WorldWideScience

Sample records for 1d photonic crystal

  1. The Gain Properties of 1-D Active Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The terminology 'ID frequency'(w ID) is proposed after analyzing the 1D active photonic crystal based on the transfer matrix method. The relationship between wID and the structure parameters of the photonic crystal is investigated.

  2. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal.

    Science.gov (United States)

    Shaban, Mohamed; Ahmed, Ashour M; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-02-08

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm(3)) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application.

  3. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal

    Science.gov (United States)

    Shaban, Mohamed; Ahmed, Ashour M.; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-01-01

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm3) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application. PMID:28176799

  4. Coherent thermal conductance of 1-D photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Tschikin, Maria [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany); Ben-Abdallah, Philippe [Laboratoire Charles Fabry, UMR 8501, Institut d' Optique, CNRS, Université Paris-Sud, 2, Avenue Augustin Fresnel, RD128, 91127 Palaiseau Cedex (France); Biehs, Svend-Age, E-mail: biehs@theorie.physik.uni-oldenburg.de [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al{sub 2}O{sub 3}/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al{sub 2}O{sub 3}/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  5. Analysis on characteristics of 1-D apodized and chirped photonic crystals containing negative refractive materials

    Institute of Scientific and Technical Information of China (English)

    TONG Kai; CUI Wei-wei; XU Xiao-hui; LI Zhi-quan

    2008-01-01

    Using transfer matrix method, the optical transmission properties of 1-D photonic crystals composed partially of negativerefraction media are analyzed. The transmission spectra of periodic photonic crystal, chirped photonic crystal and apodizedphotonic crystal are numerically simulated respectively. By contrast with optical transmission properties of ordinary photo-nic crystals made of positive refraction media, the transmission spectra of apodized photonic crystal become unregular, theBragg flat-headed area recurs but the peak of transmission does not change significantly. Futhermore, the band gap rangeof chirped photonic crystal diminishes gradually.

  6. Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal

    Directory of Open Access Journals (Sweden)

    Guduru Surya S.K.

    2013-11-01

    Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.

  7. Controlling Interface States in 1D Photonic Crystals by tuning Bulk Geometric Phases

    CERN Document Server

    Gao, Wensheng; Chen, Baojie; Pun, Edwin Y B; Chan, C T; Tam, Wing Yim

    2016-01-01

    Interface states in photonic crystals usually require defects or surface/interface decorations. We show here that one can control interface states in 1D photonic crystals through the engineering of geometrical phase such that interface states can be guaranteed in even or odd, or in all photonic bandgaps. We verify experimentally the designed interface states in 1D multilayered photonic crystals fabricated by electron beam vapor deposition. We also obtain the geometrical phases by measuring the reflection phases at the bandgaps of the PCs and achieve good agreement with the theory. Our approach could provide a platform for the design of using interface states in photonic crystals for nonlinear optic, sensing, and lasing applications

  8. 1D photonic crystal sensor integrated in a microfluidic system

    DEFF Research Database (Denmark)

    Nunes, Pedro; Mortensen, Asger; Kutter, Jörg Peter

    2009-01-01

    A refractive index sensor was designed as a 1D resonator incorporated in a microfluidic channel, where aqueous solutions were injected. A sensitivity of 480 nm/RIU and a minimum difference of Deltan = 0.002 were determined.......A refractive index sensor was designed as a 1D resonator incorporated in a microfluidic channel, where aqueous solutions were injected. A sensitivity of 480 nm/RIU and a minimum difference of Deltan = 0.002 were determined....

  9. Spatial and frequency domain effects of defects in 1D photonic crystal

    CERN Document Server

    Rudziński, A; Szczepański, P; 10.1007/s11082-007-9095-3

    2009-01-01

    The aim of this paper is to present the analysis of influence of defects in 1D photonic crystal (PC) on the density of states and simultaneously spontaneous emission, in both spatial and frequency domains. In our investigations we use an analytic model of 1D PC with defects. Our analysis reveals how presence of a defect causes a defect mode to appear. We show that a defect in 1D PC has local character, being negligible in regions of PC situated far from the defected elementary cell. We also analyze the effect of multiple defects, which lead to photonic band gap splitting.

  10. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maskaly, Karlene Rosera [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  11. Refractive index sensor based on a 1D photonic crystal in a microfluidic channel

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Asger; Kutter, Jörg Peter

    2010-01-01

    A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental...

  12. Nonlinear Control of Absorption in Graphene-based 1D Photonic Crystal

    CERN Document Server

    Vincenti, M A; Grande, M; D'Orazio, A; Scalora, M

    2013-01-01

    Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to achieve controllable, saturable absorption for the pump frequency.

  13. Optical properties in 1D photonic crystal structure using Si/C{sub 60} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jing; Tang Jiyu; Chen Junfang [College of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Han Peide, E-mail: chenjing1002972@sina.co, E-mail: tangjy@scnu.edu.c [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2009-04-15

    The feasibility of using Si/C{sub 60} multilayer films as one-dimensional (1D) photonic band gap crystals was investigated by theoretical calculations using a transfer matrix method (TMM). The response has been studied both within and out of the periodic plane of Si/C{sub 60} multilayers. It is found that Si/C{sub 60} multilayer films show incomplete photonic band gap (PBG) behavior in the visible frequency range. The fabricated Si/C{sub 60} multilayers with two pairs of 70 nm C{sub 60} and 30 nm Si layers exhibit a PBG at central wavelength of about 600 nm, and the highest reflectivity can reach 99%. As a consequence, this photonic crystal may be important for fabricating a photonic crystal with an incomplete band gap in the visible frequency range.

  14. Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Colodrero, Silvia; Lopez-Lopez, Carmen; Miguez, Hernan [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Centro de Investigaciones Cientificas Isla de la Cartuja, C/Americo Vespucio 49, 41092 Sevilla (Spain); Forneli, Amparo; Pelleja, Laia [Institute of Chemical Research of Catalonia (ICIQ) Avda., Paisos Catalans 16, 43007 Tarragona (Spain); Palomares, Emilio [Institute of Chemical Research of Catalonia (ICIQ) Avda., Paisos Catalans 16, 43007 Tarragona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Avda. Lluis Companys 23, 08010 Barcelona (Spain)

    2012-03-21

    A working electrode design based on a highly porous 1D photonic crystal structure that opens the path towards high photocurrents in thin, transparent, dye-sensitized solar cells is presented. By enlarging the average pore size with respect to previous photonic crystal designs, the new working electrode not only increases the device photocurrent, as predicted by theoretical models, but also allows the observation of an unprecedented boost of the cell photovoltage, which can be attributed to structural modifications caused during the integration of the photonic crystal. These synergic effects yield conversion efficiencies of around 3.5% by using just 2 {mu}m thick electrodes, with enhancements between 100% and 150% with respect to reference cells of the same thickness. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Optical properties in 1D photonic crystal structure using Si/C60 multilayers

    Institute of Scientific and Technical Information of China (English)

    Chen Jing; Tang Jiyu; Han Peide; Chen Junfang

    2009-01-01

    The feasibility of using Si/C60 mulfilayer films as one-dimensional(1D)photonie band gap crystals was investigated by theoretical calculations using a transfer matrix method(TMM).The response has been studied both within and out of the periodic plane of Si/C60 multilayers.It is found that Si/C60 multilayer films show incomplete photonic band gap(PBG)behavior in the visible frequency range.The fabricated Si/C60 multilayers with two pairs of 70 am C60 and 30 nm Si layers exhibit a PBG at central wavelength of about 600 nm.and the highest reflectivity call reach 99%.As a consequence,this photonic crystal may be important for fabricating a photonic crystal with an incomplete band gap in the visible frequency range.

  16. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    Science.gov (United States)

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting.

  17. Magnetodielectric and Metalomagnetic 1D Photonic Crystals Homogenization: ε-μ Local Behavior

    Directory of Open Access Journals (Sweden)

    J. I. Rodríguez Mora

    2016-01-01

    Full Text Available A theory for calculating the effective optic response of photonic crystals with metallic and magnetic inclusions is reported, for the case when the wavelength of the electromagnetic fields is much larger than the lattice constant. The theory is valid for any type of Bravais lattice and arbitrary form of inclusions in the unitary cell. An equations system is obtained for macroscopic magnetic field and magnetic induction components expanding microscopic electromagnetic fields in Bloch waves. Permittivity and permeability effective tensors are obtained comparing the equations system with an anisotropic nonlocal homogenous medium. In comparison with other homogenization theories, this work uses only two tensors: nonlocal permeability and permittivity. The proposal showed here is based on the use of permeability equations, which are exact and very simple. We present the explicit form of these tensors in the case of binary 1D photonic crystals.

  18. Variational coupled mode theory and perturbation analysis for 1D photonic crystal structures using quasi-normal modes

    NARCIS (Netherlands)

    Maksimovic, Milan; Lohmeyer, Manfred; van Groesen, Embrecht W.C.

    2008-01-01

    Quasi-normal modes are used to directly characterize defect resonances in composite 1D Photonic Crystal structures. Variational coupled mode theory using QNMs enables quantification of the eigenfrequency splitting in composite structures. Also, variational perturbation analysis of complex

  19. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    Science.gov (United States)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  20. Refractive Index Sensor Based on a 1D Photonic Crystal in a Microfluidic Channel

    Directory of Open Access Journals (Sweden)

    Klaus B. Mogensen

    2010-03-01

    Full Text Available A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental demonstrations performed with several ethanol solutions ranging from a purity of 96.00% (n = 1.36356 to 95.04% (n = 1.36377 yielded a sensitivity (Δλ/Δn of 836 nm/RIU and a limit of detection (LOD of 6 x 10-5 RIU, which is, however, still one order of magnitude higher than the theoretical lower limit of the limit of detection 1.3 x 10–6 RIU.

  1. Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment

    NARCIS (Netherlands)

    Hammer, Manfred; Ivanova, Olena V.

    2009-01-01

    The optical properties of slab-like photonic crystals are often discussed on the basis of effective index (EI) approximations, where a 2-D effective refractive index profile replaces the actual 3-D structure. Our aim is to assess this approximation by analogous steps that reduce finite 2-D waveguide

  2. Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes

    NARCIS (Netherlands)

    Maksimovic, Milan; Lohmeyer, Manfred; van Groesen, Embrecht W.C.; Greiner, C.M.; Waechter, C.A.

    2008-01-01

    We analyze coupled optical defect cavities realized in finite one-dimensional Photonic Crystals. Viewing these as open systems where waves are permitted to leave the structures, one obtains eigenvalue problems for complex frequencies (eigenvalues) and Quasi-Normal-Modes (eigenfunctions). Single

  3. Investigation on abnormal group velocities in 1D coaxial photonic crystals

    Institute of Scientific and Technical Information of China (English)

    TONG Yuanwei; ZHANG Yewen; HE Li; LI Hongqiang; CHEN Hong

    2006-01-01

    In this paper, the group velocities of electromagnetic wave for a one-dimensional coaxial photonic crystal in the stop bands with and without defect mode are studied. The results show that the group velocities exceed c (the speed of light in vacuum) in the stop band and it tends to be very slow in the defect mode. The group velocities also are obtained using the method of the transmission line and transmission matrix. The simulating results agree well with the experimental.

  4. Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials

    Science.gov (United States)

    Srivastava, Sanjeev K.; Aghajamali, Alireza

    2016-05-01

    Theoretical investigation of photonic band gaps or reflection bands in one-dimensional annular photonic crystal (APC) containing double negative (DNG) metamaterials and air has been presented. The proposed structure consists of the alternate layers of dispersive DNG material and air immersed in free space. In order to study photonic band gaps we obtain the reflectance spectrum of the annular PC by employing the transfer matrix method (TMM) in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of azimuthal mode number (m) and starting radius (ρ0) on the three band gaps viz. zero averaged refractive index (zero-nbar) gap, zero permittivity (zero- ε) and zero permeability (zero- μ) gaps. It is found that for m ≥ 1 , zero- μ gap appears in TE mode and zero- ε gap appears in TM mode. The width of both zero- μ and zero- ε gap increases by increasing m values, but the enhancement of zero- μ gap is more appreciable. Also, the effect of ρ0 on the three band gaps (reflection bands) of annular PC structure at the given m-number has been studied, for both TE and TM polarizations. The result shows that in both polarizations zero- ε and zero- μ gaps decreases when ρ0 increases, whereas zero-nbar gap remains invariant.

  5. Visible light dynamical diffraction in a 1-D photonic crystal-based interferometer with an extremely thin spacer layer

    Science.gov (United States)

    Prudnikov, I. R.

    2016-01-01

    Properties of light diffraction in a Fabry-Pérot-like interferometer composed of two 1-D photonic crystals and a nanometer-thick spacer layer are analytically investigated. It is shown that the resonant enhancement of light wave intensity in such a layer is possible because of light dynamical diffraction from the photonic crystals of the interferometer. Numerical simulations of (i) light reflectivity and transmittance curves of the interferometer having an ultra-thin spacer layer (its thickness changes from less than 1 nm to about 10 nm) and (ii) the resonant distribution of the light wave intensity in the vicinity of the layer are performed. Based on the numerical simulations, potentialities for the determination of the structural parameters (e.g., thicknesses and refraction indexes) of ultra-thin spacer films are discussed. A difference is found to appear in resonant intensity enhancements inside the ultra-thin spacer layers between s- and p-polarized light waves.

  6. Fabrication of GaN/AlGaN 1D photonic crystals designed for nonlinear optical applications

    CERN Document Server

    Stomeo, T; Tasco, V; Tarantini, I; Campa, A; De Vittorio, M; Passaseo, A; Braccini, M; Larciprete, M C; Sibilia, C; Bovino, F A

    2011-01-01

    In this paper we present a reliable process to fabricate GaN/AlGaN one dimensional photonic crystal (1D-PhC) microcavities with nonlinear optical properties. We used a heterostructure with a GaN layer embedded between two Distributed Bragg Reflectors consisting of AlGaN/GaN multilayers, on sapphire substrate, designed to generate a {\\lambda}= 800 nm frequency down-converted signal (\\chi^(2) effect) from an incident pump signal at {\\lambda}= 400 nm. The heterostructure was epitaxially grown by metal organic chemical vapour deposition (MOCVD) and integrates a properly designed 1D-PhC grating, which amplifies the signal by exploiting the double effect of cavity resonance and non linear GaN enhancement. The integrated 1D-PhC microcavity was fabricate combing a high resolution e-beam writing with a deep etching technique. For the pattern transfer we used ~ 170 nm layer Cr metal etch mask obtained by means of high quality lift-off technique based on the use of bi-layer resist (PMMA/MMA). At the same time, plasma co...

  7. Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Martinez-Ricci, Maria L. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, 46022 Valencia (Spain)]. E-mail: jmonsori@fis.upv.es; Silvestre, Enrique [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain); Andres, Pedro [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain)

    2007-04-30

    We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability {mu} or the electric permittivity {epsilon} of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when {mu}=0 or when {epsilon}=0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to {mu}=0 occurs only for TE polarized waves, whereas a gap corresponding to {epsilon}=0 occurs only for TM polarized waves. These band gaps are scale-length invariant and very robust against disorder, although they may disappear for the particular case of propagation along the stratification direction.

  8. Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal.

    Science.gov (United States)

    Ouchani, Noama; Bria, Driss; Djafari-Rouhani, Bahram; Nougaoui, Abdelkarim

    2007-09-01

    We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.

  9. Optimized planar photonic crystal waveguide 60° bend with more than 200 nm wide 1-dB transmission bandwidth

    DEFF Research Database (Denmark)

    Kristensen, Martin; Borel, Peter Ingo; Frandsen, Lars Hagedorn;

    2005-01-01

    Topology optimization was used to design a planar photonic crystal waveguide 60o bend leading to a record-breaking transmission bandwidth of more than 200nm. The experimental results agree well with 3D finite-difference-time-domain simulations.......Topology optimization was used to design a planar photonic crystal waveguide 60o bend leading to a record-breaking transmission bandwidth of more than 200nm. The experimental results agree well with 3D finite-difference-time-domain simulations....

  10. Efficient multiband absorber based on 1D periodic metal-dielectric photonic crystals with a reflective substrate

    CERN Document Server

    Cui, Yanxia; He, Yingran; Hao, Yuying; Lin, Yinyue; Tian, Ximin; Xu, Ju; Ji, Ting; He, Sailing; Fang, Nicholas X

    2013-01-01

    We propose an efficient multiband absorber comprising a truncated one-dimensional periodic metal-dielectric photonic crystal and a reflective substrate. The reflective substrate is actually an optically thick metallic film. Such a planar device is easier to fabricate compared with the absorbers with complicated shapes. For a 4-unit cell device, all of the four absorption peaks can be optimized with efficiencies higher than 95%. Moreover, those absorption peaks are insensitive to both polarization and incident angle. The influences of the geometrical parameters along with the refractive index of the dielectric on the device performance are discussed as well. Furthermore, it is found that the number of absorption peaks within each photonic band exactly corresponds to the number of the unit cells because the truncated photonic crystal lattices have the function of selecting resonant modes. It is also displayed that the total absorption efficiency gradually increases when there are more metal-dielectric unit cell...

  11. Controllable transmission photonic band gap and all-optical switching behaviors of 1-D InAs/GaAs quantum-dot photonic crystal

    Science.gov (United States)

    Hu, Zhenhua; Xiang, Bowen; Xing, Yunsheng

    2016-12-01

    Transmission optical properties of one-dimensional (1-D) InAs/GaAs quantum-dot photonic crystal (QD-PC), composed of 400 elementary cells, were analyzed by using transfer matrix method. In our calculations, a homogeneous broadening with temperature and other inhomogeneous broadening with quantum dot (QD) size fluctuations are introduced. Our results show that a large optical Stark shift occurs at the high energy edge of the transmission photonic band-gap (TPBG) when, which exhibits the function of light with light, an external laser field acts resonantly on the excitons in the InAs QDs. Utilized this TPBG based on the pump-probe geometry, an all-optical switch can be constructed and the on-off switching extinction ratio (SER) is varied with both the temperature and the inhomogeneity of QDs. Significantly, it still maintains switching behavior and can process the data sequence of return-to-zero codes of 250 Gb/s even if the QD standard deviation of relative size fluctuations (SD-RSF) is up to 3% and the temperature is at 100 K.

  12. Composite one-way transmission waveguide based on the curved metal slit and 1D photonic crystal

    Directory of Open Access Journals (Sweden)

    Qi Gao

    2016-10-01

    Full Text Available The one-way devices in optical circuits are the key components just as the diodes in electric circuits, which allow the light going in only one direction. A novel one-way transmission structure is proposed which is a curved waveguide containing a confined photonic crystal. When the waveguide is made of perfect electric conductor, the exact calculation results demonstrate that the device shows excellent one-way properties. The forward transmissivity approaches 100% and the largest transmission ratio exceeds 100.92N, where N is the cell number of the photonic crystal in the structure. When the waveguide is made of real metal, the device also presents excellent one-way transmission properties, which can be confirmed by an approximate calculation as well as by the simulation. In working region, the lowest forward tranmissivity is about 30% and the largest one exceeds 70%. The highest transmission ratio exceeds 104.

  13. Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor

    Science.gov (United States)

    Mitra, S.; Biswas, T.; Chattopadhyay, R.; Ghosh, J.; Bysakh, S.; Bhadra, S. K.

    2016-11-01

    A simple integrated hydrogen sensor using Pd-Au alloy/air based one dimensional photonic crystal with an air defect layer is theoretically modeled. Structural parameters of the photonic crystal are delicately scaled to generate photonic band gap frequencies in a visible spectral regime. An optimized defect thickness permits a localized defect mode operating at a frequency within the photonic band gap region. Hydrogen absorption causes modification in the band gap characteristics due to variation of refractive index and lattice parameters of the alloy. As a result, the transmission peak appeared due to the resonant defect state gets shifted. This peak shifting is utilized to detect sparse amount of hydrogen present in the surrounding environment. A theoretical framework is built to calculate the refractive index profile of hydrogen loaded alloy using density functional theory and Bruggeman's effective medium approximation. The calculated refractive index variation of Pd3Au alloy film due to hydrogen loading is verified experimentally by measuring the reflectance characteristics. Lattice expansion properties of the alloy are studied through X-ray diffraction analyses. The proposed structure shows about 3 nm red shift of the transmission peak for a rise of 1% atomic hydrogen concentration in the alloy.

  14. Engineering photonic band gap in 1D phonic crystals using fresnel coefficients and comparing with the results of transfer matrix meghod

    Directory of Open Access Journals (Sweden)

    A Rahmatnezamabad

    2014-11-01

    Full Text Available In this paper photonic band gaps of 1D photonic crystal are compared by using transfer matrix method and Fresnel coefficients method. In Fresnel coefficients method, the refractive indices of each layer and incidence light angle to the surface are used for calculating Fresnel coefficients, and then the necessary and sufficient condition for a 100% reflection from the surface of double layer dielectrics is applied in such a way that reflection coefficient tends to unity so that photonic band gaps are determined. But in transfer matrix method there are some complications needed for solving quadratic partial differential equations and applying continuity of tangent components of fields and Bloch’s condition, though the results are the same

  15. 1维石墨烯光子晶体的电磁吸收特性%Electromagnetic absorption characteristics of 1-D graphene photonic crystals

    Institute of Scientific and Technical Information of China (English)

    宁仁霞; 刘少斌; 章海锋; 孔祥鲲; 卞博锐

    2015-01-01

    为了研究1维石墨烯光子晶体在可见光波段的吸收特性,采用传输矩阵的方法进行了理论分析和数值仿真,得到了1维石墨烯吸收特性与石墨烯层数、缺陷层介质厚度、电磁波模式有关的结果。结果表明,增加石墨烯层数时,对波长为556 nm左右的绿光的吸收作用明显增强;缺陷层介质厚度增加时会引起吸收峰的增加;在TE模式下,入射角对石墨烯光子晶体吸收特性影响较小。该研究结果为1维石墨烯光子晶体吸收器的设计提供了理论依据。%In order to study the absorption characterisctics of 1-D graphene photonic crystal in the visible band, theoretical analysis and numerical simulation were conducted by using transfer matrix method. The dependance of absorption characterisctics of 1-D graphene on graphene layers, dielectric thickness of defect layers, and electromagnetic mode were obtained.The results show that the absorption with green light of wavelength of about 556nm is enhanced significantly with the increasing of the layers of graphene.The absorption peak will increase with the increasing of dielectric thickness of defect layer.In the TE mode, the angle of incidence has a little effect on the absorption characterisctics of graphene photonic crystal.The results provide the theoretical basis for the study of 1-D graphene photonic crystal absorbers.

  16. Effects of loss factors on zero permeability and zero permittivity gaps in 1D photonic crystal containing DNG materials

    CERN Document Server

    Aghajamali, Alireza; Barati, Mahmood

    2014-01-01

    The effects of electric and magnetic loss factors on zero-mu and zero-epsilon gaps in a one-dimensional lossy photonic crystal composed of double-negative and double-positive materials are theoretically investigated by employing the characteristic matrix method. This study contradicts the previous reports as it indicates that by applying the inevitable factors of electric and magnetic losses to the double-negative material, the zero-mu and zero-epsilon gaps appear simultaneously in the transmission spectrum, being independent of the incidence angle and polarizations. Moreover, the results show that these gaps appear not only for an oblique incidence but also in the case of normal incidence, and their appearance at the normal incidence is directly related to the magnetic and electric loss factors. Besides, the results indicate that as the loss factors and angle of incidence increase, the width of both gaps also increases.

  17. High quality factor and high sensitivity chalcogenide 1D photonic crystal microbridge cavity for mid-infrared sensing

    Science.gov (United States)

    Xu, Peipeng; Yu, Zenghui; Shen, Xiang; Dai, Shixun

    2017-01-01

    We present and theoretically investigate a mid-infrared (mid-IR) optical sensor based on a Ge11.5As24Se64.5 one-dimensional photonic crystal microbridge cavity (PhC-MC). Optimizing the structure of the PhC-MC strongly confines the resonant mode field to the air region, thereby greatly enhancing the overlap and interaction of the light field and target analytes. A high calculated sensitivity (2280 nm per refractive index unit) is achieved with a resonant wavelength of 4132 nm. The figure of merit of the device for sensing is extremely high (929,750) because of the high quality factor and sensitivity of the cavity. The sensing part of the cavity is also small (50×3 μm2). The proposed PhC-MC can be an ideal platform for on-chip integrated mid-IR optical sensing.

  18. Properties of the Band Gaps in 1D Ternary Lossy Photonic Crystal Containing Double-Negative Materials

    Directory of Open Access Journals (Sweden)

    Alireza Aghajamali

    2014-01-01

    Full Text Available Theoretically, the characteristics matrix method is employed to investigate and compare the properties of the band gaps of the one-dimensional ternary and binary lossy photonic crystals which are composed of double-negative and double-positive materials. This study shows that by varying the angle of incidence, the band gaps for TM and TE waves behave differently in both ternary and binary lossy structures. The results demonstrate that, by increasing the angle of incidence for the TE wave, the width and the depth of zero-n¯, zero-μ, and Bragg gap increase in both ternary and binary structures. On the other hand, the enhancement of the angle of incidence for the TM wave contributes to reduction of the width and the depth of the zero-n¯ and Bragg gaps, and they finally disappear for incidence angles greater than 50° and 60° for the binary structure and 40° and 45° for the ternary structures, respectively. In addition, the details of the edges of the band gaps variations as a function of incidence angle for both structures are studied.

  19. Optical Effects Accompanying the Dynamical Bragg Diffraction in Linear 1D Photonic Crystals Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Anton Maydykovskiy

    2014-10-01

    Full Text Available We survey our recent results on the observation and studies of the effects accompanying the dynamical Bragg diffraction in one-dimensional photonic crystals (PhC. Contrary to the kinematic Bragg diffraction, the dynamical one considers a continuous interaction between the waves travelling within a spatially-periodic structure and is the most pronounced in the so called Laue geometry, leading to a number of exciting phenomena. In the described experiments, we study the PhC based on porous silicon or porous quartz, made by the electrochemical etching of crystalline silicon with the consequent thermal annealing. Importantly, these PhC are approximately hundreds of microns thick and contain a few hundreds of periods, so that the experiments in the Laue diffraction scheme are available. We discuss the effect of the temporal splitting of femtosecond laser pulses and show that the effect is quite sensitive to the polarization and the phase of a femtosecond laser pulse. We also show the experimental realization of the Pendular effect in porous quartz PhC and demonstrate the experimental conditions for the total spatial switching of the output radiation between the transmitted and diffracted directions. All described effects are of high interest for the control over the light propagation based on PhC structures.

  20. Photonic crystals

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  1. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  2. Properties of defect mode and optical enhancement of 1D photonic crystals with a defect layer of negative refractive index material

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; SHEN Xiao-ming; JIANG Mei-ping; SHI Du-fang

    2005-01-01

    The band gap properties of one-dimensional photonic crystals with a defect layer of negative refractive index materials are studied.The defect mode width is bigger than that of conventional one-dimensional photonic crystals with a defect layer of positive refractive index materials.The defect mode of the former is different from that of the latter,shifts towards the direction of high frequency (short wavelength),and has a bigger shifting velocity.Furthermore the effects on the transmission properties of the former photonic crystals caused by change in the position of the defect layer of negative refractive index are investigated.Finally the optical enhancement of the former photonic crystals is also investigated.

  3. Comprehensive analysis of photonic effects on up-conversion of β-NaYF4:Er3+ nanoparticles in an organic-inorganic hybrid 1D photonic crystal

    Science.gov (United States)

    Hofmann, C. L. M.; Fischer, S.; Reitz, C.; Richards, B. S.; Goldschmidt, J. C.

    2016-04-01

    Upconversion (UC) presents a possibility to exploit sub-bandgap photons for current generation in solar cells by creating one high-energy photon out of at least two lower-energy photons. Photonic structures can enhance UC by two effects: a locally increased irradiance and a modified local density of photon states (LDOS). Bragg stacks are promising photonic structures for this application, because they are straightforward to optimize and overall absorption can be increased by adding more layers. In this work, we present a comprehensive simulation-based analysis of the photonic effects of a Bragg stack on UC luminescence. The investigated organic-inorganic hybrid Bragg stack consists of alternating layers of Poly(methylmethacrylate) (PMMA), containing purpose-built β-NaYF4:25% Er3+ core-shell nanoparticles and titanium dioxide (TiO2). From optical characterization of single thin layers, input parameters for simulations of the photonic effects are generated. The local irradiance enhancement and modulated LDOS are first simulated separately. Subsequently they are coupled in a rate equation model of the upconversion dynamics. Using the integrated model, UC luminescence is maximized by adapting the Bragg stack design. For a Bragg stack of only 5 bilayers, UC luminescence is enhanced by a factor of 3.8 at an incident irradiance of 2000 W/m2. Our results identify the Bragg stack as promising for enhancing UC, especially in the low-irradiance regime, relevant for the application in photovoltaics. Therefore, we experimentally realized optimized Bragg stack designs. The PMMA layers, containing UC nanoparticles, are produced via spin-coating from a toluene based solution. The TiO2 layers are produced by atomic layer deposition from molecular precursors. The reflectance measurements show that the realized Bragg stacks are in good agreement with predictions from simulation.

  4. Photonic Crystals Physics and Practical Modeling

    CERN Document Server

    Sukhoivanov, Igor A

    2009-01-01

    The great interest in photonic crystals and their applications in the past decade requires a thorough training of students and professionals who can practically apply the knowledge of physics of photonic crystals together with skills of independent calculation of basic characteristics of photonic crystals and modelling of various photonic crystal elements for application in all-optical communication systems. This book combines basic backgrounds in fiber and integrated optics with detailed analysis of mathematical models for 1D, 2D and 3D photonic crystals and microstructured fibers, as well as with descriptions of real algorithms and codes for practical realization of the models.

  5. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  6. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  7. Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors

    Science.gov (United States)

    Baraket, Zina; Zaghdoudi, Jihene; Kanzari, Mounir

    2017-02-01

    Based on the Transfer Matrix Method (TMM) and the two fluid model for a superconductor and by taking account of the thermal expansion effect and thermo optical effects, we theoretically investigates the transmittance spectra of a one dimensional superconductor -dielectric photonic crystal (PC) designed as ((HLS)5/(SLH)5) made up of a BiGeO12(H), SiO2(L) and YaBO2CuO7 (S). The transmittance spectra shows that the system realizes a tunable filter which depends on a nonlinear relation with temperature. It's found that the symmetrical application of a linear deformation d(m) = d0+(m-1).δd(m) where d0 is the initial thickness of the layer m, δd(m) is the elementary added thickness at each layer. This linear gradation of the thickness permits to improve the temperature sensitivity of the system which acts as an optimized low temperature sensor.

  8. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  9. Study on property of prohibited band gaps in 1-D ternary unmagnetized plasma photonic crystals%1维3元非磁化等离子体光子晶体禁带特性研究

    Institute of Scientific and Technical Information of China (English)

    章海锋; 蓝鹏飞; 杨国华; 肖正泉

    2011-01-01

    In order to study property of prohibit band gaps in 1-D ternary unmagnetized plasma photonic crystals, the transfer matrix method was applied to simulate the electromagnetic wave propagation through 1-D ternary umnagnetizod plasma photonic crystals. Based on the calculated transmission coefficients, effect of periodic constant, dielectric constant, thickness of dielectric layer and parameter of plasma on the property of prohibited band gaps was analyzed. The results illustrate that the band gaps can be tuned by changing dielectric constant, thickness of dielectric layer and plasma frequency, the bandwidth of prohibited band gaps can not be broadened by increasing periodic and plasma collision frequency. The results are good theoretical references to design I-D ternary unmagnetizod plasma photonic crystal devices.%为了研究1维3元非磁化等离子体光子晶体的禁带特性,采用传输矩阵法仿真计算了电磁波在1维3元非磁化等离子体光子晶体的传播规律,用计算得到的电磁波透射系数讨论了周期常数、介电常数、介质层厚度和等离子体参量对其禁带特性的影响.结果表明,改变介电常数、介质层厚度和等离子体频率可以实现对带隙的调制,增加周期数和等离子体频率不能实现对禁带的拓展.这一结果为设计1维3元非磁化等离子体光子晶体器件提供了理论参考.

  10. Novel 1-D Sandwich Photonic Bandgap Structure

    Institute of Scientific and Technical Information of China (English)

    庞云波; 高葆新

    2004-01-01

    A sandwich photonic bandgap (PBG) structure is a novel PBG structure whose periodic lattice is buried in the middle of a substrate. Neither drilling nor suspending the substrate is required, and the integrity of the ground plane is maintained. This paper presents several modification techniques for sandwich PBG structure fabrication. The forbidden gap can be improved by adopting the chirping technique, applying the tapering technique, enlarging the periodic elements, adjusting the location of the periodic lattice in the substrate, and using different dielectric media H-shape elements. A finite difference time domain method is applied to analyze the structures. Deep and wide stopbands can be obtained using the modified sandwich structures. Experimental measurement results agree well with the theoretical analysis.

  11. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Hokyung; Kim; Jinchae; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  12. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  13. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  14. Function Photonic Crystals

    CERN Document Server

    Wu, Xiang-Yao; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai; Li, Jing-Wu

    2010-01-01

    In the paper, we present a new kind of function photonic crystals, which refractive index is a function of space position. Unlike conventional PCs, which structure grow from two materials, A and B, with different dielectric constants $\\epsilon_{A}$ and $\\epsilon_{B}$. By Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we study the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals. By choosing various refractive index distribution function $n(z)$, we can obtain more width or more narrow band gap structure than conventional photonic crystals.

  15. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  16. A novel photonic crystal fibre switch

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Hermann, D.S.; Broeng, Jes

    2003-01-01

    A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB.......A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB....

  17. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  18. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  19. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  20. Photonic crystal biosensors towards on-chip integration.

    Science.gov (United States)

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip.

  1. Photonic Crystal Microchip Laser

    Science.gov (United States)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  2. Photonic crystals as metamaterials

    Science.gov (United States)

    Foteinopoulou, S.

    2012-10-01

    The visionary work of Veselago had inspired intensive research efforts over the last decade, towards the realization of man-made structures with unprecedented electromagnetic (EM) properties. These structures, known as metamaterials, are typically periodic metallic-based resonant structures demonstrating effective constitutive parameters beyond the possibilities of natural material. For example they can exhibit optical magnetism or simultaneously negative effective permeability and permittivity which implies the existence of a negative refractive index. However, also periodic dielectric and polar material, known as photonic crystals, can exhibit EM capabilities beyond natural materials. This paper reviews the conditions and manifestations of metamaterial capabilities of photonic crystal systems.

  3. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  4. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  5. Ultrahigh-Q nanocavity with 1D photonic gap.

    Science.gov (United States)

    Notomi, M; Kuramochi, E; Taniyama, H

    2008-07-21

    Recently, various wavelength-sized cavities with theoretical Q values of approximately 10(8) have been reported, however, they all employ 2D or 3D photonic band gaps to realize strong light confinement. Here we numerically demonstrate that ultrahigh-Q (2.0x10(8)) and wavelength-sized (V(eff) approximately 1.4(lambda/n)3) cavities can be achieved by employing only 1D periodicity.

  6. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  7. Polarization Properties of 1-D "Chirped" Photonic Crystals Combining Left-handed Materials%含左手材料的——维“啁啾”光子晶体的偏振特性

    Institute of Scientific and Technical Information of China (English)

    李文胜; 黄海铭; 付艳华; 张琴; 是度芳

    2011-01-01

    The "chirp" function was induced to the 1-D photonic crystal combining left-handed materials, whose permittivity and permeability is Lossy Dryde model, the transmission spectrum of the 1 -D photonic crystal was investigated using the transfer matrix method. The results indicated that the photonic crystals has complete band gap, when geometry thickness of the material is not much modulated by the " chirp" function, as the modulation enhancing, the width of band gap increased, and the bottom of that raised gradually, In the same modulation, the magnetic, electric plasma frequency ratio became greater, the width of band gap became wider, when incidence angle increases, the width of band gap of TE mode unchanged, but one of TM mode narrowed, and both the TE mode and TM mode generate angle gap, the width of angle gap widen as the incidence angle increasing, and the change of TM mode is larger than TE mode. When the number of periods N changes, the angle gap will remain unchanged. The value of nR don't effect on the position of the angle gap and the band gap, the smaller nR, the higher and the more round the bottom of the band gap, the greater the peak value of the transmission peak in the angle gap .%把“啁啾”函数引入含左手材料的一维光子晶体中,且左手材料的介电常数和磁导率采用Lossy Dryde model,利用传输矩阵法研究了其透射谱.结果表明:在“啁啾”函数对材料几何厚度调制较小时,该光子晶体有完整的禁带,随着调制的加强,禁带宽度增加,但底部逐步抬高.在相同的调制下,磁、电等离子体频率的比值越大,禁带宽度越宽.入射角增加,TE模的禁带宽度不变而TM模的禁带宽度变窄,TE模和TM模均产生了角度隙,此角度隙的宽度随入射角增加而变宽,且TM模的变化大于TE模的.周期数N变化时,角度隙基本不变.nR的变化对禁带和角度隙的位置没有影响,但nR越小,禁带底部越高且圆,角度隙中透射峰峰值越大.

  8. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  9. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...

  10. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  11. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  12. Slotted photonic crystal biosensors

    Science.gov (United States)

    Scullion, Mark Gerard

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  13. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  14. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  15. Controllable Photonic Band Gap and Defect Mode in a 1D CO2-Laser Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi; YIN Jian-Ping

    2008-01-01

    We Dropose a new method to form a novel controllable photonic crystal with cold atoms and study the photonic band gap(PBG)of an infinite 1D CO2-laser optical lattice of 85Rb atoms under the condition of quantum coherence.A significant gap generated near the resonant frequency of the atom is founded and its dependence on physical parameters is also discussed.Using the eigenquation of defect mode,we calculate the defect mode when a defect is introduced into such a lattice.Our study shows that the proposed new method can be used to optically probe optical lattice in situ and to design some novel and controllable photonic crystals.

  16. 基于一维光子晶体的目标红外辐射特性控制%Control of Infrared Radiation Characteristics of the Targets Based on 1 D Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    洪泽华; 张学进; 陆志沣; 赖鹏; 张励

    2014-01-01

    With the extensive application of infrared target detection and precision guidance technology, the traditional military targets face severe pressure to survive. To this end the main military powers take various measures to develop the control technology over target infrared radiation characteristics, so as to reduce the probability of being captured by an infrared detection system, achieving the purpose of infrared stealth. Photonic crystal is an artificial metamaterial, its structure can be flexibly designed according to the need, so as to change the transmission characteristics of the light in it. This paper utilizes the photonic band-gap theory of 1 D photonic crystal to design a structure being able to control target's infrared radiation characteristics, and presents the design method in detail. The calculation results show that for two infrared atmosphere transmission windows, 3~5μm and 8~12μm, the maximum suppression on the infrared radiation of the designed structure can achieve 29dB and 21dB, respectively, showing good control performance of infrared radiation characteristics. The method described in this paper can not only provide reference for infrared stealth design, but also can be used in the simulation of infrared stealth target characteristics in the offensive and defensive combat simulation.%随着红外目标探测和精确制导技术的广泛应用,传统军事目标面临严峻的生存压力。为此,各主要军事强国采取多种措施,竞相发展目标红外辐射特性控制技术,以降低被红外探测系统捕获的概率,达到红外隐身目的。光子晶体是一种人工超颖材料,可以根据需要,通过灵活地设计其结构,改变光子在其中的传输特性。文中运用一维光子晶体带隙理论,设计了一种控制目标红外辐射特性的结构,详细给出了设计方法。计算结果表明对3~5μm和8~12μm两个红外大气传输窗口,该结构对红外辐射

  17. Photonic Crystal Laser Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  18. Natural photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  19. Negative refraction in photonic crystals

    OpenAIRE

    Baba, T.; Matsumoto, T.; Asatsuma, T.

    2008-01-01

    Photonic crystals are multidimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the crystals. The refraction angle from positive to negative, perfectly or only partially obeying Snell’s law, can be tailored based on photonic band theory. Negative refraction enables novel prism, collimation, and lens effects. Because photonic crystals usually consist of two transparent media, these effects occur at...

  20. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  1. One-dimensional photonic crystals bound by light

    Science.gov (United States)

    Cui, Liyong; Li, Xiao; Chen, Jun; Cao, Yongyin; Du, Guiqiang; Ng, Jack

    2017-08-01

    Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and oblique incidence and photonic crystals with parity-time symmetry are also considered.

  2. Photonic crystal fibers in biophotonics

    Science.gov (United States)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  3. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  4. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  5. Metallic photonic crystals for thermophotovoltaic applications

    Science.gov (United States)

    Walsh, Timothy A.

    Since the idea of a photonic bandgap was proposed over two decades ago, photonic crystals have been the subject of significant interest due to their novel optical properties which enable new and varied applications. In this research, the photonic bandgap effect is exploited to tailor the thermal radiation spectrum to a narrow range of wavelengths determined by the lattice symmetry and dimensions of the photonic crystal structure. This sharp emission peak can be matched to the electronic bandgap energy of a p-n junction photovoltaic cell for high efficiency thermophotovoltaic energy conversion. This thesis explores aspects of photonic crystal design, materials considerations, and manufacture for thermophotovoltaic applications. Photonic crystal structures come in many forms, exhibiting various types of 1D, 2D, and 3D lattice symmetry. In this work, the "woodpile" 3D photonic crystal is studied. One advantage of the woodpile lattice is that it can be readily fabricated on a large scale using common integrated circuit manufacturing techniques. Additionally this structure lends itself to efficient and accurate modeling with the use of a plane-wave expansion based transfer matrix method to calculate the scattering properties and band structure of the photonic crystal. This method is used to explore the geometric design parameters of the woodpile structure. Optimal geometric proportions for the structure are found which yield the highest narrowband absorption peak possible. By Kirchoffs law of thermal emission, this strong and sharp absorptance will yield high power and narrowband thermal radiation. The photonic crystal thermal emission spectrum is then evaluated in a TPV system model to evaluate the electrical power density and system efficiency achievable. The results produced by the photonic crystal emitter are compared with the results assuming a blackbody thermal radiation spectrum. The blackbody represents a universal standard against which any selective emitter

  6. Radiating dipoles in photonic crystals

    OpenAIRE

    Busch, Kurt; Vats, Nipun; John, Sajeev; Sanders, Barry C.

    2000-01-01

    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra ar...

  7. Photonic crystal enhanced cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  8. Spherical colloidal photonic crystals.

    Science.gov (United States)

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  9. Design of Tunable Anisotropic Photonic Crystal Filter as Photonic Switch

    OpenAIRE

    Majid Seifan; Alireza Malekijavan; Alireza Monajati Kashani

    2014-01-01

    By creating point defects and line defects in photonic crystals, we reach the new sort of photonic crystals. Which allow us to design photonic crystals filters. In this type of photonic crystals the ability to tune up central frequency of filter is important to attention. In this paper, we use foregoing points for designing photonic crystal filters. The main function of this type of filters is coupling between shield of point defect modes and directional line defect modes. By using liquid cry...

  10. Atom-Light Interactions in Photonic Crystals

    CERN Document Server

    Goban, A; Yu, S -P; Hood, J D; Muniz, J A; Lee, J H; Martin, M J; McClung, A C; Choi, K S; Chang, D E; Painter, O; Kimble, H J

    2013-01-01

    The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics. Here, we report the development of the first integrated optical circuit with a photonic crystal capable of both localizing and interfacing atoms with guided photons in the device. By aligning the optical bands of a photonic crystal waveguide (PCW) with selected atomic transitions, our platform provides new opportunities for novel quantum transport and many-body phenomena by way of photon-mediated atomic interactions along the PCW. From reflection spectra measured with average atom number N = 1.1$\\pm$0.4, we infer that atoms are localized within the PCW by Casimir-Polder and optical dipole forces. The fraction of single-atom radiative decay into the PCW is $\\Gamma_{\\rm 1D}/\\Gamma'$ = 0.32$\\pm$0.08, where $\\Gamma_{1D}$ is the rate of emission into the guided mode and $\\Gamma'$ is the decay rate into all other channels. $\\Gamma_{\\rm 1D}/\\Gamma'$ is quoted without enhancement due to a...

  11. Multicolor photonic crystal laser array

    Science.gov (United States)

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  12. Analytical Study on Total Reflection Tunnel Effect of 1-D Photonic Crystal%一维光子晶体的全反射隧穿效应的解析研究

    Institute of Scientific and Technical Information of China (English)

    刘启能

    2012-01-01

    In order to obtain analytic theory of ID photonic crystal, multi beam interference theory is used. Analytical formulas of total reflection tunnel effect frequency of ID photonic crystal is deduced. Physical mechanism of total reflection tunnel effect of ID photonic crystal is explained. Using the analytical formulas change rule of total reflection tunnel effect that response curves of frequency versus cycle number and incident angle and optical thickness are studied. Transmission matrix method and analytical method is compared and their results are the same, which indicates that analytical method is the right way. Analytical theory to analyze variable relation is convenient, it makes up deficiency of numerical calculation method of ID photonic crystal.%为研究一维光子晶体全反射隧穿效应的解析理论,利用多光束干涉理论推导出一维光子晶体的全反射隧穿导带频率满足的解析公式,从理论上解释了一维光子晶体的全反射隧穿效应产生的物理机理.利用频率的解析公式对全反射隧穿导带的频率随周期数、入射角以及周期光学厚度的变化规律进行了解析研究.并与传输矩阵法的计算结果进行了比较,结果发现两种方法得出的结论是吻合的,从而证明了解析理论的正确性.解析理论便于对各参量间的依赖关系进行解析研究,弥补了一维光子晶体研究中数值计算方法的不足.

  13. Band Structure of 1-D Photonic Crystal for Oblique Incident Electromagnetic Wave Packet%一维光子晶体斜入射波包的带隙结构

    Institute of Scientific and Technical Information of China (English)

    高洁; 房丽敏; 李华刚; 麦志杰

    2012-01-01

    Dispersion relation of 1-D photonic crystal is deduced by the method of transfer matrix, with coordinate transformation of arbitrary Fourier exponent of electromagnetic wave packet which is obliquely incident. By analyzing the dispersion relation, it is easy to find the difference between the first band gap under obliquely incident wave packet and that of plane wave, respectively. Meanwhile, the former gap is located in the latter one, for the former one is narrower than the latter one in width. Characteristic of band gap is obtained under obliquely incident wave packet, by comparing the first band gap structure with that of plane wave considering edge position and width of the gap. The condition of approximately substituting plane wave for wave packet to calculate band gap is analyzed, according to related factors such as different incident angle of central wave vector and angle spectrum of wave packet. The results demonstrate that the first band gap structure is closely related to incident angle of central wave vector and angle spectrum of wave packet. With smaller incident angle, the first band gap structure caused by wave packet would become closer to that of plane wave; and with smaller angle spectrum of wave packet, the width and position of the first band gap is closer to those of plane wave.%对波包的任意傅里叶分量进行坐标变换后,利用转移矩阵法推导出波包斜入射情形下一维光子晶体的色散关系表达式,利用色散关系曲线分析得出波包斜入射的第一带隙结构,与以往平面波的第一带隙结构不同,波包的带隙宽度小于平面波的带隙宽度,并且在位置上前者带隙包含在后者内部.比较了一维光子晶体分别在波包入射与平面波入射情形下带隙位置和宽度,分析了波包中心入射角的变化以及波包的角分布范围的变化对带隙结构的影响,得到了一维光子晶体对波包斜入射的带隙结构的基本特征,确定了计算波包带

  14. Tansmssion Characteristics of 1-D Quasi-Periodic Photonic Crystal with Complex Refractive Index Medium%含复折射率介质一维准周期光子晶体的透射特性

    Institute of Scientific and Technical Information of China (English)

    李文胜; 张琴; 黄海铭; 付艳华

    2013-01-01

    (AB) N-type 1-D quasi-periodic photonic crystals is made from Si and complex refractive index medium.On the base of considering the silicon dispersion relation,the transmission characteristics are studied by using transfer matrix method.Numerical calculation showed the following characteristics of the TE wave's transmission spectrum:When electromagnetic wave is normal incidence,there are four sharper transmission main equally-spaced peaks in the relative frequency ranges from 0 to 4,and there are all transmission side peaks in the end of low frequency which are separated by 0.148 (ω/ω0).Increasing the incident angle,the transmittance of the peak will reduce,the side peak's will increase.Increasing the number of period,all peaks will be blue-shift,and the transmittance of the main peak will reduce gradually,the full width of the middle side peak will reduce.When the thickness of the two mediums are constant,the transmittance is reduced by turn from the first main peak to the fourth.When they are increasing,the transmittance of the main peaks will decrease.Increasing the imaginary part of complex refractive index with the transmission peaks' positions invariant,the main peak's transmittance will increase,and the side peak will decreas,and vice versa.%用Si和复折射率介质构成了(AB)N型一维准周期光子晶体,在考虑Si色散关系的基础上,利用传输矩阵法研究了其透射特性.数值计算表明其TE波的透射谱有如下特征:电磁波垂直入射时,在相对频率0~4的范围内存在4个等间距的尖锐的透射主峰,各主峰低频端相距0.148 (ω/ω0)处都有一透射副峰.入射角增加,主峰的透射率下降,副峰的透射率上升.周期数N增加,各主、副峰位置都有蓝移,但主峰透射率逐渐减小,而各副峰的半峰全宽度变小.当两介质厚度为定值时,从第一主峰到第四主峰,其透射率依次减小,两介质厚度增加时,各主峰的透射率下降.复折射率虚部增加时,各

  15. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  16. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  17. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  18. Manufacturing method of photonic crystal

    Science.gov (United States)

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  19. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... modes in contiguous fibre segments curved at different radii. Overall microbend loss is expressed as a statistical mean of mismatch losses. Extending a well proven, established formula for macrobending losses in stop index fibres, we provide an estimate of macrobend losses in an air-guiding photonic...

  20. From optical MEMS to photonic crystal

    Science.gov (United States)

    Lee, Sukhan; Kim, Jideog; Lee, Hong-Seok; Moon, Il-Kwon; Won, JongHwa; Ku, Janam; Choi, Hyung; Shin, Hyungjae

    2002-10-01

    This paper presents the emergence of photonic crystals as significant optomechatronics components, following optical MEMS. It is predicted that, in the coming years, optical MEMS and photonic crystals may go through dynamic interactions leading to synergy as well as competition. First, we present the Structured Defect Photonic Crystal (SDPCTM) devised by the authors for providing the freedom of designing photonic bandgap structures, such that the application of photonic crystals be greatly extended. Then, we present the applications of optical MEMS and photonic crystals to displays and telecommunications. It is shown that many of the applications that optical MEMS can contribute to telecommunications and displays may be implemented by photonic crystals.

  1. Radiating dipoles in photonic crystals

    Science.gov (United States)

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  2. One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers

    Directory of Open Access Journals (Sweden)

    F. Scotognella

    2008-01-01

    Full Text Available We present a very simple method to realize a one-dimensional photonic crystal (1D PC, consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG, a surface emitting distributed feedback (DFB laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported.

  3. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends...... on the Liquid Crystal parameters....

  4. Photonic band gap of 2D complex lattice photonic crystal

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-ying; YUAN Li-bo

    2009-01-01

    It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.

  5. A 1D Optomechanical crystal with a complete phononic band gap

    CERN Document Server

    Gomis-Bresco, J; Oudich, M; El-Jallal, S; Griol, A; Puerto, D; Chavez, E; Pennec, Y; Djafari-Rouhani, B; Alzina, F; Martínez, A; Torres, C M Sotomayor

    2014-01-01

    Recent years have witnessed the boom of cavity optomechanics, which exploits the confinement and coupling of optical waves and mechanical vibrations at the nanoscale. Amongst the different physical implementations,optomechanical (OM) crystals built on semiconductor slabs are particularly interesting since they enable the integration and manipulation of multiple OM elements in a single chip and provide GHz phonons suitable for coherent phonon manipulation. Different demonstrations of coupling of infrared photons and GHz phonons in cavities created by inserting defects on OM crystals have been performed. However, the considered structures do not show a complete phononic bandgap at the frequencies of interest, which in principle should allow longer dephasing time, since acoustic leakage is minimized. In this work we demonstrate the excitation of acoustic modes in a 1D OM crystal properly designed to display a full phononic bandgap for acoustic modes at about 4 GHz. The confined phonons have an OM coupling rangin...

  6. Polarization squeezing with photonic crystal fibers

    DEFF Research Database (Denmark)

    Milanovic, J.; Huck, Alexander; Heersink, J.

    2007-01-01

    We report on the generation of polarization squeezing by employing intense, ultrashort light pulses in a single pass method in photonic crystal fibers. We investigated the squeezing behavior near the zero-dispersion wavelength and in the anomalous dispersion regime by using two distinct fibers. We...... observed a maximal squeezing at 810 nm of -3.3 +/- 0.3 dB with an excess noise of +16.8 +/- 0.3 dB in the anomalous regime. Correcting for linear and interference losses between the polarization modes, this corresponds to -6 +/- 1 dB. The ratio of squeezing to excess noise indicates the creation of a much...

  7. Photonic crystal surface-emitting lasers

    Science.gov (United States)

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  8. Imprinted photonic crystal chemical sensors

    NARCIS (Netherlands)

    Boersma, A.; Burghoorn, M.M.A.; Saalmink, M.

    2011-01-01

    In this paper we present the use of Photonic Crystals as chemical sensors. These 2D nanostructured sensors were prepared by nano-imprint lithography during which a nanostructure is transferred from a nickel template into a responsive polymer, that is be specifically tuned to interact with the chemic

  9. One-dimensional photonic crystals

    NARCIS (Netherlands)

    Shen, Huaizhong; Wang, Zhanhua; Wu, Yuxin; Yang, Bai

    2016-01-01

    A one-dimensional photonic crystal (1DPC), which is a periodic nanostructure with a refractive index distribution along one direction, has been widely studied by scientists. In this review, materials and methods for 1DPC fabrication are summarized. Applications are listed, with a special emphasis

  10. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  11. [Photonic crystals for analytical chemistry].

    Science.gov (United States)

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  12. Optical Properties of Photonic Crystals

    CERN Document Server

    Sakoda, Kazuaki

    2005-01-01

    This is the first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is developed in a clear and detailed fashion using the Green's function method. The symmetry of the eigenmodes is treated systematically using group theory to show how it affects the optical properties of photonic crystals. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Thus this book provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. This second edition has been updated and includes a new chapter on superfluorescence.

  13. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei;

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends on the L...

  14. Tunable Photonic Band Gaps In Photonic Crystal Fibers Filled With a Cholesteric Liquid Crystal

    Institute of Scientific and Technical Information of China (English)

    Thomas; Tanggaard; Larsen; David; Sparre; Hermann; Anders; Bjarklev

    2003-01-01

    A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition temperature.

  15. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  16. FABRICATION OF PHOTONIC CRYSTAL WITH SUPERLATTICES

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng; Chen Haihua; Zhang Jizhong; Wei Hongmei; Gu Zhongze

    2006-01-01

    A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.

  17. Structural colours through photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    McPhedran, R.C.; Nicorovici, N.A.; McKenzie, D.R.; Rouse, G.W.; Botten, L.C.; Welch, V.; Parker, A.R.; Wohlgennant, M.; Vardeny, V

    2003-10-01

    We discuss two examples of living creatures using photonic crystals to achieve iridescent colouration. The first is the sea mouse (Aphroditidae, Polychaeta), which has a hexagonal close packed structure of holes in its spines and lower-body felt, while the second is the jelly fish Bolinopsis infundibulum, which has an oblique array of high index inclusions in its antennae. We show by measurements and optical calculations that both creatures can achieve strong colours despite having access only to weak refractive index contrast.

  18. Optical Magnetometer Incorporating Photonic Crystals

    Science.gov (United States)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  19. Heat Treatment of the Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Joo; Beom; Eom; Seongwoo; Yoo; Jinchae; Kim; Hokyung; Kim; Un-Chul; Paek; Byeong; Ha; Lee

    2003-01-01

    We report heat treatment of the photonic crystal fiber. As the temperature was increased, the transmission of the photonic crystal fiber was increased, unlike conventional single mode fiber. The transmission increase at short wavelength region was larger than long wavelength region for the various temperatures. After crystallization of the silica glass, the spectra of the photonic crystal fiber were just decreased at all wavelength regions, but, in case of the single mode fiber, the absorption in visibl...

  20. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the lin......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap.......A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage...

  1. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  2. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  3. A new varied-time photonic crystals

    OpenAIRE

    Wu, Xiang-Yao; Ma, Ji; Liu, Xiao-Jing; Liang, Yu; Li, Hong; Chen, Wan-Jin; Yuan, Hong-chun; Li, Heng-Mei

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...

  4. A new varied-time photonic crystals

    OpenAIRE

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...

  5. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage...

  6. Higher order modes in photonic crystal slabs.

    Science.gov (United States)

    Gansch, Roman; Kalchmair, Stefan; Detz, Hermann; Andrews, Aaron M; Klang, Pavel; Schrenk, Werner; Strasser, Gottfried

    2011-08-15

    We present a detailed investigation of higher order modes in photonic crystal slabs. In such structures the resonances exhibit a blue-shift compared to an ideal two-dimensional photonic crystal, which depends on the order of the slab mode and the polarization. By fabricating a series of photonic crystal slab photo detecting devices, with varying ratios of slab thickness to photonic crystal lattice constant, we are able to distinguish between 0th and 1st order slab modes as well as the polarization from the shift of resonances in the photocurrent spectra. This method complements the photonic band structure mapping technique for characterization of photonic crystal slabs. © 2011 Optical Society of America

  7. Photonic Crystals: Physics and Technology

    CERN Document Server

    Sibilia, Concita; Marciniak, Marian; Szoplik, Tomasz

    2008-01-01

    The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices , opto-electronics, sensors. The book contain contributions from authors who gave their lecture at the Cost P11 Training School. Training School was held at the Warsaw University (2007) and National Institute of Telecommunications (May 23), Warsaw. It was attended by 23 students. The focus of the School was on the work of...

  8. Biased liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2008-01-01

    We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure.......We simulate the director structure of all capillaries in a biased photonic crystal fiber infiltrated with liquid crystals. Various mode simulations for different capillaries show the necessity to consider the entire structure....

  9. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  10. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre...

  11. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  12. Photonic crystal fiber based antibody detection

    OpenAIRE

    Duval, A.; Lhoutellier, M; Jensen, J. B.; Hoiby, P E; Missier, V; Pedersen, L. H.; Hansen, Theis Peter; Bjarklev, Anders Overgaard; Bang, Ole

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and the use of a transversal illumination setup.

  13. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core reg...

  14. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  15. Optical experiments on 3D photonic crystals

    NARCIS (Netherlands)

    Koenderink, F.; Vos, W.

    2003-01-01

    Photonic crystals are optical materials that have an intricate structure with length scales of the order of the wavelength of light. The flow of photons is controlled in a manner analogous to how electrons propagate through semiconductor crystals, i.e., by Bragg diffraction and the formation of band

  16. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and ...

  17. Nonspreading Light Pulses in Photonic Crystals

    OpenAIRE

    Staliunas, K.; Serrat, C.; Herrero, R; Cojocaru, C.; Trull, J.

    2005-01-01

    We investigate propagation of light pulses in photonic crystals in the vicinity of the zero-diffraction point. We show that Gaussian pulses due to nonzero width of their spectrum spread weakly in space and time during the propagation. We also find the family of nonspreading pulses, propagating invariantly in the vicinity of the zero diffraction point of photonic crystals.

  18. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre is demo...

  19. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  20. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim;

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  1. Photonic gap vanishing in one-dimensional photonic crystals with single-negative metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.com [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Yu; Leung, C.W.; Hu, Mingzhe; Chan, H.L.W. [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2011-06-13

    The properties of photonic band gap in one-dimensional photonic crystals composed of single-negative metamaterials are studied theoretically. Our study shows that the photonic gap will vanish at a certain incident angle when both the phase-match and impedance-match conditions are satisfied simultaneously, suggesting that the bandwidth and location of the photonic gap are strongly dependent on the incident angle and polarization. However, the photonic gap will not vanish and may become insensitive to the incident angle when the two match conditions cannot be met. Our study also shows that losses in metamaterials have little effect on the properties of the photonic gap. -- Highlights: → Photonic gap of 1D photonic crystal containing metamaterials was investigated. → The gap can be designed to be sensitive or insensitive to the incident angle. → The gap can be designed to be close at a specific incident angle. → Conditions for photonic gap vanishing were proposed. → Losses of metamaterials have little effect on the properties of the photonic gap.

  2. Photonic Crystal Fiber Based Entangled Photon Sources

    Science.gov (United States)

    2014-03-01

    new entanglement source is to make sure the source can provide an efficient and scalable quantum information processor . They are usually generated...multiple scattering on the telecom wavelength photon-pair. Our findings show that quantum correlation of polarization-entangled photon-pairs is...Fiber, Quantum communication, Keyed Communication in Quantum Noise (KCQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18

  3. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  4. Statistics of scattered photons from a driven three-level emitter in 1D open space

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Dibyendu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Div. and Center for Nonlinear Studies; Bondyopadhaya, Nilanjan [Visva-Bharati University, Santiniketan (India). Integrated Science Education and Research Centre

    2014-01-07

    We derive the statistics of scattered photons from a Λ- or ladder-type three-level emitter (3LE) embedded in a 1D open waveguide. The weak probe photons in the waveguide are coupled to one of the two allowed transitions of the 3LE, and the other transition is driven by a control beam. This system shows electromagnetically induced transparency (EIT) which is accompanied with the Autler-Townes splitting (ATS) at a strong driving by the control beam, and some of these effects have been observed recently. We show that the nature of second-order coherence of the transmitted probe photons near two-photon resonance changes from bunching to antibunching to constant as strength of the control beam is ramped up from zero to a higher value where the ATS appears.

  5. Photonic crystal negative refractive optics.

    Science.gov (United States)

    Baba, Toshihiko; Abe, Hiroshi; Asatsuma, Tomohiko; Matsumoto, Takashi

    2010-03-01

    Photonic crystals (PCs) are multi-dimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the PC. The refraction angle from positive to negative, perfectly or only partially obeying Snell's law, can be tailored using photonic band theory. The negative refraction enables novel prism, collimation, and lens effects. Because PCs usually consist of two transparent media, these effects occur at absorption-free frequencies, affording significant design flexibility for free-space optics. The PC slab, a high-index membrane with a two-dimensional airhole array, must be carefully designed to avoid reflection and diffraction losses. Light focusing based on negative refraction forms a parallel image of a light source, facilitating optical couplers and condenser lenses for wavelength demultiplexing. A compact wavelength demultiplexer can be designed by combining the prism and lens effects. The collimation effect is obtainable not only inside but also outside of the PC by optimizing negative refractive condition.

  6. Photonic crystals with topological defects

    Science.gov (United States)

    Liew, Seng Fatt; Knitter, Sebastian; Xiong, Wen; Cao, Hui

    2015-02-01

    We introduce topological defects to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to a residual photonic band gap in the local density of optical states. However, the band-edge modes are strongly modified by the spatial variation of the ellipse orientation. The Γ -X band-edge mode splits into four regions of high intensity and the output flux becomes asymmetric due to the formation of crystalline domains with different orientation. The Γ -M band-edge mode has the energy flux circulating around the topological defect center, creating an optical vortex. By removing the elliptical cylinders at the center, we create localized defect states, which are dominated by either clockwise or counterclockwise circulating waves. The flow direction can be switched by changing the ellipse orientation. The deterministic aperiodic variation of the unit cell orientation adds another dimension to the control of light in photonic crystals, enabling the creation of a diversified field pattern and energy flow landscape.

  7. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2006-12-01

    The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.

  8. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen;

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  9. Biased liquid crystal infiltrated photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Scolari, Lara

    2009-01-01

    A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled...... partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector...... element based finite element method. We demonstrate results for a splay aligned liquid crystal infiltrated into the capillaries of a four-ring photonic crystal fiber and compare them to corresponding experiments....

  10. Electromechanical tuning of vertically-coupled photonic crystal nanobeams

    CERN Document Server

    Midolo, L; Pagliano, F; Xia, T; van Otten, F W M; Lermer, M; Höfling, S; Fiore, A

    2012-01-01

    We present the design, the fabrication and the characterization of a tunable one-dimensional (1D) photonic crystal cavity (PCC) etched on two vertically-coupled GaAs nanobeams. A novel fabrication method which prevents their adhesion under capillary forces is introduced. We discuss a design to increase the flexibility of the structure and we demonstrate a large reversible and controllable electromechanical wavelength tuning (> 15 nm) of the cavity modes.

  11. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...

  12. Photonic crystal slab quantum well infrared photodetector

    Science.gov (United States)

    Kalchmair, S.; Detz, H.; Cole, G. D.; Andrews, A. M.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G.

    2011-01-01

    In this letter we present a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS). With the PCS it is possible to enhance the absorption efficiency by increasing photon lifetime in the detector active region. To understand the optical properties of the device we simulate the PCS photonic band structure, which differs significantly from a real two-dimensional photonic crystal. By fabricating a PCS-QWIP with 100x less quantum well doping, compared to a standard QWIP, we are able to see strong absorption enhancement and sharp resonance peaks up to temperatures of 170 K.

  13. Quantum Cascade Photonic Crystal lasers

    Science.gov (United States)

    Capasso, Federico

    2004-03-01

    QC lasers have emerged in recent years as the dominant laser technology for the mid-to far infrared spectrum in light of their room temperature operation, their tunability, ultrahigh speed operation and broad range of applications to chemical sensing, spectroscopy etc. (Ref. 1-3). After briefly reviewing the latter, I will describe a new class of mid-infrared QC lasers, Quantum Cascade Photonic Crystal Surface Emitting Lasers (QCPCSELS), that combine electronic and photonic band structure engineering to achieve vertical emission from the surface (Ref. 4). Devices operating on bandedge mode and on defect modes will be discussed. Exciting potential uses of these new devices exist in nonlinear optics, microfluidics as well as novel sensors. Finally a bird's eye view of other exciting areas of QC laser research will be given including broadband QCLs and new nonlinear optical sources based on multiwavelength QCLs. 1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Physics Today 55, 34 (May 2002) 2. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho and H. C. Liu, IEEE Journal of Selected Topics in Quantum Electronics, 6, 931 (2000). 3. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, IEEE J. Quantum Electron. 38, 511 (2002) 4. R. Colombelli, K. Srivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, Science 302, 1374 (2003)

  14. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  15. Novel photonic crystal cavities and related structures.

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  16. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth......We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...

  17. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    Energy Technology Data Exchange (ETDEWEB)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr., C.R.; Schmid, A.W.; Marshall, K.L.

    2006-08-18

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time.

  18. Tunable photonic Bloch oscillations in electrically modulated photonic crystals

    CERN Document Server

    Wang, Gang; Yu, Kin Wah

    2008-01-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump AC or DC electric field, terahertz PBOs can appear and cover a terahertz band in electromagnetic spectrum.

  19. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    Science.gov (United States)

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  20. Helically twisted photonic crystal fibres.

    Science.gov (United States)

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  1. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  2. Photonics crystal fiber Raman sensors

    Science.gov (United States)

    Yang, Xuan; Bond, Tiziana C.; Zhang, Jin Z.; Li, Yat; Gu, Claire

    2012-11-01

    Hollow core photonic crystal fiber (HCPCF) employs a guiding mechanism fundamentally different from that in conventional index guiding fibers. In an HCPCF, periodic air channels in a glass matrix act as reflectors to confine light in an empty core. As a result, the interaction between light and glass can be very small. Therefore, HCPCF has been used in applications that require extremely low non-linearity, high breakdown threshold, and zero dispersion. However, their applications in optical sensing, especially in chemical and biological sensing, have only been extensively explored recently. Besides their well-recognized optical properties the hollow cores of the fibers can be easily filled with liquid or gas, providing an ideal sampling mechanism in sensors. Recently, we have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or surface enhanced Raman scattering (SERS) applications. This is because the confinement of both light and sample inside the hollow core enables direct interaction between the propagating wave and the analyte. In this paper, we report our recent work on using HCPCF as a platform for Raman or SERS in the detection of low concentration greenhouse gas (ambient CO2), biomedically significant molecules (e.g., glucose), and bacteria. We have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or SERS applications.

  3. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  4. The structure of nanocomposite 1D cationic conductor crystal@SWNT.

    Science.gov (United States)

    Kiselev, N A; Kumskov, A S; Zakalyukin, R M; Vasiliev, A L; Chernisheva, M V; Eliseev, A A; Krestinin, A V; Freitag, B; Hutchison, J L

    2012-06-01

    Nanocomposites consisting of one-dimensional (1D) crystals of the cationic conductors CuI, CuBr and AgBr inside single-walled carbon nanotubes, mainly (n, 0), were obtained using the capillary technique. 1D crystal structure models were proposed based on the high resolution transmission electron microscopy performed on a FEI Titan 80-300 at 80 kV with aberration correction. According to the models and image simulations there are two modifications of 1D crystal: hexagonal close-packed bromine (iodine) anion sublattice (growth direction ) and 1D crystal cubic structure (growth direction ) compressed transversely to the nanotube (D(m) ∼1.33 nm) axis. Tentatively this kind of 1D crystal can be considered as monoclinic. One modification of the anion sublattice reversibly transforms into the other inside the nanotube, probably initiated by electron beam heating. As demonstrated by micrographs, copper or silver cations can occupy octahedral positions or are statistically distributed across two tetrahedral positions. A 1DAgBr@SWNT (18, 0; 19, 0) pseudoperiodic 'lattice distortion' is revealed resulting from convolution of the nanotube wall function image with 1D cubic crystal function image.

  5. Coupled external cavity photonic crystal enhanced fluorescence.

    Science.gov (United States)

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  6. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara;

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  7. Photonic crystal fibers, devices, and applications

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Jian JU; Hoi Lut HO; Yeuk Lai HOO; Ailing ZHANG

    2013-01-01

    This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

  8. Recent Progress of Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    Katsusuke; Tajima

    2003-01-01

    Photonic crystal fibers are attractive since we can realize a wide variety of unique features in the PCFs, which cannot be realized in conventional single-mode fibers. We describe recent progress in the PCF.

  9. Compton散射对1维3元未磁化等离子体光子晶体禁带影响%Effect of Compton scattering on prohibited band gaps for 1-D ternary un-magnetized plasma photonic crystals

    Institute of Scientific and Technical Information of China (English)

    郝东山

    2013-01-01

      为了研究Compton散射对1维3元未磁化等离子体光子晶体中TE波禁带影响,采用Compton散射模型和传输矩阵法,进行了理论分析和实验验证,取得了一些重要数据。结果表明,随着等离子体频率增大,左旋和右旋极化波禁带展宽比散射前减小0.09GHz,禁带主频率向高频区域移动增大0.48GHz。随着等离子体碰撞频率增大,两种极化波禁带宽度发生一定变化。随着等离子体回旋频率、填充率、光入射角和介质相对介电常数增大,左旋和右旋极化波禁带明显调谐效应。这一结果对等离子体光子晶体应用是有帮助的。%In order to study the effect of Compton scattering on TE wave prohibited band gaps of 1-D ternary un-magnetized plasma photonic crystals ,based on the model of Compton scattering and transfer matrix method ,some important data was obtained after the theoretical analysis and experimental verification .The broadening width of prohibited band gap of the left circle polarization wave and the right circle polarization wave were decreased 0.09GHz along with the increasing of plasma frequency after Compton scattering .The movement from the central frequency area of prohibited band gap to the high frequency area was increased 0.48GHz.The change of prohibited band gaps widths of the left circle polarization wave and the right circle polarization wave happened along with the increasing of plasma collision frequency .The significant tuning effect of prohibited band gaps of the left circle polarization wave and the right circle polarization wave was induced by Compton scattering along with the increasing of plasma circle frequency ,filling index,light incident angle and relative dielectric constant.The result is helpful for the application of the plasma photonic crystals .

  10. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  11. Veselago lens by photonic hyper-crystals

    CERN Document Server

    Huang, Zun

    2014-01-01

    An imaging system functioning as a Veselago lens has been proposed based on the novel concept of photonic "hyper-crystal" -- an artificial optical medium synthesizing the properties of hyperbolic materials and photonic crystals. This Veselago lens shows a nearly constant negative refractive index and substantially reduced image aberrations. It can find potential applications in photolithography and hot-spots detection of silicon-based integrated circuits.

  12. Photonic crystal fibres and effective index approaches

    DEFF Research Database (Denmark)

    Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2001-01-01

    Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....

  13. Photonic crystal fiber modelling and applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou

    2001-01-01

    Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented.......Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented....

  14. Photonic crystal fibers: fundamentals to emerging applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard

    2005-01-01

    A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers.......A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers....

  15. Photonic-crystal fibre: Mapping the structure

    DEFF Research Database (Denmark)

    Markos, Christos

    2015-01-01

    The demonstration of real-time and non-destructive Doppler-assisted tomography of the internal structure of photonic-crystal fibres could aid the fabrication of high-quality fibres with enhanced performance.......The demonstration of real-time and non-destructive Doppler-assisted tomography of the internal structure of photonic-crystal fibres could aid the fabrication of high-quality fibres with enhanced performance....

  16. Photonic crystal laser sources for chemical detection

    OpenAIRE

    Lončar, Marko; Scherer, Axel; Qiu, Yueming

    2003-01-01

    We have realized photonic crystal lasers that permit the introduction of analyte within the peak of the optical field of the lasing mode. We have explored the design compromises for developing such sensitive low-threshold spectroscopy sources, and demonstrate the operation of photonic crystal lasers in different ambient organic solutions. We show that nanocavity lasers can be used to perform spectroscopic tests on femtoliter volumes of analyte, and propose to use these lasers for high-resolut...

  17. Photonic Crystals Mathematical Analysis and Numerical Approximation

    CERN Document Server

    Dörfler, Willy; Plum, Michael; Schneider, Guido; Wieners, Christian

    2011-01-01

    This book concentrates on the mathematics of photonic crystals, which form an important class of physical structures investigated in nanotechnology. Photonic crystals are materials which are composed of two or more different dielectrics or metals, and which exhibit a spatially periodic structure, typically at the length scale of hundred nanometers. In the mathematical analysis and the numerical simulation of the partial differential equations describing nanostructures, several mathematical difficulties arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence of contin

  18. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure.......A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  19. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  20. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei;

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...

  1. Optical trapping apparatus, methods and applications using photonic crystal resonators

    Science.gov (United States)

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  2. Electrially tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber

    DEFF Research Database (Denmark)

    Haakestad, Magnus W.; Alkeskjold, Thomas Tanggaard; Nielsen, Martin Dybendal;

    2005-01-01

    Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range.......Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range....

  3. Solitons in one-dimensional photonic crystals

    CERN Document Server

    Mayteevarunyoo, Thawatchai

    2008-01-01

    We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structural "duty cycle", DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with loc...

  4. Quantum phase transition of light in a 1-D photon-hopping-controllable resonator array

    CERN Document Server

    Wu, Chun-Wang; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu

    2011-01-01

    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.

  5. Liquid crystal devices for photonics applications

    Science.gov (United States)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  6. Design of photonic crystal splitters/combiners

    Science.gov (United States)

    Kim, Sangin; Park, Ikmo; Lim, Hanjo

    2004-10-01

    Photonic band gap (PBG) structures or photonic crystals have attracted a lot of interest since one of their promising applications is to build compact photonic integrated circuits (PIC). One of key components in PICs is a 1 x 2 optical power splitter or a 2 x 1 combiner. Design of 1 x 2 optical power splitters based on photonic crystal has been investigated by several research groups, but no attention has been paid to the design of 2 x 1 optical combiners. In conventional dielectric waveguide based circuits, optical combiners are obtained just by operating the splitters in the opposite direction and the isolation between two input ports in the combiners is naturally achieved. In photonic crystal based circuits, however, we have found that reciprocal operation of the splitters as combiners will not provide proper isolation between the input ports of the combiners. In this work, microwave-circuit concept has been adopted to obtain isolation between two input ports of the combiner and compact optical power splitters/combiners of good performance have been designed using 2-D photonic crystal. Numerical analysis of the designed splitters/combiners has been performed with the finite-difference time-domain method. The designed splitters/combiners show good isolation between input ports in combiner operation with small return losses.

  7. Polarization beam splitting using a birefringent graded photonic crystal.

    Science.gov (United States)

    Cassan, Eric; Van Do, Khanh; Dellinger, Jean; Le Roux, Xavier; de Fornel, Frédérique; Cluzel, Benoit

    2013-02-15

    The use of a birefringent graded photonic crystal (GPhC) is proposed for the realization of an efficient polarization beam splitter. This approach allows decoupling the two functions of efficient light injection for both polarizations and TE/TM beam splitting. A smooth light polarization splitting is naturally achieved due to the different curved trajectories followed within the graded medium by the TE and TM waves. A 160 nm operating bandwidth with insertion loss around 1 dB and interpolarization crosstalk below -15 dB is predicted by a finite difference time domain simulation. The unusually exploited electromagnetic phenomena are experimentally evidenced by scanning near-field optical measurements performed on samples fabricated using the silicon on insulator photonics technology. These experimental works open perspectives for the use of birefringent GPhCs to manage polarization diversity in silicon photonic circuits.

  8. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  9. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  10. Topological photonics: From crystals to particles

    Science.gov (United States)

    Siroki, Gleb; Huidobro, Paloma A.; Giannini, Vincenzo

    2017-07-01

    Photonic crystal topological insulators host protected states at their edges. In the band structure these edge states appear as continuous bands crossing the photonic band gap. They allow light to propagate unidirectionally and without scattering. In practice it is essential to make devices relying on these effects as miniature as possible. Here we study photonic topological insulator particles (finite crystals). In such particles the edge state frequencies are discrete. Nevertheless, the discrete states support pseudospin-dependent unidirectional propagation. They allow light to bend around sharp corners similarly to the continuous edge states and act as topologically protected whispering gallery modes, which can store and filter light as well as manipulate its angular momentum. Though we consider a particular all-dielectric realization that does not require a magnetic field, the results in the findings are general, explaining multiple experimental observations of discrete transmission peaks in photonic topological insulators.

  11. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  12. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  13. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  14. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo;

    Most work on planar photonic crystals has been performed on structures based on semiconducting crystals such as Si and III-V compounds. Due to the high index contrast between the host material and the air holes (e.g., Si has n = 3.5), these structures exhibit a large photonic band gap. However......ON glasses with different indices between 1.46 and 1.77 and we are currently fabricating photonic crystals in SiON on a silica buffer layer on Si. Simulations show that a complete band gap can indeed be created for TE-polarised light in the SiON structures, making them promising candidates for new photonic......, at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  15. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method...... and a finite-difference-time-domain (FDTD) method. Design parameters, i.e. dielectric constants, rod diameter and waveguide width, where these waveguides are single-moded and multi-moded will be given. We will also show our recent results regarding the energy-flow (the Poynting vector) in these waveguides...

  16. Slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Moulin, G.; Jacobsen, Rune Shim; Lavrinenko, Andrei

    report on the first experiments where a direct measure of the group velocity is performed; this is done by measuring the time delay of modulated light propagating through a photonic crystal waveguide. The structure is fabricated in silicon-on-insulator (SOI). A group index (c/vg) of up to almost 200 has......In photonic crystal waveguides the group velocity vg of the fundamental guided mode generally decreases at wavelengths close to the cut-off of the mode. This can be inferred from the calculated band diagram (frequency vs. wavevector) since the slope of the mode corresponds to its group velocity. We...

  17. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  18. High Power Photonic Crystal Fibre Raman Laser

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; YU Yong-Qin; GUO Chun-Yu; GUO Yuan; LIU Cheng-Xiang

    2006-01-01

    A cw Raman laser based on a 100-m photonic crystal fibre is demonstrated with up to 3.8 W output power at the incident pump power of 12 W, corresponding to an optical-to-optical efficiency of about 31.6%. The second order Stokes light, which is firstly reported in a cw photonic crystal fibre Raman laser, is obtained at 1183nm with an output power of 1.6 W and a slope efficiency of about 45.7%.

  19. Plasmonic-photonic crystal coupled nanolaser

    CERN Document Server

    Zhang, Taiping; Jamois, Cecile; Chevalier, Celine; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. In that purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using fully top down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices.

  20. Band structure and Bloch states in birefringent 1D magnetophotonic crystals: An analytical approach

    CERN Document Server

    Lévy, M; Levy, Miguel; Jalali, Amir A

    2007-01-01

    An analytical formulation for the band structure and Bloch modes in elliptically birefringent magnetophotonic crystals is presented. The model incorporates both the effects of gyrotropy and linear birefringence generally present in magneto-optic thin film devices. Full analytical expressions are obtained for the dispersion relation and Bloch modes in a layered stack photonic crystal and their properties are analyzed. It is shown that other models recently discussed in the literature are contained as special limiting cases of the formulation presented herein.

  1. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  2. Self-assembled tunable photonic hyper-crystals

    CERN Document Server

    Smolyaninova, Vera N; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2013-01-01

    We demonstrate a novel artificial optical material, a photonic hyper-crystal, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  3. Magneto-tunable one-dimensional graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jahani, D., E-mail: dariush110@gmail.com; Soltani-Vala, A., E-mail: asoltani@tabrizu.ac.ir; Barvestani, J.; Hajian, H. [Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-04-21

    We investigate the effect of a perpendicular static magnetic field on the optical bandgap of a one-dimensional (1D) graphene-dielectric photonic crystal in order to examine the possibility of reaching a rich tunable photonic bandgap. The solution of the wave equation in the presence of the anisotropic Hall situation suggests two decoupled circularly polarized wave each exhibiting different degrees of bandgap tunability. It is also numerically demonstrated that applying different values of field intensity lead to perceptible changes in photonic bandgap of such a structure. Finally, the effect of opening a finite electronic gap in the spectrum of graphene on the optical dispersion solution of such a 1D photonic crystal is reported. It is shown that increasing the value of the electronic gap results in the shrinkage of the associated photonic bandgaps.

  4. Photonic crystal microcapsules for label-free multiplex detection.

    Science.gov (United States)

    Ye, Baofen; Ding, Haibo; Cheng, Yao; Gu, Hongcheng; Zhao, Yuanjin; Xie, Zhuoying; Gu, Zhongze

    2014-05-28

    A novel suspension array, which possesses the joint advantages of photonic crystal encoded technology, bioresponsive hydrogels, and photonic crystal sensors with capability of full multiplexing label-free detection is developed.

  5. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra;

    2009-01-01

    We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally demon...

  6. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  7. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  8. Chaotic behaviour of photonic crystals resonators

    KAUST Repository

    Di Falco, A.

    2015-02-08

    We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  9. Fabrication and Analysis of Photonic Crystals

    Science.gov (United States)

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  10. Fused combiners for photonic crystal bers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny

    The work presented in this Ph.D. thesis focuses on the fabrication of fused combiners for high-power fiber lasers and amplifiers. The main focus of the Ph.D. project was to further develop the fused pump combiners for airclad photonic crystal bers (PCFs), and implement a signal feed...

  11. Silicon photonic crystals and spontaneous emission

    NARCIS (Netherlands)

    Dood, Michiel Jacob Andries de

    2002-01-01

    Photonic crystals, i.e. materials that have a periodic variation in refractive index, form an interesting new class of materials that can be used to modify spontaneous emission and manipulate optical modes in ways that were impossible so far. This thesis is divided in three parts. Part I discusses

  12. Near-field probing of photonic crystals

    NARCIS (Netherlands)

    Flück, E.; Hammer, M.; Vos, W.L.; Hulst, van N.F.; Kuipers, L.

    2004-01-01

    Photonic crystals form an exciting new class of optical materials that can greatly affect optical propagation and light emission. As the relevant length scale is smaller than the wavelength of light, sub-wavelength detection forms an important ingredient to obtain full insight in the physical proper

  13. Photonic crystal sensors based on porous silicon.

    Science.gov (United States)

    Pacholski, Claudia

    2013-04-09

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  14. Photonic crystal nanostructures for optical biosensing applications

    DEFF Research Database (Denmark)

    Dorfner, D.; Zabel, T.; Hürlimann, T.;

    2009-01-01

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine s...

  15. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  16. Supercontinuum noise in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten;

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability...

  17. All-polymer photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph;

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured...

  18. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...

  19. Photonic crystal fibres - a variety of applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Riishede, Jesper

    2002-01-01

    Summary form only given. In 1987, it was suggested that the electronic bandgaps in semiconductors could have an optical analogy-the so-called photonic bandgaps (PBGs), which could be found in periodic dielectric structures. This suggestion initiated research activities that the past few years have...... lead to a new class of optical fibers, in which the cladding structure consists of a periodic system of air holes in a matrix of dielectric material-typically silica. These fibers have been given several names ranging from holey fibers, microstructured fibers, photonic crystal fibers, to photonic...... bandgap fibers. These fibers have today reached a level of maturity where they may be used as building blocks for a variety of new applications. Today's research is focusing increasingly on applications of the fibres, thus redirecting earlier focus on crystal fibers themselves and their unique guiding...

  20. Photon statistics in scintillation crystals

    Science.gov (United States)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  1. Photonics and lasing in liquid crystals

    Directory of Open Access Journals (Sweden)

    Alison D. Ford

    2006-07-01

    Full Text Available Lasers were invented some 40 years ago and are now used in a plethora of applications. Stable liquid crystals were discovered at about the same time, and are now the basis of a large display industry. Both technologies involve photonics, the former in the creation and use of light and the latter in the control and manipulation of light. However, it is only recently that these two mature technologies have been combined to form liquid-crystal lasers, heralding a new era for these photonic materials and the potential for novel applications. We summarize the characteristics of liquid crystals that lead to laser devices, the wide diversity of possible laser systems, and the properties of the light produced.

  2. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper;

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  3. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  4. Breakdown of Bose-Einstein Distribution in Photonic Crystals

    Science.gov (United States)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-01

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  5. Polarization-selective resonant photonic crystal photodetector

    Science.gov (United States)

    Yang, Jin-Kyu; Seo, Min-Kyo; Hwang, In-Kag; Kim, Sung-Bock; Lee, Yong-Hee

    2008-11-01

    Resonance-assisted photonic crystal (PhC) slab photodetectors are demonstrated by utilizing six 7-nm-thick InGaAsP quantum wells. In order to encourage efficient photon coupling into the slab from the vertical direction, a coupled-dipole-cavity-array PhC structure is employed. Inheriting the characteristics of the dipole mode, this resonant detector is highly polarization selective and shows a 22-nm-wide spectral width. The maximum responsivity of 0.28A/W, which is >20 times larger than that of the identical detector without the pattern, is observed near 1.56μm.

  6. Geometric properties of optimal photonic crystals

    DEFF Research Database (Denmark)

    Sigmund, Ole; Hougaard, Kristian G.

    2008-01-01

    Photonic crystals can be designed to control and confine light. Since the introduction of the concept by Yablonovitch and John two decades ago, there has been a quest for the optimal structure, i.e., the periodic arrangement of dielectric and air that maximizes the photonic band gap. Based...... on numerical optimization studies, we have discovered some surprisingly simple geometric properties of optimal planar band gap structures. We conjecture that optimal structures for gaps between bands n and n+1 correspond to n elliptic rods with centers defined by the generators of an optimal centroidal Voronoi...

  7. Photonic crystal slab quantum cascade detector

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Peter, E-mail: peter.reininger@tuwien.ac.at; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, Vienna 1040 (Austria)

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  8. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre;

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  9. Tunable photonic band-gaps in one-dimensional photonic crystals containing linear graded index material

    Science.gov (United States)

    Singh, Bipin K.; Kumar, Pawan; Pandey, Praveen C.

    2014-12-01

    We have demonstrated control of the photonic band gaps (PBGs) in 1-D photonic crystals using linear graded index material. The analysis of PBG has been done in THz region by considering photonic crystals in the form of ten periods of second, third and fourth generation of the Fibonacci sequence as unit cell. The unit cells are constituted of two kinds of layers; one is taken of linear graded index material and other of normal dielectric material. For this investigation, we used a theoretical model based on transfer matrix method. We have obtained a large number of PBGs and their bandwidths can be tuned by changing the grading profile and thicknesses of linear graded index layers. The number of PBGs increases with increase in the thicknesses of layers and their bandwidths can be controlled by the contrast of initial and final refractive index of the graded layers. In this way, we provide more design freedom for photonic devices such as reflectors, filters, optical sensors, couplers, etc.

  10. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all......-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065nm by applying...

  11. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  12. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  13. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...... with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...... lattice is described by two orthogonal unit vectors of length a and b, defining the P and X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle () depending on the lattice constant b (355 nm...

  14. Limits of slow light in photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    in the group velocity acquiring a finite value above zero at the band-gap edges while attaining uperluminal values within the band gap. Simple scalings of the minimum and maximum group velocities with the imaginary part of the dielectric function or, equivalently, the linewidth of the broadened states......While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art structures have still only provided a slow down by roughly two orders of magnitude. We find that the induced density of states caused by lifetime broadening of the electromagnetic modes results...... are presented. The results obtained are entirely general and may be applied to any effect which results in a broadening of the electromagnetic states, such as loss, disorder, and finite-size effects. This significantly limits the reduction in group velocity attainable via photonic crystals....

  15. Erbium doped tellurite photonic crystal optical fiber

    Science.gov (United States)

    Osorio, Sergio P.; Fernandez, Enver; Rodriguez, Eugenio; Cesar, Carlos L.; Barbosa, Luiz C.

    2005-04-01

    In this work we present the fabrication of tellurite glass photonic crystal fiber doped with a very large erbium concentration. Tellurite glasses are important hosts for rare earth ions due to its very high solubility, which allows up to 10,000 ppm Er3+ concentrations. The photonic crystal optical fibers and tellurite glasses can be, therefore, combined in an efficient way to produce doped fibers for large bandwidth optical amplifiers. The preform was made of a 10 mm external diameter tellurite tube filled with an array of non-periodic tellurite capillaries and an erbium-doped telluride rod that constitute the fiber core. The preform was drawn in a Heathway Drawing Tower, producing fibers with diameters between 120 - 140 μm. We show optical microscope photography of the fiber"s transverse section. The ASE spectra obtained with a spectra analyzer show a red shift as the length of the optical fiber increases.

  16. Light Localization in Slot Photonic Crystal Waveguide

    Institute of Scientific and Technical Information of China (English)

    WU Jun; PENG Chao; LI Yan-Ping; WANG Zi-Yu

    2009-01-01

    A single-mode photonic crystal waveguide with a linear tapered slot is presented, which can localize light spatially by changing the slot width. Its effective bandwidth is 52nm, from 150Onto to 1552nm. Along the tapered structure, the slot width is reduced, and the corresponding band curve shifts. The group velocity of light becomes zero at the band edge. Therefore, different frequency components of the guided light are slowed down and finally localized at correspondingly different widths inside a tapered slot photonic crystal waveguide. Furthermore, this structure can confine light wave in a narrow slot waveguide, which may effectively enhance the interaction between light and the low-index wave-guiding materials filled in the slot.

  17. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  18. Field renormalization in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Colman, Pierre

    2015-01-01

    A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... Schro¨dinger equation is an occasion for physics-oriented considerations and unveils the potential of photonic crystal waveguides for the study of new nonlinear propagation phenomena....

  19. Photonic Crystal Fiber Interferometer for Dew Detection

    OpenAIRE

    Mathew, Jinesh; Semenova, Yuliya; Farrell, Gerald

    2012-01-01

    A novel method for dew detection based on photonic crystal fiber (PCF) interferometer that operates in reflection mode is presented in this paper. The fabrication of the sensor head is simple since it only involves cleaving and fusion splicing. The sensor shows good sensitivity to dew formation with a large wavelength peak shift of the interference pattern at the onset of dew formation. The device’s response to ambient humidity and temperature are also studied and reported in this paper. From...

  20. Slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Moulin, G.; Jacobsen, Rune Shim; Lavrinenko, Andrei;

    report on the first experiments where a direct measure of the group velocity is performed; this is done by measuring the time delay of modulated light propagating through a photonic crystal waveguide. The structure is fabricated in silicon-on-insulator (SOI). A group index (c/vg) of up to almost 200 has...... been measured. Such a high group index makes the light-matter interaction extremely efficient, opening for new opportunities in micrometer-sized integrated lightwave circuits....

  1. Photonic crystal fibres in the market

    DEFF Research Database (Denmark)

    Broeng, Jes; Laurila, Marko; Noordegraaf, Danny;

    2011-01-01

    Photonic crystal fibres (PCFs) emerged as a research topic in the mid 1990'ies [1]. Today, 15 years later, these fibres are increasing deployed in various commercial markets. Here, we will address three of these markets; medical imaging, materials processing and sensors. We will describe how...... the PCFs provide radical improvements and illustrate the strong diversity in the evolution of PCFs to serve these different markets....

  2. Study on temperature property of band structures in onedimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using transfer matrix method, the optical transmission properties in one-dimensional (1-D) photonic crystal is analyzed.When the temperature varies, not only the refractive index of the optical medium is changed because of the thermo-optical effect, but also the thickness of the optical medium is changed due to the thermal-expansion effect. Thus, the structure of 1/4 wave-plate stack in original photonic crystal is destroyed and the band structure varies. In this work, the effects of the temperature variation on the first and second band gap in a 1-D photonic crystal are analyzed in detail. It is found that the changes of the starting wavelength, the cut-off wavelength and the forbidden band width depend linearly on the temperature.

  3. Frequency bands of negative refraction in finite one-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Chen Yuan-Yuan; Huang Zhao-Ming; Shi Jie-Long; Li Chun-Fang; Wang Qi

    2007-01-01

    We have discussed theoretically the negative refraction in finite one-dimensional (1D) photonic crystals (PCs)composed of alternative layers with high index contrast. The frequency bands of negative refraction are obtained with the help of the photonic band structure, the group velocity and the power transmittance, which are all obtained in analytical expression. There shows negative transverse position shift at the endface when negative refraction occurs,which is analysed in detail.

  4. Topology design and fabrication of an efficient double 90° photonic crystal waveguide bend

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole; Frandsen, Lars Hagedorn

    2005-01-01

    We have designed and fabricated a novel 90 bend in a photonic crystal waveguide. The design was obtained using topology optimization and the fabricated waveguide displays a bend loss for transverse-electric-polarized light of less than 1 dB per bend in a 200-nm wavelength range....

  5. Degeneracy and Split of Defect States in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    黄晓琴; 崔一平

    2003-01-01

    One-dimensional photonic crystals with two or more structural defects are studied. We observed an interesting characteristic of transmission band structure of photonic crystals with defects using the transmission-matrixmethod simulation. The transmission states in the wide photonic band gap caused by defects revealdegeneracy and split in certain conditions. Every split state is contributed by coupling of all defects in a photonic crystal.Using the tight-binding method, we obtain an approximate analytic expression for the split frequency of photonic crystals with two structural defects.

  6. Fabrication of Metarodielectric Photonic Crystals for Microwave Control

    Energy Technology Data Exchange (ETDEWEB)

    Takinami, Yohei; Kirihara, Soshu, E-mail: y-takinami@jwri.osaka-u.ac.jp [Smart Processing Reserch Center, Joining and Welding Reserch Institute, Osaka University (Japan)

    2011-05-15

    Photonic crystals have inspired a great deal of interests as key platforms for effective control of electromagnetic wave. They can suppress incident waves at a certain frequency by Bragg diffraction and exhibit photonic band gap. Photonic band gap structures can be applied for effective and compact wave control equipments. In this investigation, metal photonic crystals were fabricated by stereolithography and heat treatment process. Furthermore, metal-dielectric crystal was created through impregnation process of dielectric media. This concept of metal-dielectric photonic crystal is expected to contribute for not only the downsizing of electromagnetic wave devices, but also thermal flow control.

  7. Properties of photonic bandgap in one-dimensional multicomponent photonic crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; WANG Qi

    2006-01-01

    Properties of photonic band gap and light propagation in one-dimensional multicomponent photonic crystal have been studied with the optical transfer matrix method.We mainly analyze the relation of photonic band-gap property with the arrangement of components,the refractive index and the geometrical thickness.In this study,the methods to change the width and the location of the existing photonic band-gaps in multicomponent photonic crystal are proposed.

  8. Distributed optical fibre devices based on liquid crystal infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Broeng, Jes; Hermann, D.S.

    2004-01-01

    We describe a new class of hybrid photonic crystal fibers, which are liquid crystal infiltrated fibers. Using these fibers, we demonstrate 'distributed' tunable filter and switching functionalities operating by the photonic bandgap effect....

  9. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: eon.chen@yahoo.com.cn [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Xinggang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Yong, Zehui; Zhang, Yunjuan [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Chen, Zefeng [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Yu, E-mail: apywang@inet.polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2012-03-19

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ{sub eff}) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ{sub eff} gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ{sub eff} gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ{sub eff} gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ{sub eff} gap were observed in the microwave regime. ► The width and depth of the zero-φ{sub eff} gap were experimentally adjusted. ► Zero-φ{sub eff} gap was observed to be close when two match conditions were satisfied.

  10. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  11. Effect of copper doping on the crystal structure and morphology of 1D nanostructured manganese oxides.

    Science.gov (United States)

    Lee, Sun Hee; Park, Dae Hoon; Hwang, Seong-Ju; Choy, Jin-Ho

    2007-11-01

    We have tried to control the aspect ratio and physicochemical properties of 1D nanostructured manganese oxides through copper doping. Copper-doped manganese oxide nanostructures have been synthesized by one-pot hydrothermal treatment for the mixed solution of permanganate anions and copper cations. According to powder X-ray diffraction and electron microscopic analyses, all the present materials commonly crystallize with alpha-MnO2-type structure but their aspect ratio decreases significantly with increasing the content of copper. Such a variation of crystallite dimension is attributable to the limitation of crystal growth by the incorporation of copper ions. X-ray absorption spectroscopic studies at Mn K- and Cu K-edges clearly demonstrate that the average oxidation state of manganese ions is increased by the substitution of divalent copper ions. Electrochemical measurements reveal the improvement of the electrode performance of nanostructured manganate upon copper doping, which can be interpreted as a result of the decrease of aspect ratio and the increase of Mn valence state. From the present experimental findings, it becomes certain that the present Cu doping method can provide an effective way of controlling the crystal dimension and electrochemical property of 1D nanostructured manganese oxide.

  12. Fractional decay of quantum dots in real photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter;

    2008-01-01

    We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...

  13. Photonic crystals at visible, x-ray, and terahertz frequencies

    Science.gov (United States)

    Prasad, Tushar

    Photonic crystals are artificial structures with a periodically varying refractive index. This property allows photonic crystals to control the propagation of photons, making them desirable components for novel photonic devices. Photonic crystals are also termed as "semiconductors of light", since they control the flow of electromagnetic radiation similar to the way electrons are excited in a semiconductor crystal. The scale of periodicity in the refractive index determines the frequency (or wavelength) of the electromagnetic waves that can be manipulated. This thesis presents a detailed analysis of photonic crystals at visible, x-ray, and terahertz frequencies. Self-assembly and spin-coating methods are used to fabricate colloidal photonic crystals at visible frequencies. Their dispersion characteristics are examined through theoretical as well as experimental studies. Based on their peculiar dispersion property called the superprism effect, a sensor that can detect small quantities of chemical substances is designed. A photonic crystal that can manipulate x-rays is fabricated by using crystals of a non-toxic plant virus as templates. Calculations show that these metallized three-dimensional crystals can find utility in x-ray optical systems. Terahertz photonic crystal slabs are fabricated by standard lithographic and etching techniques. In-plane superprism effect and out-of-plane guided resonances are studied by terahertz time-domain spectroscopy, and verified by numerical simulations.

  14. Chalcogenide glass hollow core photonic crystal fibers

    Science.gov (United States)

    Désévédavy, Frédéric; Renversez, Gilles; Troles, Johann; Houizot, Patrick; Brilland, Laurent; Vasilief, Ion; Coulombier, Quentin; Traynor, Nicholas; Smektala, Frédéric; Adam, Jean-Luc

    2010-09-01

    We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from TeAsSe (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.

  15. Half-disordered photonic crystal slabs.

    Science.gov (United States)

    Beque, V; Keilman, J; Citrin, D S

    2016-08-10

    Optical transmission spectra of finite-thickness slabs of two-dimensional triangular-lattice photonic crystals of air holes in a dielectric matrix with various concentrations of randomly located vacancies (absent air holes) are studied. We focus on structures in which only one half of the structure-the incidence or transmission side-is disordered. We find vacancy-induced scattering gives rise to a strong difference in the two cases; for light incident on the disordered side, high transmission within the photonic pseudogap at normal incidence is predicted, in strong contrast to the opposite case, where low transmission is predicted throughout the pseudogap, as is observed in the case of an ideal structure with no defects.

  16. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  17. Reciprocity theorem and perturbation theory for photonic crystal waveguides.

    Science.gov (United States)

    Michaelis, D; Peschel, U; Wächter, C; Bräuer, A

    2003-12-01

    Starting from Maxwell's equations we derive a reciprocity theorem for photonic crystal waveguides. A set of strongly coupled discrete equations results, which can be applied to the simulation of perturbed photonic crystal waveguides. As an example we analytically study the influence of the dispersion of a two level system on the band structure of a photonic crystal waveguide. In particular, the formation of polariton gaps is discussed.

  18. Hydrogen sensor based on metallic photonic crystal slabs.

    Science.gov (United States)

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  19. Topology optimization and fabrication of photonic crystal structures

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Harpøth, Anders; Frandsen, Lars Hagedorn;

    2004-01-01

    Topology optimization is used to design a planar photonic crystal waveguide component resulting in significantly enhanced functionality. Exceptional transmission through a photonic crystal waveguide Z-bend is obtained using this inverse design strategy. The design has been realized in a silicon......-on-insulator based photonic crystal waveguide. A large low loss bandwidth of more than 200 nm for the TE polarization is experimentally confirmed....

  20. Soliton blueshift in tapered photonic crystal fibers.

    Science.gov (United States)

    Stark, S P; Podlipensky, A; Russell, P St J

    2011-02-25

    We show that solitons undergo a strong blueshift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards a shorter wavelength. This is accompanied by strong emission of radiation into the UV and IR spectral regions. The experimental results are confirmed by numerical simulation.

  1. Large Mode Area Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal

    2004-01-01

    The photonic crystal fiber (PCF) is a novel single-material optical waveguide realized by an arrangement of air-holes running along the full length of the fiber. Since the proposal of the PCF in 1996, the technology has developed into being a well-established area of research and commercialisation......-mode area fiber optimised for visible light applications. The second is a fiber optimised for the telecommunication band realizing a nonlinear effective area 5 times larger than state of the art conventional fibers. Two examples of alternative designs are demonstrated addressing the core and the cladding...

  2. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of 1....../4 and 3/4 of the emission wavelength were fabricated and characterized. Measurements show threshold behavior for several modes at room temperature. Both structures are simulated using a finite difference time domain method to identify the resonances in the spectra and calculate the mode volume...

  3. Anomalous bending effect in photonic crystal fibers.

    Science.gov (United States)

    Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A

    2008-04-14

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

  4. Supercontinuum Generation in a Photonic Crystal Fibre

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; LIN Hao-Jia; DU Chen-Lin; YU Yong-Qin; LU Ke-Cheng; YAO Jian-Quan

    2004-01-01

    @@ Nearly 1000-nm broad continuum from 390nm to 1370nm is generated in a 2-m long photonic crystal fibre. The maximum total power of supercontinuum is measured to be 60mW with the pumping power of 800mW output from a 200-fs Ti:sapphire laser. The evolution of the pumping light into supercontinuum is experimentally studied in detail. It is found that the mechanism for supercontinuum generation has direct relations with Raman effect and soliton effect, and the four-wave mixing plays an important role in the last phase of the supercontinuum generation.

  5. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... probability. The Q-factor distributions of Anderson localized modes have been measured in PhC waveguides with articial induced disorder with embedded emitters. The largest Q-factors are found in the sample with the smallest amount of disorder. From a comparison with the waveguide model the localization length...

  6. Photonic crystal self-collimation sensor.

    Science.gov (United States)

    Wang, Yufei; Wang, Hailing; Xue, Qikun; Zheng, Wanhua

    2012-05-21

    A novel refractive index sensor based on the two dimensional photonic crystal folded Michelson interferometer employing the self-collimation effect is proposed and its performances are theoretically investigated. Two sensing areas are included in the sensor. Simulation results indicate the branch area is suitable for the small index variety range and fine detection, whereas the reflector area prone to the large index change range and coarse detection. Because of no defect waveguides and no crosstalk of signal, the sensor is desirable to perform monolithic integrated, low-cost, label-free real-time parallel sensing. In addition, a flexible design of self-collimation sensors array is demonstrated.

  7. High Polarization Single Mode Photonic Crystal Microlaser

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; XING Ming-Xin; ZHOU Wen-Jun; LIU An-Jin; ZHENG Wan-Hua

    2009-01-01

    Generally,dipole mode is a doubly degenerate mode.Theoretical calculations have indicated that the single dipole mode of two-dimensional photonic crystal single point defect cavity shows high polarization property.We present a structure with elongated lattice,which only supports a single y-dipole mode.With this structure we can eliminate the degeneracy,control the lasing action of the cavity and demonstrate the high polarization property of the single dipole mode.In our experiment,the polarization extinction ratio of the y-dipole mode is as high as 51:1.

  8. Reversed Doppler effect in photonic crystals.

    Science.gov (United States)

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  9. Tuning quantum correlations with intracavity photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maria M. de; Gomila, Damia; Zambrini, Roberta [IFISC, Institute for Cross-Disciplinary Physics and Complex Systems (CSIC-UIB), Campus UIB, E-07122 Palma de Mallorca (Spain); Garcia-March, Miguel Angel [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States)

    2011-09-15

    We show how to tune quantum noise in nonlinear systems by means of periodic spatial modulation. We prove that the introduction of an intracavity photonic crystal in a multimode optical parametric oscillator inhibits and enhances light quantum fluctuations. Furthermore, it leads to a significant noise reduction in field quadratures, robustness of squeezing in a wider angular range, and spatial entanglement. These results have potential benefits for quantum imaging, metrology, and quantum information applications and suggest a control mechanism of fluctuations by spatial modulation of interest also in other nonlinear systems.

  10. Graded index photonic crystals: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qingyi [School of Physical Electronics, University of Electronic Science and Technology, Chengdu (China); Department of Electronic Engineering, Sichuan Information Technology College, Sichuan (China); Jin, Lei; Fu, Yongqi [School of Physical Electronics, University of Electronic Science and Technology, Chengdu (China)

    2015-04-01

    A new type of photonic crystal (PC) named graded index (GRIN) PC was proposed by E. Centeno in 2005. It is obtained by appropriately modifying the parameters of a regular PC, thus resulting in gradual index variation. Many applications are inspired by this notion. This review will introduce different ways of designing GRIN PCs from both theoretical and experimental point of views. Some typical applications based on GRIN PCs are presented, followed by the focusing mechanism of GRIN PC. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Supercontinuum generation in photonic crystal fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    2007-01-01

    characterization, spectroscopy, optical communications, and optical coherence tomography (OCT). This thesis presents a study of SCG in photonic crystal fibre (PCF) using numerical modelling. The nonlinear physical mechanisms relevant for the thesis are reviewed. It is investigated how the SC spectrum can be shaped...... a narrow linewidth pump and a PCF with small anomalous dispersion at the pump wavelength. It is also demonstrated how the time window of the calculations affects the simulation results. Energy transfer during soliton collisions is found to play an important role, and was overlooked in recent work on CW...

  12. Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal

    Science.gov (United States)

    Wicharn, S.; Buranasiri, P.

    2015-07-01

    In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.

  13. Formation of Photonic Structures in Photorefractive Lithium Niobate by 1D and 2D Bessel-like Optical Fields

    Science.gov (United States)

    Inyushov, A.; Safronova, P.; Trushnikov, I.; Sarkyt, A.; Shandarov, V.

    2017-06-01

    Both, one-dimensional (1D) and two-dimensional (2D) Bessel-like beams with different topology of 2D beam cross-sections are formed from Gaussian laser beams using the amplitude masks and Fresnel biprisms. These almost diffraction-free light fields with wavelengths of 532 and 633 nm can change the refractive indices of photorefractive lithium niobate samples and form within them the nonlinear photonic diffraction structures. The characteristics of photonic structures induced in this way are studied by diffraction of monochromatic light with wavelengths of 633 and 532 nm.

  14. Photonic crystal waveguides by direct writing of e-beam on self-assembled photonic crystals

    Indian Academy of Sciences (India)

    Sunita Kedia; R Vijaya

    2011-04-01

    Direct electron beam lithography technique is used for writing a variety of waveguide structures on thin films of polymethyl methacrylate (PMMA) and self-assembled three-dimensionally ordered photonic crystals made up of PMMA colloidal spheres. The waveguide structures fabricated on both these type of samples are characterized by scanning electron microscope and optical microscope images.

  15. Superlens Biosensor with Photonic Crystals in Negative Refraction

    Directory of Open Access Journals (Sweden)

    Zohreh Dorrani

    2012-05-01

    Full Text Available We have presented the study on one structure fabricated with photonic crystals for use as biosensors with superlensing property in dimensions of nano and micro with negative refractive index. In a special frequency, this type of photonic crystal acts as Left-Handed Metamaterial (LHM. It is shown that by a suitable choice of design parameters, such as, dimensions of bars, it is possible to reach sensing property by this structure in two-dimensional triangular photonic crystals. The structure investigated in three size and results shows the slab of photonic crystals prosperous process that, with sensing applications can has imaging applications.

  16. Fabrication of High Quality Three-Dimensional Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-Yong; LIU Yuan-Hao; CHENG Bing-Ying; ZHANG Dao-Zhong; MENG Qing-Bo

    2004-01-01

    High quality colloidal photonic crystals made from polystyrene spheres with diameter 240nm are fabricated by the vertical deposition method. The scanning electron microscopy (SEM) and the transmittance spectrum are used to characterize the properties of the photonic crystal. The SEM images show that there are few lattice defects. The transmittance of the photonic crystal is above 75% in the pass band at 700nm and is lower than 5% at the centre of the band gap, respectively. It is found that proper concentration is a very important factor to fabricate the photonic crystal when the diameter of the spheres is lower than 300nm.

  17. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...

  18. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems......, such as a photonic crystal slab. In this case, all three bands exhibit a bound state in the continuum in close proximity of the Γ point. These results may lead to new designs of small photonic-crystal-based lasers exhibiting high-quality factors....

  19. Trapped Atoms in One-Dimensional Photonic Crystals

    Science.gov (United States)

    Kimble, H.

    2013-05-01

    I describe one-dimensional photonic crystals that support a guided mode suitable for atom trapping within a unit cell, as well as a second probe mode with strong atom-photon interactions. A new hybrid trap is analyzed that combines optical and Casimir-Polder forces to form stable traps for neutral atoms in dielectric nanostructures. By suitable design of the band structure, the atomic spontaneous emission rate into the probe mode can exceed the rate into all other modes by more than tenfold. The unprecedented single-atom reflectivity r0 ~= 0 . 9 for the guided probe field could create new scientific opportunities, including quantum many-body physics for 1 D atom chains with photon-mediated interactions and high-precision studies of vacuum forces. Towards these goals, my colleagues and I are pursuing numerical simulation, device fabrication, and cold-atom experiments with nanoscopic structures. Funding is provided by by the IQIM, an NSF PFC with support of the Moore Foundation, by the AFOSR QuMPASS MURI, by the DoD NSSEFF program (HJK), and by NSF Grant PHY0652914 (HJK). DEC acknowledges funding from Fundacio Privada Cellex Barcelona.

  20. Simultaneous Multi-frequency Topological Edge Modes between One-dimensional Photonic Crystals

    OpenAIRE

    Choi, Ka Hei; Ling, C. W.; Lee, K. F.; Tsang, Y. H.; Fung, Kin Hung

    2016-01-01

    We show theoretically that, in the limit of weak dispersion, one-dimensional (1D) binary centrosymmetric photonic crystals can support topological edge modes in all photonic band gaps. By analyzing their bulk band topology, these "harmonic" topological edge modes can be designed in a way that they exist at all photonic band gaps opened at the center of the Brillouin Zone, or at all gaps opened at the zone boundaries, or both. The results may suggest a new approach to achieve robust multi-freq...

  1. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing....

  2. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei;

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  3. Photonic crystal enhanced fluorescence for early breast cancer biomarker detection.

    Science.gov (United States)

    Cunningham, Brian T; Zangar, Richard C

    2012-08-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features.

  4. Single-photon experiments with liquid crystals for quantum science and quantum engineering applications

    Science.gov (United States)

    Lukishova, Svetlana G.; Liapis, Andreas C.; Bissell, Luke J.; Gehring, George M.; Winkler, Justin M.; Boyd, Robert W.

    2015-03-01

    We present here our results on using liquid crystals in experiments with nonclassical light sources: (1) single-photon sources exhibiting antibunching (separation of all photons in time), which are key components for secure quantum communication systems, and (2) entangled photon source with photons exhibiting quantum interference in a Hong-Ou- Mandel interferometer. In the first part, cholesteric liquid crystal hosts were used to create definite circular polarization of antibunched photons emitted by nanocrystal quantum dots. If the photon has unknown polarization, filtering it through a polarizer to produce the desired polarization for quantum key distribution with bits based on polarization states of photons will reduce by half the efficiency of a quantum cryptography system. In the first part, we also provide our results on observation of a circular polarized microcavity resonance in nanocrystal quantum dot fluorescence in a 1-D chiral photonic bandgap cholesteric liquid crystal microcavity. In the second part of this paper with indistinguishable, time-entangled photons, we demonstrate our experimental results on simulating quantum-mechanical barrier tunnelling phenomena. A Hong-Ou-Mandel dip (quantum interference effect) is shifted when a phase change was introduced on the way of one of entangled photons in pair (one arm of the interferometer) by inserting in this arm an electrically controlled planar-aligned nematic liquid crystal layer between two prisms in the conditions close to a frustrated total internal reflection. By applying different AC-voltages to the planar-aligned nematic layer and changing its refractive index, we can obtain various conditions for incident photon propagation - from total reflection to total transmission. Measuring changes of tunnelling times of photon through this structure with femtosecond resolution permitted us to answer some unresolved questions in quantum-mechanical barrier tunnelling phenomena.

  5. Photonic Crystal Laser-Driven Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  6. Porous photonic crystal external cavity laser biosensor

    Science.gov (United States)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-01

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  7. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  8. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.

    Science.gov (United States)

    Arcari, M; Söllner, I; Javadi, A; Lindskov Hansen, S; Mahmoodian, S; Liu, J; Thyrrestrup, H; Lee, E H; Song, J D; Stobbe, S; Lodahl, P

    2014-08-29

    A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of β=98.43%±0.04% for a quantum dot coupled to a photonic crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction.

  9. Gallium nitride based logpile photonic crystals.

    Science.gov (United States)

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  10. Recent advances in liquid-crystal fiber optics and photonics

    Science.gov (United States)

    Woliński, T. R.; Siarkowska, A.; Budaszewski, D.; Chychłowski, M.; Czapla, A.; Ertman, S.; Lesiak, P.; Rutkowska, K. A.; Orzechowski, K.; Sala-Tefelska, M.; Sierakowski, M.; DÄ browski, R.; Bartosewicz, B.; Jankiewicz, B.; Nowinowski-Kruszelnicki, E.; Mergo, P.

    2017-02-01

    Liquid crystals over the last two decades have been successfully used to infiltrate fiber-optic and photonic structures initially including hollow-core fibers and recently micro-structured photonic crystal fibers (PCFs). As a result photonic liquid crystal fibers (PLCFs) have been created as a new type of micro-structured fibers that benefit from a merge of "passive" PCF host structures with "active" LC guest materials and are responsible for diversity of new and uncommon spectral, propagation, and polarization properties. This combination has simultaneously boosted research activities in both fields of Liquid Crystals Photonics and Fiber Optics by demonstrating that optical fibers can be more "special" than previously thought. Simultaneously, photonic liquid crystal fibers create a new class of fiber-optic devices that utilize unique properties of the photonic crystal fibers and tunable properties of LCs. Compared to "classical" photonic crystal fibers, PLCFs can demonstrate greatly improved control over their optical properties. The paper discusses the latest advances in this field comprising PLCFs that are based on nanoparticles-doped LCs. Doping of LCs with nanoparticles has recently become a common method of improving their optical, magnetic, electrical, and physical properties. Such a combination of nanoparticles-based liquid crystals and photonic crystal fibers can be considered as a next milestone in developing a new class of fiber-based optofluidic systems.

  11. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides

    CERN Document Server

    Matsuda, Nobuyuki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya; 10.1364/OE.21.008596

    2013-01-01

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  12. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    Science.gov (United States)

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  13. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei;

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical per...

  14. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    DEFF Research Database (Denmark)

    Lehmann, Tau Bernstorff

    In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single-photon...... purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single-photons...... from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...

  15. High Resolution Refractive Index Sensor Based on the Non-Complete Surface State of 1-D Photonic Crystal.%基于非完整表面缺陷模式的一维光子晶体高分辨率折射率传感器

    Institute of Scientific and Technical Information of China (English)

    闫江周; 吴一辉; 宣明; 郝鹏

    2011-01-01

    介绍了一种新型一维光子晶体非完整表面缺陷模式折射率传感器的原理及方法,并构建了高分辨率、高Q值传感器探测实验系统,利用二甲基砜溶液验证了这种传感器.实验结果表明,该折射率传感器的灵敏度为3 025 nm·RIU-1(Refractive index LJnit),当光谱仪的分辨率为0.01 mn时,传感器的分辨率为3.3×10-6RIU.该传感器的Q值为260,并且在1.4~1.42范围内具有良好的线性度(线性度为0.991 27).文章分析了传感器Q值与光子晶体周期数及被探测液体厚度之间的关系.理论和实验证明这种全反射型光子晶体表面波传感器具有与SPR相似的无标、实时生物检测的特点且可获得更高的探测灵敏度、Q值和分辨率.%A novel refractive index sensor based on one-dimensional photonic crystal non-complete surface defect is introduced and the principle and the method of the sensor are discussed. The experiment system used to detect the refractive index was constructed to get high resolution and high Q-value The sensor is verified by detecting the dimethyl sulphone solution. The experimental result indicates that this refractive index sensor’s sensitivity is 3 025 nm·RIU-1, and when the resolution of spectrometer is 0.01 nm the resolution of this sensor is 3.3× 10-6 RIU. The Q value of this sensor is 260, and the sensor has good linearity in 1.4~1.42 range (the linearity is 0.991 27). It was analyzed how the photonic crystal periodicity and liquid thickness affect the Q value of the sensor. The result proved that this kind of total reflection photonic crystal surface wave sensor is label free,which is similar with SPR sensor, and the sensor has high resolution, high Q-value and has real-time survey characteristic.

  16. Polarization maintaining large-mode area photonic crystal fibre

    DEFF Research Database (Denmark)

    Folkenberg, Jacob Riis; Nielsen, Martin Dybendal; Mortensen, N.A.

    2004-01-01

    We report on a polarization maintaining large mode area photonic crystal fiber. Unlike, previous work on polarization maintaining photonic crystal fibers, birefringence is introduced using stress applying parts. This has allowed us to realize fibers, which are both single mode at any wavelength a...

  17. Light scattering by photonic crystals with a dirac spectrum

    NARCIS (Netherlands)

    Sepkhanov, Ruslan

    2009-01-01

    In this thesis we consider several effects of a Dirac spectrum in photonic crystals on the scattering and propagation of light. We calculate the effect of a Dirac point (a conical singularity in the band structure) on the transmission of radiation through a photonic crystal. We find that the transmi

  18. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  19. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  20. Experimental Characterization of Photonic Band Crystals for Tera Hertz Devices

    Science.gov (United States)

    2004-01-01

    SUBTITLE 5. FUNDING NUMBERS Experimental Characterization of Photonic Band Crystals for Tera F49620-01-1-0484 Hertz Devices 6. AUTHOR(S) Dennis W...01-1-0484 REPORT TITLE: Experimental Characterization of Photonic Band Crystals for Tera Hertz Devices SUBMITTED FOR PUBLICATION TO (applicable only

  1. A photonic crystal fiber with zero dispersion at 1064 nm

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas

    2002-01-01

    We report on the dispersion properties of a single mode, large core photonic crystal fiber. Using white light interferometry the fiber is found to have zero dispersion at 1064 nm......We report on the dispersion properties of a single mode, large core photonic crystal fiber. Using white light interferometry the fiber is found to have zero dispersion at 1064 nm...

  2. [Recent advancement of photonic-crystal-based analytical chemistry].

    Science.gov (United States)

    Chen, Yun; Guo, Zhenpeng; Wang, Jinyi; Chen, Yi

    2014-04-01

    Photonic crystals are a type of novel materials with ordered structure, nanopores/channels and optical band gap. They have hence important applications in physics, chemistry, biological science and engineering fields. This review summarizes the recent advancement of photonic crystals in analytical chemistry applications, with focus on sensing and separating fields happening in the nearest 5 years.

  3. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  4. Light scattering by photonic crystals with a dirac spectrum

    NARCIS (Netherlands)

    Sepkhanov, Ruslan

    2009-01-01

    In this thesis we consider several effects of a Dirac spectrum in photonic crystals on the scattering and propagation of light. We calculate the effect of a Dirac point (a conical singularity in the band structure) on the transmission of radiation through a photonic crystal. We find that the

  5. High-speed photodetectors in a photonic crystal platform

    DEFF Research Database (Denmark)

    Ottaviano, Luisa; Semenova, Elizaveta; Schubert, Martin;

    2012-01-01

    We demonstrate a fast photodetector (f3dB > 40GHz) integrated into a high-index contrast photonic crystal platform. Device design, fabrication and characterization are presented.......We demonstrate a fast photodetector (f3dB > 40GHz) integrated into a high-index contrast photonic crystal platform. Device design, fabrication and characterization are presented....

  6. Coherent Cherenkov radiation and laser oscillation in a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Meer, R; Strooisma, A; van der Slot, P J M; Vos, W L; Boller, K J

    2016-01-01

    We demonstrate that photonic crystals can be used to generate powerful and highly coherent laser radiation when injecting a beam of free electrons. Using theoretical investigations we present the startup dynamics and coherence properties of such laser, in which gain is provided by matching the optical phase velocity in the photonic crystal to the velocity of the electron beam.

  7. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  8. Microbending in photonic crystal fibres - an ultimate loss limit?

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Hansen, Theis Peter; Hougaard, Kristian G.;

    2001-01-01

    Microbending losses are for the first time estimated in index-guiding photonic crystal fibres, and comparisons with standard step-index fibres are made. The results indicate that typical photonic crystal fibres are significantly less sensitive (one order of magnitude smaller loss) towards...

  9. Controlled coupling of photonic crystal cavities using photochromic tuning

    CERN Document Server

    Cai, Tao; Solomon, Glenn S; Waks, Edo

    2013-01-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  10. Fabrication and measurements on coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Nielsen, Henri Thyrrestrup; Frandsen, Lars Hagedorn;

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...

  11. Controlling Anderson localization in disordered photonic crystal waveguides

    CERN Document Server

    Garcia, P D; Stobbe, S; Lodahl, P

    2010-01-01

    We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length shows a 10-fold variation between the fast- and the slow-light regime and, in the latter case, it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of the localization length demonstrates the close relation between Anderson localization and the photon density of states in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson localization for efficient light confinement.

  12. High-Q aluminum nitride photonic crystal nanobeam cavities

    CERN Document Server

    Pernice, W H P; Schuck, C; Tang, H X

    2012-01-01

    We demonstrate high optical quality factors in aluminum nitride (AlN) photonic crystal nanobeam cavities. Suspended AlN photonic crystal nanobeams are fabricated in sputter-deposited AlN-on-insulator substrates using a self-protecting release process. Employing one-dimensional photonic crystal cavities coupled to integrated optical circuits we measure quality factors up to 146,000. By varying the waveguide-cavity coupling gap, extinction ratios in excess of 15 dB are obtained. Our results open the door for integrated photonic bandgap structures made from a low loss, wide-transparency, nonlinear optical material system.

  13. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist...... of a periodic microstructure, resulting in a fibre with very different properties compared to conventional optical fibres. The properties of photonic crystals fibres are described, with focus on the advantages this technology provides compared to conventional fibres, within the area of optical amplification....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal fibres...

  14. Photonic-crystal slab for terahertz-wave technology platform

    Science.gov (United States)

    Fujita, Masayuki

    2016-03-01

    Photonic crystals manipulate photons in a manner analogous to solid-state crystals, and are composed of a dielectric material with a periodic refractive index distribution. In particular, two-dimensional photonic-crystal slabs with high index contrasts (semiconductor/air) are promising for practical applications, owing to the strong optical confinement in simple, thin planar structures. This paper presents the recent progress on a silicon photonic-crystal slab as a technology platform in the terahertz-wave region, which is located between the radio and light wave regions (0.1-10 THz). Extremely low-loss (edge effect are demonstrated. Terahertz photonic-crystal slabs hold the potential for developing ultralow-loss, compact terahertz components and integrated devices used in applications including wireless communication, spectroscopic sensing, and imaging.

  15. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  16. Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection

    OpenAIRE

    Cunningham, Brian T.; Zangar, Richard C.

    2012-01-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to ine...

  17. Density of states governs light scattering in photonic crystals

    CERN Document Server

    García, P D; Froufe-Pérez, Luis S; López, C

    2008-01-01

    We describe a smooth transition from (fully ordered) photonic crystal to (fully disordered) photonic glass that enables us to make an accurate measurement of the scattering mean free path in nanostructured media and, in turn, establishes the dominant role of the density of states. We have found one order of magnitude chromatic variation in the scattering mean free path in photonic crystals for just $\\sim 3%$ shift around the band-gap ($\\sim 27$ nm in wavelength).

  18. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Jesus Eduardo Lugo; Rafael Doti; Jocelyn Faubert

    2011-01-01

    BACKGROUND: Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity d...

  19. Tuning light focusing with liquid crystal infiltrated graded index photonic crystals

    Science.gov (United States)

    Rezaei, B.; Giden, I. H.; Kurt, H.

    2017-01-01

    We perform numerical analyses of tunable graded index photonic crystals based on liquid crystals. Light manipulation with such a photonic medium is explored and a new approach for active tuning of the focal distance is proposed. The graded index photonic crystal is realized using the symmetry reduced unit element in two-dimensional photonic crystals without modifying the dielectric filling fraction or cell size dimensions. By applying an external static electric field to liquid crystals, their refractive indices and thus, the effective refractive index of the whole graded index photonic crystal will be changed. Setting the lattice constant to a=400 nm yields a tuning of 680 nm for focal point position. This property can be used for designing an electro-optic graded index photonic crystal-based flat lens with a tunable focal point. Future optical systems may have benefit from such tunable graded index lenses.

  20. Optical wave propagation in photonic crystal metamaterials

    Science.gov (United States)

    Khan, Kaisar; Mnaymneh, Khaled; Awad, Hazem; Hasan, Imad; Hall, Trevor

    2014-09-01

    Metamaterials that provide negative refraction can be implemented in photonic crystals (PhCs) through careful design of the devices. Theoretically, we demonstrate that the dispersion can be altered to achieve negative refraction. This can be done through engineering the geometry of the device as well as selecting appropriate materials. The PhC also demonstrates slow light that facilitate sensing chemicals or biological agents. Using metallic materials such as gold nano-particle enables PhCs to guide optical waves in desired pathways. Also using magnetic materials such as highly doped n-GaAs, we can tune the band gap by changing magnetic field. The simulated results are consistent with some of the previously reported experimental results and give us guidance for future experiments.

  1. Stable planar mesoscopic photonic crystal cavities

    CERN Document Server

    Magno, Giovanni; Grande, Marco; Lozes-Dupuy, Françoise; Gauthier-Lafaye, Olivier; Calò, Giovanna; Petruzzelli, Vincenzo

    2014-01-01

    Mesoscopic self-collimation in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high-Q factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, due to a beam focusing effect that stabilises the cavity even for small beam sizes, resembling the focusing behaviour of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness. A Q factor higher than 10^4 has been achieved for an optimized 5-period-long mirror cavity. The optimization of the Q factor and the performances in terms of energy storage, field enhancement and confinement are detailed.

  2. Topology optimised planar photonic crystal building blocks

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Hede, K. K.; Borel, Peter Ingo

    A photonic crystal waveguide (PhCW) 1x4 splitter has been constructed from PhCW 60° bends1 and Y-splitters2 that have been designed individually by utilising topology optimisation3. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1) and exhibits a broadband splitting...... for the TE-polarisation with an average excess loss of 1.55±0.54 dB for a 110 nm bandwidth. The 1x4 splitter demonstrates that individual topology-optimised parts can be used as building blocks to realise high-performance nanophotonic circuits. 1L. H. Frandsen et al., Opt. Express 12, 5916-5921 (2004) 2P. I...

  3. Polarization modulation instability in photonic crystal fibers.

    Science.gov (United States)

    Kruhlak, R J; Wong, G K; Chen, J S; Murdoch, S G; Leonhardt, R; Harvey, J D; Joly, N Y; Knight, J C

    2006-05-15

    Polarization modulation instability (PMI) in birefringent photonic crystal fibers has been observed in the normal dispersion regime with a frequency shift of 64 THz between the generated frequencies and the pump frequency. The generated sidebands are orthogonally polarized to the pump. From the observed PMI frequency shift and the measured dispersion, we determined the phase birefringence to be 5.3 x 10(-5) at a pump wavelength of 647.1 nm. This birefringence was used to estimate the PMI gain as a function of pump wavelength. Four-wave mixing experiments in both the normal and the anomalous dispersion regimes generated PMI frequency shifts that show good agreement with the predicted values over a 70 THz range. These results could lead to amplifiers and oscillators based on PMI.

  4. Enhanced photoacoustic detection using photonic crystal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  5. Photonic crystal surface waves for optical biosensors.

    Science.gov (United States)

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  6. Tailoring quantum structures for active photonic crystals

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda

    This work is dedicated to the tailoring of quantum structures, with particular attention to the integration of selective area grown (SAG) active material into photonic crystal (PhC) slabs. The platform based on active PhC is vital to the realization of highly efficient elements with low energy...... consumption for on-chip and chip-to-chip optical communication. In order to develop metal-organic vapor phase epitaxial selective area etching and growth, a mask was fabricated in the HSQ e-beam resist including optimization of exposure and development conditions. By use of CBr4 as an etchant, in situ etching...... area and between the structures oriented along the [0-1-1] and [0-11] directions. Strong wavelength dependence with variations of the mask width of a few μm and opening sizes of hundreds of nanometers was observed. Incorporation of an active medium into PhC structures has showed promising results...

  7. Photonic crystal based polarization insensitive flat lens

    Science.gov (United States)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-07-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a/λ  =  0.280 and a/λ  =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25λ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  8. Photonic Crystal Waveguides in Terahertz Regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huaiwu, E-mail: hwzhang@uestc.edu.cn [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2011-02-01

    Using the finite difference time domain method, the electromagnetic field distribution of THz waves in photonic crystals (PCs) T-splitters and Y-splitters had been simulated. The simulation results show that those different T-splitters and Y-splitters can divide the power in an input wave guide equally between two output waveguides. By the improved T-splitter with a rod in the junction, we achieved the 84% amplitude- frequency characteristics consistency of pass-band from 1.12 THz to 1.22 THz, and surpass the 76% consistency of common T-splitter. The improved Y-splitter with a rod in the junction and without rod in the corners has widest -3db bandwidth 0.224 THz, and the amplitude reaches 1655.727. The improved Y-splitter has better performance than other Y-splitters. Introducing the photonic band gap structure with L-type defect composed of three defects. Three high-Q resonant frequencies appeared simultaneously in some monitor coordinates. The wavelength-add-drop properties of L-type defects may be used in multi-carrier communication and multi-frequency-monitoring for the THz regime. Also, a carefully designed PCs can be used as high Q narrowband filter in THz band. These results provide a useful guide and a theoretical basis for the developments of THz functional components.

  9. Modeling of photonic crystal waveguide structures

    Science.gov (United States)

    Richter, Ivan; Kwiecien, Pavel; Šiňor, Milan; Haiduk, Adam

    2007-05-01

    Photonic crystal (PhC) structures and photonic structures based on them represent nowadays very promising structures of artificial origin. Since they exhibit very specific properties and characteristics that can be very difficult (or even impossible) to realize by other means, they represent a significant part of new artificially made metamaterial classes. For studying and modeling properties of PhC structures, we have applied, implemented and partially improved various complementary techniques: the 2D plane wave expansion (PWE) method, and the 2D finite-difference time-domain (FDTD) method with perfectly matched layers. Also, together with these in-house methods, other tools available in the field have been applied, including, e.g. MIT MPB (PWE), F2P (FDTD) and CAMFR (bidirectional expansion and propagation mode matching method) packages. We have applied these methods to several PhC waveguide structure examples, studying the effects of varying the key parameters and geometry. Such a study is relevant for proper understanding of physical mechanisms and for optimization and fabrication recommendations. Namely, in this contribution, we have concentrated on several examples of PhC waveguide structure simulations, of two types of guides (dielectric-rode type and air-hole type), with several geometries: rectangular lattice with either rectangular or chessboard inclusions. The modeling results are compared and discussed.

  10. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  11. Optical limiter based on two-dimensional nonlinear photonic crystals

    Science.gov (United States)

    Belabbas, Amirouche; Lazoul, Mohamed

    2016-04-01

    The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.

  12. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-02-09

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  13. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  14. Tunable defect mode realized by graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail: dhtyyobdc@126.com; Lv, Bo

    2016-04-29

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band. - Highlights: • A novel PhC embedded with grapheme sheets is presented, tunable defect is realized. • The mechanism of the tunable defect is explained using the change of equivalent thickness. • The electromagnetic force of a slab is calculated, which indicates the structure can serve as a tunable force generator.

  15. Topological modes in one-dimensional solids and photonic crystals

    Science.gov (United States)

    Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh

    2016-03-01

    It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.

  16. Photonic crystal fiber with novel dispersion properties

    Institute of Scientific and Technical Information of China (English)

    Shuqin LOU; Shujie LOU; Tieying GUO; Liwen WANG; Weiguo CHEN; Honglei LI; Shuisheng JIAN

    2009-01-01

    Our recent research on designing microstruc-tured fiber with novel dispersion properties is reported in this paper. Two kinds ofphotonic crystal fibers (PCFs) are introduced first. One is the highly nonlinear PCF with broadband nearly zero flatten dispersion. With introducing the germanium-doped (Ge-doped) core into highly non-linear PCF and optimizing the diameters of the first two inner rings of air holes, a new structure of highly non-linear PCF was designed with the nonlinear coefficient up to 47 W-1·km-1 at the wavelength 1.55 μm and nearly zero flattened dispersion of ±0.5 ps/(km·nm) in telecom-munication window (1460-1625nm). Another is the highly negative PCF with a ring of fluorin-doped (F-doped) rods to form its outer ring core while pure silica rods to form its inner core. The peak dispersion - 1064 ps/(km·nm) in 8 nm full width at half maximum (FWHM) wavelength range and -365ps/(km·nm) in 20nm (FWHM) wavelength range can be reached by adjusting the structure parameters. Then, our recent research on the fabrication of PCFs is reported. Effects of draw parameters such as drawing temperature, feed speed, and furnace temperature on the geometry of the final photonic crystal fiber are investigated.

  17. Peculiarities of the band structure of multi-component photonic crystals with different dimensions.

    Science.gov (United States)

    Samusev, A K; Samusev, K B; Rybin, M V; Limonov, M F

    2010-03-24

    In this work we offer a simple analytical method which allows us to determine and study the effects of the selective switching of photonic stop-bands in multi-component photonic crystals (Mc-PhCs) of any dimensionality. The calculations for Mc-PhCs with low dielectric contrast have been performed in the framework of the model based on the scattering form factor analysis. It has been shown that the effects of selective switching of photonic stop-bands predicted theoretically and found experimentally before in three-dimensional (3D) Mc-PhC have a general character and may be observed also in one-dimensional (1D) and two-dimensional (2D) Mc-PhCs. It is found that 1D, 2D and 3D Mc-PhCs demonstrate unexpectedly similar quasi-periodic behaviour of photonic stop-bands as a function of the reciprocal lattice vector. A proper choice of the structural and dielectric parameters can create a resonance photonic stop-band determining the Bragg wavelengths, to which a photonic crystal can never be transparent.

  18. Peculiarities of the band structure of multi-component photonic crystals with different dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Samusev, A K; Samusev, K B; Rybin, M V; Limonov, M F, E-mail: m.rybin@mail.ioffe.r [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St Petersburg 194021 (Russian Federation)

    2010-03-24

    In this work we offer a simple analytical method which allows us to determine and study the effects of the selective switching of photonic stop-bands in multi-component photonic crystals (Mc-PhCs) of any dimensionality. The calculations for Mc-PhCs with low dielectric contrast have been performed in the framework of the model based on the scattering form factor analysis. It has been shown that the effects of selective switching of photonic stop-bands predicted theoretically and found experimentally before in three-dimensional (3D) Mc-PhC have a general character and may be observed also in one-dimensional (1D) and two-dimensional (2D) Mc-PhCs. It is found that 1D, 2D and 3D Mc-PhCs demonstrate unexpectedly similar quasi-periodic behaviour of photonic stop-bands as a function of the reciprocal lattice vector. A proper choice of the structural and dielectric parameters can create a resonance photonic stop-band determining the Bragg wavelengths, to which a photonic crystal can never be transparent.

  19. The influence of a power law distribution of cluster size on the light transmission of disordered 1D photonic structures

    CERN Document Server

    Bellingeri, Michele

    2014-01-01

    A better understanding of the optical properties of random photonic structures is beneficial for many applications, such as random lasing, optical imaging and photovoltaics. Here we investigated the light transmission properties of disordered photonic structures in which the high refractive index layers are aggregated in clusters. We sorted the size of the clusters from a power law distribution tuning the exponent a of the distribution function. The sorted high refractive layer clusters are randomly distributed within the low refractive index layers. We studied the total light transmission, within the photonic band gap of the corresponding periodic crystal, as a function of the exponent in the distribution. We observed that, for a within the interval [0,3.5], the trend can be fitted with a sigmoidal function.

  20. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  1. Transmission measurement of the photonic band gap of GaN photonic crystal slabs

    NARCIS (Netherlands)

    Caro, J.; Roeling, E.M.; Rong, B.; Nguyen, H.M.; Van der Drift, E.W.J.M.; Rogge, S.; Karouta, F.; Van der Heijden, R.W.; Salemink, H.W.M.

    2008-01-01

    A high-contrast-ratio (30 dB) photonic band gap in the near-infrared transmission of hole-type GaN two-dimensional photonic crystals (PhCs) is reported. These crystals are deeply etched in a 650 nm thick GaN layer grown on sapphire. A comparison of the measured spectrum with finite difference time d

  2. Photonic and plasmonic guiding modes in graphene-silicon photonic crystals

    CERN Document Server

    Gu, Tingyi; Hao, Yufeng; Li, Yilei; Hone, James; Wong, Chee Wei; Lavrinenko, Andrei; Low, Tony; Heinz, Tony F

    2015-01-01

    We report systematic studies of plasmonic and photonic guiding modes in large-area chemical-vapor-deposition-grown graphene on nanostructured silicon substrates. Light interaction in graphene with substrate photonic crystals can be classified into four distinct regimes depending on the photonic crystal lattice constant and the various modal wavelengths (i.e. plasmonic, photonic and free-space). By optimizing the design of the substrate, these resonant modes can magnify the graphene absorption in infrared wavelength, for efficient modulators, filters, sensors and photodetectors on silicon photonic platforms.

  3. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng;

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending...... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators......, filters, sensors, and photodetectors utilizing silicon photonic platforms....

  4. Laser emissions from one-dimensional photonic crystal rings on silicon-dioxide

    Science.gov (United States)

    Lu, Tsan-Wen; Tsai, Wei-Chi; Wu, Tze-Yao; Lee, Po-Tsung

    2013-02-01

    In this report, we design and utilize one-dimensional photonic crystal ring resonators (1D PhCRRs) to realize InGaAsP/SiO2 hybrid lasers via adhesive bonding technique. Single-mode lasing with low threshold from the dielectric mode is observed. To further design a nanocavity with mode gap effect in 1D PhCRR results in the reduced lasing threshold and increased vertical laser emissions, owing to the reduced dielectric mode volume and the broken rotational symmetry by the nanocavity. Such hybrid lasers based on 1D PhC rings provides good geometric integration ability and new scenario for designing versatile devices in photonic integrated circuits.

  5. Microassembly of semiconductor three-dimensional photonic crystals.

    Science.gov (United States)

    Aoki, Kanna; Miyazaki, Hideki T; Hirayama, Hideki; Inoshita, Kyoji; Baba, Toshihiko; Sakoda, Kazuaki; Shinya, Norio; Aoyagi, Yoshinobu

    2003-02-01

    Electronic devices and their highly integrated components formed from semiconductor crystals contain complex three-dimensional (3D) arrangements of elements and wiring. Photonic crystals, being analogous to semiconductor crystals, are expected to require a 3D structure to form successful optoelectronic devices. Here, we report a novel fabrication technology for a semiconductor 3D photonic crystal by uniting integrated circuit processing technology with micromanipulation. Four- to twenty-layered (five periods) crystals, including one with a controlled defect, for infrared wavelengths of 3-4.5 microm, were integrated at predetermined positions on a chip (structural error crystals for such short wavelengths have not been reported before. This technology offers great potential for the production of optical wavelength photonic crystal devices.

  6. High extinction ratio bandgap of photonic crystals in LNOI wafer

    Science.gov (United States)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang

    2017-02-01

    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  7. Coupling light in photonic crystal waveguides: A review

    Science.gov (United States)

    Dutta, Hemant Sankar; Goyal, Amit Kumar; Srivastava, Varun; Pal, Suchandan

    2016-07-01

    Submicron scale structures with high index contrast are key to compact structures for realizing photonic integrated structures. Ultra-compact optical devices in silicon-on-insulator (SOI) substrates serve compatibility with semiconductor fabrication technology leading to reduction of cost and mass production. Photonic crystal structures possess immense potential for realizing various compact optical devices. However, coupling light to photonic crystal waveguide structures is crucial in order to achieve strong transmission and wider bandwidth of signal. Widening of bandwidth will increase potential for various applications and high transmission will make easy signal detection at the output. In this paper, the techniques reported so far for coupling light in photonic crystal waveguides have been reviewed and analyzed so that a comprehensive guide for an efficient coupling to photonic crystal waveguides can be made possible.

  8. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2008-12-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein tumor necrosis factor-alpha (TNFalpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least 5-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/mL to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide--a decrease from 18 to 6 pg/mL. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  9. Self-collimation in photonic crystals with anisotropic constituents

    Institute of Scientific and Technical Information of China (English)

    J. W. Haus; M. Siraj; P. Prasad; P. Markowicz

    2007-01-01

    @@ In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) crystal are used in our model to demonstrate the efficacy of the self-collimation features.

  10. Photonic crystal alloys: a new twist in controlling photonic band structure properties.

    Science.gov (United States)

    Kim, Hee Jin; Kim, Dong-Uk; Roh, Young-Geun; Yu, Jaejun; Jeon, Heonsu; Park, Q-Han

    2008-04-28

    We identified new photonic structures and phenomenon that are analogous to alloy crystals and the associated electronic bandgap engineering. From a set of diamond-lattice microwave photonic crystals of randomly mixed silica and alumina spheres but with a well defined mixing composition, we observed that both bandedges of the L-point bandgap monotonically shifted with very little bowing as the composition was varied. The observed results were in excellent agreement with the virtual crystal approximation theory originally developed for electronic properties of alloy crystals. This result signifies the similarity and correspondence between photonics and electronics.

  11. Bending Loss Analysis of Optical Fiber with Out-Cladding of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type of optical fiber is presented here. It consists of a coaxial optical fiber, bounded by dielectric, multilayer and omnidirectional reflecting mirrors. Jones matrix method is used to analyze the influence of the layer number of one-Dimensional (1D) photonic crystals on their reflectivity. The numerical results show that this type of fiber can be used to guide light around sharp bends whose radius of curvature can be as small as the wavelength of light without significant scattering losses.

  12. Design and Fabrication of Photonic Crystal Materials and Components

    DEFF Research Database (Denmark)

    Harpøth, Anders

    2005-01-01

    in the deposited silicon films and to open for a potential use with photonic crystals. In relation to photonic crystal structures, different properties have been investigated by using modelling tools such as the plane wave expansion method and the Finite-Difference Time-Domain method. Furthermore different......The work described in this thesis covers the issues of producing materials for use as base material for fabricating photonic crystals and the design, fabrication and characterization of photonic crystal components. One of the aims is to investigate the possibilities of fabricating a silicon...... is in principle rather straightforward and benefits from being much cheaper compared to acquiring commercially available SOI substrates. Different issues as deposition temperature, surface roughness, crystallization, and silicon waveguide geometries have been investigated in order to reduce the optical loss...

  13. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-Ying; SHI Jin-Hui; YUAN Li-Bo

    2008-01-01

    A polarizing beam splitter(PBS)and a non-polarizing beam splitter(NPBS)based on a photonic crystal(PC)directional coupler are demonstrated.The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap.The photonic band structure and the band gap map are calculated using the plane wave expansion(PWE)method.The splitting properties of the splitter are investigated numerically using the finite difference time domain(FDTD)method.

  14. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  15. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.

    Science.gov (United States)

    Tolmachev, V; Perova, T; Moore, R

    2005-10-17

    A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

  16. Two-dimensionally confined topological edge states in photonic crystals

    Science.gov (United States)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  17. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    CERN Document Server

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  18. A new approach to low loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Zhang, Min; Groothoff, Nathaniel

    /Λ to 0.388 a low loss transmission band is created below the traditional photonic crystal guiding band. Furthermore this low loss band has sharply defined cutoffs transmission edges for devices with a length of 50 μm or longer. Finite difference time domain and plane wave expansion simulations confirm......Photonic crystal waveguides allow ultra-compact realization of integrated optical components because they have high group index. However, they also induce significant losses in effect reducing the scope of their applications. We find that by increasing the photonic crystal hole to pitch ratio r...

  19. Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms.

    Science.gov (United States)

    Momeni, Babak; Huang, Jiandong; Soltani, Mohammad; Askari, Murtaza; Mohammadi, Saeed; Rakhshandehroo, Mohammad; Adibi, Ali

    2006-03-20

    Here, we demonstrate a compact photonic crystal wavelength demultiplexing device based on a diffraction compensation scheme with two orders of magnitude performance improvement over the conventional superprism structures reported to date. We show that the main problems of the conventional superprism-based wavelength demultiplexing devices can be overcome by combining the superprism effect with two other main properties of photonic crystals, i.e., negative diffraction and negative refraction. Here, a 4-channel optical demultiplexer with a channel spacing of 8 nm and cross-talk level of better than -6.5 dB is experimentally demonstrated using a 4500 microm(2) photonic crystal region.

  20. Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539-4553 (2005)]. An extensive numerical investigation...... of the influence of key parameters of the active sections and the photonic crystal cavity on the laser performance is presented. The results show the possibility of generating stable and high quality pulses in a large parameter region. For optimized dispersion properties of the photonic crystal waveguide cavity......, the pulses have sub picosecond widths and are nearly transform limited....

  1. A new approach to low loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Zhang, Min; Groothoff, Nathaniel;

    /Λ to 0.388 a low loss transmission band is created below the traditional photonic crystal guiding band. Furthermore this low loss band has sharply defined cutoffs transmission edges for devices with a length of 50 μm or longer. Finite difference time domain and plane wave expansion simulations confirm......Photonic crystal waveguides allow ultra-compact realization of integrated optical components because they have high group index. However, they also induce significant losses in effect reducing the scope of their applications. We find that by increasing the photonic crystal hole to pitch ratio r...

  2. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width...... quantum optical properties for single photon application and quantum optics.......We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer...

  3. Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications.

    Science.gov (United States)

    Celanovic, Ivan; O'Sullivan, Francis; Ilak, Milos; Kassakian, John; Perreault, David

    2004-04-15

    We explore the optical characteristics and fundamental limitations of one-dimensional (1D) photonic crystal (PhC) structures as means for improving the efficiency and power density of thermophotovoltaic (TPV) and microthermophotovoltaic (MTPV) devices. We analyze the optical performance of 1D PhCs with respect to photovoltaic diode efficiency and power density. Furthermore, we present an optimized dielectric stack design that exhibits a significantly wider stop band and yields better TPV system efficiency than a simple quarter-wave stack. The analysis is done for both TPV and MTPV devices by use of a unified modeling framework.

  4. 入射角度对一维光子晶体禁带的调制研究%Research on Modulation of Incidence Angle to Photonic Band Gap of One-dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    高永芳; 时家明; 赵大鹏

    2011-01-01

    利用特征矩阵法,分别研究了不同偏振方式的波入射到光子晶体时,光子晶体的禁带随入射角度的变化.结果表明:不论是TM波入射还是TE波入射,随着入射角度的增大,光子晶体的带隙都向短波方向移动;TM波入射时,光子晶体的带隙随入射角度的增大而减小,而以TE波入射光子晶体时,随着入射角度的增大,光子晶体的带隙逐渐增大.%The relationship of photonic band gap characteristics of photonic crystals and the different incidence angle were researched by characteristic matrix method. The result shows that the photonic band gap of 1D photonic crystals moves towards shortwave when incidence angle increase, no matter the incidence wave is TM wave or TE wave; the photonic band gap of 1D photonic crystals of TM wave decreases when the incidence angle increase, the photonic band gap of 1 D photonic crystals of TE wave increases when the incidence angle increase. This work provides a valuable reference to the design and application of infrared camouflage using one dimensional photonic crystals.

  5. Miniaturized Bragg-grating couplers for SiN-photonic crystal slabs.

    Science.gov (United States)

    Barth, Carlo; Wolters, Janik; Schell, Andreas W; Probst, Jürgen; Schoengen, Max; Löchel, Bernd; Kowarik, Stefan; Benson, Oliver

    2015-04-20

    We report on an experimental and theoretical investigation of an integrated Bragg-like grating coupler for near-vertical scattering of light from photonic crystal waveguides with an ultra-small footprint of a few lattice constants only. Using frequency-resolved measurements, we find the directional properties of the scattered radiation and prove that the coupler shows a good performance over the complete photonic bandgap. The results compare well to analytical considerations regarding 1d-scattering phenomena as well as to FDTD simulations.

  6. Photonic Band Gap in 1D Multilayers Made by Alternating SiO2 or PMMA with monolayer MoS2 or WS2

    CERN Document Server

    del Valle, Diana Gisell Figueroa; Scotognella, Francesco

    2015-01-01

    Atomically thin molybdenum disulphide (MoS2) and tungsten disulphide (WS2) are very interesting two dimensional materials for optics and electronics. In this work we show the possibility to obtain one-dimensional photonic crystals consisting of low-cost and easy processable materials, as silicon dioxide (SiO2) or poly methyl methacrylate (PMMA), and monolayers of MoS2 or WS2. We have simulated the transmission spectra of the photonic crystals using the transfer matrix method and employing the wavelength dependent refractive indexes of the materials. This study envisages the experimental fabrication of these new types of photonic crystals for photonic and light emission applications.

  7. Gold Nanoparticles in Photonic Crystals Applications: A Review

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-01-01

    Full Text Available This review concerns the recently emerged class of composite colloidal photonic crystals (PCs, in which gold nanoparticles (AuNPs are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  8. Nanoplasmonic photonic crystal diatoms and phytoliths

    Science.gov (United States)

    Andrews, Mark P.; Hajiaboli, Ahmadreza; Hiltz, Jonathan; Gonzalez, Timothy; Singh, Gursimranbir; Lennox, R. Bruce

    2011-03-01

    Evidence is emerging that silica-containing plant cells (phytoliths) and single cell micro-organisms (diatoms) exhibit optical properties reminiscent of photonic crystals. In the latter biosilicates, these properties appear to arise from light interactions with the intricate periodic patterns of micro- and nano-pores called foramina that are distributed over the frustule (outer silica shell). In this report, we show that Nitzschia Closterium pennate diatom frustules can be used to template arrays of nanoplasmonic particles to confer more complex physical properties, as shown by simulation and experiment. Selective templating of silver and gold nanoparticles in and around the array of pores was achieved by topochemical functionalization with nanoparticles deposited from solution, or by differential wetting/dewetting of evaporated gold films. The nanoplasmonic diatom frustules exhibit surface enhanced Raman scattering from chemisorbed 4-aminothiophenol. Thermally induced dewetting of gold films deposited on a frustule produces two classes of faceted gold nanoparticles. Larger particles of irregular shape are distributed with some degree of uniaxial anisotropy on the surface of the frustule. Smaller particles of more uniform size are deposited in a periodic manner in the frustule pores. It is thought that surface curvature and defects drive the hydrodynamic dewetting events that give rise to the different classes of nanoparticles. Finite difference time domain calculations on an idealized nanoplasmonic frustule suggest a complex electromagnetic field response due to coupling between localized surface plasmon modes of the nanoparticles in the foramina and an overlayer gold film.

  9. Tunable nonlinear beam defocusing in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H; Neshev, Dragomir N.;

    2007-01-01

    We demonstrate a novel experimental platform for discrete nonlinear optics based on infiltrated photonic crystal fibers. We observe tunable discrete diffraction and nonlinear self-defocusing, and apply the effects to realize a compact all-optical power limiter....

  10. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    OpenAIRE

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.

  11. All-optical gates based on photonic crystal resonators

    Science.gov (United States)

    Moille, Grégory; De Rossi, Alfredo; Combrié, Sylvain

    2016-04-01

    We briefly review the technology of advanced nonlinear resonators for all-optical gating with a specific focus on the application of high-performance signal sampling and on the properties of III-V semiconductor photonic crystals

  12. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  13. Linear Amplification of Optical Signal in Coupled Photonic Crystal Waveguides

    CERN Document Server

    Jandieri, Vakhtang

    2015-01-01

    We introduce a weakly coupled photonic crystal waveguide as a promising and realistic model for all-optical amplification. A symmetric pillar type coupled photonic crystal waveguide consisting of dielectric rods periodically distributed in a free space is proposed as all-optical amplifier. Using the unique features of the photonic crystals to control and guide the light, we have properly chosen the frequency at which only one mode (odd mode) becomes the propagating mode in the coupled photonic crystal waveguide, whereas another mode (even mode) is completely reflected from the guiding structure. Under this condition, the all-optical amplification is fully realized. The amplification coefficient for the continuous signal and the Gaussian pulse is calculated.

  14. Nanoimprint Lithography of Topology Optimized Photonic Crystal Devices

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn; Nielsen, Theodor

    2006-01-01

    We demonstrate a nanoimprint process for fabrication of photonic crystal devices. The nanoimprint process, defining stamp patterns in a thin e-beam resist, yields improved pattern replication compared to direct e-beam writing of the devices....

  15. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong;

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...... in the photonic crystal waveguide is addressed to explain the spiky character of both the transmission and group index spectra. The profile of the slow-light modes is stretched out into the first and second rows of the holes closest to the waveguide channel. One of our strategies to ameliorate the design...... of photonic crystal devices is to engineer the radii of holes in these rows. A topology optimization approach is also utilized to make further improvements. The results of the numerical simulations and the optical characterization of fabricated devices such as straight waveguides with bends and couplers...

  16. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  17. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...

  18. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  19. A leap over Dirac cones in one-dimensional graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jahani, D., E-mail: dariush110@gmail.com [Young Researchers and Elite Club, Kermanshah branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Abaspour, L.; Soltani-Vala, A.; Barvestani, J. [Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2016-06-15

    The existence of a photonic bandgap in the visible range of light spectrum corresponding to a 1D graphene-based photonic crystal which recently has been proposed and is formed by embedding alternatively graphene layers into a dielectric background is investigated in this paper. By the use of the complete form of optical conductivity for the full expression of the tight-binding Hamiltonian of graphene layer, we numerically demonstrate an appeared bandgap in the visible region of the spectrum which can open up new route for further high-frequency applications of graphene-based photonic devices. It is revealed that the associated bandgap could be altered by changing the hopping energy and the amount of chemical potential leading to broadening the forbidden frequency regions with further increasing. Finally, it is also shown that the tunability feature of the photonic bandgap could be affected by changing the hopping energy.

  20. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  1. Symmetric two dimensional photonic crystal coupled waveguide with point defect for optical switch application

    CERN Document Server

    Hardhienata, Hendradi

    2012-01-01

    Two dimensional (2D) photonic crystals are well known for its ability to manipulate the propagation of electromagnetic wave inside the crystal. 1D and 2D photonic crystals are relatively easier to fabricate than 3D because the former work in the microwave and far infrared regions whereas the later work in the visible region and requires smaller lattice constants. In this paper, simulation for a modified 2D PC with two symmetric waveguide channels where a defect is located inside one of the channel is performed. The simulation results show that optical switching is possible by modifying the refractive index of the defect. If more than one structure is applied this feature can potentially be applied to produce a cascade optical switch.

  2. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  3. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  4. Phase-locking regimes of photonic crystal nanocavity laser arrays

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    We model and analyze the dynamical properties of coupled photonic crystal nanocavity lasers. The model includes Purcell enhancement of the spontaneous emission and intercavity coupling. The coupling strength between neighboring cavities is an essential parameter, and by performing finite-differen......We model and analyze the dynamical properties of coupled photonic crystal nanocavity lasers. The model includes Purcell enhancement of the spontaneous emission and intercavity coupling. The coupling strength between neighboring cavities is an essential parameter, and by performing finite...

  5. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  6. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  7. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren

    2010-01-01

    of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is shorter than...... the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  8. Photonic crystal waveguides based on an antiresonant reflecting platform

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Frandsen, Lars Hagedorn; Fage-Pedersen, Jacob

    2005-01-01

    We apply the antiresonant reflecting layers arrangement to silicon-on-insulator based photonic crystal waveguides. Several layered structures with different combinations of materials (Si-SiO2, Si3N4-SiO2) and layer topology have been analysed. Numerical modelling using 3D Finite-Difference Time......-Domain method reveals promising low-loss results with potential for competing with membrane-like photonic crystal waveguides....

  9. Comprehensive FDTD modelling of photonic crystal waveguide components

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Borel, Peter Ingo; Frandsen, Lars Hagedorn

    2004-01-01

    Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission...... spectra for various photonic crystal waveguides. It is found that within the experimental fabrication tolerances the calculations correctly predict the measured transmission levels and other major transmission features....

  10. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  11. New design of 2-D photonic crystal waveguide couplers

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun

    2006-01-01

    @@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.

  12. Photonic Crystal Fibres - the State-of-the-Art

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Hansen, K. P.; Hansen, Theis Peter;

    2002-01-01

    Photonic crystal fibres having microstructured air-silica cross sections offer new optical properties compared to conventional fibres. These include novel guiding mechanisms, unique spectral properties and nonlinear possibilities. Recent results within the field are reviewed.......Photonic crystal fibres having microstructured air-silica cross sections offer new optical properties compared to conventional fibres. These include novel guiding mechanisms, unique spectral properties and nonlinear possibilities. Recent results within the field are reviewed....

  13. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  14. Distributed Feedback Effects in Active Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields.......We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields....

  15. Scattering Forces within a Left-Handed Photonic Crystal.

    Science.gov (United States)

    Ang, Angeleene S; Sukhov, Sergey V; Dogariu, Aristide; Shalin, Alexander S

    2017-01-23

    Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals.

  16. Broadband tunable hybrid photonic crystal-nanowire light emitter

    CERN Document Server

    Wilhelm, Christophe E; Xiong, Qihua; Soci, Cesare; Lehoucq, Gaëlle; Dolfi, Daniel; De Rossi, Alfredo; Combrié, Sylvain

    2015-01-01

    We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.

  17. Rigorous modeling of cladding modes in photonic crystal fibers

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside.......We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside....

  18. Improving nanocavity switching using Fano resonances in photonic crystal structures

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy;

    2013-01-01

    We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances.......We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances....

  19. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren;

    2010-01-01

    of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is shorter than...... the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  20. Comprehensive FDTD modelling of photonic crystal waveguide components

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Borel, Peter Ingo; Frandsen, Lars Hagedorn;

    2004-01-01

    Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission...... spectra for various photonic crystal waveguides. It is found that within the experimental fabrication tolerances the calculations correctly predict the measured transmission levels and other major transmission features....

  1. Properties of directional couplers using photonic crystal waveguides

    DEFF Research Database (Denmark)

    Thorhauge, Morten; Borel, Peter Ingo; Frandsen, Lars Hagedorn;

    2003-01-01

    Coupled photonic crystal waveguides have been designed and modelled with a 3D finite-difference-time-domain method, and fabricated in silicon-on-insulator material. Good agreement between modelled and measured results has been found.......Coupled photonic crystal waveguides have been designed and modelled with a 3D finite-difference-time-domain method, and fabricated in silicon-on-insulator material. Good agreement between modelled and measured results has been found....

  2. Weyl Points and Line Nodes in Gyroid Photonic Crystals

    Science.gov (United States)

    2013-04-01

    characterization of millimetre-scale replicas of the gyroid photonic crystal found in the butterfly parides sesostris. Interface Focus 2, 645–650...Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl Acad. Sci. USA 107...948–954 (2003). 43. Turner, M., Schröder-Turk, G. & Gu, M. Fabrication and characterization of three-dimensional biomimetic chiral composites. Opt

  3. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  4. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    Science.gov (United States)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  5. Higher-order photon correlations in pulsed photonic crystal nanolasers

    CERN Document Server

    Elvira, David; Verma, V; Braive, Remy; Beaudoin, Gregoire; Robert-Philip, Isabelle; Sagnes, Isabelle; Baek, Burm; Nam, Sae Woo; Dauler, Eric A; Abram, Izo; Stevens, Martin J; Beveratos, Alexios

    2011-01-01

    We report on the higher-order photon correlations of a high-$\\beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(\\vec{0})$ with $n$=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of dipoles and photons involved in the lasing process.

  6. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  7. Modification of Absorption of a Bulk Material by Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    席永刚; 王昕; 胡新华; 刘晓晗; 资剑

    2002-01-01

    We show theoretically that it is possible to modify absorption of a bulk absorbing material by inserting another non-absorbing dielectric slab periodically to form one-dimensional photonic crystals. It is found that, for fre- quencies within photonic bandgaps, absorption is always suppressed. For frequencies located at photonic bands, absorption can be suppressed or enhanced, which depends on the relative values of the real refractive index of the absorbing and non-absorbing dielectric layers.

  8. Local tuning of photonic crystal cavities using chalcogenide glasses

    Science.gov (United States)

    Faraon, Andrei; Englund, Dirk; Bulla, Douglas; Luther-Davies, Barry; Eggleton, Benjamin J.; Stoltz, Nick; Petroff, Pierre; Vučković, Jelena

    2008-01-01

    We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3nm at 940nm. The method has broad applications for postproduction tuning of photonic devices.

  9. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  10. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  11. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  12. Application of the generalized Kirchhoff's law to calculation of photoluminescence spectra of one-dimensional photonic crystals

    CERN Document Server

    Voronov, Mikhail M

    2016-01-01

    The approach based on the generalized Kirchhoff's law for calculating photoluminescence spectra of one-dimensional multi-layered structures, in particular, 1D photonic crystals has been developed. It is valid in the local thermodynamic equilibrium approximation and leads to simple and explicit expressions for the photoluminescence intensity. In the framework of the present theory the Purcell factor has been discussed as well.

  13. Few-quantum-dot lasing in photonic crystal nanocavities

    DEFF Research Database (Denmark)

    Liu, Jin; Ates, Serkan; Stobbe, Søren;

    2011-01-01

    Photonic crystal nanolasers have attracted great interest both for fundamental research and applications in the past decade. In photonic crystal cavities, the leakage to optical modes is strongly reduced, which increases the spontaneous emission coupling factor, β. This is a crucial parameter for...... advanced semiconductor models of photonic crystal nanolasers is still missing [2]. The goal of this work is to get a deep understanding of the quantum dots based nanocavity lasers by comparing experiments to theory.......Photonic crystal nanolasers have attracted great interest both for fundamental research and applications in the past decade. In photonic crystal cavities, the leakage to optical modes is strongly reduced, which increases the spontaneous emission coupling factor, β. This is a crucial parameter...... for the threshold characteristics of lasers. With increasing β, the well-known step-like threshold behavior becomes smoother. Although the smooth lasing transitions of photonic crystal nanolasers were observed and fitted by traditional rate equation models [1], a systematic comparison between experiments and more...

  14. Plane Wave-Perturbative Method for Evaluating the Effective Speed of Sound in 1D Phononic Crystals

    Directory of Open Access Journals (Sweden)

    J. Flores Méndez

    2016-01-01

    Full Text Available A method for calculating the effective sound velocities for a 1D phononic crystal is presented; it is valid when the lattice constant is much smaller than the acoustic wave length; therefore, the periodic medium could be regarded as a homogeneous one. The method is based on the expansion of the displacements field into plane waves, satisfying the Bloch theorem. The expansion allows us to obtain a wave equation for the amplitude of the macroscopic displacements field. From the form of this equation we identify the effective parameters, namely, the effective sound velocities for the transverse and longitudinal macroscopic displacements in the homogenized 1D phononic crystal. As a result, the explicit expressions for the effective sound velocities in terms of the parameters of isotropic inclusions in the unit cell are obtained: mass density and elastic moduli. These expressions are used for studying the dependence of the effective, transverse and longitudinal, sound velocities for a binary 1D phononic crystal upon the inclusion filling fraction. A particular case is presented for 1D phononic crystals composed of W-Al and Polyethylene-Si, extending for a case solid-fluid.

  15. Polarisation singularities in photonic crystals for an on-chip spin-photon interface

    Science.gov (United States)

    Beggs, Daryl M.; Young, Andrew B.; Thijssen, Arthur C. T.; Oulton, Ruth

    2015-03-01

    Integrated quantum photonic chips are a leading contender for future quantum technologies, which aim to use the entanglement and superposition properties of quantum physics to speed up the manipulation of data. Quantum information may be stored and transmitted in photons, which make excellent flying qubits. Photons suffer little from decoherence, and single qubit gates performed by changing photon phase, are straightforward. Less straightforward is the ability to create two qubit gates, where one photon is used to switch another's state; inherently difficult due to the extremely small interaction cross-section between photons. The required deterministic two-qubit interactions will likely need a hybrid scheme with the ``flying'' photonic qubit interacting with a ``static'' matter qubit. Here we present the design of a photonic crystal waveguide structure that can couple electron-spin to photon path, thus providing an interface between a static and a flying qubit. We will show that the complex polarization properties inherent in the photonic crystal eigenmodes supports polarization singularities - positions in the electric field vector where one of the parameters describing the local polarization ellipse is singular - and that these singularities are ideal for a range of quantum information applications. In particular, we will show that by placing a quantum dot at one of these singularities, the electron-spin becomes correlated with the photon emission direction, creating an in-plane spin-photon interface that can transfer quantum information from static to flying qubits.

  16. On-chip steering of entangled photons in nonlinear photonic crystals.

    Science.gov (United States)

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  17. Photon-pair generation in photonic crystal fibrebre with a 1.5GHz modelocked VECSEL

    CERN Document Server

    Morris, Oliver J; Wilcox, Keith G; Tropper, Anne C; Mosley, Peter J

    2014-01-01

    Four-wave mixing (FWM) in optical fibre is a leading technique for generating high-quality photon pairs. We report the generation of photon pairs by spontaneous FWM in photonic crystal fibre pumped by a 1.5 GHz repetition-rate vertical-external-cavity surface-emitting laser (VECSEL). The photon pairs exhibit high count rates and a coincidence-to-accidental ratio of over 80. The VECSEL's high repetition-rate, high average power, tunability, and small footprint make this an attractive source for quantum key distribution and photonic quantum-state engineering.

  18. Heralded single-photon source in a III-V photonic crystal.

    Science.gov (United States)

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  19. Nonreciprocal Electromagnetic Devices in Gyromagnetic Photonic Crystals

    Science.gov (United States)

    Li, Zhi-Yuan; Liu, Rong-Juan; Gan, Lin; Fu, Jin-Xin; Lian, Jin

    2014-01-01

    Gyromagnetic photonic crystal (GPC) offers a promising way to realize robust transport of electromagnetic waves against backscattering from various disorders, perturbations and obstacles due to existence of unique topological electromagnetic states. The dc magnetic field exerting upon the GPC brings about the time-reversal symmetry breaking, splits the band degeneracy and opens band gaps where the topological chiral edge states (CESs) arise. The band gap can originate either from long-range Bragg-scattering effect or from short-range localized magnetic surface plasmon resonance (MSP). These topological edge states can be explored to construct backscattering-immune one-way waveguide and other nonreciprocal electromagnetic devices. In this paper we review our recent theoretical and experimental studies of the unique electromagnetic properties of nonreciprocal devices built in GPCs. We will discuss various basic issues like experimental instrumental setup, sample preparations, numerical simulation methods, tunable properties against magnetic field, band degeneracy breaking and band gap opening and creation of topological CESs. We will investigate the unidirectional transport properties of one-way waveguide under the influence of waveguide geometries, interface morphologies, intruding obstacles, impedance mismatch, lattice disorders, and material dissipation loss. We will discuss the unique coupling properties between one-wave waveguide and resonant cavities and their application as novel one-way bandstop filter and one-way channel-drop filter. We will also compare the CESs created in the Bragg-scattering band gap and the MSP band gap under the influence of lattice disorders. These results can be helpful for designing and exploring novel nonreciprocal electromagnetic devices for optical integration and information processing.

  20. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  1. Milling of polymeric photonic crystals by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pialat, E. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Trigaud, T. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Bernical, V. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Moliton, J.P. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France)]. E-mail: jpmlt@unilim.fr

    2005-12-15

    The achievement of low cost photonic crystals in organic materials is not a trivial challenge even by top-down processes. Firstly the required conditions for the opening of a 2D Photonic Band Gap (PBG) in polymers by implementation of adapted software are shortly presented. The Focused Ion Beam (FIB) technique appears as a suitable process to carry out the patterning of the required sub-micronic dimensions. Then, the optimum experimental procedures leading to the fabrication of 2D photonic crystals in PMMA and CR39 are mainly exposed and discussed.

  2. Photonic crystal enhanced silicon cell based thermophotovoltaic systems.

    Science.gov (United States)

    Yeng, Yi Xiang; Chan, Walker R; Rinnerbauer, Veronika; Stelmakh, Veronika; Senkevich, Jay J; Joannopoulos, John D; Soljacic, Marin; Čelanović, Ivan

    2015-02-09

    We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm(-2) at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide - silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency for any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm(-2) and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.

  3. Hybrid genetic optimization for design of photonic crystal emitters

    Science.gov (United States)

    Rammohan, R. R.; Farfan, B. G.; Su, M. F.; El-Kady, I.; Reda Taha, M. M.

    2010-09-01

    A unique hybrid-optimization technique is proposed, based on genetic algorithms (GA) and gradient descent (GD) methods, for the smart design of photonic crystal (PhC) emitters. The photonic simulation is described and the granularity of photonic crystal dimensions is considered. An innovative sliding-window method for performing local heuristic search is demonstrated. Finally, the application of the proposed method on two case studies for the design of a multi-pixel photonic crystal emitter and the design of thermal emitter in thermal photovoltaic is demonstrated. Discussion in the report includes the ability of the optimal PhC structures designed using the proposed method, to produce unprecedented high emission efficiencies of 54.5% in a significantly long wavelength region and 84.9% at significantly short wavelength region.

  4. The research and progress of micro-fabrication technologies of two-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    XU XingSheng; ZHANG DaoZhong

    2007-01-01

    The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials,which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper,we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.

  5. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  6. Experimental investigation of hollow-core photonic crystal fibers with five photonic band-gaps

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-hui; HOU Lan-tian; WEI Dong-bin; WANG Hai-yun; ZHOU Gui-yao

    2008-01-01

    The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 450-1100 nm have been obtained.And the green light transmission in the HC-PCFs'has been observed remarkably.

  7. Indistinguishable photon generation from a single quantum dot in a photonic crystal nanocavity

    DEFF Research Database (Denmark)

    Ates, Serkan; Stobbe, Søren; Lodahl, Peter

    Detailed experimental investigations of the indistinguishability of the single photons generated from a single QD in photonic crystal nanocavities will be presented. The influence of the higher order cavity mode excitation in comparison to the aboveband excitation on the indistinguishability of t...

  8. Beam Steering at Higher Photonic Bands and Design of a Directional Cloak Formed by Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Venkatachalam Subramanian

    2013-02-01

    Full Text Available Beam steering due to anomalous dispersion at higher photonic bands in dielectric photonic crystal is reported in this work. Based on this concept, directional cloak is designed that conceals a larger dimensional scattering object against the normal incident, linearly polarizedelectromagnetic waves.

  9. Compact beam splitters based on self-imaging phenomena in one-dimensional photonic crystal waveguides

    Institute of Scientific and Technical Information of China (English)

    Bing Chen; Lin Huang; Yongdong Li; Chunliang Liu; Guizhong Liu

    2012-01-01

    A fundamental 1 ×2 beam splitter based on the self-imaging phenomena in multi-mode one-dimensional (1D) photonic crystal (PC) waveguides is presented,and its transmission characteristics are investigated using the finite-difference time-domain method.Calculated results indicate that a high transmittance (>95%) can be observed within a wide frequency band for the 1×2 beam splitter without complicated structural optimizations.In this letter,a simple and compact 1 ×4 beam splitter is constructed by combining the fundamental 1 ×2 beam splitter with the flexible bends of 1D PC waveguides.Such beam splitters can be applied to highly dense photonic integrated circuits.

  10. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Pingping Qiu

    2016-09-01

    Full Text Available In this paper, one-dimensional (1D and two-dimensional (2D graphene-based plasmonic photonic crystals (PhCs are proposed. The band structures and density of states (DOS have been numerically investigated. Photonic band gaps (PBGs are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  11. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-01-01

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  12. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  13. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S. [European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Institucio Catalana de Reserca i Estudis Avançats (ICREA), passeig Lluis Companys 23, 08010 Barcelona (Spain)

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  14. Lead tungstate crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A consignment of 500 lead tungstate crystals arrived at CERN from the northern Russian town of Apatity in May. Destined for the ALICE heavy-ion experiment in preparation for the Large Hadron Collider, each crystal is an 18 cm long rod with a 2.2 cm square section, and weighs some 750 g. A total of 17 000 crystals will make up the experiment's photon spectrometer.

  15. High dno/dT liquid crystals and their applications in a thermally tunable liquid crystal photonic crystal fiber

    DEFF Research Database (Denmark)

    Li, J.; Gauza, S.; Wu, S.-T.

    2006-01-01

    crystal mixtures, designated as UCF-1 and UCF-2. The dn(o)/dT of UCF-1 is similar to 4x higher than that of 5CB at room temperature. By infiltrating UCF-1 into the air holes of a three-rod core photonic crystal fiber, we demonstrate a thermally tunable photonic bandgap fiber with tuning sensitivity of 27...

  16. Research on interferometric photonic crystal fiber hydrophone

    Science.gov (United States)

    Luo, Hong; Zhang, Zhen-hui; Wang, Fu-yin; Xiong, Shui-dong

    2013-08-01

    Current research on photonic crystal fiber (PCF) for acoustic sensing was focused on the PCF's pressure sensitivity enhancement. However, whether the enhancement of the PCF's pressure sensitivity can be actually realized is still controversial. Practical hydrophone, utilizing PCFs, to manifest its superior sensitivity to normal single mode fibers (SMFs) for acoustic sensing, should be made. Account to this point of view, actual hydrophone was fabricated. Index guiding PCF was used, the fiber core is solid silicon dioxide (SiO2), and the cladding is SiO2 filled with lots of periodical transverse circular air hollows. The PCF, mounted on an air-backed mandrel for structural sensitivity enhancement, was used as a sensing arm of the fiber Michelson interferometer. The other arm, so called reference arm, was made of SMF. Faraday rotator mirrors (FRM) were spliced in the end of each interferometric arm account for polarization induced phase fading, which is a common scheme in fiber interferometric sensing systems. A similar hydrophone, with all the same structure except that the PCF was exchanged into SMF, was also fabrication to make the contrast. The narrowlinewidth and frequency-tunable optical fiber laser was used to achieve high accuracy optical interferometric measurement. Meanwhile, the phase generated carrier (PGC) modulation-demodulation scheme was adopted to interrogate the measurand signal. Experiment was done by using acoustic standing-wave test apparatus. Linearity characteristics of the two hydrophones were measured at frequency 100Hz, 500Hz, and 1000Hz, experimental results showed that the maximum error of the linearity was 10%, a little larger than the theoretical results. Pressure sensitivities of the PCF hydrophone and the SMF hydrophone were measured using a reference standard PZT hydrophone in the frequency range from 20 Hz to 1600 Hz, the measurement data showed that the sensitivity of the PCF hydrophone was about -162.8 dB re. rad/μPa, with a

  17. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic disp...

  18. A design method based on photonic crystal theory for Bragg concave diffraction grating

    Science.gov (United States)

    Du, Bingzheng; Zhu, Jingping; Mao, Yuzheng; Li, Bao; Zhang, Yunyao; Hou, Xun

    2017-02-01

    A design method based on one-dimensional photonic crystal theory (1-D PC theory) is presented to design Bragg concave diffraction grating (Bragg-CDG) for the demultiplexer. With this design method, the reflection condition calculated by the 1-D PC theory can be matched perfectly with the diffraction condition. As a result, the shift of central wavelength of diffraction spectra can be improved, while keeping high diffraction efficiency. Performances of Bragg-CDG for TE and TM-mode are investigated, and the simulation results are consistent with the 1-D PC theory. This design method is expected to be applied to improve the accuracy and efficiency of Bragg-CDG after further research.

  19. Photonic gaps in one dimensional cylindrical photonic crystal that incorporates single negative materials

    Science.gov (United States)

    El-Naggar, Sahar A.

    2017-01-01

    In this article, we theoretically study electromagnetic waves that propagate in one-dimensional cylindrical photonic crystals (1DCPC) containing single negative materials. We examine the optical properties of three gaps namely; the zero-effective phase (zero- ϕ), the zero-permittivity (zero- ɛ) and the zero-permeability (zero- μ). We calculate the optical reflectance for transverse electric(magnetic) TE(TM) polarizations using the transfer matrix method in the cylindrical coordinates. We study the effect of azimuthal mode number ( m) and the starting radius on these gaps. The results show that the zero- μ (zero- ɛ) gap is found for TE(TM) polarization at frequency where μ( ɛ) changes its sign for m ≥ 1. The width of the gap increases by decreasing the starting radius or by increasing m, whereas the zero- ϕ gap remains invariant. In addition, we present a brief design of 1D-CPC that has a polarization-independent wide gap especially for high azimuthal mode number ( m > 2). Our results can help improve the performance of microwave devices independent of the source wave polarization.

  20. Photonic crystals and inhibition of spontaneous emission: an introduction

    CERN Document Server

    Angelakis, D G; Paspalakis, E; Angelakis, Dimitris G.; Knight, Peter L.; Paspalakis, Emmanuel

    2004-01-01

    In the first part of this introductory review we outline the developments in photonic band gap materials from the physics of photonic band gap formation to the fabrication and potential applications of photonic crystals. We briefly describe the analogies between electron and photon localization, present a simple model of a band structure calculation and describe some of the techniques used for fabricating photonic crystals. Also some applications in the field of photonics and optical circuitry are briefly presented. In the second part, we discuss the consequences for the interaction between an atom and the light field when the former is embedded in photonic crystals of a specific type, exhibiting a specific form of a gap in the density of states. We first briefly review the standard treatment (Weisskopf-Wigner theory) in describing the dynamics of spontaneous emission in free space from first principles, and then proceed by explaining the alterations needed to properly treat the case of a two-level atom embed...

  1. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  2. Quantum theory of exciton-photon coupling in photonic crystal slabs with embedded quantum wells

    CERN Document Server

    Gerace, D

    2007-01-01

    A theoretical description of radiation-matter coupling for semiconductor-based photonic crystal slabs is presented, in which quantum wells are embedded within the waveguide core layer. A full quantum theory is developed, by quantizing both the electromagnetic field with a spatial modulation of the refractive index and the exciton center of mass field in a periodic piecewise constant potential. The second-quantized hamiltonian of the interacting system is diagonalized with a generalized Hopfield method, thus yielding the complex dispersion of mixed exciton-photon modes including losses. The occurrence of both weak and strong coupling regimes is studied, and it is concluded that the new eigenstates of the system are described by quasi-particles called photonic crystal polaritons, which can occur in two situations: (i) below the light line, when a resonance between exciton and non-radiative photon levels occurs (guided polaritons), (ii) above the light line, provided the exciton-photon coupling is larger than th...

  3. Photonic band structure of ZnO photonic crystal slab laser

    CERN Document Server

    Yamilov, A; Cao, H

    2005-01-01

    We recently reported on the first realization of ultraviolet photonic crystal laser based on zinc oxide [Appl. Phys. Lett. {\\bf 85}, 3657 (2004)]. Here we present the details of structural design and its optimization. We develop a computational super-cell technique, that allows a straightforward calculation of the photonic band structure of ZnO photonic crystal slab on sapphire substrate. We find that despite of small index contrast between the substrate and the photonic layer, the low order eigenmodes have predominantly transverse-electric (TE) or transverse-magnetic (TM) polarization. Because emission from ZnO thin film shows strong TE preference, we are able to limit our consideration to TE bands, spectrum of which can possess a complete photonic band gap with an appropriate choice of structure parameters. We demonstrate that the geometry of the system may be optimized so that a sizable band gap is achieved.

  4. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.

    Science.gov (United States)

    Xiong, C; Monat, Christelle; Clark, Alex S; Grillet, Christian; Marshall, Graham D; Steel, M J; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Rarity, John G; Eggleton, Benjamin J

    2011-09-01

    We report the generation of correlated photon pairs in the telecom C-band at room temperature from a dispersion-engineered silicon photonic crystal waveguide. The spontaneous four-wave mixing process producing the photon pairs is enhanced by slow-light propagation enabling an active device length of less than 100 μm. With a coincidence to accidental ratio of 12.8 at a pair generation rate of 0.006 per pulse, this ultracompact photon pair source paves the way toward scalable quantum information processing realized on-chip.

  5. Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2008-01-01

    In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has been shown that complete photonic band gap size changes with the variation in the orientation angle of the constituent dielectric rods.

  6. Signature of a three-dimensional photonic band gap observed on silicon inverse woodpile photonic crystals

    CERN Document Server

    Huisman, Simon R; Woldering, Léon A; Leistikow, Merel D; Mosk, Allard P; Vos, Willem L

    2010-01-01

    We have studied the reflectivity of CMOS-compatible three-dimensional silicon inverse woodpile photonic crystals at near-infrared frequencies. Polarization-resolved reflectivity spectra were obtained from two orthogonal crystal surfaces corresponding to 1.88 pi sr solid angle. The spectra reveal broad peaks with high reflectivity up to 67 % that are independent of the spatial position on the crystals. The spectrally overlapping reflectivity peaks for all directions and polarizations form the signature of a broad photonic band gap with a relative bandwidth up to 16 %. This signature is supported with stopgaps in plane wave bandstructure calculations and with the frequency region of the expected band gap.

  7. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    CERN Document Server

    Vos, W L

    2015-01-01

    This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

  8. Photonic crystal enhancement of auger-suppressed infrared photodetectors

    Science.gov (United States)

    Djurić, Zoran; Jakšić, Zoran; Ehrfeld, Wolfgang; Schmidt, Andreas; Matić, Milan; Popović, Mirjana

    2001-04-01

    We examine theoretically and experimentally the possibilities to reach room-temperature background-limited operation of narrow-bandgap compound semiconductor photodetectors in (3-14) micrometer infrared wavelength range. To this purpose we consider the combination of non-equilibrium Auger suppression with photonic crystal enhancement (PCE). This means that Auger generation-recombination processes are suppressed utilizing exclusion, extraction or magnetoconcentration effects or their combination. The residual radiative recombination is removed by immersing the detector active area into a photonic crystal and using the benefits of re-absorption (photon recycling) to effectively increase the radiative lifetime. In this manner the total generation-recombination noise is strongly quenched in sufficiently defect-free device materials. It is concluded that the operation of thus enhanced photonic detectors could even approach signal fluctuation limit.

  9. Co-molding of nanoscale photonic crystals and microfluidic channel

    Science.gov (United States)

    Snyder, Chloe E.; Kadiyala, Anand; Srungarapu, Maurya; Liu, Yuxin; Dawson, Jeremy M.

    2014-03-01

    Photonic crystals are nanofabricated structures that enhance light as it is passed through the constructed design. These structures are normally fabricated out of silicon but have shown to be an improvement if fabricated from a more cost effective material. Photonic crystals have uses within biosensing as they may be used to analyze DNA and other analytes. Microfluidic channels are used to transport different analytes and other samples from one end to another. Microfluidics are used in biosensing as a means of transport and are typically fabricated from biocompatible polymers. Integrated together, the photonic crystals and microfluidic channels would be able to achieve better sensing capabilities and cost effective methods for large scale production. Results will be shown from the co-molding.

  10. Dynamic photonic crystals dimensionality tuning by laser beams polarization changing

    Science.gov (United States)

    Golinskaya, Anastasia D.; Stebakova, Yulia V.; Valchuk, Yana V.; Smirnov, Aleksandr M.; Mantsevich, Vladimir N.

    2017-05-01

    A simple way to create dynamic photonic crystals with different lattice symmetry by interference of non-coplanar laser beams in colloidal solution of quantum dots was demonstrated. With the proposed technique we have made micro-periodic dynamic semiconductor structure with strong nonlinear changing of refraction and absorption and analyzed the self-diffraction processes of two, three and four non-coplanar laser beams at the dynamic photonic crystal (diffraction grating) with hexagonal lattice structure. To reach the best uniform contrast of the structure and for better understanding of the problems, specially raised by the interference of multiple laser beams theoretical calculation of the periodic intensity field in the QDs solution were performed. It was demonstrated that dynamic photonic crystal structure and even it's dimension can be easily tuned with a high speed by the laser beams polarization variation without changing the experimental setup geometry.

  11. Dispersion Properties in Total Internal Reflective Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    WEN Hua; HAO Dong-shan

    2004-01-01

    The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive index, effective normalized frequency and dispersion management solitons. It is shown that the dispersion in the cladding waveguide of the total internal reflective photonic crystal fiber is a positive dispersion,and the dispersion of its core waveguide is a negative dispersion. The method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of the total internal reflective photonic crystal fiber to be close to zero and the zero dispersion point to shift to the short wavelength region.

  12. Delay of a microwave pulse in a photonic crystal

    Science.gov (United States)

    Babitski, V. S.; Baryshevsky, V. G.; Gurinovich, A. A.; Gurnevich, E. A.; Molchanov, P. V.; Simonchik, L. V.; Usachonak, M. S.; Zuyeuski, R. F.

    2017-08-01

    Propagation of a nanosecond microwave pulse through a photonic crystal placed into an X-band waveguide is investigated. The nanosecond pulse is produced via shortening of the microsecond microwave pulse by the plasma electromagnetic band gap structure, which is formed in the waveguide by microwave breakdown ignited discharges inside three neon-filled glass tubes. Measured delay time for nanosecond microwave pulse propagation through the photonic crystal is about 23 ns that is in good agreement with the value obtained by numerical simulation. This time delay value corresponds to the group velocity of microwave pulses in the photonic crystal vgr ≈ 0.11c, where c is the speed of light in vacuum.

  13. Integrated photonic crystals and quantum well infrared photodetector

    Science.gov (United States)

    Zhou, T.; Tsui, D. C.; Choi, K. K.

    2004-03-01

    GaAs/AlGaAs based quantum well infrared photodetectors (QWIP) are becoming very reliable technologies that are widely used to detect mid-infrared light. Photonic crystals, on the other hand, are very powerful tools to manipulate light and thus are very crucial elements in future optical integration circuits. have fabricated a series of devices that incorporate QWIP and 2d photonic crystals together on a single GaAs based chip. These devices work at the 7-13 μ m range. Compared with the conventional photonic crystals designed for fiber communication, these devices have the advantage that they only require photolithography instead of e-beam lithography. The fabrication of such devices is thus far less costly and time-consuming.

  14. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Science.gov (United States)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  15. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, M.E.; Baughman, R.H.; Zakhidov, A.A. [The University of Texas at Dallas, NanoTech Institute, Richardson, TX (United States); Murthy, N.S. [University of Vermont, Department of Physics, Burlington, VT (United States); Udod, I. [Teva Pharmaceuticals USA, Fairfield, NJ (United States); Khayrullin, I.I. [eMagin Corporation, Hopewell Junction, NY (United States)

    2007-03-15

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO{sub 2} sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO{sub 2} lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time. (orig.)

  16. Photonic crystal fiber long-period gratings for biochemical sensing.

    Science.gov (United States)

    Rindorf, Lars; Jensen, Jesper B; Dufva, Martin; Pedersen, Lars Hagsholm; Høiby, Poul Erik; Bang, Ole

    2006-09-04

    We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long-period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has a sensitivity of approximately 1.4nm/1nm in terms of the shift in resonance wavelength in nm per nm thickness of biomolecule layer.

  17. Diamond-Structured Photonic Crystals with Graded Air Spheres Radii

    Directory of Open Access Journals (Sweden)

    Dichen Li

    2012-05-01

    Full Text Available A diamond-structured photonic crystal (PC with graded air spheres radii was fabricated successfully by stereolithography (SL and gel-casting process. The graded radii in photonic crystal were formed by uniting different radii in photonic crystals with a uniform radius together along the Г‑Х direction. The stop band was observed between 26.1 GHz and 34.3 GHz by reflection and transmission measurements in the direction. The result agreed well with the simulation attained by the Finite Integration Technique (FIT. The stop band width was 8.2 GHz and the resulting gap/midgap ratio was 27.2%, which became respectively 141.4% and 161.9% of the perfect PC. The results indicate that the stop band width of the diamond-structured PC can be expanded by graded air spheres radii along the Г‑Х direction, which is beneficial to develop a multi bandpass filter.

  18. Group-index limitations in slow-light photonic crystals

    DEFF Research Database (Denmark)

    Grgic, Jure; Pedersen, Jesper Goor; Xiao, Sanshui;

    2010-01-01

    In photonic crystals the speed of light can be significantly reduced due to band-structure effects associated with the spatially periodic dielectric function, rather than originating from strong material dispersion. In the ideal and loss-less structures it is possible even to completely stop...... the light near frequency band edges associated with symmetry points in the Brillouin zone. Unfortunately, despite the impressive progress in fabrication of photonic crystals, real structures differ from the ideal structures in several ways including structural disorder, material absorption, out of plane......-valued dielectric function. Perturbation theory predicts that the group index scales as 1/ϵ″ which we find to be in complete agreement with the full solutions for various examples. As a consequence, the group index remains finite in real photonic crystals, with its value depending on the damping parameter...

  19. Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Yang Han-Rui; Li Xu-You; Hong Wei; Hao Jin-Hui

    2012-01-01

    A new pentagon polarization maintaining photonic crystal fibre with low nonlinearity is introduced. The full vector finite element method was used to investigate the distribution and the effective area of modal field,the nonlinear properties,the effective indices of two orthogonal polarization modes and the birefringence of the new PM-PCF effectively.It is found that the birefringence of the new polarization maintaining photonic crystal fibre can easily achieve the order of 10-4,and it can obtain higher birefringence,larger effectively mode-field area and lower nonlinearity than traditional hexagonal polarization maintaining photonic crystal fibre with the same hole pitch,same hole diameter,and same ring number.It is important for sensing and communication applications,especially has potential application for fibre optical gyroscope.

  20. The Quantum Well of One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiao-Jing Liu

    2015-01-01

    Full Text Available We have studied the transmissivity of one-dimensional photonic crystals quantum well (QW with quantum theory approach. By calculation, we find that there are photon bound states in the QW structure (BA6(BBABBn(AB6, and the numbers of the bound states are equal to n+1. We have found that there are some new features in the QW, which can be used to design optic amplifier, attenuator, and optic filter of multiple channel.

  1. Phase sensitive amplification in silicon photonic crystal waveguides

    CERN Document Server

    Yanbing,; Husko, Chad; Schroder, Jochen; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Eggleton, Benjamin J

    2013-01-01

    We experimentally demonstrate phase sensitive amplification (PSA) in a silicon photonic crystal waveguide based on pump-degenerate four-wave mixing. An 11 dB phase extinction ratio is obtained in a record compact 196 {\\mu}m nanophotonic device due to broadband slow-light, in spite of the presence of two-photon absorption and free-carriers. Numerical calculations show good agreement with the experimental results.

  2. Phase-sensitive amplification in silicon photonic crystal waveguides.

    Science.gov (United States)

    Zhang, Yanbing; Husko, Chad; Schröder, Jochen; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Eggleton, Benjamin J

    2014-01-15

    We experimentally demonstrate phase-sensitive amplification in a silicon photonic crystal waveguide based on pump-degenerate four-wave mixing. An 11 dB phase-extinction ratio is obtained in a record compact 196 μm nanophotonic device due to broadband slow light, in spite of the presence of two-photon absorption and free carriers. Numerical calculations show good agreement with the experimental results.

  3. Local tuning of photonic crystal cavities using chalcogenide glasses

    CERN Document Server

    Faraon, Andrei; Bulla, Douglas; Luther-Davies, Barry; Eggleton, Benjamin J; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena

    2007-01-01

    We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3 nm at 940 nm, with only 5% deterioration in cavity quality factor. The method has broad applications for postproduction tuning of photonic devices.

  4. Photonic Crystal Waveguides in Triangular Lattice of Nanopillars

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei

    2004-01-01

    Photonic nanopillars waveguides have been analysed. Dielectric nanopillars are arranged in such way that they from a tringular lattice of 2D photonic crystal. Dispersion of the modes depends on the direction of the triangular lattice, Ã-J or Ã-X, in which nanopillars arrays are extended. Light....... Transmission spectra calculated by FDTD method completely reflect peculiarities of modes dispersion, showing up to 80% transmission for a realistic SOI nanopillar structure....

  5. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.

    Science.gov (United States)

    Chen, Weili; Long, Kenneth D; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A; Cunningham, Brian T

    2014-11-21

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives.

  6. Controlling light with high-Q silicon photonic crystal nanocavities: Photon confinement, nonlinearity and coherence

    Science.gov (United States)

    Yang, Xiaodong

    The strong light localization and long photon lifetimes in two-dimensional silicon photonic crystal nanocavities with high quality factor (Q ) and subwavelength modal volume (V) significantly enhance the light-matter interactions, presenting many opportunities to explore new functionalities in silicon nanophotonic integrated circuits for on-chip all-optical information processing, optical computation and optical communications. This thesis will focus on the design, nanofabrication, and experimental characterization of both passive and active silicon nanophotonic devices based on two-dimensional high-Q silicon photonic crystal nanocavities. Three topics of controlling light with these high-Q nanocavities will be presented, including (1) photon confinement mechanism and cavity resonance tuning, (2) enhancement of optical nonlinearities, and (3) all-optical analogue to coherent interferences. The first topic is photon confinement in two-dimensional high- Q silicon photonic crystal nanocavities. In Chapter 2, the role of Q/V as the figure of merit for the enhanced light-matter interaction in optical microcavities and nanocavities is explained and different types of high-Q optical microcavities and nanocavities are reviewed with an emphasis on two-dimensional photonic crystal nanocavities. Then the nanofabrication process and the Q characterization are illustrated for the two-dimensional silicon photonic crystal nanocavities. In Chapter 3, the post-fabrication digital resonance tuning of high-Q silicon photonic crystal nanocavities using atomic layer deposition is proposed and demonstrated, with wide tuning range and precise control of cavity resonances while preserving high quality factors. The second topic is the enhancement of optical nonlinearities in two-dimensional high-Q silicon photonic crystal nanocavities, including stimulated Raman scattering and thermo-optical nonlinearities. In Chapter 4, the enhanced stimulated Raman scattering for low threshold Raman

  7. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong-Hyeon, E-mail: seygene@kaist.ac.kr; Lee, Chang-Min; Lim, Hee-Jin [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Schlereth, Thomas W.; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Lee, Yong-Hee [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  8. Spectral properties of photon pairs generated by spontaneous four wave mixing in inhomogeneous photonic crystal fibers

    CERN Document Server

    Cui, Liang; Zhao, Ningbo

    2012-01-01

    The photonic crystal fiber (PCF) is one of the excellent media for generating photon pairs via spontaneous four wave mixing. Here we study how the inhomogeneity of PCFs affect the spectral properties of photon pairs from both the theoretical and experimental aspects. The theoretical model shows that the photon pairs born in different place of the inhomogeneous PCF are coherently superposed, and a modulation in the broadened spectrum of phase matching function will appear, which prevents the realization of spectral factorable photon pairs. In particular, the inhomogeneity induced modulation can be examined by measuring the spectrum of individual signal or idler field when the asymmetric group velocity matching is approximately fulfilled. Our experiments are performed by tailoring the spectrum of pulsed pump to satisfy the specified phase matching condition. The observed spectra of individual signal photons, which are produced from different segments of the 1.9 m inhomogeneous PCF, agree with the theoretical pr...

  9. Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide.

    Science.gov (United States)

    He, Jiakun; Clark, Alex S; Collins, Matthew J; Li, Juntao; Krauss, Thomas F; Eggleton, Benjamin J; Xiong, Chunle

    2014-06-15

    We demonstrate degenerate, correlated photon-pair generation via slow-light-enhanced spontaneous four-wave mixing in a 96 μm long silicon photonic crystal waveguide. Our device represents a more than 50 times smaller footprint than silicon nanowires. We have achieved a coincidence-to-accidental ratio as high as 47 at a photon generation rate of 0.001 pairs per pulse and 14 at a photon generation rate of 0.023 pairs per pulse, which are both higher than the useful level of 10. This demonstration provides a path to generate indistinguishable photons in an ultracompact platform for future quantum photonic technologies.

  10. Silicon photonic crystal nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Dorfner, Dominic; Hürlimann, T.; Zabel, T.

    2008-01-01

    The authors present the fabrication and optical investigation of Silicon on Insulator photonic crystal drop-filters for use as refractive index sensors. Two types of defect nanocavities (L3 and H1-r) are embedded between two W1 photonic crystal waveguides to evanescently route light at the cavity...... mode frequency between input and output waveguides. Optical characterization of the structures in air and various liquids demonstrate detectivities in excess of n=n = 0:018 and n=n = 0:006 for the H1-r and L3 cavities, respectively. The measured cavity-frequencies and detector refractive index...

  11. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  12. Photonic crystals advances in design, fabrication, and characterization

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  13. Absolute band gaps in two-dimensional graphite photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)

    2003-01-01

    The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.

  14. Active Photonic Crystal Switches: Modeling, Design and Experimental Characterization

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Yu, Yi; Kristensen, Philip Trøst;

    2013-01-01

    In this paper, we present recent progress in modeling, design, fabrication and experimental characterization of InP photonic crystal all-optical switches. Novel designs with increased flexibility and performance are presented, and their operation using high speed data signals is analyzed numerica......In this paper, we present recent progress in modeling, design, fabrication and experimental characterization of InP photonic crystal all-optical switches. Novel designs with increased flexibility and performance are presented, and their operation using high speed data signals is analyzed...

  15. Scalable photonic crystal chips for high sensitivity protein detection.

    Science.gov (United States)

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  16. Mapping individual electromagnetic field components inside a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Slot, P J M; Vos, W L; Boller, K -J

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.

  17. Absorption and emission properties of photonic crystals and metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Lili [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  18. Polarization-independent waveguiding with annular photonic crystals.

    Science.gov (United States)

    Cicek, Ahmet; Ulug, Bulent

    2009-09-28

    A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90 degrees bend is also demonstrated.

  19. Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    XUE Peng

    2011-01-01

    A hybrid entangling gate is proposed by using the coherent interaction between dipolar molecules and a photonic crystal microcavity, which is effected by virtual electric dipole transitions. Noise is included in the present model and high feasibility of the scheme with current experimental conditions is shown.%@@ A hybrid entangling gate is proposed by using the coherent interaction between dipolar molecules and a photonic crystal microcavity,which is effected by virtual electric dipole transitions.Noise is included in the present model and high feasibility of the scheme with current experimental conditions is shown.

  20. Inhibited coupling hollow-core photonic crystal fiber

    Science.gov (United States)

    Benabid, F.; Gérôme, F.; Vincetti, L.; Debord, B.; Alharbi, M.; Bradley, T.

    2014-02-01

    We review the recent progress on the enhanced inhibited coupling in kagome hollow-core photonic crystal fiber by introducing negative curvature in the fiber-core shape. We show that increasing the hypocycloid contour curvature leads to a dramatic decrease in transmission loss and optical overlap with the silica surround and to a single modedness. Fabricated hypocycloid-core hollow-core photonic crystal fibers with a transmission loss in the range of 20-40 dB/km and for a spectral range of 700 nm-2000 nm have now become typical.

  1. Photonic crystal hydrogel sensor for detection of nerve agent

    Science.gov (United States)

    Xu, Jiayu; Yan, Chunxiao; Liu, Chao; Zhou, Chaohua; Hu, Xiaochun; Qi, Fenglian

    2017-01-01

    Nowadays the photonic crystal hydrogel materials have shown great promise in the detection of different chemical analytes, including creatinine, glucose, metal ions and so on. In this paper, we developed a novel three-dimensional photonic crystal hydrogel, which was hydrolyzed by sodium hydroxide (NaOH) and immobilized with butyrylcholinesterase (BuChE) by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(EDC). They are demonstrated to be excellent in response to sarin and a limit of detection(LOD) of 1×10-9 mg mL-1 was achieved.

  2. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  3. Optical fiber tips functionalized with semiconductor photonic crystal cavities

    CERN Document Server

    Shambat, Gary; Rivoire, Kelley; Sarmiento, Tomas; Harris, James; Vuckovic, Jelena

    2011-01-01

    We demonstrate a simple and rapid epoxy-based method for transferring photonic crystal cavities to the facets of optical fibers. Passive Si cavities were measured via fiber taper coupling as well as direct transmission from the fiber facet. Active quantum dot containing GaAs cavities showed photoluminescence that was collected both in free space and back through the original fiber. Cavities maintain a high quality factor (2000-4000) in both material systems. This new design architecture provides a practical mechanically stable platform for the integration of photonic crystal cavities with macroscale optics and opens the door for novel research on fiber-coupled cavity devices.

  4. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  5. Design and Fabrication of SOI-based photonic crystal components

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    We present examples of ultra-compact photonic crystal components realized in silicon-on-insulator material. We have fabricated several different types of photonic crystal waveguide components displaying high transmission features. This includes 60° and 120° bends, different types of couplers......, and splitters. Recently, we have designed and fabricated components with more than 200 nm bandwidths. Design strategies to enhance the performance include systematic variation of design parameters using finite-difference time-domain simulations and inverse design methods such as topology optimization....

  6. Reconfigurable photonic crystal using self-initiated gas breakdown

    Science.gov (United States)

    Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2017-02-01

    We present a resonant photonic crystal for which transmission is time-modulated by a self-initiated gaseous plasma. A resonant cavity in the photonic crystal is used to amplify an incoming microwave field to intensities where gas breakdown is possible. The presence of the plasma in the resonant cavity alters the transmission spectrum of the device. We investigate both transient and steady-state operation with computational simulations using a time-domain model that couples Maxwell’s equations and plasma fluid equations. The predicted plasma ignition and stability are then experimentally verified.

  7. Nonreciprocal Coupling in Asymmetric Dual-Core Photonic Crystal Fibres

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; YANG Chang-Xi

    2004-01-01

    @@ The photonic crystal fibre with asymmetric dual cores is shown to attain strongly nonreciprocal coupling of the lightwave propagating along the fibre, for the first time to our knowledge. It is found that the coupling properties can be quite different when the incident position is changed. This kind of fibre could have potential for unidirectional coupler applications in fibre-optic local and metropolitan area networks. We also examine the polarization and wavelength dependence of the coupling nonreciprocity in the asymmetric dual-core photonic crystal fibres.

  8. Photonic Bandgap Properties of Atom-lattice Photonic Crystals in Polymer

    Institute of Scientific and Technical Information of China (English)

    REN Lin; WANG Dian; SUN Gui-ting; NIU Li-gang; YANG Han; SONG Jun-feng

    2011-01-01

    The present paper covers the various photonic crystals(PhCs) structures mimicking real atom-lattice structures in electronic crystals by using the femtosecond laser-induced two-photon photopolymerization of SU-8 resin. The bandgap properties were investigated by varying the crystal orientations in <111>, <110> and <100> of diamond-lattice PhCs. lhe photonic stop gaps were present at λ=3.88 μm in <111> direction, λ=4.01 μtm in <110> direction and λ=5.30 μm in <100> direction, respectively. In addition, defects were introduced in graphite-lattice PhCs and the strong localization of photons in this structure with defects at λ=5 μm was achieved. All the above work shows the powerful capability of femtosecond laser fabrication in manufacturing various complicated threedimensional photonic crystals and of controlling photons by inducing defects in the PhCs samples.

  9. Diamond Opal-Replica Photonic Crystals and Graphitic Metallic Photonic Band Gap Structures: Fabrication and Properties

    Science.gov (United States)

    Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Khayrullin, I. I.; Ralchenko, V. G.

    1998-03-01

    We demonstrate a new method for the formation of photonic bandgap crystals that operate at optical wavelengths. This method involves the templating of a self-assempled SiO2 lattice with diamond, graphite, or amorphous forms of carbon, followed by the removal of the original SiO2 lattice matrix by chemical means. Such carbon opal replicas are the "air type" of photonic crystal (where air replaces silica spheres) that are most favourable for photonic bandgap formation. Surprisingly, the structure of the original opal lattice having a typical cubic lattice dimension of 250 nm) is reliably replicated down to the nanometer scale using either a diamond, graphite, or amorphous carbon templated material. The optical properties of these photonic bandgap crystals are reported and compared with both theory and experimental results on other types of opal-derived lattices that we have investigated. The graphitic reverse opal is the first example of a network type metallic photonic crystal for the optical domain, for which a large photonic bandgap have been predicted.

  10. A study of optical reflectance and localization modes of 1-D Fibonacci photonic quasicrystals using different graded dielectric materials

    Science.gov (United States)

    Singh, Bipin K.; Pandey, Praveen C.

    2014-06-01

    In this paper, we present an analytical study on the reflection properties of light through one-dimensional (1-D) quasi-periodic multilayer structures. The considered structures are as follows: F7, F8, F9, (F2)10, (F3)10 and some combinations such as: [(F2)10 (F7) (F2)10], [(F2)10 (F8) (F2)10], [(F3)10 (F7) (F3)10], [(F3)10 (F8) (F3)10], [(F2)10(F3)10], [(F2)10 (F7) (F3)10] and [(F2)10 (F8) (F3)10], where (Fj)n represents n period of the Fibonacci sequence of jth generation. These multilayer structures are considered of two types of layers. One type of layer is considered of graded material like normal, linear or exponential graded material, and the second type of layer is considered of constant refractive index material. Transfer matrix method is utilized to calculate the reflection spectra and localization modes of such structures in the frequency range 150-450 THz. This work would provide the basis of understanding of the effect of graded materials on the reflection and localization modes in Fibonacci photonic quasicrystal structures and obtained spectra can be used in the recognition of grading of materials. The considered heterostructures provide the broad reflection band and some localization modes in the calculated region.

  11. Photon-dressed quasiparticle states in 1D and 2D materials: a many-body Floquet approach

    Science.gov (United States)

    Manghi, Franca; Puviani, Matteo

    We studiy the interplay between electron-electron interactions and non-equilibrium conditions associated to time-dependent external fields. Exploring phases of quantum matter away from equilibrium may give access to regimes inaccessible under equilibrium conditions. What makes this field particularly interesting is the possibility to engineer new phases of matter by an external tunable control. We have developed a scheme that allows to treat photo-induced phenomena in the presence of electron-electron many body interactions, where both the nonlinear effects of the external field and the electron-electron correlation are treated simultaneously and in a non-perturbative way. The Floquet approach is used to include the effects of the external time periodic field, and the Cluster Perturbation Theory to describe interacting electrons in a lattice. They are merged in a Floquet-Green function method that allows to calculate photon dressed quasiparticle excitation. For 1D systems we show that an unconventional Mott insulator-to-metal transition occurs for given characteristics of the applied field (intensity and frequency). The method has also been applied to the 2D honeycomb lattice (graphene), where in the presence of realistic values of electron-electron interaction, we show that linearly polarized light may give rise to non-dissipative edge states associated to a non-trivial topological behavior.

  12. Fabrication and Characterization of On-Chip Integrated Silicon Photonic Bragg Grating and Photonic Crystal Cavity Thermometers

    CERN Document Server

    Klimov, Nikolai N; Ahmed, Zeeshan

    2015-01-01

    We report on the fabrication and characterization of photonic-based nanothermometers, a silicon photonic Bragg grating and photonic crystal cavity. When cladded with silicon dioxide layer the sensors have at least eight times better sensitivity compared to the sensitivity of conventional fiber Bragg grating sensors. We demonstrate that these photonic thermometers are a viable temperature sensing solution.

  13. Polarons in endohedral Li+@C60- dimers and in 1D and 2D crystals

    Science.gov (United States)

    Kawazoe, Yoshiyuki; Belosludov, Vladimir R.; Zhdanov, Ravil K.; Belosludov, Rodion V.

    2017-10-01

    The electron charge distribution and polaron formation on the carbon sites of dimer clusters Li+@C60- and of 1D or 2D Li+@C60- periodic systems are studied with the use of the generalized Su-Schrieffer-Heeger model with respect to the intermolecular and intramolecular degrees of freedom. The charge distributions over the molecular surface and Jahn-Teller bond distortions of carbon atoms are calculated using the self-consistent iterative methods. Polarons formed in periodic 1D and 2D systems (chains and planar layers) as well as in dimer cluster system are examined. In the periodic systems polaron formation may be described by the cooperative Jahn-Teller effect. Orientation of the polarons on the molecule surface depends on the doping of the system, moreover, electron doping changes the energy levels in the system.

  14. Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; LI Qing; GAO DingShan

    2009-01-01

    All-optical switch with the ultrafast optical switching rate is a key device in the next generation optical network. In this article, we propose a polarization switch with ps switching time, which is constructed from one-dimensional resonant photonic crystal (1D RPC). The model of switch operating at 1.5 μm is established based on the optical stark effect (OSE). We calculate the performance indices of the switch and the influences of errors of periods and refractive index on the performance characteristics.

  15. Radiation damping in atomic photonic crystals.

    Science.gov (United States)

    Horsley, S A R; Artoni, M; La Rocca, G C

    2011-07-22

    The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be difficult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms exhibiting ultranarrow photonic band gaps. The amplification effect for optically trapped 87Rb is shown to be as much as 3 orders of magnitude greater than for conventional photonic-band-gap materials. For a specific pulsed regime, damping remains observable without destroying the system and significant for material velocities of a few ms(-1).

  16. Radiation 'damping' in atomic photonic crystals

    CERN Document Server

    Horsley, S A R; La Rocca, G C

    2010-01-01

    The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be diffcult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms (e.g. optically trapped 87Rb), which may exhibit ultra-narrow photonic band gaps. The amplification of the effect is shown to be three orders of magnitude greater than previous estimates for conventional photonic-band-gap materials, and significant for material velocities of a few ms/s.

  17. Photonic crystal film with three alternating layers for simultaneous R, G, B multi-mode photonic band-gaps.

    Science.gov (United States)

    Park, Byoungchoo; Kim, Mi-Na; Kim, Sun Woong; Ho Park, Jin

    2008-09-15

    We studied 1-dimensional (1-D) photonic crystal (PC) films with three alternating layers to investigate multi-mode photonic band-gaps (PBGs) at red, green, and blue color regions. From simulations, it was shown that PCs with three alternating layered elements of [a/b/c] structure have sharp PBGs at the three color regions with the central wavelengths of 459 nm, 527 nm, and 626 nm, simultaneously. Experimentally, it was proven that red, green, and blue PBGs were generated clearly by the PCs, which were made of multilayers of [SiO(2)/Ta(2)O(5)/TiO(2)], based on the simulation. It was also shown that the measured wavelengths of the PBGs corresponded exactly to those of the simulated results. Moreover, it was demonstrated that a 1-D PC of [a/b/c] structure can be used for making white organic light emitting devices (OLEDs) with improved color rendering index (CRI) for color display or lighting.

  18. Photonic crystal with left-handed components

    CERN Document Server

    Markos, Peter

    2015-01-01

    We show that the periodic array of left-handed cylinders possesses a rich spectrum of guided modes when the negative permeability of cylinders equals exactly to minus value of permeability of embedding media. These resonances strongly influences propagation of electromagnetic waves through photonic structures made from left-handed materials. A series of Fano resonances excited by incident wave destroys the band frequency spectrum of square array of left-handed cylinders and increases considerably the absorption of transmitted waves.

  19. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.

    Science.gov (United States)

    Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun

    2014-12-04

    Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.

  20. Light trapping in thin film solar cells using textured photonic crystal

    Science.gov (United States)

    Yi, Yasha [Somerville, MA; Kimerling, Lionel C [Concord, MA; Duan, Xiaoman [Amesbury, MA; Zeng, Lirong [Cambridge, MA

    2009-01-27

    A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.