Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J
2015-01-01
We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...
Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.
2015-11-01
Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.
Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling
Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.
2016-07-01
Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When
1-D Air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003
Directory of Open Access Journals (Sweden)
W. Liao
2008-12-01
Full Text Available A 1-D air-snowpack model of HONO has been developed and constrained by observed chemistry and meteorology data. The 1-D model includes molecular diffusion and mechanical dispersion, windpumping in snow, gas phase to quasi-liquid layer phase HONO transfer and quasi-liquid layer nitrate and interstitial air HONO photolysis. Photolysis of nitrate is important as a dominant HONO source inside the snowpack, however, the observed HONO emission from the snowpack was triggered mainly by the equilibrium between quasi liquid layer nitrite and firn air HONO deep down the snow surface (i.e. 30 cm below snow surface. The high concentration of HONO in the firn air is subsequently transported above the snowpack by diffusion and windpumping. The model uncertainties come mainly from lack of measurements and the interpretation of the QLL properties based on the bulk snow measurements. One critical factor is the ionic strength of QLL nitrite, which is estimated here by the bulk snow pH, nitrite concentration, and QLL to bulk snow volume ratio.
Directory of Open Access Journals (Sweden)
K. Ashworth
2015-07-01
Full Text Available Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentration of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase is of particular importance in this process. The FORCAsT (FORest Canopy AtmoSphere Transfer one-dimensional model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOA from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX field campaign in summer 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs for both the modelling and measurement communities.
Mg line formation in late-type stellar atmospheres: II. Calculations in a grid of 1D models
Osorio, Yeisson
2015-01-01
Mg is the alpha element of choice for Galactic population and chemical evolution studies as it is easily detectable in all late-type stars. Such studies require precise elemental abundances, and thus departures from LTE need to be accounted for. Our goal is to provide reliable departure coefficients and equivalent widths in non-LTE, and for reference in LTE, for diagnostic lines of Mg studied in late-type stars. These can be used e.g., to correct LTE spectra and abundances. Using the model atom built and tested in the preceding paper in this series, we performed non-LTE radiative transfer calculations in a grid of 3945 stellar 1D atmospheric models. We used a sub-grid of 86 models to explore the propagation of errors in the recent atomic collision calculations to the radiative transfer results. We obtained departure coefficients for all the levels and equivalent widths (in LTE and non-LTE) for all the radiative transitions included in the "final" model atom of Osorio et al.. We present and describe our result...
Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling
Godolt, M; Kitzmann, D; Kunze, M; Langematz, U; Patzer, A B C; Rauer, H; Stracke, B
2016-01-01
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most...
Mg line formation in late-type stellar atmospheres. II. Calculations in a grid of 1D models
Osorio, Y.; Barklem, P. S.
2016-02-01
Context. Mg is the α element of choice for Galactic population and chemical evolution studies because it is easily detectable in all late-type stars. Such studies require precise elemental abundances, and thus departures from local thermodynamic equilibrium (LTE) need to be accounted for. Aims: Our goal is to provide reliable departure coefficients and equivalent widths in non-LTE, and for reference in LTE, for diagnostic lines of Mg studied in late-type stars. These can be used, for example, to correct LTE spectra and abundances. Methods: Using the model atom built and tested in the preceding paper in this series, we performed non-LTE radiative transfer calculations in a grid of 3945 stellar 1D atmospheric models. We used a sub-grid of 86 models to explore the propagation of errors in the recent atomic collision calculations to the radiative transfer results. Results: We obtained departure coefficients for all the levels and equivalent widths (in LTE and non-LTE) for all the radiative transitions included in the "final" model atom presented in Paper I. Here we present and describe our results and show some examples of applications of the data. The errors that result from uncertainties in the collisional data are investigated and tabulated. The results for equivalent widths and departure coefficients are made freely available. Conclusions: Giants tend to have negative abundance corrections while dwarfs have positive, though small, corrections. Error analysis results show that uncertainties related to the atomic collision data are typically on the order of 0.01 dex or less, although for few stellar models in specific lines uncertainties can be as large as 0.03 dex. As these errors are less than or on the same order as typical corrections, we expect that we can use these results to extract Mg abundances from high-quality spectra more reliably than from classical LTE analysis. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130
NLTE line formation of Fe for late-type stars. I. Standard stars with 1D and <3D> model atmospheres
Bergemann, Maria; Collet, Remo; Magic, Zazralt; Asplund, Martin
2012-01-01
We investigate departures from LTE in the line formation of Fe for a number of well-studied late-type stars in different evolutionary stages. A new model of Fe atom was constructed from the most up-to-date theoretical and experimental atomic data available so far. Non-local thermodynamic equilibrium (NLTE) line formation calculations for Fe were performed using 1D hydrostatic MARCS and MAFAGS-OS model atmospheres, as well as the spatial and temporal average stratifications from full 3D hydrodynamical simulations of stellar convection computed using the Stagger code. It is shown that the Fe I/Fe II ionization balance can be well established with the 1D and mean 3D models under NLTE including calibrated inelastic collisions with H I calculated from the Drawin's (1969) formulae. Strong low-excitation Fe I lines are very sensitive to the atmospheric structure; classical 1D models fail to provide consistent excitation balance, particularly so for cool metal-poor stars. A better agreement between Fe I lines spannin...
Diagnostics from a 1-D atmospheric column
Energy Technology Data Exchange (ETDEWEB)
Flatley, J.M.; Mace, G. [Pennsylvania State Univ., University Park, PA (United States)
1996-04-01
Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.
Wittkowski, M; Freytag, B; Scholz, M; Hoefner, S; Karovicova, I; Whitelock, P A
2016-01-01
We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres including convection. Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phase...
A 1D radiative-convective model of H2O-CO2 atmospheres around young telluric planets: an update
Marcq, Emmanuel; Salvador, Arnaud; Massol, Hélène; Chassefière, Éric
2016-04-01
The study of the early phases of the evolution of terrestrial planets has recently known significant progress [1,2]. It appears that their cooling phase during the magma ocean stage is first dominated by a radiative cooling stage through its atmosphere. If the planet is able to reach radiative balance during this stage, then its further evolution is dominated by the escape flux, and no large scale condensation of water occurs (Hamano-type II planets). On the other hand, if the planet is far enough from the sun, then radiative equilibrium cannot be reached until the outgoing flux has fallen below the runaway greenhouse limit, implying the condensation of most atmospheric water vapor into a global water ocean, thus sheltering most water from atmospheric escape (Hamano-type I planet). In the solar system, Earth is clearly a type-I planet, whereas Venus was most likely a type-II planet from quite early on in its history [1,2]. In this presentation, we will deal with the atmospheric radiative model used by [2] and first described in [3]. After describing its recent improvements since [3] (pressure grid enabling an arbitrary total volatile amount, correction of the k-correlated radiative transfer in the thermal radiation, improvement of the numerical stability and integration scheme) and their consequences on the detectability of extrasolar type-I or type-II planets, we will deal with the possible improvements and extensions to such models, such as but not limited to: (1) adopting a 1D-spherical geometry suited for larger atmospheres around smaller planets, (2) improvement of the visible albedo parameterization based on recent 3D-modelling GCM [4]. [1] : K. Hamano et al., Nature (2013) [2] : T. Lebrun et al. JGR (2013) [3] : E. Marcq, JGR (2012) [4] : J. Leconte et al. (2015)
YORP torques with 1D thermal model
Breiter, Slawomir; Czekaj, Maria
2010-01-01
A numerical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect for objects defined in terms of a triangular mesh is described. The algorithm requires that each surface triangle can be handled independently, which implies the use of a 1D thermal model. Insolation of each triangle is determined by an optimized ray-triangle intersection search. Surface temperature is modeled with a spectral approach; imposing a quasi-periodic solution we replace heat conduction equation by the Helmholtz equation. Nonlinear boundary conditions are handled by an iterative, FFT based solver. The results resolve the question of the YORP effect in rotation rate independence on conductivity within the nonlinear 1D thermal model regardless of the accuracy issues and homogeneity assumptions. A seasonal YORP effect in attitude is revealed for objects moving on elliptic orbits when a nonlinear thermal model is used.
Energy Technology Data Exchange (ETDEWEB)
Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti; Guenther, Alex B.; Hardiman, Brady; Bohrer, Gil; Steiner, A. L.
2015-11-01
Foliar emissions of biogenic volatile organic compounds (BVOC)dimportant precursors of tropospheric ozone and secondary organic aerosolsdvary widely by vegetation type. Modeling studies to date typi-cally represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height vari-ation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homo-geneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting fo-liage (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.
Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti; Guenther, Alex B.; Hardiman, Brady S.; Bohrer, Gil; Steiner, Allison L.
2015-11-01
Foliar emissions of biogenic volatile organic compounds (BVOC)-important precursors of tropospheric ozone and secondary organic aerosols-vary widely by vegetation type. Modeling studies to date typically represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height variation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homogeneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting foliage (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.
GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL
Energy Technology Data Exchange (ETDEWEB)
KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY N. [Los Alamos National Laboratory; BURIAN, STEVEN J. [NON LANL
2007-01-17
This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.
Slug modeling with 1D two-fluid model
International Nuclear Information System (INIS)
Simulations of condensation-induced water hammer with one-dimensional two-fluid model requires explicit modeling of slug formation, slug propagation, and in some cases slug decay. Stratified flow correlations that are more or less well known in 1D two-fluid models, are crucial for accurate description of the initial phase of the slug formation and slug propagation. Slug formation means transition to other flow regime that requires different set of correlations. To use such two-fluid model for condensation induced water hammer simulations, a single slug must be explicitly recognized and captured. In the present work two cases of condensation-induced water hammer simulations performed with WAHA code, are described and discussed: injection of cold liquid into horizontal pipe filled with steam and injection of hot steam into horizontal pipe partially filled with cold liquid. (author)
Development of a new 1D urban canopy model: coherences between surface parameterizations
BLOND, Nadège; Mauree, Dasaraden; Kohler, Manon; Clappier, Alain
2015-01-01
A 1-D Canopy Interface Model (CIM) was developed in order to better simulate the effect of urban obstacles on the atmosphere in the boundary layer. The model solves the Navier-Stokes equations on a high-resolved gridded vertical column. The effect of the surface is simulated testing a set of theories and urban parameterizations. The final proposition guarantees its coherence with past theories in any atmospheric stability and terrain configuration. Obstacle characteristics are computed using...
A 1-D morphodynamic model of postglacial valley incision
Tunnicliffe, Jon F.; Church, Michael
2015-11-01
Chilliwack River is typical of many Cordilleran valley river systems that have undergone dramatic Holocene degradation of valley fills that built up over the course of Pleistocene glaciation. Downstream controls on base level, mainly blockage of valleys by glaciers, led to aggradation of significant glaciofluvial and glaciolacustrine valley fills and fan deposits, subsequently incised by fluvial action. Models of such large-scale, long-term degradation present a number of important challenges since the evolution of model parameters, such as the rate of bedload transport and grain size characteristics, are governed by the nature of the deposit. Sediment sampling in the Chilliwack Valley reveals a complex sequence of very coarse to fine textural modes. We present a 1-D numerical morphodynamic model for the river-floodplain system tailored to conditions in the valley. The model is adapted to dynamically adjust channel width to optimize sediment transporting capacity and to integrate relict valley fill material as the channel incises through valley deposits. Sensitivity to model parameters is studied using four principal criteria: profile concavity, rate of downstream grain size fining, bed surface sand content, and the timescale to equilibrium. Model results indicate that rates of abrasion and coarsening of the grain size distributions exert the strongest controls on all of the interrelated model performance criteria. While there are a number of difficulties in satisfying all model criteria simultaneously, results indicate that 1-D models of valley bottom sedimentary systems can provide a suitable framework for integrating results from sediment budget studies and chronologies of sediment evacuation established from dating.
Zhang, Xi; Showman, Adam P.
2015-11-01
Most of the current atmospheric chemistry models for planets (e.g., Krasnopolsky & Parshev 1981; Yung & Demore 1982; Yung, Allen & Pinto 1984; Lavvas et al. 2008; Zhang et al. 2012) and exoplanets (e.g., Line, Liang & Yung 2010; Moses et al. 2011; Hu & Seager 2014) adopt a one-dimensional (1D) chemical-diffusion approach in the vertical coordinate. Although only a crude approximation, these 1D models have succeeded in explaining the global-averaged vertical profiles of many chemical species in observations. One of the important assumptions of these models is that all chemical species are transported via the same eddy diffusion profile--that is, the assumption is made that the eddy diffusivity is a fundamental property of the dynamics alone, and does not depend on the chemistry. Here we show that, as also noticed in the Earth community (e.g., Holton 1986), this “homogenous eddy diffusion” assumption generally breaks down. We first show analytically why the 1D eddy diffusivity must generally depend both on the horizontal eddy mixing and the chemical lifetime of the species. This implies that the long-lived species and short-lived chemical species will generally exhibit different eddy diffusion profiles, even in a given atmosphere with identical dynamics. Next, we present tracer-transport simulations in a 2D chemical-diffusion-advection model (Shia et al. 1989; Zhang, Shia & Yung 2013) and a 3D general circulation model (MITgcm, e.g., Liu & Showman 2013), for both rapid-rotating planets and tidally-locked exoplanets, to further explore the effect of chemical timescales on the eddy diffusivity. From the 2D and 3D simulation outputs, we derive effective 1D eddy diffusivity profiles for chemical tracers exhibiting a range of chemical timescales. We show that the derived eddy diffusivity can depend strongly on the horizontal eddy mixing and chemistry, although the dependences are more complex than the analytic model predicts. Overall, these results suggest that
Modeling atrazine transport in soil columns with HYDRUS-1D
Directory of Open Access Journals (Sweden)
John Leju CELESTINO LADU
2011-09-01
Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.
Barker, Howard W.; Kato, Serji; Wehr, T.
2012-01-01
The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).
Simplified 1D modelling of the HGA test
International Nuclear Information System (INIS)
Document available in extended abstract form only. The HGA test is located in the Mont Terri Rock Laboratory (Switzerland). It consists of a horizontal borehole of 1.00 m of diameter and 13.00 m of length excavated in the ultra-low permeable Opalinus clay. During the tunnel drilling, the Opalinus clay near the tunnel wall was damaged, giving rise to an EDZ (Excavation Damaged Zone) around the tunnel. A steel liner was placed along the 6.00 m close to the tunnel mouth in order to guarantee the stability. The last 4.00 m at the tunnel end were backfilled with gravel. Along the remaining 3.00 m, an inflatable rubber packer of 1.00 m in diameter, was installed and inflated, thereby compressing the EDZ that was created during the tunnel excavation. The test section was filled with de-aired water and care was taken in order to eliminate the air from this tunnel section. Subsequently, a series of water and gas injection tests were carried out with varying mega-packer pressure, whereby water or gas was injected into the test section and, due to the very low permeability of the intact Opalinus clay, forced to flow back along the EDZ. In order to model the water and gas flow through the EDZ, we have followed a two-track approach. On the one hand, a 2D axisymmetric numerical model using code-bright has been made. On the other hand, a 1D analytical-numerical model has been developed and implemented in an Excel spreadsheet, whereby the field equations defined on a 1D geometrical domain are numerically solved using the finite element method. The 1D model has been used in order to calibrate the 2D axisymmetric model. Both the Opalinus clay and the EDZ will be considered to be porous media, with an incompressible solid phase (clay), an incompressible liquid phase (water and air) and a gas phase (water and air). The properties of the liquid phase will be assumed to be independent of the concentration of dissolved air and the gas phase will be assumed to be a mixture of dry air and
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
Directory of Open Access Journals (Sweden)
G. Reffray
2014-08-01
Full Text Available Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k + l from Blanke and Delecluse, 1993 and two equation models: Generic Lengh Scale closures from Umlauf and Burchard, 2003 are able to correctly reproduce the classical test of Kato and Phillips (1969 under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a one-year period (mid-2010 to mid-2011 at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between −2 and 2 °C during the stratified period (June to October. However the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA. This package is a good starting point for further investigation of vertical processes.
Havlickova, E; Subba, F; Coster, D; Wischmeier, M; Fishpool, G
2013-01-01
A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two different collisionalities. Based on this comparison, SOLF1D is then used to model the effects of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals by stretching the divertor leg either vertically or radially.
Havlickova, E.; Fundamenski, W.; Subba, F.; Coster, D; Wischmeier, M; Fishpool, G.
2013-01-01
A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two different collisionalities. Based on this comparison, SOLF1D is then used to model the effects of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals by stretching the divertor leg either vertically or ra...
Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate
Mastin, Larry G.
2014-01-01
During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates in windy conditions. One-dimensional plume models can incorporate atmospheric conditions and give potentially more accurate estimates. Here I present a 1-D model for plumes in crosswind and simulate 25 historical eruptions where plume height Hobs was well observed and mass eruption rate Mobs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the National Center for Atmospheric Research Reanalysis 2.5° model. Simulations calculate the minimum, maximum, and average values (Mmin, Mmax, and Mavg) that fit the plume height. Eruption rates were also estimated from the empirical formula Mempir = 140Hobs4.14 (Mempir is in kilogram per second, Hobs is in kilometer). For these eruptions, the standard error of the residual in log space is about 0.53 for Mavg and 0.50 for Mempir. Thus, for this data set, the model is slightly less accurate at predicting Mobs than the empirical curve. The inability of this model to improve eruption rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, or the fact that most eruptions examined were not highly influenced by wind. For the low, wind-blown plume of 14–18 April 2010 at Eyjafjallajökull, where an accurate plume height time series is available, modeled rates do agree better with Mobs than Mempir.
Validation of 1-D transport and sawtooth models for ITER
International Nuclear Information System (INIS)
In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles
Analyzing and modeling /1+1d markets
Challet, Damien; Stinchcombe, Robin
2001-11-01
We report on a statistical analysis of the Island ECN (NASDAQ) order book. We determine the static and dynamic properties of this system, and then analyze them from a physicist's viewpoint using an equivalent particle system obtained by treating orders as massive particles and price as position. We identify the fundamental dynamical processes, test existing particles models of such markets against our findings, and introduce a new model of limit order markets.
Control oriented 1D electrochemical model of lithium ion battery
International Nuclear Information System (INIS)
Lithium ion (Li-ion) batteries provide high energy and power density energy storage for diverse applications ranging from cell phones to hybrid electric vehicles (HEVs). For efficient and reliable systems integration, low order dynamic battery models are needed. This paper introduces a general method to generate numerically a fully observable/controllable state variable model from electrochemical kinetic, species and charge partial differential equations that govern the discharge/charge behavior of a Li-ion battery. Validated against a 313th order nonlinear CFD model of a 6 Ah HEV cell, a 12th order state variable model predicts terminal voltage to within 1% for pulse and constant current profiles at rates up to 50 C. The state equation is constructed in modal form with constant negative real eigenvalues distributed in frequency space from 0 to 10 Hz. Open circuit potential, electrode surface concentration/reaction distribution coupling and electrolyte concentration/ionic conductivity nonlinearities are explicitly approximated in the model output equation on a local, electrode-averaged and distributed basis, respectively. The balanced realization controllability/observability gramian indicates that the fast electrode surface concentration dynamics are more observable/controllable than the electrode bulk concentration dynamics (i.e. state of charge)
Kinetic and Stochastic Models of 1D yeast ``prions"
Kunes, Kay
2005-03-01
Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.
Application of particle trajectory model in 1D planar ejection
Institute of Scientific and Technical Information of China (English)
刘坤; 柏劲松; 李平
2008-01-01
A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conducted to resolve gas field.And Lagrangian method was imposed to track each particle.The interaction between gas and particles was responded as source terms in governing equations which were induced by forces.The effects of total spraying mass,particle size and other factors on the mixture of particles and gas were investigated.The spatial distributions of particle mass and velocity at different time were presented.The result shows that the numerical results are qualitatively consistent to those of experiments.
Kinetic Model for 1D aggregation of yeast ``prions''
Kunes, Kay; Cox, Daniel; Singh, Rajiv
2004-03-01
Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).
Using a 1-D model to reproduce diurnal SST signals
DEFF Research Database (Denmark)
Karagali, Ioanna; Høyer, Jacob L.
2014-01-01
profiles, along with the selection of the coefficients for the 2-band parametrisation of light’s penetration in the water column, hold a key role in the agreement of the modelled output with observations. To improve the surface heat budget and the distribution of heat, the code was modified to include an...
Nonisothermal Pluto atmosphere models
International Nuclear Information System (INIS)
The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs
Testing the Early Mars H2-CO2 Greenhouse Hypothesis with a 1-D Photochemical Model
Batalha, Natasha; Ramirez, Ramses; Kasting, James
2015-01-01
A recent study by Ramirez et al. (2014) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ~1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere...
Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E
2011-01-01
We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645
1D model for the dynamics and expansion of elongated Bose-Einstein condensates
Massignan, Pietro; Modugno, Michele
2002-01-01
We present a 1D effective model for the evolution of a cigar-shaped Bose-Einstein condensate in time dependent potentials whose radial component is harmonic. We apply this model to investigate the dynamics and expansion of condensates in 1D optical lattices, by comparing our predictions with recent experimental data and theoretical results. We also discuss negative-mass effects which could be probed during the expansion of a condensate moving in an optical lattice.
Simple model of the density of states in 1D photonic crystal
Rudziński, Adam; Tyszka-Zawadzka, Anna; Szczepański, Paweł
2010-01-01
In this paper, we present a simple, yet versatile, analytical model of one-dimensional photonic crystal (1D PC). In our theoretical model, we take into account direction of propagation and therefore do not neglect anisotropic nature of photonic crystals. We derive analytical expressions for mode spectrum and density of states in 1D photonic crystal. With those formulas, we obtain mode spectrum characteristics, which depict formation of photonic band gap and reveal properties of photonic cryst...
How realistic are solar model atmospheres?
Pereira, Tiago M D; Collet, Remo; Thaler, Irina; Trampedach, Regner; Leenaarts, Jorrit
2013-01-01
Recently, new solar model atmospheres have been developed to replace classical 1D LTE hydrostatic models and used to for example derive the solar chemical composition. We aim to test various models against key observational constraints. In particular, a 3D model used to derive the solar abundances, a 3D MHD model (with an imposed 10 mT vertical magnetic field), 1D models from the PHOENIX project, the 1D MARCS model, and the 1D semi-empirical model of Holweger & M\\"uller. We confront the models with observational diagnostics of the temperature profile: continuum centre-to-limb variations (CLV), absolute continuum fluxes, and the wings of hydrogen lines. We also test the 3D models for the intensity distribution of the granulation and spectral line shapes. The predictions from the 3D model are in excellent agreement with the continuum CLV observations, performing even better than the Holweger & M\\"uller model (constructed largely to fulfil such observations). The predictions of the 1D theoretical models ...
REAL-TIME FLOOD FORECASTING METHOD WITH 1-D UNSTEADY FLOW MODEL
Institute of Scientific and Technical Information of China (English)
MU Jin-bin; ZHANG Xiao-feng
2007-01-01
A real-time forecasting method coupled with the 1-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.
DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS
Institute of Scientific and Technical Information of China (English)
XU Zu-xin; YIN Hai-long
2004-01-01
Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.
Benchmarks and models for 1-D radiation transport in stochastic participating media
Energy Technology Data Exchange (ETDEWEB)
Miller, D S
2000-08-21
Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.
Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.
Directory of Open Access Journals (Sweden)
Travis S Hughes
Full Text Available Fluorine (19F NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC to objectively determine which model (number of peaks would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/.
Rutten, R. J.
2002-12-01
This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.
Directory of Open Access Journals (Sweden)
S. R. Freitas
2010-01-01
Full Text Available Vegetation fires emit hot gases and particles which are rapidly transported upward by the positive buoyancy generated by the combustion process. In general, the final vertical height that the smoke plumes reach is controlled by the thermodynamic stability of the atmospheric environment and the surface heat flux released by the fire. However, the presence of a strong horizontal wind can enhance the lateral entrainment and induce additional drag, particularly for small fires, impacting the smoke injection height. In this paper, we revisit the parameterization of the vertical transport of hot gases and particles emitted from vegetation fires, described in Freitas et al. (2007, to include the effects of environmental wind on transport and dilution of the smoke plume at its scale. This process is quantitatively represented by introducing an additional entrainment term to account for organized inflow of a mass of cooler and drier ambient air into the plume and its drag by momentum transfer. An extended set of equations including the horizontal motion of the plume and the additional increase of the plume radius is solved to simulate the time evolution of the plume rise and the smoke injection height. One-dimensional (1-D model results are presented for two deforestation fires in the Amazon basin with sizes of 10 and 50 ha under calm and windy atmospheric environments. The results are compared to corresponding simulations generated by the complex non-hydrostatic three-dimensional (3-D Active Tracer High resolution Atmospheric Model (ATHAM. We show that the 1-D model results compare well with the full 3-D simulations. The 1-D model may thus be used in field situations where extensive computing facilities are not available, especially under conditions for which several optional cases must be studied.
Directory of Open Access Journals (Sweden)
S. R. Freitas
2009-07-01
Full Text Available We revisit the parameterization of the vertical transport of hot gases and particles emitted from biomass burning, described in Freitas et al. (2007, to include the effects of environmental wind on transport and dilution of the smoke plume at the cloud scale. Typically, the final vertical height that the smoke plumes reach is controlled by the thermodynamic stability of the atmospheric environment and the surface heat flux released by the fire. However, the presence of a strong horizontal wind can enhance the lateral entrainment and induce additional drag, particularly for small fires, impacting the smoke injection height. This process is quantitatively represented by introducing an additional entrainment term to account for organized inflow of a mass of cooler and drier ambient air into the plume and its drag by momentum transfer. An extended set of equations including the horizontal motion of the plume and the additional increase of the plume radius is solved to explicitly simulate the time evolution of the plume rise with the additional mass and momentum. One-dimensional (1-D model results are presented for two deforestation fires in the Amazon basin with sizes of 10 and 50 ha under calm and windy atmospheric environments. The results are compared to corresponding simulations generated by the complex non-hydrostatic three dimensional (3-D Active Tracer High resolution Atmospheric Model (ATHAM. We show that the 1-D model results compare well with the full 3-D simulations. The 1-D model may thus be used in field situations where extensive computing facilities are not available, especially under conditions for which several optional cases must be studied.
Sutanto, S. J.; Wenninger, J.; Coenders-Gerrits, A. M. J.; Uhlenbrook, S.
2012-08-01
Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured) was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d-1 into 0.4 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.6 mm d-1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d-1 into 1 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.3 mm d-1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.
Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics
Directory of Open Access Journals (Sweden)
A. Żak
2016-01-01
Full Text Available Finite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated structural responses distorting or even falsifying them completely. In this paper, certain computational aspects of structural periodicity of 1D FE discrete models are discussed by the authors. In this discussion, the authors focus their attention on an exemplary problem of 1D rod modelled according to the elementary theory.
A Mathematical Model of T1D Acceleration and Delay by Viral Infection.
Moore, James R; Adler, Fred
2016-03-01
Type 1 diabetes (T1D) is often triggered by a viral infection, but the T1D prevalence is rising among populations that have a lower exposure to viral infection. In an animal model of T1D, the NOD mouse, viral infection at different ages may either accelerate or delay disease depending on the age of infection and the type of virus. Viral infection may affect the progression of T1D via multiple mechanisms: triggering inflammation, bystander activation of self-reactive T-cells, inducing a competitive immune response, or inducing a regulatory immune response. In this paper, we create mathematical models of the interaction of viral infection with T1D progression, incorporating each of these four mechanisms. Our goal is to understand how each viral mechanism interacts with the age of infection. The model predicts that each viral mechanism has a unique pattern of interaction with disease progression. Viral inflammation always accelerates disease, but the effect decreases with age of infection. Bystander activation has little effect at younger ages and actually decreases incidence at later ages while accelerating disease in mice that do get the disease. A competitive immune response to infection can decrease incidence at young ages and increase it at older ages, with the effect decreasing over time. Finally, an induced Treg response decreases incidence at any age of infection, but the effect decreases with age. Some of these patterns resemble those seen experimentally. PMID:27030351
Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes
Energy Technology Data Exchange (ETDEWEB)
Johnson, Raymond H. [Navarro Research and Engineering, Inc.; Morrison, Stan [Navarro Research and Engineering, Inc.; Morris, Sarah [Navarro Research and Engineering, Inc.; Tigar, Aaron [Navarro Research and Engineering, Inc.; Dam, William [U.S. Department of Energy, Office of Legacy Management; Dayvault, Jalena [U.S. Department of Energy, Office of Legacy Management
2016-04-26
Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes
Comparison of 1D and 2D modelling with soil erosion model SMODERP
Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan
2013-04-01
The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can
Thermodynamics of 1D N-Component Bariev Model Under Open Boundary Conditions
Institute of Scientific and Technical Information of China (English)
WANG Chun; KE San-Min; YUE Rui-Hong
2006-01-01
The thermodynamic Bethe ansatz equations and free energy for 1D N-component Bariev model under open boundary conditions are derived based on the string hypothesis for both, a repulsive and an attractive interaction.These equations are discussed in some limiting cases, such as the ground state, weak and strong couplings.
Minimal representations of supersymmetry and 1D N-extended σ-models
International Nuclear Information System (INIS)
We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z2-graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)
HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation
A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...
Zsom, A; Goldblatt, C
2012-01-01
One significant difference between the atmospheres of stars and exoplanets is the presence of condensed particles (clouds or hazes) in the atmosphere of the latter. The main goal of this paper is to develop a self-consistent microphysical cloud model for 1D atmospheric codes, which can reproduce some observed properties of Earth, such as the average albedo, surface temperature, and global energy budget. The cloud model is designed to be computationally efficient, simple to implement, and applicable for a wide range of atmospheric parameters for planets in the habitable zone. We use a 1D, cloud-free, radiative-convective, and photochemical equilibrium code originally developed by Kasting, Pavlov, Segura, and collaborators as basis for our cloudy atmosphere model. The cloud model is based on models used by the meteorology community for Earth's clouds. The free parameters of the model are the relative humidity and number density of condensation nuclei, and the precipitation efficiency. In a 1D model, the cloud c...
Chemical uncertainties in modeling hot Jupiters atmospheres
Hebrard, Eric; Domagal-Goldman, Shawn
2015-11-01
Most predictions and interpretations of observations in beyond our Solar System have occurred through the use of 1D photo-thermo-chemical models. Their predicted atmospheric compositions are highly dependent on model parameters. Chemical reactions are based on empirical parameters that must be known at temperatures ranging from 100 K to above 2500 K and at pressures from millibars to hundreds of bars. Obtained from experiments, calculations and educated-guessed estimations, these parameters are always evaluated with substantial uncertainties. However, although of practical use, few models of exoplanetary atmospheres have considered these underlying chemical uncertainties and their consequences. Recent progress has been made recently that allow us to (1) evaluate the accuracy and precision of 1D models of planetary atmospheres, with quantifiable uncertainties on their predictions for the atmospheric composition and associated spectral features, (2) identify the ‘key parameters’ that contribute the most to the models predictivity and should therefore require further experimental or theoretical analysis, (3) reduce and optimize complex chemical networks for their inclusion in multidimensional atmospheric models.First, a global sampling approach based on low discrepancy sequences has been applied in order to propose error bars on simulations of the atmospheres HD 209458b and HD 189733b, using a detailed kinetic model derived from applied combustion models that was methodically validated over a range of temperatures and pressures typical for these hot Jupiters. A two-parameters temperature-dependent uncertainty factor has been assigned to each considered rate constant. Second, a global sensitivity approach based on high dimensional model representations (HDMR) has been applied in order to identify those reactions which make the largest contributions to the overall uncertainty of the simulated results. The HDMR analysis has been restricted to the most important
Silva. EDF two-phase 1D annular model of a CFB boiler furnace
Energy Technology Data Exchange (ETDEWEB)
Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.
1997-01-01
SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.
A 1D model for the description of mixing-controlled reacting diesel sprays
Energy Technology Data Exchange (ETDEWEB)
Desantesa, J.M.; Pastor, J.V.; Garcia-Oliver, J.M.; Pastor, J.M. [CMT - Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)
2009-01-15
The paper reports an investigation on the transient evolution of diesel flames in terms of fuel-air mixing, spray penetration and combustion rate. A one-dimensional (1D) spray model, which was previously validated for inert diesel sprays, is extended to reacting conditions. The main assumptions of the model are the mixing-controlled hypothesis and the validity of self-similarity for conservative properties. Validation is achieved by comparing model predictions with both CFD gas jet simulations and experimental diesel spray measurements. The 1D model provides valuable insight into the evolution of the flow within the spray (momentum and mass fluxes, tip penetration, etc.) when shifting from inert to reacting conditions. Results show that the transient diesel flame evolution is mainly governed by two combustion-induced effects, namely the reduction in local density and the increase in flame radial width. (author)
Prediction of car cabin environment by means of 1D and 3D cabin model
Jícha M.; Pokorný J.; Fišer J.
2012-01-01
Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this t...
Local source tomography for Vrancea (Romania) region: minimum 1D model
International Nuclear Information System (INIS)
The Vrancea zone is characterized by a narrow, vertical focal volume of intense and persistent seismicity in the depth range of 60-220 km. The processes associated with the Vrancea earthquakes outline a final stage of continental subduction with plate detachment, still far from being understood. Our main purpose is to perform local earthquake tomography to image crustal structures in Vrancea and adjacent regions as initial reference model in 3 D tomography. The study includes updating of the existing catalogues of seismic parameter data, calculation of a minimum 1D model and correlation with the existing controlled-source data. The model is determined by a trial-and-error process, with internal non-linear (iterative) inversion procedure (program VELEST). The average velocity model parameters are obtained by minimizing the standard deviations of the travel time residuals. The P-wave travel times for 500 well-locatable events are used, merging travel time data recorded by two separate independent seismic networks: the Romanian telemetered network (17 vertical-component S-13 seismometers) and the digital accelerometers network (30 three-component K2 instruments) installed in 1996 within the joint Romanian-German cooperation programme CRC 461. Since the two networks largely overlap geographically, we calculate a common minimum 1D model that guarantees a uniform location quality and uniform phase identification for the two networks. Absolute mislocation errors for the combined networks using the minimum 1D model are calculated using quarry blast data obtained during the VRANCEA99 refraction experiment deployed in 1999 in Romania as a contribution to the CRC 461 programme. The resulted minimum 1D model and station corrections are used to relocate all the considered events and to improve the consistency in the phase identification. The station corrections obtained are correlated with the lateral velocity variations in the surface geology of the region. This paper is a
Numerical Methods and Comparisons for 1D and Quasi 2D Streamer Propagation Models
Huang, Mengmin; Guan, Huizhe; Zeng, Rong
2016-01-01
In this work, we propose four different strategies to simulate the one-dimensional (1D) and quasi two-dimensional (2D) model for streamer propagation. Each strategy involves of one numerical method for solving Poisson's equation and another method for solving continuity equations in the models, and a total variation diminishing three-stage Runge-Kutta method in temporal discretization. The numerical methods for Poisson's equation include finite volume method, discontinuous Galerkin methods, mixed finite element method and least-squared finite element method. The numerical method for continuity equations is chosen from the family of discontinuous Galerkin methods. The accuracy tests and comparisons show that all of these four strategies are suitable and competitive in streamer simulations from the aspects of accuracy and efficiency. By applying any strategy in real simulations, we can study the dynamics of streamer propagations and influences due to the change of parameters in both of 1D and quasi 2D models. T...
Thermodynamic nature of vitrification in a 1D model of a structural glass former
International Nuclear Information System (INIS)
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids
Assessment of core thermo-hydrodynamic models of REFLA-1D with CCTF data
International Nuclear Information System (INIS)
In order to assess the core thermo-hydrodynamic models of REFLA-1D/MODE3, which is the latest version of REFLA-1D, several calculations of the core thermo-hydrodynamics have been performed for the CCTF Core-I series tests. The measured initial and boundary conditions were used for these calculations. The calculational results showed that the water accumulation model of Case 2 could predict the CCTF results fairly well as it could for the JAERI small scale facility. The calculated results for the base case and the EM tests were in good agreement with the CCTF data. The parameter effects, such as system pressure, initial clad temperature, Acc injection rate, LPCI injection rate and initial down-comer wall temperature, were predicted correctly, except for the high system pressure and the high LPCI injection rate tests. (author)
Directory of Open Access Journals (Sweden)
S. J. Sutanto
2012-08-01
Full Text Available Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d^{−1} into 0.4 mm d^{−1} for soil evaporation, 0.3 mm d^{−1} for interception and 2.6 mm d^{−1} for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d^{−1} into 1 mm d^{−1} for soil evaporation, 0.3 mm d^{−1} for interception and 2.3 mm d^{−1} for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.
Box model and 1D longitudinal model of flow and transport in Bosten Lake, China
Li, Ning; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang
2015-05-01
Bosten Lake in the southeast of Yanqi Catchment, China, supports the downstream agricultural and natural environments. Over the last few decades the intensive agricultural activities in Yanqi Catchment resulted in decreased lake levels and deteriorated lake water quality. A two-box model is constructed to understand the evolution of lake level and salinity between 1958 and 2008. The two-box model of the lake indicates that the evaporation does have the same trend as the observed lake area and the annual average evaporation agrees with the value obtained from the Penman-Monteith approach. To achieve a correct salt balance, the ratio of outflow concentration and average lake concentration has to be around 0.7. This is due to the incomplete mixing of the lake caused by short-circuiting between tributary inflow and the main outflow via the pump stations abstracting water from the lake. This short-circuiting is investigated in more detail by a 1D numerical flow and transport model of the lake calibrated with observations of lake level and lake concentrations. The distributed model reproduces the correct time-varying outflow concentration. It is used for the assessment of two basic management options: increasing river discharge (by water saving irrigation, reduction of phreatic evaporation or reduction of agricultural area) and diverting saline drainage water to the desert. Increasing river discharge to the lake by 20% reduces the east basin salt concentration by 0.55 kg/m3, while capturing all the drainage water and discharging it to depressions instead of the lake reduces the east basin salt concentration by 0.63 kg/m3. A combination of increasing river inflow and decreasing drainage salt flux is sufficient to bring future lake TDS below the required 1 kg/m3, to keep a lake level that sustains the lake ecosystem, and to supply more water for downstream development and ecosystem rehabilitation.
International Nuclear Information System (INIS)
The state of art of modelling activities related to integral experimental facilities of advanced passive reactors show to date important open items. The main advantage of using 1D plant codes is the capability of simulating the full interaction between components traditionally correctly modelled (condensers, heat exchangers, pipes and vessels) and other components for which codes are not 100% suitable (pools and containments). Polytechnical University of Catalonia (UPC) and Polytechnical University of Valencia (UPV) cooperated with other European research organizations in the 'Technology Enhancement for Passive Safety Systems' (TEPSS) project, within the European Fourth Framework Programme. It was a task of both Universities to supply analytical support of PANDA tests. The paper deals with the 1D/3D discussion in the framework of modelling activities related to integral passive facilities like PANDA. It starts choosing reference tests among those corresponding to our participation in TEPSS project. The discrepancies observed in a 1D simulation of the selected tests will be shown and analyzed. An evaluation of how the 3D version can lead to a better agreement with data will be included. Disadvantages of 3D codes will be shown too. Combining the use of different codes, and considering analyst criteria, will make possible to establish suitable recommendations from both engineering and scientific point of view. (author)
Analysis of Flash Flood Routing by Means of 1D - Hydraulic Modelling
Tesfay Abraha, Zerisenay
2013-01-01
This study was conducted at the mountainous catchment part of Batinah Region of the Sultanate of Oman called Al-Awabi watershed which is about 260km2 in area with about 40 Km long Wadi main channel. The study paper presents a proposed modeling approach and possible scenario analysis which uses 1D - hydraulic modeling for flood routing analysis; and the main tasks of this study work are (1) Model setup for Al-Awabi watershed area, (2) Sensitivity Analysis, and (3) Scenario Analysis on impacts ...
Modeling of the diffraction pattern of 1D-disordered silicon carbide
International Nuclear Information System (INIS)
A method for calculating the diffraction pattern of a 1D-disordered crystal structure is considered by the example of silicon carbide. One-dimensional disordering is described using a cell setting the mutual position of all close-packed crystal layers. Two models of structure disordering during the polytypic transformation of the silicon carbide cubic modification into hexagonal are discussed. The results of the calculation of the diffraction spectrum in different stages of polytypic transformation are reported. It is shown that 1D disordering leads to the formation of a set of weak diffraction reflections. The experimentally observed changes in the diffraction pattern can be interpreted within the hypothesis on crystal structure disordering through displacement of adjacent close-packed layers.
Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.
Wang, Xiaofei; Fullana, Jose-Maria; Lagrée, Pierre-Yves
2015-01-01
A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed. PMID:25145651
Nested 1D-2D approach for urban surface flood modeling
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
1D-3D Hybrid Modelling - From Multi-Compartment Models to Full Resolution Models in Space and Time
Directory of Open Access Journals (Sweden)
Stephan Grein
2014-07-01
Full Text Available Investigation of cellular and network dynamics in the brain by means of modeling & simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling & simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in level of detail to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing spatial aspects of the cells. For single cell or small-world networks, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the 3D morphology of cells and organelles into 3D space and time-dependent simulations. Every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. We present a hybrid simulation approach, that makes use of reduced 1D-models using e.g. the NEURON which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed 3D-morphology of neurons and organelles. To couple 1D- & 3D-simulations, we present a geometry and membrane potential mapping framework, with which graph-based morphologies, e.g. in swc-/hoc-format, are mapped to full surface and volume representations of the neuron; membrane potential data from 1D-simulations are used as boundary conditions for full 3D simulations. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved highly detailed 3D-modeling approaches. The new framework is applied to investigate electrically active neurons and their intracellular spatio
Numerical modeling of 1-D transient poroelastic waves in the low-frequency range
Chiavassa, Guillaume; Piraux, Joël
2007-01-01
Propagation of transient mechanical waves in porous media is numerically investigated in 1D. The framework is the linear Biot's model with frequency-independant coefficients. The coexistence of a propagating fast wave and a diffusive slow wave makes numerical modeling tricky. A method combining three numerical tools is proposed: a fourth-order ADER scheme with time-splitting to deal with the time-marching, a space-time mesh refinement to account for the small-scale evolution of the slow wave, and an interface method to incorporate the jump conditions at interfaces. Comparisons with analytical solutions confirm the validity of this approach.
Prediction of car cabin environment by means of 1D and 3D cabin model
Fišer, J.; Pokorný, J.; Jícha, M.
2012-04-01
Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.
Prediction of car cabin environment by means of 1D and 3D cabin model
Directory of Open Access Journals (Sweden)
Jícha M.
2012-04-01
Full Text Available Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry. Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.
GE SBWR stability analysis using TRAC-BF1 1-D kinetics model
International Nuclear Information System (INIS)
GE's simplified boiling water reactor, with its unique feature of using natural circulation to remove the heat from the reactor core, is a complicated dynamic system. Previous work by authors using the TRAC-BF1 code and a point kinetics model predicted that an SBWR may experience large amplitude power oscillation under certain low pressure and high power operating conditions. To further confirm the existence of this power oscillation and explore the dynamic spatial reactor power distribution, the TRAC-BF1 1-D kinetics model was used. The results show that an instability exists and the power oscillation starting time and maximum peak power are different from the point kinetics results
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods
Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.
2015-01-01
Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due
Optimal modeling of 1D azimuth correlations in the context of Bayesian inference
De Kock, Michiel B; Trainor, Thomas A
2015-01-01
Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data-one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian Inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of 2D angular correlations onto 1D azimuth from three centrality classes of 200 GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier seri...
A 1-D evolutionary model for icy satellites, applied to Enceladus
Prialnik, Uri Malamud Dina
2015-01-01
We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution...
REAL-TIME FLOOD FORECASTING MODELING OF 1D UNSTEADY CHANNEL FLOW AND KALMAN FILTER
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The model of 1D unsteady channel flow combined with the Kalmanfilter for real-time channel flood forecasting was attempted in this study. The suitable upstream and downstream boundary conditions were suggested. The system equation was given by the linearization of the finitedifference equations of the mass conservation and momentum equations as well as the boundary conditions. In the Kalman filter updating model, because the number of measurement variable is less then that of state-space variables, the measurement error covariance matrix could be estimated in real time through the innovation sequence, and the system error covariance matrix needs to be estimated preliminarily. A real example of flood forecasting in the Huaihe River was given to explain how the method works. The results show that the model is reasonable and effective.
Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Maeng, Jungyeoul Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyde, David Andrew Bulloch [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-07-28
Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.
Microscopic approach to a class of 1D quantum critical models
International Nuclear Information System (INIS)
Starting from the finite volume form factors of local operators, we show how and under which hypothesis the c = 1 free boson conformal field theory in two-dimensions emerges as an effective theory governing the large-distance regime of multi-point correlation functions for a large class of one-dimensional massless quantum Hamiltonians. In our approach, in the large-distance critical regime, the local operators of the initial model are represented by well suited vertex operators associated to the free boson model. This provides an effective field theoretic description of the large distance behaviour of correlation functions in 1D quantum critical models. We develop this description starting from the first principles and directly at the microscopic level, namely in terms of the properties of the finite volume matrix elements of local operators. (paper)
Allègre, Vincent; Ackerer, Philippe; Jouniaux, Laurence; Sailhac, Pascal; 10.1111/j.1365-246X.2012.05371.x
2012-01-01
The understanding of electrokinetics for unsaturated conditions is crucial for numerous of geophysical data interpretation. Nevertheless, the behaviour of the streaming potential coefficient C as a function of the water saturation Sw is still discussed. We propose here to model both the Richards' equation for hydrodynamics and the Poisson's equation for electrical potential for unsaturated conditions using 1-D finite element method. The equations are first presented and the numerical scheme is then detailed for the Poisson's equation. Then, computed streaming potentials (SPs) are compared to recently published SP measurements carried out during drainage experiment in a sand column. We show that the apparent measurement of DV / DP for the dipoles can provide the SP coefficient in these conditions. Two tests have been performed using existing models for the SP coefficient and a third one using a new relation. The results show that existing models of unsaturated SP coefficients C(Sw) provide poor results in term...
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
Fluid friction and wall viscosity of the 1D blood flow model
Wang, Xiao-Fei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria
2015-01-01
We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity.
Fluid friction and wall viscosity of the 1D blood flow model.
Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria
2016-02-29
We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. PMID:26862041
Full Waveform 3D Synthetic Seismic Algorithm for 1D Layered Anelastic Models
Schwaiger, H. F.; Aldridge, D. F.; Haney, M. M.
2007-12-01
Numerical calculation of synthetic seismograms for 1D layered earth models remains a significant aspect of amplitude-offset investigations, surface wave studies, microseismic event location approaches, and reflection interpretation or inversion processes. Compared to 3D finite-difference algorithms, memory demand and execution time are greatly reduced, enabling rapid generation of seismic data within workstation or laptop computational environments. We have developed a frequency-wavenumber forward modeling algorithm adapted to realistic 1D geologic media, for the purpose of calculating seismograms accurately and efficiently. The earth model consists of N layers bounded by two halfspaces. Each layer/halfspace is a homogeneous and isotropic anelastic (attenuative and dispersive) solid, characterized by a rectangular relaxation spectrum of absorption mechanisms. Compressional and shear phase speeds and quality factors are specified at a particular reference frequency. Solution methodology involves 3D Fourier transforming the three coupled, second- order, integro-differential equations for particle displacements to the frequency-horizontal wavenumber domain. An analytic solution of the resulting ordinary differential system is obtained. Imposition of welded interface conditions (continuity of displacement and stress) at all interfaces, as well as radiation conditions in the two halfspaces, yields a system of 6(N+1) linear algebraic equations for the coefficients in the ODE solution. An optimized inverse 2D Fourier transform to the space domain gives the seismic wavefield on a horizontal plane. Finally, three-component seismograms are obtained by accumulating frequency spectra at designated receiver positions on this plane, followed by a 1D inverse FFT from angular frequency ω to time. Stress-free conditions may be applied at the top or bottom interfaces, and seismic waves are initiated by force or moment density sources. Examples reveal that including attenuation
Initial Stage of the Microwave Ionization Wave Within a 1D Model
Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.
2016-06-01
The dynamics of the microwave breakdown in a gas is simulated numerically within a simple 1D model which takes into account such processes as the impact ionization of gas molecules, the attachment of electrons to neutral molecules, and plasma diffusion. Calculations are carried out for different spatial distributions of seed electrons with account for reflection of the incident electromagnetic wave from the plasma. The results reveal considerable dependence of the ionization wave evolution on the relation between the field frequency and gas pressure, as well as on the existence of extended rarefied halo of seed electrons. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave moving towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with the formation of repetitive jumps of the ionization front.
Study of phase space structures in driven 1D Vlasov poisson model
International Nuclear Information System (INIS)
Electrostatic waves in a collisionless, unmagnetized plasma are known to interact with particles that stream with velocities close to the wave phase speed to produce damping effects, particle trapping and interesting nonlinear coherent structures. For example, it is well known that if the initial amplitude of the wave is large enough, the damping effects can be overcome to form BGK structures. In the present work, we consider a 1D driven Vlasov-Poisson plasma model. It is demonstrated that by a careful choice of drive phase and for drive amplitudes smaller than or comparable to the linear limit, it is possible to generate surprisingly large amplitude coherent structures in phase space. This and other details will be presented. (author)
Hassan, Kazi; Allen, Deonie; Haynes, Heather
2016-04-01
This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume
Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model
Directory of Open Access Journals (Sweden)
Davide Viganò
2016-01-01
Full Text Available Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model.
A 1-D evolutionary model for icy satellites, applied to Enceladus
Malamud, Uri; Prialnik, Dina
2016-04-01
We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.
1D Tight-Binding Models Render Quantum First Passage Time "Speakable"
Ranjith, V.; Kumar, N.
2015-12-01
The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.
Topological order in 1D super-lattice Bose-Hubbard models
Fleischhauer, Michael; Grusdt, Fabian; Hoening, Michael
2013-05-01
After the discovery of topological insulators as a new state of matter and their consequent classification for free fermions, the question arises what kind of topological order can be supported by incompressible systems of interacting bosons. We consider a 1D super-lattice Hamiltonian with a non-trivial band structure (the Su-Schrieffer-Heeger model) and show that its Mott-insulating (MI) states can be classified by a quantized many-body winding number. This quantization is protected by sub-lattice and time-reversal symmetries, and it allows the implementation of a quantized cyclic pumping process (Thouless pump) in a simple super-lattice Bose-Hubbard model (BHM). For extended BHMs we discuss a connection of such a pump with the fractional quantum Hall effect. Furthermore we show that the quantization of the winding number leads to localized, protected edge states at sharp interfaces between topologically distinct MI phases which can be experimentally realized using Bose-Fermi mixtures in optical superlattices. DMRG simulations show that these edge states manifest themself either in localized density maxima or localized density minima, which can easily be detected. Supported by research center OPTIMAS and graduate school MAINZ.
Modelling land surface - atmosphere interactions
DEFF Research Database (Denmark)
Rasmussen, Søren Højmark
The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...
Self-assembling morphologies in a 1D model of two-inclusion-containing lipid membranes
Zhou, Ling; Cheng, Mingfei; Fang, Jinghuai; Peng, Ju
2016-08-01
The self-assembling morphologies in a 1D model of two-inclusion-containing lipid membranes are investigated by using self-consistent field theory. It is found that the shape and overall volume fraction of lipids, the hydrophobic strength and the distance of inclusions play important roles in the morphology of lipid membrane. The membrane consisting of cylindrical lipids with a symmetrical head and tail only forms the well-known normal morphology. However, for the membrane consisting of cone-like lipids with a relatively big head, the increase of the hydrophobic strength of inclusions can realize the membrane transition from the normal morphology to the pore morphologies. With increasing distance between two inclusions, two pores, three pores and four pores appear in turn. Conversely, the increase of the overall volume fraction of lipids can make the membrane undergo a reentrant transition from pore morphologies to normal morphologies. The results may be helpful in our understanding of the pore-forming mechanism.
Modelling hydrology of a single bioretention system with HYDRUS-1D.
Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan
2014-01-01
A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240
Modeling Soil Salt and Nitrogen Transport under Different Fertigation Practices with Hydrus-1D
Directory of Open Access Journals (Sweden)
Zeng Wen-zhi
2013-05-01
Full Text Available In this study the effects of different fertigation practices on salt and nitrogen dynamics were analyzed in the Hetao District, China by using the Hydrus-1D model. The results indicated that the soil electrical conductivity increased gradually with depth after irrigation and the electrical conductivity of 0~60 cm depth changed faster than that of 60~100 cm depth. However, the soil ammonium nitrogen concentration decreased with depth and high irrigation intensity could promote the increase of ammonium nitrogen while reducing the differences of their distributions in soil profile. In addition, when the initial urea application was in a small amount (10 g, the nitrate nitrogen concentration increased with soil depth while decreased with irrigation intensity after irrigation. Furthermore, both ammonium and nitrate nitrogen content of soil profile rose with increasing initial urea application amount, which played a more important role in the changes of soil ammonium (0~100 cm and nitrate (0~80 cm nitrogen content than irrigation intensity.
Results and limits in the 1-D analytical modeling for the asymmetric DG SOI MOSFET
Directory of Open Access Journals (Sweden)
O. Cobianu
2008-05-01
Full Text Available This paper presents the results and the limits of 1-D analytical modeling of electrostatic potential in the low-doped p type silicon body of the asymmetric n-channel DG SOI MOSFET, where the contribution to the asymmetry comes only from p- and n-type doping of polysilicon used as the gate electrodes. Solving Poisson's equation with boundary conditions based on the continuity of normal electrical displacement at interfaces and the presence of a minimum electrostatic potential by using the Matlab code we have obtained a minimum potential with a slow variation in the central zone of silicon with the value pinned around 0.46 V, where the applied V_{GS} voltage varies from 0.45 V to 0.95 V. The paper states clearly the validity domain of the analytical solution and the important effect of the localization of the minimum electrostatic potential value on the potential variation at interfaces as a function of the applied V_{GS} voltage.
An Analytic Radiative-Convective Model for Planetary Atmospheres
Robinson, Tyler D; 10.1088/0004-637X/757/1/104
2012-01-01
We present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries, (2) worlds with some attenuation of sunli...
Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes
Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.
2015-12-01
At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond
Titan atmospheric models intercomparison
Pernot, P.
2008-09-01
Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.
1D modelling of alteration of compacted bentonite due to cementitious leachate
International Nuclear Information System (INIS)
Document available in extended abstract form only. The interaction between the bentonite buffer and alkaline fluids deriving from cementitious materials used in the construction and operation of a KBS-3 spent-fuel repository is considered as a risk to the long-term chemical stability of bentonite. The associated long-term safety concerns include a loss of bentonite swelling pressure, increased hydraulic conductivity, and possibly fracturing of bentonite due to cementation. Consequently, it is important to identify and quantify the mechanisms controlling the degradation of the buffer by a cement leachate. This would subsequently help take adequate measures to mitigate the risk posed by alkaline attack. In this work, 1D reactive transport model (TOUGHREACT v. 1.0) calculations have been carried out to shed light on the possible extent of MX-80 bentonite alteration due to three leachates envisaged to represent different stages of cement degradation and subsequent mixing with the ground water. The reaction time for the calculations was set at 10,000 years or until the porosity was clogged in the compacted bentonite, whichever occurred earlier. A common feature of the model outcome for each leachate is the total consumption of gypsum and calcite in the bentonite and the clogging of the pore space by secondary mineral phases at the interface between the buffer and the rock fracture. Depending on the pH (12.17, 11.60 or 9.70), this clogging was calculated to occur after 10, 18 and 5,900 years of interaction, respectively. For each case, the heavily altered zone in bentonite is typically located within 1 cm from the interface, although for the lowest pH, the alteration extends slightly further into the bentonite due to the longer time it takes to clog the porosity. Overall, the model results are found sensitive to the chemical composition of the leachate interacting with the buffer. Regardless of the case studied, there is a significant smectite fraction left at the end of
Simulation of a semiarid stream flow using the 1D model (Rubarbe) : case of Ksob Wadi in Algeria
Hasbaia, M.; Adoui, H.; Paquier, A.
2015-01-01
This study aims to show the ability of 1D model to simulate the wadi flow during the flood. The wadi is a semiarid stream characterized by the non uniform geometry and an intermittent flow. These complexities can be modelled by a robust 1D model such as Rubarbe. In this article we study the 1994 flood of Ksob wadi that caused a large inundation of M’sila town in the center of Algeria. The simulated reach located downstream the Ksob dam, crosses M’sila over a length of 6800 m w...
A Global Atmospheric Model of Meteoric Iron
Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.
2013-01-01
The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.
Diesel Engine performance improvement in a 1-D engine model using Particle Swarm Optimization
Karra, Prashanth
2015-12-01
A particle swarm optimization (PSO) technique was implemented to improve the engine development and optimization process to simultaneously reduce emissions and improve the fuel efficiency. The optimization was performed on a 4-stroke 4-cylinder GT-Power based 1-D diesel engine model. To achieve the multi-objective optimization, a merit function was defined which included the parameters to be optimized: Nitrogen Oxides (NOx), Nonmethyl hydro carbons (NMHC), Carbon Monoxide (CO), Brake Specific Fuel Consumption (BSFC). EPA Tier 3 emissions standards for non-road diesel engines between 37 and 75 kW of output were chosen as targets for the optimization. The combustion parameters analyzed in this study include: Start of main Injection, Start of Pilot Injection, Pilot fuel quantity, Swirl, and Tumble. The PSO was found to be very effective in quickly arriving at a solution that met the target criteria as defined in the merit function. The optimization took around 40-50 runs to find the most favourable engine operating condition under the constraints specified in the optimization. In a favourable case with a high merit function values, the NOx+NMHC and CO values were reduced to as low as 2.9 and 0.014 g/kWh, respectively. The operating conditions at this point were: 10 ATDC Main SOI, -25 ATDC Pilot SOI, 0.25 mg of pilot fuel, 0.45 Swirl and 0.85 tumble. These results indicate that late main injections preceded by a close, small pilot injection are most favourable conditions at the operating condition tested.
Plez, Bertrand
2008-01-01
In this review presented at the Symposium A stellar journey in Uppsala, June 2008, I give my account of the historical development of the MARCS code from the first version published in 1975 and its premises to the 2008 grid. It is shown that the primary driver for the development team is the science that can be done with the models, and that they constantly strive to include the best possible physical data. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in the spectral energy distribution (SED) and model thermal stratification are estimated for different densities of the wavelength sampling. The number of points used in the MARCS 2008 grid (108000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus appro...
Comparison of 1D and 2D CSR Models with Application to the FERMI@ELETTRA Bunch Compressors
Energy Technology Data Exchange (ETDEWEB)
Bassi, G.; Ellison, J.A.; Heinemann, K.
2011-03-28
We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces [1]. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi{at}Elettra first bunch compressor with the configuration described in [1].
Comparison of 1D and 2D CSR Models with Application to the FERMI(at)ELETTRA Bunch Compressors
International Nuclear Information System (INIS)
We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces (1). The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi(at)Elettra first bunch compressor with the configuration described in (1).
1D Runoff-runon stochastic model in the light of queueing theory : heterogeneity and connectivity
Harel, M.-A.; Mouche, E.; Ledoux, E.
2012-04-01
Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed where R is greater than I. The infiltration rate equals the infiltrability when runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max(Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect to each other differently depending on the rainfall intensity and the nature of the soil heterogeneity. The runoff connectivity, assessed using the connectivity function of Allard (1993), affects greatly the dynamics of the runoff hillslope. Our aim is to assess, in a stochastic framework, the runoff organization on 1D slopes with random infiltrabilities (log-normal, exponential, bimodal and uniform distributions) by means of theoretical developments and numerical simulations. This means linking the nature of soil heterogeneity with the resulting runoff organisation. In term of connectivity, we investigate the relations between structural (infiltrability) and functional (runoff) connectivity. A theoretical framework based on the queueing theory is developed. We implement the idea of Jones et al. (2009), who remarked that the above formulation is
A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber
Energy Technology Data Exchange (ETDEWEB)
Lee, Andrew; Miller, David C.
2012-01-01
A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.
International Nuclear Information System (INIS)
West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault
INFIL1D: a quasi-analytical model for simulating one-dimensional, constant flux infiltration
International Nuclear Information System (INIS)
The program INFIL1D is designed to calculate approximate wetting-front advance into an unsaturated, uniformly moist, homogeneous soil profile, under constant surface-flux conditions. The code is based on a quasi-analytical method, which utilizes an assumed invariant functional relationship between reduced (normalized) flux and water content. The code uses general hydraulic property data in tabular form to simulate constant surface-flux infiltration. 10 references, 4 figures
Scarfì, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Imposa, S.; Dipartimento di Scienze Geologiche, University of Catania, Italy; Raffaele, R.; Dipartimento di Scienze Geologiche, Università di Catania, Italy; Scaltrito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia
2008-01-01
A 1-D velocity model for the Marche region (central Italy) was computed by inverting P- and S-wave arrival times of local earthquakes. A total of 160 seismic events with a minimum of ten observations, a travel time residual ≤ 0.8 s and an azimuthal gap lower than 180° have been selected. This “minimum 1-D velocity model” is complemented by station corrections, which can be used to take into account possible near-surface velocity heterogeneities beneath each station. Using this new P-wave ...
1D spin-1/2 XY models as a testing ground for spin systems theory methods
International Nuclear Information System (INIS)
Elementary excitation energy spectrum that gives thermodynamic properties is calculated for few partial non-random and random versions of 1D spin-1/2 XY model. The exact result obtained is compared with the results derived within some well known approximate approaches that permits to understand the region of their validity. (author). 6 refs, 6 figs
Kowit Boonrawd; Chatchai Jothityangkoon
2015-01-01
A coupling of a 1-D flood routing model and quasi 2-D floodplain inundation model is applied for mapping spacetime flood extent. The routing model is formulated based on a non-linear storage-discharge relationship which is converted from an observed and synthetic rating curve. To draw the rating curve, required parameters for each reaches are estimated from hydraulic properties, floodplain geometry and vegetation and building cover of compound channels. The shape of the floodplain...
Revisions to Photochemical Data for Use in Atmospheric Modeling
Shutter, Joshua D.; Willacy, Karen; Allen, Mark
2012-01-01
Solar and stellar flux incident on an atmosphere can cause molecules to dissociate into highly reactive species and allows for photochemical processes to play a fundamental role in atmospheric chemistry. While models have tried to simulate such processes, they are extremely sensitive to photoabsorption cross-sections and quantum yields: two parameters that are important in determining the photodissociation rate, and hence the lifetime, of atmospheric compounds. Obtaining high-resolution and current data for these parameters is therefore highly desirable. Due to this, database and literature searches for high-quality cross-sections and quantum yields were performed and compiled for KINETICS, a Caltech/JPL Chemical Transport Model that can be used in modeling planetary atmospheres. Furthermore, photodissociation rates determined by running a Titan 1-D model were used to verify the completeness of these latest revisions.
Modeling of atmospheric pollutant transfers
International Nuclear Information System (INIS)
Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)
International Nuclear Information System (INIS)
Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors
Harley, P.; Spence, S.; Early, J.; Filsinger, D.; Dietrich, M.
2013-12-01
Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.
Model for Simulation Atmospheric Turbulence
DEFF Research Database (Denmark)
Lundtang Petersen, Erik
1976-01-01
A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance, a...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....
Improving practical atmospheric dispersion models
International Nuclear Information System (INIS)
The new generation of practical atmospheric dispersion model (for short range ≤ 30 km) are based on dispersion science and boundary layer meteorology which have widespread international acceptance. In addition, recent improvements in computer skills and the widespread availability of small powerful computers make it possible to have new regulatory models which are more complex than the previous generation which were based on charts and simple formulae. This paper describes the basis of these models and how they have developed. Such models are needed to satisfy the urgent public demand for sound, justifiable and consistent environmental decisions. For example, it is preferable that the same models are used to simulate dispersion in different industries; in many countries at present different models are used for emissions from nuclear and fossil fuel power stations. The models should not be so simple as to be suspect but neither should they be too complex for widespread use; for example, at public inquiries in Germany, where simple models are mandatory, it is becoming usual to cite the results from highly complex computational models because the simple models are not credible. This paper is written in a schematic style with an emphasis on tables and diagrams. (au) (22 refs.)
Haji Mohammadi, M.; Kang, S.; Sotiropoulos, F.
2011-12-01
It is well-known that meander bends impose local losses of energy to the flow in rivers. These local losses should be added together with friction loss to get the total loss of energy. In this work, we strive to develop a framework that considers the effect of bends in meandering rivers for one-dimensional (1-D) homogenous equations of flow. Our objective is to develop a simple, yet physically sound, and efficient model for carrying out engineering computations of flow through meander bends. We consider several approaches for calculating 1-D hydraulic properties of meandering rivers such as friction factor and Manning coefficient. The method of Kasper et al. (2005), which is based on channel top width, aspect ratio and radius of curvature, is adopted for further calculations. In this method, a correction is implemented in terms of local energy loss, due to helical motion and secondary currents of fluid particles driven by centrifugal force, in meanders. To validate the model, several test cases are simulated and the computed results are compared with the reported data in the literature in terms of water surface elevation, shear velocity, etc. For all cases the computed results are in reasonable agreement with the experimental data. 3-D RANS turbulent flow simulations are also carried out, using the method of Kang et al. (Adv. In Water Res., vol. 34, 2011), for different geometrical parameters of Kinoshita Rivers to determine the spatial distribution of shear stress on river bed and banks, which is the key factor in scour/deposition patterns. The 3-D solutions are then cross-sectionally averaged and compared with the respective solutions from the 1-D model. The comparisons show that the improved 1D model, which incorporates the effect of local bend loss, captures key flow parameters with reasonable accuracy. Our results also underscore the range of validity and limitations of 1D models for meander bend simulations. This work was supported by NSF Grants (as part of
International Nuclear Information System (INIS)
One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)
Evaluating 3-D and 1-D mathematical models for mass transport in heterogeneous biofilms
DEFF Research Database (Denmark)
Morgenroth, Eberhard Friedrich; Eberl, H.; van Loosdrecht, M. C. M.
Results from a three dimensional model for heterogeneous biofilms including the numerical solution of hydrodynamics were compared to simplified one dimensional models. A one dimensional model with a variable diffusion coefficient over the thickness of the biofilm was well suited to approximate av...
Evaluating 3-D and 1-D mathematical models for mass transport in heterogeneous biofilms
DEFF Research Database (Denmark)
Morgenroth, Eberhard Friedrich; Eberl, H.; van Loosdrecht, M. C. M.
2000-01-01
Results from a three dimensional model for heterogeneous biofilms including the numerical solution of hydrodynamics were compared to simplified one dimensional models. A one dimensional model with a variable diffusion coefficient over the thickness of the biofilm was well suited to approximate av...... in a growing biofilm and in a mushroom type biofilm assuming different modes of detachment....
Amundsen, David Skålid; Thøgersen, Kjetil; Trømborg, Jørgen; Malthe-Sørenssen, Anders
2011-01-01
We study the dynamic behaviour of 1D spring-block models of friction when the external loading is applied from a side, and not on all blocks like in the classical Burridge-Knopoff-like models. Such a change in the loading yields specific difficulties, both from numerical and physical viewpoints. To address some of these difficulties and clarify the precise role of a series of model parameters, we start with the minimalistic model by Maegawa et al. (Tribol. Lett. 38, 313, 2010) which was proposed to reproduce their experiments about precursors to frictional sliding in the stick-slip regime. By successively adding (i) an internal viscosity, (ii) an interfacial stiffness and (iii) an initial tangential force distribution at the interface, we manage to (i) avoid the model's unphysical stress fluctuations, (ii) avoid its unphysical dependence on the spatial resolution and (iii) improve its agreement with the experimental results, respectively. Based on the behaviour of this improved 1D model, we develop an analyti...
2D MHD and 1D HD models of a solar flare -- a comprehensive comparison of the results
Falewicz, R; Murawski, K; Srivastava, A K
2015-01-01
Without any doubt solar flaring loops possess a multi-thread internal structure that is poorly resolved and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modelling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of 1D hydrodynamic and 2D magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in the AR10126 on September 20, 2002 between 09:21 UT and 09:50 UT. The non-ideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy loss mechanisms, while the non-ideal 2D models take into account viscosity and thermal conduction as energy loss mechanisms only. The 2...
1D Nonisothermal Fiber Spinning Models for Thermotropic Polymeric Liquid Crystals
Zhou, Hong; Forest, M. Gregory; Wang, Qi
1997-11-01
Previous slender one-dimensional models for axisymmetric filaments of liquid crystalline polymers (LCPs) are extended to include temperature-dependent material behavior and an energy equation. A two-phase model is posited, where below the glass transition temperature the material is modeled as a rigid cooling LCP fiber. We present families of numerical steady boundary-value solutions for thermal spinning flows; effects of temperature-dependent viscosity, LCP relaxation, excluded-volume potential, and viscous heating are modeled and exhibited. The predictions focus on thermal influence on spun fiber performance properties, such as birefringence and axial force, and process stability. A cooling ambient clearly contributes to faster stable spinning speeds.
Fuzzy knowledge-bBased curve evaluation for 1-D river model calibration
Vidal, J.P.; Moisan, S.
2006-01-01
Model calibration requires an evaluation of the agreement between model outputs and reference data. This article presents an automatic fuzzy knowledge-based approach to identify the relevant discrepancies. This evaluation module is intended to be integrated within an existing knowledge-based calibration support system.
Introduction to Displacements, Strains and Stresses in a 1D CVM-model
DEFF Research Database (Denmark)
Frandsen, Jens Ole
This lecture note contains an introduction to displacements, strains and stresses in an one-dimensional sg-FVM model of a tensile test bar.......This lecture note contains an introduction to displacements, strains and stresses in an one-dimensional sg-FVM model of a tensile test bar....
Stochastic models for atmospheric dispersion
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2003-01-01
Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... variation by height is adopted. A particular problem for simulation studies with finite time steps is the construction of a reflection rule different from the rule of perfect reflection at the boundaries such that the rule complies with the imposed skewness of the velocity distribution for particle...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...
Study of the tritium production in a 1-D blanket model with Monte Carlo methods
Cubí Ricart, Álvaro
2015-01-01
In this work a method to collapse a 3D geometry into a mono dimensional model of a fusion reactor blanket is developed and tested. Using this model, neutron and photon uxes and its energy deposition will be obtained with a Monte Carlo code. This results will allow to calculate the TBR and the thermal power of the blanket and will be able to be integrated in the AINA code.
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods
A. Md Ali; D. P. Solomatine; G. Di Baldassarre
2014-01-01
Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (space-borne or air-borne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the Light Detection and Ranging (LiDAR), and topographic contour maps are some of the ...
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods
A. Md Ali; D. P. Solomatine; G. Di Baldassarre
2015-01-01
Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the mo...
Hooshyar, M.; Hagen, S. C.; Wang, D.
2014-12-01
Hydrodynamic models are widely applied to coastal areas in order to predict water levels and flood inundation and typically involve solving a form of the Shallow Water Equations (SWE). The SWE are routinely discretized by applying numerical methods, such as the finite element method. Like other numerical models, hydrodynamic models include uncertainty. Uncertainties are generated due to errors in the discrete approximation of coastal geometry, bathymetry, bottom friction and forcing functions such as tides and wind fields. Methods to counteract these uncertainties should always begin with improvements to physical characterization of: the geometric description through increased resolution, parameters that describe land cover variations in the natural and urban environment, parameters that enhance transfer of surface forcings to the water surface, open boundary forcings, and the wetting/drying brought upon by flood and ebb cycles. When the best possible physical representation is achieved, we are left with calibration and data assimilation to reduce model uncertainty. Data assimilation has been applied to coastal hydrodynamic models to better estimate system states and/or system parameters by incorporating observed data into the model. Kalman Filter is one of the most studied data assimilation methods that minimizes the mean square errors between model state estimations and the observed data in linear systems (Kalman , 1960). For nonlinear systems, as with hydrodynamic models, a variation of Kalman filter called Ensemble Kalman Filter (EnKF), is applied to update the system state according to error statistics in the context of Monte Carlo simulations (Evensen , 2003) & (Hitoshi et. al, 2014). In this research, Kalman Filter is incorporated to simultaneously estimate an influential parameter used in the shallow water equations, bottom roughness, and to adjust the physical feature of bathymetry. Starting from an initial estimate of bottom roughness and bathymetry, and
CATHARE Multi-1D Modeling of Coolant Mixing in VVER-1000 for RIA Analysis
Sabotinov, L.; Kolev, N. P.; Spasov, I.; Donov, J.
2010-01-01
The paper presents validation results for multichannel vessel thermal-hydraulic models in CATHARE used in coupled 3D neutronic/thermal hydraulic calculations. The mixing is modeled with cross flows governed by local pressure drops. The test cases are from the OECD VVER-1000 coolant transient benchmark (V1000CT) and include asymmetric vessel flow transients and main steam line break (MSLB) transients. Plant data from flow mixing experiments are available for comparison. Sufficient mesh refinem...
Test of 1-D transport models, and their predictions for ITER
International Nuclear Information System (INIS)
A number of proposed tokamak thermal transport models are tested by comparing their predictions with measurements from several tokamaks. The necessary data have been provided for a total of 75 discharges from C-mod, DIII-D, JET, JT-60U, T10, and TFTR. A standard prediction methodology has been developed, and three codes have been benchmarked; these 'standard' codes have been relied on for testing most of the transport models. While a wide range of physical transport processes has been tested, no single model has emerged as clearly superior to all competitors for simulating H-mode discharges. In order to winnow the field, further tests of the effect of sheared flows and of the 'stiffness' of transport are planned. Several of the models have been used to predict ITER performance, with widely varying results. With some transport models ITER's predicted fusion power depends strongly on the 'pedestal' temperature, but ∼ 1GW (Q=10) is predicted for most models if the pedestal temperature is at least 4 keV. (author)
Assessment of TRAC-BF1 1D reflood model with CCTF and SCTF data
International Nuclear Information System (INIS)
Post test calculations for six selected Cylindrical Core Test Facility (CCTF) and Slab Core Test Facility (SCTF) tests were performed to assess the core thermal hydraulic models of the TRAC-BF1 code during the reflood in a PWR LOCA. A special version of the TRAC code was developed at JAERI by implementing the constitutive package of the TRAC-BF1 code into the TRAC-PF1 code for this assessment. The TRAC-BF1 model predicted well the void fraction at either bottom or top part of the core and overpredicted the void fraction at the center part of the core in the CCTF and SCTF tests performed under so-called licensing conditions. The TRAC-BF1 model overpredicted the clad temperatures at the center part of the core. The TRAC-BF1 model predicted a jump of void fraction where the flow pattern transition between the bubbly/slug flow and the annular/dispersed flow regimes occurred. The jump caused the water mass flow rate to be unstable and resulted in the overprediction of the void fraction at the center part of the core. It was also found that the TRAC-BF1 film boiling model underestimated the heat transfer coefficient in the vicinity of the quench front and caused the quench front propagation to be delayed. These assessment results suggest the following areas should be improved in future to apply the TRAC-BF1 code to the reflood in a PWR LOCA: (1) Core hydraulic model where flow pattern transition occurs, (2) Core heat transfer model in the film boiling regime, especially for the dependence on the distance from the quench front. (author)
Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives
Blanc, Emilie; Lombard, Bruno
2012-01-01
A time-domain numerical modeling of Biot poroelastic waves is presented. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce order 1/2 shifted fractional derivatives involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. Thanks to the dispersion relation, the coefficients in the diffusive representation are obtained by performing an optimization procedure in the frequency range of interest. A splitting strategy is then applied numerically: the propagative part of Biot-JKD equations is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. Comparisons with analytical solution...
DCC Dynamics in (2+1)D-O(3) model
Holzwarth, G
2001-01-01
The dynamics of symmetry-breaking after a quench is numerically simulated on a lattice for the (2+1)-dimensional O(3) model. In addition to the standard sigma-model with temperature-dependent Phi^4-potential the energy functional includes a four-derivative current-current coupling to stabilize the size of the emerging extended topological textures. The total winding number can be conserved by constraint. As a model for the chiral phase transition during the cooling phase after a hadronic collision this allows to investigate the interference of 'baryon-antibaryon' production with the developing disoriented aligned domains. The growth of angular correlations, condensate, average orientation is studied in dependence of texture size, quench rate, symmetry breaking. The classical dissipative dynamics determines the rate of energy emitted from the relaxing source for each component of the 3-vector field which provides a possible signature for domains of Disoriented Chiral Condensate. We find that the 'pions' are em...
Development of a 1D-2D coupled hydrodynamic model for the Øyeren Delta in southern Norway
2011-01-01
In this study a coupled 1D-2D hydrodynamic model, MIKE FLOOD was used to simulate flood inundation extent, water levels and water velocities in the delta region of Lake Øyeren in southern Norway. The objective was to evaluate the improvement gained using a more complex framework. In addition, the credibility of existing flood zone maps made for Lillestrøm by Norges Vassdrag- og Energidirektorat (NVE) in 2005 was assessed. They were based on the assumption that the water levels predicted for F...
The band-centre anomaly in the 1D Anderson model with correlated disorder
International Nuclear Information System (INIS)
We study the band-centre anomaly in the one-dimensional Anderson model with weak correlated disorder. Our analysis is based on the Hamiltonian map approach; the correspondence between the discrete model and its continuous counterpart is discussed in detail. We obtain analytical expressions of the localization length and of the invariant measure of the phase variable, valid for energies in a neighbourhood of the band centre. By applying these general results to specific forms of correlated disorder, we show how correlations can enhance or suppress the anomaly at the band centre. (paper)
Pushing 1D CCSNe to explosions: model and SN 1987A
Perego, A; Fröhlich, C; Ebinger, K; Eichler, M; Casanova, J; Liebendoerfer, M; Thielemann, F -K
2015-01-01
We report on a method, PUSH, for triggering core-collapse supernova explosions of massive stars in spherical symmetry. We explore basic explosion properties and calibrate PUSH such that the observables of SN1987A are reproduced. Our simulations are based on the general relativistic hydrodynamics code AGILE combined with the detailed neutrino transport scheme IDSA for electron neutrinos and ALS for the muon and tau neutrinos. To trigger explosions in the otherwise non-exploding simulations, we rely on the neutrino-driven mechanism. The PUSH method locally increases the energy deposition in the gain region through energy deposition by the heavy neutrino flavors. Our setup allows us to model the explosion for several seconds after core bounce. We explore the progenitor range 18-21M$_{\\odot}$. Our studies reveal a distinction between high compactness (HC) and low compactness (LC) progenitor models, where LC models tend to explore earlier, with a lower explosion energy, and with a lower remnant mass. HC models are...
Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows
Staples, Anne
2008-11-01
Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.
Modeling 1D structures on semiconductor surfaces: synergy of theory and experiment
International Nuclear Information System (INIS)
Atomic scale nanowires attract enormous interest in a wide range of fields. On the one hand, due to their quasi-one-dimensional nature, they can act as an experimental testbed for exotic physics: Peierls instability, charge density waves, and Luttinger liquid behavior. On the other hand, due to their small size, they are of interest not only for future device applications in the micro-electronics industry, but also for applications regarding molecular electronics. This versatile nature makes them interesting systems to produce and study, but their size and growth conditions push both experimental production and theoretical modeling to their limits. In this review, modeling of atomic scale nanowires on semiconductor surfaces is discussed, focusing on the interplay between theory and experiment. The current state of modeling efforts on Pt- and Au-induced nanowires on Ge(001) is presented, indicating their similarities and differences. Recently discovered nanowire systems (Ir, Co, Sr) on the Ge(001) surface are also touched upon. The importance of scanning tunneling microscopy as a tool for direct comparison of theoretical and experimental data is shown, as is the power of density functional theory as an atomistic simulation approach. It becomes clear that complementary strengths of theoretical and experimental investigations are required for successful modeling of the atomistic nanowires, due to their complexity. (topical review)
International Nuclear Information System (INIS)
. B - Method of solution: ANISN solves the one-dimensional Boltzmann transport equation for neutrons or gamma-rays in slab, sphere, or cylinder geometry. The source may be fixed, fission or a subcritical combination of the two. Criticality search may be performed on any one of several parameters. Cross sections may be weighted using the space and energy dependent flux generated in solving the transport equation. ANISN-E : Besides diamond and weighted difference supplementary equations, exponential supplementary equations are available. The new model: (1) always gives positive solutions, without using any 'fix up' technique provided that the source is non-negative; (2) allows, especially in deep penetration problems, the use of larger spatial meshes, hence requires shorter computer times than the ones requested by the diamond model combined with various types of fix up techniques or by weighted difference schemes to get the same accuracy; (3) supplies solutions that are always reasonable overestimates of the exact solution. In ANISN-JR, some optional functions are added to increase the utility of the code: (1) print the total fluxes at boundary points of all mesh intervals. (The original ANISN prints the total fluxes at midpoint only.) (2) calculate, print and plot the lethargy width spectra. (3) print the angular fluxes at only required mesh boundaries or midpoints (maximum 10 points). The original ANISN prints at mid- point of all meshes, and therefore the number of print pages becomes vast according to the number of spatial and angular meshes. (4) use the asymmetric quadrature set. (5) calculate and plot the reaction rates for neutron and gamma-ray detectors, and collapse the response functions of detectors. (6) generate volume-flux weighted cross sections for arbitrary zone or region. In the original ANISN, the cross sections can be collapsed only for a homogeneous zone or region. (7) collapse into few group cross sections in ANISN, DOT, or TWOTRAN format. (In
Prediction of the expansion velocity of ultracold 1D quantum gases for integrable models
Mei, Zhongtao; Vidmar, Lev; Heidrich-Meisner, Fabian; Bolech, Carlos
In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states. The physical interpretation of rapidities going back to Sutherland is that they are the asymptotic momenta after letting a quantum gas expand into a larger volume rendering it dilute and noninteracting. We exploit this picture to calculate the expansion velocity of a one-dimensional Fermi-Hubbard model by using the distribution of rapidities defined by the initial state. Our results are consistent with the ones from time-dependent density-matrix renormalization. We show in addition that an approximate Bethe-ansatz solution works well also for the Bose-Hubbard model. Our results are of interests for future sudden-expansion experiments with ultracold quantum gases.
Lauer, Wesley; Viparelli, Enrica; Piegay, Herve
2014-05-01
Sedimentary deposits adjacent to rivers can represent important sources and sinks for bed material sediment, particularly on decadal and longer timescales. The Morphodynamics and Sediment Tracers in 1-D model (MAST-1D) is a size-specific sediment transport model that allows for active exchange between channel and floodplain sediment on river reaches of tens to hundreds of kilometers in length. The model is intended to provide a mechanism for performing a first-order assessment of the likely importance of off-channel sediment exchange in controlling decadal-scale geomorphic trends, thereby helping plan and/or prioritize field data collection and higher resolution modeling work. The model develops a sediment budget for short segments of an alluvial valley. Each segment encompasses several active river bends. In each segment, a sediment transport capacity computation is performed to determine the downstream flux of bed material sediment, following the approach of most other 1-D sediment transport models. However, the model differs from most other bed evolution models in that sediment can be exchanged with the floodplain in each segment, and mass conservation is applied to both the active layer and floodplain sediment storage reservoirs. The potential for net imbalances in overall exchange as well as the size specific nature of the computations allows the model to simulate reach-scale aggradation/degradation and/or changes in bed texture. The inclusion of fine sediment in the model allows it to track geochemical tracer material and also provides a mechanism to simulate, to first order, the effects of changes in the supply of silt and clay on overall channel hydraulic capacity. The model is applied to a ~40 km reach of the Ain River, a tributary of the Rhône River in eastern France that has experienced a significant sediment deficit as a result of the construction of several dams between 1920 and 1970. MAST-1D simulations result in both incision and the formation of a
Constraining the temporal evolution of a deep hypersaline anoxic basin by 1D geochemical modelling
Goldhammer, Tobias; Aiello, Ivano; Zabel, Matthias
2014-05-01
Deep hypersaline anoxic basins (DHABs) are seafloor features of the accretionary prism of the Mediterranean Ridge. They have formed by the dissolution of exhumed shallow Messinian evaporites and subsequent concentration of the ultra-saline solutions in depressions on the seafloor. As an example, the horseshoe-shaped Urania basin is a DHAB south of the Peloponnese peninsula contains one of the most saline (about six times higher than Mediterranean seawater) and sulfidic (up to 15mM) water bodies of the Earth. Furthermore, its deepest part is underlain by a mud volcano that is responsible for the injection of fluid mud beneath the brine lake, with exceptionally sharp chemoclines between water column, brine, and mud layer. We here present a model approach to reconstruct the temporal aspects of the formation, dynamics and persistence of the brine-mud-system in the deep pit of the Urania Basin. Based on data from a sampling campaign with RV Meteor (Cruise M84/1 in February 2011), we set up a one-dimensional geochemical model that integrates diffusion, reaction and advective transport and mixing. Using a set of model preconditions, we aimed to answer (1) which processes are required to maintain the current situation of steep chemical gradients of the brine-mud-system, (2) how fast the current situation could have developed under different scenarios, and (3) how long such extraordinary conditions could have persisted through Earth's history. We further discuss the consequences of the temporal framework for the evolution of prokaryotic life in this extreme habitat.
Transverse susceptibility of the 1D isotropic XY-model at zero temperature
International Nuclear Information System (INIS)
An exact expression is obtained for the dynamic transverse susceptibility Xxx (w,i,j) of the one-dimensional isotropic XY-model both on an open and on a closed chain with arbitrary number of sites at zero temperature, when the transverse field is greater than the absolute value of the exchange constant. The dynamic transverse wave-vector-dependent susceptibility for the closed infinite chain is also determined, and it is shown that in all cases the isothermal susceptibility is identical to the static susceptibility. (Author)
Medicanes in an ocean–atmosphere coupled regional climate model
Directory of Open Access Journals (Sweden)
N. Akhtar
2014-03-01
Full Text Available So-called medicanes (Mediterranean hurricanes are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM coupled with a one-dimensional ocean model (1-D NEMO-MED12 to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°. The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.
Jahromi, Amir E.; Miller, Franklin K.
2016-03-01
A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.
1D and 2D Numerical Modeling for Solving Dam-Break Flow Problems Using Finite Volume Method
Directory of Open Access Journals (Sweden)
Szu-Hsien Peng
2012-01-01
Full Text Available The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.
Plasma Processes : A self-consistent kinetic modeling of a 1-D, bounded, plasma in equilibrium
Indian Academy of Sciences (India)
Monojoy Goswami; H Ramachandran
2000-11-01
A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle conserving Krook collision operator. The resulting equations have been implemented numerically. The treatment solves for the entire quasineutral column, making no assumptions about mfp/, where mfp is the ion-neutral collision mean free path and the size of the device. Coulomb collisions are neglected in favour of collisions with neutrals, and the particle source is modeled as a uniform Maxwellian. Electrons are treated as an inertialess but collisional ﬂuid. The ion distribution function for the trapped and the transiting orbits is obtained. Interesting ﬁndings include the anomalous heating of ions as they approach the presheath, the development of strongly non-Maxwellian features near the last mfp, and strong modiﬁcations of the sheath criterion.
Exact 1-D Model for Coherent Synchrotron Radiation with Shielding and Bunch Compression
Mayes, Christopher
2008-01-01
Coherent Synchrotron Radiation has been studied effectively using a 1-dimensional model for the charge distribution in the realm of small angle approximations and high energies. Here we use Jefimenko's form of Maxwell's equations, without such approximations, to calculate the exact wake-fields due to this effect in multiple bends and drifts. It has been shown before that the influence of a drift can propagate well into a subsequent bend. We show, for reasonable parameters, that the influence of a previous bend can also propagate well into a subsequent bend, and that this is especially important at the beginning of a bend. Shielding by conducting parallel plates is simulated using the image charge method. We extend the formalism to situations with compressing and decompressing distributions, and conclude that simpler approximations to bunch compression usually overestimates the effect. Additionally, an exact formula for the coherent power radiated by a Gaussian bunch is derived by considering the coherent sync...
On non-minimal N = 4 supermultiplets in 1D and their associated {sigma}-models
Energy Technology Data Exchange (ETDEWEB)
Gonzales, Marcelo; Khodaee, Sadi; Toppan, Francesco, E-mail: marcbino@cbpf.b, E-mail: khodaee@cbpf.b, E-mail: toppan@cbpf.b
2010-10-15
We construct the non-minimal linear representations of the N = 4 Extended Supersymmetry in one-dimension. They act on 8 bosonic and 8 fermionic fields. Inequivalent representations are specified by the mass-dimension of the fields and the connectivity of the associated graphs. The oxidation to minimal N = 5 linear representations is given. Two types of N = 4 {sigma}-models based on non-minimal representations are obtained: the resulting off-shell actions are either manifestly invariant or depend on a constrained pre potential. The connectivity properties of the graphs play a decisive role in discriminating inequivalent actions. These results find application in partial breaking of supersymmetric theories. (author)
Exact solution of the 1D Hubbard model with NN and NNN interactions in the narrow-band limit
Mancini, Ferdinando; Plekhanov, Evgeny; Sica, Gerardo
2013-10-01
We present the exact solution, obtained by means of the Transfer Matrix (TM) method, of the 1D Hubbard model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) Coulomb interactions in the atomic limit ( t = 0). The competition among the interactions ( U, V 1, and V 2) generates a plethora of T = 0 phases in the whole range of fillings. U, V 1, and V 2 are the intensities of the local, NN and NNN interactions, respectively. We report the T = 0 phase diagram, in which the phases are classified according to the behavior of the principal correlation functions, and reconstruct a representative electronic configuration for each phase. In order to do that, we make an analytic limit T → 0 in the transfer matrix, which allows us to obtain analytic expressions for the ground state energies even for extended transfer matrices. Such an extension of the standard TM technique can be easily applied to a wide class of 1D models with the interaction range beyond NN distance, allowing for a complete determination of the T = 0 phase diagrams.
An analytical 1-D model for vertical momentum and energy flux through a fully developed wind farm
Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando
2014-05-01
Wind farms capture momentum from the atmospheric boundary layer (ABL) both at the leading edge and from the atmosphere above. Momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines until momentum is only available from above the wind farm. This distance can be described by the so-called drag development length scale, which arises from the canopy drag force term in the momentum equation. At this point the flow can be considered fully developed. The horizontally-averaged velocity profile for a fully developed wind farm flow exhibits a characteristic inflection point near the top of the wind farm, similar to that of sparse canopy-type flows (Markfort et al., JoT, 2012). The inflected vertical velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. We evaluate an analytical canopy-type flow model for wind farm-atmosphere interaction by testing it against wind-tunnel experimental data of flow through a model wind farm. The model is adapted to predict the mean flow, vertical momentum flux, and the mean kinetic energy flux as well as kinetic energy dissipation within the wind farm. This model is particularly useful for wind farm configuration optimization, considering wind turbine spacing and surface roughness and can also be useful to represent wind farms in regional scale atmospheric simulations.
A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.
Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N
2015-07-01
The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. PMID:25766693
Phase transitions at strong coupling in the 2+1-d abelian Higgs model
International Nuclear Information System (INIS)
We study, using numerical Monte-Carlo simulations, an effective description of the 2+1 dimensional Abelian Higgs model which is valid at strong coupling, in the broken symmetry sector. In this limit, the massive gauge boson and the massive neutral Higgs decouple leaving only the massive vortices. The vortices have no long range interactions. We find a phase transition as the mass of the vortices is made lighter and lighter. At the transition, the contributions to the functional integral come from a so-called infinite vortex anti-vortex loop. Adding the Chern-Simons term simply counts the linking number between the vortices. We find that the Wilson loop exhibits perimeter law behaviour in both phases, although the polarization cloud increases by an order of magnitude at the transition. We also study the 't Hooft loop. We find the 't Hooft loop exhibits perimeter law behaviour in the presence of the Chern-Simons term but is trivial in its absence. Thus we have a theory with perimeter law for both the Wilson loop and the 't Hooft loop, but contains no massless particles
Adhikari, K; Pal, S; Chakraborty, B; Mukherjee, S N; Gangopadhyay, A
2014-10-01
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4-12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11-0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (KS = 5.25 × 10(-4) cm/s). The soil containing 47 % silt, 11 % clay, and 1.54% organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R(2) = 0.977, RMSE = 1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42-49%. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion
Institute of Scientific and Technical Information of China (English)
LI WeiFeng; CHEN QiuWen; MAO JingQiao
2009-01-01
Urban inundation due to anomalous storms is a serious problem for many cities worldwide. Therefore, it is important to accurately simulate urban hydrological processes and efficiently predict the potential risks of urban floods for the improvement of drainage designs and implementation of emergency ac-tions. However, the complexity of urban landforma and the diversity of hydraulic infrastructure pose particular challenges for the simulation and risk assessment of urban drainage processes. This study developed a methodology to comprehensively simulate inundation processes by dynamically coupling 1D and 2D hydrodynamic models. By allowing the simultaneous solution of the processes of rainfall and runoff, urban drainage, and flooding, this method can be used to estimate the potential inundation risks of any designed drainage system. Furthermore, a Geographical Information System (GIS) based platform was fully integrated with the model engine to effectively illustrate the context of the problem. The developed model was then demonstrated on the Beijing 2008 Olympic Village under the conditions of the 5-year and 50-year design storms. The sewer discharge, channel discharge, and flood propaga-tion (inundation initiation, extent, depths, and duration) were numerically validated and analyzed. The results identified the potential inundation risks. From the study, it is found that the coupled GIS and 1D and 2D hydrodynamic models have the potential to simulate urban inundation processes, and hence efficiently predict flood risks and support cost-effective drainage design and management. It also im-plies promising prospects about the wide availability of high quality digital data, GIS techniques, and well-developed monitoring infrastructure to develop online urban inundation forecasts.
Models of Pluto's upper atmosphere
International Nuclear Information System (INIS)
Best guesses as to the thermal structure and composition of Pluto's atmosphere have led to speculations of substantial loss rates (∼1028 s-1) of methane from the planet over cosmogonic time scales. Results from recent stellar occultation measurements, and using a Parker-type hydrodynamic calculation, show that the loss rates may actually be lower by as much as a factor ∼5, depending upon the efficiency of heating of the atmosphere via the absorption of solar EUV and upon the true atmospheric composition, if the thermal structure of the upper atmosphere is properly taken into account. The loss rate may even be less (by another factor ∼10) if there is minimal heating of the upper atmosphere
Cornaton, F
2011-01-01
One dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems - such as karstic aquifers - using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented 1-D dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3-D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1-D analytical dual-porosity model on reference hydraulic responses confirms the dependence of ...
Pankow, James F.; Niakan, Negar; Asher, William E.
2013-12-01
Many current models that aim to predict urban and regional levels of organic particulate matter (OPM) use either the 2 product (2p) framework for secondary organic aerosol (SOA) formation, or a static 1-D volatility basis set (1-D-VBS). These approaches assume that: 1) the compounds involved in OPM condensation/evaporation can be lumped simply by volatility with no specificity regarding carbon number nC, MW, or polar functionality; 2) water uptake does not occur; and 3) the compounds are non-ionizing. This work considers the consequences for uniphasic PM caused by the first two assumptions due to effects of the condensed-phase mean molecular weight MWbar and activity coefficients (ζi), including when RH (relative humidity) > 0. Setting nC = 10 for all bins, multiple chemical structures were developed for each bin of a 1-D-VBS for un-aged SOA in the α-pinene/ozone system. For each bin, a group-contribution vapor pressure (pLo) prediction method was used to find multiple structures such that the groups-based log pLo for nC = 10 and variable numbers of aldehyde, ketone, hydroxyl, and carboxylic acid groups agrees, within ±0.5, with the bin volatility. The number of possible combinations with one structure taken from each bin was 17,640. The Raster-Roulette Organic Aerosol (RROA) model was used to calculate the equilibrium mass concentrations (μg m-3) of OPM (Mo) and co-condensed water (Mw) at 25 °C for each combination for ranges of RH and ΔHC (change in parent hydrocarbon concentration). UNIFAC was used to determine the needed values of ζi. Frequency distributions from RROA for Mo, Mw, and the O:C ratio were developed. For Mo levels typical of the ambient atmosphere, then for the 1-D-VBS and all bins constrained at nC = 10, significant RH-induced enhancement of OPM condensation was observed in the distributions. The spread of the distributions was found to increase rapidly as the level of OPM decreased. The within-bin spread of ±0.5 log units in the groups
Institute of Scientific and Technical Information of China (English)
Sun Anhui; Chen Qifu; Chen Yong; Li Gang; Zhang Zhiqiang
2012-01-01
We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area (85~30'- 88~30'E, 43~00'- 44~40'N) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results, we determined a suitable location method, and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults, which need to be validated further.
Chau, L L; Chau, Ling-Lie; Huang, Ding-Wei
1993-01-01
We have derived explicit expressions in the 1-d Ising model for multiplicity distributions $P_{\\del\\xi}(n)$ and factorial moments $F_q(\\del\\xi)$. We identify the salient features of $P_{\\del\\xi}(n)$ that lead to scaling, $F_q(\\del\\xi)=\\F_q[F_2]$, and universality. These results compare well with the presently available high-energy data of $\\bar{p}p$ and $e^+e^-$ reactions. We point out the important features that should be studied in future higher-energy experiments of multiparticle productions in $pp$, $\\bar{p}p$, $ep$, $e^+e^-$, and $NN$. We also make comments on comparisons with KNO and negative-binomial distributions.
2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps
Moore, Stan; Moore, Chris; Boerner, Jeremiah
2015-09-01
Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Behaviour of tracer diffusion in simple atmospheric boundary layer models
Directory of Open Access Journals (Sweden)
P. S. Anderson
2006-12-01
Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with measurements of polar photogenic NO and NO_{2}. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The relatively simple model provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.
Behaviour of tracer diffusion in simple atmospheric boundary layer models
Directory of Open Access Journals (Sweden)
P. S. Anderson
2007-10-01
Full Text Available 1-D profiles and time series from an idealised atmospheric boundary layer model are presented, which show agreement with boundary layer measurements of polar NO_{x}. Diffusion models are increasingly being used as the framework for studying tropospheric air chemistry dynamics. Models based on standard boundary layer diffusivity profiles have an intrinsic behaviour that is not necessarily intuitive, due to the variation of turbulent diffusivity with height. The simple model presented captures the essence of the evolution of a trace gas released at the surface, and thereby provides both a programming and a conceptual tool in the analysis of observed trace gas evolution. A time scale inherent in the model can be tuned by fitting model time series to observations. This scale is then applicable to the more physically simple but chemically complex zeroth order or box models of chemical interactions.
Directory of Open Access Journals (Sweden)
Kowit Boonrawd
2015-04-01
Full Text Available A coupling of a 1-D flood routing model and quasi 2-D floodplain inundation model is applied for mapping spacetime flood extent. The routing model is formulated based on a non-linear storage-discharge relationship which is converted from an observed and synthetic rating curve. To draw the rating curve, required parameters for each reaches are estimated from hydraulic properties, floodplain geometry and vegetation and building cover of compound channels. The shape of the floodplain is defined by using fitting exercise based on the reverse approach between past and simulated inundation flood extent, to solve the current problem of inadequate topographic input data for floodplain. Mapping of daily flood can be generated relying on flat water levels. The quasi 2-D raster model is tested and applied to generate more realistic water surface and is used to estimate flood extent. The model is applied to the floodplains of Chiang Mai, north of Thailand and used to estimate a time series of hourly flood maps. Extending from daily to hourly flood extent, mapping development provides more details of flood inundation extent and depth.
A Dual EnKF for Estimating Water Level, Bottom Roughness, and Bathymetry in a 1-D Hydrodynamic Model
Hooshyar, Milad; Wang, Dingbao; Hagen, Scott C
2016-01-01
Data assimilation has been applied to coastal hydrodynamic models to better estimate system states or parameters by incorporating observed data into the model. Kalman Filter (KF) is one of the most studied data assimilation methods whose application is limited to linear systems. For nonlinear systems such as hydrodynamic models a variation of the KF called Ensemble Kalman Filter (EnKF) is applied to update the system state in the context of Monte Carlo simulation. In this research, a dual EnKF approach is used to simultaneously estimate state (water surface elevation) and parameters (bottom roughness and bathymetry) of the shallow water models. The sensitivity of the filter to 1) the quantity and precision of the observations, and 2) the initial estimation of parameters is investigated in a 1-D shallow water problem located in the Gulf of Mexico. Results show that starting from an initial estimate of bottom roughness and bathymetry within a logical range and utilizing observations available at a limited numbe...
International Nuclear Information System (INIS)
Highlights: • Estimation of aerodynamic force on variable turbine geometry vanes and actuator. • Method based on exhaust gas flow modeling. • Simulation tool for integration of aerodynamic force in automotive simulation software. - Abstract: This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results
Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao
2016-08-01
We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.
Institute of Scientific and Technical Information of China (English)
HAN Dong; FANG Hong-wei; BAI Jing; HE Guo-jian
2011-01-01
A coupled one-dimensional(1-D)and two-dimensional(2-D)channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article.For the 1-D model,the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network.The Alternating Direction Implicit(ADI)method is adopted for the 2-D model at the nodes.In the coupled model,the 1-D model provides a good approximation with small computational effort,while the 2-D model is applied for complex topography to achieve a high accuracy.An Artificial Neural Network(ANN)method is used for the data exchange and the connectivity between the 1-D and 2-D models.The coupled model is applied to the Jingjiang-Dongting Lake region,to simulate the tremendous looped channel network system,and the results are compared with field data.The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.
Ghostine, Rabih
2014-12-01
In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.
Modelling the angular momentum J of 1s, 1p, 1d, 2s and 1f nucleons
International Nuclear Information System (INIS)
By using the liquid drop model of 14 alpha particles representing a nickel 56 nuclide it can be shown that the mean distance of each of the 1d and 2s nucleons is r3 = 2.85 fm from the nuclide centre. It was found that the velocity of all nucleons is the same and is independent of the energy level. This implies that the de Broglie wavelength (w) of all nucleons is w h / m v = 6.3 fm ∼ 2π fm . Therefore for r1 ∼ 1 fm there is one w per orbit; for r2 ∼ 2 fm there are 2 w per orbit and so on. This implies that in the first magic number closed shell of nucleons there are 2 orbits each containing 2 standing wave maxima representing 1 proton and 1 neutron. The second closed shell consists of 3 orbits each containing 2 proton and 2 neutron standing wave maxima. While the third closed shell consists of 4 orbits each containing 3 protons and 3 neutrons the fourth closed shell consists of only 2 orbits each containing 4 protons and 4 neutrons. The Bernal liquid drop alpha particle models of nuclear structure appear to accord quite well with the quantum mechanical prescriptions of nucleon angular momentum and de Broglie wavelength
Energy Technology Data Exchange (ETDEWEB)
Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2014-11-01
We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption
Directory of Open Access Journals (Sweden)
L. Altarejos-García
2012-07-01
Full Text Available This paper addresses the use of reliability techniques such as Rosenblueth's Point-Estimate Method (PEM as a practical alternative to more precise Monte Carlo approaches to get estimates of the mean and variance of uncertain flood parameters water depth and velocity. These parameters define the flood severity, which is a concept used for decision-making in the context of flood risk assessment. The method proposed is particularly useful when the degree of complexity of the hydraulic models makes Monte Carlo inapplicable in terms of computing time, but when a measure of the variability of these parameters is still needed. The capacity of PEM, which is a special case of numerical quadrature based on orthogonal polynomials, to evaluate the first two moments of performance functions such as the water depth and velocity is demonstrated in the case of a single river reach using a 1-D HEC-RAS model. It is shown that in some cases, using a simple variable transformation, statistical distributions of both water depth and velocity approximate the lognormal. As this distribution is fully defined by its mean and variance, PEM can be used to define the full probability distribution function of these flood parameters and so allowing for probability estimations of flood severity. Then, an application of the method to the same river reach using a 2-D Shallow Water Equations (SWE model is performed. Flood maps of mean and standard deviation of water depth and velocity are obtained, and uncertainty in the extension of flooded areas with different severity levels is assessed. It is recognized, though, that whenever application of Monte Carlo method is practically feasible, it is a preferred approach.
Directory of Open Access Journals (Sweden)
L. Altarejos-García
2012-01-01
Full Text Available This paper addresses the use of reliability techniques such as Rosenblueth's Point-Estimate Method (PEM as a practical alternative to more precise Monte Carlo approaches to get estimates of the mean and variance of uncertain flood parameters water depth and velocity. These parameters define the flood severity, which is a concept used for decision-making in the context of flood risk assessment. The method proposed is particularly useful when the degree of complexity of the hydraulic models makes Monte Carlo inapplicable in terms of computing time, but when a measure of the variability of these parameters is still needed. The capacity of PEM, which is a special case of numerical quadrature based on orthogonal polynomials, to evaluate the first two moments of performance functions such as the water depth and velocity is demonstrated in the case of a single river reach using a 1-D HEC-RAS model. It is shown that in some cases, using a simple variable transformation, statistical distributions of both water depth and velocity approximate the lognormal. As this distribution is fully defined by its mean and variance, PEM can be used to define the full probability distribution function of these flood parameters and so allowing for probability estimations of flood severity. Then, an application of the method to the same river reach using a 2-D Shallow Water Equations (SWE model is performed. Flood maps of mean and standard deviation of water depth and velocity are obtained, and uncertainty in the extension of flooded areas with different severity levels is assessed. It is recognized, though, that whenever application of Monte Carlo method is practically feasible, it is a preferred approach.
Dzierzbicka-Glowacka, L.; Maciejewska, A.; Osiński, R.; Jakacki, J.; Jędrasik, J.
2009-04-01
This paper presents a one-dimensional Ecosystem Model. Mathematically, the pelagic variables in the model are described by a second-order partial differential equation of the diffusion type with biogeochemical sources and sinks. The temporal changes in the phytoplankton biomass are caused by primary production, respiration, mortality, grazing by zooplankton and sinking. The zooplankton biomass is affected by ingestion, excretion, respiration, fecal production, mortality, and carnivorous grazing. The changes in the pelagic detritus concentration are determined by input of: dead phytoplankton and zooplankton, natural mortality of predators, fecal pellets, and sinks: sedimentation, zooplankton grazing and decomposition. The nutrient concentration is caused by nutrient release, zooplankton excretion, predator excretion, detritus decomposition and benthic regeneration as sources and by nutrient uptake by phytoplankton as sinks. However, the benthic detritus is described by phytoplankton sedimentation, detritus sedimentation and remineralisation. The particulate organic carbon concentration is determined as the sum of phytoplankton, zooplankton and dead organic matter (detritus) concentrations. The 1D ecosystem model was used to simulate the seasonal dynamics of pelagic variables (phytoplankton, zooplankton, pelagic detritus and POC) in the southern Baltic Sea (Gdańsk Deep, Bornholm Deep and Gotland Deep). The calculations were made assuming: 1) increase in the water temperature in the upper layer - 0.008oC per year, 2) increase in the available light - 0.2% per year. Based on this trend, daily, monthly and seasonal and annual variability of phytoplankton, zooplankton, pelagic detritus and particulate organic carbon in different areas of the southern Baltic Sea (Gdańsk Deep, Borrnholm Deep and Gotland Deep) in the euphotic layer was calculated for the years: 2000, 2010, 2020, 2030, 2040 and 2050.
International Nuclear Information System (INIS)
In the study of severe accidents of nuclear pressurized water reactors, the scenarios that describe the relocation of significant quantities of liquid corium at the bottom of the lower head are investigated from the mechanical point of view. In these scenarios, the risk of a breach and the possibility of a large quantity of corium being released from the lower head exist. This may lead to direct heating of the containment or outer vessel steam explosion. These issues are important due to their early containment failure potential. Since the TMI-2 accident, many theoretical and experimental investigations, relating to lower head mechanical behaviour under severe thermo-mechanical loading in the event of a core meltdown accident have been performed. IRSN participated actively in the one-fifth scale USNRC/SNL LHF and OECD LHF (OLHF) programs. Within the framework of these programs, two simplified models were developed by IRSN: the first is a simplified 1D approach based on the theory of pressurized spherical shells and the second is a simplified 2D model based on the theory of shells of revolution under symmetric loading. The mathematical formulation of both models and the creep constitutive equations used are presented in detail in this paper. The corresponding models were used to interpret some of the OLHF program experiments and the calculation results were quite consistent with the experimental data. The two simplified models have been used to simulate the thermo-mechanical behaviour of a 900 MWe pressurized water reactor lower head under severe accident conditions leading to failure. The average transient heat flux produced by the corium relocated at the bottom of the lower head has been determined using the IRSN HARAR code. Two different methods, both taking into account the ablation of the internal surface, are used to determine the temperature profiles across the lower head wall and their effect on the time to failure is discussed. Using these simplified models
DEFF Research Database (Denmark)
Teige, Anna; Bockermann, Robert; Hasan, Maruf;
2010-01-01
A protective and anti-inflammatory role for CD1d-dependent NKT cells (NKTs) has been reported in experimental and human autoimmune diseases. However, their role in arthritis has been unclear, with conflicting reports of CD1d-dependent NKTs acting both as regulatory and disease-promoting cells...... in arthritis. These differing modes of action might be due to genetic differences of inbred mice and incomplete backcrossing of gene-modified mice. We therefore put special emphasis on controlling the genetic backgrounds of the mice used. Additionally, we used two different murine arthritis models, Ag......-induced arthritis (AIA) and collagen-induced arthritis (CIA), to evaluate acute and chronic arthritis in CD1d knockout mice and mice depleted of NK1.1(+) cells. CD1d-deficient mice developed more severe AIA compared with wild-type littermates, with a higher degree of inflammation and proteoglycan depletion. Chronic...
Soil-vegetation-atmosphere transfer modeling
Energy Technology Data Exchange (ETDEWEB)
Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)
1996-12-31
In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method
Modelling the atmospheric chemistry of volcanic plumes
Surl, Luke
2016-01-01
Abstract Volcanoes are the principal way by which volatiles are transferred from the solid Earth to the atmosphere-hydrosphere system. Once released into the atmosphere, volcanic emissions rapidly undergo a complex series of chemical reactions. This thesis seeks to further the understanding of such processes by both observation and numerical modelling. I have adapted WRF-Chem to model passive degassing from Mount Etna, the chemistry of its plume, and its influence on the ...
Atmospheric pollution. From processes to modelling
International Nuclear Information System (INIS)
Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)
Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.
2009-12-01
Hydroelectric Power (HEP) is proving to be a good alternative to carbon based energy. In the past hydropower especially large scale hydro attracted significant criticism as a result of its impact on the environment. A new breed of hydroelectric dam is in the offing. The aim is to have as little a footprint as possible on the environment in both pre and post construction phases and thus minimize impact on biodiversity whilst producing clean renewable energy. The Bui dam is 400 MW scheme currently under development on the Black Volta River in the Bui national park in Ghana. The reservoir created by the Bui barrage is expected to impact (through inundation) the habitat of two species of hippos know to exist in the park, the Hippopotamus amphibius and the Choeropsis liberiensis. Computer-based models present a unique opportunity to assess quantitatively the impact of the new reservoir on the habitat of the target species in this case the H. amphibious. Until this undertaking, there were very few studies documenting the habitat of the H. amphibious let alone model it. The work and subsequent presentation will show the development of a habitat model for the Hippopotamus amphibius. The Habitat Information retrieval Program based on Streamflow Analysis, in short HIPStrA, is a one dimensional (1D) in-stream, spatially explicit hybrid construct that combines physico-chemical evidence and expert knowledge to forecast river habitat suitability (Hs) for the Hippopotamus amphibius. The version of the model presented is specifically developed to assess the impact of a reservoir created by a hydroelectric dam on potential dwelling areas in the Bui gorge for hippos. Accordingly, this version of HIPStrA simulates a special reservoir suitability index (Rsi), a metric that captures the”hippo friendliness” of any lake or reservoir. The impact of measured and simulated flood events as well as low flows, representing extreme events is also assessed. Recommendations are made for the
Regional forecasting with global atmospheric models
International Nuclear Information System (INIS)
The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals
Users of middle atmosphere models remarks
Gamble, Joe
1987-01-01
The procedure followed for shuttle operations is to calculate descent trajectories for each potential shuttle landing site using the Global Reference Atmosphere Model (GRAM) to interactively compute density along the flight path 100 times to bound the statistics. The purpose is to analyze the flight dynamics, along with calculations of heat loads during reentry. The analysis program makes use of the modified version of the Jacchia-70 atmosphere, which includes He bulges over the poles and seasonal latitude variations at lower altitudes. For the troposphere, the 4-D Model is used up to 20 km, Groves from 30 km up to 90 km. It is extrapolated over the globe and faired into the Jacchia atmosphere between 90 and 115 km. Since data on the Southern Hemisphere was lacking, what was done was that the data was flipped over and lagged 6 months. Sometimes when winds are calculated from pressure data in the model there appear to be discontinuities. Modelers indicated that the GRAM was not designed to produce winds, but good wind data is needed for the landing phase of shuttle operations. Use of atmospheric models during reentry is one application where it is obvious that a single integrated atmosphere model is required.
Ireland, Gareth; Petropoulos, George P.; Carlson, Toby N.; Purdy, Sarah
2015-04-01
Sensitivity analysis (SA) consists of an integral and important validatory check of a computer simulation model before it is used to perform any kind of analysis. In the present work, we present the results from a SA performed on the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model utilising a cutting edge and robust Global Sensitivity Analysis (GSA) approach, based on the use of the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) tool. The sensitivity of the following model outputs was evaluated: the ambient CO2 concentration and the rate of CO2 uptake by the plant, the ambient O3 concentration, the flux of O3 from the air to the plant/soil boundary, and the flux of O3 taken up by the plant alone. The most sensitive model inputs for the majority of model outputs were related to the structural properties of vegetation, namely, the Leaf Area Index, Fractional Vegetation Cover, Cuticle Resistance and Vegetation Height. External CO2 in the leaf and the O3 concentration in the air input parameters also exhibited significant influence on model outputs. This work presents a very important step towards an all-inclusive evaluation of SimSphere. Indeed, results from this study contribute decisively towards establishing its capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of this model worldwide, which also includes research conducted by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale. This research was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO". SimSphere is currently maintained and freely distributed by the Department of Geography and Earth Sciences at Aberystwyth University (http://www.aber.ac.uk/simsphere). Keywords: CO2 flux, ambient CO2, O3 flux, SimSphere, Gaussian process emulators
Stellar model atmospheres with magnetic line blanketing
Kochukhov, O; Shulyak, D
2004-01-01
Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...
New atmospheric model of Epsilon Eridani
Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo
2016-05-01
We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.
Augustins, L.; Billardon, R.; Hild, F.
2016-07-01
One of the critical points of the thermomechanical fatigue design process is the correct description of the cyclic behavior of the material. This work focuses on the material of automotive brake discs, namely flake graphite cast iron. The specificity of this material is its asymmetric behavior under tensile and compressive loadings, which is due to the shape of graphite that acts as small cracks. Multiscale models inspired from the literature are first presented. They lead to a good description of the material behavior under cyclic loadings. An elastoviscoplastic constitutive model is then proposed in a one-dimensional setting in order to accurately describe cyclic tests from room temperature up to {600^{circ}{C}}.
Energy Technology Data Exchange (ETDEWEB)
Santos-Villalobos, Hector J [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK); Bingham, Philip R [ORNL
2014-01-01
At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.
Zulkoffli, Zuliani; Abu Bakar, Elmi
2016-02-01
This paper present pose estimation relation of CAD model object and Projection Real Object (PRI). Image sequence of PRI and CAD model rotate on z axis at 10 degree interval in simulation and real scene used in this experiment. All this image is go through preprocessing stage to rescale object size and image size and transform all the image into silhouette. Correlation of CAD and PRI image is going through in this stage. Magnitude spectrum shows a reliable value in range 0.99 to 1.00 and Phase spectrum correlation shows a fluctuate graph in range 0.56 - 0.97. Euclidean distance correlation graph for CAD and PRI shows 2 zone of similar value due to almost symmetrical object shape. Processing stage of retrieval inspected PRI image in CAD database was carried out using range phase spectrum and maximum magnitude spectrum value within ±10% tolerance. Additional processing stage of retrieval inspected PRI image using Euclidean distance within ±5% tolerance also carried out. Euclidean matching shows a reliable result compared to range phase spectrum and maximum magnitude spectrum value by sacrificing more than 5 times processing time.
Coupled atmosphere-wildland fire modelling
Directory of Open Access Journals (Sweden)
Jacques Henri Balbi
2009-10-01
Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.
Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model
Honda, M; Kajita, T; Kasahara, K; Midorikawa, S
2015-01-01
In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...
Portable University Model of the Atmosphere (PUMA)
Energy Technology Data Exchange (ETDEWEB)
Fraedrich, K.; Kirk, E.; Lunkeit, F. [Hamburg Univ. (Germany). Meteorologisches Inst.
1998-10-01
The Portable University Model of the Atmosphere (PUMA) is based on the Reading multi-level spectral model SGCM (Simple Global Circulation Model) described by Hoskins and Simmons (1975) and James and Gray (1986). Originally developed as a numerical prediction model, it was changed to perform as a circulation model. For example, James and Gray (1986) studied the influence of surface friction on the circulation of a baroclinic atmosphere, James and James (1992), and James et al. (1994) investigated ultra-low-frequency variability, and Mole and James (1990) analyzed the baroclinic adjustment in the context of a zonally varying flow. Frisius et al. (1998) simulated an idealized storm track by embedding a dipole structure in a zonally symmetric forcing field and Lunkeit et al. (1998) investigated the sensitivity of GCM (General Circulation Model) scenarios by an adaption technique applicapable to SGCMs. (orig.)
Coupling approaches used in atmospheric entry models
Gritsevich, M. I.
2012-09-01
While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry
Radiation environment models and the atmospheric cutoff
Konradi, Andrei; Hardy, Alva C.; Atwell, William
1987-01-01
The limitations of radiation environment models are examined by applying the model to the South Atlantic anomaly (SAA). The local magnetic-field-intensity (in gauss) and McIlwain (1961) drift-shell-parameter contours in the SAA are analyzed. It is noted that it is necessary to decouple the atmospheric absorption effects from the trapped radiation models in order to obtain accurate radiation dose predictions. Two methods for obtaining more accurate results are proposed.
Fingering convection and cloudless models for cool brown dwarf atmospheres
Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O
2015-01-01
This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...
ATMOSPHERIC HEALTH EFFECTS FRAMEWORK (AHEF) MODEL
The Atmospheric and Health Effects Framework (AHEF) is used to assess theglobal impacts of substitutes for ozone-depleting substances (ODS). The AHEF is a series of FORTRAN modeling modules that collectively form a simulation framework for (a) translating ODS production into emi...
International Nuclear Information System (INIS)
Results from the zonal model indicate quite reasonable agreement with observation in terms of the parameters and processes that influence the radiation and energy balance calculations. The model produces zonal statistics similar to those from general circulation models, and has also been shown to produce similar responses in sensitivity studies. Further studies of model performance are planned, including: comparison with July data; comparison of temperature and moisture transport and wind fields for winter and summer months; and a tabulation of atmospheric energetics. Based on these preliminary performance studies, however, it appears that the zonal model can be used in conjunction with more complex models to help unravel the problems of understanding the processes governing present climate and climate change. As can be seen in the subsequent paper on model sensitivity studies, in addition to reduced cost of computation, the zonal model facilitates analysis of feedback mechanisms and simplifies analysis of the interactions between processes
Fluctuation Theorem in an Atmospheric Circulation Model
Schalge, Bernd; Wouters, Jeroen; Fraedrich, Klaus; Lunkeit, Frank
2012-01-01
Evidence for the validity of the Fluctuation Theorem (FT) in an atmospheric Global Circulation Model is found. The model is hydrostatic with variable numbers of vertical levels and different horizontal resolutions. For finite time intervals the largest local Lyapunov exponent (LLLE) is found to be negative consistent with predictions of the FT. The effect is present for resolutions up to wave numbers l=42 (~ 250km) and 10 levels.
International Nuclear Information System (INIS)
A global one-dimensional, chemically and radiatively coupled model has been developed. The basic concept of the coupled model, definition of globally averaged zenith angles, the formulation of the model chemistry, radiation, the coupled processes, and profiles and diurnal variations of temperature and chemical species at a normal steady state are presented. Furthermore, a suddenly doubled CO2 experiment and a Pinatubo aerosol increase experiment were performed with the model. The time scales of variations in ozone and temperature in the lower stratosphere of the coupled system in the doubled CO2 experiment was long, due to a feedback process among ultra violet radiation, O(1D), NOy, NOx, and O3. From the Pinatubo aerosol experiment, a delay of maximum ozone decrease from the maximum aerosol loading is shown and discussed. Developments of 3-D chemical models with coupled processes are briefly described, and the ozone distribution from the first version of the 3-D model are presented. Chemical model development in National Institute for Environmental Studies (NIES) are briefly described. (author)
Murray, Keenan A.; Kramer, Louisa J.; Doskey, Paul V.; Ganzeveld, Laurens; Seok, Brian; Van Dam, Brie; Helmig, Detlev
2015-09-01
Observed depth profiles of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) in snowpack interstitial air at Summit, Greenland were best replicated by a 1-D process-scale model, which included (1) geometrical representation of snow grains as spheres, (2) aqueous-phase chemistry confined to a quasi-liquid layer (QLL) on the surface of snow grains, and (3) initialization of the species concentrations in the QLL through equilibrium partitioning with mixing ratios in snowpack interstitial air. A comprehensive suite of measurements in and above snowpack during a high O3 event facilitated analysis of the relationship between the chemistry of snowpack and the overlying atmosphere. The model successfully reproduced 2 maxima (i.e., a peak near the surface of the snowpack at solar noon and a larger peak occurring in the evening that extended down from 0.5 to 2 m) in the diurnal profile of NO2 within snowpack interstitial air. The maximum production rate of NO2 by photolysis of nitrate (NO3-) was approximately 108 molec cm-3 s-1, which explained daily observations of maxima in NO2 mixing ratios near solar noon. Mixing ratios of NO2 in snowpack interstitial air were greatest in the deepest layers of the snowpack at night and were attributed to thermal decomposition of peroxynitric acid, which produced up to 106 molec NO2 cm-3 s-1. Highest levels of NO in snowpack interstitial air were confined to upper layers of the snowpack and observed profiles were consistent with photolysis of NO2. Production of nitrogen oxides (NOx) from NO3- photolysis was estimated to be two orders of magnitude larger than NO production and supports the hypothesis that NO3- photolysis is the primary source of NOx within sunlit snowpack in the Arctic. Aqueous-phase oxidation of formic acid by O3 resulted in a maximum consumption rate of ∼106-107 molec cm-3 s-1 and was the primary removal mechanism for O3.
Regional transport model of atmospheric sulfates
International Nuclear Information System (INIS)
As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO2 and SO4/sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO2 and SO4/sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO2 and SO4/sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants
B. Mouriño-Carballido; Anderson, L A
2009-01-01
It has been proposed that the disagreement traditionally reported between in vitro incubation and in situ estimates of oxygen net community production (NCP) could be explained, at least partially, by undersampling episodic pulses of net autotrophy associated with mesoscale dynamics. In this study we compare in vitro incubation estimates of net community production with in situ estimates, derived from oxygen profiles and a 1-D model, within a cyclonic eddy investigated in the Sargasso Sea in s...
Czech Academy of Sciences Publication Activity Database
Jechumtálová, Zuzana; Bulant, P.
2014-01-01
Roč. 18, č. 3 (2014), s. 511-531. ISSN 1383-4649 R&D Projects: GA ČR GAP210/10/1728 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : ray tracing * 1-D and 3-D velocity models * earthquake mechanism * amplitude inversion * Dobrá Voda earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.386, year: 2014
On the thermally stratified atmospheric flow modeling
Czech Academy of Sciences Publication Activity Database
Sládek, Ivo; Kozel, K.; Jaňour, Zbyněk
Praha : Ústav termomechaniky, AV ČR, v. v. i., 2010 - (Příhoda, J.; Kozel, K.), s. 135-138 ISBN 978-80-87012-25-3. [Topical Problems of Fluid Mechanics 2010. Praha (CZ), 10.02.2010-11.02.2010] Institutional research plan: CEZ:AV0Z20760514 Keywords : atmospheric boundary layer * turbulence model * finite volume method Subject RIV: DG - Athmosphere Sciences, Meteorology
Centrifuge modeling of soil atmosphere interaction
CAICEDO, B; TRISTANCHO, J; THOREL, Luc
2010-01-01
Atmosphere process of infiltration or evaporation affect the behavior of geotechnical structures located near the soil surface. This paper focuses on the drying process of soils due to evaporation. The scaling laws are analyzed and afterwards the results on applying two cycles of heating and cooling on a soil mass are presented. Based on these results, conclusions about the feasibility of reproducing evaporation on centrifuge models are recommended.
Observations and Modeling of Tropical Planetary Atmospheres
Laraia, Anne
2016-01-01
This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn's atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn's subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation. Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations. Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires
Regional forecasting with global atmospheric models
International Nuclear Information System (INIS)
This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals
Atmospheric dispersion modeling of radioactive effluents
International Nuclear Information System (INIS)
In case of a nuclear accident, which could lead to release of radioactive contaminants, fastest countermeasures are needed, relating to sheltering, iodine distribution, evacuation and interdiction of food and water consumption. All these decisions should be based either on estimation of inhaled dose and the dose due to external exposure for public or on the estimation of radioactive concentration in food (which will depend on the radioactive concentration in air and ground deposition). In order to perform any of these calculations of consequences in case of nuclear accident, which leads to release of radioactive contaminants in the atmosphere, we must start with atmospheric dispersion calculations. In the last few years, considerable efforts have been devoted in order to improve computer codes for dispersion in the atmosphere of the radioactive contaminants released in a nuclear accident. The paper presents the model used in computer codes for assessment of nuclear accident consequences and a special attention was paid to the dispersion model used in the Institute for Nuclear Research Pitesti. The values for the used parameters and the results for air and ground concentration are also presented. (authors)
Atmospheric corrosion: statistical validation of models
International Nuclear Information System (INIS)
In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs
Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere
Sagan, C.
1974-01-01
The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.
CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models
Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris
2010-05-01
Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also
Atmospheric transmittance model for photosynthetically active radiation
Energy Technology Data Exchange (ETDEWEB)
Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)
2013-11-13
A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.
Energy Technology Data Exchange (ETDEWEB)
Verley, Jason C.; Axness, Carl L.; Hembree, Charles Edward; Keiter, Eric Richard; Kerr, Bert (New Mexico Institute of Mining and Technology, Socorro, NM)
2012-04-01
Photocurrent generated by ionizing radiation represents a threat to microelectronics in radiation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these threats, and typically rely on compact models for individual electrical components such as transistors and diodes. Compact models consist of a handful of differential and/or algebraic equations, and are derived by making simplifying assumptions to any of the many semiconductor transport equations. Historically, many photocurrent compact models have suffered from accuracy issues due to the use of qualitative approximation, rather than mathematically correct solutions to the ambipolar diffusion equation. A practical consequence of this inaccuracy is that a given model calibration is trustworthy over only a narrow range of operating conditions. This report describes work to produce improved compact models for photocurrent. Specifically, an analytic model is developed for epitaxial diode structures that have a highly doped subcollector. The analytic model is compared with both numerical TCAD calculations, as well as the compact model described in reference [2]. The new analytic model compares well against TCAD over a wide range of operating conditions, and is shown to be superior to the compact model from reference [2].
Supermodeling With A Global Atmospheric Model
Wiegerinck, Wim; Burgers, Willem; Selten, Frank
2013-04-01
In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra
Numerical modeling of atmospheric washout processes
International Nuclear Information System (INIS)
For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW)
Analysis of software for modeling atmospheric dispersion
International Nuclear Information System (INIS)
During last few years, a number software packages for microcomputes have appeared with the aim to simulate diffusion of atmospheric pollutants. These codes, simplifying the models used for safety analyses of industrial plants are becoming more useful, and are even used for post-accidental conditions. The report presents for the first time in a critical manner, principal models available up to this date. The problem arises in adapting the models to the demanded post-accidental interventions. In parallel to this action an analysis of performance was performed. It means, identifying the need of forecasting the most appropriate actions to be performed having in mind short available time and lack of information. Because of these difficulties, it is possible to simplify the software, which will not include all the options but could deal with a specific situation. This would enable minimisation of data to be collected on the site
International Nuclear Information System (INIS)
The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs
Lassabatère, L.; Yilmaz, D.; Angulo-Jaramillo, R.; Soria Ugalde, J.; Braud, I.; Simunek, J.
2010-01-01
International audience Modelling and understanding water fluxes in the vadose zone are important in regards to water management and require appropriate characterization methods of soil hydraulic properties. The presented work studies three common methods for characterization of soil hydraulic properties based on the inverse modelling of Beerkan water infiltration experiments: the CI method for Cumulative Information method and two BEST methods for Beerkan Estimation Soil pedotransfer metho...
A. Caserta; L. Malagnini; A. Rovelli; Marra, F
1995-01-01
The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves) produced in the different areas of the city by a large (M ? 7) potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineerin...
Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.
2016-08-01
An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m‑2 differences in shortwave reach up to 60 W m‑2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m‑2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.
Vaytet, N M H; Bode, M F
2007-01-01
Following the early Swift X-ray observations of the latest outburst of the recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D hydrodynamical models of the system which take into account all three phases of the remnant evolution. The models suggest a novel way of modelling the system by treating the outburst as a sudden increase then decrease in wind mass-loss rate and velocity. The differences between this wind model and previous Primakoff-type simulations are described. A more complex structure, even in 1D, is revealed through the presence of both forward and reverse shocks, with a separating contact discontinuity. The effects of radiative cooling are investigated and key outburst parameters such as mass-loss rate, ejecta velocity and mass are varied. The shock velocities as a function of time are compared to the ones derived in Paper I. We show how the manner in which the matter is ejected controls the evolution of the shock and that for a well-cooled remnant, the shock deceleration ra...
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple
Effects of a space modulation on the behavior of a 1D alternating Heisenberg spin-1/2 model.
Mahdavifar, Saeed; Abouie, Jahanfar
2011-06-22
The effects of a magnetic field (h) and a space modulation (δ) on the magnetic properties of a one-dimensional antiferromagnetic-ferromagnetic Heisenberg spin-1/2 model have been studied by means of numerical exact diagonalization of finite size systems, the nonlinear σ model, and a bosonization approach. The space modulation is considered on the antiferromagnetic couplings. At δ = 0, the model is mapped to a gapless Lüttinger liquid phase by increasing the magnetic field. However, the space modulation induces a new gap in the spectrum of the system and the system experiences different quantum phases which are separated by four critical fields. By opening the new gap, a magnetization plateau appears at ½M(sat). The effects of the space modulation are reflected in the emergence of a plateau in other physical functions such as the F-dimer and the bond-dimer order parameters, and the pair-wise entanglement. PMID:21613724
Darvesh, Sultan; Cash, Meghan K.; Reid, G. Andrew; Martin, Earl; Mitnitski, Arnold; Geula, Changiz
2012-01-01
Histochemical analysis of Alzheimer disease (AD) brain tissues indicates that butyrylcholinesterase (BuChE) is present in β-amyloid (Aβ) plaques. The role of BuChE in AD pathology is unknown but an animal model developing similar BuChE-associated Aβ plaques could provide insights. The APPSWE/PSEN1dE9 mouse (ADTg), which develops Aβ plaques, was examined to determine if BuChE associates with these plaques, as in AD. We found that in mature ADTg mice, BuChE activity associated with Aβ plaques. ...
Alastruey, Jordi; Khir, Ashraf W.; Matthys, Koen S.; Segers, Patrick; Sherwin, Spencer J.; Verdonck, Pascal R.; Parker, Kim H.; Peiro, Joaquim
2011-01-01
The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped...
DEFF Research Database (Denmark)
Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri
2016-01-01
In the present paper, for the first time in literature an exact analytical solution to Lemaitre's isotropic damage model is developed for the special case of uniaxial tensile testing. This is achieved by taking advantage of a convenient formulation of the isotropic hardening function, which allows...... optimization, as all issues associated with classical numerical solution procedures of the constitutive equations are eliminated. In addition, an implicit implementation of the plane stress projected version of Lemaitre's model is discussed, showing that the resulting algebraic system can be reduced to a...
Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark
2016-04-01
In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results
Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos
2014-05-01
explore the complex interactions involved in soil development and change. We were unable to identify appropriately-detailed existing models for plant productivity and for the dynamics of soil aggregation and porosity, and so developed the PROSUM and CAST models, respectively, to simulate these subsystems. Moreover, we applied the BRNS generator to obtain a chemical equilibrium model. These were combined with HYDRUS-1D (water and solute transport), a weathering model (derived from the SAFE model) and a simple bioturbation model. The model includes several feedbacks, such as the effect of soil organic matter on water retention and hydraulic conductivity. We encountered several important challenges when building the integrated model. First, a mechanism was developed that initiates the execution of a single time step for an individual sub-model and accounts for the relevant mass transfers between sub-models. This allows for different and sometimes variable time step duration in the submodels. Secondly, we removed duplicated processes and identified and included relevant solute production terms that had been neglected. The model is being tested against datasets obtained from several Soil Critical Zone Observatories in Europe. This contribution focuses on the design strategy for the model.
Directory of Open Access Journals (Sweden)
A. Caserta
1995-06-01
Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.
Friedman, Carey L.; Selin, Noelle E
2016-01-01
We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that c...
Czech Academy of Sciences Publication Activity Database
Laukkanen, A. M.; Radolf, Vojtěch; Horáček, Jaromír; Leino, T.
Madrid : EUIT Telecomunicación, 2009, s. 1-4. ISBN 84-95227-64-9. [Advanced Voice Function Assessment International Workshop /3./. Madrid (ES), 18.05.2009-20.05.2009] R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal tract acoustics * mathematical modelling * operatic singing * good speaking voice Subject RIV: BI - Acoustics
Directory of Open Access Journals (Sweden)
A. Frepoli
1997-06-01
Full Text Available We computed one-dimensional ( I D velocity models and station corrections for Centrai and Southern Italy, in- verting re-picked P-wave alTival times recorded by the Istituto Nazionale di Geofisica seismic network. The re-picked data yield resolved P-wave velocity results and proved to be more suited than bulletin data for de- tailed tomographic studies. Using the improved velocity models, we relocated the most significant earthquakes which occurt.ed in the Apennines in the past 7 years, achieving constrained hypocentral determinations for events within most of the Apenninic belt. The interpretation of the obtained lD velocity models allows us to infer interesting features on the deep structure of the Apennines. Smooth velocity gradients with depth and low P-wave velocities are ob,'ierved beneath the Apennines. We believe that our results are effective to constrain hypocentral locations in Italy and may represent a first step towards more detailed seismotectonic analyses.
Non-trivial exponents in the zero temperature dynamics of the 1D Ising and Potts models
Derrida, B.; Bray, A. J.; Godrèche, C.
1994-01-01
We consider the Glauber dynamics of the $ q $-state Potts model in one dimension at zero temperature. Starting with a random initial configuration, we measure the density $ r_t $ of spins which have never flipped from the beginning of the simulation until time $ t. $ We find that for large $ t, $ the density $ r_t $ has a power law decay $ \\left(r_t \\sim t^{-\\theta} \\right) $ where the exponent $ \\theta $ varies with $ q. $ Our simulations lead to $ \\theta \\simeq .37 $ for $ q=2, $ $ \\theta \\...
Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models
Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)
2001-01-01
Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.
Indian Academy of Sciences (India)
N V Sam; U C Mohanty; A N V Satyanarayana
2003-06-01
The characteristic features of the marine boundary layer (MBL) over the Bay of Bengal during the southwest monsoon and the factors influencing it are investigated. The Bay of Bengal and Monsoon Experiment (BOBMEX) carried out during July-August 1999 is the first observational experiment under the Indian Climate Research Programme (ICRP). A very high-resolution data in the vertical was obtained during this experiment, which was used to study the MBL characteristics off the east coast of India in the north and south Bay of Bengal. Spells of active and suppressed convection over the Bay were observed, of which, three representative convective episodes were considered for the study. For this purpose a one-dimensional multi-level PBL model with a TKE- closure scheme was used. The soundings, viz., the vertical profiles of temperature, humidity, zonal and meridional component of wind, obtained onboard ORV Sagar Kanya and from coastal stations along the east coast are used for the study. The temporal evolution of turbulent kinetic energy, marine boundary layer height (MBLH), sensible and latent heat fluxes and drag coefficient of momentum are simulated for different epochs of monsoon and monsoon depressions during BOBMEX-99.The model also generates the vertical profiles of potential temperature, specific humidity, zonal and meridional wind. These simulated values compared reasonably well with the observations available from BOBMEX.
Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.
2007-01-01
The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.
Harel, Marie-Alice; Mouche, Emmanuel
2015-04-01
Despite the recent research focused on runoff pattern connectivity in hydrology, there is a surprising lack of theoretical knowledge regarding hillslope runoff generation and dynamics during a rainfall event. The transient problem is especially unaddressed. In this paper we propose a model based on queueing theory formalism for the infiltration-excess overland flow generation on soils with random infiltration properties. The influence of rainfall intensity and duration on runoff dynamics and connectivity is studied thanks to this model, numerical simulation and available steady-state results. We limit our study to a rainfall intensity that is a rectangular function of time. Exact solutions for the case of spatially random exponential distributions of soil infiltrability and rainfall intensity are developed. Simulations validate these analytical results and allow for the study the rising and recession limbs of the hydrograph for different rainfall characteristics. The case of a deterministic uniform rainfall rate and different infiltrability distributions is also discussed in light of runoff connectivity. We show that the connectivity framework contributes to a better understanding and prediction of runoff pattern formation and evolution with time. A fragmented overland flow is shown to have shorter charge and discharge periods after the onset and offset of rainfall compared to well connected runoff fields. These results demonstrate that the transient regime characteristics are linked with connectivity parameters, rainstorm properties and scale issues.
Kempton, Eliza M -R; Heng, Kevin
2014-01-01
We present high resolution transmission spectra of giant planet atmospheres from a coupled 3-D atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9 to 55 day orbital periods around solar-type stars. The results of our 3-D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple 1-D models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blue shifts of up to 3 km s$^{-1}$, whereas less irradiated planets show almost no net Doppler shifts. Compared to 1-D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheri...
Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.
2016-06-01
This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
Semblat, Jean-François
2011-01-01
To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the B...
International Nuclear Information System (INIS)
The behaviour of h.f. waves near ion cyclotron and ion ion hybrid resonances in a tokamak is investigated by means of an one-dimensional finite element code. Our model takes into account: - strength and orientation of the poloidal component of the static magnetic field, - finite larmor radius corrections to the dielectric tensor, - ion cyclotron damping at the fundamental and first harmonic resonance, - electron Landau damping to lowest order msub(e)/msub(i). We assume that an incoming fast wave approaches the singular layer from the low or high field side making an arbitrary angle relative to the local magnetic flux surface and to the resonance layer. These initial conditions might be provided by ray tracing from the antenna. Then we calculate the electromagnetic wavefield and the power fluxes of the transmitted or reflected fast and slow waves as well as the power absorbed by ions and electrons. (orig.)
Laginha Silva, Patricia; Martins, Flávio A.; Boski, Tomász; Sampath, Dissanayake M. R.
2010-05-01
processes. In this viewpoint the system is broken down into its fundamental components and processes and the model is build up by selecting the important processes regardless of its time and space scale. This viewpoint was only possible to pursue in the recent years due to improvement in system knowledge and computer power (Paola, 2000). The primary aim of this paper is to demonstrate that it is possible to simulate the evolution of the sediment river bed, traditionally studied with synthetic models, with a process-based hydrodynamic, sediment transport and morphodynamic model, solving explicitly the mass and momentum conservation equations. With this objective, a comparison between two mathematical models for alluvial rivers is made to simulate the evolution of the sediment river bed of a conceptual 1D embayment for periods in the order of a thousand years: the traditional synthetic basin infilling aggregate diffusive type model based on the diffusion equation (Paola, 2000), used in the "synthesist" viewpoint and the process-based model MOHID (Miranda et al., 2000). The simulation of the sediment river bed evolution achieved by the process-based model MOHID is very similar to those obtained by the diffusive type model, but more complete due to the complexity of the process-based model. In the MOHID results it is possible to observe a more comprehensive and realistic results because this type of model include processes that is impossible to a synthetic model to describe. At last the combined effect of tide, sea level rise and river discharges was investigated in the process based model. These effects cannot be simulated using the diffusive type model. The results demonstrate the feasibility of using process based models to perform studies in scales of 10000 years. This is an advance relative to the use of synthetic models, enabling the use of variable forcing. REFERENCES • Briggs, L.I. and Pollack, H.N., 1967. Digital model of evaporate sedimentation. Science, 155, 453
Aerial Radioactivity Monitoring Using Atmospheric Dispersion Model
International Nuclear Information System (INIS)
Since North Korea announced the underground nuclear test on last October 9th, 2006, many countries including South Korea have worried about the atmospheric dispersion and pollution of radioactive material by nuclear test. To verify the existence of nuclear test by detecting radioactive materials such as xenon and krypton at the early stage, to locate the position of test site, and to chase the trajectory of radioactivity have been heavily issued. And radioactivity detection and radiation monitoring technology using an aircraft have been recently examined by an authority concerned in South Korea. Although various techniques of aerial radioactivity monitoring are developed and operated in the world such as United States of America, Japan, Germany, etc., the relevant technical development or research is wholly lacking in our country. In this study, we performed some case studies on North Korea's nuclear test and accidental releases from nuclear power plant (NPP) using HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model developed by National Oceanic and Atmospheric Administration (NOAA) of U.S. Department of Commerce. We also investigated a feasibility of HYSPLIT to the aerial radioactivity monitoring system in terms of deciding potential measuring location and time
Lagrangian modeling of global atmospheric methane (1990-2012)
Arfeuille, Florian; Henne, Stephan; Brunner, Dominik
2016-04-01
In the MAIOLICA-II project, the lagrangian particle model FLEXPART is used to simulate the global atmospheric methane over the 1990-2012 period. In this lagrangian framework, 3 million particles are permanently transported based on winds from ERA-interim. The history of individual particles can be followed allowing for a comprehensive analysis of transport pathways and timescales. The link between sources (emissions) and receptors (measurement stations) is then established in a straightforward manner, a prerequisite for source inversion problems. FLEXPART was extended to incorporate the methane loss by reaction with OH, soil uptake and stratospheric loss reactions with prescribed Cl and O(1d) radicals. Sources are separated into 245 different tracers, depending on source origin (anthropogenic, wetlands, rice, biomass burning, termites, wild animals, oceans, volcanoes), region of emission, and time since emission (5 age classes). The inversion method applied is a fixed-lag Kalman smoother similar to that described in Bruhwiler et al. [2005]. Results from the FLEXPART global methane simulation and from the subsequent inversion will be presented. Results notably suggest: - A reduction in methane growth rates due to diminished wetland emissions and anthropogenic European emission in 1990-1993. - A second decrease in 1995-1996 is also mainly attributed to these two emission categories. - A reduced increase in Chinese anthropogenic emissions after 2003 compared to EDGAR inventories. - Large South American wetlands emissions during the entire period. Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. & Tans, P. 2005: An improved Kalman smoother fore atmospheric inversions, Atmos Chem Phys, 5, 2691-2702.
Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M
2015-07-01
This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding. PMID:25753623
Evaluating atmospheric methane inversion model results for Pallas, northern Finland
Tsuruta, Aki; Aalto, Tuula; Backman, Leif; Peters, Wouter; Krol, Maarten; van der Laan-Luijkx, Ingrid T.; Hatakka, Juha; Heikkinen, Pauli; Dlugokencky, Edward J.; Spahni, Renato; Paramonova, Nina N.
2015-01-01
A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from the World Data Centre for Greenhouse Gases (WDCGG). Pri...
Critical review of hydraulic modeling on atmospheric heat dissipation
International Nuclear Information System (INIS)
Objectives of this study were: to define the useful roles of hydraulic modeling in understanding the predicting atmospheric effects of heat dissipation systems; to assess the state-of-the-art of hydraulic modeling of atmospheric phenomena; to inventory potentially useful existing hydraulic modeling facilities both in the United States and abroad; and to scope hydraulic model studies to assist the assessment of atmospheric effects of nuclear energy centers
International Nuclear Information System (INIS)
Finite-temperature T > 0 transport properties of integrable and nonintegrable one-dimensional (1D) many-particle quantum systems are rather different, showing ballistic and diffusive behavior, respectively. The repulsive 1D Hubbard model is a prominent example of an integrable correlated system. For electronic densities n ≠ 1 (and spin densities m ≠ 0) it is an ideal charge (and spin) conductor, with ballistic charge (and spin) transport for T ⩾ 0. In spite of the fact that it is solvable by the Bethe ansatz, at n = 1 (and m = 0) its T > 0 charge (and spin) transport properties are an issue that remains poorly understood. Here we combine this solution with symmetry and the explicit calculation of current-operator matrix elements between energy eigenstates to show that for on-site repulsion U > 0 and at n = 1 the charge stiffness Dη(T) vanishes for T > 0 in the thermodynamic limit. A similar behavior is found by such methods for the spin stiffness Ds(T) for U > 0 and T > 0, which vanishes at m = 0. This absence of finite temperature n = 1 ballistic charge transport and m = 0 ballistic spin transport are exact results that clarify long-standing open problems. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres
Hayek, W; Pont, F; Asplund, M
2012-01-01
We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of the two transiting exoplanet systems HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated using 3D LTE spectrum formation and opacity sampling. We test our predictions using least-squares fits of model light curves to primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 between 2900 A and 5700 A produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of surface granulation. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 A and 5700 A, partly due ...
Model flames in a hydrostatic atmosphere
Caceres Calleja, Alvaro
A model flame system based on the advection-diffusion-reaction method is defined and used to numerically study the problem of a flame propagating up an initially hydrostatic atmosphere, in 2-D. We identify and characterize the flame's steady states over a range of parameters, in the case where the gravitational scale height is much greater than the size of the flame, which itself is much greater than the flame's laminar width. We observe both laminar and turbulent steady flames and verify that, for strong enough gravity G, the turbulent flame speed is independent of the laminar flame speed and scales like the square root of GL, where L is the size of our domain. As this scaling law is commonly used to implement flame subgrid models, one of the aims of this thesis is to understand its robustness. We describe the flame geometry and discuss its relationship with the flame speed. The flow statistics inside turbulent flames are measured and found to be gaussian and isotropic, corresponding to strong mixing.
Hurlbatt, A.; O’Connell, D.; Gans, T.
2016-08-01
Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.
DEFF Research Database (Denmark)
Gupta, S.; Villalon, C.M.
2010-01-01
the relief of migraineurs. Pathophysiological factors culminating into migraine headaches have not yet been completely deciphered and, thus, pose an additional challenge for preclinical research in the absence of any direct experimental marker. Migraine provocation experiments in humans use a head......-score to evaluate migraine, as articulated by the volunteer, which cannot be applied to laboratory animals. Therefore, basic research focuses on different symptoms and putative mechanisms, one at a time or in combination, to validate the hypotheses. Studies in several species, utilizing different...... preclinical approaches, have significantly contributed to the two antimigraine principles in therapeutics, namely: 5-HT1B/1D receptor agonists (known as triptans) and CGRP receptor antagonists (known as gepants). This review will analyze the preclinical experimental models currently known for the development...
A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models
Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.
2010-09-01
For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.
Allué, José Antonio; Sarasa, Leticia; Izco, María; Pérez-Grijalba, Virginia; Fandos, Noelia; Pascual-Lucas, María; Ogueta, Samuel; Pesini, Pedro; Sarasa, Manuel
2016-05-30
APPswe/PS1dE9 and Tg2576 are very common transgenic mouse models of Alzheimer's disease (AD), used in many laboratories as tools to research the mechanistic process leading to the disease. In order to augment our knowledge about the amyloid-β (Aβ) isoforms present in both transgenic mouse models, we have developed two chromatographic methods, one acidic and the other basic, for the characterization of the Aβ species produced in the brains of the two transgenic mouse models. After immunoprecipitation and micro-liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry, 10 species of Aβ, surprisingly all of human origin, were detected in the brain of Tg2576 mouse, whereas 39 species, of both murine and human origin, were detected in the brain of the APP/PS1 mouse. To the best of our knowledge, this is the first study showing the identification of such a high number of Aβ species in the brain of the APP/PS1 transgenic mouse, whereas, in contrast, a much lower number of Aβ species were identified in the Tg2576 mouse. Therefore, this study brings to light a relevant phenotypic difference between these two popular mice models of AD. PMID:27258422
Muench, Thomas; Koch, Manfred; Schlittenhard, Jörg
2010-05-01
On December 5, 2004 a strong earthquake occurred near the city of Waldkirch, about 30 km's north of Freiburg, with a local magnitude of ML = 5.4. This seismic event was one of the strongest observed since the ML = 5.7 'Schwäbische Alb' event of September 3, 1978, 30 years before. In the aftermath of the event several institutions (Bens, BGR, LGBR, LED, SED and NEIC) have attempted to relocate this earthquake that came up with a hypocentral depth range of 9 - 12 km which. In fact, as the exact hypocentral location of the Waldkirch - and other events in the area - namely, the seismic depths, are of utmost importance for the further understanding of the seismotectonics as well as of the seismic hazard in the upper Rhinegraben area, one cannot over stress the necessity for a hypocenter relocation as best as possible. This requires a careful analysis of all factors that may impede an unbiased relocation of such an event. In the present talk we put forward the question whether the Waldkirch seismic event can be relocated with sufficient accuracy by a regional network when, additionally, improved regional 1D- and 3D seismic velocity models for the crust and upper mantle that take into consideration Pn-anisotropy of the upper mantle beneath Germany are employed in the hypocentral determination process. The seismological work starts with a comprehensive analysis of the dataset available for the relocation of the event. By means of traveltime curves a reevaluation of the observed phases is done and it is shown that some of the big observed traveltime residuals are most likely the consequence of wrongly associated phases as well as of the neglect of the anisotropic Pn traveltime correction for the region. Then hypcocenter relocations are done for 1D vertically inhomogeneous and 3D laterally inhomogeneous seismic velocity models, without and with the anisotropic Pn-traveltime correction included. The effects of the - often not well-known - Moho depth and of the VP
Brown, A.; Dahlke, H. E.
2015-12-01
The ability of soil to infiltrate large volumes of water is fundamental to managed aquifer recharge (MAR) when using infiltration basins or agricultural fields. In order to investigate the feasibility of using agricultural fields for MAR we conducted a field experiment designed to not only assess the resilience of alfalfa (Medicago sativa) to large (300 mm), short duration (1.5 hour), repeated irrigation events during the winter but also how crop resilience was influenced by soil water movement. We hypothesized that large irrigation amounts designed for groundwater recharge could cause prolonged saturated conditions in the root-zone and yield loss. Tensiometers were installed at two depths (60 and 150 cm) in a loam soil to monitor the changes in soil matric potential within and below the root-zone following irrigation events in each of five experimental plots (8 x 16 m2). To simulate the individual infiltration events we employed the HYDRUS-1D computational module (Simunek et al., 2005) and compared the finite-water content vadose zone flow method (Ogden et al. 2015) with numerical solutions to the Richards' equation. For both models we assumed a homogenous and isotropic root zone that is initially unsaturated with no water flow. Here we assess the ability of these two models to account for the control volume applied to the plots and to capture sharp changes in matric potential that were observed in the early time after an irrigation pulse. The goodness-of-fit of the models was evaluated using the root mean square error (RMSE) for observed and predicted values of cumulative infiltration over time, wetting front depth over time and water content at observation nodes. For the finite-water content method, the RMSE values and output for observation nodes were similar to that from the HYDRUS-1D solution. This indicates that the finite-water content method may be useful for predicting the fate of large volumes of water applied for MAR. Moreover, both models suggest a
Kristensen, Tom; Simoni, Andrea; Launay, Jean-Michel
2016-05-01
We compute scattering and bound state properties for two ultracold molecules in a pure 1D optical lattice. We introduce reference functions with complex quasi-momentum that naturally account for the effect of excited energy bands. Our exact results for a short-range interaction are first compared with the simplest version of the standard Bose-Hubbard (BH) model. Such comparison allows us to highlight the effect of the excited bands, of the non-on-site interaction and of tunneling with distant neighbor, that are not taken into account in the BH model. The effective interaction can depend strongly on the particle quasi-momenta and can present a resonant behavior even in a deep lattice. As a second step, we study scattering of two polar particles in the optical lattice. Peculiar Wigner threshold laws stem from the interplay of the long range dipolar interaction and the presence of the energy bands. We finally assess the validity of an extended Bose-Hubbard model for dipolar gases based on our exact two-body calculations. This work was supported by the Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).
Delettrez, J. A.; Myatt, J. F.; Yaakobi, B.
2015-11-01
The modeling of the fast-electron transport in the 1-D hydrodynamic code LILAC was modified because of the addition of cross-beam-energy-transfer (CBET) in implosion simulations. Using the old fast-electron with source model CBET results in a shift of the peak of the hard x-ray (HXR) production from the end of the laser pulse, as observed in experiments, to earlier in the pulse. This is caused by a drop in the laser intensity of the quarter-critical surface from CBET interaction at lower densities. Data from simulations with the laser plasma simulation environment (LPSE) code will be used to modify the source algorithm in LILAC. In addition, the transport model in LILAC has been modified to include deviations from the straight-line algorithm and non-specular reflection at the sheath to take into account the scattering from collisions and magnetic fields in the corona. Simulation results will be compared with HXR emissions from both room-temperature plastic and cryogenic target experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Toba, Junya; Nikkuni, Miyu; Ishizeki, Masato; Yoshii, Aya; Watamura, Naoto; Inoue, Takafumi; Ohshima, Toshio
2016-05-13
Alzheimer's disease (AD) is one of the best known neurodegenerative diseases; it causes dementia and its pathological features include accumulation of amyloid β (Aβ) and neurofibrillary tangles (NFTs) in the brain. Elevated Cdk5 activity and CRMP2 phosphorylation have been reported in the brains of AD model mice at the early stage of the disease, but the significance thereof in human AD remains unelucidated. We have recently reported that Aβ accumulation in the cerebellum of AD model APPswe/PS1dE9 (APP/PS1) mice, and cerebellar dysfunctions, such as impairment of motor coordination ability and long-term depression (LTD) induction, at the pre-Aβ accumulation stage. In the present study, we found increased phosphorylation levels of CRMP2 as well as increased p35 protein levels in the cerebellum of APP/PS1 mice. Interestingly, we show that pioglitazone, an agonist of peroxisome proliferator-activated receptor γ, normalized the p35 protein and CRMP2 phosphorylation levels in the cerebellum. Impaired motor coordination ability and LTD in APP/PS1 mice were ameliorated by pioglitazone treatment at the pre-Aβ accumulation stage. These results suggest a correlation between CRMP2 phosphorylation and AD pathophysiology, and indicate the effectiveness of pioglitazone treatment at the pre-Aβ accumulation stage in AD model mice. PMID:27059136
Guo, Leicheng; Wegen, Mick; Wang, Zheng Bing; Roelvink, Dano; He, Qing
2016-05-01
Tidal asymmetry is an important mechanism generating tidal residual sediment transport (TRST) in tidal environments. So far, it is known that a number of tidal interactions (e.g., M2-M4 and M2-O1-K1) can induce tidal asymmetry and associated TRST; however, their variability and morphodynamic impacts are insufficiently explored. Inspired by the river and tidal forcing conditions in the Yangtze River Estuary, we explore the morphodynamic development of a 560 km long estuary under the boundary forcing conditions of varyingly combined tidal constituents and river discharges using a schematized 1-D morphodynamic model for long-term (millennial) simulations. We then employ an analytical scheme which integrates sediment transport as a function of flow velocities to decompose the contribution of different tidal interactions on TRST and to explain how the river and tidal interactions control TRST and associated morphodynamics. Model results display varying equilibrium bed profiles. Analytical results suggest that (1) a series of tidal interactions creates multiple tidal asymmetries and associated TRST, (2) river flow modulates tidal asymmetry nonlinearly in space, and (3) more tidal constituents at the sea boundary persistently enhance the seaward TRST through river-tide interactions. It is the combined effects of multiple tidal asymmetries and river-tide interactions that determine the net TRST and consequent morphodynamic development. It thus suggests that tidal harmonics of significant amplitudes need to be considered properly as boundary conditions for long-term, large-scale morphodynamic modeling.
Formulations of moist thermodynamics for atmospheric modelling
Marquet, Pascal
2015-01-01
Internal energy, enthalpy and entropy are the key quantities to study thermodynamic properties of the moist atmosphere, because they correspond to the First (internal energy and enthalpy) and Second (entropy) Laws of thermodynamics. The aim of this chapter is to search for analytical formulas for the specific values of enthalpy and entropy and for the moist-air mixture composing the atmosphere. The Third Law of thermodynamics leads to the definition of absolute reference values for thermal enthalpies and entropies of all atmospheric species. It is shown in this Chapter 22 that it is possible to define and compute a general moist-air entropy potential temperature, which is really an equivalent of the moist-air specific entropy in all circumstances (saturated, or not saturated). Similarly, it is shown that it is possible to define and compute the moist-air specific enthalpy, which is different from the thermal part of what is called Moist-Static-Energy in atmospheric studies.
H. Riede; Jöckel, P.; Sander, R.
2009-01-01
We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D) global ECHAM/MESSy atmospheric-chemistry (EMAC) general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M), the photochemistry submodel...
Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere
DEFF Research Database (Denmark)
Hertel, O.
1994-01-01
Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....
Coupled groundwater-atmosphere modeling: effects on atmospheric boundary layer development
Chow, F. K.; Maxwell, R. M.; Kollet, S. J.; Daniels, M. H.; Rihani, J. F.
2007-12-01
Newly-developed coupled land-atmosphere models which incorporate both subsurface and atmospheric moisture dynamics have the potential to change our understanding of the hydrologic cycle. This presentation describes the effects of coupled groundwater-atmosphere modeling on simulations of the atmospheric boundary layer. Both field observations and simulations indicate strong sensitivity of atmospheric dynamics to land-surface conditions, in particular surface soil moisture. Simulations of atmospheric flow in Owens Valley (California) and in the Riviera Valley (Switzerland) show strong sensitivity to land-surface conditions, thus motivating the need for more accurate representations of soil moisture. In addition to influences from weather and seasonal changes, soil moisture dynamics respond to diurnal heat fluxes on the land surface. Using our new fully-coupled groundwater-atmosphere model, we have demonstrated correlations of soil moisture and land-surface heat fluxes with groundwater fluctuations on short, diurnal time scales. By explicitly calculating groundwater dynamics for our domain of interest, we are able to produce realistic time- and space-varying soil moisture distributions that naturally correspond to variations in topography and surface evaporation. Simulations in idealized and real watersheds are shown to illustrate these effects. The observed variations in surface moisture distribution have large impacts on the moisture and temperature structure in the atmosphere, leading to changes in boundary layer depth and convective motions as compared to standard soil moisture representations. Our coupled model framework will allow detailed investigation of the complex cycle of land-atmosphere processes affecting moisture distributions in the subsurface and the atmosphere.
Directory of Open Access Journals (Sweden)
B. Mouriño-Carballido
2009-03-01
Full Text Available A cyclonic eddy was intensively investigated during four cruises carried out in the Sargasso Sea between late June and early August 2004. In this study we compare in vitro incubation estimates of net community production (NCP with in situ estimates derived from oxygen profiles and a 1-D model. The in vitro NCP rates measured at the center of the eddy showed a shift from slight net autotrophy (7±3 mmol O_{2} m^{−2} d^{−1} to net heterotrophy (−25±5 mmol O_{2} m^{−2} d^{−1} from late June to early August. The model-derived NCP rates also showed a temporal decline (21 to −1 to 13 mmol O_{2} m^{−2} d^{−1}, but reported net autotrophy or balance for the sampling period. These results point to methodological artefacts or temporal and submesoscale variability as the mechanisms responsible for the disagreement between the in vitro and the in situ NCP estimates.
Directory of Open Access Journals (Sweden)
Seung Oh Lee
2013-10-01
Full Text Available Collection and investigation of flood information are essential to understand the nature of floods, but this has proved difficult in data-poor environments, or in developing or under-developed countries due to economic and technological limitations. The development of remote sensing data, GIS, and modeling techniques have, therefore, proved to be useful tools in the analysis of the nature of floods. Accordingly, this study attempts to estimate a flood discharge using the generalized likelihood uncertainty estimation (GLUE methodology and a 1D hydraulic model, with remote sensing data and topographic data, under the assumed condition that there is no gauge station in the Missouri river, Nebraska, and Wabash River, Indiana, in the United States. The results show that the use of Landsat leads to a better discharge approximation on a large-scale reach than on a small-scale. Discharge approximation using the GLUE depended on the selection of likelihood measures. Consideration of physical conditions in study reaches could, therefore, contribute to an appropriate selection of informal likely measurements. The river discharge assessed by using Landsat image and the GLUE Methodology could be useful in supplementing flood information for flood risk management at a planning level in ungauged basins. However, it should be noted that this approach to the real-time application might be difficult due to the GLUE procedure.
Proposed reference models for atomic oxygen in the terrestrial atmosphere
Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.
1989-01-01
A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.
Directory of Open Access Journals (Sweden)
G. M. Wolfe
2011-01-01
Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.
Directory of Open Access Journals (Sweden)
G. M. Wolfe
2010-09-01
Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. It is the first model of its kind to incorporate the Master Chemical Mechanism (MCM and a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.
Iwamoto, Masami; Nakahira, Yuko
2015-11-01
Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics. PMID:26660740
Modeling the effects of atmospheric emissions on groundwater composition
International Nuclear Information System (INIS)
A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport
A Model of the Cosmic Ray Induced Atmospheric Neutron Environment
Kole, Merlin; Pearce, Mark; Salinas, Maria Muñoz
2014-01-01
In order to optimise the design of space instruments making use of detection materials with low atomic numbers, an understanding of the atmospheric neutron environment and its dependencies on time and position is needed. To produce a simple equation based model, Monte Carlo simulations were performed to obtain the atmospheric neutron fluxes produced by charged galactic cosmic ray interactions with the atmosphere. Based on the simulation results the omnidirectional neutron environment was para...
International Nuclear Information System (INIS)
One-dimensional mathematical models are extensively used in thermohydraulics assessment of Nuclear Power Plant (NPP) transients and accidents, because specifically 1-D system of the conservation laws allows to reduce computing time and required memory, especially in ''best estimate'' code calculations. This work is generalization of the well-known Zuber-Findley and Hancox-Nicoll methods for two-phase flow distribution parameters Cs taking into account the non-monotonous void fraction distribution in the transverse direction in terms of two superimposed monotonous profiles. The method is very useful in evaluating the saddle-shape void fraction profile effects. In this work two-phase flow distribution parameters Cs were developed for simple circular and rectangular pipes, and subchannel geometry in a rod bundle. Basic assumptions were power-mode approximations for describing the profiles of local volume flux density, phase velocity and temperature. The general analytical (quadrature) relationships for Cs were obtained and their 3-D illustrations are proposed. Also, we propose generalized formulation and simple approach to construct friction factor, heat and mass transfer coefficients within the gradient hypothesis and boundary layer assumptions. The contribution of momentum, heat and mass transfer as well as their sources and sinks in the channel cross-section are taken into account. In the same way, the friction factor, heat and mass transfer coefficients with the transversal and azimuthal variations being taken into account are proposed for subchannel geometry as well. (author)
Directory of Open Access Journals (Sweden)
H. Zhong
2013-07-01
Full Text Available The Lower Rhine Delta, a transitional area between the River Rhine and Meuse and the North Sea, is at risk of flooding induced by infrequent events of a storm surge or upstream flooding, or by more infrequent events of a combination of both. A joint probability analysis of the astronomical tide, the wind induced storm surge, the Rhine flow and the Meuse flow at the boundaries is established in order to produce the joint probability distribution of potential flood events. Three individual joint probability distributions are established corresponding to three potential flooding causes: storm surges and normal Rhine discharges, normal sea levels and high Rhine discharges, and storm surges and high Rhine discharges. For each category, its corresponding joint probability distribution is applied, in order to stochastically simulate a large number of scenarios. These scenarios can be used as inputs to a deterministic 1-D hydrodynamic model in order to estimate the high water level frequency curves at the transitional locations. The results present the exceedance probability of the present design water level for the economically important cities of Rotterdam and Dordrecht. The calculated exceedance probability is evaluated and compared to the governmental norm. Moreover, the impact of climate change on the high water level frequency curves is quantified for the year 2050 in order to assist in decisions regarding the adaptation of the operational water management system and the flood defense system.
Directory of Open Access Journals (Sweden)
Abubakar Mijinyawa
2013-06-01
Full Text Available This research study attempt to evaluate the hydrocarbon potentials, thermal and burial history and the timing of hydrocarbon generation in Herwa-1 well within the Nigerian Sector of the Chad basin. Organic geochemical study of some ditch cuttings samples from Herwa-1 well and a One-dimensional basin modeling study was carried out. The result of the geochemical analysis revealed a moderate to good TOC greater than 0.5wt% in Fika and Gongila formation, the Hydrogen Index (HI ranges from 150-300 (mgHC/g and the Tmax values falls within the range of greater than or equal to 430°C. The hydrocarbon potentials in Herwa-1 well was further supported with the values of S1+S2 which is greater than or equal to 2 mg/g of rock in almost all the samples, suggesting a good hydrocarbon potentials. The 1-D basin model was constructed for Herwa-1 well in order to assess the burial history and thermal maturity of the potential source rocks in the Nigerian sector of the Chad basin. The modeling results indicate that maximum burial occurred in the late Miocene and suggesting erosion might have been the cause of the thinning of the Tertiary sediments in the present time. The calibration of Vitrinite reflectance against Temperature revealed the present day heat flow to be at 60 mW/m2 and Paleo heat flow falls within the range of 68 mW/m2. However, it is also revealed that Oil Window begins at (0.60-1.30% VRr at the depth of (2000-3000 m in the middle Cretaceous and the Gas Window start during the late Cretaceous to Tertiary with a value of (1.3-2.5% VRr at a depth greater than (3500 m.
International Nuclear Information System (INIS)
A simulation of two-phase flow in a multi-stage helicoidal production booster-pump performed at CEA Grenoble is presented. A 1D model used in the CATHARE code for nuclear safety has been adapted. Modifications were necessary to allow computations of petroleum fluids and to calculate multi-stage pumps. A two-fluid, two-component, 7-equation model is used. Mass, momentum and energy balance equations are written for each phase, gas and liquid. In our application, the gas phase is a mixture of a non condensable gas and of the vapour of the same component as the liquid phase. Then two mass balance equations are written for the gas phase. All these equations are written in the rotating frame in the impellers, considering centrifugal and Coriolis forces and curvature effects. A specific set of constitutive relations is adopted in order to account for three-dimensional effects in the impeller such as head losses at the impeller inlet or outlet, pre and post rotation. Calculations results at nominal capacity and in part-load conditions, for a single-stage and a 3-stage geometries are presented. They are compared with the corresponding full scale experimental results from the IFP (Institut Francais du Petrole) two-phase pumps data-bank. Some tendencies can be observed, like the flow stratification and the interfacial friction effects or the influence of the flow angles at impeller's outlet on the two phase pressure gain. The effects of the void fraction, pressure, and homologous flowrate on the degradation are rather well predicted by the model. A correct prediction of the two-phase pressure gain can be obtained when the single-phase losses distribution is entered carefully. The multi-stage calculations are also satisfactory in this case. (authors)
Jiang, Shuang; Pang, Liping; Buchan, Graeme D; Simůnek, Jirí; Noonan, Mike J; Close, Murray E
2010-02-01
HYDRUS-1D was used to simulate water flow and leaching of fecal coliforms and bromide (Br) through six undisturbed soil lysimeters (70 cm depth by 50 cm diameter) under field conditions. Dairy shed effluent (DSE) spiked with Br was applied to the lysimeters, which contained fine sandy loam layers. This application was followed by fortnightly spray or flood water irrigation. Soil water contents were measured at four soil depths over 171 days, and leachate was collected from the bottom. The post-DSE period simulations yielded a generally decreased saturated water content compared to the pre-DSE period, and an increased saturated hydraulic conductivity and air-entry index, suggesting that changes in soil hydraulic properties (e.g. via changes in structure) can be induced by irrigation and seasonal effects. The single-porosity flow model was successful in simulating water flow under natural climatic conditions and spray irrigation. However, for lysimeters under flood irrigation, when the effect of preferential flow paths becomes more significant, the good agreement between predicted and observed water contents could only be achieved by using a dual-porosity flow model. Results derived from a mobile-immobile transport model suggest that compared to Br, bacteria were transported through a narrower pore-network with less mass exchange between mobile and immobile water zones. Our study suggests that soils with higher topsoil clay content and soils under flood irrigation are at a high risk of bacteria leaching through preferential flow paths. Irrigation management strategies must minimize the effect of preferential flow to reduce bacterial leaching from land applications of effluent. PMID:19775719
Accident consequence assessments with different atmospheric dispersion models
International Nuclear Information System (INIS)
An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.)
Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres
Amarsi, A M; Collet, R; Leenaarts, J
2015-01-01
The OI 777 nm lines are among the most commonly used diagnostics for the oxygen abundances in the atmospheres of FGK-type stars. However, they form in conditions that are far from local thermodynamic equilibrium (LTE). We explore the departures from LTE of atomic oxygen, and their impact on OI lines, across the Stagger-grid of three-dimensional hydrodynamic model atmospheres. For the OI 777 nm triplet we find significant departures from LTE. These departures are larger in stars with larger effective temperatures, smaller surface gravities, and larger oxygen abundances. We present grids of predicted 3D non-LTE based equivalent widths for the OI616nm, [OI] 630 nm, [OI] 636 nm, and OI 777 nm lines, as well as abundance corrections to 1D LTE based results.
On atmospheric stability in the dynamic wake meandering model
DEFF Research Database (Denmark)
Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.; Lee, Sang; Larsen, Gunner Chr.; Aagaard Madsen, Helge
2014-01-01
parameters. In order to isolate the effect of atmospheric stability, simulations of neutral and unstable atmospheric boundary layers using large-eddy simulation are performed at the same streamwise turbulence intensity level. The turbulence intensity is kept constant by calibrating the surface roughness in......The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... turbulence spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...
Driba, D. L.; De Lucia, M.; Peiffer, S.
2014-12-01
Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in
PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments
de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.
2015-05-01
In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume
Estimate Total Number of the Earth Atmospheric Particle with Standard Atmosphere Model
Institute of Scientific and Technical Information of China (English)
GAO Chong-Yi
2001-01-01
The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience.Estimating entire AP number is also a familiar question in general physics.With standard atmosphere model,considering the number difference of AP caused by rough and uneven in the earth surface below,the sum of dry clean atmosphere particle is 1.06962 × 1044.So the whole number of AP including water vapor is 1.0740 × 1044.The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.
CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions
DEFF Research Database (Denmark)
Koblitz, Tilman
For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important to the...... atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented into...
Directory of Open Access Journals (Sweden)
B. Mouriño-Carballido
2009-08-01
Full Text Available It has been proposed that the disagreement traditionally reported between in vitro incubation and in situ estimates of oxygen net community production (NCP could be explained, at least partially, by undersampling episodic pulses of net autotrophy associated with mesoscale dynamics. In this study we compare in vitro incubation estimates of net community production with in situ estimates, derived from oxygen profiles and a 1-D model, within a cyclonic eddy investigated in the Sargasso Sea in summer 2004. The in vitro NCP rates measured at the center of the eddy showed a shift from net autotrophy (7±3 mmol O_{2} m^{−2} d^{−1} to net heterotrophy (−25±5 mmol O_{2} m^{−2} d^{−1} from late June to early August. The model-derived NCP rates also showed a temporal decline (19±6 to −3±7 and 11±8 mmol O_{2} m^{−2} d^{−1}, but they were systematically higher than the in vitro estimates and reported net autotrophy or balance for the sampling period. In this comparison episodic pulses in photosynthesis or respiration driven by mesoscale eddies can not explain the discrepancy between the in vitro and in situ estimates of NCP. This points to methodological artefacts or temporal or submesoscale variability as the mechanisms responsible for the disagreement between the techniques, at least in this dataset.
Highly physical penumbra solar radiation pressure modeling with atmospheric effects
Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel
2015-10-01
We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.
Modeling of uncertainty in atmospheric transport system using hybrid method
International Nuclear Information System (INIS)
Atmospheric dispersion models are routinely used at nuclear and chemical plants to estimate exposure to the members of the public and occupational workers due to release of hazardous contaminants into the atmosphere. Atmospheric dispersion is a stochastic phenomenon and in general, the concentration of the contaminant estimated at a given time and at a predetermined location downwind of a source cannot be predicted precisely. Uncertainty in atmospheric dispersion model predictions is associated with: 'data' or 'parameter' uncertainty resulting from errors in the data used to execute and evaluate the model, uncertainties in empirical model parameters, and initial and boundary conditions; 'model' or 'structural' uncertainty arising from inaccurate treatment of dynamical and chemical processes, approximate numerical solutions, and internal model errors; and 'stochastic' uncertainty, which results from the turbulent nature of the atmosphere as well as from unpredictability of human activities related to emissions, The possibility theory based on fuzzy measure has been proposed in recent years as an alternative approach to address knowledge uncertainty of a model in situations where available information is too vague to represent the parameters statistically. The paper presents a novel approach (called Hybrid Method) to model knowledge uncertainty in a physical system by a combination of probabilistic and possibilistic representation of parametric uncertainties. As a case study, the proposed approach is applied for estimating the ground level concentration of hazardous contaminant in air due to atmospheric releases through the stack (chimney) of a nuclear plant. The application illustrates the potential of the proposed approach. (author)
Memory efficient atmospheric effects modeling for infrared scene generators
Kavak, Çaǧlar; Özsaraç, Seçkin
2015-05-01
The infrared (IR) energy radiated from any source passes through the atmosphere before reaching the sensor. As a result, the total signature captured by the IR sensor is significantly modified by the atmospheric effects. The dominant physical quantities that constitute the mentioned atmospheric effects are the atmospheric transmittance and the atmospheric path radiance. The incoming IR radiation is attenuated by the transmittance and path radiance is added on top of the attenuated radiation. In IR scene simulations OpenGL is widely used for rendering purposes. In the literature there are studies, which model the atmospheric effects in an IR band using OpenGLs exponential fog model as suggested by Beers law. In the standard pipeline of OpenGL, the related fog model needs single equivalent OpenGL variables for the transmittance and path radiance, which actually depend on both the distance between the source and the sensor and also on the wavelength of interest. However, in the conditions where the range dependency cannot be modeled as an exponential function, it is not accurate to replace the atmospheric quantities with a single parameter. The introduction of OpenGL Shading Language (GLSL) has enabled the developers to use the GPU more flexible. In this paper, a novel method is proposed for the atmospheric effects modeling using the least squares estimation with polynomial fitting by programmable OpenGL shader programs built with GLSL. In this context, a radiative transfer model code is used to obtain the transmittance and path radiance data. Then, polynomial fits are computed for the range dependency of these variables. Hence, the atmospheric effects model data that will be uploaded in the GPU memory is significantly reduced. Moreover, the error because of fitting is negligible as long as narrow IR bands are used.
Institute of Scientific and Technical Information of China (English)
张丽; 陈炜; 张旭; 孙彩显; 张连峰
2014-01-01
目的：大鼠的大脑比小鼠更大，是研究神经系统的重要模型。建立APPswe/PS1dE9/TAU三转基因大鼠，发展能更全面表现人类阿尔兹海默病表型的动物模型。方法构建人PrP-hAPP695 K595N/M596L、PrP-hPS1dE9和PDGF-TAU转基因表达载体，显微注射法制备转基因大鼠。 PCR法鉴定转基因首建鼠及其子代基因型。 Western blot检测转基因大鼠脑组织中人APP、PS1和TAU蛋白的表达。 Morris水迷宫检测6月龄三转基因大鼠学习记忆能力改变。 APP、PHF-TAU免疫组织化学染色观察三转基因大鼠脑组织APP及TAU的表达。结果得到1个同时高表达人APP、PS1和TAU三个基因的转基因大鼠品系。转基因大鼠6月龄已经出现显著的行为学改变：学习记忆能力下降，病理学改变表现为过度磷酸化TAU增多和神经元胞浆内Aβ表达异常增加。结论成功建立了APPswe/PS1dE9/TAU三转AD大鼠，可做为新一代工具动物模型用于基础医学和AD转化医学研究。%Objective To develop a model that could roundly show the phenotypes of human alzheimer disease (AD), the triple-transgenic rat model harboring APP(Swe), PS1dE9, and TAU transgenes was established in view of the advantage of rat as an important animal model on the research of nerve system .Methods APPswe/PS1dE9/TAU triple transgenic rat AD rats were generated on a SD background by co-injecting rat pronuclei with two human genes driven by the mouse prion promoter:‘Swedish’ mutant human APP (APPsw) and exon 9 mutant human presenilin-1 (PS1dE9) and human microtubule-associated protein tau gene under the control of PDGF promoter .Transgene integration was confirmed by genotyping and expression levels were evaluated by western blot ( WB ) of brain homogenates .The pathological changes were detected by human Abeta, TAU and Phospho-PHF-TAU immunohistochemistry staining (IHC).The behavioral and cognitive changes were evaluated by Morris water maze .Results
Directory of Open Access Journals (Sweden)
K. Toyota
2013-08-01
Full Text Available Atmospheric mercury depletion events (AMDEs refer to a recurring depletion of mercury in the springtime Arctic (and Antarctic boundary layer, occurring, in general, concurrently with ozone depletion events (ODEs. To close some of the knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents throughout porous snowpack and in the overlying atmospheric boundary layer (ABL. Building on the model reported in a companion paper (Part 1: In-snow bromine activation and its impact on ozone, we have expanded the chemical mechanism to include the reactions of mercury in the gas- and aqueous-phases with temperature dependence of rate and equilibrium constants accounted for wherever possible. Thus the model allows us to study the chemical and physical processes taking place during ODEs and AMDEs within a single framework where two-way interactions between the snowpack and the atmosphere are simulated in a detailed, process-oriented manner. Model runs are conducted for meteorological and chemical conditions representing the springtime Arctic ABL loaded with "haze" sulfate aerosols and the underlying saline snowpack laid on sea ice. Using recent updates for the Hg + Br ⇄ HgBr reaction kinetics, we show that the rate and magnitude of photochemical loss of gaseous elemental mercury (GEM during AMDEs exhibit a strong dependence on the choice of reaction(s of HgBr subsequent to its formation. At 253 K, the temperature that is presumably low enough for bromine radical chemistry to cause prominent AMDEs as indicated from field observations, the parallel occurrence of AMDEs and ODEs is simulated if the reaction HgBr + BrO is assumed to produce a thermally stable intermediate, Hg(OBrBr, at the same rate constant as the reaction HgBr + Br. On the contrary, the simulated depletion of atmospheric mercury is notably diminished by
Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M.
2016-01-01
This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic solver dedicated to flood forecasting with lead time of an hour up to 24 h. The goal of the study is to reduce uncertainties in the hydraulic model and thus provide more reliable simulations and forecasts in real time for operational use by the national hydrometeorological flood forecasting center in France. Previous studies have shown that sequential assimilation of water level or discharge data allows to adjust the inflows to the hydraulic network resulting in a significant improvement of the discharge while leaving the water level state imperfect. Two strategies are proposed here to improve the water level-discharge relation in the model. At first, a modeling strategy consists in improving the description of the river bed geometry using topographic and bathymetric measurements. Secondly, an inverse modeling strategy proposes to locally correct friction coefficients in the river bed and the flood plain through the assimilation of in situ water level measurements. This approach is based on an Extended Kalman filter algorithm that sequentially assimilates data to infer the upstream and lateral inflows at first and then the friction coefficients. It provides a time varying correction of the hydrological boundary conditions and hydraulic parameters. The merits of both strategies are demonstrated on the Marne catchment in France for eight validation flood events and the January 2004 flood event is used as an illustrative example throughout the paper. The Nash-Sutcliffe criterion for water level is improved from 0.135 to 0.832 for a 12-h forecast lead time with the data assimilation strategy. These developments have been implemented at the SAMA SPC (local flood forecasting service in the Haute-Marne French department) and used for operational forecast since 2013. They were shown to provide an efficient tool for evaluating flood risk and to improve the flood early warning system
Revisiting the Carrington Event: Updated modeling of atmospheric effects
Thomas, Brian C; Snyder, Brock R
2011-01-01
The terrestrial effects of major solar events such as the Carrington white-light flare and subsequent geomagnetic storm of August-September 1859 are of considerable interest, especially in light of recent predictions that such extreme events will be more likely over the coming decades. Here we present results of modeling the atmospheric effects, especially production of odd nitrogen compounds and subsequent depletion of ozone, by solar protons associated with the Carrington event. This study combines approaches from two previous studies of the atmospheric effect of this event. We investigate changes in NOy compounds as well as depletion of O3 using a two-dimensional atmospheric chemistry and dynamics model. Atmospheric ionization is computed using a range-energy relation with four different proxy proton spectra associated with more recent well-known solar proton events. We find that changes in atmospheric constituents are in reasonable agreement with previous studies, but effects of the four proxy spectra use...
Advancing Solid Earth Science through Improved Atmosphere Modeling
Niell, A. E.
2004-01-01
We proposed to investigate and develop better models for the effect of the hydrostatic and water vapor components of the neutral atmosphere on delay for VLBI and GPS by using a Numerical Weather Model to better simulate realistic atmosphere conditions. By using a raytrace calculation through the model atmosphere at the times of actual VLBI observations, the potential improvement in geodetic results can be evaluated. Also, by calculating the actual variation of delays with elevation and azimuth, the errors in current mapping function models can be assessed. The VLBI data to be initially analyzed are the fifteen days of the CONT02 sessions of 2002 October which included eight stations. There are three segments to the research. 1) The PSU/NCAR fifth generation mesoscale numerical weather model (MM5) will be used to provide the state of the atmosphere with highest horizontal resolution of 3 km. 2) A three-dimensional raytrace program will be developed to determine the delays through the model atmosphere at the times and in the directions of the VLBI observations for each of the sites. 3) The VLBI data will be analyzed using both standard models for the atmosphere mapping functions and the mapping functions derived from the NWM raytracing.
A New Titan Atmospheric Model for Mission Engineering Applications
Waite, J. H.; Bell, J. M.; Lorenz, R.; Achterberg, R.; Flasar, F. M.
2012-03-01
Titan’s polar regions and hydrocarbon lakes are of interest for future exploration. This paper describes a new engineering model of Titan’s atmospheric structure with particular reference to the proposed Titan Mare Explorer mission.
Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI
National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the...
Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam
National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...
Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu
National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu...
Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa
National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
A. Fassò; IGNACCOLO, R.; F. Madonna; B. B. Demoz
2013-01-01
The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which exte...
ARTEAM - Advanced ray tracing with earth atmospheric models
Kunz, G.J.; Moerman, M. M.; Eijk, A.M.J. van
2002-01-01
The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and turbulence effects. These results are subsequently applied to an electro-optical sensor with given specifications to evaluate the effective range and performance of the sensor under the prevailing meteor...
Atmospheric & Oceanic Applications of Eulerian and Lagrangian Transport Modelling
Kjellsson, Joakim
2014-01-01
This thesis presents several ways to understand transports of air and water masses in the atmosphere and ocean, and the transports of energy that they imply. It presents work using various kinds of observations as well as computer simulations of the atmosphere and oceans. One of the main focuses is to identify similarities and differences between models and observations, as well as between different models. The first half of the thesis applies Lagrangian methods to study flows in the atmosphe...
Atmospheric Rivers in a Hierarchy of High-Resolution Global Atmospheric Models
Schiemann, R.; Demory, M. E.; Lavers, D. A.; Mizielinski, M.; Vidale, P. L.; Roberts, M.
2014-12-01
Atmospheric rivers are long and narrow plumes that carry moisture over land along frontal zones associated with mid-latitude storms. They can account for 90% of the horizontal moisture transport in a given day and are responsible for major flooding, particularly along western coastal regions (western coasts of North America and Europe). It is therefore crucial to well simulate these events in climate models in order to improve predictions and attributions of heavy precipitation and flooding along western coastal regions. In this study, we investigate the ability of a state-of-the art climate model to represent the location, frequency and structure of atmospheric rivers affecting Western Europe and California. By making use of the UPSCALE (UK on PRACE: weather resolving Simulations of Climate for globAL Environmental risk) campaign, a traceable hierarchy of global atmospheric simulations (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130 km to 25 km, we study the impact of improved representation of small-scale processes on the mean climate, its variability and extremes in order to understand the processes underlying observed improvement with higher resolution. Five-member ensembles of 27-year, atmosphere-only integrations are available at these resolutions, using both present day forcing and a future climate scenario. Demory et al (2014) have already shown that a relatively coarse resolution limits the model's ability to simulate moisture transport from ocean to land. This is particularly true at mid-latitude, where the transport is dominated by eddies. Increasing horizontal resolution increases eddy transport of moisture at mid-latitudes. Here, we investigate the climatology of atmospheric rivers, in particular their frequency and associated precipitation, compared to reanalysis products. Some aspects of the relationship between the improved simulation of moisture transport in current climate conditions, and how this impacts
ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM
International Nuclear Information System (INIS)
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation
Atmospheric Dispersion Model Validation in Low Wind Conditions
Energy Technology Data Exchange (ETDEWEB)
Sawyer, Patrick
2007-11-01
Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).
Diego Carrillo-Sánchez, Juan; Plane, John M. C.; Withers, Paul; Fallows, Kathryn; Nesvorný, David; Pokorný, Petr; Feng, Wuhu
2016-04-01
Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. However, the background metal layers produced by the influx of sporadic meteors have not yet been detected at Mars (contrary to the permanent metal layers identified in the Earth's atmosphere). The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFC) and Halley-Type Comets (HTC) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. These vertical profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the formation of the sporadic ion layers observed below 100 km with a plasma density exceeding 104 cm-3 requires the combination of the three different influx sources considered by the ZDC model, with a significant asteroidal contribution. Finally, we explore the changes of the neutral and ionized Mg and Fe layers over a diurnal cycle.
Toyota, K.; Dastoor, A. P.; Ryzhkov, A.
2014-04-01
Atmospheric mercury depletion events (AMDEs) refer to a recurring depletion of mercury occurring in the springtime Arctic (and Antarctic) boundary layer, in general, concurrently with ozone depletion events (ODEs). To close some of the knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents throughout porous snowpack and in the overlying atmospheric boundary layer (ABL). This paper constitutes Part 2 of the study, describing the mercury component of the model and its application to the simulation of AMDEs. Building on model components reported in Part 1 ("In-snow bromine activation and its impact on ozone"), we have developed a chemical mechanism for the redox reactions of mercury in the gas and aqueous phases with temperature dependent reaction rates and equilibrium constants accounted for wherever possible. Thus the model allows us to study the chemical and physical processes taking place during ODEs and AMDEs within a single framework where two-way interactions between the snowpack and the atmosphere are simulated in a detailed, process-oriented manner. Model runs are conducted for meteorological and chemical conditions that represent the springtime Arctic ABL characterized by the presence of "haze" (sulfate aerosols) and the saline snowpack on sea ice. The oxidation of gaseous elemental mercury (GEM) is initiated via reaction with Br-atom to form HgBr, followed by competitions between its thermal decomposition and further reactions to give thermally stable Hg(II) products. To shed light on uncertain kinetics and mechanisms of this multi-step oxidation process, we have tested different combinations of their rate constants based on published laboratory and quantum mechanical studies. For some combinations of the rate constants, the model simulates roughly linear relationships between the gaseous mercury and ozone concentrations as
Friedman, Carey L.; Selin, Noelle E.
2016-03-01
We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.
Directory of Open Access Journals (Sweden)
C. L. Friedman
2015-11-01
Full Text Available We present a spatially and temporally resolved global atmospheric PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere mid-latitudes, and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for the International Council for the Exploration of the Sea 7 PCBs, and demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently-described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that mid-latitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.
Atmospheric corrosion model and monitor for low cost solar arrays
Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.
1981-01-01
An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.
Information Flow in an Atmospheric Model and Data Assimilation
Yoon, Young-noh
2011-01-01
Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…
Measuring the basic parameters of neutron stars using model atmospheres
International Nuclear Information System (INIS)
Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)
Measuring the basic parameters of neutron stars using model atmospheres
Energy Technology Data Exchange (ETDEWEB)
Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)
2016-02-15
Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)
Measuring the basic parameters of neutron stars using model atmospheres
Suleimanov, V F; Klochkov, D; Werner, K
2015-01-01
Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutronstar radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: (i) pure carbon atmospheres for relatively cool neutron stars (1--4 MK) and (ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.
Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres
Blecic, Jasmina
2016-01-01
This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...
High Resolution Global Modeling of the Atmospheric Circulation
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models. The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of ～10-40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena. Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed. More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales. In the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation. The application of the models to two specific problems requiring very fine resolution global will be discussed. The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model. This is a subject of great importance for understanding and modelling the flow in the middle atmosphere. Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified.
Examining Tatooine: Atmospheric Models of Neptune-Like Circumbinary Planets
May, E M
2016-01-01
Circumbinary planets experience a time varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional Energy Balance Model and a three-dimensional General Circulation Model, we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the General Circulation Model, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling effor...
Regional forecasting with global atmospheric models; Fourth year report
Energy Technology Data Exchange (ETDEWEB)
Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)
1994-05-01
The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.
The physical theory and propagation model of THz atmospheric propagation
Energy Technology Data Exchange (ETDEWEB)
Wang, R; Yao, J Q; Xu, D G; Wang, J L; Wang, P, E-mail: wangran19861014@163.com [College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072 (China)
2011-02-01
Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.
O'Leary, Timothy P; Brown, Richard E
2009-07-19
The APPswe/PS1dE9 mouse is a double transgenic model of Alzheimer's disease, which harbors mutant mouse/human amyloid precursor protein (Swedish K594N/M595L) and presenilin-1 genes (PS1-dE9). These mice develop beta-amyloid plaques and exhibit visuo-spatial learning and memory impairment in the Morris water maze (MWM) at 8-12 and 16-18 months of age. To extend these findings, we tested visuo-spatial learning and memory of male and female APPswe/PS1dE9 mice at 16 months of age on the Barnes maze. APPswe/PS1dE9 mice showed impaired acquisition learning using measures of latency, distance traveled, errors and hole deviation scores, and were less likely to use the spatial search strategy to locate the escape hole than wild-type mice. APPswe/PS1dE9 mice also showed a deficit in memory in probe tests on the Barnes maze relative to wild-type mice. Learning and memory deficits, however, were not found during reversal training and reversal probe tests. Sex differences were observed, as male APPswe/PS1dE9 mice had smaller reversal effects than male wild-type mice, but females of each genotype did not differ. Overall, these results replicate previous findings using the MWM, and indicate that APPswe/PS1dE9 mice have impaired visuo-spatial learning and memory at 16 months of age. PMID:19428625
A zonally symmetric model for volcanic influence upon atmospheric circulation
Schatten, K. H.; Mayr, H. G.; Harris, I.; Taylor, H. A., Jr.
1984-01-01
The effects of volcanic activity upon zonal wind flow in a model atmosphere are considered. A low latitude volcanic eruption could lower the tropospheric pole to equator temperature difference and thereby affect the atmospheric motions. When the temperature contrast decreases, the zonal wind velocities at high altitudes are reduced. To conserve angular momentum, the velocities in the lower atmosphere near the surface must increase, thus providing a momentum source for ocean currents. It is suggested that this momentum source may have played a role as a trigger for inducing the 1982-83 anomalous El Nino and possibly other climate changes.
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
Kopasakis, George
2015-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Giesselmann, Jan
2014-01-01
In this paper we study a local and a non-local regularization of the system of nonlinear elastodynamics with a non-convex energy. We show that solutions of the non-local model converge to those of the local model in a certain regime. The arguments are based on the relative entropy framework and provide an example how local and non-local regularizations may compensate for non-convexity of the energy and enable the use of the relative entropy stability theory -- even if the energy is not quasi-...
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
A. Fassò; IGNACCOLO, R.; F. Madonna; B. B. Demoz; Franco-Villoria, M.
2014-01-01
The quantification of measurement uncertainty of atmospheric parameters is a key factor in assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical contributions to the uncertainty budget is related to the collocation mismatch in space and time among observations made at different locations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or lidar. In this paper we propose a st...
Complex source rate estimation for atmospheric transport and dispersion models
International Nuclear Information System (INIS)
The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate
The Role of Atmospheric Measurements in Wind Power Statistical Models
Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.
2015-12-01
The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.
Examining Tatooine: Atmospheric Models of Neptune-like Circumbinary Planets
May, E. M.; Rauscher, E.
2016-08-01
Circumbinary planets experience a time-varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional energy balance model (EBM) and a three-dimensional general circulation model (GCM), we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the GCM, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling efforts.
Grosfeld, K.; G. Lohmann; N. Rimbu; Fraedrich, K.; F. Lunkeit
2007-01-01
We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm) phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960). Two atmospheric general circulation models of different com...
International Nuclear Information System (INIS)
We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers
Atmospheric dispersion models for application in relation to radionuclide releases
International Nuclear Information System (INIS)
In this document, a state-of-art review of dispersion models relevant to local, regional and global scales and applicable to radionuclide discharges of a continuous and discontinuous nature is presented. The theoretical basis of the models is described in chapter 2, while the uncertainty inherent in model predictions is considered in chapter 6. Chapters 3 to 5 of this report describe a number of models for calculating atmospheric dispersion on local, regional and global scales respectively
Modeling Planetary Atmospheric Energy Deposition By Energetic Ions
Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu
2016-07-01
The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which
Atmospheric monitoring and model applications at the Pierre Auger Observatory
Directory of Open Access Journals (Sweden)
Keilhauer Bianca
2015-01-01
Full Text Available The Pierre Auger Observatory detects high-energy cosmic rays with energies above ∼1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.
Challenges in Modeling of the Global Atmosphere
Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom
2015-04-01
The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting
Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions
Tolson, Robert H.; Prince, Jill L. H.
2011-01-01
Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.
Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models
Song, Jiyun; Wang, Zhi-Hua
2015-03-01
We couple a single column model (SCM) to a cutting-edge single-layer urban canopy model (SLUCM) with realistic representation of urban hydrological processes. The land-surface transport of energy and moisture parametrized by the SLUCM provides lower boundary conditions to the overlying atmosphere. The coupled SLUCM-SCM model is tested against field measurements of sensible and latent heat fluxes in the surface layer, as well as vertical profiles of temperature and humidity in the mixed layer under convective conditions. The model is then used to simulate urban land-atmosphere interactions by changing urban geometry, surface albedo, vegetation fraction and aerodynamic roughness. Results show that changes of landscape characteristics have a significant impact on the growth of the boundary layer as well as on the distributions of temperature and humidity in the mixed layer. Overall, the proposed numerical framework provides a useful stand-alone modelling tool, with which the impact of urban land-surface conditions on the local hydrometeorology can be assessed via land-atmosphere interactions.
Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis
Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.
2014-01-01
The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.
Light self-focusing in the atmosphere: thin window model
Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; Turitsyn, Sergei K.
2016-08-01
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.
A Model of the Cosmic Ray Induced Atmospheric Neutron Environment
Kole, Merlin; Salinas, Maria Muñoz
2014-01-01
In order to optimise the design of space instruments making use of detection materials with low atomic numbers, an understanding of the atmospheric neutron environment and its dependencies on time and position is needed. To produce a simple equation based model, Monte Carlo simulations were performed to obtain the atmospheric neutron fluxes produced by charged galactic cosmic ray interactions with the atmosphere. Based on the simulation results the omnidirectional neutron environment was parametrised including dependencies on altitude, magnetic latitude and solar activity. The upward- and downward-moving component of the atmospheric neutron flux are considered separately. The energy spectra calculated using these equations were found to be in good agreement with data from a purpose built balloon-borne neutron detector, high altitude aircraft data and previously published simulation based spectra.
Light self-focusing in the atmosphere: thin window model.
Vaseva, Irina A; Fedoruk, Mikhail P; Rubenchik, Alexander M; Turitsyn, Sergei K
2016-01-01
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing. PMID:27480220
Chemico-physical models of cometary atmospheres
International Nuclear Information System (INIS)
Sublimation (vaporization) of the icy component of a cometary nucleus determines the initial composition of the coma gas as it streams outward and escapes. Photolytic reactions in the inner coma, escape of fast, light species such as atomic and molecular hydrogen, and solar wind interaction in the outer coma alter the chemical composition and the physical nature of the coma gas. Models that describe these interactions must include (1) chemical kinetics, (2) coma energy balance, (3) multifluid flow for the rapidly escaping light components, the heavier bulk fluid, and the plasma with separate temperatures for electrons and the remainder of the gas, (4) transition from a collision dominated inner region to free molecular flow of neutrals in the outer region, (5) pickup of cometary ions by the solar wind, (6) counter and cross streaming of neutrals with respect to the plasma which outside of the contact surface also contains solar wind ions, and (7) magnetic fields carried by the solar wind. Progress on such models is described and results including velocity, temperature, and number density profiles for important chemical species are presented and compared with observations
Dobrovolskas, V.; Kučinskas, A.; Steffen, M.; Ludwig, H.-G.; Prakapavičius, D.; Klevas, J.; Caffau, E.; Bonifacio, P.
2013-11-01
Aims: We utilize state-of-the-art three-dimensional (3D) hydrodynamical and classical 1D stellar model atmospheres to study the influence of convection on the formation properties of various atomic and molecular spectral lines in the atmospheres of four red giant stars, located close to the base of the red giant branch, RGB (Teff ≈ 5000 K, log g = 2.5), and characterized by four different metallicities, [M/H] = 0.0, -1.0, -2.0, -3.0. Methods: The role of convection in the spectral line formation is assessed with the aid of abundance corrections, i.e., the differences in abundances predicted for a given equivalent width of a particular spectral line with the 3D and 1D model atmospheres. The 3D hydrodynamical and classical 1D model atmospheres used in this study were calculated with the CO5BOLD and 1D LHD codes, respectively. Identical atmospheric parameters, chemical composition, equation of state, and opacities were used with both codes, therefore allowing a strictly differential analysis of the line formation properties in the 3D and 1D models. Results: We find that for lines of certain neutral atoms, such as Mg i, Ti i, Fe i, and Ni i, the abundance corrections strongly depend both on the metallicity of a given model atmosphere and the line excitation potential, χ. While abundance corrections for all lines of both neutral and ionized elements tend to be small at solar metallicity (≤±0.1 dex), for lines of neutral elements with low ionization potential and low-to-intermediate χ they quickly increase with decreasing metallicity, reaching in their extremes -0.6 to -0.8 dex. In all such cases the large abundance corrections are due to horizontal temperature fluctuations in the 3D hydrodynamical models. Lines of neutral elements with higher ionization potentials (Eion ≳ 10 eV) generally behave very similarly to lines of ionized elements characterized by low ionization potentials (Eion ≲ 6 eV). In the latter case, the abundance corrections are small
The limitations of time in atmospheric transfer models
International Nuclear Information System (INIS)
Atmospheric transfer models must be specific to the modelling situation, and the timescale of the problem is important in deriving the model. In the nuclear industry, radionuclides could be released to the atmosphere over a large range of times, depending on the source. These timescales range from seconds, in the case of a puff of radionuclides accidently emitted from a reactor, to many thousands of years in the disposal of nuclear fuel waste. The half-life of the radionuclide partially determines the timescale of its importance, but practical considerations also determine the timescales that must be considered in the transfer models. Here, we give an overview of some of the processes and timescales that need to be considered in four radionuclide release scenarios: an emergency release from a reactor (minutes to hours), routine reactor release (annual average), suspension from an area contaminated previously by a reactor release or groundwater plume (years to decades) and disposal of nuclear fuel wastes (thousands of years). In all cases, atmospheric turbulence is an important driving force. However, detailed turbulence information is not helpful in the assessment of long-term releases, and simpler parameterizations must be used. For very long times, statistical and probabilistic models incorporate averaging, uncertainty and variability, and are superior to physically based models of atmospheric motions. (author)
Zhang, Wei; Hao, Jian; Liu, Rui; Zhang, Zhuo; Lei, Gesheng; Su, Changjun; Miao, Jianting; Li, Zhuyi
2011-09-23
Amyloid-beta peptide (Aβ) is believed to be central in the pathogenesis of Alzheimer's disease (AD) characterized by cognitive deficits. However, it remains uncertain which form(s) of Aβ pathology is responsible for the cognitive deficits in AD. In the present study, the cognitive deficits and the profiles of Aβ pathology were characterized in the 12-month-old APPswe/PS1dE9 double transgenic mice, and their correlations were examined. Compared with non-transgenic littermates, the middle-aged APPswe/PS1dE9 mice exhibited spatial learning and memory deficits in the water maze test and long-term contextual memory deficits in the step-down passive avoidance test. Among the middle-aged APPswe/PS1dE9 mice, hippocampal soluble Aβ1-40 and Aβ1-42 levels were highly correlated with spatial learning deficits and long-term contextual memory deficits, as well as cortical and hippocampal soluble Aβ1-40 and Aβ1-42 levels were strongly correlated with spatial memory deficits. By contrast, no significant correlations were observed between three measures of cognitive functions and amyloid plaque burden (total Aβ plaque load and fibrillar Aβ plaque load), total Aβ levels (Aβ1-40 and Aβ1-42), as well as insoluble Aβ levels (Aβ1-40 and Aβ1-42). Stepwise multiple regression analysis identified hippocampal soluble Aβ1-40 and Aβ1-42 levels as independent factors for predicting the spatial learning deficits and the long-term contextual memory deficits, as well as hippocampal and cortical soluble Aβ1-40 and Aβ1-42 levels as independent factors for predicting the spatial memory deficits in transgenic mice. These results demonstrate that cognitive deficits are highly related to the levels of soluble Aβ in middle-aged APPswe/PS1dE9 mice, in which soluble Aβ levels are only a tiny fraction of the amount of total Aβ levels. Consequently, our findings provide further evidence that soluble Aβ might primarily contribute to cognitive deficits in AD, suggesting that reducing
Directory of Open Access Journals (Sweden)
K. Grosfeld
2007-01-01
Full Text Available We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960. Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.
Directory of Open Access Journals (Sweden)
K. Grosfeld
2006-08-01
Full Text Available We investigate the spatial and temporal characteristics of multidecadal climate variability in the North Atlantic realm, using observational data, proxy data and model results. The dominant pattern of multidecadal variability of SST depicts a monopolar structure in the North Atlantic during the instrumental period with cold (warm phases during 1900–1925 and 1970–1990 (1870–1890 and 1940–1960. Two atmospheric general circulation models of different complexity forced with global SST over the last century show SLP anomaly patterns from the warm and cold phases of the North Atlantic similar to the corresponding observed patterns. The analysis of a sediment core from Cariaco Basin, a coral record from the northern Red Sea, and a long-term sea level pressure (SLP reconstruction reveals that the multidecadal mode of the atmospheric circulation characterizes climate variability also in the pre-industrial era. The analyses of SLP reconstruction and proxy data depict a persistent atmospheric mode at least over the last 300 years, where SLP shows a dipolar structure in response to monopolar North Atlantic SST, in a similar way as the models' responses do. The combined analysis of observational and proxy data with model experiments provides an understanding of multidecadal climate modes during the late Holocene. The related patterns are useful for the interpretation of proxy data in the North Atlantic realm.
Performance examination of atmospheric model at seacoast region
International Nuclear Information System (INIS)
A three-dimensional numerical atmospheric model (PHYSIC) was developed to apply it to atmospheric transport and diffusion evaluation. The main frame of PHYSIC is made up of momentum equations with the hydrostatic and Boussinesq approximation, the second-order turbulence closure model level 2.5 and other basic equations of physical process in the atmosphere. A terrain following z* coordinate system is used. The calculation results at a coastal plain were examined using meteorological data observed during atmospheric diffusion experiments at Tokai in 1983. The present model successfully predicts the temporal change of wind field within 20 h from evening to next noon and the occurrence and structure of sea breeze are simulated satisfactorily. The model performance concerning the structure of sea breeze and the distribution of eddy diffusivities is thought to be reasonable, although the direct comparison between calculation and observation is restricted to wind and temperature profiles by limited observation data. Further examination of model performance relating to above items, and over mountainous region, will be needed. (author)
Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response
Energy Technology Data Exchange (ETDEWEB)
Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-05-01
In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.
Atomistic modeling of carbon Cottrell atmospheres in bcc iron
International Nuclear Information System (INIS)
Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.
Lee, T.; Boland, D. F., Jr.
1980-01-01
This document presents the results of an extensive survey and comparative evaluation of current atmosphere and wind models for inclusion in the Langley Atmospheric Information Retrieval System (LAIRS). It includes recommended models for use in LAIRS, estimated accuracies for the recommended models, and functional specifications for the development of LAIRS.
Aeolian dunes as ground truth for atmospheric modeling on Mars
Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.
2009-01-01
Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.
Empirical corrections for atmospheric neutral density derived from thermospheric models
Forootan, Ehsan; Kusche, Jürgen; Börger, Klaus; Henze, Christina; Löcher, Anno; Eickmans, Marius; Agena, Jens
2016-04-01
Accurately predicting satellite positions is a prerequisite for various applications from space situational awareness to precise orbit determination (POD). Given the fact that atmospheric drag represents a dominant influence on the position of low-Earth orbit objects, an accurate evaluation of thermospheric mass density is of great importance to low Earth orbital prediction. Over decades, various empirical atmospheric models have been developed to support computation of density changes within the atmosphere. The quality of these models is, however, restricted mainly due to the complexity of atmospheric density changes and the limited resolution of indices used to account for atmospheric temperature and neutral density changes caused by solar and geomagnetic activity. Satellite missions, such as Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE), provide a direct measurement of non-conservative accelerations, acting on the surface of satellites. These measurements provide valuable data for improving our knowledge of thermosphere density and winds. In this paper we present two empirical frameworks to correct model-derived neutral density simulations by the along-track thermospheric density measurements of CHAMP and GRACE. First, empirical scale factors are estimated by analyzing daily CHAMP and GRACE acceleration measurements and are used to correct the density simulation of Jacchia and MSIS (Mass-Spectrometer-Incoherent-Scatter) thermospheric models. The evolution of daily scale factors is then related to solar and magnetic activity enabling their prediction in time. In the second approach, principal component analysis (PCA) is applied to extract the dominant modes of differences between CHAMP/GRACE observations and thermospheric model simulations. Afterwards an adaptive correction procedure is used to account for long-term and high-frequency differences. We conclude the study by providing recommendations on possible
Evaluation of the WIND System atmospheric models: An analytic approach
International Nuclear Information System (INIS)
An analytic approach was used in this study to test the logic, coding, and the theoretical limits of the WIND System atmospheric models for the Savannah River Plant. In this method, dose or concentration estimates predicted by the models were compared to the analytic solutions to evaluate their performance. The results from AREA EVACUATION and PLTFF/PLUME were very nearly identical to the analytic solutions they are based on and the evaluation procedure demonstrated that these models were able to reproduce the theoretical characteristics of a puff or a plume. The dose or concentration predicted by PLTFF/PLUME was always within 1% of the analytic solution. Differences between the dose predicted by 2DPUF and its analytic solution were substantially greater than those associated with PUFF/PLUME, but were usually smaller than 6%. This behavior was expected because PUFF/PLUME solves a form of the analytic solution for a single puff, and 2DPUF performs an integration over a period of time for several puffs to obtain the dose. Relatively large differences between the dose predicted by 2DPUF and its analytic solution were found to occur close to the source under stable atmospheric conditions. WIND System users should be aware of these situations in which the assumptions of the System atmospheric models may be violated so that dose predictions can be interpreted correctly. The WIND System atmospheric models are similar to many other dispersion codes used by the EPA, NRC, and DOE. If the quality of the source term and meteorological data is high, relatively accurate and timely forecasts for emergency response situations can be made by the WIND System atmospheric models
6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?
Steffen, M; Caffau, E; Bonifacio, P; Ludwig, H -G; Spite, M
2012-01-01
The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0....
An Exercise in Modelling Using the US Standard Atmosphere
LoPresto, Michael C.; Jacobs, Diane A.
2007-01-01
In this exercise the US Standard Atmosphere is used as "data" that a student is asked to model by deriving equations to reproduce it with the help of spreadsheet and graphing software. The exercise can be used as a laboratory or an independent study for a student of introductory physics to provide an introduction to scientific research methods…
Normal seasonal variations for atmospheric radon concentration: a sinusoidal model
International Nuclear Information System (INIS)
Anomalous radon readings in air have been reported before an earthquake activity. However, careful measurements of atmospheric radon concentrations during a normal period are required to identify anomalous variations in a precursor period. In this study, we obtained radon concentration data for 5 years (2003–2007) that can be considered a normal period and compared it with data from the precursory period of 2008 until March 2011, when the 2011 Tohoku-Oki Earthquake occurred. Then, we established a model for seasonal variation by fitting a sinusoidal model to the radon concentration data during the normal period, considering that the seasonal variation was affected by atmospheric turbulence. By determining the amplitude in the sinusoidal model, the normal variation of the radon concentration can be estimated. Thus, the results of this method can be applied to identify anomalous radon variations before an earthquake. - Highlights: • Normal seasonal variation of the atmospheric radon concentration was determined by accurately fitting with a sinusoidal model. • The seasonal variation in data was affected by atmospheric turbulence. • The normal radon pattern was used to extract precursory changes before earthquakes
THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS
International Nuclear Information System (INIS)
We present a three-dimensional hot Jupiter model, extending from 200 bar to 1 mbar, using the Intermediate General Circulation Model from the University of Reading. Our horizontal spectral resolution is T31 (equivalent to a grid of 48 x 96), with 33 logarithmically spaced vertical levels. A simplified (Newtonian) scheme is employed for the radiative forcing. We adopt a physical setup nearly identical to the model of HD 209458b by Cooper and Showman to facilitate a direct model inter-comparison. Our results are broadly consistent with theirs but significant differences also emerge. The atmospheric flow is characterized by a super-rotating equatorial jet, transonic wind speeds, and eastward advection of heat away from the dayside. We identify a dynamically induced temperature inversion ('stratosphere') on the planetary dayside and find that temperatures at the planetary limb differ systematically from local radiative equilibrium values, a potential source of bias for transit spectroscopic interpretations. While our model atmosphere is quasi-identical to that of Cooper and Showman and we solve the same meteorological equations, we use different algorithmic methods, spectral-implicit versus grid-explicit, which are known to yield fully consistent results in the Earth modeling context. The model discrepancies identified here indicate that one or both numerical methods do not faithfully capture all of the atmospheric dynamics at work in the hot Jupiter context. We highlight the emergence of a shock-like feature in our model, much like that reported recently by Showman et al., and suggest that improved representations of energy conservation may be needed in hot Jupiter atmospheric models, as emphasized by Goodman.
Global Deep Convection Models of Saturn's Atmospheric Features
Heimpel, Moritz; Cuff, Keith; Gastine, Thomas; Wicht, Johannes
2016-04-01
The Cassini mission, along with previous missions and ground-based observations, has revealed a rich variety of atmospheric phenomena and time variability on Saturn. Some examples of dynamical features are: zonal flows with multiple jet streams, turbulent tilted shear flows that seem to power the jets, the north polar hexagon, the south polar cyclone, large anticyclones in "storm alley", numerous convective storms (white spots) of various sizes, and the 2010/2011 great storm, which destroyed an array of vortices dubbed the "string of pearls". Here we use the anelastic dynamo code MagIC, in non-magnetic mode, to study rotating convection in a spherical shell. The thickness of the shell is set to approximate the depth of the low electrical conductivity deep atmosphere of Saturn, and the convective forcing is set to yield zonal flows of similar velocity (Rossby number) to those of Saturn. Internal heating and the outer entropy boundary conditions allow simple modelling of atmospheric layers with neutral stability or stable stratification. In these simulations we can identify several saturnian and jovian atmospheric features, with some variations. We find that large anticyclonic vortices tend to form in the first anticyclonic shear zones away from the equatorial jet. Cyclones form at the poles, and polar polygonal jet streams, comparable to Saturn's hexagon, may or may not form, depending on the model conditions. Strings of small scale vortical structures arise as convective plumes near boundaries of shear zones. They typically precede larger scale convective storms that spawn propagating shear flow disturbances and anticyclonic vortices, which tend to drift across anticyclonic shear zones, toward the equator (opposite the drift direction of Saturn's 2010/2011 storm). Our model results indicate that many identifiable dynamical atmospheric features seen on Jupiter and Saturn arise from deep convection, shaped by planetary rotation, underlying and interacting with stably
Jean-Baptiste, N.; Dorée, C.; Sau, J.; Malaterre, P. O.
2010-01-01
International audience Assimilation de données pour le recalage en temps réel d’un modèle hydrodynamique 1D, la détection d'anomalies et leur correction – Application au fleuve Rhône. La rareté de la ressource en eau et l’augmentation de la compétition pour ses usages a récemment favorisé le développement d'algorithmes de contrôle et des outils informatiques de supervision (SCADA) pour la gestion des aménagements hydrauliques à surface libre. Pour contrôler les ouvrages des canaux ou riviè...
A Coupled Ion-Neutral Photochemical Model for the Titan Atmosphere
Vuitton, Veronique; Yelle, Roger V.; Klippenstein, Stephen J.; Hörst, Sarah M.; Lavvas, Panayotis
2014-11-01
Recent observations from the Cassini-Huygens spacecraft and the Herschel space observatory drastically increased our knowledge of Titan's chemical composition. The combination of data retrieved by Cassini INMS, UVIS, and CIRS allows deriving the vertical profiles of half a dozen species from 1000 to 100 km, while the HIFI instrument on Herschel reported on the first identification of HNC. Partial data or upper limits are available for almost 20 other CHON neutral species. The INMS and CAPS instruments onboard Cassini also revealed the existence of numerous positive and negative ions in Titan's upper atmosphere. We present the results of a 1D coupled ion-neutral photochemical model intended for the interpretation of the distribution of gaseous species in the Titan atmosphere. The model extends from the surface to the exobase. The atmospheric background, boundary conditions, vertical transport and aerosol opacity are all constrained by the Cassini-Huygens observations. The chemical network includes reactions between hydrocarbons, nitrogen and oxygen bearing species (including some species containing both nitrogen and oxygen, such as NO). It takes into account neutrals and both positive and negative ions with m/z extending up to about 100 u. Ab initio Transition State Theory calculations are performed in order to evaluate the rate coefficients and products for critical reactions. The calculated vertical profiles of neutral and ion species generally agree with the existing observational data; some differences are highlighted. We discuss the chemical and physical processes responsible for the production and loss of some key species. We find that the production of neutral species in the upper atmosphere from electron-ion recombination reactions and neutral-neutral radiative association reactions is significant. In the stratosphere, the vertical profile of (cyano)polyynes is extremely sensitive to their heterogeneous loss on aerosols, a process that remains to be
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
Directory of Open Access Journals (Sweden)
A. Fassò
2013-08-01
Full Text Available The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which extent collocation uncertainty is related to environmental factors, height and distance between the trajectories. To do this we introduce a new statistical approach, based on the heteroskedastic functional regression (HFR model which extends the standard functional regression approach and allows us a natural definition of uncertainty profiles. Moreover, using this modelling approach, a five-folded uncertainty decomposition is proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty analysis of relative humidity from two stations involved in GCOS reference upper-air network (GRUAN.
1D ferrimagnetism in homometallic chains
Coronado Miralles, Eugenio; Gómez García, Carlos José; Borrás Almenar, Juan José
1990-01-01
The magnetic properties of the cobalt zigzag chain Co(bpy)(NCS)2 (bpy=2,2′‐bipyridine) are discussed on the basis of an Ising‐chain model that takes into account alternating Landé factors. It is emphasized, for the first time, that a homometallic chain containing only one type of site can give rise to a 1D ferrimagneticlike behavior. ,
Atmospheric Absorption Models for the Millimeter Wave Range
Kuhn, Thomas
2003-01-01
This thesis deals with absorption models of water vapor, oxygen and nitrogen which are part of the Atmospheric Radiative Transfer System, ARTS, which is a joint development of the Department of Radio and Space Science, Chalmers University of Technology, Göteborg and the Institute of Environmental Physics, University of Bremen. ARTS is designed to be used in remotely sensed data analysis. Since the absorption models are embedded in the broader frame of the radiative transfer equation, the main...
Modeling atmospheric effects of the September 1859 Solar Flare
Thomas, Brian; Jackman, Charles; Melott, Adrian
2006-01-01
We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.
Optimizing the calculation grid for atmospheric dispersion modelling
International Nuclear Information System (INIS)
This paper presents three approaches to find optimized grids for atmospheric dispersion measurements and calculations in emergency planning. This can be useful for deriving optimal positions for mobile monitoring stations, or help to reduce discretization errors and improve recommendations. Indeed, threshold-based recommendations or conclusions may differ strongly on the shape and size of the grid on which atmospheric dispersion measurements or calculations of pollutants are based. Therefore, relatively sparse grids that retain as much information as possible, are required. The grid optimization procedure proposed here is first demonstrated with a simple Gaussian plume model as adopted in atmospheric dispersion calculations, which provides fast calculations. The optimized grids are compared to the Noodplan grid, currently used for emergency planning in Belgium, and to the exact solution. We then demonstrate how it can be used in more realistic dispersion models. - Highlights: • Grid points for atmospheric dispersion calculations are optimized. • Using heuristics the optimization problem results into different grid shapes. • Comparison between optimized models and the Noodplan grid is performed
Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions
Energy Technology Data Exchange (ETDEWEB)
Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D
2007-12-21
This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.
Model of a stationary microwave argon discharge at atmospheric pressure
International Nuclear Information System (INIS)
The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number
Model of a stationary microwave argon discharge at atmospheric pressure
Zhelyazkov, I.; Pencheva, M.; Benova, E.
2008-03-01
The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.
A comparison of Gaussian and diffusivity models of atmospheric dispersion
International Nuclear Information System (INIS)
The Gaussian plume diffusion model of Smith and a diffusivity model by Maul are compared over the full range of atmospheric stability. The models' predictions for ground level concentration are found to agree well a) for ground level releases of materials, and b) for elevated releases of material at distances comparable to or greater than the distance of maximum ground level concentration. Surface layer, ground roughness, and dry deposition effects are examined and a simple ground deposition model used in the Gaussian plume model is found to be adequate over most of the stability range. Uncertainties due to the models themselves and the meteorological input data are estimated and the advantages and limitations of both types of model are discussed. It is concluded that the models are suitable for a variety of applications and that they are fast and inexpensive to run as computer models. (author)
Coupled atmosphere-wildland fire modeling with WRF-Fire
Mandel, Jan; Kochanski, Adam K
2011-01-01
We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the weather. The level-set method allows submesh representation of the burning region and flexible implementation of various ignition modes. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.
Physically-Derived Dynamical Cores in Atmospheric General Circulation Models
Rood, Richard B.; Lin, Shian-Kiann
1999-01-01
The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.
Charter for the ARM Atmospheric Modeling Advisory Group
Energy Technology Data Exchange (ETDEWEB)
Advisory Group, ARM Atmospheric Modeling
2016-05-01
The Atmospheric Modeling Advisory Group of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is guided by the following: 1. The group will provide feedback on the overall project plan including input on how to address priorities and trade-offs in the modeling and analysis workflow, making sure the modeling follows general best practices, and reviewing the recommendations provided to ARM for the workflow implementation. 2. The group will consist of approximately 6 members plus the PI and co-PI of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) pilot project. The ARM Technical Director, or his designee, serves as an ex-officio member. This size is chosen based on the ability to efficiently conduct teleconferences and to span the general needs for input to the LASSO pilot project.
Magic, Zazralt; Asplund, Martin
2014-01-01
We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. The adiabatic entropy value of the deep convection zone, s_bot, and the entropy jump, {\\Delta}s, determined from the 3D RHD models, are matched with the mixing length parameter, {\\alpha}_MLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derive the mass mixing length, {\\alpha}_m, and the vertical correlation length of the vertical velocity, C[v_z,v_z], directly from the 3D hydrodynamical simulations of stellar subsurface convection. The calibrated mixing length parameter for the Sun is {\\alpha}_MLT (s_bot) = 1.98. For different stellar parameters, {\\alpha}_MLT varies systematically in the range of 1.7 - 2.4. In particular, {\\alpha}_MLT decreases towards higher effective temperature, lower surface gravity and higher metallicity...
The global change research center atmospheric chemistry model
Energy Technology Data Exchange (ETDEWEB)
Moraes, F.P. Jr.
1995-01-01
This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the O{sub x}, HO{sub x}, NO{sub x}, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.
Atmospheric mercury dispersion modelling from two nearest hypothetical point sources
Directory of Open Access Journals (Sweden)
Khandakar Md Habib Al Razi, Moritomi Hiroshi, Kambara Shinji
2012-01-01
Full Text Available The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of "Substances Requiring Priority Action" published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 μg/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT that estimates the
Decadal Periodicities in a Venus Atmosphere General Circulation Model
Parish, Helen; Schubert, G.; Covey, C.; Walterscheid, R.; Grossman, A.; Lebonnois, S.
2010-10-01
We have modified a 3-dimensional Earth-based climate model, CAM (Community Atmosphere Model), to simulate the dynamics of Venus' atmosphere. We have removed Earth-related processes and introduced parameters appropriate for Venus. We use a simplified Newtonian cooling approximation for the radiation scheme, without seasonal or diurnal cycles or topography. We use a high resolution (1 degree in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. Rayleigh friction is used to represent surface drag and to prevent upper boundary wave reflection. The simulations generate superrotation at cloud heights with wind velocities comparable to those found in measurements. We find a significant decadal oscillation in the zonal winds at cloud top heights and below. A vacillation cycle is seen in the cloud top mid-latitude zonal jets which wax and wane on an approximate 10 year cycle. The decadal oscillations we find may be excited by an instability near the surface, possibly a symmetric instability. Analyses of angular momentum transport show that the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Observations suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere. Observations by Mariner 10, Pioneer Venus, and Venus Express reveal variability in cloud top wind magnitudes and in the structure of Venus' cloud level mid-latitude jets with timescales of 5 to 10 years. Oscillations in CO composition and in temperature above the cloud tops also exhibit a periodicity around 10 years and changes in the atmospheric SO2 content over 40 years show a periodicity around 20 to 25 years. Venus' atmosphere must be observed over multi-year time scales and below the clouds if we are to understand its dynamics.
Linking Hydrology and Atmospheric Sciences in Continental Water Dynamics Modeling
David, C. H.; Gochis, D. J.; Maidment, D. R.; Wilhelmi, O.
2006-12-01
Atmospheric observation and model output datasets as well as hydrologic datasets are increasingly becoming available on a continental scale. Although the availability of these datasets could allow large-scale water dynamics modeling, the different objects and semantics used in atmospheric science and hydrology set barriers to their interoperability. Recent work has demonstrated the feasibility for modeling terrestrial water dynamics for the continental United States of America. Continental water dynamics defines the interaction of the hydrosphere, the land surface and subsurface at spatial scales ranging from point to continent. The improved version of the National Hydrographic Dataset (NHDPlus, an integrated suite of geospatial datasets stored in a vector and raster GIS format) was used as hydrologic and elevation data input to the Noah community Land Surface Model, developed at NCAR. Noah was successfully run on a watershed in the Ohio River Basin with NHDPlus inputs. The use of NHDPlus as input data for Noah is a crucial improvement for community modeling efforts allowing users to by-pass much of the time consumed in Digital Elevation Model and hydrological network processing. Furthermore, the community Noah land surface model, in its hydrologically-enhanced configuration, is capable of providing flow inputs for a river dynamics model. Continued enhancement of Noah will, as a consequence, be beneficial to the atmospheric science community as well as to the hydrologic community. Ongoing research foci include using a diversity of weather drivers as an input to Noah, and investigation of how to use land surface model outputs for river forecasting, using both the ArcHydro and OpenMI frameworks.
Comparison between empirical and physically based models of atmospheric correction
Mandanici, E.; Franci, F.; Bitelli, G.; Agapiou, A.; Alexakis, D.; Hadjimitsis, D. G.
2015-06-01
A number of methods have been proposed for the atmospheric correction of the multispectral satellite images, based on either atmosphere modelling or images themselves. Full radiative transfer models require a lot of ancillary information about the atmospheric conditions at the acquisition time. Whereas, image based methods cannot account for all the involved phenomena. Therefore, the aim of this paper is the comparison of different atmospheric correction methods for multispectral satellite images. The experimentation was carried out on a study area located in the catchment area of Yialias river, 20 km South of Nicosia, the Cyprus capital. The following models were tested, both empirical and physically based: Dark object subtraction, QUAC, Empirical line, 6SV, and FLAASH. They were applied on a Landsat 8 multispectral image. The spectral signatures of ten different land cover types were measured during a field campaign in 2013 and 15 samples were collected for laboratory measurements in a second campaign in 2014. GER 1500 spectroradiometer was used; this instrument can record electromagnetic radiation from 350 up to 1050 nm, includes 512 different channels and each channel covers about 1.5 nm. The spectral signatures measured were used to simulate the reflectance values for the multispectral sensor bands by applying relative spectral response filters. These data were considered as ground truth to assess the accuracy of the different image correction models. Results do not allow to establish which method is the most accurate. The physics-based methods describe better the shape of the signatures, whereas the image-based models perform better regarding the overall albedo.
Comparative calculations and validation studies with atmospheric dispersion models
International Nuclear Information System (INIS)
This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP)
National Atmospheric Release Advisory Center (NARAC) model development and evaluation
Energy Technology Data Exchange (ETDEWEB)
Sugiyama, G. [Lawrence Livermore National Lab., Livermore, CA (United States)
2004-07-01
This paper describes model development and evaluation efforts of the National Atmospheric Release Advisory Center (NARAC) located at Lawrence Livermore National Laboratory (LLNL). NARAC is a U.S. Department of Energy (DOE) and Department of Homeland Security (DHS) operational system, which provides detailed predictions of the consequences of atmospheric releases of hazardous materials for real-time emergency response, preplanning, and post-incident assessments. Automated predictions of plume exposure limits and protective action guidelines for emergency responders and managers are available in 5-10 minutes. These can be followed immediately by increasingly refined, quality-assured analyses performed by NARAC's 24 x 7 on-duty / on-call operational staff as additional information and/or data become available. NARAC provides an all-hazards modeling system for assessments of chemical, biological, radiological/nuclear, and natural airborne hazards. The system employs a hierarchy of simulation tools, appropriate for different release types, distance and time scales, and/or response times. Source terms models are available for fires, explosions, hazardous material spills, sprayers, and momentum and buoyancy driven sources. The NARAC models are supported by extensive geographical, material, and health effects databases, as well as real-time access to worldwide meteorological observations and forecasts provided via redundant communications links to National Oceanic and Atmospheric Administration, the U.S. Navy and the U.S. Air Force. (orig.)
The improved sequential puff model for atmospheric dispersion evaluation (SPADE)
International Nuclear Information System (INIS)
The present report describes the improved version of the Sequential Puff for Atmospheric Dispersion Evaluation Model (SPADE), developed at EKEA-DISP as a component of ARIES (Atmospheric Release Impact Evaluation System). SPADE has been originally designed for real time assessment of the consequences of a nuclear release into the atmosphere, but it is also suited for sensitivity studies, investigations, or routine applications. It can estimate ground-level air concentrations, deposition and cloud γ dose rate in flat or gently rolling terrain in the vicinity of a point source. During the last years several aspects of the modelling of dispersion processes have been improved, and new modules have been implemented in SPADE. In the first part of the report, a general description of the model is given, and the assumptions and parameterizations used to simulate the main physical processes are described. The second part concerns with the structure of the computer code and of input and output files, and can be regarded as a user's guide to the model. (author)
Evaluation of atmospheric dispersion/consequence models supporting safety analysis
International Nuclear Information System (INIS)
Two DOE Working Groups have completed evaluation of accident phenomenology and consequence methodologies used to support DOE facility safety documentation. The independent evaluations each concluded that no one computer model adequately addresses all accident and atmospheric release conditions. MACCS2, MATHEW/ADPIC, TRAC RA/HA, and COSYMA are adequate for most radiological dispersion and consequence needs. ALOHA, DEGADIS, HGSYSTEM, TSCREEN, and SLAB are recommended for chemical dispersion and consequence applications. Additional work is suggested, principally in evaluation of new models, targeting certain models for continued development, training, and establishing a Web page for guidance to safety analysts
ATMOS: a model of radionuclide migration in the atmosphere
International Nuclear Information System (INIS)
For use with scenarios involving airborne contamination, an atmospheric transport model called ATMOS has been developed for the safety assessment code COSMOS-S/D. It is a one-wind Gaussian plume model, made more general using wind-rose information that calculates ground-level air concentration factors at a common receptor point for each of a number of sources. These multiply a source strength, calculated elsewhere, to obtain the actual airborne radionuclide concentrations. The model presented in this report is an improved version of the original. Accounting is now made of area of the source region, and plume depletion by both wet and dry deposition mechanisms
A Coupled Atmospheric and Wave Modeling System for Storm Simulations
DEFF Research Database (Denmark)
Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.
2015-01-01
This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... for the coastal condition. With the current model setup, using high spatial resolution gives better results for strong winds both for the open ocean and coastal sites. The signicant wave height (Hm0) is very sensitive to the model resolution and bathymetry data for the coastal zone. In addition, using...
Atmospheric turbulence parameters for modeling wind turbine dynamics
Holley, W. E.; Thresher, R. W.
1982-01-01
A model which can be used to predict the response of wind turbines to atmospheric turbulence is given. The model was developed using linearized aerodynamics for a three-bladed rotor and accounts for three turbulent velocity components as well as velocity gradients across the rotor disk. Typical response power spectral densities are shown. The system response depends critically on three wind and turbulence parameters, and models are presented to predict desired response statistics. An equation error method, which can be used to estimate the required parameters from field data, is also presented.
Detailed Atmosphere Model Fits to Disk-Dominated ULX Spectra
Hui, Y; Krolik, Julian H.
2008-01-01
We have chosen 6 Ultra-Luminous X-ray sources from the {\\it XMM-Newton} archive whose spectra have high signal-to-noise and can be fitted solely with a disk model without requiring any power-law component. To estimate systematic errors in the inferred parameters, we fit every spectrum to two different disk models, one based on local blackbody emission (KERRBB) and one based on detailed atmosphere modelling (BHSPEC). Both incorporate full general relativistic treatment of the disk surface brig...
A wavenumber-frequency spectral model for atmospheric boundary layers
International Nuclear Information System (INIS)
Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects
Directory of Open Access Journals (Sweden)
P. Martinerie
2009-01-01
Full Text Available The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl_{4} and SF_{6} are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are insignificant. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF_{6} are well constrained, whereas it is not the case for CFC-114 and CCl_{4}. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.
A Real-Time Atmospheric Dispersion Modeling System
International Nuclear Information System (INIS)
This paper describes a new 3-D multi-scale atmospheric dispersion modeling system and its on-going evaluation. This system is being developed for both real-time operational applications and detailed assessments of events involving atmospheric releases of hazardous material. It is part of a new, modernized Department of Energy (DOE) National Atmospheric Release Advisory Center (NARAC) emergency response computer system at Lawrence Livermore National Laboratory. This system contains coupled meteorological data assimilation and dispersion models, initial versions of which were described by Sugiyama and Chan (1998) and Leone et al. (1997). Section 2 describes the current versions of these models, emphasizing new features. This modeling system supports cases involving both simple and complex terrain, and multiple space and time scales from the microscale to mesoscale. Therefore, several levels of verification and evaluation are required. The meteorological data assimilation and interpolation algorithms have been previously evaluated by comparison to observational data (Sugiyama and Chan, 1998). The non-divergence adjustment algorithm was tested against potential flow solutions and wind tunnel data (Chan and Sugiyama, 1997). Initial dispersion model results for a field experiment case study were shown by Leone et al. (1997). A study in which an early, prototype version of the new modeling system was evaluated and compared to the current NARAC operational models showed that the new system provides improved results (Foster et al., 1999). In Section 3, we show example results from the current versions of the models, including verification using analytic solutions to the advection-diffusion equation as well as on-going evaluation using microscale and mesoscale dispersion field experiments
An analytical model for soil-atmosphere feedback
Directory of Open Access Journals (Sweden)
B. Schaefli
2012-07-01
Full Text Available Soil-atmosphere feedback is a key for understanding the hydrological cycle and the direction of potential system changes. This paper presents an analytical framework to study the interplay between soil and atmospheric moisture, using as input only the boundary conditions at the upstream end of trajectory, assuming advective moisture transport with average wind speed along this trajectory and vertical moisture exchange with the soil compartment of uniform vertical properties. Precipitation, evaporation from interception and runoff are assumed to depend through simple functional relationships on the soil moisture or the atmospheric moisture. Evaporation from soil moisture (including transpiration depends on both state variables, which introduces a nonlinear relationship between the two compartments. This nonlinear relationship can explain some apparently paradoxical phenomena such as a local decrease of precipitation accompanied by a runoff increase.
The solutions of the resulting water balance equations correspond to two different spatial moisture regimes showing either an increasing or a decreasing atmospheric moisture content along a trajectory starting at the coast, depending on boundary conditions and parameters. The paper discusses how different model parameters (e.g. time scales of precipitation, evaporation or runoff influence these regimes and how they can create regime switches. Such an analysis has potential to anticipate the range of possible land use and climate changes or to interpret the results of complex land-atmosphere interaction models. Based on derived analytical expressions for the Horton index, the Budyko curve and a precipitation recycling ratio, the analytical framework opens new perspectives for the classification of hydrological systems.
An analytical model for soil-atmosphere feedback
Directory of Open Access Journals (Sweden)
B. Schaefli
2011-09-01
Full Text Available Soil-atmosphere feedback is a key for understanding the hydrological cycle and the direction of potential system changes. This paper presents an analytical framework to study the interplay between soil and atmospheric moisture, using as input only the boundary conditions at the upstream end of an atmospheric moisture stream line. The underlying Eulerian-Langrangean approach assumes advective moisture transport with average wind speed along the stream line and vertical moisture exchange with the soil compartment of uniform vertical properties. Precipitation, evaporation from interception and runoff are assumed to depend through simple functional relationships on the soil moisture or the atmospheric moisture. Evaporation from soil moisture (including transpiration depends on both state variables, which introduces a nonlinear relationship between the two compartments. This nonlinear relationship can explain some apparently paradoxical phenomena such as a local decrease of precipitation accompanied by a runoff increase.
The solutions of the resulting water balance equations correspond to two different moisture regimes along a stream line, either monotonically increasing or decreasing when traveling inland, depending on boundary conditions and parameters. The paper discusses how different model parameters (e.g. time scales of precipitation, evaporation or runoff influence these regimes and how they can create regime switches. Such an analysis has potential to anticipate the range of possible land use and climate changes or to interpret the results of complex land-atmosphere interaction models. Based on derived analytical expressions for the Horton index, the Budyko curve and a precipitation recycling ratio, the analytical framework opens new perspectives for the classification of hydrological systems.
Centrifuge modeling of soil atmosphere interaction using climatic chamber
CAICEDO, B; TRISTANCHO, J; THOREL, Luc
2010-01-01
Soil-atmospheric interaction processes such as infiltration or evaporation can have a significant effect on the behavior of geotechnical structures located near the soil surface. This paper focuses on the drying process of soils due to evaporation. The scaling laws are analyzed and the results of the application of two cycles of heating and cooling on a soil mass are presented. Based on these results, conclusions about the feasibility of reproducing evaporation on centrifuge models are recomm...
Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion
Zeytounian, Radyadour K
1991-01-01
The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.
Atmospheric dispersion modeling near a roadway under calm meteorological conditions
Fallah Shorshani, Masoud; Seigneur, Christian; POLO REHN, Lucie; CHANUT, Hervé; PELLAN, Yann; Jaffrezo, Jean-Luc; CHARRON, Aurélie; Andre, Michel
2015-01-01
Atmospheric pollutant dispersion near sources is typically simulated by Gaussian models because of their efficient compromise between reasonable accuracy and manageable com- putational time. However, the standard Gaussian dispersion formula applies downwind of a source under advective conditions with a well-defined wind direction and cannot calculate air pollutant concentrations under calm conditions with fluctuating wind direction and/or upwind of the emission source. Attempts have been made...
Revisiting the Carrington Event: Updated modeling of atmospheric effects
Thomas, Brian C.; Arkenberg, Keith R.; Snyder II, Brock R.
2011-01-01
The terrestrial effects of major solar events such as the Carrington white-light flare and subsequent geomagnetic storm of August-September 1859 are of considerable interest, especially in light of recent predictions that such extreme events will be more likely over the coming decades. Here we present results of modeling the atmospheric effects, especially production of odd nitrogen compounds and subsequent depletion of ozone, by solar protons associated with the Carrington event. This study ...
Spectral classification of stars using synthetic model atmospheres
E. Bertone; Buzzoni, A.
2001-01-01
We devised a straightforward procedure to derive the atmosphere fundamental parameters of stars across the different MK spectral types by comparing mid-resolution spectroscopic observations with theoretical grids of synthetic spectra.The results of a preliminary experiment, by matching the Gunn and Stryker and Jacoby et al. spectrophotometric atlases with the Kurucz models, are briefly discussed. For stars in the A-K spectral range, effective temperature is obtained within a 1-2% relative unc...
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
Fassò, A.; Ignaccolo, R.; Madonna, F.; Demoz, B. B.; Franco-Villoria, M.
2014-06-01
The quantification of measurement uncertainty of atmospheric parameters is a key factor in assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical contributions to the uncertainty budget is related to the collocation mismatch in space and time among observations made at different locations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or lidar. In this paper we propose a statistical modelling approach capable of explaining the relationship between collocation uncertainty and a set of environmental factors, height and distance between imperfectly collocated trajectories. The new statistical approach is based on the heteroskedastic functional regression (HFR) model which extends the standard functional regression approach and allows a natural definition of uncertainty profiles. Along this line, a five-fold decomposition of the total collocation uncertainty is proposed, giving both a profile budget and an integrated column budget. HFR is a data-driven approach valid for any atmospheric parameter, which can be assumed smooth. It is illustrated here by means of the collocation uncertainty analysis of relative humidity from two stations involved in the GCOS reference upper-air network (GRUAN). In this case, 85% of the total collocation uncertainty is ascribed to reducible environmental error, 11% to irreducible environmental error, 3.4% to adjustable bias, 0.1% to sampling error and 0.2% to measurement error.
Transmission Spectra of Three-Dimensional Hot Jupiter Model Atmospheres
Fortney, J J; Showman, A P; Lian, Y; Freedman, R S; Marley, M S; Lewis, N K
2009-01-01
We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, ...
Modeling the (upper) solar atmosphere including the magnetic field
Peter, H
2007-01-01
The atmosphere of the Sun is highly structured and dynamic in nature. From the photosphere and chromosphere into the transition region and the corona plasma-$\\beta$ changes from above to below one, i.e. while in the lower atmosphere the energy density of the plasma dominates, in the upper atmosphere the magnetic field plays the governing role -- one might speak of a ``magnetic transition''. Therefore the dynamics of the overshooting convection in the photosphere, the granulation, is shuffling the magnetic field around in the photosphere. This leads not only to a (re-)structuring of the magnetic field in the upper atmosphere, but induces also the dynamic reaction of the coronal plasma e.g. due to reconnection events. Therefore the (complex) structure and the interaction of various magnetic patches is crucial to understand the structure, dynamics and heating of coronal plasma as well as its acceleration into the solar wind. The present article will emphasize the need for three-dimensional modeling accounting fo...
Atmospheric mirage and distortion modeling for IR target injection simulations
Church, Steven R.
1996-06-01
Atmospheric effects at low elevation angles can complicate shipboard infrared search and tracking (SIRST) of distant low altitude targets, such as sea skimming cruise missiles. Here we focus upon the effects of ray refraction and atmospheric distortion. For constant-flux surface layer conditions we discuss target magnification and demagnification and atmospheric distortions. For sufficiently negative air-sea temperature differences (ASTD), the maximum intervision range (MIVR) of low altitude targets is reduced, but the target is significantly magnified compared to no-refraction predictions. Negative ASTD can give rise to an inferior mirage which we discuss with a model-data comparison. Positive ASTD extends a target MIVR, but the target image is severely demagnified, closer to the horizon, and more degraded by atmospheric turbulence. We discuss environments that are likely to violate constant-flux conditions and include an example of a superior mirage. Although horizontal inhomogeneity may well influence superior mirage formation, we show that inhomogeneity is not necessary to explain features such as numerous mirages or multiple (three) horizons.
Cerfontaine, Benjamin; Radioti, Georgia; Collin, Frédéric; Charlier, Robert
2016-01-01
This paper presents a comprehensive formulation of a finite element for the modelling of borehole heat exchangers. This work focuses on the accurate modelling of the grouting and the field of temperature near a single borehole. Therefore the grouting of the BHE is explicitly modelled. The purpose of this work is to provide tools necessary to the further modelling of thermo-mechanical couplings. The finite element discretises the classical governing equation of advection-diffusion of heat w...
Towards robust regional estimates of CO_2 sources and sinks using atmospheric transport models
Gurney, Kevin Robert; Randerson, James
2002-01-01
Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO_2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models. Here we report estimates of surface–atmosphere CO_2 fluxes from an intercomparison of atmospheric CO_2...
Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models
Randerson, JT; Gurney, KR; Law, RM; Denning, AS; Rayner, PJ; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, YH; Ciais, P.; Fan, S.; Fung, IY; Gloor, M.; Heimann, M.; Higuchi, K
2002-01-01
Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models(1-9). Here we report estimates of surface- atmosphere CO2 fluxes from an intercomparison of atmospheric ...
Batchelor, M T; Kuniba, A; Zhou, Y K
1996-01-01
We present new diagonal solutions of the reflection equation for elliptic solutions of the star-triangle relation. The models considered are related to the affine Lie algebras A_n^{(1)},B_n^{(1)}, C_n^{(1)},D_n^{(1)} and A_n^{(2)}. We recover all known diagonal solutions associated with these algebras and find how these solutions are related in the elliptic regime. Furthermore, new solutions of the reflection equation follow for the associated vertex models in the trigonometric limit.
A comparison of models fos dispersion of atmospheric contaminants
International Nuclear Information System (INIS)
In this work a stack emission in actual atmospheric conditions was modeled with AERMOD, HPDM, PCCOSYMA and HYSPLIT codes. The first two have Gaussian stationary plume models and they were developed to calculate environmental impact produced by chemical contaminants. PCCOSYMA has a Gaussian-type segmented plume model, developed for assessing radiological impact of nuclear accidents. HYSPLIT has a hybrid code that uses a Lagrangian reference system to describe the transport of a puff mass center and an Eulerian system to describe the dispersion within the puff. The emission was fixed in 0.3 g.s-1, 284 K and 0 m.s-1, that is in equilibrium with the environment, in order to compare the different codes results. Flat terrain with fixed 0.1 m surface rough was considered. Meteorological and topographic data used were obtained from runs of the prognostic code RAMS, provided by NOAA. The main contribution of this work is to provide recommendations about the validity range of each code depending on the model used. For Gaussian models the distance in which the atmospheric condition can be considered homogeneous determines the validity range. On the other hand the validity range of HYSPLIT model is determined by the availability of the meteorological data spatial extension. There was a significant difference between the dispersion parameters used by the Gaussian codes. (author)
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
International Nuclear Information System (INIS)
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
Energy Technology Data Exchange (ETDEWEB)
Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk [OCIAM, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG (United Kingdom)
2014-01-15
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune
STAMPI, Application to the Coupling of Atmosphere Model (MM5) and Land-surface Model (SOLVEG)
International Nuclear Information System (INIS)
Description of program or function: A new method to couple atmosphere and land-surface models using the message passing interface (MPI) was proposed to develop an atmosphere-land model for studies on heat, water, and material exchanges around the land surface. A non-hydrostatic atmospheric dynamic model of Pennsylvania State University and National Center for Atmospheric Research (PUS/NCAR-MM5) and a detailed land surface model (SOLVEG) including the surface-layer atmosphere, soil, and vegetation developed at Japan Atomic Energy Research Institute (JAERI) are used as the atmosphere and land-surface models, respectively. Concerning the MPI, a message passing library named STAMPI developed at JAERI that can be used between different parallel computers is used. The models are coupled by exchanging calculation results by using MPI on their independent parallel calculations. The modifications for this model coupling are easy, simply adding some modules for data exchanges to each model code without changing each model's original structure. Moreover, this coupling method is flexible and allows the use of independent time step and grid interval for each model
International Nuclear Information System (INIS)
Based on the first order small slope approximation theory (SSA-I) for oceanic surface electromagnetic scattering, this paper predicts the Doppler shifts induced by wave displacements. Theoretical results from three distinct hydrodynamic models are compared: a linear model, the nonlinear Barrick model, and the nonlinear Creamer model. Meanwhile, the predicted Doppler shifts are also compared with the results associated to the resonant Bragg waves and the so-called long waves in the framework of the two-scale model. The dependences of the predicted Doppler shifts on the incident angle, the radar frequency, and the wind speed are discussed. At large incident angles, the predicted Doppler shifts for the linear and nonlinear Barrick models are found to be insensitive to the wind speed and this phenomenon is not coincident with the experimental data. The conclusions obtained in this paper are promising for better understanding the properties of time dependent radar echoes from oceanic surfaces. (classical areas of phenomenology)
A contribution to the modelling of atmospheric corrosion of iron
International Nuclear Information System (INIS)
With the aim of predicting the long term atmospheric corrosion behaviour of iron, the characteristics of the rust layer formed during this process and the mechanisms occurring inside the rust layer during a wet-dry cycle are considered. A first step in modelling the behaviour is proposed, based on the description of the cathodic reactions associated with iron oxidation: reduction of a part of the rust layer (lepidocrocite) and reduction of dissolved oxygen on the rust layer. The modelling, by including some composition and morphological data of the rust layer as parameters, is able to account for the metal damage after one Wet-Dry cycle. (authors)
Meteorological Uncertainty of atmospheric Dispersion model results (MUD)
DEFF Research Database (Denmark)
Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik;
uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of...... meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be...
Mari, Céline; Strada, Susanna; Filippi, Jean-Baptiste; Bosseur, Frederic; Pialat, Xavier; Humberto Amorin, Jorge; Borrego, Carlos; Freitas, Saulo; Longo, Karla; Martins, Vera; Miranda, Ana Isabel; Monteiro, Alexandra; Paugam, Ronan
2013-04-01
Wildfires release significant amounts of trace gas and aerosols into the atmosphere. Firefighters are exposed to wildland fire smoke with adverse health effects. At larger scale, depending on meteorological conditions and fire characteristics, fire emissions can efficiently reduce air quality and visibility, even far away from emission sources. Uncertainties in fire emissions and fire plume dynamics are two important factors which substantially limit the capability of current models to predict smoke exposure and air quality degradation. A collaborative effort recently started in France to develop a coupled fire-atmosphere model based on the fire propagation model ForeFire, developed at the University of Corsica, and the mesoscale non-hydrostatic meteorological model Meso-NH, developed by the University of Toulouse and Meteo-France. ForeFire is a semi-physical model based on an analytical estimation of the rate of spread and an integration with a front tracking method. The fire model is used to provide gridded heating, water vapor and chemical fluxes at high temporal and spatial resolutions to Meso-NH. The coupled model was used in two configurations depending on the spatial resolution: with or without the feedback of the atmosphere on the fire propagation. At kilometric resolution, the model is used off-line to simulate two Mediterranean fires: an arson wildfire that burned in 2005 near Lancon-de-Provence, south-eastern France, and a well documented episode of the Lisbon 2003 fires (in collaboration with the University of Aveiro, Portugal). The question of the injection height is treated with an adaptation of the eddy-diffusivity/mass flux approach for convective boundary layer and compared to the 1D Plume Rise Model (developed at INPE) in contrasted meteorological scenarios. At higher resolution, the two-way coupled model is tested on idealized and real fire cases including ozone chemistry. Future required developments on surface emissions and combustion chemistry
Regional forecasting with global atmospheric models; Final report
Energy Technology Data Exchange (ETDEWEB)
Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)
1994-05-01
The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.
Regional forecasting with global atmospheric models; Third year report
Energy Technology Data Exchange (ETDEWEB)
Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)
1994-05-01
This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.
A tool model for predicting atmospheric kinetics with sensitivity analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.
Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region
Institute of Scientific and Technical Information of China (English)
JIA Yuanyuan; LI Zhaoliang
2008-01-01
The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.
Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication
Directory of Open Access Journals (Sweden)
H. Liang
2015-01-01
Full Text Available The existence and importance of peroxyformic acid (PFA in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(OO2 and formaldehyde or the hydroperoxyl radical (HO2 were likely to be the major source and degradation into formic acid (FA was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(OO2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(OO2 and PFA chemistry on radical cycling was dependent on the yield of HC(OO2 radical from HC(O + O2 reaction. When this yield exceeded 50%, the HC(OO2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(OO2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.
Modeling low elevation GPS signal propagation in maritime atmospheric ducts
Zhang, Jinpeng; Wu, Zhensen; Wang, Bo; Wang, Hongguang; Zhu, Qinglin
2012-05-01
Using the parabolic wave equation (PWE) method, we model low elevation GPS L1 signal propagation in maritime atmospheric ducts. To consider sea surface impedance, roughness, and the effects of earth's curvature, we propose a new initial field model for the GPS PWE split-step solution. On the basis of the comparison between the proposed model and the conventional initial field model for a smooth, perfectly conducting sea surface on a planar earth, we conclude that both the amplitude and phase of the initial field are influenced by surface impedance and roughness, and that the interference behavior between direct and reflected GPS rays is affected by earth's curvature. The performance of the proposed model is illustrated with examples of low elevation GPS L1 signal propagation in three types of ducts: an evaporation duct, a surface-based duct, and an elevated duct. The GPS PWE is numerically implemented using the split-step discrete mixed Fourier transform algorithm to enforce impedance-type boundary conditions at the rough sea surface. Because the GPS signal is right hand circularly polarized, we calculate its power strength by combining the propagation predictions of the horizontally and the vertically polarized components. The effects of the maritime atmospheric ducts on low elevation GPS signal propagation are demonstrated according to the presented examples, and the potential applications of the GPS signals affected by ducts are discussed.
A High Resolution Nonhydrostatic Tropical Atmospheric Model and Its Performance
Institute of Scientific and Technical Information of China (English)
SHEN Xueshun; Akimasa SUMI
2005-01-01
A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a 2000 km×2000 km region covering the forefront of an ISO-related westerly is selected as the model domain, in which a cloud-resolving integration with a 5-km horizontal resolution is conducted. The results indicate the importance of stratus-cumulus interactions in the organization of the cloud clusters embedded in the ISO. In addition, comparative integrations with 2-km and 5-km grid sizes are conducted, which suggest no distinctive differences between the two cases although some finer structures of convections are discernible in the 2-km case. The significance of this study resides in supplying a powerful tool for investigating tropical cloud activities without the controversy of cloud parameterizations. The parallel computing method applied in this model allows sufficient usage of computer memory, which is different from the usual method used when parallelizing regional model. Further simulation for the global tropics with a resolution around 5 km is being prepared.
Modelling the impact of aircraft emissions on atmospheric composition
Wasiuk, D. K.; Lowenberg, M. H.; Shallcross, D. E.
2012-12-01
Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global and regional effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations and present historical and spatial distribution evolution of the global and regional number of departures, fuel burn and emissions. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approximately 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model (fuel burn and emissions) including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model is applied with the CRI (Common Representative Intermediates) chemistry scheme with 220 chemical species, and 609 reactions. This allows us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases. We also investigate the impact of the Eyjafjallajökull eruption on the European air traffic and present a model response to the perturbation of NOx emissions that followed.
Characterizing uniform discharge in atmospheric helium by numerical modelling
Institute of Scientific and Technical Information of China (English)
Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo
2009-01-01
One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.
Data Assimilation and Transport Modeling in Terrestrial and Planetary Atmospheres
Houben, Howard C.; Young, Richard E. (Technical Monitor)
2002-01-01
Data assimilation is a blanket term used to describe a number of techniques for retrieving important physical parameters from observational data, subject to constraints imposed by prior knowledge (such as, in the case of meteorology, the primitive equations that govern atmospheric motion). Since these newly developed methods make efficient use of computational resources, they are of great importance in the interpretation of the voluminous datasets that are now produced by satellite missions. As proposed, these techniques have been applied to the study of the Martian and terrestrial atmospheres based on available satellite observations. In addition, a sophisticated hydrodynamic model (non-hydrostatic, and therefore applicable to the study of the interiors of the giant planets) has also been developed and successfully applied to the study of tidally induced motions in Jupiter.
Models of atmosphere-ecosystem-hydrology interactions: Approaches and testing
Schimel, David S.
1992-01-01
Interactions among the atmosphere, terrestrial ecosystems, and the hydrological cycle have been the subject of investigation for many years, although most of the research has had a regional focus. The topic is broad, including the effects of climate and hydrology on vegetation, the effects of vegetation on hydrology, the effects of the hydrological cycle on the atmosphere, and interactions of the cycles via material flux such as solutes and trace gases. The intent of this paper is to identify areas of critical uncertainty, discuss modeling approaches to resolving those problems, and then propose techniques for testing. I consider several interactions specifically to illustrate the range of problems. These areas are as follows: (1) cloud parameterizations and the land surface, (2) soil moisture, and (3) the terrestrial carbon cycle.
Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.
2016-05-01
A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.
P.R. Saxena (Pramod Ranjan); P.A.M. de Vries (Peter); W. Wang (Wei); J.P. Heiligers (Jan); A. Maassen VanDenBrink (Antoinette); W.A. Bax (Willem); F.D. Yocca (Frank)
1997-01-01
markdownabstractAbstract Several acutely acting antimigraine drugs, including ergotamine and sumatriptan, have the ability to constrict porcine arteriovenous anastomoses as well as the human isolated coronary artery. These two experimental models seem to serve as indicators, respectively, for the
Nonlinear lumped circuit modeling of an atmospheric pressure rf discharge
Lapke, M.; Ziegler, D.; Mussenbrock, T.; Gans, T.; Schulz-von der Gathen, V.
2006-10-01
The subject of our modeling approach is a specifically modified version of the atmospheric pressure plasma jet (APPJ, originally proposed by Selwyn and coworkers^1) with reduced discharge volume, the micro atmospheric pressure plasma jet (μ-APPJ). The μ-APPJ is a homogeneous nonequilibrium discharge operated with Argon or Helium as the feedstock gas and a percentage volume admixture of a molecular gas (O2, H2, N2). The efficiency of the discharge is mainly due to the dissociated and activated molecules in the effluent that can be selected depending on the application. A variety of applications in surface treatment have already been demonstrated, e.g., in semiconductor technology, restoration and bio-medicine. In this contribution we present and analyze a nonlinear lumped circuit model of the μ-APPJ. We apply a two-scale formalism. The bulk is modeled by a generalized Ohm's law, whereas the sheath is described on a considerably higher level of mathematical sophistication. The main focus lies on the spectrum of the discharge current in order to support the characterization of the discharge via model-based diagnostics, i.e., the estimation of the spatially averaged electron density from the frequency of certain self-excitated collective resonance modes. J. Park et al., Appl. Phy. Lett. 76, 288 (2000)
Petropoulos, G. P.; North, M. R.; Ireland, G.; Srivastava, P. K.; Rendall, D. V.
2015-03-01
This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3 m (Tair 1.3 m) and Air Temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m-2, 3.23, 3.77 °C respectively). A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m-2, MBE = 67.83, 58.69 W m-2 respectively) was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash-Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an educational and research
Directory of Open Access Journals (Sweden)
G. P. Petropoulos
2015-03-01
Full Text Available This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg, Net Radiation (Rnet, Latent Heat (LE, Sensible Heat (H, Air Temperature at 1.3 m (Tair 1.3 m and Air Temperature at 50 m (Tair 50 m. Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA and OzFlux (Australia monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m−2, 3.23, 3.77 °C respectively. A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m−2, MBE = 67.83, 58.69 W m−2 respectively was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash–Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an
Modeling of atmospheric and ionospheric disturbances from shallow seismic sources
Davies, John Bruce; Archambeau, Charles B.
Earthquake sources, as well as contained underground explosions and volcanic explosions, initiate atmospheric waves at the air-ground interface which propagate upward and outward. The propagating atmospheric waves produced are of two types: a high-frequency acoustic wave and a low-frequency gravity wave with horizontal wavelength much longer than its vertical wavelength. Because of the exponential decrease of atmospheric density with height, the acoustic and particularly the gravity waves can grow to significant amplitude in the upper atmosphere, where they can affect the ionosphere causing changes in the distribution of neutral and charged particles. The coherent fluctuations of electron densities and ionization layer boundaries produced by these waves can be detected by electromagnetic sounding methods and hence the occurrence and character of the disturbances can be inferred. A particular application of interest is the detection and discrimination of underground and near surface chemical explosions in a nuclear test monitoring context. Specifically, identification of the different source types is enhanced by combining seismic detection methods with detection of the ionospheric disturbances caused by explosion and earthquake sources. In this study, numerical models of non-linear gravity controlled atmospheric disturbances produced by seismic sources near the surface of the Earth are investigated in order to obtain quantitative predictions that might be used in evaluating detection methods based on gravity wave excitation. Explicit numerical integration of the non-linear finite difference equations is used to simulate the transient flows produced in a three-dimensional ARDC atmosphere. Results from the simulations agree with many results from linear theory approximations and also show non-linear characteristics similar to important gravity wave observations. Electron density changes in the ionosphere are predicted with their spatial and temporal behavior found to
International Nuclear Information System (INIS)
The expressions for super-allowed beta-decay transition rates have been derived within the context of the Coriolis coupling model. The derived expressions, valid for the beta-decay between any two mirror nuclei, have been applied to calculate super-allowed beta-decay transition rates of 21Na, 23Mg, 25Al, and 27Si. Without the use of any hindrance factor, the calculated rates agree well with the data and also with the calculations done using the shell model with configuration admixture. (author)
Chemical transport modeling of potential atmospheric CO2 sinks
International Nuclear Information System (INIS)
The potential for carbon dioxide (CO2) sequestration via engineered chemical sinks is investigated using a three dimensional chemical transport model (CTM). Meteorological and chemical constraints for flat or vertical systems that would absorb CO2 from the atmosphere, as well as an example chemical system of calcium hydroxide (Ca(OH)2) proposed by Elliott et al. [Compensation of atmospheric CO2 buildup through engineered chemical sinkage, Geophys. Res. Lett. 28 (2001) 1235] are reviewed. The CTM examines land based deposition sinks, with 4ox5o latitude/longitude resolution at various locations, and deposition velocities (v). A maximum uptake of ∼20 Gton (1015 g) C yr-1 is attainable with v>5 cm s -1 at a mid-latitude site. The atmospheric increase of CO2 (3 Gton yr-1) can be balanced by an engineered sink with an area of no more than 75,000 km2 at v of 1 cm s-1. By building the sink upwards or splitting this area into narrow elements can reduce the active area by more than an order of magnitude as discussed in Dubey at el. [31]. (author)
Modeling atmospheric deposition using a stochastic transport model
International Nuclear Information System (INIS)
An advanced stochastic transport model has been modified to include the removal mechanisms of dry and wet deposition. Time-dependent wind and turbulence fields are generated with a prognostic mesoscale numerical model and are used to advect and disperse individually released particles that are each assigned a mass. These particles are subjected to mass reduction in two ways depending on their physical location. Particles near the surface experience a decrease in mass using the concept of a dry deposition velocity, while the mass of particles located within areas of precipitation are depleted using a scavenging coefficient. Two levels of complexity are incorporated into the particle model. The simple case assumes constant values of dry deposition velocity and scavenging coefficient, while the more complex case varies the values according to meteorology, surface conditions, release material, and precipitation intensity. Instantaneous and cumulative dry and wet deposition are determined from the mass loss due to these physical mechanisms. A useful means of validating the model results is with data available from a recent accidental release of Cesium-137 from a steel-processing furnace in Algeciras, Spain in May, 1998. This paper describes the deposition modeling technique, as well as a comparison of simulated concentration and deposition with measurements taken for the Algeciras release
Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas
2016-03-01
One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.
Czech Academy of Sciences Publication Activity Database
Jechumtálová, Zuzana; Bulant, P.
Prague : Charles University, 2012, s. 17-27 R&D Projects: GA ČR GAP210/10/1728 Institutional support: RVO:67985530 Keywords : ray tracing * 3-D velocity model * earthquake mechanism * amplitude inversion Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Czech Academy of Sciences Publication Activity Database
Jechumtálová, Zuzana; Bulant, P.
Prague : Charles University, 2013, s. 253-269 R&D Projects: GA ČR GAP210/10/1728 Institutional support: RVO:67985530 Keywords : ray tracing * 3-D velocity model * earthquake mechanism * amplitude inversion Subject RIV: DC - Siesmology, Volcanology, Earth Structure
International Nuclear Information System (INIS)
The zonal model experiments with modified surface boundary conditions suggest an initial chain of feedback processes that is largest at the site of the perturbation: deforestation and/or desertification → increased surface albedo → reduced surface absorption of solar radiation → surface cooling and reduced evaporation → reduced convective activity → reduced precipitation and latent heat release → cooling of upper troposphere and increased tropospheric lapse rates → general global cooling and reduced precipitation. As indicated above, although the two experiments give similar overall global results, the location of the perturbation plays an important role in determining the response of the global circulation. These two-dimensional model results are also consistent with three-dimensional model experiments. These results have tempted us to consider the possibility that self-induced growth of the subtropical deserts could serve as a possible mechanism to cause the initial global cooling that then initiates a glacial advance thus activating the positive feedback loop involving ice-albedo feedback (also self-perpetuating). Reversal of the cycle sets in when the advancing ice cover forces the wave-cyclone tracks far enough equatorward to quench (revegetate) the subtropical deserts
Development of web-based environment for atmospheric dispersion modeling
Czech Academy of Sciences Publication Activity Database
Hofman, Radek; Pecha, Petr
La Garde Park, Illinois, USA : American Nuclear Society, 2013. ISBN 978-0-89448-702-6. [International Topical Meeting on Probabilistic Safety Assessment and Analysis . Columbia, SC (US), 22.09.2013-27.09.2013] R&D Projects: GA MV(CZ) VG20102013018 Institutional support: RVO:67985556 Keywords : distributed computing * atmoshepric dispersion * web environment Subject RIV: DL - Nuclear Waste, Radioactive Pollution ; Quality http://library.utia.cas.cz/separaty/2013/AS/hofman-development of web -based environment for atmospheric dispersion modeling.pdf
An atmospheric tritium release database for model comparisons. Revision 1
International Nuclear Information System (INIS)
A database of vegetation, soil, and air tritium concentrations at gridded coordinate locations following nine accidental atmospheric releases is described. While none of the releases caused a significant dose to the public, the data collected are valuable for comparison with the results of tritium transport models used for risk assessment. The largest, potential, individual off-site dose from any of the releases was calculated to be 1.6 mrem. The population dose from this same release was 46 person-rem which represents 0.04% of the natural background radiation dose to the population in the path of the release
Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link
Directory of Open Access Journals (Sweden)
A. Prokes
2009-04-01
Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.
An atmospheric tritium release database for model comparisons
International Nuclear Information System (INIS)
A database of vegetation, soil, and air tritium concentrations at gridded coordinate locations following nine accidental atmospheric releases is described. While none of the releases caused a significant dose to the public, the data collected is valuable for comparison with the results of tritium transport models used for risk assessment. The largest, potential, individual off-site dose from any of the releases was calculated to be 1.6 mrem. The population dose from this same release was 46 person-rem which represents 0.04% of the natural background radiation dose to the population in the path of the release
Upscalling processes in an ocean-atmosphere multiscale coupled model
Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.
2015-12-01
This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this
Dynamical modeling of long-period variable star atmospheres
International Nuclear Information System (INIS)
Using a new flexible computer program, numerical calculations were performed to investigate the dynamical structure and behavior of a spherical model atmosphere for cool pulsating Mira-like stars with masses from 0.8 to 2.0 solar masses and fundamental-mode pulsation periods from 175 to 1000 days. In particular, the response of the model to periodic driving at its inner boundary was examined for a considerable range of stellar parameters for both fundamental and overtone modes, various driving amplitudes, and various assumptions about the physical processes involved; radiation pressure on dust and time-dependent temperature relaxation were included. Stable steady state models with periodic shocks were obtained in all cases. Both shocks and dust were found to be essential for rapid mass loss. The shocks increase the density and thus greatly increase the amount of dust formed in the cool outer atmosphere. Radiation pressure accelerates the grains, which drive a slow cool wind. Calculated mass-loss rates appear to be of the right order of magnitude to agree with observations and show how mass loss can be expected to depend on the stellar parameters. 42 references
Radiation Transfer Model for Aerosol Events in the Earth Atmosphere
Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru
Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.
First Analysis Of A Coupled Mediterranean - Atmosphere Model
Somot, S.; Sevault, F.; Béranger, K.; Déqué, M.; Crépon, M.
A regional coupled ocean-atmosphere model has been developed to study the climate of the Mediterranean Region in a joint research between Météo-France-CNRM and CNRS-IPSL. This model is based on a variable resolution version of the global spectral AGCM Arpège-Climat with an horizontal grid mesh of 50 km over the mediterranean area and a limited area version of the OGCM OPA with an horizontal grid mesh of 10 km. The two models are coupled with the OASIS coupler developed by CERFACS. Outside the Mediterranean Sea, the sea surface temperature is prescribed from interannual observed data. A ten year coupled simulation has been done without relaxation nor correction. Sea- sonal averages as well as interannual variability have been compared with available observations and with uncoupled simulations.
Puff models for simulation of fugitive radioactive emissions in atmosphere
International Nuclear Information System (INIS)
A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)
Atmospheric Probe Model: Construction and Wind Tunnel Tests
Vogel, Jerald M.
1998-01-01
The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.
Gregory Forest, M.; Wang, Qi; Bechtel, Stephen E.
Slender asymptotic fiber models are derived from Doi-type 3-D equations for free surface flows of liquid-crystalline polymers. Leading order equations and self-consistent corrections are presented for a variety of physical regimes. We then explore the coupling of orientation effects to slender elongational flow behavior, with particular focus on the interplay between the Rayleigh capillary instability and both stabilizing and destabilizing orientation behavior. In the simple context of constant solutions, we identify physical regimes and precise conditions under which the Rayleigh instability may be completely arrested, as well as other regimes where orientation reduces but does not cancel capillary instability. In addition, we identify sources of additional orientation-dominated instabilities that are evident in both the uniaxial and biaxial nematic liquid crystal order parameters. These models and stability analyses lay the foundation for applications to fiber spinning processes.
3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing
Directory of Open Access Journals (Sweden)
Aasim Munir Dad
2016-02-01
Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.
Seung Oh Lee; Yongchul Shin; Kyudong Yeo; Younghun Jung; Venkatesh Merwade
2013-01-01
Collection and investigation of flood information are essential to understand the nature of floods, but this has proved difficult in data-poor environments, or in developing or under-developed countries due to economic and technological limitations. The development of remote sensing data, GIS, and modeling techniques have, therefore, proved to be useful tools in the analysis of the nature of floods. Accordingly, this study attempts to estimate a flood discharge using the generalized likelihoo...
International Nuclear Information System (INIS)
Thermal energy storage technologies can facilitate the transition to an energy system based largely on renewable sources and enable efficiency gains for industrial processes in general. Due to their specific advantages, various concepts of thermo-chemical storage systems are being developed. They share characteristic features of mass and heat transport that are strongly coupled through a variety of physical and chemical phenomena. To facilitate the understanding of the coupled multi-physics processes inside such systems, a versatile conceptual model for directly permeated reactive beds was developed in part 1 of this work. It was based on thermodynamic principles and the Theory of Porous Media. The model was then implemented into OpenGeoSys, a scientific finite element simulation software. In this article, the model is specified to the well-studied calcium hydroxide reaction system to illustrate its practical applicability. Sensitivity analyses reveal the influence of particle diameter, porosity, permeability, mass flux, and reaction rate. Two distinct “reaction waves” are identified to migrate through the reactor. The power required to pump the gas stream was decomposed into parts related to the classical mechanical pressure drop and to the chemical reaction. The results can be used for the optimization of thermochemical heat storage systems. - Highlights: • Detailed investigation of coupled multiphysics in thermochemical heat storage. • Thermodynamically consistent model for thermochemical heat storage systems. • Analysis of thermal power depending on material and process parameters. • Two reaction waves are identified that traverse the reactor. • Mechanical pumping power splits into mechanically and chemically induced parts
Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2015-12-15
Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. PMID:26340582
ATTILA - Atmospheric Tracer Transport In a Langrangian Model
Energy Technology Data Exchange (ETDEWEB)
Reithmeier, C.; Sausen, R.
2000-07-01
The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an
International Nuclear Information System (INIS)
A dimensional scaling computation of the electron concentration-dependent ground-state energy for the repulsive Hubbard model is presented, a generalization of Capelle’s analysis of the 2D and 3D Hubbard Hamiltonians with half-filled bands. The computed ground-state energies are compared with the results of mean-field and density matrix functional theories and of quantum Monte Carlo calculations. The comparison indicates that dimensional scaling yields moderately accurate ground-state energies close to and at half filling over the wide range of interaction strengths in the study. By contrast, the accuracy becomes poor at low filling for strong interactions. (author)
A radiative transfer model to treat infrared molecular excitation in cometary atmospheres
Debout, V.; Bockelée-Morvan, D.; Zakharov, V.
2016-02-01
The exospheres of small Solar System bodies are now observed with high spatial resolution from space missions. Interpreting infrared spectra of cometary gases obtained with the VIRTIS experiment onboard the Rosetta cometary mission requires detailed modeling of infrared fluorescence emission in optically thick conditions. Efficient computing methods are required since numerous ro-vibrational lines excited by the Sun need to be considered. We propose a new model working in a 3-D environment to compute numerically the local incoming radiation. It uses a new algorithm using pre-defined directions of ray propagation and ray grids to reduce the CPU cost in time with respect to Monte Carlo methods and to treat correctly the sunlight direction. The model is applied to the ν3 bands of CO2 and H2O at 4.3 μ m and 2.7 μ m respectively, and to the CO ∨ (1 → 0) band at 4.7 μ m. The results are compared to the ones obtained by a 1-D algorithm which uses the Escape Probability (EP) method, and by a 3-D "Coupled Escape Probability" (CEP) model, for different levels of optical thickness. Our results suggest that the total band flux may vary strongly with azimuth for optically thick cases whereas the azimuth average total band flux computed is close to the one obtained with EP. Our model globally predicts less intensity reduction from opacity than the CEP model of Gersch and A'Hearn (Gersch, A.M., A'Hearn, M.F. [2014]. Astrophys. J. 787, 36-56). An application of the model to the observation of CO2, CO and H2O bands in 67/P atmosphere with VIRTIS is presented to predict the evolution of band optical thickness along the mission.
Tessitore, S.; Fernández-Merodo, J. A.; Herrera, G.; Tomás, R.; Ramondini, M.; Sanabria, M.; Duro, J.; Mulas, J.; Calcaterra, D.
2015-11-01
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982-1984, 1992-1995 and 2004-2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Land-Atmosphere Coupling in the Multi-Scale Modelling Framework
Kraus, P. M.; Denning, S.
2015-12-01
The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced
Artamonov, A A; Usoskin, I G
2016-01-01
A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....
Examining the exobase approximation: DSMC models of Titan's upper atmosphere
Tucker, Orenthal J.; Waalkes, William; Tenishev, Valeriy M.; Johnson, Robert E.; Bieler, Andre; Combi, Michael R.; Nagy, Andrew F.
2016-07-01
Chamberlain ([1963] Planet. Space Sci., 11, 901-960) described the use of the exobase layer to determine escape from planetary atmospheres, below which it is assumed that molecular collisions maintain thermal equilibrium and above which collisions are deemed negligible. De La Haye et al. ([2007] Icarus., 191, 236-250) used this approximation to extract the energy deposition and non-thermal escape rates for Titan's atmosphere by fitting the Cassini Ion Neutral Mass Spectrometer (INMS) density data. De La Haye et al. assumed the gas distributions were composed of an enhanced population of super-thermal molecules (E >> kT) that could be described by a kappa energy distribution function (EDF), and they fit the data using the Liouville theorem. Here we fitted the data again, but we used the conventional form of the kappa EDF. The extracted kappa EDFs were then used with the Direct Simulation Monte Carlo (DSMC) technique (Bird [1994] Molecular Gas Dynamics and the Direct Simulation of Gas Flows) to evaluate the effect of collisions on the exospheric profiles. The INMS density data can be fit reasonably well with thermal and various non-thermal EDFs. However, the extracted energy deposition and escape rates are shown to depend significantly on the assumed exobase altitude, and the usefulness of such fits without directly modeling the collisions is unclear. Our DSMC results indicate that the kappa EDFs used in the Chamberlain approximation can lead to errors in determining the atmospheric temperature profiles and escape rates. Gas kinetic simulations are needed to accurately model measured exospheric density profiles, and to determine the altitude ranges where the Liouville method might be applicable.
Harfoot, Michael B. J.; Beerling, David J.; Lomax, Barry H.; Pyle, John A.
2007-04-01
We use the Cambridge two-dimensional (2-D) chemistry-radiation transport model to investigate the implications for column O3 and near-surface ultraviolet radiation (UV), of variations in atmospheric O2 content over the Phanerozoic (last 540 Myr). Model results confirm some earlier 1-D model investigations showing that global annual mean O3 column increases monotonically with atmospheric O2. Sensitivity studies indicate that changes in temperature and N2O exert a minor influence on O3 relative to O2. We reconstructed Earth's O3 history by interpolating the modeled relationship between O3 and O2 onto two Phanerozoic O2 histories. Our results indicate that the largest variation in Phanerozoic column O3 occurred between 400 and 200 Myr ago, corresponding to a rise in atmospheric O2 to ˜1.5 times the present atmospheric level (PAL) and subsequent fall to ˜0.5 PAL. The O3 response to this O2 decline shows latitudinal differences, thinning most at high latitudes (30-40 Dobson units (1 DU = 0.001 atm cm) at 66°N) and least at low latitudes (5-10 DU at 9°N) where a "self-healing" effect is evident. This O3 depletion coincides with significant increases in the near-surface biologically active UV radiation at high latitudes, +28% as weighted by the Thimijan spectral weighting function. O3 and UV changes were exacerbated when we incorporated a direct feedback of the terrestrial biosphere on atmospheric chemistry, through enhanced N2O production as the climate switched from an icehouse to a greenhouse mode. On the basis of a summary of field and laboratory experimental evidence, we suggest that these UV radiation increases may have exerted subtle rather than catastrophic effects on ecosystem processes.
A new astrobiological model of the atmosphere of Titan
Willacy, Karen; Yung, Yuk
2016-01-01
We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model (Li et al. 2015, 2016) to cover the region below the tropopause, so the new model treats the atmosphere from Titan's surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, in particular of HNC, HC3N and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular intere...
Lacroix, G.; Nival, P.
1998-09-01
In order to estimate the effects of the meteorological variability on the gross primary production in the Ligurian Sea (NW Mediterranean Sea), a coupling between a hydrodynamic model and a biological one is realized. The one-dimensional version of the GHER hydrodynamic model includes heat and momentum exchanges at the air-sea interface. It is coupled with a simple food-web model from the LEPM. A simulation performed with real meteorological data for the year 1985 reproduces reasonably the seasonal phytoplanktonic dynamics and the distribution between diatoms and flagellates. From this simulation, an annual gross primary production integrated over 200 m of 46.4 g C m -2 year -1 is computed which is representative of an oligotrophic environment. In order to estimate the relative effect on the gross primary production of the meteorological variability on the one hand and of the initial conditions on the other hand, several runs have been performed for the year 1985 with different conditions of light, wind intensity and nitrate initial quantity. The first simulations are performed with daily and monthly mean solar radiation and wind intensity. An averaging of wind intensity yields a decrease in the gross primary production and leads to unrealistic phytoplankton dynamics. It seems then necessary to take into account the 3-hourly variability of the wind intensity in order to simulate the phytoplankton dynamics with relatively good accuracy. On the other hand, an averaging of the solar radiation leads to an increase in the gross primary production. The following simulations are performed with an increase (decrease) in the solar radiation, the wind intensity or the nitrate initial quantity which are representative of the variability observed in a 5-year set of meteorological and hydrobiological data (1984-1988). An increase in the solar radiation is found to reduce the gross primary production, while an increase in the initial nitrate quantity or the wind intensity leads
Test of existing mathematical models for atmospheric resuspension of radionuclides
International Nuclear Information System (INIS)
Atmospheric resuspension of radionuclides can be a secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. A test scenario based on measurements collected after the Chernobyl accident was used to evaluate existing mathematical models for contaminant resuspension from soil, to examine resuspension processes on both local and regional scales, and to investigate the importance of seasonal variations of these processes. Model predictions from 15 participants were compared with measured air concentrations and resuspension factors to investigate and explain the discrepancies both among model predictions and between model predictions and observations and thus to evaluate the predictive capabilities and drawbacks of commonly used generic resuspension models. The empirical models tested can give predictions within an order of magnitude of observations or better if adequately calibrated for site-specific conditions, but they do not describe the process-level events or account for spatial heterogeneity or temporal variations. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
RETADDII: modeling long-range atmospheric transport of radionuclides
International Nuclear Information System (INIS)
A versatile model is described which estimates atmospheric dispersion based on plume trajectories calculated for the mixed layer. This model allows the treatment of the dispersal from a source at an arbitrary height while taking account of plume depletion by dry and wet deposition together with the decay of material to successor species. The plume depletion, decay and growth equations are solved in an efficient manner which can accommodate up to eight pollutants (i.e. a parent and seven serial decay products). The code is particularly suitable for applications involving radioactive chain decay or for cases involving chemical species with successor decay products. Arbitrary emission rates can be specified for the members of the chain or, as is commonly the case, a sole emission rate can be specified for the first member. The code, in its current configuration, uses readily available upper-air wind data for the North American continent
Spectral classification of stars using synthetic model atmospheres
Bertone, E
2001-01-01
We devised a straightforward procedure to derive the atmosphere fundamental parameters of stars across the different MK spectral types by comparing mid-resolution spectroscopic observations with theoretical grids of synthetic spectra.The results of a preliminary experiment, by matching the Gunn and Stryker and Jacoby et al. spectrophotometric atlases with the Kurucz models, are briefly discussed. For stars in the A-K spectral range, effective temperature is obtained within a 1-2% relative uncertainty (at 2 sigma confidence level). This value raises to 4-5% for the hottest stars in the samples (O-B spectral types). A poorer fit is obtained throughout for stars cooler than 4000 K mainly due to the limiting input physics in the Kurucz models.
Data Needs for Stellar Atmosphere and Spectrum Modeling
Short, C. I.
2006-01-01
The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.
Radiative characteristics for atmospheric models from lidar sounding and AERONET
Sapunov, Maxim; Kuznetsov, Anatoly; Efremenko, Dmitry; Bochalov, Valentin; Melnikova, Irina; Samulenkov, Dimity; Vasilyev, Alexander; Poberovsky, Anatoly; Frantsuzova, Inna
2016-04-01
Optical models of atmospheric aerosols above of St. Petersburg are constraint on the base of the results of lidar sounding. The lidar system of the Resource Center "Observatory of environmental safety" of the St. Petersburg University Research Park is situated the city center, Vasilievsky Island. The measurements of the vertical profile of velocity and wind direction in the center of St. Petersburg for 2014 -2015 are fulfilled in addition. Height of laser sounding of aerosols is up to 25 km and wind up to 12 km. Observations are accomplished in the daytime and at night and mapped to vertical profiles of temperature, humidity, wind speed and pressure obtained from radiosounding in Voeikovo (St. Petersburg suburb). Results of wind observations are compared with those of upper-air measurements of meteorological service in Voeikovo. The distance between the points of observation is 25 km. Statistics of wind directions at different heights are identified. The comparison is based on the assumption of homogeneity of the wind field on such a scale. In most cases, good agreement between the observed vertical profiles of wind, obtained by both methods is appeared. However, there were several cases, when the results differ sharply or at high altitudes, or, on the contrary, in the surface layer. The analysis of the impact of wind, temperature, and humidity profiles in the atmosphere on the properties and dynamics of solid impurities is implemented. Comparison with AOT results from AERONET observations in St. Petersburg suburb Peterhof is done. It is shown that diurnal and seasonal variations of optical and morphological parameters of atmospheric aerosols in the pollution cap over the city to a large extent determined by the variability of meteorological parameters. The results of the comparison are presented and possible explanation of the differences is proposed. Optical models of the atmosphere in day and night time in different seasons are constructed from lidar and AERONET
Gridded global surface ozone metrics for atmospheric chemistry model evaluation
Directory of Open Access Journals (Sweden)
E. D. Sofen
2015-07-01
Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.
Gridded global surface ozone metrics for atmospheric chemistry model evaluation
Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.
2016-02-01
The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.
Grabowski, J.; Narkiewicz, M.; Szaniawski, R.; Resak, M.; Littke, R.
2009-04-01
Classical outcrops of the Holy Cross Mountains (HCM) in Poland are among a few areas in Central Europe exposing a complete succession of Phanerozoic strata. The long-studied Palaeozoic sections are of a key importance to understand a complex Phanerozoic development in the region bordering the East European Craton from the south-west. The Palaeozoic core of HCM consists of two tectonostratigraphic units: southern (Kielce) and northern (Łysogóry), separated by a Holy Cross Fault. Different organic maturity data (conodont CAI, vitrinite reflectance - VR, biomarkers) consistently indicate an important difference in thermal alteration pattern between the pre-Permian Palaeozoic and the Permian-Mesozoic cover in the Kielce region. In its northern part, adjoining the Holy Cross Fault, the Devonian carbonates are characterized by VR≥0.7 % and CAI 1.5-3.5, while in the south they are less altered thermally, displaying VR≤0.65 % and CAI 1.0-1.5. On the other hand, Permian-Mesozoic cover reveals a uniformly low degree of thermal alteration (VR close to 0.6 % and CAI 1). Palaeomagnetic studies and thermal modelling were performed in outcrops and borehole sections of the Middle - Upper Devonian carbonates, situated in the areas of contrasting thermal histories. Rocks with a higher degree of thermal alteration revealed presence of secondary, most-probably post-folding magnetization residing in magnetite (component A). The age of this remagnetization might be estimated as Early Permian (ca. 290 - 260 Ma). The remagnetization is absent in the less thermally altered areas, where a pre- or early synfolding magnetization was preserved (component B). As presence of the component A correlates with thermal indexes, it might be concluded that its acquisition was controlled mostly by post-orogenic uplift and cooling. Radiogenic 87Sr/86Sr isotope ratios in carbonates do not coincide with occurrence of component A which means that chemical remagnetization due to influence of deeper
Global atmospheric model for mercury including oxidation by bromine atoms
Directory of Open Access Journals (Sweden)
C. D. Holmes
2010-12-01
Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg^{0} to Hg^{II} and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg^{0} oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg^{0} oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O_{3} model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O_{3} models, we add an aqueous photochemical reduction of Hg^{II} in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O_{3} models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of Hg^{II} deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a^{−1}. Summertime events of depleted Hg^{0} at Antarctic sites due to subsidence are much better simulated by
Toward unification of the multiscale modeling of the atmosphere
Directory of Open Access Journals (Sweden)
A. Arakawa
2011-01-01
Full Text Available This paper suggests two possible routes to achieve the unification of model physics in coarse- and fine-resolution atmospheric models. As far as representation of deep moist convection is concerned, only two kinds of model physics are used at present: highly parameterized as in the conventional general circulation models (GCMs and explicitly simulated as in the cloud-resolving models (CRMs. Ideally, these two kinds of model physics should be unified so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. With such unification, the GCM can converge to a global CRM (GCRM as the grid size is refined. ROUTE I for unification continues to follow the parameterization approach, but uses a unified parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and CRMs. It is shown that a key to construct such a unified parameterization is to eliminate the assumption of small fractional area covered by convective clouds, which is commonly used in the conventional cumulus parameterizations either explicitly or implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that such an assumption can be eliminated through a relatively minor modification of the existing mass-flux based parameterizations. Partial evaluations of the unified parameterization are also presented. ROUTE II for unification follows the "multi-scale modeling framework (MMF" approach, which takes advantage of explicit representation of deep moist convection and associated cloud-scale processes by CRMs. The Quasi-3-D (Q3-D MMF is an attempt to broaden the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using a network of cloud-resolving grids with gaps. An outline of the Q3-D algorithm and highlights of preliminary results are reviewed.
Cloud condensation nuclei properties of model and atmospheric HULIS
Directory of Open Access Journals (Sweden)
E. Dinar
2006-02-01
Full Text Available Humic like substances (HULIS have been identified as a major fraction of the organic component of atmospheric aerosols. These large multifunctional compounds of both primary and secondary sources are surface active and water soluble. Hence, it is expected that they could affect activation of organic aerosols into cloud droplets. We have compared the activation of aerosols containing atmospheric HULIS extracted from fresh and slightly aged smoke particles and from daily pollution particles to activation of size fractionated fulvic acid from an aquatic source (Suwannee River fulvic acid, and correlated it to the estimated molecular weight and measured surface tension. A correlation was found between CCN-activation diameter of SRFA fractions and number average molecular weight of the fraction. The lower molecular weight fractions activated at lower critical diameters, which is explained by the greater number of solute species in the droplet with decreasing molecular weight. The three aerosol-extracted HULIS samples activated at lower diameters than any of the size-fractionated or bulk SRFA. By considering estimated number average molecular weight (M_{N}, measured surface tension (ST and activation diameters, the Köhler model was found to account for activation diameters, provided that accurate physico-chemical parameters are known.
Cloud Condensation Nuclei properties of model and atmospheric HULIS
Directory of Open Access Journals (Sweden)
E. Dinar
2006-01-01
Full Text Available Humic like substances (HULIS have been identified as a major fraction of the organic component of atmospheric aerosols. These large multifunctional compounds of both primary and secondary sources are surface active and water soluble. Hence, it is expected that they could affect activation of organic aerosols into cloud droplets. We have compared the activation of aerosols containing atmospheric HULIS extracted from fresh, aged and pollution particles to activation of size fractionated fulvic acid from an aquatic source (Suwannee River Fulvic Acid, and correlated it to the estimated molecular weight and measured surface tension. A correlation was found between CCN-activation diameter of SRFA fractions and number average molecular weight of the fraction. The lower molecular weight fractions activated at lower critical diameters, which is explained by the greater number of solute species in the droplet with decreasing molecular weight. The three aerosol-extracted HULIS samples activated at lower diameters than any of the size-fractionated or bulk SRFA. The Köhler model was found to account for activation diameters, provided that accurate physico-chemical parameters are known.
Synoptic solar radio observations as proxies for upper atmosphere modelling
de Wit, Thierry Dudok; Shibasaki, Kiyoto
2014-01-01
The specification of the upper atmosphere strongly relies on solar proxies that can properly reproduce the solar energetic input in the UV. Whilst the microwave flux at 10.7 cm (also called F10.7 index) has been routinely used as a solar proxy, we show that the radio flux at other wavelengths provides valuable complementary information that enhances their value for upper atmospheric modelling. We merged daily observations from various observatories into a single homogeneous data set of fluxes at wavelengths of 30, 15, 10.7, 8 and 3.2 cm, spanning from 1957 to today. Using blind source separation (BSS), we show that their rotational modulation contains three contributions, which can be interpreted in terms of thermal bremsstrahlung and gyro-resonance emissions. The latter account for 90% of the rotational variability in the F10.7 index. Most solar proxies, such as the MgII index, are remarkably well reconstructed by simple linear combination of radio fluxes at various wavelengths. The flux at 30 cm stands out ...
Directory of Open Access Journals (Sweden)
V. Grewe
2010-06-01
Full Text Available We present a revised tagging method, which describes the combined effect of emissions of various species from individual emission categories, e.g. the impact of both, nitrogen oxides and non-methane hydrocarbon emissions on ozone. This method is applied to two simplified chemistry schemes, which represent the main characteristics of atmospheric ozone chemistry. Analytical solutions are presented for this tagging approach. In the past, besides tagging approaches, sensitivity methods were used, which estimate the contributions from individual sources based on differences in two simulations, a base case and a simulation with a perturbation in the respective emission category. We apply both methods to our simplified chemical systems and demonstrate that potentially large errors (factor of 2 occur with the sensitivity method, which depend on the degree of linearity of the chemical system. For some chemical regimes this error can be minimised by employing only small perturbations of the respective emission, e.g. 5%. Since a complete tagging algorithm for global chemistry models is difficult to achieve, we present two error metrics, which can be applied for sensitivity methods in order to estimate the potential error of this approach for a specific application.
Song, I. S.; Jee, G.; Kim, B. M.
2015-12-01
Mesoscale gravity waves are simulated by carrying out the specified chemistry whole atmosphere community climate model (SC-WACCM) at the horizontal resolution of about 25 km to understand the origin of gravity waves in the polar mesosphere and lower thermosphere (MLT) and their propagation properties throughout the whole atmosphere. Modeled gravity waves are also compared with gravity-wave activities estimated from meteor radar observations made in Antarctica by Korea Polar Research Institute. For this comparison, SC-WACCM is initialized at a specific date and time using atmospheric state variables from the ground to the thermosphere obtained from various data sets such as operational analyses and empirical wind and temperature model results. Model initial conditions are corrected for mass and dynamical balance to reduce spurious waves due to initial shocks. At conference, preliminary results of the mesoscale SC-WACCM simulation and its comparison with observations will be presented.
NOAA/NCEP Global Forecast System (GFS) Atmospheric Model
National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...
International Nuclear Information System (INIS)
The Savannah River Technology Center (SRTC) of the Department of Energy (DOE)Savannah River Site (SRS) has been involved with predicting the transport and dispersion of hazardous atmospheric releases for many years. The SRS utilizes an automated, real-time capability for consequence assessment during emergency response to local releases. The emphasis during these situations is to provide accurate guidance as quickly as possible. Consequently, atmospheric transport and dispersion models of a simple physical nature (such as Gaussian plume models) have typically been used in an effort to provide timely responses. However, use of one or two-dimensional (steady-state) winds are inadequate in conditions of high spatial and temporal variability (such as during frontal passage). Increased computing capabilities have led to the use of more sophisticated three dimensional prognostic models that may capture some of these higher resolution phenomena. In an ideal situation, the decision-maker would want to use the best model each time an accident occurred. Unfortunately, due to the nonunique nature of solutions to the nonlinear equations governing the atmosphere, model A may perform better than models B and C in one type of weather scenario, and worse during a different situation.Therefore, it is not always possible to distinguish which model is best, especially during a forecast situation. The use of an ensemble approach of averaging results from a variety of model solutions is beneficial to the modeler in providing the DM guidance on model uncertainties. Meteorological forecasts generated by numerical models provide individual realizations of the atmosphere. The resulting wind and turbulence fields are then used to drive atmospheric dispersion (transport and diffusion) models. Although many modeling agencies utilize ensemble-modeling techniques to determine atmospheric model sensitivities of prognostic fields (i.e. wind, temperature, radiation, etc.), the European Union has
Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2
International Nuclear Information System (INIS)
A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)
One-Dimensional (1-D) Nanoscale Heterostructures
Institute of Scientific and Technical Information of China (English)
Guozhen SHEN; Di CHEN; Yoshio BANDO; Dmitri GOLBERG
2008-01-01
One-dimensional (1-D) nanostructures have been attracted much attention as a result of their exceptional properties, which are different from bulk materials. Among 1-D nanostructures, 1-D heterostructures with modulated compositions and interfaces have recently become of particular interest with respect to potential applications in nanoscale building blocks of future optoelectronic devices and systems. Many kinds of methods have been developed for the synthesis of 1-D nanoscale heterostructures. This article reviews the most recent development, with an emphasize on our own recent efforts, on 1-D nanoscale heterostructures, especially those synthesized from the vapor deposition methods, in which all the reactive precursors are mixed together in the reaction chamber. Three types of 1-D nanoscale heterostructures, defined from their morphologies characteristics, are discussed in detail, which include 1-D co-axial core-shell heterostructures, 1-D segmented heterostructures and hierarchical heterostructures. This article begins with a brief survey of various methods that have been developed for synthesizing 1-D nanoscale heterostructures and then mainly focuses on the synthesis, structures and properties of the above three types of nanoscale heterostructures. Finally, this review concludes with personal views towards the topic of 1-D nanoscale heterostructures.
Atmospheric boundary layers in storms: advanced theory and modelling applications
Directory of Open Access Journals (Sweden)
S. S. Zilitinkevich
2005-01-01
Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S
Modeling The Anthropogenic CO2 Footprint in Europe Using a High Resolution Atmospheric Model
Liu, Yu; Gruber, Nicolas; Brunner, Dominik
2015-04-01
The localized nature of most fossil fuel emission sources leaves a distinct footprint on atmospheric CO2 concentrations, yet to date, most studies have used relatively coarse atmospheric transport models to simulate this footprint, causing an excess amount of spatial smoothing. In addition, most studies have considered only monthly variations in emissions, neglecting their substantial diurnal and weekly fluctuations. With the fossil fuel emission fluxes dominating the carbon balance in Europe and many other industrialized countries, it is paramount to simulate the fossil fuel footprint in atmospheric CO2 accurately in time and space in order to discern the footprint of the terrestrial biosphere. Furthermore, a good understanding of the fossil fuel footprint also provides the opportunity to monitor and verify any change in fossil fuel emission. We use here a high resolution (7 km) atmospheric model setup for central Europe based on the operational weather forecast model COSMO and simulate the atmospheric CO2 concentrations separately for 5 fossil fuel emission sectors (i.e., power generation, heating, transport, industrial processes, and rest), and for 10 different country-based regions. The emissions were based on high-resolution emission inventory data (EDGAR(10km) and MeteoTest(500m)), to which we have added detailed time functions for each process and country. The total anthropogenic CO2 footprint compares well with observational estimates based on radiocarbon (C14) and CO for a number of sites across Europe, providing confidence in the emission inventory and atmospheric transport. Despite relatively rapid atmospheric mixing, the fossil fuel footprint shows strong annual mean structures reflecting the point-source nature of most emissions. Among all the processes, the emissions from power plants dominates the fossil fuel footprint, followed by industry, while traffic emissions are less distinct, largely owing to their spatially more distributed nature. However
Energy Technology Data Exchange (ETDEWEB)
Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)
2014-10-01
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos
International Nuclear Information System (INIS)
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos
The geometrical optics approach to atmospheric propagation models
Doss-Hammel, Stephen M.
2003-04-01
An accurate model for the propagation of infrared and optical frequencies through the atmosphere is a requirement for a number of important communications and surveillance systems. These systems operate over long nearly-horizontal paths that are close to the land or sea surface. There can be strong heat and mass flux gradients near the surface which make accurate transmission predictions difficult. The development and utility of geometrical optics, or ray-trace, methods for the EOSTAR and IRWarp models will be addressed. Both models are driven by bulk meteorological models to provide the environmental fields that can subsequently be used to define the refractivity field. The ray-trace algorithm uses the refractivity field to generate a transfer map. The transfer map provides precise information concerning the number, location, and orientation of the images of a source point. One application of this information is the geometric gain, or the refractive propagation factor, which is an output consisting of a vertical signal intensity profile at a given range. A second application is a passive ranging capability for sub-refractive conditions. The ranging calculation uses the existence of an inferior mirage image to deduce the target range and height.
Stable isotope composition of atmospheric carbon monoxide. A modelling study
International Nuclear Information System (INIS)
This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface
Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro
2016-08-01
Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus. PMID:27586770
Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets
DEFF Research Database (Denmark)
Juncher, Diana
-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure of...... properties of its host star, it is crucial that the stellar models linking the observations of a star to its properties are as precise as possible. The primary goal of this project is therefore to merge the model atmosphere code MARCS with the dust model code DRIFT, thus facilitating the computation of self...
Directory of Open Access Journals (Sweden)
H. Riede
2009-12-01
Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.
The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto
Directory of Open Access Journals (Sweden)
U. U. Turuncoglu
2013-03-01
Full Text Available We describe the development of a coupled regional atmosphere-ocean model (RegCM4-ROMS and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999–2008 (after a spin up of 4 yr and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, Caspian Sea Surface Temperature (SST, with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The sea ice extent over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced, however, a significant negative bias in sea-ice fraction exists due to the relatively poor representation of the bathymetry. ROMS also calculates the Caspian Sea Level (CSL, showing that for the present experiment excessive evaporation over the lake area leads to a drift in estimated CSL. Despite this problem, which requires further analysis due to many uncertainties in the estimation of CSL, overall the coupled RegCM4-ROMS system shows encouraging results in reproducing both the climatology of the region and the basic characteristics of the Caspian Sea.
Leavesley, G.; Hay, L.
1998-01-01
Coupled atmospheric and hydrological models provide an opportunity for the improved management of water resources in headwater basins. Issues currently limiting full implementation of coupled-model methodologies include (a) the degree of uncertainty in the accuracy of precipitation and other meteorological variables simulated by atmospheric models, and (b) the problem of discordant scales between atmospheric and bydrological models. Alternative methodologies being developed to address these issues are reviewed.
A new model for atmospheric oxygen over Phanerozoic time.
Berner, R A; Canfield, D E
1989-04-01
A mathematical model has been constructed that enables calculation of the level of atmospheric O2 over the past 570 my from rates of burial and weathering of organic carbon (C) and pyrite sulfur (S). Burial rates as a function of time are calculated from an assumed constant worldwide clastic sedimentation rate and the relative abundance, and C and S contents, of the three rock types: marine sandstones and shales, coal basin sediments, and other non-marine clastics (red beds, arkoses). By our model, values of O2 versus time, using a constant total sedimentation rate, agree with those for variable sedimentation derived from present-day rock abundances and estimates of erosional losses since deposition. This agreement is the result of our reliance on the idea that any increase in total worldwide sediment burial, with consequently faster burial of C and S and greater O2 production, must be accompanied by a corresponding increase in erosion and increased exposure of C and S on the continents to O2 consumption via weathering. It is the redistribution of sediment between the three different rock types, and not total sedimentation rate, that is important in O2 control. To add stability to the system, negative feedback against excessive O2 fluctuation was provided in the modeling by the geologically reasonable assignment of higher weathering rates to younger rocks, resulting in rapid recycling of C and S. We did not use direct O2 negative feedback on either weathering of C and S or burial of C because weathering rates are assumed to be limited by uplift and erosion, and the burial rate of C limited by the rate of sediment deposition. The latter assumption is the result of modern sediment studies which show that marine organic matter burial occurs mainly in oxygenated shallow water and is limited by the rate of supply of nutrients to the oceans by rivers. Results of the modeling indicate that atmospheric O2 probably has varied appreciably over Phanerozoic time. During the
The Limiting Effects of Dust in Brown Dwarf Model Atmospheres
Allard, F; Alexander, D R; Tamanai, A; Schweitzer, A; Allard, France; Hauschildt, Peter H.; Alexander, David R.; Tamanai, Akemi; Schweitzer, Andreas
2001-01-01
We present opacity sampling model atmospheres, synthetic spectra and colors for brown dwarfs and very low mass stars in two limiting case of dust grain formation: 1) inefficient gravitational settling i.e. the dust is distributed according to the chemical equilibrium predictions, 2) efficient gravitational settling i.e. the dust forms and depletes refractory elements from the gas, but their opacity does not affect the thermal structure. The models include the formation of over 600 gas phase species, and 1000 liquids and crystals, and the opacities of 30 different types of grains including corundum (Al$_2$O$_3$), the magnesium aluminum spinel MgAl$_2$O$_4$, iron, enstatite (MgSiO$_3$), forsterite (Mg$_2$SiO$_4$), amorphous carbon, SiC, and a number of calcium silicates. The models extend from the beginning of the grain formation regime well into the condensation regime of water ice ($\\teff= 3000 - 100$ K) and encompasses the range of $\\log g= 2.5 - 6.0$ at solar metallicity. We find that silicate dust grains c...