Prospects for Sub-Micron Solid State Nuclear Magnetic Resonance Imaging with Low-Temperature Dynamic Nuclear Polarization

    Science.gov (United States)

    Thurber, Kent R.; Tycko, Robert

    2010-01-01

    Summary We evaluate the feasibility of 1H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol/water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 µl sample yields a 1H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that 1H NMR signals from 1 µm3 voxel volumes should be readily detectable, and voxels as small as 0.03 µm3 may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz 1H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension. PMID:20458431

  10. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: a (1)H magnetic resonance spectroscopy study.

    Science.gov (United States)

    Husarova, Veronika; Bittsansky, Michal; Ondrejka, Igor; Dobrota, Dusan

    2014-04-30

    Attention deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral childhood disorder. Dysfunction of prefrontal neural circuits which are responsible for executive and attentional functions has been previously shown in ADHD. We investigated the neurometablite changes in areas included in dorsolateral prefrontal neural circuits after 2 months of long-acting methylphenidate or atomoxetine medication in children with ADHD who were responders to treatment. Twenty-one ADHD children were examined by single voxel (1)H-magnetic resonance spectroscopy (MRS) before and after 2 months of medication with OROS methylphenidate (n=10) or atomoxetine (n=11). The spectra were taken from the dorsolateral prefrontal cortex (DLPFC, 8ml) and white matter behind the DLPFC (anterior semioval center, 7.5ml), bilaterally. NAA and NAA/Cr (N-acetylaspartate/creatine) decreased in the left DLPFC and Cho/Cr (choline/creatine) increased in the right DLPFC after atomoxetine medication. Glu+Gln and Glu+Gln/Cr (glutamate/glutamine) increased in the left white matter after methylphenidate medication. We hypothesize that atomoxetine could decrease hyperactivation of DLPFC neurons and methylphenidate could lead to increased activation of cortical glutamatergic projections with the consequences of increased tonic dopamine release in the mesocortical system.

  11. Nuclear magnetic resonance common laboratory, quadrennial report

    International Nuclear Information System (INIS)

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  12. Nuclear Magnetic Resonance in Liquids and Solids

    International Nuclear Information System (INIS)

    The paper outlines the basic principles of nuclear magnetic resonance, trying wherever possible to compare and contrast the method with that of slow neutron scattering as a technique for studying the properties of condensed phases and especially of molecular and atomic motions. It is emphasized that this is not a review of nmr for an expert audience but has a pedagogical aim. It is hoped to give persons with a main interest in neutron scattering some appreciation of the scope and limitations of the nmr method. This is illustrated by recent results on one substance which covers many but by no means all of the important points. (author)

  13. Experiments in Nuclear Magnetic Resonance Microscopy

    Science.gov (United States)

    Lee, Yong; Lu, Wei; Choi, J.-H.; Chia, H. J.; Mirsaidov, U. M.; Guchhait, S.; Cambou, A. D.; Cardenas, R.; Park, K.; Markert, J. T.

    2006-03-01

    We report our group's effort in the construction of an 8-T, ^3 He cryostat based nuclear magnetic resonance force microscope (NMRFM). The probe has two independent 3-D of piezoelectric x-y-z positioners for precise positioning of a fiber optic interferometer and a sample/gradient-producing magnet with respect to a micro-cantilever. The piezoelectric positioners have a very uniform controllable step size with virtually no backlash. A novel RF tuning circuit board design is implemented which allows us to simply swap out one RF component board with another for experiments involving different nuclear species. We successfully fabricated and are characterizing 50μm x50μm x0.2μm double torsional oscillators. We have also been characterizing ultrasoft cantilevers whose spring constant is on the order of 10-4 N/m. We also report NMRFM data for ammonium dihydrogen phosphate(ADP) at room temperature using our 1.2-T system. Observed features include the correct shift of the NMR peak with carrier frequency, increases in signal amplitude with both RF field strength and frequency modulation amplitude, and signal oscillation (spin nutation) as a function of tipping RF pulse length. Experiments in progress on NH4MgF3 (at 1.2 T) and MgB2 (at 8.1 T) will also be briefly reviewed. Robert A. Welch Foundation grant No.F-1191 and the National Science Foundation grant No. DMR-0210383.

  14. Identification, synthesis and characterization of an unknown process related impurity in eslicarbazepine acetate active pharmaceutical ingredient by LC/ESI-IT/MS, 1H, 13C and 1H-1H COSY NMR

    Institute of Scientific and Technical Information of China (English)

    Saji Thomas; Saroj Kumar Paul; Subhash Chandra Joshi; Vineet Kumar; Ashutosh Agarwal; Dharam Vir

    2014-01-01

    A new impurity was detected during high performance liquid chromatographic (HPLC) analysis of eslicarbazepine acetate active pharmaceutical ingredient. The structure of unknown impurity was postulated based on liquid chromatography mass spectrometry using electrospray ionization and ion trap analyzer (LC/ESI-IT/MS) analysis. Proposed structure of impurity was unambiguously confirmed by synthesis followed by characterization using 1H, 13C nuclear magnetic resonance spectrometry (NMR), 1H-1H correlation spectro-scopy (COSY) and infrared spectroscopy (IR). Based on the spectroscopic and spectrometric data, unknown impurity was characterized as 5-carbamoyl-10,11-dihydro-5H-dibenzo[b,f]azepin-10-yl propionate.

  15. Spatial localization in nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keevil, Stephen F [Department of Medical Physics, Guy' s and St Thomas' NHS Foundation Trust, Guy' s Hospital, London, SE1 9RT (United Kingdom); Division of Imaging Sciences, King' s College London, Guy' s Campus, London, SE1 9RT (United Kingdom)

    2006-08-21

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications. (topical review)

  16. Sodium-23 magnetic resonance imaging during and after transient cerebral ischemia: multinuclear stroke protocols for double-tuned 23Na/1H resonator systems

    Science.gov (United States)

    Wetterling, Friedrich; Ansar, Saema; Handwerker, Eva

    2012-11-01

    A double-tuned 23Na/1H resonator system was developed to record multinuclear MR image data during and after transient cerebral ischemia. 1H-diffusion-, 1H perfusion, 1H T2-, 1H arterial blood flow- and 23Na spin density-weighted images were then acquired at three time points in a rodent stroke model: (I) during 90 min artery occlusion, (II) directly after arterial reperfusion and (III) one day after arterial reperfusion. Normal 23Na was detected in hypoperfused stroke tissue which exhibited a low 1H apparent diffusion coefficient (ADC) and no changes in 1H T2 relaxation time during transient ischemia, while 23Na increased and ADC values recovered to normal values directly after arterial reperfusion. For the first time, a similar imaging protocol was set-up on a clinical 3T MRI site in conjunction with a commercial double-tuned 1H/23Na birdcage resonator avoiding a time-consuming exchange of resonators or MRI systems. Multinuclear 23Na/1H MRI data sets were obtained from one stroke patient during both the acute and non-acute stroke phases with an aquisition time of 22 min. The lesion exhibiting low ADC was found to be larger compared to the lesion with high 23Na at 9 h after symptom onset. It is hoped that the presented pilot data demonstrate that fast multinuclear 23Na/1H MRI preclinical and clinical protocols can enable a better understanding of how temporal and regional MRI parameter changes link to pathophysiological variations in ischemic stroke tissue.

  17. Spin-Glass Behavior, Magnetic, and IR Spectroscopy Analysis of Multimetallic Compound Ni0.25Mn1.25[Fe(CN6]·6.1H2O

    Directory of Open Access Journals (Sweden)

    Qing Lin

    2015-01-01

    Full Text Available Multimetallic Prussian blue compound Ni0.25Mn1.25[Fe(CN6]·6.1H2O has been prepared by coprecipitation. The temperature-dependent magnetic susceptibilities show the magnet transition for the compound at 8.5 K. According to DC variable-temperature magnetic susceptibility paramagnetic Curie temperature θ is −9.32 K. The observed value of coercive field (Hc and the remanent magnetization (Mr for the compound are 0.32 KOe and 0.36 μB. According to study of zero-field-cooled (ZFC and field-cooled (FC magnetization curves and AC magnetization curves, there exists a spin-glass behaviour in the compound, which exhibits freezing temperature Tg=7.76 K, below magnetic transition TC=8.5 K; that glass behavior is termed “reentrant” spin glass.

  18. Quantum information processing and nuclear magnetic resonance

    CERN Document Server

    Cummins, H K

    2001-01-01

    as spectrometer pulse sequence programs. Quantum computers are information processing devices which operate by and exploit the laws of quantum mechanics, potentially allowing them to solve problems which are intractable using classical computers. This dissertation considers the practical issues involved in one of the more successful implementations to date, nuclear magnetic resonance (NMR). Techniques for dealing with systematic errors are presented, and a quantum protocol is implemented. Chapter 1 is a brief introduction to quantum computation. The physical basis of its efficiency and issues involved in its implementation are discussed. NMR quantum information processing is reviewed in more detail in Chapter 2. Chapter 3 considers some of the errors that may be introduced in the process of implementing an algorithm, and high-level ways of reducing the impact of these errors by using composite rotations. Novel general expressions for stabilising composite rotations are presented in Chapter 4 and a new class o...

  19. Two-dimensional nuclear magnetic resonance petrophysics.

    Science.gov (United States)

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  20. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    Science.gov (United States)

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  1. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    Science.gov (United States)

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  2. Analysis of metabolites in human brain tumors and cerebral infarctions using {sup 31}P- and {sup 1}H-magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Wataru [Kagoshima Univ. (Japan). Faculty of Medicine

    1996-08-01

    {sup 31}P- and {sup 1}H-MRS with a 2.0 tesla MRI/S system was used to monitor the cerebral energy levels, phospholipid metabolism, intracellular pH, and lactate and amino acid levels in patients with brain tumors and cerebral infarctions. Studies of human brain tumors have suggested that the {sup 31}P-MRS of malignant brain tumors show low concentrations of phosphocreatine (PCr) and {beta}-ATP, high levels of phosphomonoester (PME) and inorganic Pi, and an alkaline pH. The Pi, PME, and intracellular pH of malignant lymphoma were higher than those of other brain tumors. {sup 1}H-MRS showed an increase of lactate in malignant brain tumors and epidermoids. After ACNU administration, the tumor {sup 31}P-MRS showed transient reduction and elevation of Pi on five patients with malignant gliomas. Intracellular pH also showed a transient reduction during radiotherapy. {sup 1}H-MRS showed a reduction of lactate at the beginning of therapy and showed a marked re-elevation of lactate with tumor regrowth. After radiotherapy, the normal brain {sup 31}P-MRS showed transient elevation and reduction of Pi. Intracellular pH also showed a transient elevation during radiotherapy. To investigate the mechanism of hyperbaric oxygen therapy (HBO) in cerebral ischemia, changes of brain lactate level were estimated by {sup 1}H-MRS. Although the Lactate/Creatine ratio decreased consistently over time in all patients, it decreased more rapidly in the patients receiving HBO therapy than in those without such therapy. {sup 1}H-MRS demonstrated that HBO therapy may improve metabolism in the ischemic brain and reduces the lactate levels. {sup 31}P- and {sup 1}H-MRS are practical tools for the clinical analysis of cerebral disorders as well as for deciding on therapeutic procedures and evaluating the response. (K.H.)

  3. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.

    Science.gov (United States)

    Urenjak, J; Williams, S R; Gadian, D G; Noble, M

    1993-03-01

    Proton nuclear magnetic resonance (1H NMR) spectroscopy is a noninvasive technique that can provide information on a wide range of metabolites. Marked abnormalities of 1H NMR brain spectra have been reported in patients with neurological disorders, but their neurochemical implications may be difficult to appreciate because NMR data are obtained from heterogeneous tissue regions composed of several cell populations. The purpose of this study was to examine the 1H NMR profile of major neural cell types. This information may be helpful in understanding the metabolic abnormalities detected by 1H NMR spectroscopy. Extracts of cultured cerebellar granule neurons, cortical astrocytes, oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells, oligodendrocytes, and meningeal cells were analyzed. The purity of the cultured cells was > 95% with all the cell lineages, except for neurons (approximately 90%). Although several constituents (creatine, choline-containing compounds, lactate, acetate, succinate, alanine, glutamate) were ubiquitously detectable with 1H NMR, each cell type had distinctive qualitative and/or quantitative features. Our most unexpected finding was a large amount of N-acetyl-aspartate (NAA) in O-2A progenitors. This compound, consistently detected by 1H NMR in vivo, was previously thought to ne present only in neurons. The finding that meningeal cells have an alanine:creatine ratio three to four times higher than astrocytes, neurons, or oligodendrocytes is in agreement with observations that meningiomas express a higher alanine:creatine ratio than gliomas. The data suggest that each individual cell type has a characteristic metabolic pattern that can be discriminated by 1H NMR, even by looking at only a few metabolites (e.g., NAA, glycine, beta-hydroxybutyrate).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8441018

  4. 1H Nuclear Magnetic Resonance Study of Olive Oils Commercially Available as Italian Products in the United States of America

    Directory of Open Access Journals (Sweden)

    Laura Del Coco

    2012-05-01

    Full Text Available Multivariate analysis of 1H NMR data has been used for the characterization of 12 blended olive oils commercially available in the U.S. as Italian products. Chemometric methods such as unsupervised Principal Component Analysis (PCA allowed good discrimination and gave some affinity indications for the U.S. market olive oils compared to other single cultivars of extra virgin olive oil such as Coratina and Ogliarola from Apulia, one of Italy’s leading olive oil producers, Picual (Spain, Kalamata (Greece and Sfax (Tunisia. The olive oils commercially available as Italian products in the U.S. market clustered into 3 groups. Among them only the first (7 samples and the second group (2 samples showed PCA ranges similar to European references. Two oils of the third group (3 samples were more similar to Tunisian references. In conclusion, our study revealed that most EVOO (extra virgin olive oils tested were closer to Greek (in particular and Spanish olive oils than Apulia EVOO. The PCA loadings disclose the components responsible for the discrimination as unsaturated (oleic, linoleic, linolenic and saturated fatty acids. All are of great importance because of their nutritional value and differential effects on the oxidative stability of oils. It is evident that this approach has the potential to reveal the origin of EVOO, although the results support the need for a larger database, including EVOO from other Italian regions.

  5. Selective inversion of 1H resonances in solid-state nuclear magnetic resonance: Use of double-DANTE pulse sequence

    Science.gov (United States)

    Mithu, Venus Singh; Tan, Kong Ooi; Madhu, P. K.

    2013-12-01

    We here present a method based on DANTE pulses and homonuclear dipolar decoupling scheme to invert selectively any desired resonance in a proton spin system under magic-angle spinning. Experimental results are reported on a sample of L-histidine·HCl·H2O at magic-angle spinning frequencies of 15 and 60 kHz. The results are also substantiated numerically.

  6. Sensitive Magnetic Control of Ensemble Nuclear Spin Hyperpolarisation in Diamond

    CERN Document Server

    Wang, Hai-Jing; Avalos, Claudia E; Seltzer, Scott J; Budker, Dmitry; Pines, Alexander; Bajaj, Vikram S

    2012-01-01

    Dynamic nuclear polarisation, which transfers the spin polarisation of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance; it is also critical in spintronics, particularly when spin hyperpolarisation can be produced and controlled optically or electrically. Here we show the complete polarisation of nuclei located near the optically-polarised nitrogen-vacancy (NV) centre in diamond. When approaching the ground-state level anti-crossing condition of the NV electron spins, 13C nuclei in the first-shell are polarised in a pattern that depends sensitively and sharply upon the magnetic field. Based on the anisotropy of the hyperfine coupling and of the optical polarisation mechanism, we predict and observe a complete reversal of the nuclear spin polarisation with a few-mT change in the magnetic field. The demonstrated sensitive magnetic control of nuclear polarisation at room temperature will be useful for sensitivity-enhanced NMR, nuclear-based spintronics, and quant...

  7. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    Science.gov (United States)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  8. Search for magnetic monopoles with nuclear track detectors

    CERN Document Server

    Giorgini, M

    2000-01-01

    This paper describes an experimental search for GUT magnetic monopoles in the MACRO experiment using the nuclear track subdetector CR39. After discussing the working principle, the charge resolution and the calibration of the detector, the experimental procedure for searching for magnetic monopoles is described. Since no candidates were found, the upper flux limits obtained by the MACRO CR39 used as a "stand alone detector" for magnetic monopoles of different magnetic charges are presented.

  9. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  10. Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine; Eggers, Nina; Eller, Nanna

    2009-01-01

    In the present study, the ability of (1)H nuclear magnetic resonance (NMR) for metabolic profiling of human saliva samples was investigated. High-resolution (1)H NMR spectra were obtained, and signals were assigned to various metabolites mainly representing small organic acids and amino acids....... In addition, the use of human saliva for metabolomic studies was evaluated, and multivariate data analysis revealed that the 92 morning and night samples from 46 subjects could be discriminated with a predictability of 85%. The diurnal effect on the salivary metabolite profile were ascribed to changes...

  11. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    Energy Technology Data Exchange (ETDEWEB)

    Vinante, A., E-mail: anvinante@fbk.eu; Falferi, P. [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy); Mezzena, R. [Dipartimento di Fisica, Università di Trento, I-38123 Povo, Trento (Italy)

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  12. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. 1H, 23Na, 27Al, 69Ga, and 71Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio

  13. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance

    Science.gov (United States)

    Meier, Thomas; Herzig, Tobias; Haase, Jürgen

    2014-04-01

    A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 μm 6H-SiC large cone Boehler-type anvils. 1H, 23Na, 27Al, 69Ga, and 71Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.

  14. Nuclear Composition of Magnetized GRB Jets

    CERN Document Server

    Shibata, Sanshiro

    2015-01-01

    We investigate the fraction of metal nuclei in the relativistic jets of gamma-ray bursts associated with core-collapse supernovae. We simulate the fallback in jet-induced explosions with two-dimensional relativistic hydrodynamics calculations and the jet acceleration with steady, radial, relativistic magnetohydrodynamics calculations, and derive detail nuclear composition of the jet by postprocessing calculation. We found that if the temperature at the jet launch site is above $4.7\\times 10^9$K, quasi-statistical equilibrium (QSE) is established and heavy nuclei are dissociated to light particles such as $^4$He during the acceleration of the jets. The criterion for the survival of metal nuclei is written in terms of the isotropic jet luminosity as $L_{\\rm j}^{\\rm iso} \\lesssim 3.9\\times 10^{50}(R_{\\rm i}/10^7{\\rm cm})^2 (1+\\sigma_{\\rm i})~{\\rm erg~s^{-1}}$, where $R_{\\rm i}$ and $\\sigma_{\\rm i}$ are the initial radius of the jets and the initial magnetization parameter, respectively. If the jet is initially d...

  15. Structural Characterization of Amadori Rearrangement Product of Glucosylated Nα-Acetyl-Lysine by Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chuanjiang Li

    2014-01-01

    Full Text Available Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135 and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY and 2D nuclear overhauser enhancement spectroscopy (NOESY. The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.

  16. Nuclear magnetic resonance data of C9H11ITe

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  17. Nuclear magnetic resonance data of C10H13ITe

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  18. Implementation of Quantum Logic Gates by Nuclear Magnetic Resonance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    DU Jiang-Feng; WU Ji-Hui; SHI Ming-Jun; HAN Liang; ZHOU Xian-Yi; YE Bang-Jiao; WENG Hui-Ming; HAN Rong-Dian

    2000-01-01

    Using nuclear magnetic resonance techniques with a solution of cytosine molecules, we show an implementation of certain quantum logic gates (including NOT gate, square-root of NOT gate and controlled-NOT gate), which have central importance in quantum computing. In addition, experimental results show that nuclear magnetic resonance spectroscopy can efficiently measure the result of quantum computing without attendant wave-function collapse.

  19. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  20. Neutron Diffraction Studies of Nuclear Magnetic Ordering in Copper

    DEFF Research Database (Denmark)

    Jyrkkiö, T.A.; Huiku, M.T.; Siemensmeyer, K.;

    1989-01-01

    We have constructed a two-stage nuclear demagnetization cryostat for neutron diffraction studies of nuclear magnetism in copper. The cryostat is combined with a two-axis neutron spectrometer which can use both polarized and unpolarized neutrons. By demagnetizing highly polarized copper nuclear...... neutrons. By observing the (100) Bragg reflection, we have unambiguously proven antiferromagnetic ordering of the copper nuclear spins. Using a linear, position-sensitive detector, the time evolution of this peak was followed during the warm-up of the nuclear spin system. The peak intensity was found...... for our experimental data....

  1. The (1) H NMR spectrum of pyrazole in a nematic phase.

    Science.gov (United States)

    Provasi, Patricio; Jimeno, María Luisa; Alkorta, Ibon; Reviriego, Felipe; Elguero, José; Jokisaari, Jukka

    2016-08-01

    The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26947581

  2. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    Science.gov (United States)

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  3. Electron transport through nuclear pasta in magnetized neutron stars

    CERN Document Server

    Yakovlev, D G

    2015-01-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  4. 170 Nanometer Nuclear Magnetic Resonance Imaging using Magnetic Resonance Force Microscopy

    CERN Document Server

    Thurber, K R; Smith, D D; Thurber, Kent R.; Harrell, Lee E.; Smith, Doran D.

    2003-01-01

    We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nanometer slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nanometers. This is achieved by force detection of the magnetic resonance, Magnetic Resonance Force Microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs creates spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5 K and 4 T. The experiment is sensitive to sample volumes containing $\\sim 4 \\times 10^{11}$ $^{71}$Ga$/\\sqrt{Hz}$. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.

  5. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  6. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    Directory of Open Access Journals (Sweden)

    Toru Tomimatsu

    2015-08-01

    Full Text Available Electric-field-induced nuclear resonance (NER: nuclear electric resonance involving quantum Hall states (QHSs was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  7. Initial results of 3-dimensional 1H-magnetic resonance spectroscopic imaging in the localization of prostate cancer at 3 Tesla: should we use an endorectal coil?

    NARCIS (Netherlands)

    Yakar, D.; Heijmink, S.W.T.P.J.; Hulsbergen- van de Kaa, C.A.; Huisman, H.J.; Barentsz, J.O.; Futterer, J.J.; Scheenen, T.W.J.

    2011-01-01

    PURPOSE: The purpose of this study was to compare the diagnostic performance of 3 Tesla, 3-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) in the localization of prostate cancer (PCa) with and without the use of an endorectal coil (ERC). MATERIALS AND METHODS: Our prospective study

  8. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, M; Krishnan, V V

    2003-02-07

    spins with non-zero nuclear moments (spin 1/2 nuclei such as {sup 1}H or {sup 13}C) in an organic molecule dissolved in a solvent constitute the required qubits. The logic gates and algorithms correspond to set of instructions containing radio frequency (r.f) pulses and delays that manipulate the qubits and the final spectrum reflects the outcome of the algorithm. Three years ago, when we initiated proposal on NMR-QC, the foremost of the aim is to develop quantum computing as part of LLNL research programs and hence cultivate an interdisciplinary working group in the area of quantum computing. Our success in the proposal is in part responsible for the formation of the laboratory-wide exploratory group on ''quantum computing and information''. The PI's play an integral role in promoting the work performed using the LDRD funded project and hence acquire the attention within the lab as well outside. In specific goals of the project were to (a) develop experimental and sample based methods to improve the performance of NMR-QC, (b) define and estimate actual time cost or efficiency of a QCs, and (c) construct a comprehensive simulator of QC based on the principles of ensemble quantum computing. We were able to accomplish these goals and in particular we have reached some significant milestones in defining the QC efficiency and development of the QC-simulator. These developments have resulted to three publications.

  9. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    non-zero nuclear moments (spin 1/2 nuclei such as 1H or 13C) in an organic molecule dissolved in a solvent constitute the required qubits. The logic gates and algorithms correspond to set of instructions containing radio frequency (r.f) pulses and delays that manipulate the qubits and the final spectrum reflects the outcome of the algorithm. Three years ago, when we initiated proposal on NMR-QC, the foremost of the aim is to develop quantum computing as part of LLNL research programs and hence cultivate an interdisciplinary working group in the area of quantum computing. Our success in the proposal is in part responsible for the formation of the laboratory-wide exploratory group on ''quantum computing and information''. The PI's play an integral role in promoting the work performed using the LDRD funded project and hence acquire the attention within the lab as well outside. In specific goals of the project were to (a) develop experimental and sample based methods to improve the performance of NMR-QC, (b) define and estimate actual time cost or efficiency of a QCs, and (c) construct a comprehensive simulator of QC based on the principles of ensemble quantum computing. We were able to accomplish these goals and in particular we have reached some significant milestones in defining the QC efficiency and development of the QC-simulator. These developments have resulted to three publications

  10. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  11. Quantitative produced water analysis using mobile 1H NMR

    Science.gov (United States)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  12. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  13. Magnet design considerations for Fusion Nuclear Science Facility

    International Nuclear Information System (INIS)

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets

  14. Insula-specific 1H magnetic resonance spectroscopy reactions in heavy smokers under acute nicotine withdrawal and after oral nicotine substitution

    OpenAIRE

    Gutzeit, Andreas; Froehlich, Johannes M; Hergan, Klaus; Graf, Nicole; Binkert, Christoph A; Meier, Dieter; Brügger, Mike; Reischauer, Carolin; Sutter, Reto; Herdener, Marcus; Schubert, Tillmann; Kos, Sebastian; Grosshans, Martin; Straka, Matus; Mutschler, Jochen

    2013-01-01

    The aim of this study was to clarify whether addiction-specific neurometabolic reaction patterns occur in the insular cortex during acute nicotine withdrawal in tobacco smokers in comparison to nonsmokers. Fourteen male smokers and 10 male nonsmokers were included. Neurometabolites of the right and the left insular cortices were quantified by magnetic resonance spectroscopy (MRS) on a 3-Tesla scanner. Three separate MRS measurements were performed in each subject: among the smokers, the first...

  15. Identification, synthesis and characterization of an unknown process related impurity in eslicarbazepine acetate active pharmaceutical ingredient by LC/ESI–IT/MS, 1H, 13C and 1H–1H COSY NMR

    OpenAIRE

    Saji Thomas; Saroj Kumar Paul; Subhash Chandra Joshi; Vineet Kumar; Ashutosh Agarwal; Dharam Vir

    2014-01-01

    A new impurity was detected during high performance liquid chromatographic (HPLC) analysis of eslicarbazepine acetate active pharmaceutical ingredient. The structure of unknown impurity was postulated based on liquid chromatography mass spectrometry using electrospray ionization and ion trap analyzer (LC/ESI–IT/MS) analysis. Proposed structure of impurity was unambiguously confirmed by synthesis followed by characterization using 1H, 13C nuclear magnetic resonance spectrometry (NMR), 1H–1H co...

  16. Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats

    OpenAIRE

    Zhang, Shucha; Gowda, G. A. Nagana; Asiago, Vincent; Shanaiah, Narasimhamurthy; Barbas, Coral; Raftery, Daniel

    2008-01-01

    Type 1 diabetes was induced in Sprague–Dawley rats using streptozotocin. Rat urine samples (8 diabetic and 10 control) were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy. The derived metabolites using univariate and multivariate statistical analysis were subjected to correlative analysis. Plasma metabolites were measured by a series of bioassays. A total of 17 urinary metabolites were identified in the 1H NMR spectra and the loadings plots after principal components analysis. D...

  17. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  18. Contribution to studies of magnetic nuclear dipolar order

    International Nuclear Information System (INIS)

    The magnetic nuclear dipolar order concept is first introduced. Two original studies on the 19F spin system of CaF2 are then presented; the first deals with the behavior of a dipolar nuclear antiferromagnetic material in the presence of an effective nonnull field and leads to the determination of the ''field-entropy'' phase diagram of the system; the second study reveals the existence of rotating transverse structures

  19. Development of a miniature permanent magnetic circuit for nuclear magnetic resonance chip

    Science.gov (United States)

    Lu, Rongsheng; Yi, Hong; Wu, Weiping; Ni, Zhonghua

    2013-07-01

    The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff's law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.

  20. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    Science.gov (United States)

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  1. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  2. Evaluation of nuclear magnetic resonance spectroscopy variability

    International Nuclear Information System (INIS)

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  3. Acoustic nuclear magnetic resonance in easy-axis antiferromagnets

    International Nuclear Information System (INIS)

    Obtained and investigated is the dispersion equation which shows that in the rouge of the tipping field at low temperatures the study of effects conditioned by the bond between the oscillations of electron and nuclear spins depends upon the fact, whethe the interaction of the sound with a nuclear spin subsystem is taken into account. The same concerns the effects conditioned by a strong bond between the oscillations of the lattice and electron spins. Shown is the effect of anisotropy of magnitostriction relative part on the nature of orientation phase transitions and the value of the coefficient of strengthening nuclear magnetic resonance

  4. High Radiation Environment Nuclear Fragment Separator Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Stephen [Muons, Inc., Batavia, IL (United States); Gupta, Ramesh [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the

  5. In vivo nuclear magnetic resonance imaging

    Science.gov (United States)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  6. Nuclear magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Full text: Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the detecting signal from hydrogen nuclei of water molecules and fat. Performances of MRI are continuously increasing, and its domains of investigation of the human body are growing in both morphological and functional study. MRI also allows It also performing advanced management of tumours especially in the brain, by combining anatomical information (morphological MRI), functional (diffusion, perfusion and BOLD contrast) and metabolic (tissue composition in magnetic resonance spectroscopy (MRS)). The MRI techniques have an important role in cancerology. These techniques allow essential information for the diagnosis and answering therapist's questions before, during or after the treatment. The MR allows clarifying the localization of expanding processes, the differential diagnosis between brain tumour and a lesion confined by another structural aspect, the diagnosis of the tumoral aspect of a lesion, the histological ranking in case of glial tumour and the extension of its localization as well as the therapeutic follow-up (pre-therapeutic and post-therapeutics assessments). A better combination between the morphological, functional and metabolic studies, as well as integrating new technical developments, especially while using a multichannel bird cage coils the 3T magnet and suitable computing software, would allow significant improvements of the exploration strategies and management of brain tumors.

  7. Observation of the uranium 235 nuclear magnetic resonance signal

    OpenAIRE

    Le Bail, H.; Chachaty, C.; Rigny, P.; Bougon, R.

    1983-01-01

    The first observation of the nuclear magnetic resonance of the uranium 235 is reported. It has been performed on pure liquid uranium hexafluoride at 380 K. The measured magnetogyric ratio is | γ(235U) | = 492.6 ± 0.2 rad.s-1 G-1.

  8. Selection of planes in nuclear magnetic resonance tomography

    International Nuclear Information System (INIS)

    A prototype aiming to obtain images in nuclear magnetic resonance tomography was developed, by adjusting NMR spectrometer in the IFQSC Laboratory. The techniques for selecting planes were analysed by a set of computer codes, which were elaborated from Bloch equation solutions to simulate the spin system behaviour. Images were obtained using planes with thickness inferior to 1 cm. (M.C.K.)

  9. C-13 nuclear magnetic resonance in organic geochemistry.

    Science.gov (United States)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  10. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    Science.gov (United States)

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  11. Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.

    Science.gov (United States)

    Venanzi, Thomas J.

    1982-01-01

    Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…

  12. Yeast Lipid Estimation by Enzymatic and Nuclear Magnetic Resonance Methods

    OpenAIRE

    Moreton, R. S.

    1989-01-01

    Low-resolution nuclear magnetic resonance and enzymatic glycerol estimation were compared with a solvent extraction method for estimating the intracellular lipid content of lipid-accumulating yeasts. Both methods correlated well with the solvent extraction procedure and were more convenient with large numbers of samples.

  13. Neutron studies of nuclear magnetism at ultralow temperature

    DEFF Research Database (Denmark)

    Siemensmeyer, K.; Clausen, K.N.; Lefmann, K.;

    1998-01-01

    Nuclear magnetic order in copper and silver has been investigated by neutron diffraction. Antiferromagnetic order is observed in these simple, diamagnetic metals at temperatures below 50 nK and 560 pK, respectively. Both crystallize in the FCC-symmetry which is fully frustrated for nearest...

  14. Nuclear magnetic response imaging of sap flow in plants

    NARCIS (Netherlands)

    Windt, C.W.

    2007-01-01

    This thesis deals with Nuclear Magnetic Resonance (NMR) imaging of long distance transport in plants. Long distance transport in plants is an enigmatic process. The theoretical framework that describes its basic properties has been in place for almost a century, yet at the same time only little is k

  15. Magnetic La{sub 1−x}Sr{sub x}MnO{sub 3} nanoparticles as contrast agents for MRI: the parameters affecting {sup 1}H transverse relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Veverka, P.; Kaman, O., E-mail: kamano@seznam.cz; Kačenka, M. [AS CR, v. v. i., Institute of Physics (Czech Republic); Herynek, V. [Institute for Clinical and Experimental Medicine (Czech Republic); Veverka, M.; Šantavá, E. [AS CR, v. v. i., Institute of Physics (Czech Republic); Lukeš, I. [Charles University, Department of Inorganic Chemistry, Faculty of Science (Czech Republic); Jirák, Z. [AS CR, v. v. i., Institute of Physics (Czech Republic)

    2015-01-15

    Magnetic nanoparticles of the La{sub 1−x}Sr{sub x}MnO{sub 3} perovskite phase (x = 0.20–0.45) were synthesized by a sol–gel method followed by thermal and mechanical treatments. The particles were coated with a uniform silica shell, and differential centrifugation yielded a product with high colloidal stability in water. X-ray powder diffraction (XRD) data showed that the mechanical processing did not affect the lattice parameters of the magnetic cores but only reduced their mean size d{sub XRD}. The magnetic properties of the bare particles were mainly controlled by the chemical composition and were also affected by the size of the particles. Subsequent silica coating led to an effective decrease in magnetization. Relaxometry measurements were focused primarily on colloids using magnetic cores of the same size (d{sub XRD} ≈ 20 nm) and different compositions, and coated with a shell measuring approximately 20 nm in thickness. The exceedingly high transverse relaxivities [r{sub 2}(20 °C) = 290–430 s{sup −1} mmol{sup −1} L at B{sub 0} = 0.5 T] of the samples exhibited pronounced temperature dependence and correlated very well with the magnetic data. Additional samples differing in the size of the cores and silica shell thickness were prepared as well to analyze the effect of the particles on {sup 1}H transverse relaxation. The results suggest that the dominant regime of transverse relaxation is the static dephasing regime.

  16. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    International Nuclear Information System (INIS)

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  17. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  18. 1H-Magnetic resonance spectroscopy study of stimulant medication effect on brain metabolites in French Canadian children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    BenAmor L

    2014-01-01

    Full Text Available Leila BenAmor1,21Department of Psychiatry Sainte-Justine Hospital, Montreal, Quebec, Canada; 2Department of Psychiatry, University of Montreal, Montreal, Quebec, CanadaBackground: Attention deficit hyperactivity disorder (ADHD is a common neurodevelopmental disorder in school aged children. Functional abnormalities have been reported in brain imaging studies in ADHD populations. Psychostimulants are considered as the first line treatment for ADHD. However, little is known of the effect of stimulants on brain metabolites in ADHD patients.Objectives: To compare the brain metabolite concentrations in children with ADHD and on stimulants with those of drug naïve children with ADHD, versus typically developed children, in a homogenous genetic sample of French Canadians.Methods: Children with ADHD on stimulants (n=57 and drug naïve children with ADHD (n=45 were recruited, as well as typically developed children (n=38. The presence or absence of ADHD diagnosis (Diagnostic and Statistical Manual of Mental Disorders IV criteria was based on clinical evaluation and The Diagnostic Interview Schedule for Children IV. All children (n=140 underwent a proton magnetic resonance spectroscopy session to measure the ratio of N-acetyl-aspartate, choline, glutamate, and glutamate–glutamine to creatine, respectively, in the left and right prefrontal and striatal regions of the brain, as well as in the left cerebellum.Results: When compared with drug naïve children with ADHD, children with ADHD on stimulants and children typically developed were found to have higher choline ratios in the left prefrontal region (P=0.04 and lower N-acetyl-aspartate ratios in the left striatum region (P=0.01, as well as lower glutamate–glutamine ratios in the left cerebellum (P=0.05. In these three regions, there was no difference between children with ADHD on stimulants and typically developed children.Conclusion: Therapeutic psychostimulant effects in children with ADHD may be

  19. MetIDB: A Publicly Accessible Database of Predicted and Experimental 1H NMR Spectra of Flavonoids

    NARCIS (Netherlands)

    Mihaleva, V.V.; Beek, te T.A.; Zimmeren, van F.; Moco, S.I.A.; Laatikainen, R.; Niemitz, M.; Korhonen, S.P.; Driel, van M.A.; Vervoort, J.

    2013-01-01

    Identification of natural compounds, especially secondary metabolites, has been hampered by the lack of easy to use and accessible reference databases. Nuclear magnetic resonance (NMR) spectroscopy is the most selective technique for identification of unknown metabolites. High quality 1H NMR (proton

  20. LC-MS and 1H NMR as an improved dereplication tool to identify antifungal diterpenoids from Sagittaria latifolia

    Science.gov (United States)

    A dereplication strategy using a combination of liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) to facilitate compound identification towards antifungal natural product discovery is presented. This analytical approach takes advantage of th...

  1. Thalamus in Patients with Obsessive-Compulsive Disorder:1H Magnetic Resonance Spectroscopy Study%丘脑1H磁共振波谱成像在强迫症中的应用

    Institute of Scientific and Technical Information of China (English)

    尤超; 谭令; 范青; 丁蓓; 肖泽萍; 陈克敏

    2011-01-01

    目的 基于强迫症前额叶-纹状体-丘脑环路障碍假说,采用磁共振波谱成像(1H-MRS)研究成人强迫症(OCD)患者双侧丘脑1H-MRS表现及其与临床症状的关系.方法 13例经临床确诊的强迫症患者和与之相匹配的14例健康志愿者,分别行11.5TMRI的MRS检查,采用单体素点回波成像序列,采集双侧丘脑的波谱图像.所获图像经Sage软件后处理相应代谢指标N-乙酰天门冬氨酸(NAA)、肌酸(Cr)、胆碱(Cho)、肌醇(Mi),测量NAA/Cr,Cho/Cr,Mi/Cr峰高相对值;并分析上述各值与OCD患者临床评分及病程时间的相关性.结果 与健康对照相比,OCD患者双侧丘脑的Mi/Cr、NAA/Cr明显降低,具有显著统计学差异;并且右侧丘脑NAA/Cr与强迫症病程时间呈负相关(r=-0.963,P<0.001).结论 OCD患者双侧丘脑NAA及Mi代谢物含量降低,1H-MRS可反映OCD患者丘脑代谢物的变化特征,并且可以证实OCD前额叶-纹状体-丘脑环路障碍的假说.%Objective On the basis of the hypothesis that patients with obsessive-compulsive disorder( OCD) have dysfunction of fronto-striato-thalamocortical circuitry, to study the metabolism change in the bilateral thalamic region with 1H magnetic resonance spectroscopy ( 1 H- MRS) and its correlations with clinical scale. Methods 13 patients with OCD and 14 matched healthy volunteers were enrolled in this study. Single voxel proton magnetic resonance spectroscopy was used to examine the bilateral thalamus for each subject. N-acetylaspartate(NAA), creatine(Cr), choline( Cho) and myo-inositol( mI) value of bilateral thalamus were acquired by using Sage software. Then the relativity of the MRS results and clinical scale were analyzed. Results A significant reduction in NAA/Cr and mI/Cr were observed in bilateral thalamus, and NAA/Cr of right thalamu was negative correlated with the course of OCD(r= -0. 963,P<0. 001). Conclusion Neuronal loss and NAA and ml decreased can be detected by using proton MRS in OCD

  2. Nuclear magnetic resonance spectroscopy and chemometrics to identify pine nuts that cause taste disturbance.

    Science.gov (United States)

    Kobler, Helmut; Monakhova, Yulia B; Kuballa, Thomas; Tschiersch, Christopher; Vancutsem, Jeroen; Thielert, Gerhard; Mohring, Arne; Lachenmeier, Dirk W

    2011-07-13

    Nontargeted 400 MHz (13)C and (1)H nuclear magnetic resonance (NMR) spectroscopy was used in the context of food surveillance to reveal Pinus species whose nuts cause taste disturbance following their consumption, the so-called pine nut syndrome (PNS). Using principal component analysis, three groups of pine nuts were distinguished. PNS-causing products were found in only one of the groups, which however also included some normal products. Sensory analysis was still required to confirm PNS, but NMR allowed the sorting of 53% of 57 samples, which belong to the two groups not containing PNS species. Furthermore, soft independent modeling of class analogy was able to classify the samples between the three groups. NMR spectroscopy was judged as suitable for the screening of pine nuts for PNS. This process may be advantageous as a means of importation control that will allow the identification of samples suitable for direct clearance and those that require further sensory analysis.

  3. Nuclear magnetic resonance imaging at microscopic resolution

    Science.gov (United States)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  4. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars

    Science.gov (United States)

    Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.

    2015-01-01

    Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID

  5. 23Na and 1H NMR studies on melittin channels activated by tricyclic tranquilizers.

    OpenAIRE

    Tanaka, H.; Matsunaga, K.; Kawazura, H

    1992-01-01

    A dynamic 23Na nuclear magnetic resonance (NMR) technique was applied to the exchange system of Na+ ions present inside and outside large unilamellar vesicles at an equivalent concentration. Addition of melittin to phosphatidylcholine vesicles did not induce any detectable Na+ transport across the membrane but subsequent addition of a trace of chlorpromazine or imipramine did induce Na+ transport. Because the formation of a drug-melittin adduct in a solution was detected by 1H NMR, the activa...

  6. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    OpenAIRE

    Hasim, Ayshamgul; ALI, MAYINUER; MAMTIMIN, BATUR; Ma, Jun-Qi; Li, Qiao-Zhi; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way a...

  7. Sunflower oil ozonation. Following of the reaction by proton Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Previous studies have demonstrated that the technique of Proton Nuclear Magnetic Resonance can be used for the pursuit of the reaction between the ozone and the unsaturated fatty acids. It's carried out the sunflower oil ozonization to different applied dose of ozone and the index of peroxides and the concentration of aldehydes are determined. The main reaction products were identified by Proton Nuclear Magnetic Resonance Spectroscopy (NMR 1 H). The intensities of the signs were used to follow the advance of the reaction between the ozone and the sunflower oil. It is was carried out until obtaining an index of peroxides of 1 202 mmol-equiv/kg. The intensities of the signs of the olefinic protons diminish with a gradual increment in the dose of applied ozone, but without ending up disappearing completely. The ozonides of Criegee obtained to applied dose of ozone of 107,1 mg/g were approximately bigger 7,4 times that those obtained at the beginning from the reaction to applied dose of ozone of 15,3 mg/g. The aldehydes protons were observed as a sign of weak intensity in all the spectra. The signs belonging to the olenifics protons of the hydroperoxides in d = 5,55 ppm increases with the increment of the applied dose of ozone. You concludes that to higher applied dose of ozone, haggler is the advance of the ozonization reaction, what belongs together with a bigger formation of oxygenated compounds

  8. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review

    International Nuclear Information System (INIS)

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole. - Highlights: • Organic aerosol composition by 1H- and 13C-NMR spectroscopy. • NMR fingerprints of specific sources, types and sizes of organic aerosol. • Source reconciliation and apportionment using NMR spectroscopy. • Research priorities towards understanding organic aerosol composition and origin. - This review presents the recent advances on the characterization of organic aerosol composition using nuclear magnetic resonance spectroscopy

  9. Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.

    1988-01-01

    in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...... constant-temperature or constant-magnetic-field quenches into the antiferromagnetic phase is found at late times to obey the classical Allen-Cahn growth law. The qualitative features of isentropic quenches and the nonequilibrium ordering phenomena during controlled heating treatments at constant rate...

  10. In vivo 31P magnetic resonance spectroscopy and 1H magnetic resonance imaging of human bladder carcinoma on nude mice: effects of tumour growth and treatment with cis-dichloro-diamine platinum

    DEFF Research Database (Denmark)

    De Certaines, J D; Albrectsen, J; Larsen, V A;

    1992-01-01

    In vivo 31P NMR spectroscopy and 1H NMR imaging were used to examine the bladder T24B carcinoma in nude mice during untreated growth and in response to chemotherapy by Cis-dichloro-diammine-platinum (CDDP) at a dose of 8 mg/kg i.p. Untreated growth was associated with an increase of inorganic pho...

  11. Nuclear chiral and magnetic rotation in covariant density functional theory

    CERN Document Server

    Meng, Jie

    2016-01-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of tilted axis cranking CDFT and its application for magnetic and antimagnetic rotation phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets (M\\c{hi}D) in 133Ce and 103Rh are discussed.

  12. Nuclear magnetic response imaging of sap flow in plants

    OpenAIRE

    Windt, C.W.

    2007-01-01

    This thesis deals with Nuclear Magnetic Resonance (NMR) imaging of long distance transport in plants. Long distance transport in plants is an enigmatic process. The theoretical framework that describes its basic properties has been in place for almost a century, yet at the same time only little is known about the dynamics of long distance transport inside the living plant. The latter is caused by the fact that the two pathways in which transport takes place, the xylem and the phloem, are virt...

  13. Experimental Implementation of Remote State Preparation by Nuclear Magnetic Resonance

    OpenAIRE

    Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin

    2002-01-01

    We have experimentally implemented remote state preparation (RSP) of a qubit from a hydrogen to a carbon nucleus in molecules of carbon-13 labeled chloroform $^{13}$CHCl$_{3}$ over interatomic distances using liquid-state nuclear magnetic resonance (NMR) technique. Full RSP of a special ensemble of qubits, i.e., a qubit chosen from equatorial and polar great circles on a Bloch sphere with Pati's scheme, was achieved with one cbit communication. Such a RSP scheme can be generalized to prepare ...

  14. Experimental implementation of remote state preparation by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Peng Xinhua; Zhu Xiwen; Fang Ximing; Feng Mang; Liu Maili; Gao Kelin

    2003-01-13

    We have experimentally implemented remote state preparation of a qubit from a hydrogen to a carbon nucleus in molecules of carbon-13 labeled chloroform {sup 13}CHCl{sub 3} over interatomic distances using liquid-state nuclear magnetic resonance techniques. Full RSP of a special ensemble of qubits, i.e., a qubit chosen from either an equatorial or a polar great circle on a Bloch sphere with Pati's scheme, was achieved with one cbit communication.

  15. Demonstration of Quantum Entanglement Control Using Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    XIE Jing-Yi; ZHANG Jing-Fu; DENG Zhi-Wei; LU Zhi-Heng

    2004-01-01

    @@ With the two forms of the quantum entanglement control, the quantum entanglement swapping and preservation are demonstrated in a three-qubit nuclear magnetic resonance quantum computer. The pseudopure state is prepared to represent the quantum entangled states through macroscopic signals. Entanglement swapping is directly realized by a swap operation. By controlling the interactions between the system and its environment,we can preserve an initial entangled state for a longer time. The experimental results are in agreement with the experiment.

  16. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    International Nuclear Information System (INIS)

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin. (U.K.)

  17. Nonadiabatic Geometric Angle in Nuclear Magnetic Resonance Connection

    OpenAIRE

    Cherbal, Omar; Maamache, Mustapha; Drir, Mahrez

    2005-01-01

    By using the Grassmannian invariant-angle coherents states approach, the classical analogue of the Aharonov-Anandan nonadiabatic geometrical phase is found for a spin one-half in Nuclear Magnetic Resonance (NMR). In the adiabatic limit, the semi-classical relation between the adiabatic Berry’s phase and Hannay’s angle gives exactly the experimental result observed by Suter et al[12].

  18. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    Science.gov (United States)

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  19. Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery

    Science.gov (United States)

    Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jianzhi; Skyllas-Kazacos, Maria

    The vanadium(IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature 1H and 17O nuclear magnetic resonance (NMR) spectroscopy. The structure and kinetics of vanadium(IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium(IV) species exist as hydrated vanadyl ion, i.e. [VO(H 2O) 5] 2+ forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3 M and in the temperature range of 240-340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second-coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on 1H and 17O NMR results.

  20. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  1. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    Science.gov (United States)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  2. Imaging using long range dipolar field effects Nuclear magnetic resonance

    CERN Document Server

    Gutteridge, S

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. Thes...

  3. Quantitative velocity distributions via nuclear magnetic resonance flow metering

    Science.gov (United States)

    O'Neill, Keelan T.; Fridjonsson, Einar O.; Stanwix, Paul L.; Johns, Michael L.

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

  4. Design and construction of a nuclear magnetic resonator circuit

    International Nuclear Information System (INIS)

    It is described the operation of a feedback circuit that it using the nuclear resonance phenomena and that covers a broad sweeping interval in frequency with a minimum adjustment of the circuit elements and it produces an appropriate nuclear absorption for a sign relation at reasonable noise. The circuit is an oscillator amplifier modulated that it is based its sensibility and stability in an inductive-capacitive arrangement in parallel and always operate in resonant condition, in such a way that the quality factor of Q arrangement has been very elevated. Thus when the nuclear absorption occurs it is producing a fall of Q effective. The oscillation amplitude is controllable and it maintains in a convenient value over the operation interval using control by feedback. The circuit uses a configuration 'Auto dyne Hop kin' that it suffers as a follower of inductive charge, which have the main characteristic of to cause a negative resistance that it appears through the tuning circuit. It is introduced a control for feedback via two trajectories, the first by differential pair for to maintain the amplitude level in RF and the second for to stability a band wide interval in the modulation condition. It is necessary since the RF signal value must have a value to excite the specimen nucleus without to carry to saturate it and that the permanence in the absorption region was appropriate. Between applications of the nuclear magnetic resonance phenomena we have the magnetic fields measurements, physicochemical molecular properties studies, training and medical instrumentation. (Author)

  5. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19Ne. The 19Ne is generated in the reaction 19F(p,n)19Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19Ne measured to be μ(19Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19Ne atom was measured to (7.2 +/- 6.2 X 10-22 e-cm. This experiment and possible improvements are discussed in detail

  6. Windowed direct exponential curve resolution quantification of nuclear magnetic resonance spectroscopy with applications to amniotic fluid metabonomics

    Energy Technology Data Exchange (ETDEWEB)

    Botros, L.L

    2007-07-01

    This thesis presents a quantitative protocol of proton nuclear magnetic resonance ({sup 1}H NMR) that allows the determination of human amniotic fluid metabolite concentrations, which are then used in a metabonomic study to establish patient health during gestation. {sup 1}H NMR free inductive decays (FIDs) of 258 human amniotic fluid samples from a 500MHz spectrometer are acquired. Quantitative analyses methods in both the frequency- and time-domain are carried out and compared. Frequency-domain analysis is accomplished by integration of the metabolite peaks before and after the inclusion of a known standard addition of alanine. Time-domain analysis is accomplished by the direct exponential curve resolution algorithm (DECRA). Both techniques are assessed by applications to calibration biological solutions and a simulated data set. The DECRA method proves to be a more accurate and precise route for quantitative analysis, and is included in the developed protocol. Well-defined peaks of various components are visible in the frequency-domain {sup 1}H NMR spectra, including lactate, alanine, acetate, citrate, choline, glycine, and glucose. All are quantified with the proposed protocol. Statistical t-test and notched box and whisker plots are used to compare means of metabolite concentrations for diabetic and normal patients. Glucose, glycine, and choline are all found to correlate with gestational diabetes mellitus early in gestation. With further development, time-domain quantitative {sup 1}H NMR has potential to become a robust diagnostic tool for gestational health. (author)

  7. Transformation of Symmetrization Order to Nuclear-Spin Magnetization by Chemical Reaction and Nuclear Magnetic Resonance

    OpenAIRE

    Bowers, C. Russell; Weitekamp, Daniel P.

    1986-01-01

    A method of obtaining very large nuclear-spin polarizations is proposed and illustrated by density-operator calculations. The prediction is that chemical reaction and rf irradiation can convert the scalar parahydrogen state into polarization of order unity on the nuclear spins of the products of molecular-hydrogen addition reactions. A means of extending the resultant sensitivity enhancement to other spins is proposed in which the transfer of order occurs through population differences not as...

  8. Analysis of ringing due to magnetic core materials used in pulsed nuclear magnetic resonance applications

    Science.gov (United States)

    Prabhu Gaunkar, Neelam; Nlebedim, Cajetan; Hadimani, Ravi; Bulu, Irfan; Song, Yi-Qiao; Mina, Mani; Jiles, David

    Oil-field well logging instruments employ pulsed nuclear magnetic resonance (NMR) techniques and use inductive sensors to detect and evaluate the presence of particular fluids in geological formations. Acting as both signal transmitters and receivers most inductive sensors employ magnetic cores to enhance the quality and amplitude of signals recorded during field measurements. It is observed that the magnetic core also responds to the applied input signal thereby generating a signal (`ringing') that interferes with the measurement of the signals from the target formations. This causes significant noise and receiver dead time and it is beneficial to eliminate/suppress the signals received from the magnetic core. In this work a detailed analysis of the magnetic core response and in particular loading of the sensor due to the presence of the magnetic core is presented. Pulsed NMR measurements over a frequency band of 100 kHz to 1MHz are used to determine the amplitude and linewidth of the signals acquired from different magnetic core materials. A lower signal amplitude and a higher linewidth are vital since these would correspond to minimal contributions from the magnetic core to the inductive sensor response and thus leading to minimized receiver dead time.

  9. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    Science.gov (United States)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  10. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Mahmoud Rasly

    2016-05-01

    Full Text Available As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  11. The Use and Evaluation of Scaffolding, Student Centered-Learning, Behaviorism, and Constructivism to Teach Nuclear Magnetic Resonance and IR Spectroscopy in a Two-Semester Organic Chemistry Course

    Science.gov (United States)

    Livengood, Kimberly; Lewallen, Denver W.; Leatherman, Jennifer; Maxwell, Janet L.

    2012-01-01

    Since 2002, infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) spectrometry have been introduced at the beginning of the first-semester organic chemistry lab course at this university. Starting in 2008, each individual student was given 20 unique homework problems that consisted of multiple-choice [superscript 1]H NMR and IR problems…

  12. The study of 1H-Magnetic resonance spectroscope (1H-MRS) in the anterior cingulate cortex (ACC) in depressive patients with childhood neglect%伴儿童期忽略的抑郁症患者前扣带回氢质子波谱对照研究

    Institute of Scientific and Technical Information of China (English)

    彭红军; 李凌江; 贺忠

    2013-01-01

    目的 探讨伴儿童期忽略抑郁症患者前扣带回氢质子波谱物质代谢的特点.方法 采用儿童期创伤问卷(childhood trauma questionnaire,CTQ)对40例抑郁症患者进行儿童期忽略评估和分组,伴儿童期忽略抑郁症组19例患者和不伴儿童期忽略抑郁症组21例患者,以及20名正常对照行磁共振氢质子波谱(hydrogen magnetic resonance spectroscopy,1H-MRS)扫描,兴趣区选取双侧前扣带回(anterior cingulate cortex,ACC),检测N-乙酰天门冬氨酸(N-acetyl aspartate,NAA)、谷氨酸复合物(glutamate/glutamine,Glx)、胆碱(choline,Cho)、肌醇(myo-inositol,mI)及肌酸(creatine,Cr)水平,比较3组NAA/Cr、Glx/Cr、Cho/Cr和mI/Cr比值的差异.结果 伴与不伴儿童期忽略抑郁症组分别与对照组比较,左右两侧ACC均表现NAA/Cr降低(均P<0.010);2组右侧Glx/Cr均低于对照组(均P<0.001);伴儿童期忽略抑郁症组较不伴儿童期忽略抑郁症组左右两侧NAA/Cr差异均有统计学意义(左P<0.005,右P<0.01).结论 抑郁症患者前扣带回物质代谢不同于正常人;伴儿童期忽略抑郁症患者ACC的物质代谢存在特异性改变.

  13. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rümenapp, Christine, E-mail: ruemenapp@tum.de [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Gleich, Bernhard [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Mannherz, Hans Georg [Abteilung für Anatomie und Molekulare Embryologie, Ruhr Universität Bochum, Bochum (Germany); Haase, Axel [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany)

    2015-04-15

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5–7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T{sub 2} relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T{sub 2} relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 10{sup 7} cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  14. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  15. Nuclear Magnetic Resonance with the Distant Dipolar Field

    CERN Document Server

    Corum, C A

    2005-01-01

    Distant dipolar field (DDF)-based nuclear magnetic resonance is an active research area with many fundamental properties still not well understood. Already several intriguing applications have developed, like HOMOGENIZED and IDEAL spectroscopy, that allow high resolution spectra to be obtained in inhomogeneous fields, such as in-vivo. The theoretical and experimental research in this thesis concentrates on the fundamental signal properties of DDF-based sequences in the presence of relaxation (T1 and T2) and diffusion. A general introduction to magnetic resonance phenomenon is followed by a more in depth introduction to the DDF and its effects. A novel analytical signal equation has been developed to describe the effects of T2 relaxation and diffusing spatially modulated longitudinal spins during the signal build period of an HOMOGENIZED cross peak. Diffusion of the longitudinal spins results in a lengthening of the effective dipolar demagnetization time, delaying the re-phasing of coupled anti-phase states in...

  16. On the quantumness of correlations in nuclear magnetic resonance

    CERN Document Server

    Soares-Pinto, D O; Maziero, J; Gavini-Viana, A; Serra, R M; Céleri, L C

    2012-01-01

    Nuclear Magnetic Resonance (NMR) was successfully employed to test several protocols and ideas in Quantum Information Science. In most of these implementations the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this article we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogous of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrate how non-classical correlations of separable states may be us...

  17. Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance

    Science.gov (United States)

    Novotny, Etelvino H.; Hayes, Michael H. B.; Deazevedo, Eduardo R.; Bonagamba, Tito J.

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Índio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. 13C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, 1H-13C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the π pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp—variable amplitude CP (VACP)—VACP/MAS pulse sequence, and composite π pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.

  18. Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Novotny, Etelvino H; Hayes, Michael H B; Deazevedo, Eduardo R; Bonagamba, Tito J

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins. PMID:16688435

  19. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    Science.gov (United States)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  20. A personal computer-based nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  1. Applications of nuclear magnetic resonance sensors to cultural heritage.

    Science.gov (United States)

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-01-01

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  2. Applications of nuclear magnetic resonance spectroscopy to certifiable food colors

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance spectroscopy was found suitable for the identification of individual colours, for distinguishing individual colours from colour mixtures, for the identification and semi-quantitative determination of the individual colours in mixtures and for proofs of the adulteration of certified colours adding noncertified colours. The method is well suited for observing the purity of colours and may also be used as the control method in the manufacture of colours and in assessing their stability and their resistance to increased temperature and light. (M.K.)

  3. Experimental Implementation of Remote State Preparation by Nuclear Magnetic Resonance

    CERN Document Server

    Peng, X; Fang, X; Feng, M; Liu, M; Gao, K; Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin

    2003-01-01

    We have experimentally implemented remote state preparation (RSP) of a qubit from a hydrogen to a carbon nucleus in molecules of carbon-13 labeled chloroform $^{13}$CHCl$_{3}$ over interatomic distances using liquid-state nuclear magnetic resonance (NMR) technique. Full RSP of a special ensemble of qubits, i.e., a qubit chosen from equatorial and polar great circles on a Bloch sphere with Pati's scheme, was achieved with one cbit communication. Such a RSP scheme can be generalized to prepare a large number of qubit states and may be used in other quantum information processing and quantum computing.

  4. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    WANG Chuan; HAO Liang; ZHAO Lian-Jie

    2011-01-01

    @@ We present a modified protocol for the realization of a quantum private query process on a classical database.Using one-qubit query and CNOT operation,the query process can be realized in a two-mode database.In the query process,the data privacy is preserved as the sender would not reveal any information about the database besides her query information,and the database provider cannot retain any information about the query.We implement the quantum private query protocol in a nuclear magnetic resonance system.The density matrix of the memory registers are constructed.

  5. Thermo-magnetic systems for space nuclear reactors an introduction

    CERN Document Server

    Maidana, Carlos O

    2014-01-01

    Introduces the reader to engineering magnetohydrodynamics applications and presents a comprehensive guide of how to approach different problems found in this multidisciplinary field. An introduction to engineering magnetohydrodynamics, this brief focuses heavily on the design of thermo-magnetic systems for liquid metals, with emphasis on the design of electromagnetic annular linear induction pumps for space nuclear reactors. Alloy systems that are liquid at room temperature have a high degree of thermal conductivity far superior to ordinary non-metallic liquids. This results in their use for

  6. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  7. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  8. 1 H-Magnetic Resonance Spectroscopy Study of Auditory Cortex Metabolism in Patients with Type 2 Diabetes%2型糖尿病患者听皮层区磁共振氢质子波谱分析

    Institute of Scientific and Technical Information of China (English)

    宋冬梅; 徐英霞; 刘涛; 吕欣; 王宝山

    2015-01-01

    Objective To investigate the characteristic changes of the metabolism products in the auditory cortex (transverse temporal gyrus) in diabetes combined with nerve deafness using 1 H magnetic resonance spectros‐copy (1 H -MRS) ,and to discover the early warning indicator of nerve deafness in type 2 diabetes .Methods PTA was performed in 98 patients with type 2 diabetes (diagnosed by Endocrinology Department) ,and in 15 healthy sub‐jects in the control group .The patients were classified into four groups :the group of type 2 diabetes;type 2 diabe‐tes with unilateral and bilateral deafness ,and the normal control group .Cerebral metabolism was studied by assess‐ing the ratios of nitro -acetyl aspartate contrast to choline (NAA/Cho) as well as to creatine (NAA/Cr) ,myo-in‐ositol to creatine (mI/Cr) and choline to creatine (Cho/Cr) ratios in the auditory cortical separately in these groups . The Pearson correlation analysis was applied to determine blood glucose value with the nerve metabolites while the ROC curves were made for those metabolism markers to find the best diagnostic threshold .Results NAA/Cr and NAA/Cho were negatively correlated with AHI index and Cho/Cr ,mI/Cr was positively correlated with blood glu‐cose value .Significantly lower values of NAA/Cho ratio were found in patients'(diabetes without deafness) auditory cortex compared with 15 age-matched control subjects (P<0 .05) .NAA/Cr and NAA/Cho ratio in diabetes with deafness were significantly lower than those in control group (P< 0 .05) ,Cho/Cr higher than those of in other groups (P<0 .05) .NAA/Cr and NAA/Cho ratio in injured and uninjured auditory cortex of diabetes with unilateral deafness were significantly lower than those of in control group (P<0 .05) ,then we made a self -comparison be‐tween the injured and uninjured auditory cortex ,finding that NAA/Cho ratio had a significant difference .All of the metabolisms were tested by the curve of ROC .The area of NAA/Cho under the ROC

  9. Enhanced nuclear magnetic resonance in a non-magnetic cubic doublet

    International Nuclear Information System (INIS)

    In this thesis two lanthanide compounds are studied which show enhanced nuclear magnetism at low temperatures: Rb2NaHoF6 and CsNaHoF6. Chapter II gives a description of the 4He-circulating refrigerator, which was built to provide the low temperatures required for the polarization of the enhanced nuclear moments. This type of dilution refrigerator was chosen because of its simple design and large cooling power. Chapter III is devoted to a comparison of the different types of dilution refrigerators. A theoretical discussion is given of their performance, starting from the differential equations, which govern the temperature distribution in the refrigerator. In chapter IV the actual performance of the refrigerator, described in chapter II is discussed. In chapter V a description of the NMR-apparatus, developed for very-low-temperature NMR experiments is given. In chapter VI experimental results on the compound Rb2NaHoF6 are presented. The CEF-ground state of this compound is probably the non-magnetic doublet GAMMA3, but at a temperature of 170 K a structural phase transition lowers the crystal symmetry from cubic to tetragonal and the doublet is split into two singlets. In chapter VII specific heat, (enhanced) nuclear magnetic resonance and magnetization measurements on the compound Cs2NaHoF6 are presented which also has a GAMMA3-doublet ground state. In zero magnetic field the degeneracy of the doublet is removed at a temperature of 393 mK, where a phase transition is induced by quadrupolar interactions. (Auth.)

  10. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  11. Nuclear magnetic relaxation of liquids in porous media

    International Nuclear Information System (INIS)

    Nuclear magnetic relaxation is useful for probing physical and chemical properties of liquids in porous media. Examples are given on high surface area porous materials including calibrated porous silica glasses, granular packings, plaster pastes, cement-based materials and natural porous materials, such as sandstone and carbonate rocks. Here, we outline our recent NMR relaxation work for these very different porous materials. For instance, low field NMR relaxation of water in calibrated granular packings leads to striking different pore-size dependencies of the relaxation times T1 and T2 when changing the amount of surface paramagnetic impurities. This allows separation of the diffusion and surface limited regimes of relaxation in these macroporous media. The magnetic field dependence of the nuclear spin-lattice relaxation rate 1/T1(ω0) is also a rich source of dynamical information for characterizing the molecular dynamics of liquids in porous media. This allows a continuous characterization of the evolving microstructure of various cementitious materials. Our recent applications of two-dimensional (2D) T1-T2 and T2-z-store-T2 correlation experiments have evidenced the water exchange in connected micropores of cement pastes. The direct probing of water adsorption time on a solid surface gives access to an original characterization of the surface nano-wettability of porous plaster pastes. We show that such a parameter depends directly on the physical chemistry of the pore surfaces. Lastly, we outline our recent measurements of wettability in oil/brine/reservoir carbonate rocks.

  12. Identification, synthesis and characterization of an unknown process related impurity in eslicarbazepine acetate active pharmaceutical ingredient by LC/ESI–IT/MS, 1H, 13C and 1H–1H COSY NMR

    Directory of Open Access Journals (Sweden)

    Saji Thomas

    2014-10-01

    Full Text Available A new impurity was detected during high performance liquid chromatographic (HPLC analysis of eslicarbazepine acetate active pharmaceutical ingredient. The structure of unknown impurity was postulated based on liquid chromatography mass spectrometry using electrospray ionization and ion trap analyzer (LC/ESI–IT/MS analysis. Proposed structure of impurity was unambiguously confirmed by synthesis followed by characterization using 1H, 13C nuclear magnetic resonance spectrometry (NMR, 1H–1H correlation spectroscopy (COSY and infrared spectroscopy (IR. Based on the spectroscopic and spectrometric data, unknown impurity was characterized as 5-carbamoyl-10,11-dihydro-5H-dibenzo[b,f]azepin-10-yl propionate.

  13. Nuclear orientation with combined electric and magnetic interactions

    International Nuclear Information System (INIS)

    The combined interaction of a static electric field gradient and a static magnetic field with the electromagnetic moments of a nucleus is considered for the case of nuclear orientation at low temperature. The general expression of the angular distribution of a radiation emitted from the oriented state is developed for polycrystalline samples, where the principal axis of the electric field gradients are randomly distributed with respect to a fixed magnetic direction. Due to axial symmetry of the ensemble the effect of the quadrupole interaction is reduced to an attenuation factor on the usual Bsub(K) coefficients. Numerical calculations of these attenuation factors, for K=1, 2, 4 have been performed in the case of symmetric electric field gradient for a wide range of the electric to magnetic interactions ratio and spin values I=1/2, 1, 3/2, ...8. Typical attenuation curves for spin 5/2 and 9/2 are presented. Comparing the experimental anisotropies with the tabulated values, one can extract the quadrupole interaction value hωsub(Q)

  14. Sensitivity of 1H NMR analysis of rat urine in relation to toxicometabonomics. Part I: Dose-dependent toxic fffects of Bromobenzene and paracetamol

    NARCIS (Netherlands)

    Schoonen, W.G.E.J.; Kloks, C.P.A.M.; Ploemen, J.P.H.T.M.; Horbach, G.J.; Smit, M.J.; Zandberg, P.; Mellema, J.R.; Zuylen, C.T. van; Tas, A.C.; Nesselrooij, J.H.J. van; Vogels, J.T.W.E.

    2007-01-01

    1H nuclear magnetic resonance (NMR) spectroscopy of rat urine in combination with pattern recognition analysis was evaluated for early noninvasive detection of toxicity of investigational chemical entities. Bromobenzene (B) and paracetamol (P) were administered at five single oral dosages between 2

  15. Fat fraction value measured by proton magnetic resonance spectroscopy in osteoporosis:a Meta analysis%骨质疏松症1H-MRS脂肪分数定量研究:Meta分析

    Institute of Scientific and Technical Information of China (English)

    张慈慈; 沈思; 汪飞; 邱麟; 刘斯润

    2015-01-01

    Objective To have a systemic review of the association between fat fraction value measured by proton magnetic resonance spectroscopy and osteoporosis bone mineral density, and to explore if fat fraction can be a reliable indicator for the diagnosis osteoporosis like bone mineral density. Methods Pubmed, Cochrane library, Medline, and China National Knowledge Infrastructure (CNKI) datebases (from January, 2000 to December, 2014) were searched to collect articles about proton magnetic resonance spectroscopy assessing osteoporosis. The data of fat fraction in osteoporosis group and normal group and Pearson correlation coefficient between bone mineral density and fat fraction were extracted from the articles. Pooled weighted mean difference (WMD) and 95%confidence interval, Pearson correlation coefficient between bone mineral density and fat fraction were done using review manager 5. 0 software. Results Nine articles (seven English articles, two Chinese articles) were included with 499 cases (210 normal and 289 osteoporosis). The fat fraction value was higher in osteoporosis than normal (WMD 9.25, 95%CI:6.95 to 11.56). A negative correlation was found between fat fraction value and bone mineral density (-0.59,95%CI:-0.76~-0.42). Conclusion Fat fraction measured by Proton magnetic resonance spectroscopy has certain clinical value in the assessment of osteoporosis, it can be used as a supplemental examination of DXA. Whether it can be a reliable indicator for the diagnosis osteoporosis like bone mineral density, the feasibility and accuracy need more research.%目的:采用Meta 分析的方法综合评价1H-MRS 相对定量指标脂肪分数与骨质疏松症骨密度的关系,探索脂肪分数能否如骨密度一样成为诊断骨质疏松症的可靠指标。方法检索 Pubmed、Cochrane 图书馆、Medline、中国知网(CNKI)等数据库中2000年1月—2014年12月公开发表的有关1H-MRS评价骨质疏松的中英文文献,提取文献中骨质疏

  16. Nuclear magnetic resonance in atomic-scale superconductor/magnet multilayered systems

    CERN Document Server

    Kanegae, Y

    2003-01-01

    We investigate the nuclear spin-lattice relaxation rate (T sub 1 T) sup - sup 1 in atomic-scale superconductor/magnet multilayered systems and discuss the discrepancy between two recent (T sub 1 T) sup - sup 1 experiments on Ru in RuSr sub 2 YCu sub 2 O sub 8. When the magnetic layers is are in the antiferromagnetic state, (T sub 1 T) sup - sup 1 in the magnetic layers is shown to decrease with decreasing due to the excitation gap associated with the magnetic ordering. The proximity effect of superconductivity on (T sub 1 T) sup - sup 1 in the magnetic layer is negligibly small. Our result indicates that the temperature dependence of (T sub 1 T) sup - sup 1 on Ru in RuSr sub 2 YCu sub 2 O sub 8 likely originates from the antiferromagnetism in the RuO sub 2 layers, but not from the superconductivity in the CuO sub 2 layers. (author)

  17. Inlfuence of Hemolysis on Analytic Results of Nuclear Magnetic Resonance-based Metabonomics

    Institute of Scientific and Technical Information of China (English)

    LIU Qiao

    2015-01-01

    Objective:To explore the changes of small molecular metabolites and their content in plasma samples due to hemolysis so as to analyze the influence of hemolysis of plasma samples on metabonomic study. Methods: Healthy adult males undergoing physical examination without drug administration history in recent period were selected to collect 10 hemolytic plasma samples and 10 hemolysis-free samples from them. Spectrograms of hydrogen nuclear magnetic resonance (1H-NMR) were collected and Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was used to inhibit the production of broad peak by protein and lipid, and SIMCA-P+12.0 software was applied to conduct mode recognition and Pearson correlation analysis. Results: CPMG-1H NMR plasma metabolism spectrums showed that compared with hemolysis-free samples, hemolytic samples were evidently higher in the contents of acetate, acetone and pyruvic acid, but markedly lower in that of glucose. In addition, the chemical shift of glycine-CH2 in hemolysis group moved to the lower ifeld. Orthogonal partial least-square discriminant analysis (OPLS-DA) was further applied to initiate mode recognition analysis and the results demonstrated that hemolysis group was prominently higher in the contents of metabolites, such as leucine, valine, lysine, acetate, proline, acetone, pyruvic acid, creatine, creatinine, glycine, glycerol, serine and lactic acid, but obviously lower in the contents of isoleucine and glucose than hemolysis-free group. Pearson correlation analysis indicated that in hemolytic samples, the contents of eucine, valine, lysine, proline, N-acetyl-glycoprotein, creatine, creatinine, glycerol and serine were higher but that of isoleucine was lower. Conclusion: Hemolysis can lead to the changes of multiple metabolite content and inlfuence the analytic results of metabonomics, so in practical operation, hemolytic samples should be excluded from the study.

  18. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Um, So Young [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Park, Jung Hyun [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Chung, Myeon Woo [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Kim, Kyu-Bong [College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Kim, Seon Hwa [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Choi, Ki Hwan, E-mail: hyokwa11@korea.kr [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Lee, Hwa Jeong, E-mail: hwalee@ewha.ac.kr [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer NMR based metabolomics - gastric damage by indomethacin. Black-Right-Pointing-Pointer Pattern recognition analysis was performed to biomarkers of gastric damage. Black-Right-Pointing-Pointer 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. Black-Right-Pointing-Pointer The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the {sup 1}H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg{sup -1}) or co-administration with cimetidine (100 mg kg{sup -1}), which protects against GI damage. The {sup 1}H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg{sup -1}) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by

  19. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    International Nuclear Information System (INIS)

    Highlights: ► NMR based metabolomics – gastric damage by indomethacin. ► Pattern recognition analysis was performed to biomarkers of gastric damage. ► 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. ► The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the 1H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg−1) or co-administration with cimetidine (100 mg kg−1), which protects against GI damage. The 1H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg−1) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by NSAIDs can be screened in the preclinical stage of drug development using a NMR based metabolomics approach.

  20. Influence of Hemolysis on Analytic Results of Nuclear Magnetic Resonance-based Metabonomics

    Directory of Open Access Journals (Sweden)

    Qiao LIU

    2015-09-01

    Full Text Available Objective: To explore the changes of small molecular metabolites and their content in plasma samples due to hemolysis so as to analyze the influence of hemolysis of plasma samples on metabonomic study. Methods: Healthy adult males undergoing physical examination without drug administration history in recent period were selected to collect 10 hemolytic plasma samples and 10 hemolysis-free samples from them. Spectrograms of hydrogen nuclear magnetic resonance (1H-NMR were collected and Carr-Purcell-Meiboom-Gill (CPMG pulse sequence was used to inhibit the production of broad peak by protein and lipid, and SIMCA-P+12.0 software was applied to conduct mode recognition and Pearson correlation analysis.Results: CPMG-1H NMR plasma metabolism spectrums showed that compared with hemolysis-free samples, hemolytic samples were evidently higher in the contents of acetate, acetone and pyruvic acid, but markedly lower in that of glucose. In addition, the chemical shift of glycine-CH2 in hemolysis group moved to the lower field. Orthogonal partial least-square discriminant analysis (OPLS-DA was further applied to initiate mode recognition analysis and the results demonstrated that hemolysis group was prominently higher in the contents of metabolites, such as leucine, valine, lysine, acetate, proline, acetone, pyruvic acid, creatine, creatinine, glycine, glycerol, serine and lactic acid, but obviously lower in the contents of isoleucine and glucose than hemolysis-free group. Pearson correlation analysis indicated that in hemolytic samples, the contents of eucine, valine, lysine, proline, N-acetyl-glycoprotein, creatine, creatinine, glycerol and serine were higher but that of isoleucine was lower.Conclusion: Hemolysis can lead to the changes of multiple metabolite content and influence the analytic results of metabonomics, so in practical operation, hemolytic samples should be excluded from the study.

  1. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Adelnia, Fatemeh; Lascialfari, Alessandro [Dipartimento di Fisica, Università degli Studi di Milano and INSTM, Milano (Italy); Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Ammannato, Luca; Caneschi, Andrea; Rovai, Donella [Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, Firenze (Italy); Winpenny, Richard; Timco, Grigore [School of Chemistry, The University of Manchester, Manchester (United Kingdom); Corti, Maurizio, E-mail: maurizio.corti@unipv.it; Borsa, Ferdinando [Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy)

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  2. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology

  3. Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  4. Applications of nuclear magnetic resonance imaging in process engineering

    Science.gov (United States)

    Gladden, Lynn F.; Alexander, Paul

    1996-03-01

    During the past decade, the application of nuclear magnetic resonance (NMR) imaging techniques to problems of relevance to the process industries has been identified. The particular strengths of NMR techniques are their ability to distinguish between different chemical species and to yield information simultaneously on the structure, concentration distribution and flow processes occurring within a given process unit. In this paper, examples of specific applications in the areas of materials and food processing, transport in reactors and two-phase flow are discussed. One specific study, that of the internal structure of a packed column, is considered in detail. This example is reported to illustrate the extent of new, quantitative information of generic importance to many processing operations that can be obtained using NMR imaging in combination with image analysis.

  5. Diffusion Pore Imaging by Hyperpolarized Xenon-129 Nuclear Magnetic Resonance

    CERN Document Server

    Kuder, Tristan Anselm; Windschuh, Johannes; Laun, Frederik Bernd

    2012-01-01

    Nuclear magnetic resonance (NMR) diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media. However, a direct imaging of cell or pore shapes and sizes would be of high interest. For a long time, determining pore shapes by NMR diffusion acquisitions seemed impossible, because the necessary phase information could not be preserved. Here we demonstrate experimentally using the measurement technique which we have recently proposed theoretically that the shape of arbitrary closed pores can be imaged by diffusion acquisitions, which yield the phase information. For this purpose, we use hyperpolarized xenon gas in well-defined geometries. The signal can be collected from the whole sample which mainly eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This could be used to non-invasively gain structural information inaccessible so far such as pore or cell shapes, cell density or axon integri...

  6. High field nuclear magnetic resonance application to polysaccharide chemistry

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author)

  7. State interrogation in nuclear magnetic resonance quantum-information processing

    International Nuclear Information System (INIS)

    Reconstruction of a reduced density operator for weakly coupled systems of spins (1/2) from fits to nuclear magnetic resonance spectra is described in detail. Particular emphasis is placed on data treatment procedures that specify fewer than the 3n complete spectra that are implicitly prescribed in published references to state tomography on n-spin systems. It is shown that if the density operator is expanded in the so-called product-operator basis, it is always possible to estimate a desired coefficient in the expansion by measuring a single spectral multiplet. This simple observation can substantially reduce the experimental effort required for either complete density-matrix reconstruction or estimation of subsets of the coefficients in the product-operator expansion. A simple iterative algorithm can be used to produce reduced measurement procedures for experiments involving small numbers of qubits

  8. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  9. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -1200 C to +1600 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  10. Saturation properties of nuclear matter in the presence of strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Z. [Shiraz University, Department of Physics and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Bordbar, G.H. [Shiraz University, Department of Physics and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha, P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-05-15

    Different saturation properties of cold symmetric nuclear matter in strong magnetic field have been considered. We have seen that for magnetic fields about B>3 x 10{sup 17} G, for both cases with and without nucleon anomalous magnetic moments, the saturation density and saturation energy grow by increasing the magnetic field. It is indicated that the magnetic susceptibility of symmetric nuclear matter becomes negative showing the diamagnetic response especially at B<3 x 10{sup 17} G. We have found that for the nuclear matter, the magnitude of orbital magnetization reaches higher values comparing to the spin magnetization. Our results for the incompressibility show that at high enough magnetic fields, i.e. B>3 x 10{sup 17} G, the softening of the equation of state caused by Landau quantization is overwhelmed by stiffening due to the magnetization of nuclear matter. We have shown that the effects of strong magnetic field on nuclear matter may affect the constraints on the equation of state of symmetric nuclear matter obtained by applying the experimental observables. (orig.)

  11. Anestésicos locais: interação com membranas de eritrócitos de sangue humano, estudada por ressonância magnética nuclear de 1H e 31P

    Directory of Open Access Journals (Sweden)

    Fraceto Leonardo Fernandes

    2004-01-01

    Full Text Available The literature carries many theories about the mechanism of action of local anesthetics (LA. We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by ¹H and 31P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC and benzocaine (BZC bind to the membranes, increase the mobility of the protons of the phospholipid's acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form and hydrophobic (neutral form interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na+-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia.

  12. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  13. Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems

    Science.gov (United States)

    Yeninas, Steven Lee

    for the geometrically frustrated magnetic molecule W72V30 , and for BaMn2As2 and Ba1--x KxMn2As2 (with K-concentration x = 0.04 - 0.40) which are analogs of the high Tc iron arsenides. For the magnetic molecule W72V30, 1H and 51 V NMR and DC magnetization were used to investigate geometric frustration arising from antiferromagnetic interactions between 30 V 4+ ions occupying the edge sites of an icosidodecahedron. This system serves as a molecular representation of the 2-dimensional kagome lattice whose finite-size allows precise quantum calculations. Analysis of W72V 30 data suggests a large distribution of exchange values are necessary to characterize the field and temperature-dependent magnetic properties. For the insulating BaMn2As2 and hole-doped metallic Ba 1--xKxMn2As 2, both local moment antiferromagnets, 55Mn and 75As NMR spectra and spin-lattice relaxation rates 1/T 1 were conducted to investigate the local magnetic and electronic properties as a function of K-concentration x. NMR independently confirms G-type antiferromagnetism from spectra measurements, while a Korringa relation in 1/T1 indicates conduction electrons in both the Mn-3d and As-4d orbitals. The observation of ferromagnetic enhancement of the 55Mn NMR signal and no appreciable shift observed in the 75As spectra, combined with the absence of a structural phase transition in neutron diffraction measurements suggests, the K-doped system may exhibit a previously unseen coexistence of local-moment antiferromagnetism from the Mn2+ moments and weak ferromagnetism, possibly arising from the Mn-3d orbitals. In summary, the data presented in this work demonstrates the diversity of novel materials and physical properties which can be investigated by the RF techniques TDR and NMR.

  14. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    International Nuclear Information System (INIS)

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  15. Nuclear magnetic resonance wide-line study of hydrogen in the yttrium-yttrium dihydride system

    International Nuclear Information System (INIS)

    The 1H nuclear magnetic resonance was studied in the yttrium-hydrogen system YH/sub x/ in the composition range 0.20 less than or equal to x less than or equal to 1.98 and temperature range 77 K less than or equal to T less than or equal to 4900K. Both α- and β-phases of YH/sub x/ were investigated in polycrystalline (powdered) specimens. Rigid lattice proton resonance second moments were obtained for both α- and β-phase samples. Analysis of the second moment for α-YH/sub x/ (α-phase) indicates that the hydrogen resides in both the tetrahedral and octahedral interstitial sites of the hcp Y lattice. Second moment values for β-YH/sub x/ (β-phase) indicate that a sizeable fraction of the octahedral interstitial sites in the fcc yttrium metal lattice are occupied by hydrogen, while a nonnegligible fraction of the tetrahedral interstitial sites are vacant. For example, in YH/sub 1.98/, 28% of the octahedral sites are occupied, while 15% of the tetrahedral sites are vacant. The results for β-YH/sub x/ also indicate that as the H concentration increases, the probability of H occupation of octahedral sites increases

  16. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics.

    Science.gov (United States)

    Zhu, Wenran; Wang, Xin; Chen, Lihua

    2017-02-01

    (1)H low-field nuclear magnetic resonance (LF-NMR) and chemometrics were employed to screen the quality changes of peanut oil (PEO) adulterated with soybean oil (SO), rapeseed oil (RO), or palm oil (PAO) in ratios ranging from 0% to 100%. Significant differences in the LF-NMR parameters, single component relaxation time (T2W), and peak area proportion (S21 and S22), were detected between pure and adulterated peanut oil samples. As the ratio of adulteration increased, the T2W, S21, and S22 changed linearly; however, the multicomponent relaxation times (T21 and T22) changed slightly. The established principal component analysis or discriminant analysis models can correctly differentiate authentic PEO from fake and adulterated samples with at least 10% of SO, RO, or PAO. The binary blends of oils can be clearly classified by discriminant analysis when the adulteration ratio is above 30%, illustrating possible applications in screening the oil species in peanut oil blends. PMID:27596419

  17. Investigation of reinforcement of the modified carbon black from wasted tires by nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; YANG Yong-rong; REN Xiao-hong; STAPF Siegfried

    2006-01-01

    Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.

  18. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    Energy Technology Data Exchange (ETDEWEB)

    MCClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.; O' Connell, Thomas M.; Wooten, Jan B.; Zedler, Barbara K.; Dasika, Madhukar S.; Webb, B. T.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Murrelle, Edward L.; Leppert, Mark F.; van den Oord, Edwin J.

    2010-06-04

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  19. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics.

    Science.gov (United States)

    Zhu, Wenran; Wang, Xin; Chen, Lihua

    2017-02-01

    (1)H low-field nuclear magnetic resonance (LF-NMR) and chemometrics were employed to screen the quality changes of peanut oil (PEO) adulterated with soybean oil (SO), rapeseed oil (RO), or palm oil (PAO) in ratios ranging from 0% to 100%. Significant differences in the LF-NMR parameters, single component relaxation time (T2W), and peak area proportion (S21 and S22), were detected between pure and adulterated peanut oil samples. As the ratio of adulteration increased, the T2W, S21, and S22 changed linearly; however, the multicomponent relaxation times (T21 and T22) changed slightly. The established principal component analysis or discriminant analysis models can correctly differentiate authentic PEO from fake and adulterated samples with at least 10% of SO, RO, or PAO. The binary blends of oils can be clearly classified by discriminant analysis when the adulteration ratio is above 30%, illustrating possible applications in screening the oil species in peanut oil blends.

  20. Nuclear Magnetic Resonance (NMR) as a tool for the study of the metabolism of Rickettsia slovaca.

    Science.gov (United States)

    García-Álvarez, Lara; Busto, Jesús H; Peregrina, Jesús M; Santibáñez, Sonia; Portillo, Aránzazu; Avenoza, Alberto; Oteo, José A

    2015-01-01

    Rickettsial infections are caused by intracellular bacteria. They do not grow in standard culture media so there are limitations in routine practice to study their metabolism. Nuclear Magnetic Resonance (NMR) spectroscopy is used for identification of metabolites in biological samples. Vero cells infected with Rickettsia slovaca as well as uninfected cells were monitored by (1)H NMR showing the presence of ethanol and lactic acid. As no differences were observed, labeled compounds were added into cultures. When D-[1-13C]glucose was monitored by (13)C NMR no differences among infected and uninfected cells were observed in metabolic profiles. Glucose was transformed into ethanol in all cultures. Monitored experiments carried out with [2-13C]glycine showed differences between infected and uninfected cell cultures spectra. Glycine was partially transformed into serine, but the amount of the serine formed was larger in those infected. Moreover, L-[2-13C]leucine, L-[1-13C]isoleucine and L-[15N]tyrosine were evaluated. No differences among infected and uninfected cells were observed in the metabolic profiles when tyrosine and leucine were monitored. The amino acid L-[1-13C]isoleucine exhibited different metabolism in presence of the R. slovaca, showing a promising behavior as biomarker. In this work we focused on finding one or more compounds that could be metabolized specifically by R. slovaca and could be used as an indicator of its activity.

  1. Modelling studies in aqueous solution of lanthanide (III) chelates designed for nuclear magnetic resonance biomedical applications

    Science.gov (United States)

    Henriques, E. S.; Geraldes, C. F. G. C.; Ramos, M. J.

    Molecular dynamics simulations and complementary modelling studies have been carried out for the [Gd(DOTA)·(H2O)]- and [Tm(DOTP)]5- chelates in aqueous media, to provide a better understanding of several structural and dynamical properties of these versatile nuclear magnetic resonance (NMR) probes, including coordination shells and corresponding water exchange mechanisms, and interactions of these complexes with alkali metal ions. This knowledge is of key importance in the areas of 1H relaxation and shift reagents for NMR applications in medical diagnosis. A new refinement of our own previously developed set of parameters for these Ln(III) chelates has been used, and is reported here. Calculations of water mean residence times suggest a reassessment of the characterization of the chelates' second coordination shell, one where the simple spherical distribution model is discarded in favour of a more detailed approach. Na+ probe interaction maps are in good agreement with the available site location predictions derived from 23Na NMR shifts.

  2. Sedimentary rock porosity studied by electromagnetic techniques: nuclear magnetic resonance and dielectric permittivity

    Science.gov (United States)

    Ramia, M. E.; Martín, C. A.

    2015-02-01

    The present work involves a comprehensive experimental study of porosity and pore size distribution of sedimentary rocks, from oil fields formations, by means of two electromagnetic techniques, namely proton (1H) nuclear magnetic resonance (NMR) and dielectric complex constant (DCC) as function of the frequency, both providing complementary results. The NMR yields an accurate determination of the relative pore size distribution and both movable and irreducible fluids. The DCC measurement provides the direct current electrical resistivity of the samples with different degrees of hydration. Thus, combining the results of both techniques allows the determination of the tortuosity index, by means of Archie's relation, and from it the average pore channel length. These measurements are performed on fully hydrated (saturated), centrifuged, dried, and cleaned rocks and also on samples with the irreducible fluids. Finally, the results are complemented with capillary pressure measurements to obtain the total volume associated with the pore channels related to the rock permeability. Additionally, the work presents a particular method to use a network analyzer to measure the DCC.

  3. Nuclear magnetic resonance metabonomic profiling using tO2PLS

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Transposition of O2PLS input matrix (tO2PLS) to analyze metabonomics data. •tO2PLS specific components describe features that separate and define sample groups. •Application of tO2PLS to a 1H NMR metabonomics study of black bream fish. -- Abstract: Blood plasma collected from adult fish (black bream, Sparidae) exposed to a dose of 5 mg kg−1 17β-estradiol underwent metabonomic profiling using nuclear magnetic resonance (NMR). An extension of the orthogonal 2 projection to latent structure (O2PLS) analysis, tO2PLS, was proposed and utilized to classify changes between the control and experimental metabolic profiles. As a bidirectional modeling tool, O2PLS examines the (variable) commonality between two different data blocks, and extracts the joint correlations as well as the unique variations present within each data block. tO2PLS is a proposed matrix transposition of O2PLS to allow for commonality between experiments (spectral profiles) to be observed, rather than between sample variables. tO2PLS analysis highlighted two potential biomarkers, trimethylamine-N-oxide (TMAO) and choline, that distinguish between control and 17β-estradiol exposed fish. This study presents an alternative way of examining spectroscopic (metabolite) data, providing a method for the visual assessment of similarities and differences between control and experimental spectral features in large data sets

  4. Magnetic Moments of Octet Baryons in Hot and Dense Nuclear Matter

    CERN Document Server

    Singh, Harpreet; Dahiya, Harleen

    2016-01-01

    We have calculated the in-medium magnetic moments of octet baryons in the presence of hot and dense symmetric nuclear matter. Effective magnetic moments of baryons have been derived from medium modified quark masses within chiral SU(3) quark mean field model.Further, for better insight of medium modification of baryonic magnetic moments, we have considered the explicit contributions from the valence as well as sea quark effects. These effects have been successful in giving the description of baryonic magnetic moments in vacuum. The magnetic moments of baryons are found to vary significantly as a function of density of nuclear medium.

  5. π-π Stacking, Hydrogen Bonding and Magnetic Coupling Mechanism on a Mono-nuclear Cu^Ⅱ Complex

    Institute of Scientific and Technical Information of China (English)

    LI Hong; YU Li; ZHANG Shi-Guo; WANG Yu-Qing; SHI Jing-Min

    2012-01-01

    A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.

  6. Metabonomic Response to Milk Proteins after a Single Bout of Heavy Resistance Exercise Elucidated by 1H Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Yde, Christian Clement; Ditlev, Ditte Bruun; Reitelseder, Søren; Bertram, Hanne Christine

    2013-01-01

    In the present study, proton NMR-based metabonomics was applied on femoral arterial plasma samples collected from young male subjects (milk protein n = 12 in a crossover design; non-caloric control n = 8) at different time intervals (70, 220, 370 min) after heavy resistance training and intake of either a whey or calcium caseinate protein drink in order to elucidate the impact of the protein source on post-exercise metabolism, which is important for muscle hypertrophy. Dynamic changes in the post-exercise plasma metabolite profile consisted of fluctuations in alanine, beta-hydroxybutyrate, branched amino acids, creatine, glucose, glutamine, glutamate, histidine, lipids and tyrosine. In comparison with the intake of a non-caloric drink, the same pattern of changes in low-molecular weight plasma metabolites was found for both whey and caseinate intake. However, the study indicated that whey and caseinate protein intake had a different impact on low-density and very-low-density lipoproteins present in the blood, which may be ascribed to different effects of the two protein sources on the mobilization of lipid resources during energy deficiency. In conclusion, no difference in the effects on low-molecular weight metabolites as measured by proton NMR-based metabonomics was found between the two protein sources. PMID:24957889

  7. Molecular water motions of skim milk powder solutions during acidification studied by 17O and 1H nuclear magnetic resonance and rheology

    DEFF Research Database (Denmark)

    Møller, S M; Whittaker, A. K.; Stokes, J. R.;

    2011-01-01

    The molecular motion of water was studied in glucono-δ-lactone-acidified skim milk powder (SMP) solutions with various pH values and dry matter contents. NMR relaxometry measurements revealed that lowering the pH in SMP solutions affected 17O and 1HT2 relaxation rates almost identically. Conseque...

  8. Metabonomic Response to Milk Proteins after a Single Bout of Heavy Resistance Exercise Elucidated by 1H Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hanne Christine Bertram

    2013-01-01

    Full Text Available In the present study, proton NMR-based metabonomics was applied on femoral arterial plasma samples collected from young male subjects (milk protein n = 12 in a crossover design; non-caloric control n = 8 at different time intervals (70, 220, 370 min after heavy resistance training and intake of either a whey or calcium caseinate protein drink in order to elucidate the impact of the protein source on post-exercise metabolism, which is important for muscle hypertrophy. Dynamic changes in the post-exercise plasma metabolite profile consisted of fluctuations in alanine, beta-hydroxybutyrate, branched amino acids, creatine, glucose, glutamine, glutamate, histidine, lipids and tyrosine. In comparison with the intake of a non-caloric drink, the same pattern of changes in low-molecular weight plasma metabolites was found for both whey and caseinate intake. However, the study indicated that whey and caseinate protein intake had a different impact on low-density and very-low-density lipoproteins present in the blood, which may be ascribed to different effects of the two protein sources on the mobilization of lipid resources during energy deficiency. In conclusion, no difference in the effects on low-molecular weight metabolites as measured by proton NMR-based metabonomics was found between the two protein sources.

  9. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    Science.gov (United States)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  10. 1H MAS NMR spectra of hy- droxyl species on diatomite surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High spinning speed 1H magic-angle spinning nuclear magnetic resonance (1H MAS NMR) was used to detect surface hydroxyl groups of diatomite, which include isolated hydroxyl groups and hydrogen-bonded hydroxyl groups, and water adsorbed on diatomite surface that include pore water and hydrogen-bonded water. The corresponding proton chemical shifts of above species are ca. 2.0, 6.0-7.1, 4.9 and 3.0 respectively. Accompanied by thermal treatment temperature ascending, the pore water and hydrogen-bonded water are desorbed successively. As a result, the relative intensities of the peaks assigned to protons of isolat-ed hydroxyl groups and hydrogen-bonded hydroxyl groups increase gradually and reach their maxima at 1000℃. After 1100℃ calcination, the hydroxyl groups that classified to strongly hydrogen-bonded ones and the isolated hydroxyl groups condense basically. But some weakly hydrogen-bonded hydroxyl groups may still persist in the micropores.

  11. Discrimination of sugarcane according to cultivar by 1H NMR and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alves Filho, Elenilson G.; Silva, Lorena M.A.; Choze, Rafael; Liao, Luciano M. [Laboratorio de Ressonancia Magnetica Nuclear, Instituto de Quimica, Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Honda, Neli K.; Alcantara, Glaucia B. [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil)

    2012-07-01

    Several technologies for the development of new sugarcane cultivars have mainly focused on the increase in productivity and greater disease resistance. Sugarcane cultivars are usually identified by the organography of the leaves and stems, the analysis of peroxidase and esterase isoenzyme activities and the total soluble protein as well as soluble solid content. Nuclear magnetic resonance (NMR) associated with chemometric analysis has proven to be a valuable tool for cultivar assessment. Thus, this article describes the potential of chemometric analysis applied to 1H high resolution magic angle spinning (HRMAS) and NMR in solution for the investigation of sugarcane cultivars. For this purpose, leaves from eight different cultivars of sugarcane were investigated by {sup 1}H NMR spectroscopy in combination with chemometric analysis. The approach shows to be a useful tool for the distinction and classification of different sugarcane cultivars as well as to access the differences on its chemical composition. (author)

  12. Supramolecular chains of high nuclearity {Mn(III)25} barrel-like single molecule magnets.

    Science.gov (United States)

    Giannopoulos, Dimosthenis P; Thuijs, Annaliese; Wernsdorfer, Wolfgang; Pilkington, Melanie; Christou, George; Stamatatos, Theocharis C

    2014-01-25

    The first application of 1-methyl-1H-pyrrole-2-carbaldehyde oxime as a ligand for the coordination of paramagnetic transition metal ions has afforded a new {Mn(III)25} barrel-like cluster linked via Na(+) cations into a 1D polymeric topology that exhibits single-molecule magnetic behaviour.

  13. Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Rashidinejad, Ali; Birch, Edward J; Hindmarsh, Jason; Everett, David W

    2017-01-15

    Molecular integrations between green tea catechins and milk fat globules in a cheese matrix were investigated using solid-state magic angle spinning nuclear magnetic resonance spectroscopy. Full-fat cheeses were manufactured containing free catechin or free green tea extract (GTE), and liposomal encapsulated catechin or liposomal encapsulated GTE. Molecular mobility of the carbon species in the cheeses was measured by a wide-line separation technique. The (1)H evolution frequency profile of the (13)C peak at 16ppm obtained for the control cheese and cheeses containing encapsulated polyphenols (catechin or GTE) were similar, however, the spectrum was narrower for cheeses containing free polyphenols. Differences in spectral width indicates changes in the molecular mobility of --CH3- or -C-C-PO4- species through hydrophobic and/or cation-π associations between green tea catechins and cheese fat components. However, the similar spectral profile suggests that encapsulation protects cheese fat from interaction with catechins.

  14. Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 k

    Science.gov (United States)

    Corsaro, Carmelo; Spooren, Jeroen; Branca, Caterina; Leone, Nancy; Broccio, Matteo; Kim, Chansoo; Chen, Sow-Hsin; Stanley, H Eugene; Mallamace, Francesco

    2008-08-28

    Proton nuclear magnetic resonance (1H NMR) experiments have been performed to measure the spin-lattice, T1, and spin-spin, T2, relaxation times of the three functional groups in water/methanol mixtures at different methanol molar fractions (XMeOH=0, 0.04, 0.1, 0.24, 0.5, 1) as a function of temperature in the range 205 Kpure water and methanol because of strong interactions, resulting in a complex hydrogen bonding dynamics that determines their thermodynamic properties. In particular, we observe how the interplay between hydrophobicity and hydrophilicity changes with temperature and influences the peculiar thermal behavior of the NMR relaxation times of the solution. The obtained results are interpreted in terms of the existence of stable water-methanol clusters at high temperature whereas, upon cooling to low temperature, clusters of single species are present in the mixture. PMID:18672927

  15. Roasting process of coffee beans as studied by nuclear magnetic resonance: time course of changes in composition.

    Science.gov (United States)

    Wei, Feifei; Furihata, Kazuo; Koda, Masanori; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2012-02-01

    In this paper, we report a (1)H and (13)C nuclear magnetic resonance (NMR)-based comprehensive analysis of coffee bean extracts of different degrees of roast. The roasting process of coffee bean extracts was chemically characterized using detailed signal assignment information coupled with multivariate data analysis. A total of 30 NMR-visible components of coffee bean extracts were monitored simultaneously as a function of the roasting duration. During roasting, components such as sucrose and chlorogenic acids were degraded and components such as quinic acids, N-methylpyridinium, and water-soluble polysaccharides were formed. Caffeine and myo-inositol were relatively thermally stable. Multivariate data analysis indicated that some components such as sucrose, chlorogenic acids, quinic acids, and polysaccharides could serve as chemical markers during coffee bean roasting. The present composition-based quality analysis provides an excellent holistic method and suggests useful chemical markers to control and characterize the coffee-roasting process. PMID:22224944

  16. Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Rashidinejad, Ali; Birch, Edward J; Hindmarsh, Jason; Everett, David W

    2017-01-15

    Molecular integrations between green tea catechins and milk fat globules in a cheese matrix were investigated using solid-state magic angle spinning nuclear magnetic resonance spectroscopy. Full-fat cheeses were manufactured containing free catechin or free green tea extract (GTE), and liposomal encapsulated catechin or liposomal encapsulated GTE. Molecular mobility of the carbon species in the cheeses was measured by a wide-line separation technique. The (1)H evolution frequency profile of the (13)C peak at 16ppm obtained for the control cheese and cheeses containing encapsulated polyphenols (catechin or GTE) were similar, however, the spectrum was narrower for cheeses containing free polyphenols. Differences in spectral width indicates changes in the molecular mobility of --CH3- or -C-C-PO4- species through hydrophobic and/or cation-π associations between green tea catechins and cheese fat components. However, the similar spectral profile suggests that encapsulation protects cheese fat from interaction with catechins. PMID:27542471

  17. Nuclear Magnetic Resonance-Based Metabolic Comparative Analysis of Two Apple Varieties with Different Resistances to Apple Scab Attacks.

    Science.gov (United States)

    Sciubba, Fabio; Di Cocco, Maria Enrica; Gianferri, Raffaella; Capuani, Giorgio; De Salvador, Flavio Roberto; Fontanari, Marco; Gorietti, Daniela; Delfini, Maurizio

    2015-09-23

    Apple scab, caused by the fungus Venturia inaequalis, is the most serious disease of the apple worldwide. Two cultivars (Malus domestica), having different degrees of resistance against fungi attacks, were analyzed by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. Aqueous and organic extracts of both apple flesh and skin were studied, and over 30 metabolites, classified as organic acids, amino acids, carbohydrates, phenolic compounds, lipids, sterols, and other metabolites, were quantified by means of one-dimensional (1D) and two-dimensional (2D) NMR experiments. The metabolic profiles of the two apple cultivars were compared, and the differences were correlated with the different degrees of resistance to apple scab by means of univariate analysis. Levels of metabolites with known antifungal activity were observed not only to be higher in the Almagold cultivar but also to show different correlation patterns in comparison to Golden Delicious, implying a difference in the metabolic network involved in their biosynthesis.

  18. Study of the reinforcement of rubber styrene-butadiene with mesoporous silices by solid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    The knowledge about the interaction rubber/filler for the rubber reinforced with carbon black of silica is important to understand the physical properties, which determine the reinforcement. This paper presents a comparative study of the interactions between styrene butadiene rubber (SBR) and silica for a silica Ultrasil type and mesoporous silica MCM-41 type prepared by different procedures, based on solid state nuclear magnetic resonance: 1H MAS NMR; 13C MAS NMR, 13C CP/MAS, 29Si MAS and 29Si CP/MAS NMR. Mesoporous silica synthesized under certain specific conditions showed better interaction with the rubber than the ultrasil VN3 silica, commonly used as a reinforcement load. Mechanical tests for the SBR vulcanised with this silica indicate an important increase for values of elongation and tearing resistance, but an increase in the vulcanization time in it is compared with the SBR vulcanise with Ultrasil

  19. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    Science.gov (United States)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  20. Multi-exponential inversions of nuclear magnetic resonance relaxation signal

    Institute of Scientific and Technical Information of China (English)

    WANG; Weimin(

    2001-01-01

    [1]Kenyon, W. E. , Petrophysical principles of applications of NMR logging, The Log Analyst, 1997, March-April: 21-43.[2]Timur, A., Producible porosity and permeability of sandstone investigated through nuclear magnetic resonance principles,Journal of Petroleum Technology, 1969, 21: 775-786.[3]Chakrabarty, T. , Longo, J. , A new method for mineral quantification to aid in hydrocarbon exploration and exploitation,Journal of Canadian Petroleum Technology, 1997, 36(11 ): 15-21.[4]Kleinberg, R. L. , Vinegar, H. J. , NMR properties of reservoir fluids, The Log Analyst, 1996, November-December: 20-32.[5]Wahba, G. , Practical approximate solutions to linear operator equations when the data are noisy, SIAM. J. Numer. Anal. ,1977, 14(4): 651-667.[6]Butler, J. P. , Reeds, J. A. , Dawson, S. V. , Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing, SIAM J. Numer. Anal. , 1981, 18(3): 381-397.[7]Munn, K. , Smith, D. M., A NMR technique for the analysis of pore structure: Numerical inversion of relaxation measurements, Journal of Colloid and Interface Science, 1987,19(1): 117-126.[8]Provencher, S. W., A constrained regularization method for inverting data represented by linear algebraic or integral equations, Computer Physics Communications, 1982, 27: 213-227.[9]Bergman, D. J., Dunn, K. J., Magnetic susceptibility contrasted fixed field gradient effects on the spin-echo amplitude in a periodic porous media with diffusion, Phys. Soc., 1995, 40: 695-702.[10]Wang Weimin, The basic experiment studies of NMR logging, Well Logging Technology, 1997, 21 (6): 385-392.

  1. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    International Nuclear Information System (INIS)

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al2O3/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 1017 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  2. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  3. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David D.

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

  4. 1H NMR determination of urinary betaine in patients with premature vascular disease and mild homocysteinemia.

    Science.gov (United States)

    Lundberg, P; Dudman, N P; Kuchel, P W; Wilcken, D E

    1995-02-01

    Urinary N,N,N-trimethylglycine (betaine) and N,N-dimethylglycine (DMG) have been identified and quantified for clinical purposes by proton nuclear magnetic resonance (1H NMR) measurement in previous studies. We have assessed these procedures by using both one-dimensional (1-D) and 2-D NMR spectroscopy, together with pH titration of urinary extracts to help assign 1H NMR spectral peaks. The betaine calibration curve linearity was excellent (r = 0.997, P = 0.0001) over the concentration range 0.2-1.2 mmol/L, and CVs for replicate betaine analyses ranged from 7% (n = 10) at the lowest concentration to 1% (n = 9) at the highest. The detection limit for betaine was < 15 mumol/L. Urinary DMG concentrations were substantially lower than those of betaine. Urinary betaine and DMG concentrations measured by 1H NMR spectroscopy from 13 patients with premature vascular disease and 17 normal controls provided clinically pertinent data. We conclude that 1H NMR provides unique advantages as a research tool for determination of urinary betaine and DMG concentrations. PMID:7533065

  5. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    Science.gov (United States)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  6. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    Science.gov (United States)

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO. PMID:25794742

  7. Ehrlich and sarcoma 180 tumour characterisation and early detection by {sup 1}H NMR-based metabonomics of mice serum

    Energy Technology Data Exchange (ETDEWEB)

    Grandizoli, Caroline W.P. da S.; Simonelli, Fabio; Nagata, Noemi; Barison, Andersson, E-mail: andernmr@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Carrenho, Luise Z.B.; Francisco, Thais M.G. de; Campos, Francinete R. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Farmacia; Santana Filho, Arquimedes P. de; Sassaki, Guilherme L. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Bioquimica; Kreuger, Maria R.O. [Universidade do Vale do Itajai (UNIVALI), (Brazil). Centro de Ciencias da Saude

    2014-05-15

    The success of cancer treatment is directly related to early detection before symptoms emerge, although nowadays few cancers can be detected early. In this sense, {sup 1}H nuclear magnetic resonance ({sup 1}H NMR)-based metabonomics was used to identify metabolic changes in biofluid as a consequence of tumours growing in mice. Through partial least squares discriminant analysis (PLS-DA) analysis of {sup 1}H NMR spectra from serum samples it was possible to diagnose Ehrlich ascites and Sarcoma 180 tumours five and ten days after cell inoculation, respectively. Lipids, lipoproteins and lactate were the main biomarkers at onset as well as in the progress of carcinogenic process. Thus, NMR-based metabonomics can be a valuable tool to study the effects of tumour establishment on the chemical composition of biofluids. (author)

  8. (13C-(13c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    Directory of Open Access Journals (Sweden)

    Venus Singh Mithu

    Full Text Available Two-dimensional (13C-(13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13C-(13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  9. Study of hydrogen in coals, polymers, oxides, and muscle water by nuclear magnetic resonance; extension of solid-state high-resolution techniques. [Hydrogen molybdenum bronze

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, L.M.

    1981-10-01

    Nuclear magnetic resonance (NMR) spectroscopy has been an important analytical and physical research tool for several decades. One area of NMR which has undergone considerable development in recent years is high resolution NMR of solids. In particular, high resolution solid state /sup 13/C NMR spectra exhibiting features similar to those observed in liquids are currently achievable using sophisticated pulse techniques. The work described in this thesis develops analogous methods for high resolution /sup 1/H NMR of rigid solids. Applications include characterization of hydrogen aromaticities in fossil fuels, and studies of hydrogen in oxides and bound water in muscle.

  10. Measurement of total lung water from nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance (NMR) spectroscopy was used to show that the water content of lung tissue could be predicted accurately from the intensity of signal resulting from a 900 saturation recovery sequence. The water contained in an image section may, therefore, be calculated by reference to a 100% water standard. Lung water was obtained by imaging the lung in continuous sections and summing the water contents of the component sections. The method performed well when applied to a sponge phantom, but underestimated by up to 30% in excised sheep lung. The total (vascular and extravascular) pulmonary water measured by NMR in six healthy volunteers was 292 g (SD 58 g) or 4.6 g/kg body weight, less than predicted by some other indirect methods and post-mortem values. A briefer examination comprising two axial sections at standardised levels was also devised. In 15 healthy volunteers the mean water content of a 1.6 cm-thick axial section through the right lung was 17.8 g at the sternal angle, and 23.3 g 5 cm caudally. In the left lung, the values were 16.4 g and 16.3 g, respectively. (author)

  11. Advances in Nuclear Magnetic Resonance for Drug Discovery

    Science.gov (United States)

    Powers, Robert

    2010-01-01

    Background Drug discovery is a complex and unpredictable endeavor with a high failure rate. Current trends in the pharmaceutical industry have exasperated these challenges and are contributing to the dramatic decline in productivity observed over the last decade. The industrialization of science by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are responding to these self-imposed limitations and are providing opportunities to increase the success rate of drug discovery. Objective/Method A review of recent advancements in NMR technology that have the potential of significantly impacting and benefiting the drug discovery process will be presented. These include fast NMR data collection protocols and high-throughput protein structure determination, rapid protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the identification of new therapeutic targets through the functional annotation of proteins by FAST-NMR. Conclusion NMR is a critical component of the drug discovery process, where the versatility of the technique enables it to continually expand and evolve its role. NMR is expected to maintain this growth over the next decade with advancements in automation, speed of structure calculation, in-cell imaging techniques, and the expansion of NMR amenable targets. PMID:20333269

  12. Nuclear magnetic resonance imaging of water content in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  13. Work in progress: nuclear magnetic resonance imaging of the gallbladder

    International Nuclear Information System (INIS)

    A preliminary study of the relation between food intake and intensity of gallbladder bile on nuclear magnetic resonance (NMR) images was made. Twelve subjects (seven volunteers, five patients) were imaged following a minimum of 14 hours of fasting. Six of seven volunteers were reimaged one hour after stimulation by either a fatty meal or an alcoholic beverage. An additional seven patients were imaged two hours after a hospital breakfast. It was found that concentrated bile emits a high-intensity spin echo signal (SE), while hepatic bile in the gallbladder produces a low-intensity SE signal. Following ingestion of cholecystogogue, dilute hepatic bile settles on top of the concentrated bile, each emitting SE signals of different intensity. The average T1 value of concentrated bile was 594 msec, while the T1 vaue of dilute hepatic bile was 2,646 msec. The average T2 values were 104 msec for concentrated bile and 126 msec for dilute bile. The most likely cause for the different SE intensities of bile is the higher water content, and therefore longer T1 or T2 relaxation times, of hepatic bile. It is suggested that NMR imaging has the ability to provide physiological information about the gallbladder and that it may prove to be a simple and safe clinical test of gallbladder function

  14. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  15. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique

  16. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  17. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    International Nuclear Information System (INIS)

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium

  18. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu

    1997-09-17

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  19. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  20. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type in [N(C2H5)4]2CdCl4

    Science.gov (United States)

    Lim, Ae Ran; Kim, Min Soo; Lim, Kye-Young

    2016-08-01

    This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T1ρ) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.

  1. Main: 1H49 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H49 トウモロコシ Corn Zea mays L. Beta-Glucosidase, Chloroplast Precursor Name=Glu1; Zea...NPWIYMYPEGLKDLLMIMKNKYGNPPIYITENGIGDVDTKETPLPMEAALNDYKRLDYIQRHIATLKESIDLGSNVQGYFAWSLLDNFEWFAGFTERYGIVYVDRNNNCTRYMKESAKWLKEFNTAKKPSKKILTPA corn_1H49.jpg ...

  2. Main: 1H83 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H83 トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...GYYGVWQEFEKQYPDANVLLVTVTDEESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1H83.jpg ...

  3. Main: 1H82 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H82 トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...PEGKGREFFLYASSRRGYYGVWQEFEKQYPDANVLLVTVTDEESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1H82.jpg ...

  4. Main: 1H86 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H86 トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...PEGKGREFFLYASSRRGYYGVWQEFEKQYPDANVLLVTVTDEESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1H86.jpg ...

  5. Main: 1H84 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H84 トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...GYYGVWQEFEKQYPDANVLLVTVTDEESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1H84.jpg ...

  6. Main: 1H81 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H81 トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...PEGKGREFFLYASSRRGYYGVWQEFEKQYPDANVLLVTVTDEESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1H81.jpg ...

  7. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  8. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd M.

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  9. Screening Brazilian commercial gasoline quality by hydrogen nuclear magnetic resonance spectroscopic fingerprintings and pattern-recognition multivariate chemometric analysis.

    Science.gov (United States)

    Flumignan, Danilo Luiz; Boralle, Nivaldo; de Oliveira, José Eduardo

    2010-06-30

    The identification of gasoline adulteration by organic solvents is not an easy task, because compounds that constitute the solvents are already in gasoline composition. In this work, the combination of Hydrogen Nuclear Magnetic Resonance ((1)H NMR) spectroscopic fingerprintings with pattern-recognition multivariate Soft Independent Modeling of Class Analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality in a Monitoring Program for Quality Control of Automotive Fuels. SIMCA was performed on spectroscopic fingerprints to classify the quality of representative commercial gasoline samples selected by Hierarchical Cluster Analysis (HCA) and collected over a 6-month period from different gas stations in the São Paulo state, Brazil. Following optimized the (1)H NMR-SIMCA algorithm, it was possible to correctly classify 92.0% of commercial gasoline samples, which is considered acceptable. The chemometric method is recommended for routine applications in Quality-Control Monitoring Programs, since its measurements are fast and can be easily automated. Also, police laboratories could employ this method for rapid screening analysis to discourage adulteration practices. PMID:20685442

  10. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    International Nuclear Information System (INIS)

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of 1H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The “Solid–liquid” separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C–S–H gel. 1H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C–S–H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  11. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Keith A. [Harvard School of Engineering and Applied Science, 29 Oxford Street, Cambridge, MA 02138 (United States); Vassiliou, Christophoros C. [Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Issadore, David; Berezovsky, Jesse [Harvard School of Engineering and Applied Science, 29 Oxford Street, Cambridge, MA 02138 (United States); Cima, Michael J. [Massachusetts Institute of Technology, Department of Materials Science and Engineering and Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue Cambridge, MA 02139 (United States); Westervelt, R.M., E-mail: westervelt@seas.harvard.ed [Harvard School of Engineering and Applied Science, 29 Oxford Street, Cambridge, MA 02138 (United States); Harvard University, Department of Physics, 17 Oxford Street, Cambridge, MA 02138 (United States)

    2010-10-15

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T{sub 2}{sup CP} of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T{sub 2}{sup CP} and details of the aggregate. We find that in the motional averaging regime T{sub 2}{sup CP} scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T{sub 2}{sup CP{proportional_to}{Nu}-0.44} for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T{sub 2}{sup CP} is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.

  12. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation.

    Science.gov (United States)

    Brown, Keith A; Vassiliou, Christophoros C; Issadore, David; Berezovsky, Jesse; Cima, Michael J; Westervelt, R M

    2010-10-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate. We find that in the motional averaging regime T2CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2CP∝N-0.44 for aggregates with d = 2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times. PMID:20689678

  13. Calculation of nuclear matter in the presence of strong magnetic field using LOCV technique

    CERN Document Server

    Bordbar, G H

    2015-01-01

    In the present work, we are interested in the properties of nuclear matter at zero temperature in the presence of strong magnetic fields using the lowest order constraint variational (LOCV) method employing $AV_{18}$ nuclear potential. Our results indicate that in the absence of a magnetic field, the energy per particle is a symmetric function of the spin polarization parameter. This shows that for the nuclear matter, the spontaneous phase transition to a ferromagnetic state does not occur. However, we have found that for the magnetic fields $ B\\gtrsim 10 ^ {18}\\ G$, the symmetry of energy is broken and the energy has a minimum at a positive value of the spin polarization parameter. We have also found that the effect of magnetic field on the value of energy is more significant at the low densities. Our calculations show that at lower densities, the spin polarization parameter is more sensitive to the magnetic field.

  14. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    International Nuclear Information System (INIS)

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  15. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample's density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques

  16. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrall, G A [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  17. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  18. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins

    International Nuclear Information System (INIS)

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C13-enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C13-labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C13-enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C13 spin pairs. (author)

  19. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  20. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance (NMR) spectroscopic imaging of 23Na holds promise as a non-invasive method of mapping Na+ distributions, and for differentiating pools of Na+ ions in biological tissues. However, due to NMR relaxation properties of 23Na in vivo, a large fraction of Na+ is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T2. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo 23Na T2 values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic 1H and 23Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25μs, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form

  1. Methodology for nuclear magnetic resonance and ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    This thesis encompasses methodological developments in both nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. The NMR section explores the effects of scalar relaxation on a coupled nucleus to measure fast exchange rates. In order to quantify these rates accurately, a precise knowledge of the chemical shifts of the labile protons and of the scalar couplings is normally required. We applied the method to histidine where no such information was available a priori, neither about the proton chemical shifts nor about the one-bond scalar coupling constants J(1H15N), since the protons were invisible due to fast exchange. We have measured the exchange rates of the protons of the imidazole ring and of amino protons in histidine by indirect detection via 15N. Not only the exchange rate constants, but also the elusive chemical shifts of the protons and the coupling constants could be determined. For the mass spectrometry section, the ion isolation project was initiated to study the effect of phase change of radiofrequency pulses. Excitation of ions in the ICR cell is a linear process, so that the pulse voltage required for ejecting ions must be inversely proportional to the pulse duration. A continuous sweep pulse propels the ion to a higher radius, whereas a phase reversal causes the ion to come to the centre. This represents the principle of 'notch ejection', wherein the ion for which the phase is reversed is retained in the ICR cell, while the remaining ions are ejected. The manuscript also contains a theoretical chapter, wherein the ion trajectories are plotted by solving the Lorentzian equation for the three-pulse scheme used for two-dimensional ICR. Through our simulations we mapped the ion trajectories for different pulse durations and for different phase relations. (author)

  2. Nuclear magnetic resonance analysis of the solution and solvolysis of sulfur mustard in deuterium oxide.

    Science.gov (United States)

    Logan, Thomas P; Sartori, David A

    2003-01-01

    Our laboratory performs in vitro experiments in which cell cultures are exposed to sulfur mustard (HD) to investigate the toxicity of this agent of chemical warfare. To perform these experiments, it is important to know the rate of hydrolysis of HD in order to calculate the concentrations of HD and its hydrolysis products during the experiment. Researchers have previously investigated the kinetics and mechanism of the hydrolysis of HD using a variety of methods. In the present study, we used nuclear magnetic resonance (NMR) spectroscopy and gas chromatography/mass spectrometry (GC/MS) to investigate HD's dissolution and solvolysis in deuterium oxide (D 2 O) at 2 mM. We followed activity in proton spectrums and determined the half-life (t 1/2) of HD to be 7.0 +/- 0.5 min in four experiments performed at 22 degrees C. In addition, we determined the t 1/2 of HD in D 2 O containing 0.17 M sodium chloride to be 24 +/- 1 min in three experiments performed at 22 degrees C. As further proof of the existence of HD dissolved into D 2 O, deutero-hexane was used to extract the D 2 O HD solution. The resulting deutero-hexane solution was studied by 1 H NMR and GC/MS. The results obtained match those received from a standard deutero-hexane HD solution. These results demonstrate that HD can be identified in D 2 O with proton NMR and that proton NMR data can be used to monitor the subsequent solvolysis of HD. PMID:20021164

  3. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, B.deB. [California Univ., Berkeley, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of {sup 23}Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na{sup +} ions in biological tissues. However, due to NMR relaxation properties of {sup 23}Na in vivo, a large fraction of Na{sup +} is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T{sub 2}. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo {sup 23}Na T{sub 2} values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic {sup 1}H and {sup 23}Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25{mu}s, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  4. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics

    Directory of Open Access Journals (Sweden)

    Margaux Marie-Hélène, Olivia Luck

    2015-07-01

    Full Text Available Long-term endurance exercise severely affects metabolism in both human and animal athletes resulting in serious risk of metabolic disorders during or after competition. Young horses (up to 6 years old can compete in races up to 90 km despite limited scientific knowledge of energetic metabolism responses to long distance exercise in these animals. The hypothesis of this study was that there would be a strong effect of endurance exercise on the metabolomic profiles of young horses and that the energetic metabolism response in young horses would be different from that of more experienced horses. Metabolomic profiling is a powerful method that combines Nuclear magnetic resonance (NMR spectrometry with supervised orthogonal projection on latent structure (OPLS statistical analysis. 1H-NMR spectra were obtained from plasma samples drawn from young horses (before and after competition. The spectra obtained before and after the race from the same horse (92 samples were compared using OPLS. The statistical parameters showed the robustness of the model (R2Y=0.947, Q2Y=0.856 and CV-ANOVA p-value < 0.001. For confirmation of the predictive value of the model, a test set of 104 sample spectra were projected by the model, which provided perfect predictions as the area under the receiving-operator curve was 1. The metabolomic profile determined with the OPLS model showed that glycemia after the race was lower than glycemia before the race, despite the involvement of lipid and protein catabolism. An OPLS model was calculated to compare spectra obtained on plasma taken after the race from 6-year-old horses and from experienced horses (cross-validated ANOVA p-value < 0.001. The comparison of metabolomic profiles in young horses to those from experienced horses showed that experienced horses maintained their glycemia with higher levels of lactate and a decrease of plasma lipids after the race.

  5. Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

  6. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer

    Science.gov (United States)

    Tayler, Michael C. D.; Sjolander, Tobias F.; Pines, Alexander; Budker, Dmitry

    2016-09-01

    We describe new analytical capabilities for nuclear magnetic resonance (NMR) experiments in which signal detection is performed with chemical resolution (via spin-spin J couplings) in the zero to ultra-low magnetic field region, below 1 μT. Using magnetic fields in the 100 μT to 1 mT range, we demonstrate the implementation of conventional NMR pulse sequences with spin-species selectivity.

  7. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  8. Nuclear magnetic relaxation and origins of RMN signals from GdAl2

    International Nuclear Information System (INIS)

    The intermetallic compound GdAl2 crystallizes in the cubic Laves phase C15. It is a simple ferromagnet below 176K. The easy direction of magnetization in this compound is such that the Al ions are distributed among two magnetically inequivalent sites. The pulsed NMR technique was used to study the origin of the signals from these two sites and the nuclear magnetic relaxation. (author)

  9. Nuclear magnetic resonance of D(-)-{alpha}-amino-benzyl penicillin; Ressonancia magnetica nuclear da D(-)-{alpha}-amino-benzil penicilina

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1995-12-31

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-{alpha}-amino-benzyl penicillin were analysed using {sup 13} C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed 7 figs., 4 tabs.

  10. Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces

    CERN Document Server

    Perez-Garcia, M Angeles; Polls, A

    2009-01-01

    Landau's Fermi Liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi Liquid parameters, the effect of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.

  11. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    Science.gov (United States)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  12. Neutron experiments on nuclear magnetism in copper and silver. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Tuoriniemi, J.T.

    1995-12-15

    This thesis adds to the series of investigations on nuclear magnetism in metals performed during the past 20 years at the Low Temperature Laboratory of the Helsinki University of Technology. Collective behavior of nuclear spins is expected only at very low temperatures because the mutual interactions are extremely weak. To learn what the spin structure below the transition point in these metals is, neutron-diffraction experiments have been performed. The subject of this thesis is to present the results of neutron experiments on nuclear magnetism in copper and silver.

  13. 脑胶质瘤的1H MRS

    Institute of Scientific and Technical Information of China (English)

    杨桂芬; 田伟

    2005-01-01

    活体质子磁共振波谱(proton magnetic resonance spectroscopy,1H MRS)由于能够无创性检测肿瘤组织及正常表观组织代谢物的变化,目前在胶质瘤的分级、诊断、范围确定及鉴别诊断中有积极的应用价值。本文主要介绍1H MRS在胶质瘤中的研究现状。

  14. Quantitative determination Of etimicin sulfate by nuclear magnetic resonance%核磁共振法测定硫酸依替米星含量

    Institute of Scientific and Technical Information of China (English)

    于小波; 相秉仁; 王国华; 宋喆; 沈文斌

    2011-01-01

    Qualitative and quantitative analysis of etimicin sulfate were reported by nuclear magnetic resonance(NMR).The 1H-NMR and 13C-NMR spectra of etimicin sulfate have been assigned by means of 1D and 2D spectroscopy including DEPT, COSY, HSQC and HMBC.On the basis of assignment, a novel approach was developed for the determination of purity of etimicin sulfate by proton-nuclear magnetic resonance (1H-NMR)using p-hydroquinone as internal standard.The result showed that the purity of etimicin was 59.19%, and its relative standard deviations(RSD) was 0.24%, this method was relative accuracy, precision, and ease of application.%通过核磁共振法对硫酸依替米星进行定性和定量分析.利用一维及二维核磁共振谱(DEPT、COSY、HSQC、HMBC),对H-NMR谱和C-NMR谱信号进行完整归属.在此基础上,采用氢核磁共振定量法,以对苯二酚为内标,测得硫酸依替米星中依替米星的含量为59.19%,RSD为0.24%,方法准确可靠,简便快速.

  15. Coexistence of phases in asymmetric nuclear matter under strong magnetic fields

    CERN Document Server

    Aguirre, R

    2014-01-01

    The equation of state of nuclear matter is strongly affected by the presence of a magnetic field. Here we study the equilibrium configuration of asymmetric nuclear matter for a wide range of densities, isospin composition, temperatures and magnetic fields. Special attention is paid to the low density and low temperature domain, where a thermodynamical instability exists. Neglecting fluctuations of the Coulomb force, a coexistence of phases is found under such conditions, even for extreme magnetic intensities. We describe the nuclear interaction by using the non--relativistic Skyrme potential model within a Hartree--Fock approach. We found that the coexistence of phases modifies the equilibrium configuration, masking most of the manifestations of the spin polarized matter. However, the compressibility and the magnetic susceptibility show clear signals of this fact. Thermal effects are significative for both quantities, mainly out of the coexistence region.

  16. {sup 1}H MR spectroscopy in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, Milan [MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague (Czech Republic)], E-mail: miha@medicon.cz; Dezortova, Monika [MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague (Czech Republic)], E-mail: mode@medicon.cz; Krsek, Pavel [Department of Pediatric Neurology, Charles University, Second Medical School, Motol Hospital, V Uvalu 84, 150 06 Prague 5 (Czech Republic)], E-mail: pavel.krsek@post.cz

    2008-08-15

    The introduction to the application of {sup 1}H MR spectroscopy for clinical and research studies of mesial temporal and extratemporal epilepsies is done. The techniques of single voxel and spectroscopic imaging are discussed and the analysis of {sup 1}H MR spectra together with basic metabolic descriptions is presented.

  17. 1H MR spectroscopy in epilepsy

    International Nuclear Information System (INIS)

    The introduction to the application of 1H MR spectroscopy for clinical and research studies of mesial temporal and extratemporal epilepsies is done. The techniques of single voxel and spectroscopic imaging are discussed and the analysis of 1H MR spectra together with basic metabolic descriptions is presented

  18. 轻度认知功能障碍和轻度Alzheimer病的1H-MRS研究%Brain proton magnetic resonance spectroscopy in mild cognitive impairment and mild Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    丁萍; 苗华栋; 嵇鸣; 魏文石

    2008-01-01

    目的 探讨质子磁共振波谱(1H-MRS)对轻度认知功能障碍(MCI)和轻度Alzheimer病(AD)的诊断和鉴别诊断的作用.方法 采用刺激回波序列(STEAM),对30例MCI患者、30例轻度AD患者和30例性别、年龄、文化程度匹配健康对照的双侧内侧颞叶1H-MRS进行分析,比较各组间N-乙酰天门冬氨酸/肌酸(NAA/Cr)、胆碱,肌酸(Cho/Cr)和肌醇/肌酸(MI/Cr)、N-乙酰天门冬氨酸/肌醇(NAA/MI)比值及不对称指数的差别,并对MCI和轻度AD组的简易智能精神状态量表(MMSE)评分与NAA/Cr、Cho/Cr、MI/Cr、NAA/MI进行相关分析. 结果 MCI组的左侧NAA/Cr及轻度AD组的两侧NAA/Cr显著低于对照组(P<0.05),MCI组和轻度AD组的两侧NAA/Cr无显著差异(P>0.05).三组间的Cho/Cr无差异(P>0.05).MCI组和轻度AD组的两侧MI/Cr显著高于对照组(P<0.05),MCI组和轻度AD组的左侧MI/Cr有显著差异(P<0.05).MCI组和轻度AD组的两侧NAA/MI显著低于对照组(P<0.05),MCI组和轻度AD组的左侧NAA/MI有显著差异(P<0.05).MCI、轻度AD和对照组的NAA/Cr、MI/Cr、NAA/MI有一定的左侧偏性,但三组之间的代谢物不对称指数无显著差异(P>0.05).MCI和轻度AD两组的MMSE评分与两侧NAA/Cr明显正相关(P0.<05).轻度AD组的MMSE评分与右NAA/MI明显正相关(P<0.05).两组合并的MMSE评分与左NAA/Cr、MI/Cr、NAA/MI明显正相关(P<0.05).结论 MCI、轻度AD患者内侧颞叶NAA/Cr、NAA/MI比值的降低与MI/Cr比值的升高,以及MCI和轻度AD患者的左侧MI/Cr、NAA/MI有显著差异,为MCI和AD的早期诊断和鉴别诊断提供参考.MCI和轻度AD患者NAA/Cr、NAA/MI的变化与痴呆严重程度的相关性,对MCI和AD的疾病进展和治疗监测有重要作用.1H-MRS是MCI和AD的诊断、鉴别诊断和疾病监测的有用工具.

  19. (129) Xe and (131) Xe nuclear magnetic dipole moments from gas phase NMR spectra.

    Science.gov (United States)

    Makulski, Włodzimierz

    2015-04-01

    (3) He, (129) Xe and (131) Xe NMR measurements of resonance frequencies in the magnetic field B0=11.7586 T in different gas phase mixtures have been reported. Precise radiofrequency values were extrapolated to the zero gas pressure limit. These results combined with new quantum chemical values of helium and xenon nuclear magnetic shielding constants were used to determine new accurate nuclear magnetic moments of (129) Xe and (131) Xe in terms of that of the (3) He nucleus. They are as follows: μ((129) Xe) = -0.7779607(158)μN and μ((131) Xe) = +0.6918451(70)μN . By this means, the new 'helium method' for estimations of nuclear dipole moments was successfully tested. Gas phase NMR spectra demonstrate the weak intermolecular interactions observed on the (3) He and (129) Xe and (131) Xe shielding in the gaseous mixtures with Xe, CO2 and SF6 .

  20. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    Science.gov (United States)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  1. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    Science.gov (United States)

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  2. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, J. R. [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and {sup 13}C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution {sup 1}H and {sup 13}C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 {angstrom}. Internal motion is estimated to be slow with a correlation time > 10{sup {minus}8} s{sup {minus}1}. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O{sub 2} and ultraviolet. A method for measuring {sup 14}N-{sup 1}H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T{sub 1} and T{sub 2} experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in {sup 13}C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  3. Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields

    Science.gov (United States)

    Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-08-01

    We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.

  4. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.

  5. Nuclear magnetic resonance analysis of freeze-thaw damage in natural pumice concrete

    OpenAIRE

    Wang, Xiaoxiao; Shen, Xiangdong; Wang, Hailong; Gao, Chu; Zhang, Tong

    2016-01-01

    This paper presents an analysis of the damage propagation features of the pore structure of natural pumice lightweight aggregate concrete (LWC) under freeze-thaw cyclic action. After freeze-thaw cycling, we conducted nuclear magnetic resonance (NMR) tests on the concrete and acquired the porosity, distribution of transverse relaxation time T2, and magnetic resonance imaging (MRI) results. The results showed the following. The T2 distribution of the LWC prior to freeze-thaw cycling presented f...

  6. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison

    OpenAIRE

    Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives d...

  7. Materials of the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    The Report comprises abstracts of 78 communications presented during the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on November, 30 - December, 2006 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  8. Determination of the Defining Boundary in Nuclear Magnetic Resonance Diffusion Experiments

    OpenAIRE

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Semmler, Wolfhard; Stieltjes, Bram

    2010-01-01

    While nuclear magnetic resonance diffusion experiments are widely used to resolve structures confining the diffusion process, it has been elusive whether they can exactly reveal these structures. This question is closely related to X-ray scattering and to Kac's "hear the drum" problem. Although the shape of the drum is not "hearable", we show that the confining boundary of closed pores can indeed be detected using modified Stejskal-Tanner magnetic field gradients that preserve the phase infor...

  9. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  10. Application of 1H-NMR metabolomic profiling for reef-building corals.

    Directory of Open Access Journals (Sweden)

    Emilia M Sogin

    Full Text Available In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR-based metabolomics approach in characterizing coral metabolite profiles by 1 investigating technical, intra-, and inter-sample variation, 2 evaluating the ability to recover targeted metabolite spikes, and 3 assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM. Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix. Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change.

  11. Application of 1H-NMR Metabolomic Profiling for Reef-Building Corals

    Science.gov (United States)

    Sogin, Emilia M.; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D.

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  12. Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy

    OpenAIRE

    Ding, Shangwu; McDowell, Charles A.; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili

    2001-01-01

    Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number o...

  13. Solid State Nuclear Magnetic Resonance Investigation of Polymer Backbone Dynamics in Poly(Ethylene Oxide) Based Lithium and Sodium Polyether-ester-sulfonate Ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-01-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ≳ 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for

  14. Effect of rootstock on the scion of Hevea brasiliensis through metabolic analysis of latex samples by 1H NMR

    Directory of Open Access Journals (Sweden)

    Eduardo Sanches Pereira do Nascimento

    2011-01-01

    Full Text Available In this study, the effect of rootstock on grafting through metabolomic analysis of latex (Hevea brasiliensis samples was verified by 1H nuclear magnetic resonance (NMR and multivariate data analysis. Sixteen metabolites present in the latex cytosol were characterized by NMR. PCA analysis showed that the latex samples of the RR and GR groups can be differentiated. The GR group samples present a metabolic profile similar to the RR group samples, while the RG group is in an intermediate position between RR and GG groups. Sucrose and formate contributed greatly to the separation obtained by PCA, presenting a good correlation between the results. 1H NMR was an efficient technique to differentiate latex samples from different types of rootstocks and grafting and in the future could be used to predict rubber production by latex analysis.

  15. A study by (1)H NMR on the influence of some factors affecting lipid in vitro digestion.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2016-11-15

    This article focuses on the impact of several experimental factors, including gastric acidification, intestinal transit time, presence of gastric lipase, sample/digestive fluids ratio, concentration and nature of the enzymes in intestinal juice, and bile concentration, on the extent of in vitro lipolysis when using a static model that simulates human digestion processes in mouth, stomach and small intestine. The study was carried out by Proton Nuclear Magnetic Resonance ((1)H NMR). This technique provides a complete molecular picture of lipolysis, evidencing for the first time, whether preferential hydrolysis of certain glycerides over others occurs. A lipolysis degree similar to that reported in vivo was reached by varying certain variables within a physiological range; among them, bile concentration was found to be crucial. The holistic view of this (1)H NMR study provides information of paramount importance to design sound in vitro digestion models to determine the bioaccessibility and bioavailability of lipophilic compounds. PMID:27283602

  16. Geminally Substituted Tris(acenaphthyl) and Bis(acenaphthyl) Arsines, Stibines, and Bismuthine: A Structural and Nuclear Magnetic Resonance Investigation.

    Science.gov (United States)

    Chalmers, Brian A; Meigh, Christina B E; Nejman, Phillip S; Bühl, Michael; Lébl, Tomáš; Woollins, J Derek; Slawin, Alexandra M Z; Kilian, Petr

    2016-07-18

    Tris(acenaphthyl)- and bis(acenaphthyl)-substituted pnictogens (iPr2P-Ace)3E (2-4) (E = As, Sb, or Bi; Ace = acenaphthene-5,6-diyl) and (iPr2P-Ace)2EPh (5 and 6) (E = As or Sb) were synthesized and fully characterized by multinuclear nuclear magnetic resonance (NMR), high-resolution mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. The molecules adopt propeller-like geometries with the restricted rotational freedom of the sterically encumbered iPr2P-Ace groups resulting in distinct NMR features. In the tris(acenaphthyl) species (2-4), the phosphorus atoms are isochronous in the (31)P{(1)H} NMR spectra, and the rotation of the three acenaphthyl moieties around the E-Cipso bond is locked. On the other hand, the bis(acenaphthyl) species show a fluxional behavior, resulting in an AX to A2 spin system transition in the (31)P{(1)H} variable-temperature NMR spectra. This allowed elucidation of remarkable through-space couplings ((8TS)JPP) of 11.5 Hz (for 5) and 25.8 Hz (for 6) at low temperatures. In addition, detailed line shape analysis of the thermodynamic parameters of the restricted rotation of the "propeller blades" in 5 was performed in the intermediate temperature region and also at coalescence. The lone pairs on the pnictogen atoms in 2-6 are oriented such that they form a bowl-shaped area that is somehow buried within the molecule. PMID:27341540

  17. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    Science.gov (United States)

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  18. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.;

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  19. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    Science.gov (United States)

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements.

  20. One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory

    CERN Document Server

    Li, Jian; Meng, J; Arima, A

    2010-01-01

    The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with $A=15,17,39$ and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current doesn't improve the description of nuclear isovector magnetic moments for the concerned nuclei.

  1. Bohr-Weisskopf effect: influence of the distributed nuclear magnetization on hfs

    International Nuclear Information System (INIS)

    Nuclear magnetic moments provide a sensitive test of nuclear wave functions, in particular those of neutrons, which are not readily obtainable from other nuclear data. These are taking added importance by recent proposals to study parity non-conservation (PNC) effects in alkali atoms in isotopic series. By taking ratios of the PNC effects in pairs of isotopes, uncertainties in the atomic wave functions are largely cancelled out at the cost of knowledge of the change in the neutron wave function. The Bohr-Weisskopf effect (B-W) in the hyperfine structure interaction of atoms measures the influence of the spatial distribution of the nuclear magnetization, and thereby provides an additional constraint on the determination of the neutron wave function. The added great importance of B-W in the determination of QED effects from the hfs in hydrogen-like ions of heavy elements, as measured recently at GSI, is noted. The B-W experiments require precision measurements of the hfs interactions and, independently, of the nuclear magnetic moments. A novel atomic beam magnetic resonance (ABMR) method, combining rf and laser excitation, has been developed for a systematic study and initially applied to stable isotopes. Difficulties in adapting the experiment to the ISOLDE radioactive ion beam, which have now been surmounted, are discussed. A first radioactive beam measurement for this study, the precision hfs of 126Cs, has been obtained recently. The result is 3629.515( 0.001) MHz. The ability of ABMR to determine with high precision nuclear magnetic moments in free atoms is a desideratum for the extraction of QED effects from the hfs of the hydrogen-like ions. We also point out manifestations of B-W in condensed matter and atomic physics

  2. Classification of Wines Based on Combination of 1H NMR Spectroscopy and Principal Component Analysis

    Institute of Scientific and Technical Information of China (English)

    DU, Yuan-Yuan; BAI, Guo-Yun; ZHANG, Xu; LIU, Mai-Li

    2007-01-01

    A combination of 1H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA)has shown the potential for being a useful method for classification of type, production origin or geographic origin of wines. In this preliminary study, twenty-one bottled wines were classified/separated for their location of production in Shacheng, Changli and Yantai, and the types of the blended, medium dry, dry white and dry red wines, using the NMR-PCA method. The wines were produced by three subsidiary companies of an enterprise according to the same national standard. The separation was believed to be mainly due to the fermentation process for different wines and environmental variations, such as local climate, soil, underground water, sunlight and rainfall. The major chemicals associated with the separation were identified.

  3. 联合应用ESI MS和1H NMR分析含笑属植物种子磷脂%Application of ESI-MS combined with 1 H NMR in analyzing seed phospolipids of six species of Michelia

    Institute of Scientific and Technical Information of China (English)

    唐安军; Naomichi BAbA

    2012-01-01

    To date,there was no example to authenticate seed phospholipids based on their fingerprinting.By means of electrospray ionization mass spectrometry(ESI MS)and proton nuclear magnetic resonance(1 H NMR)spectroscopy,phospholipids fraction extracted from seeds of six species from the genus Michelia were detected.It was firstly found that distinct difference in spectral fingerprinting region between m/z 895-910 in ESI MS and 5.30-5.40 mg/L in 1 H NMR among these six species.Thus,it suggested that the spectral differences shown by ESI MS and 1 H NMR among seeds of these six species could be applied to identify them.And in a wider sense,for analyzing seed phospholipids of other plant species,a combination of ESI MS AND NMR was an effective tool.%首次尝试利用电喷雾电离质谱(ESI MS)和氢原子核磁共振(1 H NMR)技术分析了含笑属六种植物种子的磷脂特性,发现在两个指纹图谱区发现明显的差异,即在质荷比(m/z)895-910(ESI MS)和5.30~5.40mg/L(1 H NMR)两个特异的区域存在显著差异.这些源于种子磷脂ESI/MS和1 H NMR的谱带差异可以被用来分析不同植物的种子的磷脂特征.而且,相似地,在更广的层面上,特异性的谱带差异可用于分析其他植物种子的磷脂组成和特性,辅助鉴定种子.

  4. Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation

    Institute of Scientific and Technical Information of China (English)

    孟杰; 彭婧; 张双全; 赵鹏巍

    2013-01-01

    Magnetic rotation and antimagnetic rotation are exotic rotational phenomena observed in weakly deformed or near-spherical nuclei, which are respectively interpreted in terms of the shears mechanism and two shearslike mechanism. Since their observations, magnetic rotation and antimagnetic rotation phenomena have been mainly investigated in the framework of tilted axis cranking based on the pairing plus quadrupole model. For the last decades, the covariant density functional theory and its extension have been proved to be successful in describing series of nuclear ground-states and excited states properties, including the binding energies, radii, single-particle spectra, reso- nance states, halo phenomena, magnetic moments, magnetic rotation, low-lying excitations, shape phase transitions, collective rotation and vibrations, etc. This review will mainly focus on the tilted axis cranking covariant density functional theory and its application for the magnetic rotation and antimagnetic rotation phenomena.

  5. Magnetic Separation for Nuclear Material Detection and Surveillance

    International Nuclear Information System (INIS)

    A high performance superconducting magnet is being developed for particle retrieval from field collected samples. Results show that maximum separation effectiveness is obtained when the matrix fiber diameter approaches the diameter of the particles to be captured. Experimentally, the authors obtained a single particle capture limit with 0.8microm PuO2 particles with dodecane as a carrier fluid. The development of new matrix materials is being pursued through the controlled corrosion of stainless steel wool, or the deposition of nickel dendrites on the existing stainless steel matrix material. They have also derived a model from a continuity equation that uses empirically determined capture cross section values. This enables the prediction of high gradient magnetic separator performance for a variety of materials and applications. The model can be used to optimize the capture cross section and thus increase the capture efficiency

  6. Value of nuclear magnetic resonance imaging in cardiology

    International Nuclear Information System (INIS)

    The present study summarizes an experience with Magnetic Resonance Imaging (MRI) in the evaluation of twelve patients with a variety of cardiac abnormalities (myocardial infarction, mural thrombi, obstructive cardiomyopathy, pericarditis). The results are compared with clinical data, with measurements from other techniques such as two-dimensional echocardiography and with the images in normal subjects. An anticipated advantage of MRI is the ability to provide better tissue characterization, than has been attained with other imaging techniques, by relaxation time measurement

  7. Dynamic stereochemistry of erigeroside by measurement of 1H- 1H and 13C- 1H coupling constants

    Science.gov (United States)

    Tafazzoli, Mohsen; Ghiasi, Mina; Moridi, Mahdi

    2008-07-01

    Erigeroside was extracted from Satureja khuzistanica Jamzad (Marzeh Khuzistani in Persian, family of lamiaceae), and 1H, 13C, 13C{ 1H}, 1H- 1H COSY, HMQC and J-HMBC were obtained to identify this compound and determine a complete set of J-coupling constants ( 1JC-H, 2JC-H, 3JC-H and 3JH-H) values within the exocyclic hydroxymethyl group (CH 2OH) and anomeric center. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311++G** basis set has been used to optimized the structures and conformers of erigeroside. In all calculations solvent effects were considered using a polarized continuum (overlapping spheres) model (PCM). The dependencies of 1J, 2J and 3J involving 1H and 13C on the C 5'-C 6' ( ω), C 6'-O 6' ( θ) and C 1'-O 1' ( φ) torsion angles in erigeroside were computed using DFT method. Complete hyper surfaces for 1JC1',H1', 2JC5',H6'R, 2JC5',H6'S, 2JC6',H5', 3JC4',H6'R, 3JC4',H6'S and 2JH6'R-H5'S as well as 3JH5',H6'R were obtained and used to derive Karplus equations to correlate these couplings to ω, θ and φ. These calculated J-couplings are in agreement with experimental values. These results confirm the reliability of DFT calculated coupling constants in aqueous solution.

  8. No change in N-acetyl aspartate in first episode of moderate depression after antidepressant treatment: 1H magnetic spectroscopy study of left amygdala and left dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Bajs Janović M

    2014-09-01

    Full Text Available Maja Bajs Janović,1,3 Petra Kalember,2 Špiro Janović,1,3 Pero Hrabač,2 Petra Folnegović Grošić,1 Vladimir Grošić,4 Marko Radoš,5 Neven Henigsberg2,61University Department of Psychiatry, Clinical Hospital Center Zagreb, Zagreb, 2Polyclinic Neuron, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, 3University North, Varaždin, 4Psychiatric Hospital Sveti Ivan, Zagreb, 5University Department of Radiology, Clinical Hospital Center Zagreb, Zagreb, 6Psychiatric Clinic Vrapče, Zagreb, CroatiaBackground: The role of brain metabolites as biological correlates of the intensity, symptoms, and course of major depression has not been determined. It has also been inconclusive whether the change in brain metabolites, measured with proton magnetic spectroscopy, could be correlated with the treatment outcome. Methods: Proton magnetic spectroscopy was performed in 29 participants with a first episode of moderate depression occurring in the left dorsolateral prefrontal cortex and left amygdala at baseline and after 8 weeks of antidepressant treatment with escitalopram. The Montgomery-Asberg Depression Rating Scale, the Hamilton Rating Scale for Depression, and the Beck Depression Inventory were used to assess the intensity of depression at baseline and at the endpoint of the study. At endpoint, the participants were identified as responders (n=17 or nonresponders (n=12 to the antidepressant therapy. Results: There was no significant change in the N-acetyl aspartate/creatine ratio (NAA/Cr after treatment with antidepressant medication. The baseline and endpoint NAA/Cr ratios were not significantly different between the responder and nonresponder groups. The correlation between NAA/Cr and changes in the scores of clinical scales were not significant in either group. Conclusion: This study could not confirm any significant changes in NAA after antidepressant treatment in the first episode of moderate depression, or in

  9. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  10. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin;

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  11. Nuclear magnetic resonance study of point defects in aluminium and copper

    International Nuclear Information System (INIS)

    The principles of Nuclear Magnetic Resonance for the determination of electrical field gradients on successive nuclei shells around a point defect are given. Results in copper and aluminium containing specific impurities or monovacancies are discussed. Measurements in electron irradiated copper show unambiguously that monovacancies migrate during stage III. (author)

  12. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  13. Water balance in Cucumis plants measured by nuclear magnetic resonance. 2.

    NARCIS (Netherlands)

    Reinders, J.E.A.; As, van H.; Schaafsma, T.J.; Sheriff, D.W.

    1988-01-01

    Nuclear magnetic resonance (NMR) was used to investigate the effects of changes in root temperature, of changes in the area of root in contact with culture solution and of day/night rhythm on the water balance of a cucumber and a gherkin plant. Results are discussed in terms of water potential, flow

  14. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    Science.gov (United States)

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  15. The Complexation of the Na(super +) by 18-Crown-6 Studied via Nuclear Magnetic Resonance

    Science.gov (United States)

    Peters, Steven J.; Stevenson, Cheryl D.

    2004-01-01

    A student friendly experiment that teaches several important concepts of modern nuclear magnetic resonance (NMR), like multinuclear capabilities, the NMR time scale, and time-averaged signals, is described along with some important concepts of thermo chemical equilibria. The mentioned experiment involves safe and inexpensive compounds, such as…

  16. Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2013-01-01

    The use of low field Nuclear Magnetic Resonance (NMR) to determine petrophysical properties of reservoirs has proved to be a good technique. Together with sonic and electrical resistivity measurements, NMR can contribute to illustrate the changes on chalk elasticity due to different pore water...

  17. Towards nuclear magnetic resonance micro-spectroscopy and micro-imaging.

    NARCIS (Netherlands)

    Bentum, P.J.M. van; Janssen, J.W.G.; Kentgens, A.P.M.

    2004-01-01

    The first successful experiments demonstrating Nuclear Magnetic Resonance (NMR) were a spin-off from the development of electromagnetic technology and its introduction into civilian life in the late forties. It was soon discovered that NMR spectra held chemically relevant information making it usefu

  18. Study of coals by high resolution solid state nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    杨保联; 冯继文; 周建威; 李丽云; 叶朝辉

    1999-01-01

    By using high resolution solid state nuclear magnetic resonance method, six coal samples coming from four countries were investigated. Twelve structural parameters of these samples were measured and compared with those of Chinese coals. Spectral editing experiment was carried out and 15N NMR spectrum was obtained.

  19. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    Science.gov (United States)

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  20. Protein conformational exchange measured by {sup 1}H R{sub 1{rho}} relaxation dispersion of methyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Ulrich [Lund University, Department of Biophysical Chemistry, Center for Molecular Protein Science (Sweden); Blissing, Annica T.; Hennig, Janosch; Ahlner, Alexandra [Linkoeping University, Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology (Sweden); Liu, Zhihong; Vogel, Hans J. [University of Calgary, Department of Biological Sciences, Biochemistry Research Group (Canada); Akke, Mikael, E-mail: mikael.akke@bpc.liu.se [Lund University, Department of Biophysical Chemistry, Center for Molecular Protein Science (Sweden); Lundstroem, Patrik, E-mail: patlu@ifm.liu.se [Linkoeping University, Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology (Sweden)

    2013-09-15

    Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for {sup 1}H spins in methyl {sup 13}CHD{sub 2} groups, which improves the characterization of fast exchange processes. The influence of {sup 1}H-{sup 1}H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R{sub 1{rho}} relaxation data acquired with tilt angles of 90 Degree-Sign and 35 Degree-Sign , in which the ROE is maximal and minimal, respectively, and on samples containing different {sup 1}H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any {sup 1}H relaxation dispersion of its methyl groups at 10 or 25 Degree-Sign C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by {sup 1}H and {sup 13}C CPMG experiments. The present R{sub 1{rho}} experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results.

  1. Nuclear magnetic resonance spectroscopy, analytical chemistry by open learning

    International Nuclear Information System (INIS)

    This elementary text on NMR spectroscopy is designed for self-study, primarily by those studying to be chemical technicians. The style is informal and direct. The basic elements of chemical shifts, spin-spin coupling, integrated intensities, and relaxation times are discussed briefly, with examples, but the emphasis is much more on this is the way it is than on providing a satisfying rationale. Quick introduction to sample preparation, NMR instrumentation, and signal enhancement techniques are included, but these are very sketchy. Only four pages are devoted to the Fourier Transform technique, hardly enough to give anyone a reasonable basis for understanding the technique and its power. About a third of the main part of the text is devoted to practical applications of 1H and 13C NMR spectroscopy, including structural assignments of peaks in the spectra of simple molecules and quantitative measurements of simple mixtures. The author provides a variety of questions and problems throughout the book, some of the simple memory-retention type but some more thought-provoking. The last 90 pages of the book are devoted to answering the questions and problems posed in the five chapters

  2. Nuclear magnetic relaxation studies on polyelectrolytes with water

    International Nuclear Information System (INIS)

    Studies on the longitudinal and transverse relaxation times (T1 and T2) of 1H and 23Na in water-polyelectrolytes systems were carried out. The polyelectrolyte samples used were sodium polystyrene sulfonate, sodium lignosulfonate and sodium cellulose sulfate. The water content (Wc's) of the samples was varied from 0 to 2.0 (grams of water per gram of polyelectrolyte). A minimum value for 1HT1 values of water in the system was observed at a temperature ranging from -25 to -40 degree C. The temperature where the 1HT1 minimum value was observed depended on Wc, corresponding to the crystallization of water in each system. From 1HT1 two groups of water molecules (bound and free water) are considered to exist in water-polyelectrolyte systems. The calculated τc values of bound water increased with decreasing temperature from the order of 10-7 sec to 10-6 sec. The observed 23Na in the water-polyelectrolyte systems relaxed with a single T1. 23NaT2 values showed that the relaxation process was separated into two fractions

  3. Serum nuclear magnetic resonance-based metabolomics and outcome in diffuse large B-cell lymphoma patients - a pilot study.

    Science.gov (United States)

    Stenson, Martin; Pedersen, Anders; Hasselblom, Sverker; Nilsson-Ehle, Herman; Karlsson, Bengt Göran; Pinto, Rui; Andersson, Per-Ola

    2016-08-01

    The prognosis for diffuse large B-cell lymphoma (DLBCL) patients with early relapse or refractory disease is dismal. To determine if clinical outcome correlated to diverse serum metabolomic profiles, we used (1)H nuclear magnetic resonance (NMR) spectroscopy and compared two groups of DLBCL patients treated with immunochemotherapy: i) refractory/early relapse (REF/REL; n=27) and ii) long-term progression-free (CURED; n = 60). A supervised multivariate analysis showed a separation between the groups. Among discriminating metabolites higher in the REF/REL group were the amino acids lysine and arginine, the degradation product cadaverine and a compound in oxidative stress (2-hydroxybutyrate). In contrast, the amino acids aspartate, valine and ornithine, and a metabolite in the glutathione cycle, pyroglutamate, were higher in CURED patients. Together, our data indicate that NMR-based serum metabolomics can identify a signature for DLBCL patients with high-risk of failing immunochemotherapy, prompting for larger validating studies which could lead to more individualized treatment of this disease. PMID:26887805

  4. Nuclear Magnetic Resonance Investigation of Dynamics in Poly(Ethylene Oxide) Based Lithium Polyether-ester-sulfonate Ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2012-01-07

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies of both the polymer and lithium ions in the lower ion content samples indicate that the polymer segmental motion and lithium ion hopping motion are correlated even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample due to the presence of ionic aggregation. Details about the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.

  5. Zebrafish brain lipid characterization and quantification by ¹H nuclear magnetic resonance spectroscopy and MALDI-TOF mass spectrometry.

    Science.gov (United States)

    van Amerongen, Yvonne F; Roy, Upasana; Spaink, Herman P; de Groot, Huub J M; Huster, Daniel; Schiller, Jürgen; Alia, A

    2014-06-01

    Lipids play an important role in many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Zebrafish models for these diseases have been recently developed. The detailed brain lipid composition of the adult zebrafish is not known, and therefore, the representativeness of these models cannot be properly evaluated. In this study, we characterized the total lipid composition of healthy adult zebrafish using (1)H nuclear magnetic resonance spectroscopy. A close resemblance of the zebrafish brain composition is shown in comparison to the human brain. Moreover, several lipids involved in the pathogenesis of neurodegenerative diseases (i.e., cholesterol, phosphatidylcholine, docosahexaenoic acid, and further, polyunsaturated fatty acids) are detected and quantified. These lipids might represent useful biomarkers in future research toward human therapies. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry coupled with high-performance thin-layer chromatography was used for further characterization of zebrafish brain lipids. Our results show that the lipid composition of the zebrafish brain is rather similar to the human brain and thus confirms that zebrafish represents a good model for studying various brain diseases.

  6. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments

  7. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, Remi [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Viel, Stephane [Aix-Marseille Universite - CNRS, UMR 6263: Institut des Sciences Moleculaires de Marseille, Chimiometrie et Spectrometries, F-13397 Marseille (France); Hidalgo, Manuel; Allard-Breton, Beatrice [ARKEMA, Centre de Recherche Rhone Alpes, Rue Henri Moissan, F-69493 Pierre-Benite (France); Thevand, Andre [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Charles, Laurence, E-mail: laurence.charles@univ-provence.fr [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France)

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. {sup 1}H and {sup 13}C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  8. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    International Nuclear Information System (INIS)

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei

  9. Electrically detected nuclear magnetic resonance in GaAs/AlGaAs-based quantum point contacts

    Science.gov (United States)

    Keane, Zachary; Godfrey, Matthew; Burke, Adam; Chen, Jason; Fricke, Sebastian; Klochan, Oleh; Micolich, Adam; Beere, Harvey; Ritchie, Dave; Trunov, Kirill; Reuter, Dirk; Wieck, Andreas; Hamilton, Alex

    2011-03-01

    Nuclear magnetic resonance (NMR) is a well-known technique with widespread applications in physics, chemistry and medicine. Conventional NMR studies use inductive coils to detect the magnetic field produced by precessing nuclear spins; this approach requires on the order of 1012 spins for detection. Recently, resistive detection of NMR through the hyperfine interaction has been demonstrated with electrons in mesoscopic 2- and 1-dimensional devices based on high-quality GaAs/AlGaAs heterostructures. These studies are typically sensitive to 108 spins, enabling NMR on much smaller sample volumes. Holes are predicted to have much weaker nuclear spin coupling than electrons, which could be relevant to the emerging fields of spintronics and quantum information processing. We present a preliminary comparison between the magnitude of the NMR signal in electron and hole quantum point contacts.

  10. Quantification of dextrose in model solution by 1H MR spectroscopy at 1.5T

    International Nuclear Information System (INIS)

    To evaluate the feasibility of proton magnetic resonance spectroscopy (1H-MRS) using a 1.5T magnetic resonance (MR) imager for quantification of the contents of model solutions. We prepared model solutions of dextrose +water and dextrose +water + ethanol at dextrose concentrations of 0.01% to 50% and 0.01% to 20%, respectively. Using these solutions and a 1.5T MR imager together with a high-resolution nuclear magnetic resonance (NMR) spectroscope, we calculated the ratios of dextrose to water peak, (dextrose +ethanol) to water peak, and (dextrose + ethanol) to ethanol peak, as seen on MR and NMR spectra, analysing the relationships between dextrose concentration and the ratios of peaks, and between the ratios of the peaks seen on MR spectra and those seen on NMR spectra. Changes in the ratios between dextrose concentration and dextrose to water peak, (dextrose + ethanol) to water peak and (dextrose + ethanol) to ethanol peak, as seen on MR spectra, were statistically significant, and there was good linear regression. There was also close correlation between the ratios of the observed on MR and NMR spectra. The results depict the quantification of dextrose concentration according to the ratios of spectral peaks obtained by proton MRS at 1.5T. Using proton MRS at 1.5T, and on the basis of the ratios of spectcal peaks, it was possible to quantify the concentration of dextrose in model solutions of dextrose + water and dextrose + water+ ethanol. The results of this study suggest that for quantifying the contents of biofluids, the use of low-tesla 1H-MRS is feasible

  11. Nuclear magnetic resonance on selected lithium based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rudisch, Christian

    2013-11-26

    This thesis presents the NMR measurements on the single crystals LiMnPO{sub 4} and Li{sub 0.9}FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO{sub 4} with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO{sub 4} shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse X-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO{sub 4} measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li{sub 0.9}FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below T{sub c}-18 K which

  12. Magnetic Lenz lenses increase the limit-of-detection in nuclear magnetic resonance

    CERN Document Server

    Spengler, Nils; Meissner, Markus V; Wallrabe, Ulrike; Korvink, Jan G

    2016-01-01

    A high NMR detection sensitivity is indispensable when dealing with mass and volume-limited samples, or whenever a high spatial resolution is required. The use of miniaturised RF coils is a proven way to increase sensitivity, but may be impractical and is not applicable to every experimental situation. We present the use of magnetic lenses, denoted as Lenz lenses due to their working principle, to focus the magnetic flux of a macroscopic RF coil into a smaller volume and thereby locally enhance the sensitivity of the NMR experiment - at the expense of the total sensitive volume. Besides focusing, such lenses facilitate re-guiding or re-shaping of magnetic fields much like optical lenses do with light beams. For the first time we experimentally demonstrate the use of Lenz lenses in magnetic resonance and provide a compact mathematical description of the working principle. Through simulations we show that optimal arrangements can be found.

  13. Spin polarization transfer mechanisms of SABRE : A magnetic field dependent study

    NARCIS (Netherlands)

    Pravdivtsev, Andrey N; Ivanov, Konstantin L; Yurkovskaya, Alexandra V; Petrov, Pavel A; Limbach, Hans-Heinrich; Kaptein, R; Vieth, Hans-Martin

    2015-01-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NM

  14. Development of nuclear magnetic resonance tomography technology - TORM

    International Nuclear Information System (INIS)

    The development of hardware and software necessary to implement the Magnetic Resonance Imaging (MRI) techniques is described. The major subjects were the construction of an aquisition and control system which allowed the operation of a pulsed Fourier NMR spectrometer as a NMR Tomograph; further it was oriented the developing of a NMR spectrometer whose parameters could be easily reconfigured by the controlling system. As a result a sofisticated equipment which allows, more than the proposed, working with high resolution spectroscopic techniques and spectroscopy in solids, was obtained. Since the basic techniques employed in NMR and CT Tomographs are well known, a great emphasis was also given on the understanding of the image reconstruction techniques that constitutes today the frontier of research in this area. The results obtained with the system described here are considered good, comparable to the results from commercial units developed in cooperation with imaging groups located in universities abroad. (author)

  15. Nuclear dipolar magnetism around one microkelvin in calciumhydroxide

    International Nuclear Information System (INIS)

    This thesis is devoted to a study of dipolar magnetism of the proton spins in Ca(OH)2. First, cooling techniques are described. The energy of different spin configurations are calculated in the Weiss-field approximation. Crystallographic characteristics of Ca(OH)2 are described, as well as a method to produce monocrystals and a method for crystal doping using 1.5 MeV electron beams. It is shown that the polarization mechanism of the proton spins in Ca(OH)2 doped with O2- centra is the 'Solid Effect'. Susceptibility measurements are presented as a function of the polarization. Results imply that both at positive and at negative temperatures state ordering sets in, characterized by a plateau in the susceptibility. (Auth/G.J.P.)

  16. Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents

    CERN Document Server

    Yannoni, C S; Vandersypen, L M K; Miller, D C; Kubinec, M G; Chuang, I L; Yannoni, Costantino S.; Sherwood, Mark H.; Vandersypen, Lieven M.K.; Miller, Dolores C.; Kubinec, Mark G.; Chuang, Isaac L.

    1999-01-01

    Liquid crystals offer several advantages as solvents for molecules used for NMR quantum computing (NMRQC). The dipolar coupling between nuclear spins manifest in the NMR spectra of molecules oriented by a liquid crystal permits a significant increase in clock frequency, while short spin-lattice relaxation times permit fast recycling of algorithms, and save time in calibration and signal-enhancement experiments. Furthermore, the use of liquid crystal solvents offers scalability in the form of an expanded library of spin-bearing molecules suitable for NMRQC. These ideas are demonstrated with the successful execution of a 2-qubit Grover search using a molecule ($^{13}$C$^{1}$HCl$_3$) oriented in a liquid crystal and a clock speed eight times greater than in an isotropic solvent. Perhaps more importantly, five times as many logic operations can be executed within the coherence time using the liquid crystal solvent.

  17. (1)H NMR Spectroscopy of Fecal Extracts Enables Detection of Advanced Colorectal Neoplasia.

    Science.gov (United States)

    Amiot, Aurelien; Dona, Anthony C; Wijeyesekera, Anisha; Tournigand, Christophe; Baumgaertner, Isabelle; Lebaleur, Yann; Sobhani, Iradj; Holmes, Elaine

    2015-09-01

    Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its etiopathogenesis and earlier diagnosis. Here, we investigated the fecal metabolic phenotype of patients with advanced colorectal neoplasia and controls using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate modeling. The fecal microbiota composition was assessed by quantitative real-time PCR as well as Wif-1 methylation levels in stools, serum, and urine and correlated to the metabolic profile of each patient. The predictivity of the model was 0.507 (Q(2)Y), and the explained variance was 0.755 (R(2)Y). Patients with advanced colorectal neoplasia demonstrated increased fecal concentrations of four short-chain fatty acids (valerate, acetate, propionate, and butyrate) and decreased signals relating to β-glucose, glutamine, and glutamate. The predictive accuracy of the multivariate (1)H NMR model was higher than that of the guaiac-fecal occult blood test and the Wif-1 methylation test for predicting advanced colorectal neoplasia. Correlation analysis between fecal metabolites and bacterial profiles revealed strong associations between Faecalibacterium prausnitzii and Clostridium leptum species with short-chain fatty acids concentration and inverse correlation between Faecalibacterium prausnitzii and glucose. These preliminary results suggest that fecal metabonomics may potentially have a future role in a noninvasive colorectal screening program and may contribute to our understanding of the role of these dysregulated molecules in the cross-talk between the host and its bacterial microbiota. PMID:26211820

  18. 1H NMR-based serum metabolic profiling in compensated and decompensated cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Su-Wen Qi; Zhi-Guang Tu; Wu-Jian Peng; Lin-Xian Wang; Xin Ou-Yang; An-Ji Cai; Yong Dai

    2012-01-01

    AIM: To study the metabolic profiling of serum samples from compensated and decompensated cirrhosis patients.METHODS: A pilot metabolic profiling study was conducted using three groups: compensated cirrhosis patients (n = 30), decompensated cirrhosis patients (n = 30) and healthy controls (n = 30). A 1H nuclear magnetic resonance (NMR)-based metabonomics approach was used to obtain the serum metabolic profiles of the samples. The acquired data were processed by multivariate principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA). RESULTS: The OPLS-DA model was capable of distinguishing between decompensated and compensated cirrhosis patients, with an R2Y of 0.784 and a Q2Y of 0.598. Twelve metabolites, such as pyruvate, phenylalanine and succinate, were identified as the most influential factors for the difference between the two groups. The validation of the diagnosis prediction showed that the accuracy of the OPLSDA model was 85% (17/20). CONCLUSION: 1H NMR spectra combined with pattern recognition analysis techniques offer a new way to diagnose compensated and decompensated cirrhosis in the future.

  19. 1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode

    Directory of Open Access Journals (Sweden)

    Jee-youn Jung1,2,#, Il Yong Kim3,#, Yo Na Kim3,#, Jin-sup Kim1,5, Jae Hoon Shin3, Zi-hey Jang1,5, Ho-Sub Lee2, Geum-Sook Hwang1,5,* & Je Kyung Seong3,4,*

    2012-07-01

    Full Text Available High-fat diets (HFD and high-carbohydrate diets (HCD-induced obesity through different pathways, but the metabolicdifferences between these diets are not fully understood.Therefore, we applied proton nuclear magnetic resonance (1HNMR-based metabolomics to compare the metabolic patternsbetween C57BL/6 mice fed HCD and those fed HFD. Principalcomponent analysis derived from 1H NMR spectra of urineshowed a clear separation between the HCD and HFD groups.Based on the changes in urinary metabolites, the slow rate ofweight gain in mice fed the HCD related to activation of thetricarboxylic acid cycle (resulting in increased levels of citrateand succinate in HCD mice, while the HFD affected nicotinamidemetabolism (increased levels of 1-methylnicotineamide,nicotinamide-N-oxide in HFD mice, which leads to systemicoxidative stress. In addition, perturbation of gut microflorametabolism was also related to different metabolic patterns ofthose two diets. These findings demonstrate that 1H NMRbasedmetabolomics can identify diet-dependent perturbationsin biological pathways.

  20. Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters.

    Science.gov (United States)

    Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha

    2007-02-21

    We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants. PMID:17328593

  1. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States); Nishiyama, Yusuke [JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558 (Japan); RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045 (Japan)

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  2. 轻度认知功能损害氢质子磁共振波谱变化及其意义%Changes of 1H-Magnetic resonance spectroscopy in patients with mild cognitive impairment and its signifi cance

    Institute of Scientific and Technical Information of China (English)

    刘森; 王长富; 郭亚

    2009-01-01

    目的:研究轻度认知功能损害(mild cognitive impairment,MCI)脑内代谢变化及其与认知功能间的关系,寻求诊断MCI之客观指标,并探讨其对防治老年性痴呆(Alzheimet's disease,AD)之重要意义.方法:选择20例MCI患者,按照1:1配对,挑选20例健康志愿者作为对照组,利用氢质子磁共振波谱(1 H-magnetic resonance spectroscopy,1H-MRS)的方法,分别检测额叶、颞叶海马区域NAA,ml及Cho等代谢产物波峰的峰高,并以Cr峰高作为标准,计算各代谢产物与其比值,比较两组间的差别;同时,对MCI组的MMSE评分和NAA/Cr,ml/Cr及Cho/Cr进行相关分析.结果:MCI组患者脑内额叶和颞叶海马区域NAA/Cr较正常对照组显著下降,而ml/Cr和Cho/Cr与对照组间无显著差异.MCI组MMSE评分与额叶和海马区域NAA/Cr间均呈正相关关系,与nd/Cr及Cho/Cr间均无显著相关关系.结论:利用1H-MRS可以检测MCI患者脑内代谢变化,为MCI之诊断提供客观指标,且NAA/Cr变化可作为认知损害程度的客观指标,对AD早期防治具有重要意义.

  3. Nuclear magnetic resonance studies of DNP-ready trehalose obtained by solid state mechanochemical amorphization.

    Science.gov (United States)

    Filibian, M; Elisei, E; Colombo Serra, S; Rosso, A; Tedoldi, F; Cesàro, A; Carretta, P

    2016-06-22

    (1)H nuclear spin-lattice relaxation and Dynamic Nuclear Polarization (DNP) have been studied in amorphous samples of trehalose sugar doped with TEMPO radicals by means of mechanical milling, in the 1.6-4.2 K temperature range. The radical concentration was varied between 0.34 and 0.81%. The highest polarization of 15% at 1.6 K, observed in the sample with concentration 0.50%, is of the same order of magnitude of that reported in standard frozen solutions with TEMPO. The temperature and concentration dependence of the spin-lattice relaxation rate 1/T1, dominated by the coupling with the electron spins, were found to follow power laws with an exponent close to 3 in all samples. The observed proportionality between 1/T1 and the polarization rate 1/Tpol, with a coefficient related to the electron polarization, is consistent with the presence of Thermal Mixing (TM) and a good contact between the nuclear and the electron spins. At high electron concentration additional relaxation channels causing a decrease in the nuclear polarization must be considered. These results provide further support for a more extensive use of amorphous DNP-ready samples, obtained by means of comilling, in dissolution DNP experiments and possibly for in vivo metabolic imaging.

  4. 1H-magnetic resonance spectroscopy in diagnosis of vascular dementia after stroke%氢质子磁共振波谱分析对脑卒中后血管性痴呆患者的诊断价值

    Institute of Scientific and Technical Information of China (English)

    李瑾; 乐先杰; 何迎春

    2011-01-01

    目的 利用氢质子磁共振波谱分析(1H-MRS)技术研究脑卒中后血管性痴呆(VD)患者颞叶海马区细胞代谢水平及其用于临床诊断的价值.方法 对年龄相匹配的脑卒中后VD患者18例、脑卒中非VD患者13例及来源于门诊就诊者14例正常对照组,行双侧颞叶海马区1H-MRS检测,3组患者双侧颞叶海马区N-乙酰天门冬氨酸盐(NAA)/肌酸(Cr)比值、胆碱复合物(Cho)/Cr比值.结果 脑卒中后VD组患者NAA/C比值较正常对照组及脑卒中非VD组均下降(P<0.05 或0.01);而Cho/Cr比值较正常对照组明显升高(P<0.05 ),较脑卒中非VD组左侧升高(P<0.05),但右侧的差异无统计学意义(P >0.05).脑卒中非VD组NAA/Cr比值及Cho/Cr比值较正常对照组虽有变化,但差异无统计学意义(P >0.05).脑卒中后VD组MMSE评分与双侧颞叶海马区NAA/Cr及Cho/Cr比值有相关性(P<0.05),且MMSE分数越低,NAA/Cr比值越低,而Cho/Cr比值越高.结论 利用1H-MRS技术研究脑卒中后VD患者双侧颞叶海马区细胞代谢水平,有助于早期发现脑卒中后VD.%To investigate the diagnostic value of 1H-magnetic resonance spectroscopy (1H-MRS) for vas-cular dementia! VD) in stroke patients.MethodsEighteen stroke patients with VD, 13 stroke patients without VD and 14 healthysubjects matched for age were enrolled in the study. 1H-MRS examinations of bilateral hippocampus were conducted in all patients; the N-acetylaspartate( NAA),choline(Cho)and creatine(Cr)were measured and the ratios of NAA/Cr and Cho/Cr were compared among groups.The patients with VD had a significantly lower NAA/Cr ratio in bilateral temporal hippocam-pus regions than normal controls and the stroke patients without VD (P0.05). There were no significant differences in NAA/Cr ratio and Cho/Cr ratio between patients without VD and normal controls. Relative-regression analysis found that MMSE scores were positively correlated with NAA/Cr and negatively correlated with Cho/Cr in

  5. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    Science.gov (United States)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  6. Fabrication and Magnetic Properties of Co-Doped TiO2 Powders Studied by Nuclear Magnetic Resonance

    Institute of Scientific and Technical Information of China (English)

    GE Shi-Hui; WANG Xin-Wei; KOU Xiao-Ming; ZHOU Xue-Yun; XI Li; ZUO Ya-Lu; YANG Xiao-Lin; ZHAO Yu-Xuan

    2005-01-01

    @@ Co0.04 Ti0.96 O2 powders are fabricated by sol-gel method. The structure and magnetic properties are investigated under different annealing conditions systematically with emphasis on the influence of oxygen pressure. Pure anatase structure was acquired for all the samples annealed at 450 ℃ for one hour. The samples annealed in air exhibit evident room-temperature ferromagnetism (RTFM) with a small magnetic moment of 0.029μB per Co atom and coercivity Hc of 26 Oe, while the samples annealed in vacuum have strong RTFM with a larger magnetic moment of 1.18 μB per Co atom and Hc of 430 Oe. The zero-field spin echo nuclear magnetic resonance spectrum of 59 Co is obtained to prove the existence of Co clusters in the latter samples, implying that the Co clusters are responsible for the strong RTFM in the samples annealed in vacuum. No Co cluster could be observed using both XPS and NMR techniques in the samples annealed in air, implying that the RTFM found in these samples is intrinsic.

  7. Advances in high-resolution nuclear magnetic resonance methods in inhomogeneous magnetic fields using intermolecular multiple quantum coherences

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Strong and extremely homogeneous static magnetic field is usually required for high-resolution nu-clear magnetic resonance (NMR). However, in the cases of in vivo and so on, the magnetic field inho-mogeneity owing to magnetic susceptibility variation in samples is unavoidable and hard to eliminate by conventional methods such as shimming. Recently, intermolecular multiple quantum coherences (iMQCs) have been employed to eliminate inhomogeneous broadening and obtain high-resolution NMR spectra, especially for in vivo samples. Compared to other high-resolution NMR methods, iMQC method exhibits its unique feature and advantage. It simultaneously holds information of chemical shifts, multiplet structures, coupling constants, and relative peak areas. All the information is often used to analyze and characterize molecular structures in conventional one-dimensional NMR spec-troscopy. In this work, recent technical developments including our results in this field are summarized; the high-resolution mechanism is analyzed and comparison with other methods based on interactions between spins is made; comments on the current situation and outlook on the research directions are also made.

  8. Residual Dipolar Couplings in Zero-to-Ultra-Low-Field Nuclear Magnetic Resonance

    CERN Document Server

    Blanchard, John W; King, Jonathan P; Ledbetter, Micah P; Levine, Emma H; Bajaj, Vikram S; Budker, Dmitry; Pines, Alexander

    2015-01-01

    Zero-to-ultra-low-field nuclear magnetic resonance (ZULF-NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the interaction averages to zero under isotropic molecular tumbling. Under partial orientational ordering, this information is retained in the form of so-called residual dipolar couplings. We report zero-to-ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile-2-$^{13}$C aligned in stretched polyvinyl acetate gels. This represents the first investigation of dipolar couplings as a perturbation on the indirect spin-spin $J$-coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole c...

  9. Energy Moment Method Applied to Nuclear Quadrupole Splitting of Nuclear Magnetic Resonance Lines

    DEFF Research Database (Denmark)

    Frank, V

    1962-01-01

    Expressions giving the sum of the energy values, raised to the second and third power, for a nucleus interacting with a static magnetic field and a static electric field gradient are derived. Several applications of this method for obtaining the values of the components of the electric field...

  10. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei

    CERN Document Server

    Neyens, G

    2003-01-01

    One of the key issues in current nuclear physics research is to investigate the properties of so-called 'exotic nuclei' and of 'exotic nuclear structures'. Exotic nuclei are nuclei with a proton-to-neutron ratio that is very different from the proton-to-neutron ratio in stable nuclei (a technical term related to this ratio is the 'isospin'). We define exotic nuclear structures as excitation modes of nuclei that have a very different structure than the structure (or shape) of the nuclear ground state. By putting the nucleons in a nucleus to extreme conditions of isospin and excitation energy one can investigate details of one of the four basic forces in nature: the strong force which binds the nucleons together to form a bound nucleus. While the basic properties of the strong nucleon-nucleon interaction are known from investigating the properties of nuclei near the 'valley of stability', recent developments in the study of exotic nuclei have demonstrated that specific properties of the strong interaction, such...

  11. Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    The arrival of very high field magnets and cryogenic circuitries, and the development of relaxation-optimized pulse sequences have added powerful tools for increasing sensitivity and resolution in NMR studies of biomacromolecules. The potential of these advances is not fully realized in practice, however, since current experimental protocols do not permit sufficient data sampling for optimal resolution in the indirect dimensions. Here we analyze quantitatively how increasing resolution in indirect dimensions affects the S/N ratio and compare this with currently used sampling routines. Optimal resolution would require sampling up to ∼3R2-1, and the S/N reaches a maximum at ∼1.2R2-1. Currently used data acquisition protocols rarely sample beyond 0.4R2-1, and extending evolution times would result in prohibitively long experiments. We show that a general solution to this problem is to use non-uniform sampling, where only a small subset of data points in the indirect sampling space are measured, and possibly different numbers of transients are collected for different evolution times. Coupled with modern methods of spectrum analysis, this strategy delivers substantially improved resolution and/or reduced measuring times compared to uniform sampling, without compromising sensitivity. Higher resolution in the indirect dimensions will facilitate the use of automated assignment programs

  12. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    Science.gov (United States)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  13. 43. Polish Seminar on Nuclear Magnetic Resonance and its Applications. Cracow. Abstracts

    International Nuclear Information System (INIS)

    42 Polish Seminar on Nuclear Magnetic Resonance and its Applications, held on 1-2 December 2010 in Cracow (Poland), was devoted to the development of different magnetic resonance techniques and application of such techniques as crucial part of the studies. The Report contains 58 short descriptions of the contributions submitted by the participants of the Seminar. They cover all areas of the NMR application in major branches of basic chemistry, structural biology, medicine and materials science. Also recent results of the quantum chemical calculations of the NMR parameters are presented.

  14. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  15. Electromagnetic Properties of Inner Double Walled Carbon Nanotubes Investigated by Nuclear Magnetic Resonance

    Directory of Open Access Journals (Sweden)

    M. Bouhrara

    2013-01-01

    Full Text Available The nuclear magnetic resonance (NMR analytical technique was used to investigate the double walled carbon nanotubes (DWNTs electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  16. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  17. A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy

    CERN Document Server

    Wagenaar, J J T; Donkersloot, R J; Marsman, F; de Wit, M; Bossoni, L; Oosterkamp, T H

    2016-01-01

    We present an innovative method for magnetic resonance force microscopy (MRFM) with ultra-low dissipation, by using the higher modes of the mechanical detector as radio frequency (rf) source. This method allows MRFM on samples without the need to be close to an rf source. Furthermore, since rf sources require currents that give dissipation, our method enables nuclear magnetic resonance experiments at ultra-low temperatures. Removing the need for an on-chip rf source is an important step towards a MRFM which can be widely used in condensed matter physics.

  18. Two-dimensional nuclear magnetic resonance studies of molecular structure in liquids and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, S.P.

    1991-07-01

    Magnetic couplings between protons, such as through-space dipole couplings, and scalar J-couplings depend sensitively on the structure of the molecule. Two dimensional nuclear magnetic resonance experiments provide a powerful tool for measuring these couplings, correlating them to specific pairs of protons within the molecule, and calculating the structure. This work discusses the development of NMR methods for examining two such classes of problems -- determination of the secondary structure of flexible molecules in anisotropic solutions, and primary structure of large biomolecules in aqueous solutions. 201 refs., 84 figs., 19 tabs.

  19. Nuclear magnetic resonance of external protons using continuous dynamical decoupling with shallow NV centers

    Science.gov (United States)

    de Las Casas, Charles; Ohno, Kenichi; Awschalom, David D.

    2015-03-01

    The nitrogen vacancy (NV) center in diamond is a paramagnetic defect with excellent spin properties that can reside within a few nanometers of the diamond surface, enabling atomic-scale magnetic resonance sensing of external nuclear spins. Here we use rotating frame longitudinal spin relaxation (T1ρ) based sensing schemes, known as Continuous Dynamical Decoupling (CDD), to detect external nuclear spins with shallow NV centers (Tesla. The increased sensitivity of this method relative to pulsed dynamical decoupling techniques demonstrates the benefits of CDD for sensing with very shallow NV centers. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  20. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  1. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    Science.gov (United States)

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  2. Negotiated identities of chemical instrumentation: the case of nuclear magnetic resonance spectroscopy, 1956-1969.

    Science.gov (United States)

    Roberts, Jody A

    2003-05-01

    What is an NMR spectrometer? Beginning with this seemingly simple question, I will explore the development of nuclear magnetic resonance spectroscopy between the years 1956 and 1969 from two vantage points: the organic chemists who used the new instrument, and Varian Associates-the makers of the first NMR spectrometers-. Through an examination of the articles and advertisements published in the Journal of Organic Chemistry, I will draw two conclusions. First, organic chemists and Varian Associates (along with other actors) are co-responsible for the development of nuclear magnetic resonance spectroscopy (i.e., NMR spectroscopy was not created by a single actor). Second, by changing the way NMR spectrometers are used, organic chemists attempted to change to the identity of the instrument. Similarly, when Varian Associates advertised their NMR spectrometers in a different way, they, too, attempted to change the identity of the instrument.

  3. Simulation of general three-body interactions in a nuclear magnetic resonance ensemble quantum computer

    Institute of Scientific and Technical Information of China (English)

    LIU WenZhang; ZHANG JingFu; DENG ZhiWei; LONG GuiLu

    2008-01-01

    Three-body interaction plays an important role in many-body physics, and quantum computer is efficient in simulating many-body interactions. We have experimentally demonstrated the general three-body interactions in a three-qubit nuclear magnetic resonance ensemble quantum computer. Using a nuclear magnetic resonance computer we implemented general forms of three-body interactions including σx1σ,z2σx3 andUxUzUy, σx1σz2σy3 The results show good agreement between theory and experiment. We have also given a concise and practical formula for a general n-body interaction in terms of one-and two-body interactions.

  4. Observation of nuclear magnetic order in solid 3He

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Rasmussen, Finn Berg;

    1974-01-01

    Measurements of T dp/dT have been made along the He3 melting curve near an anomaly at Ts=1.17 mK. It is found that the solid-He3 entropy decreases by 80% in an interval of 100 μK at Ts. This is attributed to onset of nuclear magnetic order.......Measurements of T dp/dT have been made along the He3 melting curve near an anomaly at Ts=1.17 mK. It is found that the solid-He3 entropy decreases by 80% in an interval of 100 μK at Ts. This is attributed to onset of nuclear magnetic order....

  5. Simulation of general three-body interactions in a nuclear magnetic resonance ensemble quantum computer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Three-body interaction plays an important role in many-body physics,and quantum computer is efficient in simulating many-body interactions. We have experimentally demonstrated the general three-body interactions in a three-qubit nuclear magnetic resonance ensemble quantum computer. Using a nuclear magnetic resonance computer we implemented general forms of three-body interactions including σ 1x σ z2 σ x3 and σ 1x σ z2 σ y3 . The results show good agreement between theory and experiment. We have also given a concise and practical formula for a general n-body interaction in terms of one-and two-body interactions.

  6. Tissue-Specific Metabolic Profile Study of Moringa oleifera L. Using Nuclear Magnetic Resonance Spectroscopy

    OpenAIRE

    Mahmud, Iqbal; Chowdhury, Kamal; Boroujerdi, Arezue

    2014-01-01

    Moringa oleifera, an important multipurpose crop, is rich in various phytochemicals: flavonoids, antioxidants, vitamins, minerals and carotenes. The purpose of this study was to profile the groups of metabolites in leaf and stem tissues of M. oleifera. Various sugars, amino acids, and organic acid derivatives were found in all of the M. oleifera tissues with different profiles/peak intensities depending on the tissue. 1D proton nuclear magnetic resonance (NMR) was applied for collecting metab...

  7. Cell culture device and microchamber which can be monitored using nuclear magnetic resonance

    OpenAIRE

    Celda-Muñoz, Bernardo; Esteve-Moya, Vicent; Sancho-Bielsa, Francisco; Villa Sanz, Rosa; Fernández Ledesma, Luis José; Berganzo Ruiz, Javier

    2010-01-01

    [EN] The invention relates to a cell culture device and microchamber which can be monitored using nuclear magnetic resonance and other imaging techniques, in which the culture microchamber is encapsulated and housed inside a chip. The microchamber and the device are easy for the user to handle, allowing same to be handled or repositioned without requiring complex mounting operations. In addition, the invention allows cultures to be studied for long periods, great...

  8. Simulation of the four-body interaction in a nuclear magnetic resonance quantum information processor

    Institute of Scientific and Technical Information of China (English)

    LIU WenZhang; ZHANG JingFu; LONG GuiLu

    2009-01-01

    The four-body interaction plays an important role in many-body systems,and it can exhibit interesting phase transition behaviors.In this letter,we report the experimental demonstration of a four-body interaction in a four-qubit nuclear magnetic resonance quantum information processor.The strongly modulating pulse is used to implement spin selective excitation.The results show a good agreement between theory and experiment.

  9. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs

  10. Surface Nuclear Magnetic Resonance (SNMR) - A new method for exploration of ground water and aquifer properties

    OpenAIRE

    U. Yaramanci

    2000-01-01

    The Surface Nuclear Magnetic Resonance (SNMR) method is a fairly new technique in geophysics to assess ground water, i.e. existence, amount and productibility by measurements at the surface. The NMR technique used in medicine, physics and lately in borehole geophysics was adopted for surface measurements in the early eighties, and commercial equipment for measurements has been available since the mid nineties. The SNMR method has been tested at sites in Northern Germany with Quaternary sand a...

  11. Nuclear magnetic moments and the spin-orbit current in the relativistic mean field theory

    International Nuclear Information System (INIS)

    The Dirac magnetic moments in the relativistic mean field theory are affected not only by the effective mass, but also by the spin-orbit current related to the spin-orbit force through the continuity equation. Previous arguments on the cancellation of the effective-mass effect in nuclear matter are not simply applied to finite nuclei to obtain the Schmidt values. Effects of the spin-orbit current on (e, e') response functions are also mentioned. (orig.)

  12. 19-Fluorine nuclear magnetic resonance chemical shift variability in trifluoroacetyl species

    OpenAIRE

    Sloop, Joseph

    2013-01-01

    Joseph C SloopSchool of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USAAbstract: This review examines the variability of chemical shifts observed in 19-fluorine (19F) nuclear magnetic resonance spectra for the trifluoroacetyl (TFA) functional group. The range of 19F chemical shifts reported spectra for the TFA group varies generally from −85 to −67 ppm relative to CFCl3. The literature revealed several factors that impact chemical shifts of the TFA...

  13. Exhibition of the periodicity of Quantum Fourier Transformation in Nuclear Magnetic Resonance

    OpenAIRE

    Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Yang, Xiaodong; Liu, Maili; Gao, Kelin

    2002-01-01

    The remarkable capability of quantum Fourier transformation (QFT) to extract the periodicity of a given periodic function has been exhibited by using nuclear magnetic resonance (NMR) techniques. Two separate sets of experiments were performed. In a full QFT, the periodicity were validated with state tomography and fidelity measurements. For a simplified QFT, the three-qubit pseudo-pure state was created by introducting an additional observer spin, and the spectra recorded on the observer spin...

  14. An interferometric complementarity experiment in a bulk Nuclear Magnetic Resonance ensemble

    OpenAIRE

    Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin

    2002-01-01

    We have experimentally demonstrated the interferometric complementarity, which relates the distinguishability $D$ quantifying the amount of which-way (WW) information to the fringe visibility $V$ characterizing the wave feature of a quantum entity, in a bulk ensemble by Nuclear Magnetic Resonance (NMR) techniques. We primarily concern on the intermediate cases: partial fringe visibility and incomplete WW information. We propose a quantitative measure of $D$ by an alternative geometric strateg...

  15. Preparation of pseudo-pure states by line-selective pulses in Nuclear Magnetic Resonance

    OpenAIRE

    Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Gao, Keli; Yang, Xiaodong; Liu, Maili

    2000-01-01

    A new method of preparing the pseudo-pure state of a spin system for quantum computation in liquid nuclear magnetic resonance (NMR) was put forward and demonstrated experimentally. Applying appropriately connected line-selective pulses simultaneously and a field gradient pulse techniques we acquired straightforwardly all pseudo-pure states for two qubits in a single experiment much efficiently. The signal intensity with the pseudo-pure state prepared in this way is the same as that of tempora...

  16. Proceedings of the 37. Polish Seminar on Nuclear Magnetic Resonance and its Applications

    International Nuclear Information System (INIS)

    37. Polish Seminar on Nuclear Magnetic Resonance and Its Applications is Cyclically organised forum for discussing the actual problems, achievements and perspectives of methodology and interpretation of NMR. At presenting edition the problems of NMR imaging in medicine diagnostics, studies of biologically important organic molecules as well as inorganic compounds being interesting for microelectronics and catalysis have been especially emphasized. The progress in computerized simulation for NMR spectra interpretation has been also performed in numerous presentations

  17. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance.

    OpenAIRE

    Ekiel, I; Smith, I C; Sprott, G D

    1983-01-01

    The main metabolic pathways in Methanospirillum hungatei GP1 were followed by using 13C nuclear magnetic resonance, with 13C-labeled acetate and CO2 as carbon sources. The labeling patterns found in carbohydrates, amino acids, lipids, and nucleosides were consistent with the formation of pyruvate from acetate and CO2 as the first step in biosynthesis. Carbohydrates are formed by the glucogenic pathway, and no scrambling of label was observed, indicating that the oxidative or reductive pentose...

  18. Instruments and Domains of Knowledge: The Case of Nuclear Magnetic Resonance Spectroscopy, 1956-1969

    OpenAIRE

    Roberts, Jody Alan

    2002-01-01

    In this thesis, I traced the development of Nuclear Magnetic Resonance (NMR) Spectroscopy through the pages of the Journal of Organic Chemistry (JOC) from the year 1956 to 1969 to understand how organic chemists and Varian Associates?the makers of the first commercial NMR spectrometers?negotiated the identity of the NMR spectrometer. The work of the organic chemists was examined through their publications in the JOC. Examining the abstracts from the JOC between the years 1956 and 1969 devel...

  19. Nuclear magnetic resonance as a tool for on-line catalytic reaction monitoring

    OpenAIRE

    Buljubasich, Lisandro

    2010-01-01

    Nuclear Magnetic Resonance (NMR) has become a well-established method in many different areas of research. The scope of the disciplines involved is extremely broad ad is still expanding, encompassing chemical, petrochemical, biological and medical research, plant physiology, aerospace engineering, process engineering, industrial food processing, materials and polymer sciences. But the power of NMR, lies in its ability to combine and extend the available techniques for a more thorough solution...

  20. Magnetic moments in present relativistic nuclear theories: a mean-field problem

    International Nuclear Information System (INIS)

    We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs

  1. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    Science.gov (United States)

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-01

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T1-T2 and diffusion-T2), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  2. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    Directory of Open Access Journals (Sweden)

    Lisovaya E. V.

    2015-11-01

    Full Text Available The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of rapeseed and sunflower lecithin components showed, that for their identification protons’ spin-spin relaxation time of the lecithin’ first component at 40°C and 60°C temperature, when differences in values of protons’ spin-spin relaxation time of the sunflower and rapeseed lecithin’ first component are most obvious, should be used as an analytical parameter. Comparative assessment of amplitudes of proton’s NMR signals of sunflower and rapeseed lecithin components showed, that relations, established earlier for sunflower lecithin between mass share of phospholipids (substances insoluble in acetone and the sum of amplitudes of proton’s NMR signals of the third and fourth components, cannot be applied to rapeseed lecithin; that is for the development of an express method for determination of mass share of substances insoluble in acetone (phospholipids in rapeseed lecithin, it is necessary to carry out additional research with the purpose of clarifying the mentioned relations

  3. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    Science.gov (United States)

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN. PMID:27265668

  4. (83)Kr nuclear magnetic moment in terms of that of (3)He.

    Science.gov (United States)

    Makulski, Włodzimierz

    2014-08-01

    High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data.

  5. 1H MR spectroscopy characteristics of cerebral alveolar echinococcosis

    International Nuclear Information System (INIS)

    Objective: To investigate the characteristics of proton magnetic resonance spectroscopy (1H MRS) in patients with cerebral alveolar echinococcosis (CAE). Methods: Thirteen patients with 33 lesions proven to be CAE histologically and clinically were examined by conventional MRI and 2D multi-voxel spectroscopy with a 3.0 T double gradient superconductivity magnetic resonance scanner. Concentrations of the metabolites containing N-acetyl-aspartic-acid (NAA), Choline (Cho), Creatine (Cr), lipids and lactic acid (Lip + Lac), myo-Inositol (mI) were detected and the value of Cho/Cr, NAA/Cr, (Lip + Lac)/Cr, mI/Cr were calculated. The values of Cho/Cr, NAA/Cr, (Lip + Lac)/Cr, mI/Cr were compared between the lesions and the contralateral normal brain parenchyma. Statistical analysis was performed using the Wilcoxon signed-rank test. Results: CAE 1H MRS in the lesions was characterized by the decrease of Cho, NAA to varying degrees, and a visible lipid with or without lactate peak. Compared with the control group, the ratio of NAA/Cr was decreased markedly, whereas Cho/Cr, mI/Cr increased mildly and (Lip + Lac)/Cr increased markedly in the lesions. The medians and interquartile ranges of Cho/Cr, NAA/Cr, (Lip + Lac)/Cr and mI/Cr in the lesions were: 1.88 (1.24-2.23), 1.32 (1.07-1.58), 32.96 (24.59-47.30) and 0.91 (0.67-1.08), respectively. The medians and interquartile ranges of Cho/Cr, NAA/Cr, (Lip + Lac)/Cr and mI/Cr of control group were 0.84 (0.704-0.98), 2.00 (1.80-2.18), 0.90 (0.74-0.99) and 0.26 (0.18-0.31), respectively. There were statistically significant differences of the measures between the lesions and the control regions (Z=-5.932, -6.086, -6.946, -6.984, P<0.01). Conclusions: Multi-voxel 1H MRS can reflect pathological characteristics of CAE. 1H MRS provides metabolic information for diagnosis of CAE and may be a supplement to conventional magnetic resonance examination. (authors)

  6. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Casadei, Cecilia [Univ. of Pavia (Italy)

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  7. Enhanced affinity of ketotifen toward tamarind seed polysaccharide in comparison with hydroxyethylcellulose and hyaluronic acid: a nuclear magnetic resonance investigation.

    Science.gov (United States)

    Uccello-Barretta, Gloria; Nazzi, Samuele; Balzano, Federica; Di Colo, Giacomo; Zambito, Ylenia; Zaino, Chiara; Sansò, Marco; Salvadori, Eleonora; Benvenuti, Marco

    2008-08-01

    Nuclear magnetic resonance (NMR) spectroscopy demonstrated that, in aqueous solution, ketotifen fumarate bound more strongly to tamarind seed polysaccharide (TSP) than to hydroxyethylcellulose or hyaluronic acid. Results were confirmed by dynamic dialysis technique.

  8. Selection of Annonaceae Species for the Control of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Metabolic Profiling of Duguetia lanceolata Using Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Alves, D S; Machado, A R T; Campos, V A C; Oliveira, D F; Carvalho, G A

    2016-04-01

    This study was performed to investigate the activity of 19 dichloromethane-soluble fractions obtained from the methanolic extracts of 10 Annonaceae species against the fall armyworm, Spodoptera frugiperda (J. E. Smith). The stem bark of Duguetia lanceolata A. St.-Hil. showed the highest insecticidal activity, with a median lethal time (LT50) of 61.4 h and a median lethal concentration (LC50) of 946.5 µg/ml of diet. The dichloromethane-soluble fractions from six D. lanceolata specimens were subjected to evaluation of their activities against S. frugiperda and metabolomic analysis using hydrogen (1H) nuclear magnetic resonance (NMR) spectroscopy. Although all of the samples affected S. frugiperda mortality, their insecticidal activities varied according to the sample used in the experiments. Using partial least squares regression of the results, the D. lanceolata specimens were grouped according to their metabolite profile and insecticidal activity. A detailed analysis via uni- and bidimensional NMR spectroscopy showed that the peaks in the 1H NMR spectra associated with increased insecticidal activity could be attributed to 2,4,5-trimethoxystyrene, which suggests that this substance is involved in the insecticidal activity of the stem bark fraction of D. lanceolata.

  9. Combining Two-Dimensional Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy, Imaging Desorption Electrospray Ionization Mass Spectrometry, and Direct Analysis in Real-Time Mass Spectrometry for the Integral Investigation of Counterfeit Pharmaceuticals

    Science.gov (United States)

    Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique

    2016-01-01

    During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162

  10. Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding

    Science.gov (United States)

    Garbacz, Piotr

    2016-08-01

    It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for 205Tl nucleus in a Pt-Tl bonded complex, Pt(CN)5Tl, the transverse relaxation rate induced by the electric field is of the order of 1 s-1 at E = 5 kV/mm and B = 10 T.

  11. Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX' (X, X' = H, CH3) with lithium cation and their chiral discrimination

    Science.gov (United States)

    Alkorta, Ibon; Elguero, José; Provasi, Patricio F.; Pagola, Gabriel I.; Ferraro, Marta B.

    2011-09-01

    The set of 1:1 and 2:1 complexes of XOOX' (X, X' = H, CH3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 × 108 V m-1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes.

  12. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    Science.gov (United States)

    Suter, J. D.; Ramuhalli, P.; McCloy, J. S.; Xu, K.; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R.

    2015-03-01

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the "state of health" of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  13. Electric quadrupole polarizabilities of nuclear magnetic shielding in some small molecules

    Science.gov (United States)

    Ferraro, M. B.; Caputo, M. C.; Pagola, G. I.; Lazzeretti, P.

    2008-01-01

    Computational procedures, based on (i) the Ramsey common origin approach and (ii) the continuous transformation of the origin of the quantum mechanical current density-diamagnetic zero (CTOCD-DZ), were applied at the Hartree-Fock level to determine electric quadrupole polarizabilities of nuclear magnetic shielding for molecules in the presence of a nonuniform electric field with a uniform gradient. The quadrupole polarizabilities depend on the origin of the coordinate system, but values of the magnetic field induced at a reference nucleus, determined via the CTOCD-DZ approach, are origin independent for any calculations relying on the algebraic approximation, irrespective of size and quality of the (gaugeless) basis set employed. On the other hand, theoretical estimates of the induced magnetic field obtained by single-origin methods are translationally invariant only in the limit of complete basis sets. Calculations of electric quadrupole polarizabilities of nuclear magnetic shielding are reported for H2, HF, H2O, NH3, and CH4 molecules.

  14. Heterometallic Cu(II)-Dy(III) Clusters of Different Nuclearities with Slow Magnetic Relaxation.

    Science.gov (United States)

    Modak, Ritwik; Sikdar, Yeasin; Cosquer, Goulven; Chatterjee, Sudipta; Yamashita, Masahiro; Goswami, Sanchita

    2016-01-19

    The synthesis, structures, and magnetic properties of two heterometallic Cu(II)-Dy(III) clusters are reported. The first structural motif displays a pentanuclear Cu(II)4Dy(III) core, while the second one reveals a nonanuclear Cu(II)6Dy(III)3 core. We employed o-vanillin-based Schiff base ligands combining o-vanillin with 3-amino-1-propanol, H2vap, (2-[(3-hydroxy-propylimino)-methyl]-6-methoxy-phenol), and 2-aminoethanol, H2vae, (2-[(3-hydroxy-ethylimino)-methyl]-6-methoxy-phenol). The differing nuclearities of the two clusters stem from the choice of imino alcohol arm in the Schiff bases, H2vap and H2vae. This work is aimed at broadening the diversity of Cu(II)-Dy(III) clusters and to perceive the consequence of changing the length of the alcohol arm on the nuclearity of the cluster, providing valuable insight into promising future synthetic directions. The underlying topological entity of the pentanuclear Cu4Dy cluster is reported for the first time. The investigation of magnetic behaviors of 1 and 2 below 2 K reveals slow magnetic relaxation with a significant influence coming from the variation of the alcohol arm affecting the nature of magnetic interactions. PMID:26702645

  15. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav;

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... hand, for the BPPT-based cross coupling of relativity and correlation. For ?ll, the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the 129Xe nuclear shielding is compared to experiment...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...

  16. Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging.

    Science.gov (United States)

    Zhao, Yanzhao; Liang, Minmin; Li, Xiao; Fan, Kelong; Xiao, Jie; Li, Yanli; Shi, Hongcheng; Wang, Fei; Choi, Hak Soo; Cheng, Dengfeng; Yan, Xiyun

    2016-04-26

    Despite all the advances in multimodal imaging, it remains a significant challenge to acquire both magnetic resonance and nuclear imaging in a single dose because of the enormous difference in sensitivity. Indeed, nuclear imaging is almost 10(6)-fold more sensitive than magnetic resonance imaging (MRI); thus, repeated injections are generally required to obtain sufficient MR signals after nuclear imaging. Here, we show that strategically engineered magnetoferritin nanoprobes can image tumors with high sensitivity and specificity using SPECT and MRI in living mice after a single intravenous injection. The magnetoferritin nanoprobes composed of (125)I radionuclide-conjugated human H-ferritin iron nanocages ((125)I-M-HFn) internalize robustly into cancer cells via a novel tumor-specific HFn-TfR1 pathway. In particular, the endocytic recycling characteristic of TfR1 transporters solves the nuclear signal blocking issue caused by the high dose nanoprobes injected for MRI, thus enabling simultaneous functional and morphological tumor imaging without reliance on multi-injections.

  17. Preparation, GIAO NMR Calculations and Acidic Properties of Some Novel 4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives with Their Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Havva Aksu

    2008-01-01

    Full Text Available Six novel 3-alkyl(aryl-4-(p-nitrobenzoylamino-4,5-dihydro-1H-1,2,4-triazol-5- ones (2a-f were synthesized by the reactions of 3-alkyl(aryl-4-amino-4,5-dihydro-1H- 1,2,4-triazol-5-ones (1a-f with p-nitrobenzoyl chloride and characterized by elemental analyses and IR, 1H-NMR, 13C-NMR and UV spectral data. The newly synthesized compounds 2 were titrated potentiometrically with tetrabutylammonium hydroxide in four non-aqueous solvents such as acetone, isopropyl alcohol, tert-butyl alcohol and N,Ndimethylformamide, and the half-neutralization potential values and the corresponding pKa values were determined for all cases. Thus, the effects of solvents and molecular structure upon acidity were investigated. In addition, isotropic 1H and 13C nuclear magnetic shielding constants of compounds 2 were obtained by the gauge-including-atomic-orbital (GIAO method at the B3LYP density functional level. The geometry of each compound has been optimized using the 6-311G basis set. Theoretical values were compared to the experimental data. Furthermore, these new compounds and five recently reported 3-alkyl-4-(2- furoylamino-4,5-dihydro-1H-1,2,4-triazol-5-ones (3a-c,e,f were screened for their antioxidant activities.

  18. NUCLEAR-MAGNETIC MINI-RELAXOMETER FOR LIQUID AND VISCOUS MEDIA CONTROL

    Directory of Open Access Journals (Sweden)

    V. V. Davydov

    2015-01-01

    Full Text Available The paper deals with a new method for registration of nuclear magnetic resonance signal of small volume liquid and viscous media being studied (0.5 ml in a weak magnetic field (0.06 –0.08 T, and measuring of longitudinal T1 and transverse T2 relaxation constants. A new construction of NMR mini-relaxometer magnetic system is developed for registration of NMR signal. The nonuniformity of a magnetic field in a pole where registration coil is located is 0,410–3 sm–1 (the induction is В0 = 0.079 T. An electrical circuit of autodyne receiver (weak fluctuations generator has been developed with usage of low noise differential amplifier and NMR signal operating and control scheme (based on microcontroller STM32 for measuring of relaxation constants of liquid and viscous media in automatic operating mode. New technical decisions made it possible to improve relaxometer response time and dynamic range of measurements for relaxation constants T1 and T2 in comparison with small sized nuclear-magnetic spectrometer developed by the authors earlier (with accuracy characteristics conservation. The developed schemes for self-tuning of registration frequency, generating amplitude of magnetic field H1 in registration coil, and amplitude and frequency of modulating field provide measuring of T1 and T2 with error less than 0.5 % and signal to noise ratio about 1.2 in temperature range from 3 to 400 C. A new construction of mini-relaxometer reduced the weight of the device to 4 kg (with independent supply unit and increased transportability and operating convenience.

  19. Set-up for irradiation of nuclear photo-emulsions in magnetic field with induction up to 100 T

    International Nuclear Information System (INIS)

    A set-up for irradiation of nuclear photo-emulsions in high magnetic field is described. It is installed at the JINR synchrotron channel of relativistic nuclei extraction. Main characteristics of the set-up module and the magnetic field obtained in the first methodical experiment on the irradiation of nuclear emulsions with the dimensions of 1.5x1x10cm by 6 GeV/c relativistic protons are presented. 6 refs.; 2 figs

  20. Nuclear magnetic resonance spectroscopy in the structure elucidation and biosynthesis of natural products

    International Nuclear Information System (INIS)

    Examination of a chloroform extract of Dracaena loureiri Gagnep (Agavaceae), a Thia medicinal plant possessing antibacterial activity, has led to the isolation of fifteen flavenoids. The biogenic relationships among these flavenoids isolated were briefly discussed. Definition of the skeleton and the unambiguous assignment of all of the protons of the isolates was achieved through extensive 2D-homonuclear chemical shift correlation, nuclear Overhauser effect (NOE) difference spectroscopy and 2D-NOE experiments. The 1H and 13C NMR spectra of staurosporine, a potent biologically active agent from Streptomyces staurosporeus, were unambiguously assigned by using 2D homonuclear chemical shift correlation, NOE, 1H-detected heteronuclear multiple-quantum coherence via direct coupling and via multiple-bond coupling for resonance assignments of protonated and nonprotonated carbons, respectively. S. Staurosporeus was found to utilize endogenous and exogenous D- and L-isomers of trytophan in the production of staurosporine. The biosynthesis of staurosporine was examined by employing carbon-14, tritium, and carbon-13 labeled precursors