WorldWideScience

Sample records for 1d model atmospheres

  1. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    Science.gov (United States)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  2. Improving 1D Stellar Models with 3D Atmospheres

    CERN Document Server

    Mosumgaard, Jakob Rørsted; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2016-01-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  3. What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres

    CERN Document Server

    Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J

    2015-01-01

    We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...

  4. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan

    Science.gov (United States)

    Dobrijevic, M.; Loison, J. C.; Hickson, K. M.; Gronoff, G.

    2016-04-01

    Many models with different characteristics have been published so far to study the chemical processes at work in Titan's atmosphere. Some models focus on neutral species in the stratosphere or ionic species in the ionosphere, but few of them couple all the species throughout the whole atmosphere. Very few of these emphasize the importance of uncertainties in the chemical scheme and study their propagation in the model. We have developed a new 1D-photochemical model of Titan's atmosphere coupling neutral species with positive and negative ions from the lower atmosphere up to the ionosphere and have compared our results with observations to have a comprehensive view of the chemical processes driving the composition of the stratosphere and ionosphere of Titan. We have updated the neutral, positive ion and negative ion chemistry and have improved the description of N2 photodissociation by introducing high resolution N2 absorption cross sections. We performed for the first time an uncertainty propagation study in a fully coupled ion-neutral model. We determine how uncertainties on rate constants on both neutral and ionic reactions influence the model results and pinpoint the key reactions responsible for this behavior. We find very good agreement between our model results and observations in both the stratosphere and in the ionosphere for most neutral compounds. Our results are also in good agreement with an average INMS mass spectrum and specific flybys in the dayside suggesting that our chemical model (for both neutral and ions) provides a good approximation of Titan's atmospheric chemistry as a whole. Our uncertainty propagation study highlights the difficulty to interpret the INMS mass spectra for masses 14, 31, 41 and we identified the key reactions responsible for these ambiguities. Despite an overall improvement in the chemical model, disagreement for some specific compounds (HC3N, C2H5CN, C2H4) highlights the role that certain physical processes could play

  5. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    Science.gov (United States)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  6. Can we trust elemental abundances derived in late-type giants with the classical 1D stellar atmosphere models?

    CERN Document Server

    Kucinskas, A; Ivanauskas, A; Ludwig, H -G; Caffau, E; Blazevicius, K; Klevas, J; Prakapavicius, D

    2009-01-01

    We compare the abundances of various chemical species as derived with 3D hydrodynamical and classical 1D stellar atmosphere codes in a late-type giant characterized by T_eff=3640K, log g = 1.0, [M/H] = 0.0. For this particular set of atmospheric parameters the 3D-1D abundance differences are generally small for neutral atoms and molecules but they may reach up to 0.3-0.4 dex in case of ions. The 3D-1D differences generally become increasingly more negative at higher excitation potentials and are typically largest in the optical wavelength range. Their sign can be both positive and negative, and depends on the excitation potential and wavelength of a given spectral line. While our results obtained with this particular late-type giant model suggest that 1D stellar atmosphere models may be safe to use with neutral atoms and molecules, care should be taken if they are exploited with ions.

  7. 1-D air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003

    Directory of Open Access Journals (Sweden)

    Wei Liao

    2008-05-01

    Full Text Available A 1-D air-snowpack model of HONO has been developed and constrained by observed chemistry and meteorology data. The 1-D model includes molecular diffusion and mechanical dispersion, windpumping in snow, gas phase to quasi-liquid layer phase HONO transfer and quasi-liquid layer nitrate and interstitial air HONO photolysis. Photolysis of nitrate is important as a dominant HONO source inside the snowpack, however, the observed HONO emission from the snowpack was triggered mainly by the equilibrium between quasi liquid layer nitrite and firn air HONO deep down the snow surface (i.e. 30 cm below snow surface. The high concentration of HONO in the firn air is subsequently transported above the snowpack by diffusion and windpumping. The model uncertainties come mainly from lack of measurements and the interpretation of the QLL properties based on the bulk snow measurements. One critical factor is the ionic strength of QLL nitrite, which is estimated here by the bulk snow pH, nitrite concentration, and QLL to bulk snow volume ratio.

  8. 1-D Air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003

    Directory of Open Access Journals (Sweden)

    W. Liao

    2008-12-01

    Full Text Available A 1-D air-snowpack model of HONO has been developed and constrained by observed chemistry and meteorology data. The 1-D model includes molecular diffusion and mechanical dispersion, windpumping in snow, gas phase to quasi-liquid layer phase HONO transfer and quasi-liquid layer nitrate and interstitial air HONO photolysis. Photolysis of nitrate is important as a dominant HONO source inside the snowpack, however, the observed HONO emission from the snowpack was triggered mainly by the equilibrium between quasi liquid layer nitrite and firn air HONO deep down the snow surface (i.e. 30 cm below snow surface. The high concentration of HONO in the firn air is subsequently transported above the snowpack by diffusion and windpumping. The model uncertainties come mainly from lack of measurements and the interpretation of the QLL properties based on the bulk snow measurements. One critical factor is the ionic strength of QLL nitrite, which is estimated here by the bulk snow pH, nitrite concentration, and QLL to bulk snow volume ratio.

  9. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations

    Science.gov (United States)

    Hayek, W.; Sing, D.; Pont, F.; Asplund, M.

    2012-03-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of two well-studied transiting exoplanet systems, the late-type dwarfs HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated for a wide spectral range using 3D LTE spectrum formation and opacity sampling⋆. We test our theoretical predictions using least-squares fits of model light curves to wavelength-integrated primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 in the spectral region between 2900 Å and 5700 Å produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D limb darkening predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of stellar surface granulation where 1D models need to rely on simplified recipes. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 Å and 5700 Å, partly due to obstruction by spectral lines, and the data are not sufficient to distinguish between the light curves. We also analyze HST observations between 5350 Å and 10 500 Å for this star; the 3D model leads to a better fit compared to 1D limb darkening predictions. The significant improvement of fit quality for the HD 209458 system demonstrates the higher degree of realism of 3D hydrodynamical models and the importance of surface granulation for the formation of the atmospheric radiation field of late-type stars. This result agrees well with recent investigations of limb darkening in the solar continuum and other observational tests of the 3D models. The case of HD 189733 is no contradiction as the model light curves are less sensitive to the temperature stratification of

  10. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    CERN Document Server

    Godolt, M; Kitzmann, D; Kunze, M; Langematz, U; Patzer, A B C; Rauer, H; Stracke, B

    2016-01-01

    The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most...

  11. Near-infrared spectro-interferometry of Mira variables and comparisons to 1D dynamic model atmospheres and 3D convection simulations

    Science.gov (United States)

    Wittkowski, M.; Chiavassa, A.; Freytag, B.; Scholz, M.; Höfner, S.; Karovicova, I.; Whitelock, P. A.

    2016-03-01

    Aims: We aim at comparing spectro-interferometric observations of Mira variable asymptotic giant branch (AGB) stars with the latest 1D dynamic model atmospheres based on self-excited pulsation models (CODEX models) and with 3D dynamic model atmospheres including pulsation and convection (CO5BOLD models) to better understand the processes that extend the molecular atmosphere to radii where dust can form. Methods: We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres. Results: Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phases are mostly consistent with those of the best-fit CODEX models, except for near-maximum phases, where data are better described by near-minimum models. Rosseland angular diameters derived from the model fits are broadly consistent between those based on the 1D and the 3D models and with earlier observations. We derived fundamental parameters including absolute radii, effective temperatures, and luminosities for our sources. Conclusions: Our results provide a first observational support for theoretical results that shocks induced by convection and pulsation in the

  12. Diagnostics from a 1-D atmospheric column

    Energy Technology Data Exchange (ETDEWEB)

    Flatley, J.M.; Mace, G. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  13. Near-infrared spectro-interferometry of Mira variables and comparisons to 1D dynamic model atmospheres and 3D convection simulations

    CERN Document Server

    Wittkowski, M; Freytag, B; Scholz, M; Hoefner, S; Karovicova, I; Whitelock, P A

    2016-01-01

    We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres including convection. Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phase...

  14. YORP torques with 1D thermal model

    CERN Document Server

    Breiter, Slawomir; Czekaj, Maria

    2010-01-01

    A numerical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect for objects defined in terms of a triangular mesh is described. The algorithm requires that each surface triangle can be handled independently, which implies the use of a 1D thermal model. Insolation of each triangle is determined by an optimized ray-triangle intersection search. Surface temperature is modeled with a spectral approach; imposing a quasi-periodic solution we replace heat conduction equation by the Helmholtz equation. Nonlinear boundary conditions are handled by an iterative, FFT based solver. The results resolve the question of the YORP effect in rotation rate independence on conductivity within the nonlinear 1D thermal model regardless of the accuracy issues and homogeneity assumptions. A seasonal YORP effect in attitude is revealed for objects moving on elliptic orbits when a nonlinear thermal model is used.

  15. Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti; Guenther, Alex B.; Hardiman, Brady; Bohrer, Gil; Steiner, A. L.

    2015-11-01

    Foliar emissions of biogenic volatile organic compounds (BVOC)dimportant precursors of tropospheric ozone and secondary organic aerosolsdvary widely by vegetation type. Modeling studies to date typi-cally represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height vari-ation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homo-geneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting fo-liage (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.

  16. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    Science.gov (United States)

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  17. TAU: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

    CERN Document Server

    Hollis, M D J; Tinetti, G

    2013-01-01

    The TAU code is a 1D line-by-line radiative transfer code, which is generally applicable for modelling transmission spectra of close-in extrasolar planets. The inputs are the assumed pressure-temperature profile of the planetary atmosphere, the continuum absorption coefficients and the absorption cross-sections for the trace molecular absorbers present in the model, as well as the fundamental system parameters taken from the published literature. The program then calculates the optical path through the planetary atmosphere of the radiation from the host star, and quantifies the absorption due to the modelled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++, parallelised using OpenMP, and is available for public download and use from http://www.ucl.ac.uk/exoplanets/.

  18. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    Energy Technology Data Exchange (ETDEWEB)

    KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY N. [Los Alamos National Laboratory; BURIAN, STEVEN J. [NON LANL

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  19. Nonlocal order parameters for the 1D Hubbard model.

    Science.gov (United States)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-07

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point U(c)=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U(c). The behavior of the parity correlators is captured by an effective free spinless fermion model.

  20. Modeling atrazine transport in soil columns with HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    John Leju CELESTINO LADU

    2011-09-01

    Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.

  1. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  2. Cavitation Influence in 1D Part-load Vortex Models

    Science.gov (United States)

    Dörfler, P. K.

    2016-11-01

    Residual swirl in the draft tube of Francis turbines may cause annoying low- frequency pulsation of pressure and power output, in particular during part-load operation. A 1D analytical model for these dynamic phenomena would enable simulation by some conventional method for computing hydraulic transients. The proper structure of such a model has implications for the prediction of prototype behaviour based on laboratory tests. The source of excitation as well as the dynamic transmission behaviour of the draft tube flow may both be described either by lumped or distributed parameters. The distributed version contains more information and, due to limited possibilities of identification, some data must be estimated. The distributed cavitation compliance is an example for this dilemma. In recent publications, the customary assumption of a constant wave speed has produced dubious results. The paper presents a more realistic model for distributed compressibility. The measured influence of the Thoma number is applied with the local cavitation factor. This concept is less sensitive to modelling errors and explains both the Thoma and Froude number influence. The possible effect of the normally unknown non-condensable gas content in the vortex cavity is shortly commented. Its measurement in future tests is recommended. It is also recommended to check the available analytical vortex models for possible dispersion effects.

  3. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  4. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    Directory of Open Access Journals (Sweden)

    G. Reffray

    2014-08-01

    Full Text Available Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k + l from Blanke and Delecluse, 1993 and two equation models: Generic Lengh Scale closures from Umlauf and Burchard, 2003 are able to correctly reproduce the classical test of Kato and Phillips (1969 under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a one-year period (mid-2010 to mid-2011 at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between −2 and 2 °C during the stratified period (June to October. However the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA. This package is a good starting point for further investigation of vertical processes.

  5. 1-D Modeling of Massive Particle Injection (MPI) in Tokamaks

    Science.gov (United States)

    Wu, W.; Parks, P. B.; Izzo, V. A.

    2008-11-01

    A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.

  6. Sulfur chemistry: 1D modeling in massive dense cores

    CERN Document Server

    Wakelam, V; Herpin, F

    2011-01-01

    The main sulfur-bearing molecules OCS, H2S, SO, SO2, and CS have been observed in four high mass dense cores (W43-MM1, IRAS 18264, IRAS 05358, and IRAS 18162). Our goal is to put some constraints on the relative evolutionary stage of these sources by comparing these observations with time-dependent chemical modeling. We used the chemical model Nahoon, which computes the gas-phase chemistry and gas-grain interactions of depletion and evaporation. Mixing of the different chemical compositions shells in a 1D structure through protostellar envelope has been included since observed lines suggest nonthermal supersonic broadening. Observed radial profiles of the temperature and density are used to compute the chemistry as a function of time. With our model, we underproduce CS by several orders of magnitude compared to the other S-bearing molecules, which seems to contradict observations, although some uncertainties in the CS abundance observed at high temperature remain. The OCS/SO2, SO/SO2, and H2S/SO2 abundance ra...

  7. Modeling shear band interaction in 1D torsion

    Science.gov (United States)

    Partom, Yehuda; Hanina, Erez

    2017-01-01

    When two shear bands are being formed at close distance from each other they interact, and further development of one of them may be quenched down. As a result there should be a minimum distance between shear bands. In the literature there are at least three analytical models for this minimum distance. Predictions of these models do not generally agree with each other and with test results. Recently we developed a 1D numerical scheme to predict the formation of shear bands in a torsion test of a thin walled pipe. We validated our code by reproducing results of the pioneering experiments of Marchand and Duffy, and then used it to investigate the mechanics of shear localization and shear band formation. We describe our shear band code in a separate publication, and here we use it only as a tool to investigate the interaction between two neighboring shear bands during the process of their formation. We trigger the formation of shear bands by specifying two perturbations of the initial strength. We vary the perturbations in terms of their amplitude and/or their width. Usually, the stronger perturbation triggers a faster developing shear band, which then prevails and quenches the development of the other shear band. We change the distance between the two shear bands and find, that up to a certain distance one of the shear bands becomes fully developed, and the other stays only partially developed. Beyond this distance the two shear bands are both fully developed. Finally, we check the influence of certain material and loading parameters on the interaction between the two shear bands, and compare the results to predictions of the analytical models from the literature.

  8. 1D-Var temperature retrievals from microwave radiometer and convective scale model

    Directory of Open Access Journals (Sweden)

    Pauline Martinet

    2015-12-01

    Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.

  9. Benchmarking of a 1D Scrape-off layer code SOLF1D with SOLPS and its use in modelling long-legged divertors

    CERN Document Server

    Havlickova, E; Subba, F; Coster, D; Wischmeier, M; Fishpool, G

    2013-01-01

    A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two different collisionalities. Based on this comparison, SOLF1D is then used to model the effects of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals by stretching the divertor leg either vertically or radially.

  10. Using a 1-D model to reproduce diurnal SST signals

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob L.

    2014-01-01

    of measurement. A generally preferred approach to bridge the gap between in situ and remotely obtained measurements is through modelling of the upper ocean temperature. This ESA supported study focuses on the implementation of the 1 dimensional General Ocean Turbulence Model (GOTM), in order to resolve...... profiles, along with the selection of the coefficients for the 2-band parametrisation of light’s penetration in the water column, hold a key role in the agreement of the modelled output with observations. To improve the surface heat budget and the distribution of heat, the code was modified to include...... Institution Upper Ocean Processes Group archive. The successful implementation of the new parametrisations is verified while the model reproduces the diurnal signals seen from in situ measurements. Special focus is given to testing and validation of different set-ups using campaign data from the Atlantic...

  11. Potential and limitations of 1D modelling of urban flooding

    Science.gov (United States)

    Mark, Ole; Weesakul, Sutat; Apirumanekul, Chusit; Aroonnet, Surajate Boonya; Djordjević, Slobodan

    2004-12-01

    Urban flooding is an inevitable problem for many cities around the world. In the present paper, modelling approaches and principles for analyses of urban flooding are outlined. The paper shows how urban flooding can be simulated by one-dimensional hydrodynamic modelling incorporating the interaction between (i) the buried pipe system, (ii) the streets (with open channel flow) and (iii) the areas flooded with stagnant water. The modelling approach is generic in the sense that it handles both urban flooding with and without flood water entry into houses. In order to visualize flood extent and impact, the modelling results are presented in the form of flood inundation maps produced in GIS. In this paper, only flooding from local rainfall is considered together with the impact in terms of flood extent, flood depth and flood duration. Finally, the paper discusses the data requirement for verification of urban flood models together with an outline of a simple cost function for estimation of the cost of the flood damages.

  12. Kinetic and Stochastic Models of 1D yeast ``prions"

    Science.gov (United States)

    Kunes, Kay

    2005-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.

  13. Application of particle trajectory model in 1D planar ejection

    Institute of Scientific and Technical Information of China (English)

    刘坤; 柏劲松; 李平

    2008-01-01

    A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conducted to resolve gas field.And Lagrangian method was imposed to track each particle.The interaction between gas and particles was responded as source terms in governing equations which were induced by forces.The effects of total spraying mass,particle size and other factors on the mixture of particles and gas were investigated.The spatial distributions of particle mass and velocity at different time were presented.The result shows that the numerical results are qualitatively consistent to those of experiments.

  14. Kinetic Model for 1D aggregation of yeast ``prions''

    Science.gov (United States)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv

    2004-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  15. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain.

  16. Testing the Early Mars H2-CO2 Greenhouse Hypothesis with a 1-D Photochemical Model

    CERN Document Server

    Batalha, Natasha; Ramirez, Ramses; Kasting, James

    2015-01-01

    A recent study by Ramirez et al. (2014) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ~1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere...

  17. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    Science.gov (United States)

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  18. A 1-D radiative conductive model to study the SOIR/VEx thermal profiles

    Science.gov (United States)

    Mahieux, Arnaud; Erwin, Justin T.; Chamberlain, Sarah; Robert, Séverine; Carine Vandaele, Ann; Wilquet, Valérie; Thomas, Ian; Yelle, Roger V.; Bertaux, Jean-Loup

    2015-04-01

    SOIR is an infrared spectrometer on board Venus Express that probes the Venus terminator region since 2006. The measurements are taken on the morning and evening sides of the terminator, covering all latitudes from the North Pole to the South Pole. Its wavelength range - 2.2 to 4.3 μm - allows a detailed chemical inventory of the Venus atmosphere [1-5], such as CO2, CO, H2O, HCl, HF, SO2 and aerosols. CO2 is detected from 70 km up to 165 km, CO from 70 km to 140 km, and the minor species typically below 110 km down to 70 km. Number density profiles of these species are computed from the measured spectra. Temperature profiles are obtained while computing the spectral inversion of the CO2 spectra combined with the hydrostatic law [6]. These temperature measurements show a striking permanent temperature minimum (at 125 km) and a weaker temperature maximum (over 100-115 km). The time variability of the CO2 density profiles spans over two orders of magnitude, and a clear trend is seen with latitude. The temperature variations are also important, of the order of 35 K for a given pressure level, but the latitude variation are small. Miss-RT, a 1D radiative transfer model has been developed to reproduce the SOIR terminator profiles, derived from the Mars thermosphere code presented in [7]. This model has been expanded to better account for the CO2, CO, and O non-LTE radiative heating and cooling processes which have to be considered in the dense atmosphere of Venus. Radiative cooling by minor species detected by SOIR (e.g. HCl, SO2, and H2O) are found to be small in comparison to the 15 μm CO2 cooling. Aerosol cooling in the 60-90km altitude range may be important to the thermal balance. There is a good agreement between the 1D model temperature profile and the mean SOIR temperature profile. Further we can suggest parameters that can be adjusted to improve the agreement between the model and measurements. The remaining differences can be attributed to the atmosphere

  19. DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS

    Institute of Scientific and Technical Information of China (English)

    XU Zu-xin; YIN Hai-long

    2004-01-01

    Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.

  20. REAL-TIME FLOOD FORECASTING METHOD WITH 1-D UNSTEADY FLOW MODEL

    Institute of Scientific and Technical Information of China (English)

    MU Jin-bin; ZHANG Xiao-feng

    2007-01-01

    A real-time forecasting method coupled with the 1-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.

  1. Benchmarks and models for 1-D radiation transport in stochastic participating media

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D S

    2000-08-21

    Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.

  2. Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.

    Directory of Open Access Journals (Sweden)

    Travis S Hughes

    Full Text Available Fluorine (19F NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC to objectively determine which model (number of peaks would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/.

  3. Models of Late-Type Disk Galaxies: 1-D Versus 2-D

    CERN Document Server

    Mineikis, Tadas

    2015-01-01

    We investigate the effects of stochasticity on the observed galaxy parameters by comparing our stochastic star formation two-dimensional (2-D) galaxy evolution models with the commonly used one-dimensional (1-D) models with smooth star formation. The 2-D stochastic models predict high variability of the star formation rate and the surface photometric parameters across the galactic disks and in time.

  4. Technical Note: Sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2010-01-01

    Full Text Available Vegetation fires emit hot gases and particles which are rapidly transported upward by the positive buoyancy generated by the combustion process. In general, the final vertical height that the smoke plumes reach is controlled by the thermodynamic stability of the atmospheric environment and the surface heat flux released by the fire. However, the presence of a strong horizontal wind can enhance the lateral entrainment and induce additional drag, particularly for small fires, impacting the smoke injection height. In this paper, we revisit the parameterization of the vertical transport of hot gases and particles emitted from vegetation fires, described in Freitas et al. (2007, to include the effects of environmental wind on transport and dilution of the smoke plume at its scale. This process is quantitatively represented by introducing an additional entrainment term to account for organized inflow of a mass of cooler and drier ambient air into the plume and its drag by momentum transfer. An extended set of equations including the horizontal motion of the plume and the additional increase of the plume radius is solved to simulate the time evolution of the plume rise and the smoke injection height. One-dimensional (1-D model results are presented for two deforestation fires in the Amazon basin with sizes of 10 and 50 ha under calm and windy atmospheric environments. The results are compared to corresponding simulations generated by the complex non-hydrostatic three-dimensional (3-D Active Tracer High resolution Atmospheric Model (ATHAM. We show that the 1-D model results compare well with the full 3-D simulations. The 1-D model may thus be used in field situations where extensive computing facilities are not available, especially under conditions for which several optional cases must be studied.

  5. Modeling of Cometary Atmospheres

    Science.gov (United States)

    Gombosi, Tamas

    2004-01-01

    The NASA supported project 'Modeling of Cometary Atmospheres' has been quite successful in broadening our understanding of the cometary environment. We list peer reviewed publications and conference presentation that have been made as a result of studies performed under this project. Following the list we present details of a selection of the results.

  6. Statistics of Eigenfunctions in 1D Tight Binding Model: Distribution of Riccati Variable

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Ge

    2001-01-01

    For energy eigenfunctions in 1D tight binding model, the distribution of ratios of the nearest components (Riccati variable), denoted by f(p), gives information on their fluctuation properties. The shape of f(p) is studied numerically for three versions of the 1D tight binding model. It is shown that when perturbation is strong the shape of f(p) is usually quite close to that of the Lorentzian distribution and in the case of weak perturbation the shape of the central part of f(p) is model-dependent while the shape of tails are still close to the Lorentzian form.``

  7. Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics

    Directory of Open Access Journals (Sweden)

    A. Żak

    2016-01-01

    Full Text Available Finite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated structural responses distorting or even falsifying them completely. In this paper, certain computational aspects of structural periodicity of 1D FE discrete models are discussed by the authors. In this discussion, the authors focus their attention on an exemplary problem of 1D rod modelled according to the elementary theory.

  8. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raymond H. [Navarro Research and Engineering, Inc.; Morrison, Stan [Navarro Research and Engineering, Inc.; Morris, Sarah [Navarro Research and Engineering, Inc.; Tigar, Aaron [Navarro Research and Engineering, Inc.; Dam, William [U.S. Department of Energy, Office of Legacy Management; Dayvault, Jalena [U.S. Department of Energy, Office of Legacy Management

    2016-04-26

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  9. A 1D microphysical cloud model for Earth, and Earth-like exoplanets. Liquid water and water ice clouds in the convective troposphere

    CERN Document Server

    Zsom, A; Goldblatt, C

    2012-01-01

    One significant difference between the atmospheres of stars and exoplanets is the presence of condensed particles (clouds or hazes) in the atmosphere of the latter. The main goal of this paper is to develop a self-consistent microphysical cloud model for 1D atmospheric codes, which can reproduce some observed properties of Earth, such as the average albedo, surface temperature, and global energy budget. The cloud model is designed to be computationally efficient, simple to implement, and applicable for a wide range of atmospheric parameters for planets in the habitable zone. We use a 1D, cloud-free, radiative-convective, and photochemical equilibrium code originally developed by Kasting, Pavlov, Segura, and collaborators as basis for our cloudy atmosphere model. The cloud model is based on models used by the meteorology community for Earth's clouds. The free parameters of the model are the relative humidity and number density of condensation nuclei, and the precipitation efficiency. In a 1D model, the cloud c...

  10. Dynamics of the 1D Heisenberg model and optical absorption of spinons in cuprate antiferromagnetic chains

    NARCIS (Netherlands)

    Lorenzana, J.; Eder, R.

    1996-01-01

    Published in: Phys. Rev. B 55 (1997) 3358-3361 Citing articles (CrossRef) citations recorded in [Science Citation Index] Abstract: We use numerical and analytical results to construct a simple ansatz for the energy dynamical correlation function of the 1D antiferromagnetic Heisenberg model. This is

  11. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF THE SOLUTION TO 1-D ENERGY TRANSPORT MODEL FOR SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    黎勇; 陈丽

    2002-01-01

    In this paper, we study the asymptotic behavior of global smooth solution to the initial boundary problem for the 1-D energy transport model in semiconductor science. We prove that the smooth solution of the problem converges to a stationary solution exponentially fast as t - ∞ when the initial data is a small perturbation of the stationary solution.

  12. New Scotogenic Model of Neutrino Mass with $U(1)_D$ Gauge Interaction

    CERN Document Server

    Ma, Ernest; Radovcic, Branimir

    2013-01-01

    We propose a new realization of the one-loop radiative model of neutrino mass generated by dark matter (scotogenic), where the particles in the loop have an additional $U(1)_D$ gauge symmetry, which may be exact or broken to $Z_2$. This model is relevant to a number of astrophysical observations, including AMS-02 and the dark matter distribution in dwarf galactic halos.

  13. Implementation and validation of a 1D fluid model for collapsible channels.

    Science.gov (United States)

    Anderson, Peter; Fels, Sidney; Green, Sheldon

    2013-11-01

    A 1D fluid model is implemented for the purpose of fluid-structure interaction (FSI) simulations in complex and completely collapsible geometries, particularly targeting the case of obstructive sleep apnea (OSA). The fluid mechanics are solved separately from any solid mechanics, making possible the use of a highly complex and/or black-box solver for the solid mechanics. The fluid model is temporally discretized with a second-order scheme and spatially discretized with an asymmetrical fourth-order scheme that is robust in highly uneven geometries. A completely collapsing and reopening geometry is handled smoothly using a modified area function. The numerical implementation is tested with two driven-geometry cases: (1) an inviscid analytical solution and (2) a completely closing geometry with viscous flow. Three-dimensional fluid simulations in static geometries are performed to examine the assumptions of the 1D model, and with a well-defined pressure-recovery constant the 1D model agrees well with 3D models. The model is very fast computationally, is robust, and is recommended for OSA simulations where the bulk flow pressure is primarily of interest.

  14. Numerical Methods and Comparisons for 1D and Quasi 2D Streamer Propagation Models

    CERN Document Server

    Huang, Mengmin; Guan, Huizhe; Zeng, Rong

    2016-01-01

    In this work, we propose four different strategies to simulate the one-dimensional (1D) and quasi two-dimensional (2D) model for streamer propagation. Each strategy involves of one numerical method for solving Poisson's equation and another method for solving continuity equations in the models, and a total variation diminishing three-stage Runge-Kutta method in temporal discretization. The numerical methods for Poisson's equation include finite volume method, discontinuous Galerkin methods, mixed finite element method and least-squared finite element method. The numerical method for continuity equations is chosen from the family of discontinuous Galerkin methods. The accuracy tests and comparisons show that all of these four strategies are suitable and competitive in streamer simulations from the aspects of accuracy and efficiency. By applying any strategy in real simulations, we can study the dynamics of streamer propagations and influences due to the change of parameters in both of 1D and quasi 2D models. T...

  15. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    Science.gov (United States)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  16. A two-layer $\\alpha\\omega$ dynamo model, and its implications for 1-D dynamos

    CERN Document Server

    Roald, C B

    1999-01-01

    I will discuss an attempt at representing an interface dynamo in a simplified, essentially 1D framework. The operation of the dynamo is broken up into two 1D layers, one containing the $\\alpha$ effect and the other containing the $\\omega$ effect, and these two layers are allowed to communicate with each other by the simplest possible representation of diffusion, an analogue of Newton's law of cooling. Dynamical back-reaction of the magnetic field on them with diagrams I computed for a comparable purely 1D model. The bifurcation structure shows remarkable similarity, but a couple of subtle changes imply dramatically different physical behaviour for the model. In particular, the solar-like dynamo mode found in the 1-layer model is not stable in the 2-layer version; instead there is an (apparent) homoclinic bifurcation and a sequence of periodic, quasiperiodic, and chaotic modes. I argue that the fragility of these models makes them effectively useless as predictors or interpreters of more complex dynamos.

  17. Scotogenic $Z_2$ or $U(1)_D$ Model of Neutrino Mass with $\\Delta(27)$ Symmetry

    CERN Document Server

    Ma, Ernest

    2014-01-01

    The scotogenic model of radiative neutrino mass with $Z_2$ or $U(1)_D$ dark matter is shown to accommodate $\\Delta(27)$ symmetry naturally. The resulting neutrino mass matrix is identical to either of two forms, one proposed in 2006, the other in 2008. These two structures are studied in the context of present neutrino data, with predictions of $CP$ violation and neutrinoless double beta decay.

  18. Modelling Hydrology of a Single Bioretention System with HYDRUS-1D

    OpenAIRE

    Yingying Meng; Huixiao Wang; Jiangang Chen; Shuhan Zhang

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was ...

  19. Soil salt leaching under different irrigation regimes:HYDRUS-1D modelling and analysis

    Institute of Scientific and Technical Information of China (English)

    WenZhi ZENG; Chi XU; JingWei WU; JieSheng HUANG

    2014-01-01

    Field irrigation experiments were conducted in the Hetao Irrigation District of Inner Mongolia, China, to study the effects of irrigation regimes on salt leaching in the soil profile. The data were used to calibrate and validate the HYDRUS-1D model. The results demonstrated that the model can accurately simulate the water and salt dy-namics in the soil profile. The HYDRUS-1D model was then used to simulate 15 distinct irrigation scenarios. The results of the simulation indicated that irrigation amount did not have a significant effect on soil water storage but that increases in irrigation amount could accelerate salt leaching. However, when the irrigation amount was larger than 20 cm, the acceleration was not obvious. Compared with irrigating only once, intermittent irrigation had a better effect on increasing soil water storage and salt leaching, but excessive irrigation times and intervals did not improve salt leaching. In addition, we found that the irrigation regime of 20 cm, irrigated twice at 1-d intervals, might signifi-cantly increase salt leaching in the plough layer and decrease the risks of deep seepage and groundwater con-tamination.

  20. MAST-1D, a Model to Route Sediment and Tracers in Channel-Floodplain Complexes

    Science.gov (United States)

    Viparelli, E.; Lauer, J. W.; Belmont, P.

    2014-12-01

    Sediment exchange between the channel and floodplain can occur via meander migration, overbank deposition or erosion, and channel widening or narrowing. Depending on channel and floodplain history, floodplains can act either as sources or sinks of bed material and/or wash load. The Morphodynamics And Sediment Tracers in 1D program (MAST-1D) is a numerical model built to describe grain size specific transport of sediment and tracers and the long-term - i.e. decadal and longer - evolution of channel floodplain complexes. MAST-1D differs from other 1D numerical models because it allows for 1) uneven exchange of sediment and tracers between the river channel and the floodplain, 2) temporal changes in channel geometry, bed elevation and floodplain thickness, which result in changes in the channel hydraulic capacity, and 3) temporal changes of size distribution and tracer content in the floodplain, in the load and in the underlying substrate. Under conditions of constant base level, water and sediment supply, the main assumptions in the model result in the system evolving asymptotically toward a steady state wherein channel bed erosion is balanced by channel bed deposition. When at this condition, the amount of sediment deposited on the floodplain through point bar deposition and overbank sedimentation is balanced by the erosion of sediment from the floodplain through lateral migration. However, imbalances in floodplain storage can persist for many years even when the channel bed elevation and size distribution are near steady state. The MAST-1D program is applied to study the long term response of a sand bed river, an 80 km long reach of the Minnesota River between Mankato and Jordan, Minnesota, to changes in flow regime and the sediment load due to the development of intensive agriculture in the watershed. The simulations are performed in successive phases, the model is first set up so that under the best estimates available for pre-agriculture conditions, channel

  1. A SPLIT-CHARACTERISTIC FINITE ELEMENT MODEL FOR 1-D UNSTEADY FLOWS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi-lin; TANG Hong-wu; LIU Xiao-hua

    2007-01-01

    An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled finite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.

  2. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.

    Science.gov (United States)

    Wang, Xiaofei; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2015-01-01

    A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed.

  3. MARCS model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Plez, B [GRAAL, CNRS, UMR5024, Universite Montpellier 2, F-34095 Montpellier, Cedex 5 (France) and Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden)], E-mail: bertrand.plez@graal.univ-montp2.fr

    2008-12-15

    In this review presented at the Symposium A Stellar Journey in Uppsala, June 2008, I give an account of the historical development of the MARCS code, and its premises from the first version published in 1975 to the 2008 grid. The primary driver for the development team who constantly strive to include the best possible physical data, is the science that can be done with the models. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in spectral energy distribution (SED) and model thermal stratification is estimated for different densities of wavelength sampling. The number of points used in the MARCS 2008 grid (108 000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus adequate to compute synthetic broadband photometry, but higher resolution spectra will be computed in the near future and published as well on the MARCS site (marcs.astro.uu.se). Test model calculations with TiO line opacity accounted for in scattering show significant cooling of the upper atmospheric layers of red giants. Rough estimates of radiative and collisional time scales for electronic transitions of TiO indicate that scattering may well be the dominant mechanism in these lines. However, models constructed with this hypothesis are incompatible with optical observations of TiO (Arcturus) or IR observations of OH (Betelgeuse), although they may succeed in explaining H{sub 2}O line observations. More work is needed in that direction.

  4. Nested 1D-2D approach for urban surface flood modeling

    Science.gov (United States)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  5. 1D-3D Hybrid Modelling - From Multi-Compartment Models to Full Resolution Models in Space and Time

    Directory of Open Access Journals (Sweden)

    Stephan eGrein

    2014-07-01

    Full Text Available Investigation of cellular and network dynamics in the brain by means of modeling & simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling & simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in level of detail to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing spatial aspects of the cells. For single cell or small-world networks, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the 3D morphology of cells and organelles into 3D space and time-dependent simulations. Every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. We present a hybrid simulation approach, that makes use of reduced 1D-models using e.g. the NEURON which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed 3D-morphology of neurons and organelles. To couple 1D- & 3D-simulations, we present a geometry and membrane potential mapping framework, with which graph-based morphologies, e.g. in swc-/hoc-format, are mapped to full surface and volume representations of the neuron; membrane potential data from 1D-simulations are used as boundary conditions for full 3D simulations. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved highly detailed 3D-modeling approaches. The new framework is applied to investigate electrically active neurons and their intracellular spatio

  6. Complex-Temperature Phase Diagrams of 1D Spin Models with Next-Nearest-Neighbor Couplings

    OpenAIRE

    1997-01-01

    We study the dependence of complex-temperature phase diagrams on details of the Hamiltonian, focusing on the effect of non-nearest-neighbor spin-spin couplings. For this purpose, we consider a simple exactly solvable model, the 1D Ising model with nearest-neighbor (NN) and next-to-nearest-neighbor (NNN) couplings. We work out the exact phase diagrams for various values of $J_{nnn}/J_{nn}$ and compare these with the case of pure nearest-neighbor (NN) couplings. We also give some similar result...

  7. Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS

    Science.gov (United States)

    Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.

    2010-11-01

    The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).

  8. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    Science.gov (United States)

    Klimeck, Gerhard

    2001-03-01

    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about the publically available NEMO 1-D executables can be found at http://hpc.jpl.nasa.gov/ PEP/gekco/nemo

  9. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    Science.gov (United States)

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the

  10. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models - II. Chemical properties of the Galactic metal-poor disk and the halo

    DEFF Research Database (Denmark)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph

    2016-01-01

    We have analysed high-resolution spectra of 328 stars and derived Mg abundances using non-local thermodynamic equilibrium (NLTE) spectral line formation calculations and plane-parallel model stellar atmospheres derived from the mean stratification of 3D hydrodynamical surface convection simulations....../Fe] ratios close to solar even at [Fe/H] ~ -2. This is at variance with results of classical abundance analyses based on local thermodynamic equilibrium (LTE) and 1D model stellar atmospheres, which argue for a constant elevated [Mg/Fe] in metal-poor stars of the Galactic thick disk and halo....

  11. Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-Phonon Coupling Model

    Science.gov (United States)

    Linares, J.; Chiruta, D.; Jureschi, C. M.; Alayli, Y.; Turcu, C. O.; Dahoo, P. R.

    2016-08-01

    We used the atom-phonon coupling model to explain and illustrate the behaviour of a linear nano-chain of molecules. The analysis of the system's behaviour was performed using Free Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix method and we expose how the thermal behaviour of a 1D spin crossover system varies as a function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin state to study the effect on the system's behaviour.

  12. Results and limits in the 1-D analytical modeling for the asymmetric DG SOI MOSFET

    OpenAIRE

    O. Cobianu; M. Glesner

    2008-01-01

    This paper presents the results and the limits of 1-D analytical modeling of electrostatic potential in the low-doped p type silicon body of the asymmetric n-channel DG SOI MOSFET, where the contribution to the asymmetry comes only from p- and n-type doping of polysilicon used as the gate electrodes. Solving Poisson's equation with boundary conditions based on the continuity of normal electrical displacement at interfaces and the presence of a minimum electrostatic potential by using the...

  13. REAL-TIME FLOOD FORECASTING MODELING OF 1D UNSTEADY CHANNEL FLOW AND KALMAN FILTER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The model of 1D unsteady channel flow combined with the Kalmanfilter for real-time channel flood forecasting was attempted in this study. The suitable upstream and downstream boundary conditions were suggested. The system equation was given by the linearization of the finitedifference equations of the mass conservation and momentum equations as well as the boundary conditions. In the Kalman filter updating model, because the number of measurement variable is less then that of state-space variables, the measurement error covariance matrix could be estimated in real time through the innovation sequence, and the system error covariance matrix needs to be estimated preliminarily. A real example of flood forecasting in the Huaihe River was given to explain how the method works. The results show that the model is reasonable and effective.

  14. A 1-D modelling of streaming potential dependence on water content during drainage experiment in sand

    CERN Document Server

    Allègre, Vincent; Ackerer, Philippe; Jouniaux, Laurence; Sailhac, Pascal; 10.1111/j.1365-246X.2012.05371.x

    2012-01-01

    The understanding of electrokinetics for unsaturated conditions is crucial for numerous of geophysical data interpretation. Nevertheless, the behaviour of the streaming potential coefficient C as a function of the water saturation Sw is still discussed. We propose here to model both the Richards' equation for hydrodynamics and the Poisson's equation for electrical potential for unsaturated conditions using 1-D finite element method. The equations are first presented and the numerical scheme is then detailed for the Poisson's equation. Then, computed streaming potentials (SPs) are compared to recently published SP measurements carried out during drainage experiment in a sand column. We show that the apparent measurement of DV / DP for the dipoles can provide the SP coefficient in these conditions. Two tests have been performed using existing models for the SP coefficient and a third one using a new relation. The results show that existing models of unsaturated SP coefficients C(Sw) provide poor results in term...

  15. A 1-D evolutionary model for icy satellites, applied to Enceladus

    CERN Document Server

    Prialnik, Uri Malamud Dina

    2015-01-01

    We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution...

  16. The PHOENIX Model Atmosphere Grid for Stars

    Science.gov (United States)

    Allard, F.

    2016-12-01

    We present a new project for a 1D static though full NLTE model atmosphere grid ranging T_{eff}= 15,000 to 1500 K in 100K steps, surface gravities ranging from log g= -0.5 to 6.0 in steps of 0.25 dex, and metallicity ranging from [M/H]=-2.5 to +0.5 in steps of 0.25 dex accounting for alpha element enrichment of [α/H]= +0.0, +0.2, +0.4 and C/O enhancement.

  17. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  18. Fluid friction and wall viscosity of the 1D blood flow model

    CERN Document Server

    Wang, Xiao-Fei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2015-01-01

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity.

  19. One-electron singular spectral features of the 1D Hubbard model at finite magnetic field

    Science.gov (United States)

    Carmelo, J. M. P.; Čadež, T.

    2017-01-01

    The momentum, electronic density, spin density, and interaction dependences of the exponents that control the (k , ω)-plane singular features of the σ = ↑ , ↓ one-electron spectral functions of the 1D Hubbard model at finite magnetic field are studied. The usual half-filling concepts of one-electron lower Hubbard band and upper Hubbard band are defined in terms of the rotated electrons associated with the model Bethe-ansatz solution for all electronic density and spin density values and the whole finite repulsion range. Such rotated electrons are the link of the non-perturbative relation between the electrons and the pseudofermions. Our results further clarify the microscopic processes through which the pseudofermion dynamical theory accounts for the one-electron matrix elements between the ground state and excited energy eigenstates.

  20. Hypocenter determination using simulated annealing, updated 1D seismic velocity model and focal mechanism analysis

    Science.gov (United States)

    Akbar, Akhmad Fanani; Nugraha, Andri Dian; Sule, Rachmat; Juanda, Aditya Abdurrahman

    2013-09-01

    Hypocenter determination of micro-earthquakes of Mount "X-1" geothermal field has been conducted using simulated annealing and guided error search method using a 1D seismic velocity model. In order to speed up the hypocenter determination process a three-circle intersection method has been used to guide the simulated annealing and guided error search process. We used P and S arrival time's microseismic data. In the simulated annealing and guided error search processes, the minimum travel time from a source to a receiver has been calculated by employing ray tracing with shooting method. The resulting hypocenters from the above process occurred at depths of 3-4 km below mean sea level. These hypocenter distributions are correlated with previous study which was concluded that the most active microseismic area in which the site of many fractures and also vertical circulation place. Later on, resulting hypocenters location was used as input to determine 1-D seismic velocity using joint hypocenter determination method. The results of VELEST indicate show low Vp/Vs ratio value at depths of 3-4 km. Our interpretation is this anomaly may be related to a rock layer which is saturated by vapor (gas or steam). Another feature is high Vp/Vs ratio value at depths of 1-3 km that may related to a rock layer which is saturated by fluid or partial melting. We also analyze the focal mechanism of microseismic using ISOLA method to determine the source characteristic of this event.

  1. A world-line framework for 1D Topological Conformal sigma-models

    CERN Document Server

    Baulieu, L; Toppan, F

    2015-01-01

    We use world-line methods for pseudo-supersymmetry to construct $sl(2|1)$-invariant actions for the $(2,2,0)$ chiral and ($1,2,1)$ real supermultiplets of the twisted $D$-module representations of the $sl(2|1)$ superalgebra. The derived one-dimensional topological conformal $\\sigma$-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension $\\lambda$ of the supermultiplets defines a coupling constant, $2\\lambda+1$, the free theories being recovered at $\\lambda=-\\frac{1}{2}$. We also present, generalizing previous works, the $D$-module representations of one-dimensional superconformal algebras induced by ${\\cal N}=(p,q)$ pseudo-supersymmetry acting on $(k,n,n-k)$ supermultiplets. Besides $sl(2|1)$, we obtain the superalgebras $A(1,1)$, $D(2,1;\\alpha)$, $D(3,1)$, $D(4,1)$, $A(2,1)$ from $(p,q)= (1,1), (2,2), (3,3), (4,4), (5,1)$, at given $k,n$ and critical values ...

  2. A world-line framework for 1D topological conformal σ-models

    Science.gov (United States)

    Baulieu, L.; Holanda, N. L.; Toppan, F.

    2015-11-01

    We use world-line methods for pseudo-supersymmetry to construct sl(2|1)-invariant actions for the (2, 2, 0) chiral and (1, 2, 1) real supermultiplets of the twisted D-module representations of the sl(2|1) superalgebra. The derived one-dimensional topological conformal σ-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension λ of the supermultiplets defines a coupling constant, 2λ + 1, the free theories being recovered at λ = - /1 2 . We also present, generalizing previous works, the D-module representations of one-dimensional superconformal algebras induced by N = ( p , q ) pseudo-supersymmetry acting on (k, n, n - k) supermultiplets. Besides sl(2|1), we obtain the superalgebras A(1, 1), D(2, 1; α), D(3, 1), D(4, 1), A(2, 1) from (p, q) = (1, 1), (2, 2), (3, 3), (4, 4), (5, 1), at given k, n and critical values of λ.

  3. 1D numerical model of muddy subaqueous and subaerial debris flows

    Science.gov (United States)

    Imran, J.; Parker, G.; Locat, J.; Lee, H.

    2001-01-01

    A 1D numerical model of the downslope flow and deposition of muddy subaerial and subaqueous debris flows is presented. The model incorporates the Herschel-Bulkley and bilinear rheologies of viscoplastic fluid. The more familiar Bingham model is integrated into the Herschel-Bulkley rheological model. The conservation equations of mass and momentum of single-phase laminar debris flow are layer-integrated using the slender flow approximation. They are then expressed in a Lagrangian framework and solved numerically using an explicit finite difference scheme. Starting from a given initial shape, a debris flow is allowed to collapse and propagate over a specified topography. Comparison between the model predictions and laboratory experiments shows reasonable agreement. The model is used to study the effect of the ambient fluid density, initial shape of the failed mass, and rheological model on the simulated propagation of the front and runout characteristics of muddy debris flows. It is found that initial failure shape influence the front velocity but has little bearing on the final deposit shape. In the Bingham model, the excess of shear stress above the yield strength is proportional to the strain rate to the first power. This exponent is free to vary in the Herschel-Bulkley model. When it is set at a value lower than unity, the resulting final deposits are thicker and shorter than in the case of the Bingham rheology. The final deposit resulting from the bilinear model is longer and thinner than that from the Bingham model due to the fact that the debris flow is allowed to act as a Newtonian fluid at low shear rate in the bilinear model.

  4. Initial Stage of the Microwave Ionization Wave Within a 1D Model

    Science.gov (United States)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-05-01

    The dynamics of the microwave breakdown in a gas is simulated numerically within a simple 1D model which takes into account such processes as the impact ionization of gas molecules, the attachment of electrons to neutral molecules, and plasma diffusion. Calculations are carried out for different spatial distributions of seed electrons with account for reflection of the incident electromagnetic wave from the plasma. The results reveal considerable dependence of the ionization wave evolution on the relation between the field frequency and gas pressure, as well as on the existence of extended rarefied halo of seed electrons. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave moving towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with the formation of repetitive jumps of the ionization front.

  5. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model

    CERN Document Server

    Wang, Xiaofei; Lagrée, Pierre-Yves

    2013-01-01

    In this paper, we present four numerical schemes for a 1D viscoelastic blood flow model. In the case with a small nonlinearity (small amplitude of wave), asymptotic analysis predicts several behaviours of the wave: propagation in a uniform tube, attenuation of the amplitude due to the skin friction, diffusion due to the viscosity of the wall, and reflection and transmission at a branching point. These predictions are compared very favorably with all of the numerical solutions. The schemes are also tested in case with a larger nonlinearity. Finally, we apply all of the schemes on a relatively realistic arterial system with 55 arteries. The schemes are compared in four aspects: the spatial and temporal convergence speed, the ability to capture shock phenomena, the computation speed and the complexity of the implementation. The suitable conditions for the application of the various schemes are discussed.

  6. Kinetic study of run-away burn in ICF capsule using a quasi-1D model

    Science.gov (United States)

    Huang, Chengkun; Molvig, K.; Albright, B. J.; Dodd, E. S.; Hoffman, N. M.; Vold, E. L.; Kagan, G.

    2016-10-01

    The effect of reduced fusion reactivity resulting from the loss of fuel ions in the Gamow peak in the ignition, run-away burn and disassembly stages of an inertial confinement fusion D-T capsule is investigated with a quasi-1D hybrid model that includes kinetic ions, fluid electrons and Planckian radiation photons. The fuel ion loss through the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model developed in Molvig et al.. The tail refilling and relaxation of the fuel ion distribution are evolved with a nonlinear Fokker-Planck solver. The Krokhin & Rozanov model is used for the finite alpha range beyond the fuel region, while alpha heating to the fuel ions and the fluid electrons is modeled kinetically. For an energetic pusher (40kJ), the simulation shows that the reduced fusion reactivity can lead to substantially lower ion temperature during run-away burn, while the final yield decreases more modestly. Possible improvements to the present model, including the non-Planckian radiation emission and alpha-driven fuel disassembly, are discussed. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Work supported by the ASC TBI project at LANL.

  7. On constitutive functions for hindered settling velocity in 1-D settler models: Selection of appropriate model structure.

    Science.gov (United States)

    Torfs, Elena; Balemans, Sophie; Locatelli, Florent; Diehl, Stefan; Bürger, Raimund; Laurent, Julien; François, Pierre; Nopens, Ingmar

    2017-03-01

    Advanced 1-D models for Secondary Settling Tanks (SSTs) explicitly account for several phenomena that influence the settling process (such as hindered settling and compression settling). For each of these phenomena a valid mathematical expression needs to be selected and its parameters calibrated to obtain a model that can be used for operation and control. This is, however, a challenging task as these phenomena may occur simultaneously. Therefore, the presented work evaluates several available expressions for hindered settling based on long-term batch settling data. Specific attention is paid to the behaviour of these hindered settling functions in the compression region in order to evaluate how the modelling of sludge compression is influenced by the choice of a certain hindered settling function. The analysis shows that the exponential hindered settling forms, which are most commonly used in traditional SST models, not only account for hindered settling but partly lump other phenomena (compression) as well. This makes them unsuitable for advanced 1-D models that explicitly include each phenomenon in a modular way. A power-law function is shown to be more appropriate to describe the hindered settling velocity in advanced 1-D SST models.

  8. Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model

    Directory of Open Access Journals (Sweden)

    Davide Viganò

    2016-01-01

    Full Text Available Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model.

  9. Lagrangian Modeling of the Atmosphere

    Science.gov (United States)

    Schultz, Colin

    2013-08-01

    Like watching a balloon borne by the breeze, a Lagrangian model tracks a parcel of air as it flows through the atmosphere. Whether running forward or backward in time, Lagrangian models offer a powerful tool for tracking and understanding the fates, or origins, of atmospheric flows. In the AGU monograph Lagrangian Modeling of the Atmosphere, editors John Lin, Dominik Brunner, Christoph Gerbig, Andreas Stohl, Ashok Luhar, and Peter Webley explore the nuances of the modeling technique. In this interview Eos talks to Lin about the growing importance of Lagrangian modeling as the world settles on climate change mitigation strategies, the societal value of operational modeling, and how recent advances are making it possible to run these complex calculations at home.

  10. An Analytic Radiative-Convective Model for Planetary Atmospheres

    CERN Document Server

    Robinson, Tyler D; 10.1088/0004-637X/757/1/104

    2012-01-01

    We present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries, (2) worlds with some attenuation of sunli...

  11. A grid of 1D low-mass star formation collapse models

    CERN Document Server

    Vaytet, Neil

    2016-01-01

    The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse, as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modeling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 Msun, temperatures of 5-30 K and radii between 3000 and 30,000 AU. A spread in the thermal evolutionary tracks of the runs was found, due to differing initial conditions and optical depths. Within less than an order of magnitude, all first and second Larson cores had...

  12. CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model

    Science.gov (United States)

    Wang, Weizong; Berthelot, Antonin; Kolev, Stanimir; Tu, Xin; Bogaerts, Annemie

    2016-12-01

    CO2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO2 plasma chemistry set, including the CO2 vibrational kinetics up to the dissociation limit. The model solves a set of time-dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO2 conversion in the literature. Additionally, the dissociation of CO2 through collisions with O atoms has the largest contribution to CO2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO2 vibrational kinetics.

  13. Geophysical Plasmas and Atmospheric Modeling.

    Science.gov (United States)

    1982-01-01

    will be submitted to the Journal of the Atmospheric Sciences. 32 - .- I. LIMITATIONS ON STRATOSPHERIC DYNAMICS We have performed an investigation of...Amplitudes" which will be submitted to the Journal of the Atmospheric Sciences. 1i 33 A& J. GENERAL CIRCULATION MODEL STUDIES Comparison computer runs...In tis case, as clearly shov.i by Petvia-mensona. I ths cseas ceary sou byPetia- cavities requires a local theory going beyond the limitshvilli,’ the

  14. Open boundary conditions for the Diffuse Interface Model in 1-D

    Science.gov (United States)

    Desmarais, J. L.; Kuerten, J. G. M.

    2014-04-01

    New techniques are developed for solving multi-phase flows in unbounded domains using the Diffuse Interface Model in 1-D. They extend two open boundary conditions originally designed for the Navier-Stokes equations. The non-dimensional formulation of the DIM generalizes the approach to any fluid. The equations support a steady state whose analytical approximation close to the critical point depends only on temperature. This feature enables the use of detectors at the boundaries switching between conventional boundary conditions in bulk phases and a multi-phase strategy in interfacial regions. Moreover, the latter takes advantage of the steady state approximation to minimize the interface-boundary interactions. The techniques are applied to fluids experiencing a phase transition and where the interface between the phases travels through one of the boundaries. When the interface crossing the boundary is fully developed, the technique greatly improves results relative to cases where conventional boundary conditions can be used. Limitations appear when the interface crossing the boundary is not a stable equilibrium between the two phases: the terms responsible for creating the true balance between the phases perturb the interior solution. Both boundary conditions present good numerical stability properties: the error remains bounded when the initial conditions or the far field values are perturbed. For the PML, the influence of its main parameters on the global error is investigated to make a compromise between computational costs and maximum error. The approach can be extended to multiple spatial dimensions.

  15. Modelling Hydrology of a Single Bioretention System with HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    Yingying Meng

    2014-01-01

    Full Text Available A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  16. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    Science.gov (United States)

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  17. Modeling Soil Salt and Nitrogen Transport under Different Fertigation Practices with Hydrus-1D

    Directory of Open Access Journals (Sweden)

    Zeng Wen-zhi

    2013-05-01

    Full Text Available In this study the effects of different fertigation practices on salt and nitrogen dynamics were analyzed in the Hetao District, China by using the Hydrus-1D model. The results indicated that the soil electrical conductivity increased gradually with depth after irrigation and the electrical conductivity of 0~60 cm depth changed faster than that of 60~100 cm depth. However, the soil ammonium nitrogen concentration decreased with depth and high irrigation intensity could promote the increase of ammonium nitrogen while reducing the differences of their distributions in soil profile. In addition, when the initial urea application was in a small amount (10 g, the nitrate nitrogen concentration increased with soil depth while decreased with irrigation intensity after irrigation. Furthermore, both ammonium and nitrate nitrogen content of soil profile rose with increasing initial urea application amount, which played a more important role in the changes of soil ammonium (0~100 cm and nitrate (0~80 cm nitrogen content than irrigation intensity.

  18. Results and limits in the 1-D analytical modeling for the asymmetric DG SOI MOSFET

    Directory of Open Access Journals (Sweden)

    O. Cobianu

    2008-05-01

    Full Text Available This paper presents the results and the limits of 1-D analytical modeling of electrostatic potential in the low-doped p type silicon body of the asymmetric n-channel DG SOI MOSFET, where the contribution to the asymmetry comes only from p- and n-type doping of polysilicon used as the gate electrodes. Solving Poisson's equation with boundary conditions based on the continuity of normal electrical displacement at interfaces and the presence of a minimum electrostatic potential by using the Matlab code we have obtained a minimum potential with a slow variation in the central zone of silicon with the value pinned around 0.46 V, where the applied VGS voltage varies from 0.45 V to 0.95 V. The paper states clearly the validity domain of the analytical solution and the important effect of the localization of the minimum electrostatic potential value on the potential variation at interfaces as a function of the applied VGS voltage.

  19. Results and limits in the 1-D analytical modeling for the asymmetric DG SOI MOSFET

    Science.gov (United States)

    Cobianu, O.; Glesner, M.

    2008-05-01

    This paper presents the results and the limits of 1-D analytical modeling of electrostatic potential in the low-doped p type silicon body of the asymmetric n-channel DG SOI MOSFET, where the contribution to the asymmetry comes only from p- and n-type doping of polysilicon used as the gate electrodes. Solving Poisson's equation with boundary conditions based on the continuity of normal electrical displacement at interfaces and the presence of a minimum electrostatic potential by using the Matlab code we have obtained a minimum potential with a slow variation in the central zone of silicon with the value pinned around 0.46 V, where the applied VGS voltage varies from 0.45 V to 0.95 V. The paper states clearly the validity domain of the analytical solution and the important effect of the localization of the minimum electrostatic potential value on the potential variation at interfaces as a function of the applied VGS voltage.

  20. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  1. Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a 1D interdisciplinary model

    NARCIS (Netherlands)

    Raick, C.; Delhez, E.J.M.; Soetaert, K.E.R.; Grégoire, M.

    2005-01-01

    A one-dimensional coupled physical–biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of L

  2. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    Science.gov (United States)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  3. Relationship between Pulmonary Airflow and Resistance in Patients with Airway Narrowing Using An 1-D Network Resistance and Compliance Model

    Science.gov (United States)

    Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    To predict the proper relationship between airway resistance and regional airflow, we proposed a novel 1-D network model for airway resistance and acinar compliance. First, we extracted 1-D skeletons at inspiration images, and generated 1-D trees of CT unresolved airways with a volume filling method. We used Horsfield order with random heterogeneity to create diameters of the generated 1-D trees. We employed a resistance model that accounts for kinetic energy and viscous dissipation (Model A). The resistance model is further coupled with a regional compliance model estimated from two static images (Model B). For validation, we applied both models to a healthy subject. The results showed that Model A failed to provide airflows consistent with air volume change, whereas Model B provided airflows consistent with air volume change. Since airflows shall be regionally consistent with air volume change in patients with normal airways, Model B was validated. Then, we applied Model B to severe asthmatic subjects. The results showed that regional airflows were significantly deviated from air volume change due to airway narrowing. This implies that airway resistance plays a major role in determining regional airflows of patients with airway narrowing. Support for this study was provided, in part, by NIH Grants U01 HL114494, R01 HL094315, R01 HL112986, and S10 RR022421.

  4. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  5. Anti-TGF-β Antibody, 1D11, Ameliorates Glomerular Fibrosis in Mouse Models after the Onset of Proteinuria.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liang

    Full Text Available Fibrosis is a final common pathway leading to loss of kidney function, in which the fibrogenic cytokine, transforming growth factor β (TGF-β, plays a central role. While previous studies showed that TGF-β antagonism by various means prevents fibrosis in mouse models, clinical approaches based on these findings remain elusive. 1D11 is a neutralizing antibody to all three isoforms of TGF-β. In both adriamycin (ADR-induced nephropathy and NEP25 podocyte ablation nephropathy, thrice-weekly intraperitoneal administration of 1D11 from the day of disease induction until the mice were sacrificed (day 14 for ADR and day 28 for NEP25, significantly reduced glomerular COL1A2 mRNA accumulation and histological changes. Consistent with our previous findings, proteinuria remained overt in the mice treated with 1D11, suggesting distinct mechanisms for proteinuria and fibrogenesis. Podocyte numbers determined by WT1 staining were significantly reduced in NEP25-model glomeruli as expected, while WT1-positive cells were preserved in mice receiving 1D11. Even when 1D11 was administered after the onset of proteinuria on day 3, 1D11 preserved WT1-positive cell numbers in glomeruli and significantly reduced glomerular scar score (2.5 ± 0.2 [control IgG] vs. 1.8 ± 0.2 [1D11], P < 0.05 and glomerular COL1A2 mRNA expression (19.3 ± 4.4 [control IgG] vs. 8.4 ± 2.4 [1D11] fold increase over the healthy control, P < 0.05. Transmission electron microscopy revealed loss of podocytes and denuded glomerular basement membrane in NEP25 mice with disease, whereas podocytes remained attached to the basement membrane, though effaced and swollen, in those receiving 1D11 from day 3. Together, these data suggest that TGF-β neutralization by 1D11 prevents glomerular fibrosis even when started after the onset of proteinuria. While overt proteinuria and podocyte effacement persist, 1D11 prevents total podocytes detachment, which might be a key event activating fibrogenic events

  6. 1D fluid model of the dielectric barrier discharge in chlorine

    Science.gov (United States)

    Avtaeva, Svetlana

    2016-09-01

    The 1D fluid model of the dielectric barrier discharge (DBD) in pure chlorine is developed. The discharge is excited in 8 mm gas gap between quartz dielectric layers of 2 mm thickness covered metallic electrodes. The source voltage US =U0 sin ωt with a frequency 100 kHz and amplitude 8 kV is applied to the electrodes. Chlorine pressure is varied from 15 to 100 Torr. At pressure of 15 Torr a breakdown appears with voltage drop across the discharge gap about 1 kV whereas at 100 Torr it appears with voltage drop about 2 kV. After the first current spike some lower current spikes are observes with chlorine pressure of 100 Torr and large in number current spikes of about identical magnitude are observed with the pressure of 15 Torr. The maximal current density at all pressures reaches about 4 mA/cm.2Total density of surface charge deposited on the electrodes during a half-cycle decreases with chlorine pressure because duration of the current spike discharge phase reduces with chlorine pressure. The average power density inputted in the discharge is 2.5-5.8 W/cm3 per a cycle. The Cl2 plasma is electronegative, the most abundant ions are Cl2+and Cl-. It is shown, that ions get about 95% of the discharge power as electrons get about 5% of the discharge power. 67-97% of the electron power is spending for dissociation and ionization of Cl2 molecules. Emission of Cl* atoms and Cl2*molecules is weak.

  7. Diesel Engine performance improvement in a 1-D engine model using Particle Swarm Optimization

    Science.gov (United States)

    Karra, Prashanth

    2015-12-01

    A particle swarm optimization (PSO) technique was implemented to improve the engine development and optimization process to simultaneously reduce emissions and improve the fuel efficiency. The optimization was performed on a 4-stroke 4-cylinder GT-Power based 1-D diesel engine model. To achieve the multi-objective optimization, a merit function was defined which included the parameters to be optimized: Nitrogen Oxides (NOx), Nonmethyl hydro carbons (NMHC), Carbon Monoxide (CO), Brake Specific Fuel Consumption (BSFC). EPA Tier 3 emissions standards for non-road diesel engines between 37 and 75 kW of output were chosen as targets for the optimization. The combustion parameters analyzed in this study include: Start of main Injection, Start of Pilot Injection, Pilot fuel quantity, Swirl, and Tumble. The PSO was found to be very effective in quickly arriving at a solution that met the target criteria as defined in the merit function. The optimization took around 40-50 runs to find the most favourable engine operating condition under the constraints specified in the optimization. In a favourable case with a high merit function values, the NOx+NMHC and CO values were reduced to as low as 2.9 and 0.014 g/kWh, respectively. The operating conditions at this point were: 10 ATDC Main SOI, -25 ATDC Pilot SOI, 0.25 mg of pilot fuel, 0.45 Swirl and 0.85 tumble. These results indicate that late main injections preceded by a close, small pilot injection are most favourable conditions at the operating condition tested.

  8. Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea

    NARCIS (Netherlands)

    Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis st

  9. Evaluation of interface models for 3D-1D coupling of compressible Euler methods for the application on cavitating flows

    Directory of Open Access Journals (Sweden)

    Deininger Martina

    2013-01-01

    Full Text Available Numerical simulations of complete hydraulic systems (e.g. diesel injectors can, due to high computational costs, currently not be done entirely in three dimensions. Our aim is to substitute the 3D solver by a corresponding 1D method in some parts of the system and develop a solver coupling with suitable interface models. Firstly, we investigate an interface model for non-cavitating flow passing the interface. A flux-coupling with a thin interface approach is considered and the jump in dimensions at the interface is transferred to an additional variable φ, which switches between the 3D and the 1D domain. As shown in two testcases, the error introduced in the vicinity of the interface is quite small. Two numerical flux formulations for the flux over the 3D-1D interface are compared and the Roe-type flux formulation is recommended. Secondly, extending the first method to cavitating flows passing the interface, we divide the density equation in two equations - one for liquid and one for vapor phase of the two-phase fluid - and couple the two equations by source terms depending on the free enthalpy. We propose two interface models for coupling 3D and 1D compressible density-based Euler methods that have potential for considering the entire (non- cavitating hydraulic system behaviour by a 1D method in combination with an embedded detailed 3D simulation at much lower computational costs than the pure 3D simulation.

  10. The LAPS Project : A live 1D Radiative-Convective Model to explore the possible climates of terrestrial planets and exoplanets.

    Science.gov (United States)

    Turbet, Martin; Forget, Francois; Schott, Cédric

    2016-10-01

    The LAPS (Live Atmospheres-of-Planets Simulator) is a live 1D version of the LMD Global Climate Model that provides an accelerated and interactive simulation of the climate of terrestrial planets and exoplanets.This tool was designed for students to explore the «Classical Habitable Zone», defined as the range of orbital distances within which a planet can maintain liquid water on its surface. The model faithfully reproduces both the inner edge and the outer edge limits of the Habitable Zone, and their dependencies to the type of star and the gas composition.Furthermore, it provides a "hands on" experiment by showing how the surface and atmospheric temperatures as well as the profile of water vapor evolve through time when the external forcing (insolation, star spectrum, ...) or the planet (quantity of CO2, initial amount of water reservoir, ...) is modified.The tool is available at http://laps.lmd.jussieu.fr/ .

  11. Chemical modeling of exoplanet atmospheres

    CERN Document Server

    Venot, Olivia

    2014-01-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

  12. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    Science.gov (United States)

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  13. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    Science.gov (United States)

    Sabtaji, Agung; Nugraha, Andri Dian

    2015-04-01

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  14. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    Energy Technology Data Exchange (ETDEWEB)

    Sabtaji, Agung, E-mail: sabtaji.agung@gmail.com, E-mail: agung.sabtaji@bmkg.go.id [Study Program of Earth Sciences, Faculty of Earth Sciencies and Technology, Institute of Technology Bandung, Bandung 40132 (Indonesia); Indonesia’s Agency for Meteorological, Climatological and Geophysics Region V, Jayapura 1572 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung 40132 (Indonesia)

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  15. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  16. CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electromagnetic surveys

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Baumgartner, François

    2006-01-01

    We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions...

  17. Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D.

    Science.gov (United States)

    Bengoechea, Rocio; Pittman, Sara K; Tuck, Elizabeth P; True, Heather L; Weihl, Conrad C

    2015-12-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) is caused by dominantly inherited missense mutations in DNAJB6, an Hsp40 co-chaperone. LGMD1D muscle has rimmed vacuoles and inclusion bodies containing DNAJB6, Z-disc proteins and TDP-43. DNAJB6 is expressed as two isoforms; DNAJB6a and DNAJB6b. Both isoforms contain LGMD1D mutant residues and are expressed in human muscle. To identify which mutant isoform confers disease pathogenesis and generate a mouse model of LGMD1D, we evaluated DNAJB6 expression and localization in skeletal muscle as well as generating DNAJB6 isoform specific expressing transgenic mice. DNAJB6a localized to myonuclei while DNAJB6b was sarcoplasmic. LGMD1D mutations in DNAJB6a or DNAJB6b did not alter this localization in mouse muscle. Transgenic mice expressing the LGMD1D mutant, F93L, in DNAJB6b under a muscle-specific promoter became weak, had early lethality and developed muscle pathology consistent with myopathy after 2 months; whereas mice expressing the same F93L mutation in DNAJB6a or overexpressing DNAJB6a or DNAJB6b wild-type transgenes remained unaffected after 1 year. DNAJB6b localized to the Z-disc and DNAJB6b-F93L expressing mouse muscle had myofibrillar disorganization and desmin inclusions. Consistent with DNAJB6 dysfunction, keratin 8/18, a DNAJB6 client also accumulated in DNAJB6b-F93L expressing mouse muscle. The RNA-binding proteins hnRNPA1 and hnRNPA2/B1 accumulated and co-localized with DNAJB6 at sarcoplasmic stress granules suggesting that these proteins maybe novel DNAJB6b clients. Similarly, hnRNPA1 and hnRNPA2/B1 formed sarcoplasmic aggregates in patients with LGMD1D. Our data support that LGMD1D mutations in DNAJB6 disrupt its sarcoplasmic function suggesting a role for DNAJB6b in Z-disc organization and stress granule kinetics.

  18. Multi-objective optimisation of cost-benefit of urban flood management using a 1D2D coupled model.

    Science.gov (United States)

    Delelegn, S W; Pathirana, A; Gersonius, B; Adeogun, A G; Vairavamoorthy, K

    2011-01-01

    This paper presents a multi-objective optimisation (MOO) tool for urban drainage management that is based on a 1D2D coupled model of SWMM5 (1D sub-surface flow model) and BreZo (2D surface flow model). This coupled model is linked with NSGA-II, which is an Evolutionary Algorithm-based optimiser. Previously the combination of a surface/sub-surface flow model and evolutionary optimisation has been considered to be infeasible due to the computational demands. The 1D2D coupled model used here shows a computational efficiency that is acceptable for optimisation. This technological advance is the result of the application of a triangular irregular discretisation process and an explicit finite volume solver in the 2D surface flow model. Besides that, OpenMP based parallelisation was employed at optimiser level to further improve the computational speed of the MOO tool. The MOO tool has been applied to an existing sewer network in West Garforth, UK. This application demonstrates the advantages of using multi-objective optimisation by providing an easy-to-comprehend Pareto-optimal front (relating investment cost to expected flood damage) that could be used for decision making processes, without repeatedly going through the modelling-optimisation stage.

  19. 1-D coupled non-equilibrium sediment transport modeling for unsteady flows in the discontinuous Galerkin framework

    Institute of Scientific and Technical Information of China (English)

    Farzam Safarzadeh MALEKI; Abdul A KHAN

    2016-01-01

    A high-resolution, 1-D numerical model has been developed in the discontinuous Galerkin framework to simulate 1-D flow behavior, sediment transport, and morphological evaluation under unsteady flow conditions. The flow and sediment concentration variables are computed based on the one-dimensional shallow water flow equations, while empirical equations are used for entrainment and deposition processes. The sediment transport model includes the bed load and suspended load components. New formulations for Harten-Lax-van Leer (HLL) and Harten-Lax-van Contact (HLLC) are presented for shallow water flow equations that include the bed load and suspended load fluxes. The computational results for the flow and morphological changes after two dam break events are compared with the physical model tests. Results show that the modified HLL and HLLC formulations are robust and can accurately predict morphological changes in highly unsteady flows.

  20. An evaluation of 1D loss model collections for the off-design performance prediction of automotive turbocharger compressors

    Science.gov (United States)

    Harley, P.; Spence, S.; Early, J.; Filsinger, D.; Dietrich, M.

    2013-12-01

    Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.

  1. A coupled ice-ocean ecosystem model for 1-D and 3-D applications in the Bering and Chukchi Seas

    Institute of Scientific and Technical Information of China (English)

    Jin Meibing; Clara Deal; WANG Jia

    2008-01-01

    Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications.This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai), three zooplankton (copepods, large zooplankton, and microzooplankton: ZS, ZL, ZP), three nutrients (nitrate + nitrite, ammonium, silicon:NO3, NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.

  2. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... dependent particle velocity into a position independent Gaussian velocity. Boundary conditions are obtained from Itos rule of stochastic differentiation. The model directly point at a canonical rule of reflection for the approximating random walk with finite time step. This reflection rule is different from...

  3. Quantum dynamical study of the O({sup 1}D) + CH{sub 4} → CH{sub 3} + OH atmospheric reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ben Bouchrit, R.; Ben Abdallah, D.; Jaidane, N. [Laboratoire de Physique Atomique et Moléculaire et Applications, Département de Physique, Faculté des Sciences, Université Tunis-El Manar, 1060 Tunis (Tunisia); Jorfi, M. [Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR CNRS 6503, Université de Poitiers, 86022 Poitiers Cedex (France); González, M. [Departament de Química Física and IQTC, Universitat de Barcelona, C/Martí i Franqués 1, 08028 Barcelona (Spain); Bussery-Honvault, B. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex (France); Honvault, P., E-mail: pascal.honvault@univ-fcomte.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex (France); UFR Sciences et Techniques, Université de Franche-Comté, 25030 Besançon Cedex (France)

    2014-06-28

    Time independent quantum mechanical (TIQM) scattering calculations have been carried out for the O({sup 1}D) + CH{sub 4}(X{sup 1}A{sub 1}) → CH{sub 3}(X{sup 2}A{sub 2}″) + OH(X{sup 2}Π) atmospheric reaction, using an ab initio ground potential energy surface where the CH{sub 3} group is described as a pseudo-atom. Total and state-to-state reaction probabilities for a total angular momentum J = 0 have been determined for collision energies up to 0.5 eV. The vibrational and rotational state OH product distributions show no specific behavior. The rate coefficient has been calculated by means of the J-shifting approach in the 10–500 K temperature range and slightly depends on T at ordinary temperatures (as expected for a barrierless reaction). Quantum effects do not influence the vibrational populations and rate coefficient in an important way, and a rather good agreement has been found between the TIQM results and the quasiclassical trajectory and experimental ones. This reinforces somewhat the reliability of the pseudo-triatomic approach under the reaction conditions explored.

  4. A Coupled Model of the 1D River Network and 3D Estuary Based on Hydrodynamics and Suspended Sediment Simulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available River networks and estuaries are very common in coastal areas. Runoff from the upper stream interacts with tidal current from open sea in these two systems, leading to a complex hydrodynamics process. Therefore, it is necessary to consider the two systems as a whole to study the flow and suspended sediment transport. Firstly, a 1D model is established in the Pearl River network and a 3D model is applied in its estuary. As sufficient mass exchanges between the river network and its estuary, a strict mathematical relationship of water level at the interfaces can be adopted to couple the 1D model with the 3D model. By doing so, the coupled model does not need to have common nested grids. The river network exchanges the suspended sediment with its estuary by adding the continuity conditions at the interfaces. The coupled model is, respectively, calibrated in the dry season and the wet season. The results demonstrate that the coupled model works excellently in simulating water level and discharge. Although there are more errors in simulating suspended sediment concentration due to some reasons, the coupled model is still good enough to evaluate the suspended sediment transport in river network and estuary systems.

  5. A 1D model for tides waves and fine sediment in short tidal basins—Application to the Wadden Sea

    Science.gov (United States)

    van Prooijen, Bram Christiaan; Wang, Zheng Bing

    2013-12-01

    In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  6. Comparing 1D, 2D and 3D models for predicting root water uptake at the plant scale

    Science.gov (United States)

    de Willigen, Peter; van Dam, Jos; Heinen, Marius; Javaux, Mathieu

    2010-05-01

    Numerous modeling approaches exist to simulate soil water extraction by plant roots. They mainly differ in terms of dimensionality (from 1-D to 3-D) and in the degree of detail involved in the root geometry. One dimensional models consider 1-D root length density profiles and assume uniform horizontal soil water distribution and are very efficient regarding computation time. On the opposite, very detailed 3-D approaches, which consider explicitly the root architecture and the root water flow, may need more computation power and time. In between these two extreme cases, other approaches exist, which may be more accurate and less computationally demanding. Our objective is to compare different modeling approaches and check how their implicit or explicit simplifications or assumptions affect the root water uptake (RWU) predictions. Four models were subject to our comparison, all based on Richards equation. The first is a 1-D model solving Richards equation (SWAP) with the Feddes (1978) approach for RWU. The second one is also based on SWAP but with the root water uptake defined by a microscopic approach developed by de Jong van Lier (2008). The third one, FUSSIM, solves the Richards equation in 2-D based on a 2-D distribution of root length density (RLD). The fourth one is R-SWMS, a 3-D model simulating the water flow in the soil and in the roots, based on the complete root architecture description. A 45-day maize root was generated in 3-D and simplified in 2-D or 1-D RLD distributions. We simulated a constant uptake rate for 30 days with a 1-day rainfall at day 15 in three different soil types. We compared relative water uptake versus relative root length density profiles, and actual transpiration time series. On the one hand, the general trends of cumulative transpiration with time for the three soils were relatively similar for all models. On the other hand, some features like hydraulic lift are simulated by both FUSSIM and RSWMS models while other models do not

  7. Evaluating 3-D and 1-D mathematical models for mass transport in heterogeneous biofilms

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Eberl, H.; van Loosdrecht, M. C. M.

    2000-01-01

    Results from a three dimensional model for heterogeneous biofilms including the numerical solution of hydrodynamics were compared to simplified one dimensional models. A one dimensional model with a variable diffusion coefficient over the thickness of the biofilm was well suited to approximate av...... in a growing biofilm and in a mushroom type biofilm assuming different modes of detachment....

  8. 2D MHD and 1D HD models of a solar flare -- a comprehensive comparison of the results

    CERN Document Server

    Falewicz, R; Murawski, K; Srivastava, A K

    2015-01-01

    Without any doubt solar flaring loops possess a multi-thread internal structure that is poorly resolved and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modelling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of 1D hydrodynamic and 2D magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in the AR10126 on September 20, 2002 between 09:21 UT and 09:50 UT. The non-ideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy loss mechanisms, while the non-ideal 2D models take into account viscosity and thermal conduction as energy loss mechanisms only. The 2...

  9. Heat and mass transfer effects in a direct methanol fuel cell: A 1D model

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [INETI - Unidade de Electroquimica e Materiais, Paco do Lumiar, 22,1649-038 (Portugal)

    2008-07-15

    Models are a fundamental tool for the design process of fuel cells and fuel cell systems. In this work, a steady-state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC, is presented. The model output is the temperature profile through the cell and the water balance and methanol crossover between the anode and the cathode. The model predicts the correct trends for the influence of current density and methanol feed concentration on both methanol and water crossover. The model estimates the net water transfer coefficient through the membrane, {alpha}, a very important parameter to describe water management in the DMFC. Suitable operating ranges can be set up for different MEA structures maintaining the crossover of methanol and water within acceptable levels. The model is rapidly implemented and is therefore suitable for inclusion in real-time system level DMFC calculations. (author)

  10. Topological Boundary States in 1D: An Effective Fabry-Perot Model

    CERN Document Server

    Levy, Eli

    2016-01-01

    We present a general and useful method to predict the existence, frequency, and spatial properties of gap states in photonic (and other) structures with a gapped spectrum. This method is established using the scattering approach. It offers a viewpoint based on a geometrical Fabry-Perot model. We demonstrate the capabilities of this model by predicting the behaviour of topological edge states in quasi-periodic structures. A proposition to use this model in Casimir physics is presented.

  11. 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling

    Science.gov (United States)

    Le Roux, Olivier; Cornou, Cécile; Jongmans, Denis; Schwartz, Stéphane

    2012-09-01

    H/V spectral ratios are regularly used for estimating the bedrock depth in 1-D like basins exhibiting smooth lateral variations. In the case of 2-D or 3-D pronounced geometries, observational and numerical studies have shown that H/V curves exhibit peculiar shapes and that the H/V frequency generally overestimates 1-D theoretical resonance frequency. To investigate the capabilities of the H/V method in complex structures, a detailed comparison between measured and 3-D-simulated ambient vibrations was performed in the small-size lower Romanche valley (French Alps), which shows significant variations in geometry, downstream and upstream the Séchilienne basin. Analysing the H/V curve characteristics, two different wave propagation modes were identified along the valley. Relying on previous geophysical investigation, a power-law relationship was derived between the bedrock depth and the H/V peak frequency, which was used for building a 3-D model of the valley geometry. Simulated and experimental H/V curves were found to exhibit quite similar features in terms of curve shape and peak frequency values, validating the 3-D structure. This good agreement also evidenced two different propagation modes in the valley: 2-D resonance in the Séchilienne basin and 1-D resonance in the external parts. This study underlines the interest of H/V curves for investigating complex basin structures.

  12. Exact results in modeling planetary atmospheres-I. Gray atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France)]. E-mail: loic.chevallier@obspm.fr; Pelkowski, J. [Institut fuer Meteorologie und Geophysik, J.W. Goethe Universitaet Frankfurt, Robert Mayer Strasse 1, D-60325 Frankfurt (Germany); Rutily, B. [Universite de Lyon, Lyon, F-69000 (France) and Universite Lyon 1, Villeurbanne, F-69622 (France) and Centre de Recherche Astronomique de Lyon, Observatoire de Lyon, 9 avenue Charles Andre, Saint-Genis Laval cedex, F-69561 (France) and CNRS, UMR 5574; Ecole Normale Superieure de Lyon, Lyon (France)

    2007-04-15

    An exact model is proposed for a gray, isotropically scattering planetary atmosphere in radiative equilibrium. The slab is illuminated on one side by a collimated beam and is bounded on the other side by an emitting and partially reflecting ground. We provide expressions for the incident and reflected fluxes on both boundary surfaces, as well as the temperature of the ground and the temperature distribution in the atmosphere, assuming the latter to be in local thermodynamic equilibrium. Tables and curves of the temperature distribution are included for various values of the optical thickness. Finally, semi-infinite atmospheres illuminated from the outside or by sources at infinity is dealt with.

  13. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    Science.gov (United States)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  14. Spacing distribution functions for 1D point island model with irreversible attachment

    Science.gov (United States)

    Gonzalez, Diego; Einstein, Theodore; Pimpinelli, Alberto

    2011-03-01

    We study the configurational structure of the point island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density p xy n (x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for p xy n (x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system. This work was supported by the NSF-MRSEC at the University of Maryland, Grant No. DMR 05-20471, with ancillary support from the Center for Nanophysics and Advanced Materials (CNAM).

  15. Analysis, simulation and visualization of 1D tapping via reduced dynamical models

    Science.gov (United States)

    Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo

    2014-04-01

    A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.

  16. Analytical 1D models of the wall thermal resistance of rectangular minichannels applied in heat exchangers

    Directory of Open Access Journals (Sweden)

    Rybiński Witold

    2016-09-01

    Full Text Available The paper presents four 1-dimensional models of thermal resistance of walls in a heat exchanger with rectangular minichannels. The first model is the simplest one, with a single wall separating two fluids. The second model of the so called equivalent wall takes into account total volume of intermediate walls between layers of minichannels and of side walls of minichannels. The next two more complicated models take separately into account thermal resistance of these walls. In these two models side walls are treated as fins. The results of models comparison are presented. It is shown that thermal resistance may be neglected for metal walls but it should be taken into account for the walls made of plastics. For the case of non-neglected wall thermal resistance the optimum wall thickness was derived. Minichannel heat exchangers made of plastic are larger than those built of metal, but are significantly cheaper. It makes possible to use of such exchangers in inexpensive microscale ORC installations.

  17. Medicanes in an ocean–atmosphere coupled regional climate model

    Directory of Open Access Journals (Sweden)

    N. Akhtar

    2014-03-01

    Full Text Available So-called medicanes (Mediterranean hurricanes are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM coupled with a one-dimensional ocean model (1-D NEMO-MED12 to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°. The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  18. RANS computations for identification of 1-D cavitation model parameters: application to full load cavitation vortex rope

    Science.gov (United States)

    Alligné, S.; Decaix, J.; Müller, A.; Nicolet, C.; Avellan, F.; Münch, C.

    2016-11-01

    Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as selfexcited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models involve several parameters that have to be calibrated using experimental and numerical data. The present work aims to identify these parameters with URANS computations with a particular focus on the fluid damping rising when the cavitation volume oscillates. Two test cases have been investigated: a cavitation flow in a Venturi geometry without inlet swirl and a reduced scale model of a Francis turbine operating at full load conditions. The cavitation volume oscillation is forced by imposing an unsteady outlet pressure conditions. By varying the frequency of the outlet pressure, the resonance frequency is determined. Then, the pressure amplitude and the resonance frequency are used as two objectives functions for the optimization process aiming to derive the 1-D model parameters.

  19. Abundance analysis of the halo giant HD 122563 with three-dimensional model stellar atmospheres

    Science.gov (United States)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.

  20. Abundance Analysis of the Halo Giant HD122563 with Three-Dimensional Model Stellar Atmospheres

    CERN Document Server

    Collet, R; Asplund, M; Hayek, W; Trampedach, R

    2009-01-01

    We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.

  1. Radon exhalation from uranium mill tailings: experimental validation of a 1-D model.

    Science.gov (United States)

    Ferry, C; Richon, P; Beneito, A; Robé, M C

    2001-01-01

    TRACI, a model based on the physical mechanisms governing the migration of radon in unsaturated soils, has been developed to evaluate the radon flux density at the surface of uranium mill tailings. To check the validity of the TRACI model and the effectiveness of cover layers, an in situ study was launched in 1997 with the French uranium mining company, COGEMA. The study consisted of continuous measurements of moisture content, suction, radon concentration at various depths inside a UMT cover, and flux density at its surface. An initial analysis has shown that radon concentration and flux density, as calculated with a steady-state diffusion model using monthly averaged moisture contents, are in good agreement with measured monthly averaged concentrations and flux densities.

  2. Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives

    CERN Document Server

    Blanc, Emilie; Lombard, Bruno

    2012-01-01

    A time-domain numerical modeling of Biot poroelastic waves is presented. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce order 1/2 shifted fractional derivatives involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. Thanks to the dispersion relation, the coefficients in the diffusive representation are obtained by performing an optimization procedure in the frequency range of interest. A splitting strategy is then applied numerically: the propagative part of Biot-JKD equations is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. Comparisons with analytical solution...

  3. CATHARE Multi-1D Modeling of Coolant Mixing in VVER-1000 for RIA Analysis

    Directory of Open Access Journals (Sweden)

    I. Spasov

    2010-01-01

    Full Text Available The paper presents validation results for multichannel vessel thermal-hydraulic models in CATHARE used in coupled 3D neutronic/thermal hydraulic calculations. The mixing is modeled with cross flows governed by local pressure drops. The test cases are from the OECD VVER-1000 coolant transient benchmark (V1000CT and include asymmetric vessel flow transients and main steam line break (MSLB transients. Plant data from flow mixing experiments are available for comparison. Sufficient mesh refinement with up to 24 sectors in the vessel is considered for acceptable resolution. The results demonstrate the applicability of such validated thermal-hydraulic models to MSLB scenarios involving thermal mixing, azimuthal flow rotation, and primary pump trip. An acceptable trade-off between accuracy and computational efficiency can be obtained.

  4. A comparison of total precipitation values estimated from measurements and a 1D cloud model

    Directory of Open Access Journals (Sweden)

    Z. Aslan

    Full Text Available The purpose of this study is to establish a relation between observed total precipitation values and estimations from a one-dimensional diagnostic cloud model. Total precipitation values estimated from maximum liquid water content, maximum vertical velocity, cloud top height, and temperature excess are also used to provide an equation for the total precipitation prediction. Data for this study were collected in Istanbul during the autumns of 1987 and 1988. The statistical models are developed with multiple regression technique and then comparatively verified with independent data for 1990. The multiple regression coefficients are in the range of 75% to 80% in the statistical models. Results of the test showed that total precipitation values estimated from the above techniques are in good agreement, with correlation coefficient between 40% and 46% based on test data for 1990.

  5. An explicit model for the adiabatic evolution of quantum observables driven by 1D shape resonances

    CERN Document Server

    Faraj, A; Nier, F

    2010-01-01

    This paper is concerned with a linearized version of the transport problem where the Schr\\"{o}dinger-Poisson operator is replaced by a non-autonomous Hamiltonian, slowly varying in time. We consider an explicitly solvable model where a semiclassical island is described by a flat potential barrier, while a time dependent 'delta' interaction is used as a model for a single quantum well. Introducing, in addition to the complex deformation, a further modification formed by artificial interface conditions, we give a reduced equation for the adiabatic evolution of the sheet density of charges accumulating around the interaction point.

  6. 2D MHD AND 1D HD MODELS OF A SOLAR FLARE—A COMPREHENSIVE COMPARISON OF THE RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Falewicz, R.; Rudawy, P. [Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11 (Poland); Murawski, K. [Group of Astrophysics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, A. K., E-mail: falewicz@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: kmur@kft.umcs.lublin.pl, E-mail: asrivastava.app@iitbhu.ac.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)

    2015-11-01

    Without any doubt, solar flaring loops possess a multithread internal structure that is poorly resolved, and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modeling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of one-dimensional (1D) hydrodynamic and two-dimensional (2D) magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in AR 10126 on 2002 September 20 between 09:21 UT and 09:50 UT. The nonideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy-loss mechanisms, while the nonideal 2D models take into account viscosity and thermal conduction as energy-loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are an extreme borderline case of a multithread internal structure of the flaring loop, with a filling factor equal to 1. Nevertheless, these simple models ensure the general correctness of the obtained results and can be adopted as a correct approximation of the real flaring structures.

  7. Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model

    Science.gov (United States)

    Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho

    2016-05-01

    Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.

  8. Modeling 1D structures on semiconductor surfaces: synergy of theory and experiment.

    Science.gov (United States)

    Vanpoucke, Danny E P

    2014-04-02

    Atomic scale nanowires attract enormous interest in a wide range of fields. On the one hand, due to their quasi-one-dimensional nature, they can act as an experimental testbed for exotic physics: Peierls instability, charge density waves, and Luttinger liquid behavior. On the other hand, due to their small size, they are of interest not only for future device applications in the micro-electronics industry, but also for applications regarding molecular electronics. This versatile nature makes them interesting systems to produce and study, but their size and growth conditions push both experimental production and theoretical modeling to their limits. In this review, modeling of atomic scale nanowires on semiconductor surfaces is discussed, focusing on the interplay between theory and experiment. The current state of modeling efforts on Pt- and Au-induced nanowires on Ge(001) is presented, indicating their similarities and differences. Recently discovered nanowire systems (Ir, Co, Sr) on the Ge(001) surface are also touched upon. The importance of scanning tunneling microscopy as a tool for direct comparison of theoretical and experimental data is shown, as is the power of density functional theory as an atomistic simulation approach. It becomes clear that complementary strengths of theoretical and experimental investigations are required for successful modeling of the atomistic nanowires, due to their complexity.

  9. Optimized Variational 1D Boussinesq Modelling for broad-band waves over flat bottom

    NARCIS (Netherlands)

    Lakhturov, I.; Adytia, D.; Groesen, van E.

    2012-01-01

    The Variational Boussinesq Model (VBM) for waves above a layer of ideal fluid conserves mass, momentum, energy, and has decreased dimensionality compared to the full problem. It is derived from the Hamiltonian formulation via an approximation of the kinetic energy, and can provide approximate disper

  10. Gravimetric and 1D fullwave modelling results across the Donbas Foldbelt, Ukrania

    Science.gov (United States)

    Lyngsie, S. B.; Thybo, H.; Dobrefraction Workinggroup

    2003-04-01

    The Donbas Foldbelt, the uplifted and deformed part of the up to 20 km thick Dniepr-Donets Basin (Southeast Ukraine), formed as the result of intra-cratonic rifting. Rifting is believed to have affected large parts of the East European Craton in the Late Devonian. Numerous reflection- and refraction seismic studies have been carried out in the Dniepr-Donets basin, but only a few have targeted the Donbas Foldbelt. A seismic refraction/wide-angle reflection survey (DOBRE’99) was carried out during 1999. The seismic profile has a strike almost perpendicular to the rift axis. The profile has a length of 360 km, reaching from the shores of the Azov sea in the southwest, across the Azov Massif and the Donbas Foldbelt, ending at the Ukraine-Russia border in the Voronezh Massif to the northeast. Complimentary to the refraction survey, a reflection survey (DOBRE 2000) was carried out during 2000. The reflection profile covers the central and southern part of the Donbas Foldbelt, and is coincident to the refraction profile. Gravity modelling by joint inversion indicates high-density syn-rift deposits, possibly alkali-basaltic extrusives in the central part of the basin, and a high-density lower crust beneath the basin. The gravity model supports the results from the raytracing models (DOBREfraction Workinggroup), which divide the crust in the massifs, adjacent to the basin, into upper-, middle- and lower parts. A distinction between the upper- and middle parts cannot be made under the basin in either the raytracing models or the gravity model. Comparison between the reflection seismic profile (DOBREflection Workinggroup) and the gravity model reveals that the high-densities are coincident with high reflectivity. One-dimensional full wave reflectivity modelling yields detailed information on the lower crustal properties beneath the basin. The results indicate that the high-density and reflectivity of the lower curst is likely caused by inhomogeneties (sills). The

  11. A Gyrokinetic 1D Scrape-Off Layer Model of an ELM Heat Pulse

    CERN Document Server

    Shi, E L; Hammett, G W

    2014-01-01

    We have applied an electrostatic gyrokinetic-based model to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge localized mode (ELM) in JET. Previous work has used direct particle-in-cell equations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheath boundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. This test problem also helps illustrate some of the physics contained in the Hamiltonian form of the gyrokinetic equations and some of the numerical challenges in developing an edge gyrokinetic code.

  12. Stochastic Heat Equation Limit of a (2 + 1)d Growth Model

    Science.gov (United States)

    Borodin, Alexei; Corwin, Ivan; Toninelli, Fabio Lucio

    2017-03-01

    We determine a {q to 1} limit of the two-dimensional q-Whittaker driven particle system on the torus studied previously in Corwin and Toninelli (Electron. Commun. Probab. 21(44):1-12, 2016). This has an interpretation as a (2 + 1)-dimensional stochastic interface growth model, which is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the (2 + 1)-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in (2 + 1)-dimension is irrelevant.

  13. Stochastic Heat Equation Limit of a (2 + 1)d Growth Model

    Science.gov (United States)

    Borodin, Alexei; Corwin, Ivan; Toninelli, Fabio Lucio

    2016-07-01

    We determine a {q to 1} limit of the two-dimensional q-Whittaker driven particle system on the torus studied previously in Corwin and Toninelli (Electron. Commun. Probab. 21(44):1-12, 2016). This has an interpretation as a (2 + 1)-dimensional stochastic interface growth model, which is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the (2 + 1)-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in (2 + 1)-dimension is irrelevant.

  14. First-order phase transition in $1d$ Potts model with long-range interactions

    OpenAIRE

    Uzelac, K.; Glumac, Z.

    1998-01-01

    The first-order phase transition in the one-dimensional $q$-state Potts model with long-range interactions decaying with distance as $1/r^{1+\\sigma}$ has been studied by Monte Carlo numerical simulations for $0 2$. On the basis of finite-size scaling analysis of interface free energy $\\Delta F_L$, specific heat and Binder's fourth order cumulant, we obtain the first-order transition which occurs for $\\sigma$ below a threshold value $\\sigma_c(q)$.

  15. Dynamical correlation functions of the 1D Bose gas (Lieb Liniger model)

    Science.gov (United States)

    Caux, Jean-Sebastien; Calabrese, Pasquale

    2007-03-01

    The momentum- and frequency-dependent correlation functions (one-body and density-density) of the one-dimensional interacting Bose gas (Lieb-Liniger model) are obtained for any value (repulsive or attractive) of the interaction parameter. In the repulsive regime, we use the Algebraic Bethe Ansatz and the ABACUS method to reconstruct the correlators to high accuracy for systems with finite but large numbers of particles. For attractive interactions, the correlations are computed analytically. Our results are discussed, with particular emphasis on their applications to quasi-one-dimensional atomic gases.

  16. Exploring phase transitions by finite-entanglement scaling of MPS in the 1D ANNNI model

    Science.gov (United States)

    Nagy, Adam

    2011-02-01

    We use the finite-entanglement scaling of infinite matrix product states (iMPS) to explore supposedly infinite order transitions. This universal method may have lower computational costs than finite-size scaling. To this end, we study possible MPS-based algorithms to find the ground states of the transverse axial next-nearest-neighbor Ising (ANNNI) model in a spin chain with first and second neighbor interactions and frustration. The ground state has four distinct phases with transitions of second order and one of supposedly infinite order, the Kosterlitz-Thouless transition. To explore phase transitions in the model, we study general quantities such as the correlation length, entanglement entropy and the second derivative of the energy with respect to the external field, and test the finite-entanglement scaling. We propose a scaling ansatz for the correlation length of a non-critical system in order to explore infinite order transitions. This method provides considerably less computational costs compared to the finite-size scaling method in [8], and quantities obtained by applying fixed boundary conditions (such as domain wall energy in [8]) are omitted. The results show good agreement with previous studies of finite-size scaling using DMRG.

  17. A 1-D Size Specific Numerical Model for Gravel Transport That Includes Sediment Exchange with a Floodplain

    Science.gov (United States)

    Lauer, Wesley; Viparelli, Enrica; Piegay, Herve

    2014-05-01

    Sedimentary deposits adjacent to rivers can represent important sources and sinks for bed material sediment, particularly on decadal and longer timescales. The Morphodynamics and Sediment Tracers in 1-D model (MAST-1D) is a size-specific sediment transport model that allows for active exchange between channel and floodplain sediment on river reaches of tens to hundreds of kilometers in length. The model is intended to provide a mechanism for performing a first-order assessment of the likely importance of off-channel sediment exchange in controlling decadal-scale geomorphic trends, thereby helping plan and/or prioritize field data collection and higher resolution modeling work. The model develops a sediment budget for short segments of an alluvial valley. Each segment encompasses several active river bends. In each segment, a sediment transport capacity computation is performed to determine the downstream flux of bed material sediment, following the approach of most other 1-D sediment transport models. However, the model differs from most other bed evolution models in that sediment can be exchanged with the floodplain in each segment, and mass conservation is applied to both the active layer and floodplain sediment storage reservoirs. The potential for net imbalances in overall exchange as well as the size specific nature of the computations allows the model to simulate reach-scale aggradation/degradation and/or changes in bed texture. The inclusion of fine sediment in the model allows it to track geochemical tracer material and also provides a mechanism to simulate, to first order, the effects of changes in the supply of silt and clay on overall channel hydraulic capacity. The model is applied to a ~40 km reach of the Ain River, a tributary of the Rhône River in eastern France that has experienced a significant sediment deficit as a result of the construction of several dams between 1920 and 1970. MAST-1D simulations result in both incision and the formation of a

  18. Plasma Processes : A self-consistent kinetic modeling of a 1-D, bounded, plasma in equilibrium

    Indian Academy of Sciences (India)

    Monojoy Goswami; H Ramachandran

    2000-11-01

    A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle conserving Krook collision operator. The resulting equations have been implemented numerically. The treatment solves for the entire quasineutral column, making no assumptions about mfp/, where mfp is the ion-neutral collision mean free path and the size of the device. Coulomb collisions are neglected in favour of collisions with neutrals, and the particle source is modeled as a uniform Maxwellian. Electrons are treated as an inertialess but collisional fluid. The ion distribution function for the trapped and the transiting orbits is obtained. Interesting findings include the anomalous heating of ions as they approach the presheath, the development of strongly non-Maxwellian features near the last mfp, and strong modifications of the sheath criterion.

  19. On non-minimal N = 4 supermultiplets in 1D and their associated {sigma}-models

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Marcelo; Khodaee, Sadi; Toppan, Francesco, E-mail: marcbino@cbpf.b, E-mail: khodaee@cbpf.b, E-mail: toppan@cbpf.b

    2010-10-15

    We construct the non-minimal linear representations of the N = 4 Extended Supersymmetry in one-dimension. They act on 8 bosonic and 8 fermionic fields. Inequivalent representations are specified by the mass-dimension of the fields and the connectivity of the associated graphs. The oxidation to minimal N = 5 linear representations is given. Two types of N = 4 {sigma}-models based on non-minimal representations are obtained: the resulting off-shell actions are either manifestly invariant or depend on a constrained pre potential. The connectivity properties of the graphs play a decisive role in discriminating inequivalent actions. These results find application in partial breaking of supersymmetric theories. (author)

  20. 1D and 2D Numerical Modeling for Solving Dam-Break Flow Problems Using Finite Volume Method

    Directory of Open Access Journals (Sweden)

    Szu-Hsien Peng

    2012-01-01

    Full Text Available The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.

  1. Using 1D2D Hydrodynamic Modeling to Inform Restoration Planning in the Atchafalaya River Basin, Louisiana

    Science.gov (United States)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2015-12-01

    The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.

  2. Determinants of modelling choices for 1-D free-surface flow and erosion issues in hydrology: a review

    Science.gov (United States)

    Cheviron, B.; Moussa, R.

    2015-09-01

    This review paper investigates the determinants of modelling choices, for numerous applications of 1-D free-surface flow and erosion equations, across multiple spatiotemporal scales. We aim to characterize each case study by its signature composed of model refinement (Navier-Stokes: NS, Reynolds-Averaged Navier-Stokes: RANS, Saint-Venant: SV or Approximations of Saint-Venant: ASV), spatiotemporal scales (domain length: L from 1 cm to 1000 km; temporal scale: T from 1 second to 1 year; flow depth: H from 1 mm to 10 m), flow typology (Overland: O, High gradient: Hg, Bedforms: B, Fluvial: F) and dimensionless numbers (Dimensionless time period T*, Reynolds number Re, Froude number Fr, Slope S, Inundation ratio Λz, Shields number θ). The determinants of modelling choices are therefore sought in the interplay between flow characteristics, cross-scale and scale-independent views. The influence of spatiotemporal scales on modelling choices is first quantified through the expected correlation between increasing scales and decreasing model refinements, identifying then flow typology a secondary but mattering determinant in the choice of model refinement. This finding is confirmed by the discriminating values of several dimensionless numbers, that prove preferential associations between model refinements and flow typologies. This review is intended to help each modeller positioning his (her) choices with respect to the most frequent practices, within a generic, normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.

  3. Optical models of the molecular atmosphere

    Science.gov (United States)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  4. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models

    DEFF Research Database (Denmark)

    Bhatt, Deepak K; Gupta, Saurabh; Jansen-Olesen, Inger;

    2013-01-01

    BackgroundNXN-188 is a combined neuronal nitric oxide synthase (nNOS) inhibitor and 5-hydroxytryptamine 1B/1D (5-HT(1B/1D)) receptor agonist. Using preclinical models, we evaluated whether these two unique therapeutic principles have a synergistic effect in attenuating stimulated calcitonin gene-...

  5. Assessment of phenol infiltration resilience in soil media by HYDRUS-1D transport model for a waste discharge site.

    Science.gov (United States)

    Adhikari, K; Pal, S; Chakraborty, B; Mukherjee, S N; Gangopadhyay, A

    2014-10-01

    The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4-12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11-0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (KS  = 5.25 × 10(-4) cm/s). The soil containing 47 % silt, 11 % clay, and 1.54% organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R(2) = 0.977, RMSE = 1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42-49%. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion

  6. Development of 1D and 2D coupled model to simulate urban inundation: An application to Beijing Olympic Village

    Institute of Scientific and Technical Information of China (English)

    LI WeiFeng; CHEN QiuWen; MAO JingQiao

    2009-01-01

    Urban inundation due to anomalous storms is a serious problem for many cities worldwide. Therefore, it is important to accurately simulate urban hydrological processes and efficiently predict the potential risks of urban floods for the improvement of drainage designs and implementation of emergency ac-tions. However, the complexity of urban landforma and the diversity of hydraulic infrastructure pose particular challenges for the simulation and risk assessment of urban drainage processes. This study developed a methodology to comprehensively simulate inundation processes by dynamically coupling 1D and 2D hydrodynamic models. By allowing the simultaneous solution of the processes of rainfall and runoff, urban drainage, and flooding, this method can be used to estimate the potential inundation risks of any designed drainage system. Furthermore, a Geographical Information System (GIS) based platform was fully integrated with the model engine to effectively illustrate the context of the problem. The developed model was then demonstrated on the Beijing 2008 Olympic Village under the conditions of the 5-year and 50-year design storms. The sewer discharge, channel discharge, and flood propaga-tion (inundation initiation, extent, depths, and duration) were numerically validated and analyzed. The results identified the potential inundation risks. From the study, it is found that the coupled GIS and 1D and 2D hydrodynamic models have the potential to simulate urban inundation processes, and hence efficiently predict flood risks and support cost-effective drainage design and management. It also im-plies promising prospects about the wide availability of high quality digital data, GIS techniques, and well-developed monitoring infrastructure to develop online urban inundation forecasts.

  7. Performance Engineering in the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Worley, P; Mirin, A; Drake, J; Sawyer, W

    2006-05-30

    The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years.

  8. Analytical 1-D dual-porosity equivalent solutions to 3-D discrete single-continuum models. Application to karstic spring hydrograph modelling

    CERN Document Server

    Cornaton, F

    2011-01-01

    One dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems - such as karstic aquifers - using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented 1-D dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3-D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1-D analytical dual-porosity model on reference hydraulic responses confirms the dependence of ...

  9. Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review

    Science.gov (United States)

    Cheviron, Bruno; Moussa, Roger

    2016-09-01

    This review paper investigates the determinants of modelling choices, for numerous applications of 1-D free-surface flow and morphodynamic equations in hydrology and hydraulics, across multiple spatiotemporal scales. We aim to characterize each case study by its signature composed of model refinement (Navier-Stokes: NS; Reynolds-averaged Navier-Stokes: RANS; Saint-Venant: SV; or approximations to Saint-Venant: ASV), spatiotemporal scales and subscales (domain length: L from 1 cm to 1000 km; temporal scale: T from 1 s to 1 year; flow depth: H from 1 mm to 10 m; spatial step for modelling: δL; temporal step: δT), flow typology (Overland: O; High gradient: Hg; Bedforms: B; Fluvial: F), and dimensionless numbers (dimensionless time period T*, Reynolds number Re, Froude number Fr, slope S, inundation ratio Λz, Shields number θ). The determinants of modelling choices are therefore sought in the interplay between flow characteristics and cross-scale and scale-independent views. The influence of spatiotemporal scales on modelling choices is first quantified through the expected correlation between increasing scales and decreasing model refinements (though modelling objectives also show through the chosen spatial and temporal subscales). Then flow typology appears a secondary but important determinant in the choice of model refinement. This finding is confirmed by the discriminating values of several dimensionless numbers, which prove preferential associations between model refinements and flow typologies. This review is intended to help modellers in positioning their choices with respect to the most frequent practices, within a generic, normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.

  10. Analytical solution to the 1D Lemaitre's isotropic damage model and plane stress projected implicit integration procedure

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    obtaining an integral relationship between total strain and effective stress. By means of the generalized binomial theorem, an expression in terms of infinite series is subsequently derived. The solution is found to simplify considerably existing techniques for material parameters identification based...... on optimization, as all issues associated with classical numerical solution procedures of the constitutive equations are eliminated. In addition, an implicit implementation of the plane stress projected version of Lemaitre's model is discussed, showing that the resulting algebraic system can be reduced...... to a single non-linear equation. The accuracy of the proposed integration scheme is then verified by means of the presented 1D analytical solution. Finally, a closed-form expression for the consistent tangent modulus taking damage evolution into account is given, and its impact on the convergence rate...

  11. A Dual EnKF for Estimating Water Level, Bottom Roughness, and Bathymetry in a 1-D Hydrodynamic Model

    CERN Document Server

    Hooshyar, Milad; Wang, Dingbao; Hagen, Scott C

    2016-01-01

    Data assimilation has been applied to coastal hydrodynamic models to better estimate system states or parameters by incorporating observed data into the model. Kalman Filter (KF) is one of the most studied data assimilation methods whose application is limited to linear systems. For nonlinear systems such as hydrodynamic models a variation of the KF called Ensemble Kalman Filter (EnKF) is applied to update the system state in the context of Monte Carlo simulation. In this research, a dual EnKF approach is used to simultaneously estimate state (water surface elevation) and parameters (bottom roughness and bathymetry) of the shallow water models. The sensitivity of the filter to 1) the quantity and precision of the observations, and 2) the initial estimation of parameters is investigated in a 1-D shallow water problem located in the Gulf of Mexico. Results show that starting from an initial estimate of bottom roughness and bathymetry within a logical range and utilizing observations available at a limited numbe...

  12. Atmospheric Boundary Layers: Modeling and Parameterization

    NARCIS (Netherlands)

    Holtslag, A.A.M.

    2015-01-01

    In this contribution we deal with the representation of the atmospheric boundary layer (ABL) for modeling studies of weather, climate, and air quality. As such we review the major characteristics of the ABL, and summarize the basic parameterizations for the description of atmospheric turbulence and

  13. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  14. A Generic 1D Forward Modeling and Inversion Algorithm for TEM Sounding with an Arbitrary Horizontal Loop

    Science.gov (United States)

    Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao

    2016-08-01

    We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.

  15. A COUPLED 1-D AND 2-D CHANNEL NETWORK MATHEMATICAL MODEL USED FOR FLOW CALCULATIONS IN THE MIDDLE REACHES OF THE YANGTZE RIVER

    Institute of Scientific and Technical Information of China (English)

    HAN Dong; FANG Hong-wei; BAI Jing; HE Guo-jian

    2011-01-01

    A coupled one-dimensional(1-D)and two-dimensional(2-D)channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article.For the 1-D model,the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network.The Alternating Direction Implicit(ADI)method is adopted for the 2-D model at the nodes.In the coupled model,the 1-D model provides a good approximation with small computational effort,while the 2-D model is applied for complex topography to achieve a high accuracy.An Artificial Neural Network(ANN)method is used for the data exchange and the connectivity between the 1-D and 2-D models.The coupled model is applied to the Jingjiang-Dongting Lake region,to simulate the tremendous looped channel network system,and the results are compared with field data.The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.

  16. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  17. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  18. Atmosphere of Mars - Mariner IV models compared.

    Science.gov (United States)

    Eshleman, V. R.; Fjeldbo, G.; Fjeldbo, W. C.

    1966-01-01

    Mariner IV models of three Mars atmospheric layers analogous to terrestrial E, F-1 and F-2 layers, considering relative mass densities, temperatures, carbon dioxide photodissociation and ionization profile

  19. Comparison between a coupled 1D-2D model and a fully 2D model for supercritical flow simulation in crossroads

    KAUST Repository

    Ghostine, Rabih

    2014-12-01

    In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.

  20. The influence of cloud chemistry on HOx and NOx in the Marine Boundary Layer: a 1-D modelling study

    Directory of Open Access Journals (Sweden)

    F. J. Dentener

    2001-10-01

    Full Text Available A 1-D marine stratocumulus cloud model has been supplemented with a comprehensive and up-to-date aqueous phase chemical mechanism for the purpose of assessing the impact that the presence of clouds and aerosols has on gas phase HOx, NOx and O3 budgets in the marine boundary layer. The simulations presented here indicate that cloud may act as a heterogeneous source of HONOg via the conversion of HNO4(g at moderate pH (~4.5. The photolysis of nitrate (NO3- has also been found to contribute to this simulated increase in HONOg by ~5% and also acts as a minor source of NO2(g. The effect of introducing deliquescent aerosol on the simulated increase of HONOg is negligible. The most important consequences of this elevation in HONOg are that, in the presence of cloud, gas phase concentrations of NOx species increase by a factor of 2, which minimises the simulated decrease in O3(g, and results in a regeneration of OHg. This partly compensates for the removal of OHg by direct phase transfer into the cloud and has important implications regarding the oxidising capacity of the marine boundary layer. The findings presented here also suggest that previous modelling studies, which neglect the heterogeneous HNO4(g reaction cycle, may have over-estimated the role of clouds as a sink for OHg and O3(gin unpolluted oceanic regions, by ~10% and ~2%, respectively.

  1. Scale up tools in reactive extrusion and compounding processes. Could 1D-computer modeling be helpful?

    Science.gov (United States)

    Pradel, J.-L.; David, C.; Quinebèche, S.; Blondel, P.

    2014-05-01

    Industrial scale-up (or scale down) in Compounding and Reactive Extrusion processes is one of the most critical R&D challenges. Indeed, most of High Performances Polymers are obtained within a reactive compounding involving chemistry: free radical grafting, in situ compatibilization, rheology control... but also side reactions: oxidation, branching, chain scission... As described by basic Arrhenius and kinetics laws, the competition between all chemical reactions depends on residence time distribution and temperature. Then, to ensure the best possible scale up methodology, we need tools to match thermal history of the formulation along the screws from a lab scale twin screw extruder to an industrial one. This paper proposes a comparison between standard scale-up laws and the use of Computer modeling Software such as Ludovic® applied and compared to experimental data. Scaling data from a compounding line to another one, applying general rules (for example at constant specific mechanical energy), shows differences between experimental and computed data, and error depends on the screw speed range. For more accurate prediction, 1D-Computer Modeling could be used to optimize the process conditions to ensure the best scale-up product, especially in temperature sensitive reactive extrusion processes. When the product temperature along the screws is the key, Ludovic® software could help to compute the temperature profile along the screws and extrapolate conditions, even screw profile, on industrial extruders.

  2. Status and future of hydrodynamical model atmospheres

    CERN Document Server

    Ludwig, H G

    2004-01-01

    Since about 25 years ago work has been dedicated to the development of hydrodynamical model atmospheres for cool stars (of A to T spectral type). Despite their obviously sounder physical foundation in comparison with standard hydrostatic models, their general application has been rather limited. In order to understand why this is, and how to progress, we review the present status of hydrodynamical modelling of cool star atmospheres. The development efforts were and are motivated by the theoretical interest of understanding the dynamical processes operating in stellar atmospheres. To show the observational impact, we discuss examples in the fields of spectroscopy and stellar structure where hydrodynamical modelling provided results on a level qualitatively beyond standard models. We stress present modelling challenges, and highlight presently possible and future observations that would be particularly valuable in the interplay between model validation and interpretation of observables, to eventually widen the ...

  3. A 1D Model of Radial Ion Motion Interrupted by Ion–Neutral Interactions in a Cometary Coma

    Science.gov (United States)

    Vigren, E.; Eriksson, A. I.

    2017-04-01

    Because ion–neutral reaction cross sections are energy dependent, the distance from a cometary nucleus within which ions remain collisionally coupled to the neutrals is dictated not only by the comet’s activity level but also by the electromagnetic fields in the coma. Here we present a 1D model simulating the outward radial motion of water group ions with radial acceleration by an ambipolar electric field interrupted primarily by charge transfer processes with H2O. We also discuss the impact of plasma waves. For a given electric field profile, the model calculates key parameters, including the total ion density, n I , the H3O+/H2O+ number density and flux ratios, R dens and R flux, and the mean ion drift speed, , as a function of cometocentric distance. We focus primarily on a coma roughly resembling that of the ESA Rosetta mission target comet 67P/Churyumov–Gerasimenko near its perihelion in 2015 August. In the presence of a weak ambipolar electric field in the radial direction the model results suggest that the neutral coma is not sufficiently dense to keep the mean ion flow speed close to that of the neutrals by the spacecraft location (∼200 km from the nucleus). In addition, for electric field profiles giving n I and within limits constrained by measurements, the R dens values are significantly higher than values typically observed. However, when including the ion motion in large-amplitude plasma waves in the model, results more compatible with observations are obtained. We suggest that the variable and often low H3O+/H2O+ number density ratios observed may reflect nonradial ion trajectories strongly influenced by electromagnetic forces and/or plasma instabilities, with energization of the ion population by plasma waves.

  4. Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model

    Science.gov (United States)

    Vertiz, G.; Oyarbide, M.; Macicior, H.; Miguel, O.; Cantero, I.; Fernandez de Arroiabe, P.; Ulacia, I.

    2014-12-01

    Thermal management is one of the key factors to keep lithium-ion cells in optimum electrical performance, under safe working conditions and into a reasonably low ageing process. This issue is becoming particularly relevant due to the heterogeneous heat generation along the cell. Cell working temperature is determined by ambient temperature, heat generation and evacuation capacity. Therefore, thermal management is established by: i) the intrinsic thermal properties (heat capacity & thermal conductivity) and ii) the heat generation electro-thermal parameters (internal resistance, open circuit voltage & entropic factor). In this research, different methods - calculated and experimental - are used to characterize the main heat properties of a 14Ah -LiFePO4/graphite-commercial large sizes pouch cell. In order to evaluate the accuracy of methods, two comparisons were performed. First, Newman heat generation estimations were compared with experimental heat measurements. Secondly, empirical thermal cell behaviour was match with 1D electro-thermal model response. Finally, considering the results, the most adequate methodology to evaluate the key thermal parameters of a large size Lithium-ion pouch cell are proposed to be: i) pulse method for internal resistance, ii)heat loss method for entropic factor; and iii)experimental measurement (ARC calorimeter and C-177-97 standard method) for heat capacity and thermal conductivity.

  5. Automatic 1D integrated geophysical modelling of lithospheric discontinuities: a case study from Carpathian-Pannonian Basin region

    Science.gov (United States)

    Grinč, Michal; Zeyen, Hermann; Bielik, Miroslav

    2014-06-01

    Using a very fast 1D method of integrated geophysical modelling, we calculated models of the Moho discontinuity and the lithosphere-asthenosphere boundary in the Carpathian-Pannonian Basin region and its surrounding tectonic units. This method is capable to constrain complicated lithospheric structures by using joint interpretation of different geophysical data sets (geoid and topography) at the same time. The Moho depth map shows significant crustal thickness variations. The thickest crust is found underneath the Carpathian arc and its immediate Foredeep. High values are found in the Eastern Carpathians and Vrancea area (44 km). The thickest crust modelled in the Southern Carpathians is 42 km. The Dinarides crust is characterized by thicknesses more than 40 km. In the East European Platform, crust has a thickness of about 34 km. In the Apuseni Mountains, the depth of the Moho is about 36 km. The Pannonian Basin and the Moesian Platform have thinner crust than the surrounding areas. Here the crustal thicknesses are less than 30 km on average. The thinnest crust can be found in the SE part of the Pannonian Basin near the contact with the Southern Carpathians where it is only 26 km. The thickest lithosphere is placed in the East European Platform, Eastern Carpathians and Southern Carpathians. The East European Platform lithosphere thickness is on average more than 120 km. A strip of thicker lithosphere follows the Eastern Carpathians and its Foredeep, where the values reach in average 160 km. A lithosphere thickness minimum can be observed at the southern border of the Southern Carpathians and in the SE part of the Pannonian Basin. Here, it is only 60 km. The extremely low values of lithospheric thickness in this area were not shown before. The Moesian Platform is characterized by an E-W trend of lithospheric thickness decrease. In the East, the thickness is about 110 km and in the west it is only 80 km. The Pannonian Basin lithospheric thickness ranges from 80 to

  6. Application of a SEEK filter to a 1D biogeochemical model of the Ligurian Sea: Twin experiments and real data assimilation

    NARCIS (Netherlands)

    Raick, C.; Alvera-Azcarate, A.; Barth, A.; Brankart, J.-M.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Singular Evolutive Extended Kalman (SEEK) filter has been implemented to assimilate in-situ data in a 1D coupled physical-ecosystem model of the Ligurian Sea. The biogeochemical model describes the partly decoupled nitrogen and carbon cycles of the pelagic food web. The GHER hydrodynamic model (

  7. Development of a 1 D hydrodynamic habitat model for the Hippopotamus amphibious as basis for sustainable exploitation of hydroelectric power

    Science.gov (United States)

    Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.

    2009-12-01

    Hydroelectric Power (HEP) is proving to be a good alternative to carbon based energy. In the past hydropower especially large scale hydro attracted significant criticism as a result of its impact on the environment. A new breed of hydroelectric dam is in the offing. The aim is to have as little a footprint as possible on the environment in both pre and post construction phases and thus minimize impact on biodiversity whilst producing clean renewable energy. The Bui dam is 400 MW scheme currently under development on the Black Volta River in the Bui national park in Ghana. The reservoir created by the Bui barrage is expected to impact (through inundation) the habitat of two species of hippos know to exist in the park, the Hippopotamus amphibius and the Choeropsis liberiensis. Computer-based models present a unique opportunity to assess quantitatively the impact of the new reservoir on the habitat of the target species in this case the H. amphibious. Until this undertaking, there were very few studies documenting the habitat of the H. amphibious let alone model it. The work and subsequent presentation will show the development of a habitat model for the Hippopotamus amphibius. The Habitat Information retrieval Program based on Streamflow Analysis, in short HIPStrA, is a one dimensional (1D) in-stream, spatially explicit hybrid construct that combines physico-chemical evidence and expert knowledge to forecast river habitat suitability (Hs) for the Hippopotamus amphibius. The version of the model presented is specifically developed to assess the impact of a reservoir created by a hydroelectric dam on potential dwelling areas in the Bui gorge for hippos. Accordingly, this version of HIPStrA simulates a special reservoir suitability index (Rsi), a metric that captures the”hippo friendliness” of any lake or reservoir. The impact of measured and simulated flood events as well as low flows, representing extreme events is also assessed. Recommendations are made for the

  8. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  9. New atmospheric model of Epsilon Eridani

    Science.gov (United States)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  10. Hydrodynamic models of a Cepheid atmosphere

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  11. Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, G.; Cerri, T.; Pertusi, G. [Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy)

    2011-03-15

    The definition of an efficient optimization methodology for internal combustion engine design using 1D fluid dynamic simulation models is presented. This work aims at discussing the fundamental numerical and fluid dynamic aspects which can lead to the definition of a best practice technique, depending on the complexity of the problem to be dealt with, on the number of design parameters, objective variables and constrains. For these reasons, both single-and multi-objective problems will be addressed, where the former are still of relevant interest (i.e. optimization of engine performances), while the latter have a much wider range of applications and are often characterized by conflicting objectives. The Mesh Adaptive Direct Search (MADS) was chosen among the class of direct search methods and compared with the Genetic Algorithms to solve single-objective problems, and similarly two different algorithms were chosen and compared to solve multi-objective problems: the {epsilon}-constraint method and the NSGA-II (Non-Dominated Sorting Genetic Algorithm). A single cylinder spark ignition engine, used in a motorbike application, was chosen as test case, to allow reduced computational times, without any loss of generality of the results. The analysis evaluate the convergence and efficiency of each methodology for the different problems which are solved. The achieved goal is not the definition of an ever valid mathematical strategy, but here focus is given on the parallel application of a detailed fluid dynamic analysis and automated optimization techniques to suggest a best practice technique to be employed depending on the characteristic of the optimization problem to be solved. (author)

  12. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  13. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    CERN Document Server

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  14. Code package MAG c user tool for numerical modeling of 1D shock wave and dynamic processes in solids

    Science.gov (United States)

    Rudenko, Vladimir; Shaburov, Michail

    1999-06-01

    Design and theoretical and numerical preparation of shock wave experiments require, as a rule, conduction of a large amount of calculations. Usually preparation of a problem for numerical solution, calculation and processing of the results is done be programmers c mathematicians. The appearance of powerful personal computers and interface tools allows to develop such user-oriented programs that a researcher can handle them without the help of a mathematician, even if he does not have special programming background. Code package MAG for numerical solution of 1D system of equations of hydrodynamics, elastoplastics, heat conduction and magnetic hydrodynamic. A number of modern models of elastoplastics and kinetics of power materials is implemented in it. The package includes libraries of equations of state, thermal physical and electromagnetic properties of substances. The code package is an interactive visual medium providing a user with the following capabilities: ? Input and edit initial data for a problem; ? Calculate separate problems, as well as series of problems with a possibility of automatic variation of parameters; ? View the modeled phenomena dynamically using the means of visualization; ? Control the process of calculation: terminate the calculation, change parameters, make express-processing of the results, continue the calculation etc.; ? Process the numerical results producing final plots and tables; ? Record and store numerical results in databases, including the formats supported by Microsoft Word, Acces, Exel; ? Make dynamic visual comparison of the results of several simultaneous calculations; ? Carry out automatic numerical optimization of a selected experimental scheme. The package is easy in use, allows prompt input and convenient information processing. The validity of numerical results obtained with the package MAG has been proved by numerous hydrodynamic experiments and comparisons with numerical results from similar programs. The package was

  15. Study of fog characteristics by using the 1-D COBEL model at the airport of Thessaloniki, Greece

    Science.gov (United States)

    Stolaki, S.; Pytharoulis, I.; Karacostas, T.

    2010-07-01

    An attempt is made to couple the one dimensional COBEL - ISBA (COuche Brouillard Eau Liquide - Interactions Soil Biosphere Atmosphere) model with the WRF (Weather Research and Forecasting) numerical weather prediction model. This accomplishment will improve the accuracy on the short-term forecasting of fog events, which is of paramount importance -mainly to the airway companies, the airports functioning and the community as well- and will provide the means for the implementation of extensive studies of fog events formed at the "Macedonia" airport of Thessaloniki. Numerical experiments have been performed to study in depth the thermodynamic structure and the microphysical characteristics of the fog event that was formed on 06/01/2010. Moreover, the meteorological conditions -under the influence of which- the fog event was formed are also investigated. Sensitivity tests with respect to the initial conditions of temperature, relative humidity and geostrophic wind speed profiles have been performed to illustrate the model’s performance. Dew deposition rates have also been examined in order to test the importance of it on controlling the fog formation. The numerical results have been compared with actual measurements and the findings have been evaluated and discussed.

  16. Coupling approaches used in atmospheric entry models

    Science.gov (United States)

    Gritsevich, M. I.

    2012-09-01

    While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry

  17. Models of magnetized neutron star atmospheres

    CERN Document Server

    Suleimanov, V; Werner, K

    2009-01-01

    We present a new computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plasma. Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. In particular, the outgoing spectrum using the "sandwich" model (thin atmosphere with a hydrogen layer above a helium layer) is constructed. Thin partially ionized hydrogen atmospheres with vacuum polarization are shown to be able to improv...

  18. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK); Bingham, Philip R [ORNL

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.

  19. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.

    Science.gov (United States)

    Noack Watt, Kristin E; Achilleos, Annita; Neben, Cynthia L; Merrill, Amy E; Trainor, Paul A

    2016-07-01

    Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention.

  20. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.

    Directory of Open Access Journals (Sweden)

    Kristin E Noack Watt

    2016-07-01

    Full Text Available Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs by RNA polymerases (Pol I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention.

  1. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  2. Fingering convection and cloudless models for cool brown dwarf atmospheres

    CERN Document Server

    Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...

  3. Alteration minerals, fluids, and gases on early Mars: Predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001

    Science.gov (United States)

    Melwani Daswani, Mohit; Schwenzer, Susanne P.; Reed, Mark H.; Wright, Ian P.; Grady, Monica M.

    2016-11-01

    Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low-temperature (20 °C) one-dimensional (1-D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low-temperature ( 20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica-rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water-rock interaction that must have led to the formation of the carbonates 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.

  4. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  5. Dynamics of ozone and nitrogen oxides at Summit, Greenland. II. Simulating snowpack chemistry during a spring high ozone event with a 1-D process-scale model

    NARCIS (Netherlands)

    Murray, K.A.; Kramer, L.J.; Doskey, P.V.; Ganzeveld, L.N.; Seok, B.; Dam, van B.; Helmig, D.

    2015-01-01

    Observed depth profiles of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) in snowpack interstitial air at Summit, Greenland were best replicated by a 1-D process-scale model, which included (1) geometrical representation of snow grains as spheres, (2) aqueous-phase chemistry confined to a

  6. Global Atmospheric Models for Cosmic Ray Detectors

    CERN Document Server

    Will, Martin

    2014-01-01

    The knowledge of atmospheric parameters -- such as temperature, pressure, and humidity -- is very important for a proper reconstruction of air showers, especially with the fluorescence technique. The Global Data Assimilation System (GDAS) provides altitude-dependent profiles of these state variables of the atmosphere and several more. Every three hours, a new data set on 23 constant pressure level plus an additional surface values is available for the entire globe. These GDAS data are now used in the standard air shower reconstruction of the Pierre Auger Observatory. The validity of the data was verified by comparisons with monthly models that were averaged from on-site meteorological radio soundings and weather station measurements obtained at the Observatory in Malarg\\"ue. Comparisons of reconstructions using the GDAS data and the monthly models are also presented. Since GDAS is a global model, the data can potentially be used for other cosmic and gamma ray detectors. Several studies were already performed ...

  7. VizieR Online Data Catalog: A grid of 1D low-mass star formation models (Vaytet+, 2017)

    Science.gov (United States)

    Vaytet, N.; Haugbolle, T.

    2016-11-01

    We ran 143 1D simulations of gravitationally collapsing Bonnor-Ebert spheres, varying the initial mass, radius and temperature of the parent cloud. The properties of the first and second Larson cores are reported. The simulation outputs for each run are provided (one separate file per snapshot), as well as the initial parameters and core properties in a summary tablec1.dat. All the data from the simulations (figures and raw data for every output) are publicly available at this address: http://starformation.hpc.ku.dk/grid-of-protostars. (2 data files).

  8. Models of magnetized neutron star atmospheres: thin atmospheres and partially ionized hydrogen atmospheres with vacuum polarization

    CERN Document Server

    Suleimanov, V F; Werner, K

    2009-01-01

    Observed X-ray spectra of some isolated magnetized neutron stars display absorption features, sometimes interpreted as ion cyclotron lines. Modeling the observed spectra is necessary to check this hypothesis and to evaluate neutron star parameters.We develop a computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plas...

  9. Extension of the AURIC Radiative Transfer Model for Mars Atmospheric Research

    Science.gov (United States)

    Evans, J. S.; Lumpe, J. D.; Correira, J.; Stewart, A. I.; Schneider, N. M.; Deighan, J.

    2013-12-01

    We present recent updates to the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) model that allow it to be used as a forward model for Mars atmospheric research. AURIC is a state of the art far ultraviolet (FUV) to near-infrared (NIR) atmospheric radiance model that has been used extensively for analysis and modeling of terrestrial upper atmospheric remote sensing data. We present recent updates to the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) model that allow it to be used as a forward model for Mars atmospheric research. AURIC is a state of the art far ultraviolet (FUV) to near-infrared (NIR) atmospheric radiance model that has been used extensively for analysis and modeling of terrestrial upper atmospheric remote sensing data. The airglow modeling capabilities of AURIC make it a powerful tool that can be used to characterize optical backgrounds, simulate data from both rocket and satellite-borne optical instrumentation, and serve as a forward model driver for geophysical retrieval algorithms. Upgrades made to allow modeling of the Martian atmosphere include 1-D Mars photochemistry and molecular transport and the addition of the following molecular band systems: CO Cameron; CO Fourth Positive Group; CO2+ Fox-Duffendack-Barker; CO2+ UV Doublet; CO Hopfield-Birge (B-X); and CO+ First Negative Group. Furthermore, a prototype AURIC-Titan model has also been developed, allowing comparison of AURIC spectral radiances with Cassini-Huygens/UVIS data [Stevens et al., 2011; Stevens et al., in preparation]. Extension of AURIC to the atmospheres of Pluto and it's largest moon, Charon, is also ongoing in support of NASA's New Horizons mission [Stevens, Evans, and Gladstone, 2012; 2013].

  10. Parallel computing in atmospheric chemistry models

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D. [Lawrence Livermore National Lab., CA (United States). Atmospheric Sciences Div.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  11. Seasonal Predictability in a Model Atmosphere.

    Science.gov (United States)

    Lin, Hai

    2001-07-01

    The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.

  12. MODA - A hybrid atmospheric pollutant dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Favaron, M.; Oliveti Selmi, O. [Servizi Territorio srl, Milan (Italy); Sozzi, R. [Agenzia Regionale Protezione Ambiente (ARPA) Lazio, Rieti (Italy)

    2004-07-01

    MODA is a Gaussian-hybrid atmospheric dispersion model, intended for regulatory applications, and designed to meet the following requirements: ability to operate in complex terrain, standard use of a refined description of turbulence, operational efficiency (in terms of both speed and ease to change simulation parameters), ease of integration in modelling interfaces, output compatibility with the widely-used ISC3. MODA can operate in two modes: a standard mode, in which the pollutant dispersion is treated as Gaussian, and an advanced mode, in which the hybrid relations are used to compute the pollutant concentrations. (orig.)

  13. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  14. The roles of magmatic and external water in the March 8 tephra eruption at Mount St. Helens as assessed by a 1-D steady plume-height model

    Science.gov (United States)

    Mastin, L. G.; Sherrod, D. R.; Vallance, J. W.; Thornber, C. T.; Ewert, J. W.

    2005-12-01

    The dome-building eruption at Mount St. Helens has occurred through glacial ice and snow that would be expected to substantially affect the character of the eruption. Nevertheless, the role of water in the eruption to date has not always been clear. For example, on March 8, 2005, a half-hour-long tephra blast sent a plume to a maximum of ~9 km above the vent (based on pilot reports); seismicity and plume heights were greatest during the first ~10 minutes, then persisted for another ~15 minutes at a lower level before the eruption stopped. Tephra volume within 5 km2 downwind of the vent was ~5x104 m3 DRE, but trace amounts were reported at least to Ellensburg, WA (150 km NE), suggesting a total areal coverage >5,000 km2 and total volume >1x105 m3. Assuming that most of this material was expelled in the first ten minutes and had a density of 2500 kg/m3, the mass flow rate (M) during the vigorous phase was >~4x105 kg/s. The tephra, composed primarily of non-pumiceous broken and decrepitated dome rock, could have been expelled either by groundwater and steam at relatively modest (boiling-point) temperatures, or by magmatic gas at much higher temperatures. The high plume, however, suggested significant buoyancy, perhaps driven by temperatures closer to magmatic. To assess the effect of magmatic heat on plume height, we employ a 1-D steady volcanic plume model that uses specified vent diameter, exit velocity, eruption temperature, mass fractions of gas and added external water, and profiles of atmospheric temperature and humidity, to calculate plume height and plume properties as a function of elevation. The model considers the enthalpy of equilibrium water condensation and of ice formation. Model results show that, under atmospheric temperature and humidity profiles measured near Mount St. Helens on the afternoon of March 8, 2005, a plume height (h) of 7-9 km could have developed with eruption temperatures (T) as low as 100° C, provided the mass fraction of water vapor

  15. Atmospheric transmittance model for photosynthetically active radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  16. Model atmospheres - Tool for identifying interstellar features

    Science.gov (United States)

    Frisch, P. C.; Slojkowski, S. E.; Rodriguez-Bell, T.; York, D.

    1993-01-01

    Model atmosphere parameters are derived for 14 early A stars with rotation velocities, from optical spectra, in excess of 80 km/s. The models are compared with IUE observations of the stars in regions where interstellar lines are expected. In general, with the assumption of solar abundances, excellent fits are obtained in regions longward of 2580 A, and accurate interstellar equivalent widths can be derived using models to establish the continuum. The fits are poorer at shorter wavelengths, particularly at 2026-2062 A, where the stellar model parameters seem inadequate. Features indicating mass flows are evident in stars with known infrared excesses. In gamma TrA, variability in the Mg II lines is seen over the 5-year interval of these data, and also over timescales as short as 26 days. The present technique should be useful in systematic studies of episodic mass flows in A stars and for stellar abundance studies, as well as interstellar features.

  17. Modeling Atmospheric Activity of Cool Stars

    Science.gov (United States)

    Schrijver, C. J.

    2003-10-01

    This review discusses a set of simple models for cool-star activity with which we compute (1) photospheric field patterns on stars of different activity levels, (2) the associated outer-atmospheric field configurations, and (3) the soft X-ray emission that is expected to result from the ensemble of loop atmospheres in the coronae of these stars. The model is based on empirically-determined properties of solar activity. It allows us to extrapolate to stars of significantly higher and lower activity than seen on the present-day Sun through its cycle. With it, we can, for example, gain insight into stellar field patterns (including a possible formation mechanism for polar starspots), as well as in the properties of coronal heating (helpful in the identification of the quiescent coronal heating mechanism). Lacking comprehensive theoretical understanding, the model's reliance on empirical solar data means that the multitude of processes involved are approximated to be independent of rotation rate, activity level, and fundamental stellar parameters, or -- where unavoidably necessary -- assumed to simply scale with activity. An evaluation of the most important processes involved guides a discussion of the limits of the model, of the limitations in our knowledge, and of future needs. "I propose to adopt such rules as will ensure the testability of scientific statements; which is to say, their falsifiability." Karl Popper (1902-1994)

  18. A novel 1D/2D model for simulating conjugate heat transfer applied to flow boiling in tubes with external fins

    Science.gov (United States)

    Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena

    2015-04-01

    This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.

  19. Spectral Analysis and Atmospheric Models of Microflares

    Institute of Scientific and Technical Information of China (English)

    Cheng Fang; Yu-Hua Tang; Zhi Xu

    2006-01-01

    By use of the high-resolution spectral data obtained with THEMIS on 2002 September 5, the spectra and characteristics of five well-observed microflares have been analyzed. Our results indicate that some of them are located near the longitudinal magnetic polarity inversion lines. All the microflares are accompanied by mass motions. The most obvious characteristic of the Hα microflare spectra is the emission at the center of both Hα and CaII 8542(A) lines. For the first time both thermal and non-thermal semi-empirical atmospheric models for the conspicuous and faint microflares are computed. In computing the non-thermal models, we assume that the electron beam resulting from magnetic reconnection is produced in the chromosphere, because it requires lower energies for the injected particles.It is found there is obvious heating in the low chromosphere. The temperature enhancement is about 1000-2200 K in the thermal models. If the non-thermal effects are included, then the required temperature increase can be reduced by 100-150 K. These imply that the Hα microflares can probably be produced by magnetic reconnection in the solar Iower atmosphere.The radiative and kinetic energies of the Hα microflares are estimated and the total energy is found to be 1027 - 4× 1028 erg.

  20. The relevance of preclinical research models for the development of antimigraine drugs: Focus on 5-HT1B/1D and CGRP receptors

    DEFF Research Database (Denmark)

    Gupta, S.; Villalon, C.M.

    2010-01-01

    approaches, have significantly contributed to the two antimigraine principles in therapeutics, namely: 5-HT1B/1D receptor agonists (known as triptans) and CGRP receptor antagonists (known as gepants). This review will analyze the preclinical experimental models currently known for the development...... of these therapeutic principles, which are mainly based on the vascular and/or neurogenic theories of migraine pathogenesis. These include models based on the involvement of cranial vasodilatation and/or the trigeminovascular system in migraine. Clearly, the preclinical strategies should involve both approaches, while...

  1. A new time-dependent analytic model for radiation-induced photocurrent in finite 1D epitaxial diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Verley, Jason C.; Axness, Carl L.; Hembree, Charles Edward; Keiter, Eric Richard; Kerr, Bert (New Mexico Institute of Mining and Technology, Socorro, NM)

    2012-04-01

    Photocurrent generated by ionizing radiation represents a threat to microelectronics in radiation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these threats, and typically rely on compact models for individual electrical components such as transistors and diodes. Compact models consist of a handful of differential and/or algebraic equations, and are derived by making simplifying assumptions to any of the many semiconductor transport equations. Historically, many photocurrent compact models have suffered from accuracy issues due to the use of qualitative approximation, rather than mathematically correct solutions to the ambipolar diffusion equation. A practical consequence of this inaccuracy is that a given model calibration is trustworthy over only a narrow range of operating conditions. This report describes work to produce improved compact models for photocurrent. Specifically, an analytic model is developed for epitaxial diode structures that have a highly doped subcollector. The analytic model is compared with both numerical TCAD calculations, as well as the compact model described in reference [2]. The new analytic model compares well against TCAD over a wide range of operating conditions, and is shown to be superior to the compact model from reference [2].

  2. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    Science.gov (United States)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  3. Coupling WEPP and 3ST1D models for improved prediction of flow and sediment transport at watershed scales

    Science.gov (United States)

    Watershed modeling is a key component of watershed management that involves the simulation of hydrological and fluvial processes for predicting flow and sediment transport within a watershed. For practical purposes, most numerical models have been developed to simulate either runoff and soil erosion...

  4. A critical perspective on 1-D modeling of river processes : gravel load and aggradation in lower Fraser River.

    OpenAIRE

    R.; Ferguson; Church, M.

    2009-01-01

    We investigate how well a width-averaged morphodynamic model can simulate gravel transport and aggradation along a highly irregular 38-km reach of lower Fraser River and discuss critical issues in this type of modeling. Bed load equations with plausible parameter values predict a gravel input consistent with direct measurements and a sediment budget. Simulations using spatially varying channel width, and forced by dominant discharge or a 20-year hydrograph, match the observed downstream finin...

  5. Comparison between a 1D and a 2D numerical model of an active magnetic regenerative refrigerator

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden;

    2008-01-01

    a reciprocating AMR and can determine the cyclical steady-state temperature profile of the system as well as performance parameters such as the refrigeration capacity, the work input and the coefficient of performance (COP). The models are used to analyse an AMR with a regenerator made of flat parallel plates...... results of overall results such as the refrigeration capacity but that a 2D model is required for a detailed analysis of the phenomena occurring inside the AMR....

  6. Using an improved 1D boundary layer model with CFD for flux prediction in gas-sparged tubular membrane ultrafiltration.

    Science.gov (United States)

    Smith, R; Taha, T; Cui, Z F

    2005-01-01

    Tubular membrane ultrafiltration and microfiltration are important industrial separation and concentration processes. Process optimisation requires reduction of membrane build-up. Gas slug introduction has been shown to be a useful approach for flux enhancement. However, process quantification is required for design and optimisation. In this work we employ a non-porous wall CFD model to quantify hydrodynamics in the two-phase slug flow process. Mass transfer is subsequently quantified from wall shear stress, which was determined from the CFD. The mass transfer model is an improved one-dimensional boundary layer model, which empirically incorporates effects of wall suction and analytically includes edge effects for circular conduits. Predicted shear stress profiles are in agreement with experimental results and flux estimates prove more reliable than that from previous models. Previous models ignored suction effects and employed less rigorous fluid property inclusion, which ultimately led to under-predictive flux estimates. The presented model offers reliable process design and optimisation criteria for gas-sparged tubular membrane ultrafiltration.

  7. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    Science.gov (United States)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  8. The impact of soil moisture on the spin up of 1-D Noah land surface model at a site in monsoonal region

    Science.gov (United States)

    Bhattacharya, A.; Mandal, M.

    2014-12-01

    Model spin-up is the process through which the model is adequately equilibrated to ensure balance between the mass fields and velocity fields. In this study, an offline 1-D Noah land surface model (LSM) has been used to investigate the impact of soil moisture on the model spin up at Kharagpur, India which is a site in monsoonal region. The model is integrated recursively for 3-years to assess its spin-up behavior. Several numerical experiments are performed to investigate the impact of initial soil moisture and subsequent dry or wet condition on model spin-up. These include simulations with different initial soil moisture content (observed soil moisture; dry soil; moderately wet soil; saturated soil), simulations initialized before different rain conditions (no rain; infrequent rain; continuous rain) and simulations initialized in different seasons (Winter, Spring, Summer/Pre-Monsoon, Monsoon and Autumn). It is noted that the model has significantly longer spin-up when initialized with very low initial soil moisture content than with higher soil moisture content. It is also seen that in general, simulations initialized just before a continuous rainfall event have the least spin-up time. In a region affected by the monsoon, such as Kharagpur, this observation is reinforced by the results from the simulations initialized in different seasons. It is seen that for monsoonal region, the model spin-up time is least for simulations initialized during Summer/Pre-monsoon. Model initialized during the Monsoon has a longer spin-up than that initialized in any other season. It appears that the model has shorter spin-up if it reaches the equilibrium state predominantly via drying process. It is also observed that the spin-up of offline 1-D Noah LSM may be as low as two months under quasi-equilibrium condition if the initial soil moisture content and time of start of simulations are chosen carefully.

  9. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik;

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere......-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  10. A matrix projection method for on line stable estimation of 1D and 3D shear building models

    Science.gov (United States)

    Angel García-Illescas, Miguel; Alvarez-Icaza, Luis

    2016-12-01

    An estimation method is presented that combines the use of recursive least squares, a matrix parameterized model, Gershgorin circles and tridiagonal matrices properties to allow the identification of stable shear building models in the presence of low excitation or low damping. The resultant scheme yields a significant reduction on the number of calculations involved, when compared with the standard vector parameterization based schemes. As real buildings are always open loop stable, the use of an stable shear building model for vibration control purposes allows the design of more robust control laws. Extensive simulation results are presented for cases of low excitation comparing the results of using or not this matrix projection method with different sets of initial conditions. Results indicate that the use of this projection method does not have an influence in the recovery of natural frequencies, however, it significantly improves the recovery of mode shapes.

  11. High Resolution Transmission Spectroscopy as a Diagnostic for Jovian Exoplanet Atmospheres: Constraints from Theoretical Models

    CERN Document Server

    Kempton, Eliza M -R; Heng, Kevin

    2014-01-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled 3-D atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9 to 55 day orbital periods around solar-type stars. The results of our 3-D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple 1-D models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blue shifts of up to 3 km s$^{-1}$, whereas less irradiated planets show almost no net Doppler shifts. Compared to 1-D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheri...

  12. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    Science.gov (United States)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  13. Integrating models to simulate emergent behaviour: effects of organic matter on soil hydraulics in the ICZ-1D soil-vegetation model

    Science.gov (United States)

    Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos

    2014-05-01

    explore the complex interactions involved in soil development and change. We were unable to identify appropriately-detailed existing models for plant productivity and for the dynamics of soil aggregation and porosity, and so developed the PROSUM and CAST models, respectively, to simulate these subsystems. Moreover, we applied the BRNS generator to obtain a chemical equilibrium model. These were combined with HYDRUS-1D (water and solute transport), a weathering model (derived from the SAFE model) and a simple bioturbation model. The model includes several feedbacks, such as the effect of soil organic matter on water retention and hydraulic conductivity. We encountered several important challenges when building the integrated model. First, a mechanism was developed that initiates the execution of a single time step for an individual sub-model and accounts for the relevant mass transfers between sub-models. This allows for different and sometimes variable time step duration in the submodels. Secondly, we removed duplicated processes and identified and included relevant solute production terms that had been neglected. The model is being tested against datasets obtained from several Soil Critical Zone Observatories in Europe. This contribution focuses on the design strategy for the model.

  14. The 1D parabolic-parabolic Patlak-Keller-Segel model of chemotaxis: The particular integrable case and soliton solution

    Science.gov (United States)

    Shubina, Maria

    2016-09-01

    In this paper, we investigate the one-dimensional parabolic-parabolic Patlak-Keller-Segel model of chemotaxis. For the case when the diffusion coefficient of chemical substance is equal to two, in terms of travelling wave variables the reduced system appears integrable and allows the analytical solution. We obtain the exact soliton solutions, one of which is exactly the one-soliton solution of the Korteweg-de Vries equation.

  15. Temperature effects on the dynamics of the 1-D transverse Ising model with four-spin interactions

    Science.gov (United States)

    Florencio, J.; de Alcantara Bonfim, O. F.

    2004-12-01

    The dynamics of one-dimensional quantum spin systems has been a long standing theoretical and experimental problem. Among them, the transverse Ising model with multi-spin interactions, regarded as one of the simplest with non-trivial dynamics, has attracted considerable interest in recent years. We investigate the temperature effects on the dynamics of the transverse Ising model with four-spin interactions. The model is relevant to the physics of poly(vinylidene fluoride-trifluoroethylene)[P(VDF-TrFE)] copolymers. We determine the time-dependent correlation function and spectral density for all temperatures for cases where the transverse field B is less, equal or greater than the four-spin coupling J. Our calculations were done with rings of up to 11 spins. However the results presented are also valid in the thermodynamic limit. We find that the time-dependent correlation function in general has oscillatory behavior when the transverse field is stronger than the coupling energy. On the other hand, when the field is weaker the real part of the time-dependent correlation function decreases monotonically at high enough temperatures. The temperature effects are best seen from the spectral density: at zero temperature the system can only absorb energy and, as the temperature is raised, the correlation functions keep memory of the zero-temperature quantum phases. Such feature persists up to the infinite temperature limit.

  16. Axial-Flow Compressor Performance Prediction in Design and Off-Design Conditions through 1-D and 3-D Modeling and Experimental Study

    Directory of Open Access Journals (Sweden)

    Ahmad Peyvan

    2016-01-01

    Full Text Available In this study, the main objective is to develop a one dimensional model to predict design and off design performance of an operational axial flow compressor by considering the whole gas turbine assembly. The design and off-design performance of a single stage axial compressor are predicted through 1D and 3D modeling. In one dimensional model the mass, momentum and energy conservation equations and ideal gas equation of state are solved in mean line at three axial stations including rotor inlet, rotor outlet and stator outlet. The total to total efficiency and pressure ratio are forecasted using the compressor geometry, inlet stagnation temperature and stagnation pressure, the mass flow rate and the rotational speed of the rotor, and the available empirical correlation predicting the losses. By changing the mass flow rate while the rotational speed is fixed, characteristic curves of the compressor are obtained. The 3D modeling is accomplished with CFD method to verify one dimensional code at non-running line conditions. By defining the three-dimensional geometry of the compressor and the boundary conditions coinciding with one dimensional model for the numerical solver, axial compressor behavior is predicted for various mass flow rates in different rotational speeds. Experimental data are obtained from tests of the axial compressor of a gas turbine engine in Sharif University gas turbine laboratory and consequently the running line is attained. As a result, the two important extremities of compressor performance including surge and choking conditions are obtained through 1D and 3D modeling. Moreover, by comparing the results of one-dimensional and three-dimensional models with experimental results, good agreement is observed. The maximum differences of pressure ratio and isentropic efficiency of one dimensional modeling with experimental results are 2.1 and 3.4 percent, respectively.

  17. Perturbative Beta function in the most general four-fermion interactions model in (3+1)D

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Francisco [Universidad de la Frontera (UFRO), Temuco (Chile); Nascimento, Leonardo [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), PA (Brazil); Alves, Van Sergio [Universidade Federal do Para (UFPA), Belem, PA (Brazil)

    2011-07-01

    Full text: The fundamental theory of strong interactions is described by quantum chromodynamics (QCD), which represents the interaction between quarks and gluons. This theory has two distinct limits of interest. In high energy scale the QCD presents the asymptotic freedom, so that the coupling constant is small in this regime and the perturbation theory can be used. At low energies, comparable to the mass of the lightest hadrons ({approx} 1 Gev), the theory presents non-perturbative aspects such as the confinement of quarks and gluons and chiral symmetry breaking dynamics. The fact that the coupling constant increases when the energy scale decreases makes the analytic study very complex in this regime because the perturbation theory can not be used. In this case, is natural to use effective theories as a tool to describe some properties at low-energy limit. In this context, four fermions models, like Nambu-Jona-Lasinio (NJL) model, have been used as one of the most important effective theories to describe QCD in the low-energy limit. In fact, even these models being nonrenormalizable in d {>=} 3, in the usual power counting sense, they may become physically relevant in the low energy limit. Thus, they are treated as effective theories and the energy interval where this happens the theory behaves as an usual renormalizable one. Studies on the behavior of the beta function in four fermion interactions models have some interest mainly because the fixed points of theses theories, in a certain sense, are related to chiral symmetry breaking and phase transition, which is characteristic of QCD at low energies. The purpose of this work is to study the perturbative behavior of the beta function at 1-loop order in four dimensions and analyze the structure of fixed points. We consider the most general four-fermion interactions obeying an SU(N{sub c}) x SU(N{sub f} )L x SU(N{sub f} ){sub R} symmetry, so that they form a complete basis. We treated the model as an effective

  18. Tactical Atmospheric Modeling System-Real Time (TAMS-RT)

    Science.gov (United States)

    2016-06-07

    mesoscale model analysis and forecast fields as inputs. OBJECTIVES Support the NRL Tactical Atmospheric Modeling System- Real Time (TAMS-RT) installed in...SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Tactical Atmospheric Modeling System- Real Time (TAMS...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 1 Tactical Atmospheric Modeling System- Real

  19. Non-Markovian Persistence at the PC point of a 1d non-equilibrium kinetic Ising model

    CERN Document Server

    Menyhard, N; Menyhard, Nora; Odor, Geza

    1997-01-01

    One-dimensional non-equilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and nearest neighbour spin exchanges exhibiting a parity-conserving (PC) phase transition on the level of kinks are investigated here numerically from the point of view of the underlying spin system. The dynamical persistency exponent $\\Theta$ and the exponent $lambda$ characterising the two-time autocorrelation function of the total magnetization under non-equilibrium conditions are reported. It is found that the PC transition has strong effect: the process becomes non-Markovian and the above exponents exhibit drastic changes as compared to the Glauber-Ising case.

  20. Procyon: Constraining Its Temperature Structure with High-Precision Interferometry and 3-D Model Atmospheres

    Science.gov (United States)

    Aufdenberg, J. P.; Ludwig, H.-G.; Kervella, P.

    2004-12-01

    We have fit synthetic visibilities from 3-D (CO5BOLD + PHOENIX) and 1-D (PHOENIX, ATLAS12) model stellar atmospheres for Procyon (F5 IV) to high-precision interferometric data from the VINCI instrument at the VLT Interferometer (K-band) and from the Mark III interferometer (500 nm, 800 nm). These data provide a test of theoretical wavelength-dependent limb-darkening predictions, and therefore Procyon's atmospheric temperature structure. Earlier work (Allende Prieto et al. 2002 ApJ 567, 544) has shown that the temperature structure from a spatially and temporally averaged 3-D hydrodynamical model produces significantly less limb darkening at 500 nm relative to the temperature structure from a 1-D MARCS model atmosphere which uses a mixing-length approximation for convective flux transport. Our direct fits to the interferometric data confirm this prediction, however we find that not all 1-D models fail to reproduce the observations. The key to matching the interferometric data is a shallower temperature gradient than provided by the standard 1-D mixing-length approximation. We find that in addition to our best fitting 3-D hydrodynamical model, a 1-D ATLAS12 model, with an additional free parameter for ``approximate overshooting'', provides the required temperature gradient. We estimate that an interferometric precision better than 0.1% will be required to distinguish between the 3-D model and the ATLAS12 model. This overshooting approximation has been shown to match Solar limb-darkening observations reasonably well (Castelli et al 1997 A&A 324, 432), however published work since using Strömgren photometry of solar-type stars has cast doubt on the importance of overshooting. We have also compared synthetic spectral energy distributions for Procyon to ultraviolet, optical and near-infrared spectrophotometry and find differences from comparisons to Strömgren photometry alone. This work was performed in part contract with the Jet Propulsion Laboratory (JPL) funded by

  1. Simulation of Marine Boundary Layer characteristics using a 1-D PBL model over the Bay of Bengal during BOBMEX-99

    Indian Academy of Sciences (India)

    N V Sam; U C Mohanty; A N V Satyanarayana

    2003-06-01

    The characteristic features of the marine boundary layer (MBL) over the Bay of Bengal during the southwest monsoon and the factors influencing it are investigated. The Bay of Bengal and Monsoon Experiment (BOBMEX) carried out during July-August 1999 is the first observational experiment under the Indian Climate Research Programme (ICRP). A very high-resolution data in the vertical was obtained during this experiment, which was used to study the MBL characteristics off the east coast of India in the north and south Bay of Bengal. Spells of active and suppressed convection over the Bay were observed, of which, three representative convective episodes were considered for the study. For this purpose a one-dimensional multi-level PBL model with a TKE- closure scheme was used. The soundings, viz., the vertical profiles of temperature, humidity, zonal and meridional component of wind, obtained onboard ORV Sagar Kanya and from coastal stations along the east coast are used for the study. The temporal evolution of turbulent kinetic energy, marine boundary layer height (MBLH), sensible and latent heat fluxes and drag coefficient of momentum are simulated for different epochs of monsoon and monsoon depressions during BOBMEX-99.The model also generates the vertical profiles of potential temperature, specific humidity, zonal and meridional wind. These simulated values compared reasonably well with the observations available from BOBMEX.

  2. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    Science.gov (United States)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik; Guo Larsén, Xiaoli

    2016-07-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress reduces the near-surface wind speed. Introducing the wave influence roughness length has a larger influence than does adding the swell influence on mixing. Compared with measurements, adding the swell influence on both atmospheric mixing and wind stress gives the best model performance for the wind speed. The influence varies with wave characteristics for different sea basins. Swell occurs infrequently in the studied area, and one could expect more influence in high-swell-frequency areas (i.e., low-latitude ocean). We conclude that the influence of swell on atmospheric mixing and wind stress should be considered when developing climate models.

  3. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.

    Science.gov (United States)

    Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M

    2015-07-01

    This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding.

  4. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres

    CERN Document Server

    Hayek, W; Pont, F; Asplund, M

    2012-01-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of the two transiting exoplanet systems HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated using 3D LTE spectrum formation and opacity sampling. We test our predictions using least-squares fits of model light curves to primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 between 2900 A and 5700 A produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of surface granulation. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 A and 5700 A, partly due ...

  5. Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures

    Science.gov (United States)

    Stüeken, E. E.; Kipp, M. A.; Koehler, M. C.; Schwieterman, E. W.; Johnson, B.; Buick, R.

    2016-12-01

    Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N2, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean - presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric oxygenation could have initiated a stepwise pN2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of an oxygen-producing biosphere.

  6. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  7. Radiative and dynamical modeling of Jupiter's atmosphere

    Science.gov (United States)

    Guerlet, Sandrine; Spiga, Aymeric

    2016-04-01

    Jupiter's atmosphere harbours a rich meteorology, with alternate westward and eastward zonal jets, waves signatures and long-living storms. Recent ground-based and spacecraft measurements have also revealed a rich stratospheric dynamics, with the observation of thermal signatures of planetary waves, puzzling meridional distribution of hydrocarbons at odds with predictions of photochemical models, and a periodic equatorial oscillation analogous to the Earth's quasi-biennal oscillation and Saturn's equatorial oscillation. These recent observations, along with the many unanswered questions (What drives and maintain the equatorial oscillations? How important is the seasonal forcing compared to the influence of internal heat? What is the large-scale stratospheric circulation of these giant planets?) motivated us to develop a complete 3D General Circulation Model (GCM) of Saturn and Jupiter. We aim at exploring the large-scale circulation, seasonal variability, and wave activity from the troposphere to the stratosphere of these giant planets. We will briefly present how we adapted our existing Saturn GCM to Jupiter. One of the main change is the addition of a stratospheric haze layer made of fractal aggregates in the auroral regions (poleward of 45S and 30N). This haze layer has a significant radiative impact by modifying the temperature up to +/- 15K in the middle stratosphere. We will then describe the results of radiative-convective simulations and how they compare to recent Cassini and ground-based temperature measurements. These simulations reproduce surprisingly well some of the observed thermal vertical and meridional gradients, but several important mismatches at low and high latitudes suggest that dynamics also plays an important role in shaping the temperature field. Finally, we will present full GCM simulations and discuss the main resulting features (waves and instabilities). We will also and discuss the impact of the choice of spatial resolution and

  8. Formulations of moist thermodynamics for atmospheric modelling

    CERN Document Server

    Marquet, Pascal

    2015-01-01

    Internal energy, enthalpy and entropy are the key quantities to study thermodynamic properties of the moist atmosphere, because they correspond to the First (internal energy and enthalpy) and Second (entropy) Laws of thermodynamics. The aim of this chapter is to search for analytical formulas for the specific values of enthalpy and entropy and for the moist-air mixture composing the atmosphere. The Third Law of thermodynamics leads to the definition of absolute reference values for thermal enthalpies and entropies of all atmospheric species. It is shown in this Chapter 22 that it is possible to define and compute a general moist-air entropy potential temperature, which is really an equivalent of the moist-air specific entropy in all circumstances (saturated, or not saturated). Similarly, it is shown that it is possible to define and compute the moist-air specific enthalpy, which is different from the thermal part of what is called Moist-Static-Energy in atmospheric studies.

  9. Atomic hydrogen distribution. [in Titan atmospheric model

    Science.gov (United States)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  10. Spectral Characteristics of Atmospheric Turbulence Model

    Institute of Scientific and Technical Information of China (English)

    GuojunXINShida; LIUShikouLIU; 等

    1996-01-01

    In this paper,KdV-Burgers equation can be regarded as the normal equation of atmospheric turbulence in the stable boundary layer.On the basis of the travelling wave analytic solution of KdV-Burgers equation,the turbulent spectrum is obtained.We observe that the behavior of the spectra is consistent with actual turbulent spectra of stable atmospheric boundary layer.

  11. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    Science.gov (United States)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  12. Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere

    DEFF Research Database (Denmark)

    Hertel, O.

    1994-01-01

    Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....

  13. Stellar abundance analyses in the light of 3D hydrodynamical model atmospheres

    CERN Document Server

    Asplund, M

    2003-01-01

    I describe recent progress in terms of 3D hydrodynamical model atmospheres and 3D line formation and their applications to stellar abundance analyses of late-type stars. Such 3D studies remove the free parameters inherent in classical 1D investigations (mixing length parameters, macro- and microturbulence) yet are highly successful in reproducing a large arsenal of observational constraints such as detailed line shapes and asymmetries. Their potential for abundance analyses is illustrated by discussing the derived oxygen abundances in the Sun and in metal-poor stars, where they seem to resolve long-standing problems as well as significantly alter the inferred conclusions.

  14. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik;

    . However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties...

  15. Modeling Large Water Infiltration Events in Small Plots Using the 1-D Finite Water-content Method and Numerical Solutions to the Richards' Equation.

    Science.gov (United States)

    Brown, A.; Dahlke, H. E.

    2015-12-01

    The ability of soil to infiltrate large volumes of water is fundamental to managed aquifer recharge (MAR) when using infiltration basins or agricultural fields. In order to investigate the feasibility of using agricultural fields for MAR we conducted a field experiment designed to not only assess the resilience of alfalfa (Medicago sativa) to large (300 mm), short duration (1.5 hour), repeated irrigation events during the winter but also how crop resilience was influenced by soil water movement. We hypothesized that large irrigation amounts designed for groundwater recharge could cause prolonged saturated conditions in the root-zone and yield loss. Tensiometers were installed at two depths (60 and 150 cm) in a loam soil to monitor the changes in soil matric potential within and below the root-zone following irrigation events in each of five experimental plots (8 x 16 m2). To simulate the individual infiltration events we employed the HYDRUS-1D computational module (Simunek et al., 2005) and compared the finite-water content vadose zone flow method (Ogden et al. 2015) with numerical solutions to the Richards' equation. For both models we assumed a homogenous and isotropic root zone that is initially unsaturated with no water flow. Here we assess the ability of these two models to account for the control volume applied to the plots and to capture sharp changes in matric potential that were observed in the early time after an irrigation pulse. The goodness-of-fit of the models was evaluated using the root mean square error (RMSE) for observed and predicted values of cumulative infiltration over time, wetting front depth over time and water content at observation nodes. For the finite-water content method, the RMSE values and output for observation nodes were similar to that from the HYDRUS-1D solution. This indicates that the finite-water content method may be useful for predicting the fate of large volumes of water applied for MAR. Moreover, both models suggest a

  16. CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses

    DEFF Research Database (Denmark)

    Teige, Anna; Bockermann, Robert; Hasan, Maruf

    2010-01-01

    A protective and anti-inflammatory role for CD1d-dependent NKT cells (NKTs) has been reported in experimental and human autoimmune diseases. However, their role in arthritis has been unclear, with conflicting reports of CD1d-dependent NKTs acting both as regulatory and disease-promoting cells...

  17. Modeling the effects of atmospheric emissions on groundwater composition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  18. A Atmospheric Dispersion Model for the Sudbury, Ontario, Area.

    Science.gov (United States)

    Huhn, Frank Jones

    1982-03-01

    A mathematical model was developed and tested to predict the relationship between sulphur oxide and trace metal emissions from smelters in the Sudbury, Ontario area, and atmospheric, precipitation, lake water and sediment chemistry. The model consists of atmospheric and lake chemistry portions. The atmospheric model is a Gaussian crosswind concentration distribution modification to a box model with a uniform vertical concentration gradient limited by a mixing height. In the near-field Briggs' plume rise and vertical dispersion terms are utilized. Oxidation, wet and dry deposition mechanisms are included to account for the gas, liquid and solid phases separately. Important improvements over existing models include (1) near- and far-field conditions treated in a single model; (2) direct linkage of crosswind dispersion to hourly meteorological observations; (3) utilization of maximum to minimum range of input parameters to realistically model the range of outputs; (4) direct linkage of the atmospheric model to a lake model. Precipitation chemistry as calculated by the atmospheric model is related to lake water and sediment chemistry utilizing a mass balance approach and assuming a continuously stirred reactor (CSTR) model to describe lake circulation. All inputs are atmospheric, modified by hydrology, soil chemistry and sedimentation. Model results were tested by comparison with existing atmospheric and precipitation chemistry measurements, supplemented with analyses of lake water and sediment chemistry collected in a field program. Eight pollutant species were selected for modeling: sulphur dioxide, sulphate ion, hydrogen ion, copper, nickel, lead, zinc, and iron. The model effectively predicts precipitation chemistry within 150 km of Sudbury, with an average prediction to measurement ratio of 90 percent. Atmospheric concentrations are effectively predicted within 80 km, with an average prediction to measurement ratio of 81 percent. Lake chemistry predictions are

  19. Effect of the band structure in a rigorous two-body model with long-range interactions in 1D optical lattices

    Science.gov (United States)

    Kristensen, Tom; Simoni, Andrea; Launay, Jean-Michel

    2016-05-01

    We compute scattering and bound state properties for two ultracold molecules in a pure 1D optical lattice. We introduce reference functions with complex quasi-momentum that naturally account for the effect of excited energy bands. Our exact results for a short-range interaction are first compared with the simplest version of the standard Bose-Hubbard (BH) model. Such comparison allows us to highlight the effect of the excited bands, of the non-on-site interaction and of tunneling with distant neighbor, that are not taken into account in the BH model. The effective interaction can depend strongly on the particle quasi-momenta and can present a resonant behavior even in a deep lattice. As a second step, we study scattering of two polar particles in the optical lattice. Peculiar Wigner threshold laws stem from the interplay of the long range dipolar interaction and the presence of the energy bands. We finally assess the validity of an extended Bose-Hubbard model for dipolar gases based on our exact two-body calculations. This work was supported by the Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).

  20. Process-Scale Modeling of Atmosphere-Snowpack Exchange of Nitrogen Oxides

    Science.gov (United States)

    Murray, K. A.; Doskey, P. V.; Ganzeveld, L.

    2013-12-01

    Snowpack over glacial ice is a reservoir for reactive nitrogen gases. Previous studies indicate nitrogen oxides (NOx) are generated in snowpack interstitial air through photolysis of nitrate (NO3-). Gradients in NOx mixing ratios between snowpack interstitial air and the overlying atmosphere regulate exchange of NOx with snowpack, which affects the Arctic ozone budget and climate. To better understand the dynamics of cryosphere-atmosphere exchange of NOx in the Arctic, we collected 2 years of meteorological and chemical data in and above the snowpack at Summit, Greenland. The comprehensive dataset indicates NOx emissions are episodic, with NOx enhancements in snowpack in early spring during high wind speed events (10-20 mph), which elevate NOx levels to ~500 pptv at depths of 2.5 m. Analysis of the observations will be based upon application of a 1-D process-scale model of atmosphere-snowpack exchange of NOx. The model will include representations of the snowpack chemistry in gas and aqueous phases, mass transfer of chemical species between phases, and physical transport by diffusion and wind pumping. The model will calculate the chemical and physical tendencies in three dimensions: depth, time, and intensity. Analysis of the tendencies will allow us to perform model sensitivity tests of pertinent snowpack physical and chemical processes. The end-goal of the project is to simplify the major tendencies into a parameterized model add-on for use in global models to determine the importance of properly representing snowpack in global model simulations.

  1. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2010-09-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. It is the first model of its kind to incorporate the Master Chemical Mechanism (MCM and a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  2. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  3. The relevance of preclinical research models for the development of antimigraine drugs: focus on 5-HT(1B/1D) and CGRP receptors.

    Science.gov (United States)

    Gupta, Saurabh; Villalón, Carlos M

    2010-10-01

    Migraine is a complex neurovascular syndrome, causing a unilateral pulsating headache with accompanying symptoms. The past four decades have contributed immensely to our present understanding of migraine pathophysiology and have led to the introduction of specific antimigraine therapies, much to the relief of migraineurs. Pathophysiological factors culminating into migraine headaches have not yet been completely deciphered and, thus, pose an additional challenge for preclinical research in the absence of any direct experimental marker. Migraine provocation experiments in humans use a head-score to evaluate migraine, as articulated by the volunteer, which cannot be applied to laboratory animals. Therefore, basic research focuses on different symptoms and putative mechanisms, one at a time or in combination, to validate the hypotheses. Studies in several species, utilizing different preclinical approaches, have significantly contributed to the two antimigraine principles in therapeutics, namely: 5-HT(1B/1D) receptor agonists (known as triptans) and CGRP receptor antagonists (known as gepants). This review will analyze the preclinical experimental models currently known for the development of these therapeutic principles, which are mainly based on the vascular and/or neurogenic theories of migraine pathogenesis. These include models based on the involvement of cranial vasodilatation and/or the trigeminovascular system in migraine. Clearly, the preclinical strategies should involve both approaches, while incorporating the newer ideas/techniques in order to get better insights into migraine pathophysiology.

  4. An Approach Using a 1D Hydraulic Model, Landsat Imaging and Generalized Likelihood Uncertainty Estimation for an Approximation of Flood Discharge

    Directory of Open Access Journals (Sweden)

    Seung Oh Lee

    2013-10-01

    Full Text Available Collection and investigation of flood information are essential to understand the nature of floods, but this has proved difficult in data-poor environments, or in developing or under-developed countries due to economic and technological limitations. The development of remote sensing data, GIS, and modeling techniques have, therefore, proved to be useful tools in the analysis of the nature of floods. Accordingly, this study attempts to estimate a flood discharge using the generalized likelihood uncertainty estimation (GLUE methodology and a 1D hydraulic model, with remote sensing data and topographic data, under the assumed condition that there is no gauge station in the Missouri river, Nebraska, and Wabash River, Indiana, in the United States. The results show that the use of Landsat leads to a better discharge approximation on a large-scale reach than on a small-scale. Discharge approximation using the GLUE depended on the selection of likelihood measures. Consideration of physical conditions in study reaches could, therefore, contribute to an appropriate selection of informal likely measurements. The river discharge assessed by using Landsat image and the GLUE Methodology could be useful in supplementing flood information for flood risk management at a planning level in ungauged basins. However, it should be noted that this approach to the real-time application might be difficult due to the GLUE procedure.

  5. Estimate Total Number of the Earth Atmospheric Particle with Standard Atmosphere Model

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Yi

    2001-01-01

    The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience.Estimating entire AP number is also a familiar question in general physics.With standard atmosphere model,considering the number difference of AP caused by rough and uneven in the earth surface below,the sum of dry clean atmosphere particle is 1.06962 × 1044.So the whole number of AP including water vapor is 1.0740 × 1044.The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.

  6. SMART - a computer program for modelling stellar atmospheres

    CERN Document Server

    Aret, Anna; Poolamäe, Raivo; Sapar, Lili

    2013-01-01

    Program SMART (Spectra and Model Atmospheres by Radiative Transfer) has been composed for modelling atmospheres and spectra of hot stars (O, B and A spectral classes) and studying different physical processes in them (Sapar & Poolam\\"ae 2003, Sapar et al. 2007). Line-blanketed models are computed assuming plane-parallel, static and horizontally homogeneous atmosphere in radiative, hydrostatic and local thermodynamic equilibrium. Main advantages of SMART are its shortness, simplicity, user friendliness and flexibility for study of different physical processes. SMART successfully runs on PC both under Windows and Linux.

  7. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...

  8. A theoretical model of atmospheric ozone depletion

    Science.gov (United States)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  9. Memory efficient atmospheric effects modeling for infrared scene generators

    Science.gov (United States)

    Kavak, Çaǧlar; Özsaraç, Seçkin

    2015-05-01

    The infrared (IR) energy radiated from any source passes through the atmosphere before reaching the sensor. As a result, the total signature captured by the IR sensor is significantly modified by the atmospheric effects. The dominant physical quantities that constitute the mentioned atmospheric effects are the atmospheric transmittance and the atmospheric path radiance. The incoming IR radiation is attenuated by the transmittance and path radiance is added on top of the attenuated radiation. In IR scene simulations OpenGL is widely used for rendering purposes. In the literature there are studies, which model the atmospheric effects in an IR band using OpenGLs exponential fog model as suggested by Beers law. In the standard pipeline of OpenGL, the related fog model needs single equivalent OpenGL variables for the transmittance and path radiance, which actually depend on both the distance between the source and the sensor and also on the wavelength of interest. However, in the conditions where the range dependency cannot be modeled as an exponential function, it is not accurate to replace the atmospheric quantities with a single parameter. The introduction of OpenGL Shading Language (GLSL) has enabled the developers to use the GPU more flexible. In this paper, a novel method is proposed for the atmospheric effects modeling using the least squares estimation with polynomial fitting by programmable OpenGL shader programs built with GLSL. In this context, a radiative transfer model code is used to obtain the transmittance and path radiance data. Then, polynomial fits are computed for the range dependency of these variables. Hence, the atmospheric effects model data that will be uploaded in the GPU memory is significantly reduced. Moreover, the error because of fitting is negligible as long as narrow IR bands are used.

  10. Ensemble data assimilation in the Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Pedatella, N. M.; Raeder, K.; Anderson, J. L.; Liu, H.-L.

    2014-08-01

    We present results pertaining to the assimilation of real lower, middle, and upper atmosphere observations in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. The ability to assimilate lower atmosphere observations of aircraft and radiosonde temperature and winds, satellite drift winds, and Constellation Observing System for Meteorology, Ionosphere, and Climate refractivity along with middle/upper atmosphere temperature observations from SABER and Aura MLS is demonstrated. The WACCM+DART data assimilation system is shown to be able to reproduce the salient features, and variability, of the troposphere present in the National Centers for Environmental Prediction/National Center for Atmospheric Research Re-Analysis. In the mesosphere, the fit of WACCM+DART to observations is found to be slightly worse when only lower atmosphere observations are assimilated compared to a control experiment that is reflective of the model climatological variability. This differs from previous results which found that assimilation of lower atmosphere observations improves the fit to mesospheric observations. This discrepancy is attributed to the fact that due to the gravity wave drag parameterizations, the model climatology differs significantly from the observations in the mesosphere, and this is not corrected by the assimilation of lower atmosphere observations. The fit of WACCM+DART to mesospheric observations is, however, significantly improved compared to the control experiment when middle/upper atmosphere observations are assimilated. We find that assimilating SABER observations reduces the root-mean-square error and bias of WACCM+DART relative to the independent Aura MLS observations by ˜50%, demonstrating that assimilation of middle/upper atmosphere observations is essential for accurate specification of the mesosphere and lower thermosphere region in WACCM+DART. Last, we demonstrate that

  11. CHIMERE 2013: a model for regional atmospheric composition modelling

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-07-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, kinetics and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative contribution to the pollutants budgets can be quantified with chemistry-transport models. The CHIMERE chemistry-transport model is dedicated to regional atmospheric pollution event studies. Since it has now reached a certain level a maturity, the new stable version, CHIMERE 2013, is described to provide a reference model paper. The successive developments of the model are reviewed on the basis of published investigations that are referenced in order to discuss the scientific choices and to provide an overview of the main results.

  12. Comparison of modelled and empirical atmospheric propagation data

    Science.gov (United States)

    Schott, J. R.; Biegel, J. D.

    1983-01-01

    The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented.

  13. Revisiting the Carrington Event: Updated modeling of atmospheric effects

    CERN Document Server

    Thomas, Brian C; Snyder, Brock R

    2011-01-01

    The terrestrial effects of major solar events such as the Carrington white-light flare and subsequent geomagnetic storm of August-September 1859 are of considerable interest, especially in light of recent predictions that such extreme events will be more likely over the coming decades. Here we present results of modeling the atmospheric effects, especially production of odd nitrogen compounds and subsequent depletion of ozone, by solar protons associated with the Carrington event. This study combines approaches from two previous studies of the atmospheric effect of this event. We investigate changes in NOy compounds as well as depletion of O3 using a two-dimensional atmospheric chemistry and dynamics model. Atmospheric ionization is computed using a range-energy relation with four different proxy proton spectra associated with more recent well-known solar proton events. We find that changes in atmospheric constituents are in reasonable agreement with previous studies, but effects of the four proxy spectra use...

  14. Development of an integrated methodology for the design and optimization of charging and EGR circuits in modern diesel engines based on 1D-CFD engine modelling

    Energy Technology Data Exchange (ETDEWEB)

    Arrigoni, Stefano; Avolio, Giovanni; Loudjertli, Lydia; Renella, Alfonso; Vassallo, Alberto [General Motors Powertrain Europe, Turin (Italy)

    2011-07-01

    In modern diesel engines, the requirements on the combustion system are very tightening, due to an aggressive combination of pollutant emission, fuel economy, NVH and fun-to-drive targets. In particular, the charging and EGR circuits, with their impact on combustion system performance, deserve a special attention, both in terms of architecture selection, as well as component design and specifications. Since most of these choices occur very early in the engine design phase, it is of high importance to have a reliable analytical tool capable to predict the performance of such components, prior than the actual hardware is available for testing. The present paper describes the development and application to a new diesel engine of an integrated approach for charging and EGR circuit design optimization, based on a set of high-level targets for emissions, fuel economy and performance. In order to achieve this goal, a 1D-CFD approach based on GT-Power suite has been employed: specific sub-routines and semi-empirical models for accurate heat-release and emission prediction have been developed and validated, and finally applied to a light-duty passenger car diesel engine under development. The results show that the tool is capable to predict engine indicated cycle as well as NOx, PM emissions depending on the characteristics of charging and EGR circuits, and can be used to cascade high-level engine target to component specifications (turbocharger, EGR cooler, intercooler) in an effective way. (orig.)

  15. Hydrocarbon Potentials, Thermal and Burial History in Herwa-1 Well from the Nigerian Sector of the Chad Basin: An Implication of 1-D Basin Modeling Study

    Directory of Open Access Journals (Sweden)

    Abubakar Mijinyawa

    2013-06-01

    Full Text Available This research study attempt to evaluate the hydrocarbon potentials, thermal and burial history and the timing of hydrocarbon generation in Herwa-1 well within the Nigerian Sector of the Chad basin. Organic geochemical study of some ditch cuttings samples from Herwa-1 well and a One-dimensional basin modeling study was carried out. The result of the geochemical analysis revealed a moderate to good TOC greater than 0.5wt% in Fika and Gongila formation, the Hydrogen Index (HI ranges from 150-300 (mgHC/g and the Tmax values falls within the range of greater than or equal to 430°C. The hydrocarbon potentials in Herwa-1 well was further supported with the values of S1+S2 which is greater than or equal to 2 mg/g of rock in almost all the samples, suggesting a good hydrocarbon potentials. The 1-D basin model was constructed for Herwa-1 well in order to assess the burial history and thermal maturity of the potential source rocks in the Nigerian sector of the Chad basin. The modeling results indicate that maximum burial occurred in the late Miocene and suggesting erosion might have been the cause of the thinning of the Tertiary sediments in the present time. The calibration of Vitrinite reflectance against Temperature revealed the present day heat flow to be at 60 mW/m2 and Paleo heat flow falls within the range of 68 mW/m2. However, it is also revealed that Oil Window begins at (0.60-1.30% VRr at the depth of (2000-3000 m in the middle Cretaceous and the Gas Window start during the late Cretaceous to Tertiary with a value of (1.3-2.5% VRr at a depth greater than (3500 m.

  16. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  17. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  18. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  19. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  20. Exact results in modeling planetary atmospheres-II. Semi-gray atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Rutily, B. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France); Pelkowski, J. [Institut fuer Atmosphaere und Umwelt, J.W. Goethe Universitaet Frankfurt, Campus Riedberg, Altenhaferallee 1, D-60438 Frankfurt a.M. (Germany)], E-mail: Pelkowski@meteor.uni-frankfurt.de; Bergeat, J. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France)

    2008-01-15

    We solve the radiative transfer equation for a semi-gray planetary atmosphere in radiative equilibrium, in an attempt to define an entirely analytical non-gray model atmosphere of finite optical thickness. The salient feature of the model is that the incident solar radiation is partitioned between two adjacent spectral domains-the 'visible' and the 'infrared'-in each of which the atmosphere's (effective) opacity is assumed to be independent of frequency (the semi-gray assumption). We envisage a plane-parallel atmosphere illuminated by a beam of parallel radiation and bounded below by a partially reflecting and emitting ground. The former emits infrared radiation, induced by the absorption of radiation both visible and infrared, deriving from the external irradiation as well as from the emission of the planet's surface layer. For an atmosphere with given single-scattering albedos and optical thicknesses in both the visible and infrared domains, we compute the temperature at every depth of the atmosphere, as well as the ground's temperature.

  1. 3D modeling of clouds in GJ1214b's atmosphere

    Science.gov (United States)

    Charnay, Benjamin; Meadows, Victoria; leconte, Jérémy; Misra, Amit; Arnay, Giada

    2015-12-01

    GJ1214b is a warm mini-Neptune/waterworld and one of the few low-mass exoplanets whose atmosphere is characterizable by current telescopes. Recent observations indicated a flat transit spectrum in near-infrared which has been interpreted as the presence of high and thick condensate clouds of KCl or ZnS or photochemical hazes [1]. However, the formation of such high clouds/hazes would require a strong vertical mixing linked to the atmospheric circulation [2]. In order to understand the transport, distribution and observational implications of such clouds/haze, we studied the atmospheric circulation and cloud formation on GJ1214b for H-dominated and water-dominated atmospheres using the Generic LMDZ GCM.Firstly, we analyzed cloud-free atmospheres [3]. We showed that the zonal mean meridional circulation corresponds to an anti-Hadley circulation in most of the atmosphere with upwelling at midlatitude and downwelling at the equator. This circulation should strongly impact cloud formation and distribution, leading to a minimum of cloud at the equator. We also derived 1D equivalent eddy diffusion coefficients. The corresponding values should favor an efficient formation of photochemical haze in the upper atmosphere of GJ1214b.Secondly, we simulated cloudy atmospheres including latent heat release and radiative effects for KCl and ZnS clouds [4]. We analyzed their distribution and their impacts on the thermal structure. In particular, a stratospheric thermal inversion should likely be formed by absorption of stellar radiation by ZnS clouds. We showed that flat transit spectra consistent with HST observations are possible for cloud particle radii around 0.5 microns. Using the outputs of our GCM, we also generated emission and reflection spectra and phases curves.Finally, our results suggest that primary and secondary eclipses and phase curves observed by JWST should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.references:[1] Kreidberg et al

  2. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-12-31

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  3. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-01-01

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  4. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    Science.gov (United States)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  5. Net community production of oxygen derived from in vitro and in situ 1-D modeling techniques in a cyclonic mesoscale eddy in the Sargasso Sea

    Directory of Open Access Journals (Sweden)

    B. Mouriño-Carballido

    2009-08-01

    Full Text Available It has been proposed that the disagreement traditionally reported between in vitro incubation and in situ estimates of oxygen net community production (NCP could be explained, at least partially, by undersampling episodic pulses of net autotrophy associated with mesoscale dynamics. In this study we compare in vitro incubation estimates of net community production with in situ estimates, derived from oxygen profiles and a 1-D model, within a cyclonic eddy investigated in the Sargasso Sea in summer 2004. The in vitro NCP rates measured at the center of the eddy showed a shift from net autotrophy (7±3 mmol O2 m−2 d−1 to net heterotrophy (−25±5 mmol O2 m−2 d−1 from late June to early August. The model-derived NCP rates also showed a temporal decline (19±6 to −3±7 and 11±8 mmol O2 m−2 d−1, but they were systematically higher than the in vitro estimates and reported net autotrophy or balance for the sampling period. In this comparison episodic pulses in photosynthesis or respiration driven by mesoscale eddies can not explain the discrepancy between the in vitro and in situ estimates of NCP. This points to methodological artefacts or temporal or submesoscale variability as the mechanisms responsible for the disagreement between the techniques, at least in this dataset.

  6. Spectroscopic characterization of the atmospheres of potentially habitable planets: GL 581 d as a model case study

    CERN Document Server

    von Paris, Philip; Godolt, Mareike; Grenfell, J Lee; Hedelt, Pascal; Rauer, Heike; Schreier, Franz; Stracke, Barbara

    2011-01-01

    (abridged) The Super-Earth candidate GL 581 d is the first potentially habitable extrasolar planet. Therefore, GL 581 d is used to illustrate a hypothetical detailed spectroscopic characterization of such planets. Atmospheric profiles from 1D radiative-convective model scenarios of GL 581 d were used to calculate high-resolution synthetic spectra. From the spectra, signal-to-noise ratios were calculated for a telescope such as the planned James Webb Space Telescope. The presence of the model atmospheres could be clearly inferred from the calculated synthetic spectra due to strong water and carbon dioxide absorption bands. Surface temperatures could be inferred for model scenarios with optically thin spectral windows. Dense, CO2-rich scenarios did not allow for the characterization of surface temperatures and to assess habitability. Degeneracies between CO2 concentration and surface pressure further complicated the interpretation of the calculated spectra, hence the determination of atmospheric conditions. Sti...

  7. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Directory of Open Access Journals (Sweden)

    C. L. Friedman

    2015-11-01

    Full Text Available We present a spatially and temporally resolved global atmospheric PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere mid-latitudes, and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for the International Council for the Exploration of the Sea 7 PCBs, and demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently-described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that mid-latitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  8. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2013-08-01

    Full Text Available Atmospheric mercury depletion events (AMDEs refer to a recurring depletion of mercury in the springtime Arctic (and Antarctic boundary layer, occurring, in general, concurrently with ozone depletion events (ODEs. To close some of the knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents throughout porous snowpack and in the overlying atmospheric boundary layer (ABL. Building on the model reported in a companion paper (Part 1: In-snow bromine activation and its impact on ozone, we have expanded the chemical mechanism to include the reactions of mercury in the gas- and aqueous-phases with temperature dependence of rate and equilibrium constants accounted for wherever possible. Thus the model allows us to study the chemical and physical processes taking place during ODEs and AMDEs within a single framework where two-way interactions between the snowpack and the atmosphere are simulated in a detailed, process-oriented manner. Model runs are conducted for meteorological and chemical conditions representing the springtime Arctic ABL loaded with "haze" sulfate aerosols and the underlying saline snowpack laid on sea ice. Using recent updates for the Hg + Br ⇄ HgBr reaction kinetics, we show that the rate and magnitude of photochemical loss of gaseous elemental mercury (GEM during AMDEs exhibit a strong dependence on the choice of reaction(s of HgBr subsequent to its formation. At 253 K, the temperature that is presumably low enough for bromine radical chemistry to cause prominent AMDEs as indicated from field observations, the parallel occurrence of AMDEs and ODEs is simulated if the reaction HgBr + BrO is assumed to produce a thermally stable intermediate, Hg(OBrBr, at the same rate constant as the reaction HgBr + Br. On the contrary, the simulated depletion of atmospheric mercury is notably diminished by

  9. Atmospheric Dispersion Model Validation in Low Wind Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  10. Measuring the basic parameters of neutron stars using model atmospheres

    CERN Document Server

    Suleimanov, V F; Klochkov, D; Werner, K

    2015-01-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutronstar radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: (i) pure carbon atmospheres for relatively cool neutron stars (1--4 MK) and (ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  11. Measuring the basic parameters of neutron stars using model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)

    2016-02-15

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  12. Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres

    CERN Document Server

    Blecic, Jasmina

    2016-01-01

    This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...

  13. Information Flow in an Atmospheric Model and Data Assimilation

    Science.gov (United States)

    Yoon, Young-noh

    2011-01-01

    Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…

  14. The Zodiacal Cloud Model applied to the Martian atmosphere. Diurnal variations in Meteoric ion layers

    Science.gov (United States)

    Diego Carrillo-Sánchez, Juan; Plane, John M. C.; Withers, Paul; Fallows, Kathryn; Nesvorný, David; Pokorný, Petr; Feng, Wuhu

    2016-04-01

    Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. However, the background metal layers produced by the influx of sporadic meteors have not yet been detected at Mars (contrary to the permanent metal layers identified in the Earth's atmosphere). The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFC) and Halley-Type Comets (HTC) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. These vertical profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the formation of the sporadic ion layers observed below 100 km with a plasma density exceeding 104 cm-3 requires the combination of the three different influx sources considered by the ZDC model, with a significant asteroidal contribution. Finally, we explore the changes of the neutral and ionized Mg and Fe layers over a diurnal cycle.

  15. Regional atmospheric budgets of reduced nitrogen over the British isles assessed using a multi-layer atmospheric transport model

    NARCIS (Netherlands)

    Fournier, N.; Tang, Y.S.; Dragosits, U.; Kluizenaar, Y.de; Sutton, M.A.

    2005-01-01

    Atmospheric budgets of reduced nitrogen for the major political regions of the British Isles are investigated with a multi-layer atmospheric transport model. The model is validated against measurements of NH3 concentration and is developed to provide atmospheric budgets for defined subdomains of the

  16. Constructing an advanced software tool for planetary atmospheric modeling

    Science.gov (United States)

    Keller, Richard M.; Sims, Michael; Podolak, Ester; Mckay, Christopher

    1990-01-01

    Scientific model building can be an intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot be easily distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. In this paper, we describe a prototype for a scientific modeling software tool that serves as an aid to the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities. Our prototype has been developed in the domain of planetary atmospheric modeling, and is being used to construct models of Titan's atmosphere.

  17. High Resolution Global Modeling of the Atmospheric Circulation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models. The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of ~10-40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena. Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed. More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales. In the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation. The application of the models to two specific problems requiring very fine resolution global will be discussed. The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model. This is a subject of great importance for understanding and modelling the flow in the middle atmosphere. Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified.

  18. Examining Tatooine: Atmospheric Models of Neptune-Like Circumbinary Planets

    CERN Document Server

    May, E M

    2016-01-01

    Circumbinary planets experience a time varying irradiation pattern as they orbit their two host stars. In this work, we present the first detailed study of the atmospheric effects of this irradiation pattern on known and hypothetical gaseous circumbinary planets. Using both a one-dimensional Energy Balance Model and a three-dimensional General Circulation Model, we look at the temperature differences between circumbinary planets and their equivalent single-star cases in order to determine the nature of the atmospheres of these planets. We find that for circumbinary planets on stable orbits around their host stars, temperature differences are on average no more than 1.0% in the most extreme cases. Based on detailed modeling with the General Circulation Model, we find that these temperature differences are not large enough to excite circulation differences between the two cases. We conclude that gaseous circumbinary planets can be treated as their equivalent single-star case in future atmospheric modeling effor...

  19. Atmosphere-magma ocean modeling of GJ 1132 b

    Science.gov (United States)

    Schaefer, Laura; Wordsworth, Robin; Berta-Thompson, Zachory K.; Sasselov, Dimitar

    2017-01-01

    GJ 1132 b is a nearby Earth-sized exoplanet transiting an M dwarf, and is amongst the most highly characterizable small exoplanets currently known. Using a coupled atmosphere-magma ocean model, we determine that GJ 1132 b must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O2 that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ~ 10% of the O2 produced, whereas more than 90% is lost to space through hydrodynamic drag. The results of the model depend strongly on the initial water abundance and the XUV model. The most common outcome for GJ 1132 b from our simulations is a tenuous atmosphere dominated by O2, although for very large initial water abundances, atmospheres with several thousands of bars of O2 are possible. A substantial steam envelope would indicate either the existence of an earlier H2 envelope or low XUV flux over the system's lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132 b. Preliminary modeling with the addition of CO2 gas will be presented.

  20. Using Existing Arctic Atmospheric Mercury Measurements to Refine Global and Regional Scale Atmospheric Transport Models

    Science.gov (United States)

    Moore, C. W.; Dastoor, A.; Steffen, A.; Nghiem, S. V.; Agnan, Y.; Obrist, D.

    2015-12-01

    Northern hemisphere background atmospheric concentrations of gaseous elemental mercury (GEM) have been declining by up to 25% over the last ten years at some lower latitude sites. However, this decline has ranged from no decline to 9% over 10 years at Arctic long-term measurement sites. Measurements also show a highly dynamic nature of mercury (Hg) species in Arctic air and snow from early spring to the end of summer when biogeochemical transformations peak. Currently, models are unable to reproduce this variability accurately. Estimates of Hg accumulation in the Arctic and Arctic Ocean by models require a full mechanistic understanding of the multi-phase redox chemistry of Hg in air and snow as well as the role of meteorology in the physicochemical processes of Hg. We will show how findings from ground-based atmospheric Hg measurements like those made in spring 2012 during the Bromine, Ozone and Mercury Experiment (BROMEX) near Barrow, Alaska can be used to reduce the discrepancy between measurements and model output in the Canadian GEM-MACH-Hg model. The model is able to reproduce and to explain some of the variability in Arctic Hg measurements but discrepancies still remain. One improvement involves incorporation of new physical mechanisms such as the one we were able to identify during BROMEX. This mechanism, by which atmospheric mercury depletion events are abruptly ended via sea ice leads opening and inducing shallow convective mixing that replenishes GEM (and ozone) in the near surface atmospheric layer, causing an immediate recovery from the depletion event, is currently lacking in models. Future implementation of this physical mechanism will have to incorporate current remote sensing sea ice products but also rely on the development of products that can identify sea ice leads quantitatively. In this way, we can advance the knowledge of the dynamic nature of GEM in the Arctic and the impact of climate change along with new regulations on the overall

  1. Regional forecasting with global atmospheric models; Fourth year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  2. The physical theory and propagation model of THz atmospheric propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R; Yao, J Q; Xu, D G; Wang, J L; Wang, P, E-mail: wangran19861014@163.com [College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072 (China)

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  3. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Olivier; Braconnot, P.; Bellier, J.; Brockmann, P.; Caubel, A.; Noblet, N. de; Friedlingstein, P.; Idelkadi, A.; Kageyama, M. [Unite Mixte CEA-CNRS-UVSQ, IPSL/LSCE, Gif-sur-Yvette Cedex (France); Dufresne, J.L.; Bony, S.; Codron, F.; Fairhead, L.; Grandpeix, J.Y.; Hourdin, F.; Musat, I. [Unite Mixte CNRS-Ecole Polytechnique-ENS-UPCM, IPSL/LMD, Paris Cedex 05 (France); Benshila, R.; Guilyardi, E.; Levy, C.; Madec, G.; Mignot, J.; Talandier, C. [unite mixte CNRS-IRD-UPMC, IPLS/LOCEAN, Paris Cedex 05 (France); Cadule, P.; Denvil, S.; Foujols, M.A. [Institut Pierre Simon Laplace des Sciences de l' Environnement (IPSL), Paris Cedex 05 (France); Fichefet, T.; Goosse, H. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Krinner, G. [Unite mixte CNRS-UJF Grenoble, LGGE, BP96, Saint-Martin-d' Heres (France); Swingedouw, D. [CNRS/CERFACS, Toulouse (France)

    2010-01-15

    This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean-atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean-atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Nino-Southern oscillation) consequently increases, as the damping processes are left unchanged. (orig.)

  4. A dynamic model reduction algorithm for atmospheric chemistry models

    Science.gov (United States)

    Santillana, Mauricio; Le Sager, Philippe; Jacob, Daniel J.; Brenner, Michael

    2010-05-01

    Understanding the dynamics of the chemical composition of our atmosphere is essential to address a wide range of environmental issues from air quality to climate change. Current models solve a very large and stiff system of nonlinear advection-reaction coupled partial differential equations in order to calculate the time evolution of the concentration of over a hundred chemical species. The numerical solution of this system of equations is difficult and the development of efficient and accurate techniques to achieve this has inspired research for the past four decades. In this work, we propose an adaptive method that dynamically adjusts the chemical mechanism to be solved to the local environment and we show that the use of our approach leads to accurate results and considerable computational savings. Our strategy consists of partitioning the computational domain in active and inactive regions for each chemical species at every time step. In a given grid-box, the concentration of active species is calculated using an accurate numerical scheme, whereas the concentration of inactive species is calculated using a simple and computationally inexpensive formula. We demonstrate the performance of the method by application to the GEOS-Chem global chemical transport model.

  5. Exact results in modeling planetary atmospheres-III

    Energy Technology Data Exchange (ETDEWEB)

    Pelkowski, J. [Institut fuer Atmosphaere und Umwelt, J.W. Goethe Universitaet Frankfurt, Campus Riedberg, Altenhoferallee 1, D-60438 Frankfurt a.M. (Germany)], E-mail: Pelkowski@meteor.uni-frankfurt.de; Chevallier, L. [Observatoire de Paris-Meudon, Laboratoire LUTH, 5 Place Jules Janssen, 92195 Meudon cedex (France); Rutily, B. [Universite de Lyon, F-69003 Lyon (France); Universite Lyon 1, Observatoire de Lyon, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France); CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon (France); Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Titaud, O. [Centro de Modelamiento Matematico, UMI 2807 CNRS-UChile, Blanco Encalada 2120 - 7 Piso, Casilla 170 - Correo 3, Santiago (Chile)

    2008-01-15

    We apply the semi-gray model of our previous paper to the particular case of the Earth's atmosphere, in order to illustrate quantitatively the inverse problem associated with the direct problem we dealt with before. From given climatological values of the atmosphere's spherical albedo and transmittance for visible radiation, the single-scattering albedo and the optical thickness in the visible are inferred, while the infrared optical thickness is deduced for given global average surface temperature. Eventually, temperature distributions in terms of the infrared optical depth will be shown for a terrestrial atmosphere assumed to be semi-gray and, locally, in radiative and thermodynamic equilibrium.

  6. SLOWMOVE - A numerical model for the propagation of slow-moving landslides: a 1D approach and its application to the analysis of the Valoria landslide (Apennines, Italy)

    Science.gov (United States)

    Daehne, A.; van Asch, Th. W. J.; Corsini, A.; Spickerman, A.; Bégueria-Portuguès, S.

    2010-05-01

    Understanding the behavior of landslides often starts with a numerical simulation that accurately accounts for observed physical processes. This research proposes a method for the implementation of the dynamic SLOWMOVE model to a high-mobility, moderate velocity earth flow located in the northern Apennines. The Valoria landslide is 3.5 km long earth slide- earth flow that resumed activity in 2001. Landslide materials comprised of disaggregated Flysch, Marl and Claystones are mainly transported as earth slides in the upper slope, and as earth flows in the main track. Repeated acceleration events lasting several weeks occur seasonally since 2001 reactivation. During events it can reach velocities of about 10 m per hour with a cumulative displacement of hundreds of meters. Through this intermittent activity, more than ten million cubic meters have been transferred down-slope since 2001, changing significantly and several times the morphology of the slope. The SLOWMOVE model postulates that landslide materials can be represented as a homogeneous material with rheological properties and constant density. The approach is based on the Navier-Stokes equations. Under the assumptions that the inertia of the moving mass can be neglected, the behavior of the landslide depends solely on the balance between driving forces and resisting forces which contain a Coulomb-viscous component. Excess pore pressure due to undrained loading and lateral force form the main parameters that control the acceleration. The effects of lateral force and excess pore pressure allow a numerical simulation of landslide reactivation by coupling of two landslide bodies. A numerical scheme based on a finite difference solution (2D Eulerian space with Cartesian coordinates) was implemented in Microsoft Excel and used to compute propagation of the mass in 1D. The model allows coupling between mass movements having different geotechnical characteristic. In practice, it allows simulating the reactivation of

  7. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    Science.gov (United States)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  8. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 2: Mercury and its speciation

    Science.gov (United States)

    Toyota, K.; Dastoor, A. P.; Ryzhkov, A.

    2014-04-01

    Atmospheric mercury depletion events (AMDEs) refer to a recurring depletion of mercury occurring in the springtime Arctic (and Antarctic) boundary layer, in general, concurrently with ozone depletion events (ODEs). To close some of the knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents throughout porous snowpack and in the overlying atmospheric boundary layer (ABL). This paper constitutes Part 2 of the study, describing the mercury component of the model and its application to the simulation of AMDEs. Building on model components reported in Part 1 ("In-snow bromine activation and its impact on ozone"), we have developed a chemical mechanism for the redox reactions of mercury in the gas and aqueous phases with temperature dependent reaction rates and equilibrium constants accounted for wherever possible. Thus the model allows us to study the chemical and physical processes taking place during ODEs and AMDEs within a single framework where two-way interactions between the snowpack and the atmosphere are simulated in a detailed, process-oriented manner. Model runs are conducted for meteorological and chemical conditions that represent the springtime Arctic ABL characterized by the presence of "haze" (sulfate aerosols) and the saline snowpack on sea ice. The oxidation of gaseous elemental mercury (GEM) is initiated via reaction with Br-atom to form HgBr, followed by competitions between its thermal decomposition and further reactions to give thermally stable Hg(II) products. To shed light on uncertain kinetics and mechanisms of this multi-step oxidation process, we have tested different combinations of their rate constants based on published laboratory and quantum mechanical studies. For some combinations of the rate constants, the model simulates roughly linear relationships between the gaseous mercury and ozone concentrations as

  9. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    Science.gov (United States)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  10. Complex source rate estimation for atmospheric transport and dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, L.L.

    1993-09-13

    The accuracy associated with assessing the environmental consequences of an accidental atmospheric release of radioactivity is highly dependent on our knowledge of the source release rate which is generally poorly known. This paper reports on a technique that integrates the radiological measurements with atmospheric dispersion modeling for more accurate source term estimation. We construct a minimum least squares methodology for solving the inverse problem with no a priori information about the source rate.

  11. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-09-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  12. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-06-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  13. Critical review of wind tunnel modeling of atmospheric heat dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-05-01

    There is increasing concern by scientists that future proposed energy or power parks may significantly affect the environment by releasing large quantities of heat and water vapor to the atmosphere. A critical review is presented of the potential application of physical modeling (wind tunnels) to assess possible atmospheric effects from heat dissipation systems such as cooling towers. A short inventory of low-speed wind tunnel facilities is included in the review. The useful roles of wind tunnels are assessed and the state-of-the-art of physical modeling is briefly reviewed. Similarity criteria are summarized and present limitations in satisfying these criteria are considered. Current physical models are defined and limitations are discussed. Three experimental problems are discussed in which physical modeling may be able to provide data. These are: defining the critical atmospheric heat load; topographic and local circulation effects on thermal plumes; and plume rise and downstream effects.

  14. Regional atmospheric composition modeling with CHIMERE

    Science.gov (United States)

    Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.

    2013-01-01

    Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  15. Regional atmospheric composition modeling with CHIMERE

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-01-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM. The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  16. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Keilhauer Bianca

    2015-01-01

    Full Text Available The Pierre Auger Observatory detects high-energy cosmic rays with energies above ∼1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  17. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    Science.gov (United States)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  18. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik;

    ’ dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent...

  19. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models

    Science.gov (United States)

    Song, Jiyun; Wang, Zhi-Hua

    2015-03-01

    We couple a single column model (SCM) to a cutting-edge single-layer urban canopy model (SLUCM) with realistic representation of urban hydrological processes. The land-surface transport of energy and moisture parametrized by the SLUCM provides lower boundary conditions to the overlying atmosphere. The coupled SLUCM-SCM model is tested against field measurements of sensible and latent heat fluxes in the surface layer, as well as vertical profiles of temperature and humidity in the mixed layer under convective conditions. The model is then used to simulate urban land-atmosphere interactions by changing urban geometry, surface albedo, vegetation fraction and aerodynamic roughness. Results show that changes of landscape characteristics have a significant impact on the growth of the boundary layer as well as on the distributions of temperature and humidity in the mixed layer. Overall, the proposed numerical framework provides a useful stand-alone modelling tool, with which the impact of urban land-surface conditions on the local hydrometeorology can be assessed via land-atmosphere interactions.

  20. Challenges in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting

  1. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29...... the processes controlling the sources and sinks of atmospheric CO2. This PhD dissertation attempts to increase our understanding of the importance of accounting for high spatiotemporal variability in estimates of CO2 exchanges between the atmosphere and the surface. For this purpose, a mesoscale...... modelling system is constructed, centred around Denmark, based on an atmospheric transport model. In this study, the main areas of focus have been on improving the spatial surface representation, for both land and sea, and investigating the influence of the temporal resolution on the air–sea CO2 exchange...

  2. Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions

    Science.gov (United States)

    Tolson, Robert H.; Prince, Jill L. H.

    2011-01-01

    Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.

  3. The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease.

    Science.gov (United States)

    Rantamäki, Tomi; Kemppainen, Susanna; Autio, Henri; Stavén, Saara; Koivisto, Hennariikka; Kojima, Masami; Antila, Hanna; Miettinen, Pasi O; Kärkkäinen, Elisa; Karpova, Nina; Vesa, Liisa; Lindemann, Lothar; Hoener, Marius C; Tanila, Heikki; Castrén, Eero

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could

  4. Analytical model of solutions of (2+1)-D heat convection equations in a shape memory alloy device immersed in a blood vessel

    Science.gov (United States)

    Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad

    2015-02-01

    We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the

  5. The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Tomi Rantamäki

    Full Text Available Brain-derived neurotrophic factor (BDNF importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9 mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months, BDNF protein levels where either reduced (female or unaltered (male in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported

  6. 3D multispecies collisional model of Ganymede's atmosphere

    Science.gov (United States)

    Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.

    2016-10-01

    Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.

  7. Models of ash-laden intrusions in a stratified atmosphere

    Science.gov (United States)

    Hogg, Andrew; Johnson, Chris; Sparks, Steve; Huppert, Herbert; Woodhouse, Mark; Phillips, Jeremy

    2013-04-01

    Recent volcanic eruptions and the associated dispersion of ash through the atmosphere have led to widespread closures of airspace, for example the 2010 eruption of Eyjafjallajokull and 2011 eruption of Puyehue-Cordón Caulle. These episodes bring into sharp focus the need to predict quantitatively the transport and deposition of fine ash and in particular, its interaction with atmospheric wind. Many models of this process are based upon capturing the physics of advection with the wind, turbulence-induced diffusion and gravitational settling. Buoyancy-induced processes, associated with the density of the ash cloud and the background stratification of the atmosphere, are neglected and it is this issue that we address in this contribution. In particular, we suggest that the buoyancy-induced motion may account for the relatively thin distal ash layers that have been observed in the atmosphere and their relatively weak cross-wind spreading. We formulate a new model for buoyancy-driven spreading in the atmosphere in which we treat the evolving ash layer as relatively shallow so that its motion is predominantly horizontal and the pressure locally hydrostatic. The motion is driven by horizontal pressure gradients along with interfacial drag between the flowing ash layer and the surrounding atmosphere. Ash-laden fluid is delivered to this intrusion from a plume source and has risen through the atmosphere to its height of neutral buoyancy. The ash particles are then transported horizontally by the intrusion and progressively settle out of it to sediment through the atmosphere and form the deposit on the ground. This model is integrated numerically and analysed asymptotically in various regimes, including scenarios in which the atmosphere is quiescent and in which there is a sustained wind. The results yield predictions for the variation of the thickness of the intrusion with distance from the source and for how the concentration of ash is reduced due to settling. They

  8. Modelling Saturn's atmospheric circulations and cloud structure with OPUS

    Science.gov (United States)

    Zuchowski, L. C.; Read, P. L.; Yamazaki, Y. H.

    2009-04-01

    We are investigating Saturn's atmospheric circulations and cloud structure in the Northern and Southern hemisphere as initial value problems by use of the Oxford Planetary Unified model System (OPUS), a sophisticated GCM based on the UK Met Office Unified Model. Solving an extended form of the Hydrodynamic Primitive Equations, OPUS is capable of including 40 vertical levels from 0.1 bar to 100 bar. The model was initiated with temperature and balanced thermal wind profiles recently obtained by Cassini's Composite InfraRed Spectrometer (CIRS). A simple cloud scheme for the Jovian planets has been added to OPUS and is employed to model the three major cloud decks (ammonia, ammonium-hydrosulfide and water) on Saturn and the advection of these clouds with the atmosphere. We have already conducted several numerical studies with OPUS, simulating jet scale meridional circulations, the formation of cloud bands and discrete turbulent features on Jupiter. By modelling the dynamics and clouds of Saturn in a similar way, we are hoping to gain further insight into the formation of circulation cells over the zonal jet streams as well as to examine the distribution of atmospheric condensates in response to these motions. The model will also be used to numerically investigate the characteristic features in Saturn's Northern hemisphere. It is envisioned to directly compare the atmospheric configurations obtained for Saturn with previous results from the Jupiter model.

  9. Light self-focusing in the atmosphere: thin window model

    Science.gov (United States)

    Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; Turitsyn, Sergei K.

    2016-08-01

    Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.

  10. Model atmospheres for Mercury based on a lunar analogy

    Science.gov (United States)

    Hodges, R. R., Jr.

    1974-01-01

    Similarities in daytime spectral reflectivities and nighttime infrared emission from Mercury and the moon are shown to imply that the atmosphere of Mercury must be tenuous, like that of the moon. The theory of formation, transport, and loss in the lunar atmosphere is applied to Mercury. Models of the Hermian atmosphere at perihelion and aphelion are presented, based on the solar wind as the dominant source of gases. Only the noncondensable species - hydrogen, helium and neon - are considered. Of these, helium is the most abundant atmospheric gas, with maximum concentration of about 40,000,000 per cu cm at the nighttime surface. The maximum concentration of H2 is 6,000,000 per cu cm, and that of neon is 700,000 per cu cm.

  11. Box models for the evolution of atmospheric oxygen: an update

    Science.gov (United States)

    Kasting, J. F.

    1991-01-01

    A simple 3-box model of the atmosphere/ocean system is used to describe the various stages in the evolution of atmospheric oxygen. In Stage I, which probably lasted until redbeds began to form about 2.0 Ga ago, the Earth's surface environment was generally devoid of free O2, except possibly in localized regions of high productivity in the surface ocean. In Stage II, which may have lasted for less than 150 Ma, the atmosphere and surface ocean were oxidizing, while the deep ocean remained anoxic. In Stage III, which commenced with the disappearance of banded iron formations around 1.85 Ga ago and has lasted until the present, all three surface reservoirs contained appreciable amounts of free O2. Recent and not-so-recent controversies regarding the abundance of oxygen in the Archean atmosphere are identified and discussed. The rate of O2 increase during the Middle and Late Proterozoic is identified as another outstanding question.

  12. Model Atmospheres for X-ray Bursting Neutron Stars

    CERN Document Server

    Medin, Zach; Calder, Alan C; Fontes, Christopher J; Fryer, Chris L; Hungerford, Aimee L

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  13. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  14. GEOS Atmospheric Model: Challenges at Exascale

    Science.gov (United States)

    Putman, William M.; Suarez, Max J.

    2017-01-01

    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as

  15. WM-basic: Modeling atmospheres of hot stars

    Science.gov (United States)

    Pauldrach, A. W. A.

    2012-04-01

    WM-basic is an easy-to-use interface to a program package which models the atmospheres of Hot Stars (and also SN and GN). The release comprises all programs required to calculate model atmospheres which especially yield ionizing fluxes and synthetic spectra. WM-basic is a native 32-bit application, conforming to the Multiple Documents Interface (MDI) standards for Windows XP/2000/NT/9x. All components of the program package have been compiled with Digital Visual Fortran V6.6(Pro) and Microsoft Visual C++.

  16. Model Atmospheres From Very Low Mass Stars to Brown Dwarfs

    CERN Document Server

    Allard, F; Freytag, B

    2010-01-01

    Since the discovery of brown dwarfs in 1994, and the discovery of dust cloud formation in the latest Very Low Mass Stars (VLMs) and Brown Dwarfs (BDs) in 1996, the most important challenge in modeling their atmospheres as become the understanding of cloud formation and advective mixing. For this purpose, we have developed radiation hydrodynamic 2D model atmosphere simulations to study the formation of forsterite dust in presence of advection, condensation, and sedimentation across the M-L-T VLMs to BDs sequence (Teff = 2800 K to 900 K, Freytag et al. 2010). We discovered the formation of gravity waves as a driving mechanism for the formation of clouds in these atmospheres, and derived a rule for the velocity field versus atmospheric depth and Teff , which is relatively insensitive to gravity. This rule has been used in the construction of the new model atmosphere grid, BT-Settl, to determine the microturbulence velocity, the diffusion coefficient, and the advective mixing of molecules as a function of depth. ...

  17. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    Science.gov (United States)

    Lupu, Roxana

    We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing

  18. Advances in parallel computer technology for desktop atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Ionescu-Niscov, S.; Fast, J.D. [Pacific Northwest National Lab., Richland, WA (United States); Allwine, K.J. [Allwine Enviornmental Serv., Richland, WA (United States)

    1996-12-31

    Desktop models are those models used by analysts with varied backgrounds, for performing, for example, air quality assessment and emergency response activities. These models must be robust, well documented, have minimal and well controlled user inputs, and have clear outputs. Existing coarse-grained parallel computers can provide significant increases in computation speed in desktop atmospheric dispersion modeling without considerable increases in hardware cost. This increased speed will allow for significant improvements to be made in the scientific foundations of these applied models, in the form of more advanced diffusion schemes and better representation of the wind and turbulence fields. This is especially attractive for emergency response applications where speed and accuracy are of utmost importance. This paper describes one particular application of coarse-grained parallel computer technology to a desktop complex terrain atmospheric dispersion modeling system. By comparing performance characteristics of the coarse-grained parallel version of the model with the single-processor version, we will demonstrate that applying coarse-grained parallel computer technology to desktop atmospheric dispersion modeling systems will allow us to address critical issues facing future requirements of this class of dispersion models.

  19. A Vertical Grid Module for Baroclinic Models of the Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL

    2008-04-01

    The vertical grid of an atmospheric model assigns dynamic and thermo- dynamic variables to grid locations. The vertical coordinate is typically not height but one of a class of meteorological variables that vary with atmo- spheric conditions. The grid system is chosen to further numerical approx- imations of the boundary conditions so that the system is terrain following at the surface. Lagrangian vertical coordinates are useful in reducing the numerical errors from advection processes. That the choices will effect the numercial properties and accuracy is explored in this report. A MATLAB class for Lorentz vertical grids is described and applied to the vertical struc- ture equation and baroclinic atmospheric circulation. A generalized meteo- rolgoical coordinate system is developed which can support σ, isentropic θ vertical coordinate, or Lagrangian vertical coordinates. The vertical atmo- spheric column is a MATLAB class that includes the kinematic and ther- modynamic variables along with methods for computing geopoentials and terms relevant to a 3D baroclinc atmospheric model.

  20. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  1. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    Science.gov (United States)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  2. Evaluation of atmospheric density models and preliminary functional specifications for the Langley Atmospheric Information Retrieval System (LAIRS)

    Science.gov (United States)

    Lee, T.; Boland, D. F., Jr.

    1980-01-01

    This document presents the results of an extensive survey and comparative evaluation of current atmosphere and wind models for inclusion in the Langley Atmospheric Information Retrieval System (LAIRS). It includes recommended models for use in LAIRS, estimated accuracies for the recommended models, and functional specifications for the development of LAIRS.

  3. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    M. WILLIAMS [and others

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  4. New Model Atmospheres: Testing the Solar Spectrum in the UV

    CERN Document Server

    Rodríguez-Merino, L H; Bertone, E; Chavez, M; Buzzoni, A

    2007-01-01

    We present preliminary results on the calculation of synthetic spectra obtained with the stellar model atmospheres developed by Cardona, Crivellari, and Simonneau. These new models have been used as input within the SYNTHE series of codes developed by Kurucz. As a first step we have tested if SYNTHE is able to handle these models which go down to log tau(Ross)= -13. We have successfully calculated a synthetic solar spectrum in the wavelength region 2000--4500 A at high resolution (R=522,000). Within this initial test we have found that layers at optical depths with log tau(Ross) < -7 significantly affect the mid-UV properties of a synthetic spectrum computed from a solar model. We anticipate that these new extended models will be a valuable tool for the analysis of UV stellar light arising from the outermost layers of the atmospheres.

  5. New Model Atmospheres: Testing the Solar Spectrum in the UV

    Science.gov (United States)

    Rodríguez-Merino, L. H.; Cardona, O.; Bertone, E.; Chávez, M.; Buzzoni, A.

    2009-03-01

    We present preliminary results on the calculation of synthetic spectra obtained with the stellar model atmospheres developed by Cardona, Crivellari, and Simonneau. These new models have been used as input within the Synthe series of codes developed by Kurucz. As a first step we have tested if Synthe is able to handle these models which go down to log{τ_{Ross}}= -13. We have successfully calculated a synthetic solar spectrum in the wavelength region 2000-4500 Å at high resolution (R=522 000). Within this initial test we have found that layers at optical depths with log{τ_{Ross}} < -7 significantly affect the mid-UV properties of a synthetic spectrum computed from a solar model. We anticipate that these new extended models will be a valuable tool for the analysis of UV stellar light arising from the outermost layers of the atmospheres.

  6. Atmospheric distribution of methane on Mars: A model study

    Science.gov (United States)

    Viscardy, Sébastien; Daerden, Frank; Neary, Lori

    2016-10-01

    In the past decade, the detection of methane (CH4) in the atmosphere of Mars has been reported several times. These observations have strongly drawn the attention of the scientific community and triggered a renewed interest in Mars as their implications for the geochemical or biological activities are remarkable. However, given that methane is expected to have a photochemical lifetime of several centuries, the relatively fast loss rates of methane estimated from Earth-based measurements remain unexplained. Although this gave rise to objections against the validity of those observations, recent in situ measurements confirmed that methane is being occasionally released into the atmosphere from an unknown source (possibly from the ground). Additionally, ExoMars/TGO was launched to Mars in March 2016. NOMAD, one of the instruments onboard TGO, will provide the first global detailed observations of methane on Mars. It is in this context that we present a model study of the behavior of methane plumes.A general circulation model for the atmosphere of Mars is applied to simulate surface emission of methane and to investigate its vertical distribution during the first weeks after the release. Such surface emissions were suggested to explain observations of methane. Previous GCM simulations focused on the horizontal evolution of the methane, but the present study focuses on the three-dimensional dispersion of methane throughout the atmosphere after the surface release. It is found that a highly nonuniform vertical distribution, including distinct vertical layers, can appear throughout the atmosphere during the first weeks after the emission. This is explained by the global circulation patterns in the atmosphere at the time of the emission. Large Hadley cells transport the methane rapidly to other locations over the planet, and methane will be stretched out in layers along the general circulation streamlines at heights corresponding to strong zonal jets.This result changes

  7. Aeolian dunes as ground truth for atmospheric modeling on Mars

    Science.gov (United States)

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  8. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  9. Fast and simple model for atmospheric radiative transfer

    NARCIS (Netherlands)

    Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.

    2010-01-01

    Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cos

  10. Consistency Problem with Tracer Advection in the Atmospheric Model GAMIL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; WAN Hui; WANG Bin; ZHANG Meigen

    2008-01-01

    The radon transport test,which is a widely used test case for atmospheric transport models,is carried out to evaluate the tracer advection schemes in the Grid-Point Atmospheric Model of IAP-LASG (GAMIL).TWO of the three available schemes in the model are found to be associated with significant biases in the polar regions and in the upper part of the atmosphere,which implies potentially large errors in the simulation of ozone-like tracers.Theoretical analyses show that inconsistency exists between the advection schemes and the discrete continuity equation in the dynamical core of GAMIL and consequently leads to spurious sources and sinks in the tracer transport equation.The impact of this type of inconsistency is demonstrated by idealized tests and identified as the cause of the aforementioned biases.Other potential effects of this inconsistency are also discussed.Results of this study provide some hints for choosing suitable advection schemes in the GAMIL model.At least for the polar-region-concentrated atmospheric components and the closely correlated chemical species,the Flux-Form Semi-Lagrangian advection scheme produces more reasonable simulations of the large-scale transport processes without significantly increasing the computational expense.

  11. LES model intercomparisons for the stable atmospheric boundary layer

    NARCIS (Netherlands)

    Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.

    2011-01-01

    Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-

  12. Assessment of atmospheric models for tele-infrasonic propagation

    Science.gov (United States)

    McKenna, Mihan; Hayek, Sylvia

    2005-04-01

    Iron mines in Minnesota are ideally located to assess the accuracy of available atmospheric profiles used in infrasound modeling. These mines are located approximately 400 km away to the southeast (142) of the Lac-Du-Bonnet infrasound station, IS-10. Infrasound data from June 1999 to March 2004 was analyzed to assess the effects of explosion size and atmospheric conditions on observations. IS-10 recorded a suite of events from this time period resulting in well constrained ground truth. This ground truth allows for the comparison of ray trace and PE (Parabolic Equation) modeling to the observed arrivals. The tele-infrasonic distance (greater than 250 km) produces ray paths that turn in the upper atmosphere, the thermosphere, at approximately 120 km to 140 km. Modeling based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and the NOGAPS (Navy Operational Global Atmospheric Prediction System) and NRL-GS2 (Naval Research Laboratory Ground to Space) augmented profiles are used to interpret the observed arrivals.

  13. Global Deep Convection Models of Saturn's Atmospheric Features

    Science.gov (United States)

    Heimpel, Moritz; Cuff, Keith; Gastine, Thomas; Wicht, Johannes

    2016-04-01

    The Cassini mission, along with previous missions and ground-based observations, has revealed a rich variety of atmospheric phenomena and time variability on Saturn. Some examples of dynamical features are: zonal flows with multiple jet streams, turbulent tilted shear flows that seem to power the jets, the north polar hexagon, the south polar cyclone, large anticyclones in "storm alley", numerous convective storms (white spots) of various sizes, and the 2010/2011 great storm, which destroyed an array of vortices dubbed the "string of pearls". Here we use the anelastic dynamo code MagIC, in non-magnetic mode, to study rotating convection in a spherical shell. The thickness of the shell is set to approximate the depth of the low electrical conductivity deep atmosphere of Saturn, and the convective forcing is set to yield zonal flows of similar velocity (Rossby number) to those of Saturn. Internal heating and the outer entropy boundary conditions allow simple modelling of atmospheric layers with neutral stability or stable stratification. In these simulations we can identify several saturnian and jovian atmospheric features, with some variations. We find that large anticyclonic vortices tend to form in the first anticyclonic shear zones away from the equatorial jet. Cyclones form at the poles, and polar polygonal jet streams, comparable to Saturn's hexagon, may or may not form, depending on the model conditions. Strings of small scale vortical structures arise as convective plumes near boundaries of shear zones. They typically precede larger scale convective storms that spawn propagating shear flow disturbances and anticyclonic vortices, which tend to drift across anticyclonic shear zones, toward the equator (opposite the drift direction of Saturn's 2010/2011 storm). Our model results indicate that many identifiable dynamical atmospheric features seen on Jupiter and Saturn arise from deep convection, shaped by planetary rotation, underlying and interacting with stably

  14. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  15. Framework of Distributed Coupled Atmosphere-Ocean-Wave Modeling System

    Institute of Scientific and Technical Information of China (English)

    WEN Yuanqiao; HUANG Liwen; DENG Jian; ZHANG Jinfeng; WANG Sisi; WANG Lijun

    2006-01-01

    In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed.The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.

  16. The Mg II index for upper atmosphere modelling

    Directory of Open Access Journals (Sweden)

    G. Thuillier

    Full Text Available The solar radio flux at 10.7 cm has been used in upper atmosphere density modelling because of its correlation with EUV radiation and its long and complete observational record. A proxy, the Mg II index, for the solar chromospheric activity has been derived by Heath and Schlesinger (1986 from Nimbus-7 data. This index allows one to describe the changes occurring in solar-activity in the UV Sun spectral irradiance. The use of this new proxy in upper atmosphere density modelling will be considered. First, this is supported by the 99.9% correlation between the solar radio flux (F10.7 and the Mg II index over a period of 19 years with, however, large differences on time scales of days to months. Secondly, correlation between EUV emissions and the Mg II index has been shown recently, suggesting that this last index may also be used to describe the EUV variations. Using the same density dataset, a model was first run with the F10.7 index as a solar forcing function and second, with the Mg II index. Comparison of their respective predictions to partial density data showed a 3–8% higher precision when the modelling uses the Mg II index rather than F10.7. An external validation, by means of orbit computation, resulted in a 20–40% smaller RMS of the tracking residuals. A density dataset spanning an entire solar cycle, together with Mg II data, is required to construct an accurate, unbiased as possible density model.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; thermosphere – composition and chemistry – History of geophysics (atmospheric sciences

  17. Modeling atmospheric effects of the September 1859 Solar Flare

    CERN Document Server

    Thomas, B; Melott, A; Thomas, Brian; Jackman, Charles; Melott, Adrian

    2006-01-01

    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.

  18. Working model of the atmosphere and near planetary space of Jupiter

    Science.gov (United States)

    Moroz, V. I. (Editor)

    1978-01-01

    Basic physical characteristics of Jupiter, its gravitational field, atmosphere, electromagnetic radiation, magnetosphere, meteorite situation and satellites are presented in tables, graphs and figures. Means of observation of the atmosphere and three models of the atmosphere are presented and analyzed.

  19. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model + Corrigendum

    NARCIS (Netherlands)

    Sutanto, S.J.; Wenninger, J.; Coenders-Gerrits, A.M.J.; Uhlenbrook, S.

    Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In t

  20. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... Research and Forecasting (WRF) Model with the thirdgeneration ocean wave modelSWAN. This study investigates mainly two issues: spatial resolution and the wind-wave interface parameter roughness length(z0). To study the impact of resolution, the nesting function for both WRF and SWAN is used, with spatial...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...

  1. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey;

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...... as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011a) together with measurements from Hyytiala, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for similar to 30......-50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic...

  2. Sensitivity model study of regional mercury dispersion in the atmosphere

    Science.gov (United States)

    Gencarelli, Christian N.; Bieser, Johannes; Carbone, Francesco; De Simone, Francesco; Hedgecock, Ian M.; Matthias, Volker; Travnikov, Oleg; Yang, Xin; Pirrone, Nicola

    2017-01-01

    Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 / OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat

  3. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  4. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Directory of Open Access Journals (Sweden)

    Khandakar Md Habib Al Razi, Moritomi Hiroshi, Kambara Shinji

    2012-01-01

    Full Text Available The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of "Substances Requiring Priority Action" published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 μg/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT that estimates the

  5. Atmospheric mercury dispersion modelling from two nearest hypothetical point sources

    Energy Technology Data Exchange (ETDEWEB)

    Al Razi, Khandakar Md Habib; Hiroshi, Moritomi; Shinji, Kambara [Environmental and Renewable Energy System (ERES), Graduate School of Engineering, Gifu University, Yanagido, Gifu City, 501-1193 (Japan)

    2012-07-01

    The Japan coastal areas are still environmentally friendly, though there are multiple air emission sources originating as a consequence of several developmental activities such as automobile industries, operation of thermal power plants, and mobile-source pollution. Mercury is known to be a potential air pollutant in the region apart from SOX, NOX, CO and Ozone. Mercury contamination in water bodies and other ecosystems due to deposition of atmospheric mercury is considered a serious environmental concern. Identification of sources contributing to the high atmospheric mercury levels will be useful for formulating pollution control and mitigation strategies in the region. In Japan, mercury and its compounds were categorized as hazardous air pollutants in 1996 and are on the list of 'Substances Requiring Priority Action' published by the Central Environmental Council of Japan. The Air Quality Management Division of the Environmental Bureau, Ministry of the Environment, Japan, selected the current annual mean environmental air quality standard for mercury and its compounds of 0.04 ?g/m3. Long-term exposure to mercury and its compounds can have a carcinogenic effect, inducing eg, Minamata disease. This study evaluates the impact of mercury emissions on air quality in the coastal area of Japan. Average yearly emission of mercury from an elevated point source in this area with background concentration and one-year meteorological data were used to predict the ground level concentration of mercury. To estimate the concentration of mercury and its compounds in air of the local area, two different simulation models have been used. The first is the National Institute of Advanced Science and Technology Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER) that estimates regional atmospheric concentration and distribution. The second is the Hybrid Single Particle Lagrangian Integrated trajectory Model (HYSPLIT) that estimates the atmospheric

  6. Modeling Exoplanetary Atmospheres using BART, TEA, and Drift-RHD; Theoretical studies and Observational Implications

    Science.gov (United States)

    Dobbs-Dixon, Ian

    numerous published papers, further work is needed to couple them self-consistently. Our theoretical studies focus on a number of objectives. We will start by incorporating our kinetic, non-equilibrium cloud model within BART, allowing us to obtain a consistent solution for cloud characteristics. We will further test simple parameterizations against the full solution to explore the reliability of simpler models. Utilizing Drift-RHD, we will explore the role of horizontal advection on cloud distribution, investigate the validity of 1D retrievals by comparing them to selfconsistently generated 3D models, and develop a retrieval framework for wavelengthdependent phase-curves. TEA will be enhanced with additional databases and the inclusion of condensates, providing realistic initial cloudy-model for retrievals. To explore the importance of equilibrium chemistry and exclude non-plausible chemical compositions (often the outcome of many retrieval approaches) we will relax the assumption of non-equilibrium chemistry by utilizing an analytical chemical equilibrium approach in BART. To address observations, our OBS suit for generating synthetic observations will be adapted to interface with our models, allowing us to both compare to existing observations and make predictions for future observations. With these tools, we are particularly well suited to understand discriminants between classes of models and identifying which particular set of observations could most readily distinguish cloud constituents and temperature features. The proposed research is directly relevant to the Planetary Science and Astrophysics goals through furthering our understanding of compositions, dynamics, energetics, and chemical behaviors of exoplanetary atmospheres. In addition, to maximize NASA's investment and encourage open access, we have and will continue to make all of our codes public and available to the community throughout the course of the research.

  7. The Stagger-grid: A grid of 3D stellar atmosphere models - III. The relation to mixing length convection theory

    CERN Document Server

    Magic, Zazralt; Asplund, Martin

    2014-01-01

    We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. The adiabatic entropy value of the deep convection zone, s_bot, and the entropy jump, {\\Delta}s, determined from the 3D RHD models, are matched with the mixing length parameter, {\\alpha}_MLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derive the mass mixing length, {\\alpha}_m, and the vertical correlation length of the vertical velocity, C[v_z,v_z], directly from the 3D hydrodynamical simulations of stellar subsurface convection. The calibrated mixing length parameter for the Sun is {\\alpha}_MLT (s_bot) = 1.98. For different stellar parameters, {\\alpha}_MLT varies systematically in the range of 1.7 - 2.4. In particular, {\\alpha}_MLT decreases towards higher effective temperature, lower surface gravity and higher metallicity...

  8. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  9. The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties

    Science.gov (United States)

    Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, Å.

    2013-09-01

    Aims: We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted ⟨3D⟩ models). Methods: All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~ 220 grid models range in effective temperature, Teff, from 4000 to 7000 K in steps of 500 K, in surface gravity, log g, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from - 4.0 to + 0.5 in steps of 0.5 and 1.0 dex. Results: We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the ⟨3D⟩ models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad

  10. Long-lived halocarbon trends and budgets from atmospheric chemistry modelling constrained with measurements in polar firn

    Directory of Open Access Journals (Sweden)

    P. Martinerie

    2009-01-01

    Full Text Available The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6 are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are insignificant. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.

  11. Long-lived halocarbon trends and budgets from atmospheric chemistry modelling constrained with measurements in polar firn

    Directory of Open Access Journals (Sweden)

    P. Martinerie

    2009-06-01

    Full Text Available The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6 are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are small. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.

  12. Effects of Scattering on the Temperature Stratification in 3D Model Atmospheres of Late-Type Stars

    Science.gov (United States)

    Collet, R.; Hayek, W.; Asplund, M.

    2011-12-01

    Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars predict cooler upper photospheric stratifications than their one-dimensional (1D) counterparts. This property of 3D model atmospheres affects the determination of elemental abundances from temperature-sensitive spectral features, with important consequences for galactic chemical evolution studies. In this contribution, we investigate the impact of different approximations of scattering in the solution of the radiative transfer equation on the temperature stratification of 3D model atmospheres of metal-poor red giants. We use the BIFROST code to construct 3D model atmospheres of metal-poor red giants using three different approximations of scattering. First, we self-consistently solve the radiative transfer equation for the general case of a source function with a coherent scattering term; second, we solve the radiative transfer equation assuming a Planckian source function and neglecting altogether the contribution of continuum scattering to extinction in the optically thin layers; third, we assume a Planckian source function and treat continuum scattering as pure absorption everywhere in the simulation's domain. We find that the second approach produces very similar temperature structures with cool upper photospheric layers as when treating scattering correctly, and at a much lower computational cost. In contrast, treating scattering as pure absorption leads to significantly hotter and shallower temperature stratifications.

  13. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  14. A grid of MARCS model atmospheres for S stars

    CERN Document Server

    Van Eck, Sophie; Plez, Bertrand; Jorissen, Alain; Edvardsson, Bengt; Eriksson, Kjell; Gustafsson, Bengt; Jorgensen, Uffe-Grae; Nordlund, Ake

    2010-01-01

    S-type stars are late-type giants whose atmosphere is enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing AGB. A large grid of S-star model atmospheres has been computed covering the range 2700 < Teff < 4000 K with 0.5 < C/O < 0.99. ZrO and TiO band strength indices as well as VJHKL photometry are needed to disentangle Teff, C/O and [s/Fe]. A "best-model finding tool" was developed using a set of well-chosen indices and checked against photometry as well as low- and high-resolution spectroscopy. It is found that applying M-star model atmospheres (i.e., with a solar C/O ratio) to S stars can lead to errors on Teff up to 400K. We constrain the parameter space occupied by S stars of the vast sample of Henize stars in terms of Teff, [C/O] and [s/Fe].

  15. Transmission Spectra of Three-Dimensional Hot Jupiter Model Atmospheres

    CERN Document Server

    Fortney, J J; Showman, A P; Lian, Y; Freedman, R S; Marley, M S; Lewis, N K

    2009-01-01

    We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, ...

  16. Uniform rovibrational collisional N2 bin model for DSMC, with application to atmospheric entry flows

    Science.gov (United States)

    Torres, E.; Bondar, Ye. A.; Magin, T. E.

    2016-11-01

    A state-to-state model for internal energy exchange and molecular dissociation allows for high-fidelity DSMC simulations. Elementary reaction cross sections for the N2 (v, J)+ N system were previously extracted from a quantum-chemical database, originally compiled at NASA Ames Research Center. Due to the high computational cost of simulating the full range of inelastic collision processes (approx. 23 million reactions), a coarse-grain model, called the Uniform RoVibrational Collisional (URVC) bin model can be used instead. This allows to reduce the original 9390 rovibrational levels of N2 to 10 energy bins. In the present work, this reduced model is used to simulate a 2D flow configuration, which more closely reproduces the conditions of high-speed entry into Earth's atmosphere. For this purpose, the URVC bin model had to be adapted for integration into the "Rarefied Gas Dynamics Analysis System" (RGDAS), a separate high-performance DSMC code capable of handling complex geometries and parallel computations. RGDAS was developed at the Institute of Theoretical and Applied Mechanics in Novosibirsk, Russia for use by the European Space Agency (ESA) and shares many features with the well-known SMILE code developed by the same group. We show that the reduced mechanism developed previously can be implemented in RGDAS, and the results exhibit nonequilibrium effects consistent with those observed in previous 1D-simulations.

  17. Biogeochemical Modeling of the Second Rise of Atmospheric Oxygen

    Science.gov (United States)

    Smith, M.; Catling, D. C.; Claire, M.

    2014-12-01

    The second rise of atmospheric oxygen (~600 Ma) marked an increase of atmospheric pO2 from a poorly constrained value of 0.1% atmospheric level (PAL) in the early and mid Proterozoic to >10%PAL1. The event is important because it ushered in the modern era of animal life. To understand the evolution of Earth's habitability, it is therefore key to understand the cause of this 2nd rise. Here, we quantitatively examine possible causes for the 2nd rise of oxygen. We use a biogeochemical box model2 originally developed to calculate the oxygen evolution before and after the 1st rise of oxygen (~2.4 Ga). The Claire et al. (2006) model calculates the evolution of atmospheric oxygen and methane given production and loss fluxes associated with the oxygen, carbon, and iron cycles. Because the model was unable to drive pO2 to end-Proterozoic levels, the authors suggested that another buffer, such as sulfur, is needed to explain the 2nd rise of oxygen. The sulfur and oxygen cycles are tied through various biogeochemical interactions; therefore, once sulfur (as sulfate) began to accumulate in Proterozoic oceans, it likely began to heavily influence the oxygen cycle. We have added a sulfur biogeochemical cycle to this model, enabling exploration of mechanisms that buffer pO2 at intermediate levels in the Proterozoic and fail to do so in the Phanerozoic. Preliminary results show evolution of oxygen and methane that are consistent with geologic proxies. However, the model-generated 2nd rise of oxygen is dependent upon sulfur fluxes that have uncertain magnitudes, so we will present the sensitivity of our results to model assumptions while constraining scenarios for the 2nd rise of atmospheric O2. In the future, we will also integrate isotopic fractionation effects, which will allow comparison with isotopic data from sedimentary sulfides, carbonates, and organic carbon. 1Canfield, C., 2014, Treatise on Geochemistry, 197 2Claire, M.W., et al., 2006, Geobiology, 4, 239

  18. Unified Ion-chemical Model for the Middle Atmosphere

    Science.gov (United States)

    Kamsali, Nagaraja; Kamsali, Nagaraja; Datta, Jayati; Prasad, Bsn

    The importance of ion-chemical model studies in our understanding of middle atmospheric regions needs no special emphasis. Present day knowledge of middle atmosphere (0-100 km) has come from two distinct experimental developments: first, in situ measurements of ion composition by balloons and sounding rockets and second, laboratory investigations on ionchemical reactions of importance at these heights, determination of reaction rate coefficients and their temperature dependence. Model studies act as an interface between these, to generate theoretical estimates of ion composition and their derivatives (e.g. electrical conductivity) by using as input the laboratory data on reaction rate coefficients and the data on neutral species density, ionization flux, temperature etc. Free electrons exist only in the mesosphere. Positive molecular ions dominate the upper mesospheric heights and heavy positive and negative cluster ions appearing at the lower mesospheric heights continue to dominate in strato and troposphere. The equilibrium density of electrons and ionic species is governed by: a) ionization of the atmospheric constituents producing electron-positive ion pair b)gas-phase ion-chemical reactions that convert the electrons and primary positive ions into heavy cluster ions of both polarity c)heterogeneous ion-chemical reactions for producing aerosol ions and d) loss mechanisms for small ions and aerosol ions through recombination of oppositely charged species. Physical entities that control the ion production and loss processes are not the same and vary vastly both in nature and magnitude in the middle atmosphere X-rays, Lymann-alpha and precipitating electrons are the dominant ionizing agents at the mesospheric heights. Cosmic ray ionization that is not so significant in the mesosphere is the sole ionizing agent at stratosphere and troposphere. At the ground level and up to a few tens of meters above the earth's surface, natural radioactivity induced ionization is

  19. The Explicit Planetary Isentropic-Coordinate (EPIC) Atmospheric Model

    Science.gov (United States)

    Dowling, T. E.; Fischer, A. S.; Gierasch, P. J.; Harrington, J.; LeBeau, R. P.; Santori, C. M.

    1998-04-01

    We describe a new general circulation model (GCM) designed for planetary atmospheric studies called the EPIC model. This is a finite-difference model based on the isentropic-coordinate scheme of Hsu and Arakawa (1990.Mon. Wea. Rev.118, 1933-1959). We report on previously undocumented modifications, additions, and key practical issues that experience running the model has revealed to be important. The model integrates the hydrostatic primitive equations, which are valid for large-scale atmospheric dynamics and include gravity waves (buoyancy waves), planetary waves (Rossby waves), and horizontally propagating sound waves (Lamb waves), but not vertically propagating sound waves because of the hydrostatic approximation. The vertical coordinate is entropy in the form of potential temperature, which coincides with material surfaces for adiabatic motion. This means that there is no vertical velocity except where there is heating, which improves accuracy and helps the model maintain conservation properties over long integrations. An isentropic vertical coordinate is natural for the atmospheres of Jupiter, Saturn, Uranus, and Neptune, which are believed to have essentially adiabatic interiors that match up with the bottom of the model and is also excellent for middle-atmosphere studies on any planet. Radiative processes are parameterized by Newtonian cooling, and the latent heat of ortho-para hydrogen conversion is included when appropriate, with a suitably defined mean potential temperature. The model is written with general map factors that make it easy to configure in oblate spherical, cylindrical, or Cartesian coordinates. The code includes optional Message Passing Interface (MPI) library calls and hence runs on any Unix-based parallel computer or network cluster. An optional graphical user interface to commercial visualization software facilitates control of the model and analysis of output. Memory is allocated dynamically such that the user does not recompile to

  20. SST Diurnal Variability: Regional Extent & Implications in Atmospheric Modelling

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob L.

    2013-01-01

    and quantify regional diurnal warming from the experimental MSG/SEVIRI hourly SST fields, for the period 2006-2012. ii) To investigate the impact of the increased SST temporal resolution in the atmospheric model WRF, in terms of modeled 10-m winds and surface heat fluxes. Withing this context, 3 main tasks...... regional diurnal warming over the SEVIRI disk, a SEVIRI derived reference field representative of the well mixed night-time conditions is required. Different methodologies are tested and the results are validated against SEVIRI pre-dawn SSTs and in situ data from moored and drifting buoys....

  1. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  2. Regional forecasting with global atmospheric models; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  3. Regional forecasting with global atmospheric models; Third year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  4. Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region

    Institute of Scientific and Technical Information of China (English)

    JIA Yuanyuan; LI Zhaoliang

    2008-01-01

    The radiative transfer is one of the significant theories that describe the processes of scattering,emission,and absorption of electromagnetic radiant intensity through scattering medium.It is the basis of the study on the quantitative remote sensing.In this paper,the radiative characteristics of soil,vegetation,and atmosphere were described respectively.The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS).A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed,designed,and implemented.Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected,particularly for higher frequency,and can be parameterized.At the same time,the relationship between the emissivities of the different channels was developed.The study results will promote the development of algorithm to retrieve geophysical parameters from microwave remotely sensed data.

  5. Fast and simple model for atmospheric radiative transfer

    Directory of Open Access Journals (Sweden)

    F. C. Seidel

    2010-05-01

    Full Text Available Radiative transfer models (RTMs are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cost of reduced accuracy. We propose an approach in the latter category, using analytical equations, parameterizations and a correction factor to efficiently estimate the effect of molecular multiple scattering. We discuss the approximations together with an analysis of the resulting performance and accuracy. The proposed Simple Model for Atmospheric Radiative Transfer (SMART decreases the calculation time by a factor of more than 25 in comparison to the benchmark RTM~6S on the same infrastructure. The approximative computation of the atmospheric reflectance factor by SMART has an uncertainty ranging from about 5% to 10% for nadir spaceborne and airborne observational conditions. The combination of a large solar zenith angle (SZA with high aerosol optical depth (AOD at low wavelengths lead to uncertainties of up to 15%. SMART can be used to simulate the hemispherical conical reflectance factor (HCRF for spaceborne and airborne sensors, as well as for the retrieval of columnar AOD.

  6. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    Directory of Open Access Journals (Sweden)

    H. Liang

    2015-01-01

    Full Text Available The existence and importance of peroxyformic acid (PFA in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(OO2 and formaldehyde or the hydroperoxyl radical (HO2 were likely to be the major source and degradation into formic acid (FA was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(OO2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(OO2 and PFA chemistry on radical cycling was dependent on the yield of HC(OO2 radical from HC(O + O2 reaction. When this yield exceeded 50%, the HC(OO2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(OO2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  7. Atmosphere-Cryosphere Coupled Model for Regional Climate Applications

    Directory of Open Access Journals (Sweden)

    Ki-Hong Min

    2015-01-01

    Full Text Available There have been significant advances in our understanding of the climate system, but two major problems still exist in modeling atmospheric response during cold seasons: (a lack of detailed physical description of snow and frozen soil in the land-surface schemes and (b insufficient understanding of regional climate response from the cryosphere. A multilayer snow land-surface model based on the conservations of heat and water substance inside the soil and snow is coupled to an atmospheric RCM, to investigate the effect of snow, snowmelt, and soil frost on the atmosphere during cold seasons. The coupled RCM shows much improvement in moisture and temperature simulation for March-April of 1997 compared to simple parameterizations used in GCMs. The importance of such processes in RCM simulation is more pronounced in mid-to-high latitudes during the transition period (winter–spring affected by changes in surface energy and the hydrological cycle. The effect of including cryosphere physics through snow-albedo feedback mechanism changes the meridional temperature gradients and in turn changes the location of weather systems passing over the region. The implications from our study suggest that, to reduce the uncertainties and better assess the impacts of climate change, RCM simulations should include the detailed snow and frozen soil processes.

  8. On the use of inexact, pruned hardware in atmospheric modelling.

    Science.gov (United States)

    Düben, Peter D; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V; Palmer, T N

    2014-06-28

    Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz '96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models.

  9. A High Resolution Nonhydrostatic Tropical Atmospheric Model and Its Performance

    Institute of Scientific and Technical Information of China (English)

    SHEN Xueshun; Akimasa SUMI

    2005-01-01

    A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a 2000 km×2000 km region covering the forefront of an ISO-related westerly is selected as the model domain, in which a cloud-resolving integration with a 5-km horizontal resolution is conducted. The results indicate the importance of stratus-cumulus interactions in the organization of the cloud clusters embedded in the ISO. In addition, comparative integrations with 2-km and 5-km grid sizes are conducted, which suggest no distinctive differences between the two cases although some finer structures of convections are discernible in the 2-km case. The significance of this study resides in supplying a powerful tool for investigating tropical cloud activities without the controversy of cloud parameterizations. The parallel computing method applied in this model allows sufficient usage of computer memory, which is different from the usual method used when parallelizing regional model. Further simulation for the global tropics with a resolution around 5 km is being prepared.

  10. Atmospheric trace gases and global climate - A seasonal model study

    Science.gov (United States)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  11. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Institute of Scientific and Technical Information of China (English)

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  12. The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from furfuryl alcohol in mouse models.

    Science.gov (United States)

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2014-10-01

    Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography-tandem mass spectrometry quantification of resulting DNA adducts, e.g. N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N (2)-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33-73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N (2)-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans.

  13. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. V. Oxygen abundance in the metal-poor giant HD 122563 from OH UV lines

    CERN Document Server

    Prakapavičius, D; Dobrovolskas, V; Klevas, J; Steffen, M; Bonifacio, P; Ludwig, H -G; Spite, M

    2016-01-01

    Although oxygen is an important tracer of the early Galactic evolution, its abundance trends with metallicity are still relatively poorly known at [Fe/H] < -2.5. This is in part due to a lack of reliable oxygen abundance indicators in the metal-poor stars, in part due to shortcomings in 1D LTE abundance analyses. In this study we determined the oxygen abundance in the metal-poor halo giant HD 122563 using a 3D hydrodynamical CO5BOLD model atmosphere. Our main goal was to understand whether a 3D LTE analysis may help to improve the reliability of oxygen abundances determined from OH UV lines in comparison to those obtained using standard 1D LTE methodology. The oxygen abundance in HD 122563 was determined using 71 OH UV lines located in the wavelength range between 308-330 nm. The analysis was done using a high-resolution VLT UVES spectrum with a 1D LTE spectral line synthesis performed using the SYNTHE package and classical ATLAS9 model atmosphere. Subsequently, a 3D hydrodynamical CO5BOLD, and 1D hydrosta...

  14. Synthetic-Eddy Method for Urban Atmospheric Flow Modelling

    Science.gov (United States)

    Pavlidis, D.; Gorman, G. J.; Gomes, J. L. M. A.; Pain, C. C.; Apsimon, H.

    2010-08-01

    The computational fluid dynamics code Fluidity, with anisotropic mesh adaptivity, is used as a multi-scale obstacle-accommodating meteorological model. A novel method for generating realistic inlet boundary conditions based on the view of turbulence as a superposition of synthetic eddies is adopted. It is able to reproduce prescribed first-order and second-order one-point statistics and turbulence length scales. The aim is to simulate an urban boundary layer. The model is validated against two standard benchmark tests: a plane channel flow numerical simulation and a flow past a cube physical simulation. The performed large-eddy simulations are in good agreement with both reference models giving confidence that the model can be used to successfully simulate urban atmospheric flows.

  15. Dynamical vegetation-atmosphere modelling of the boreal zone

    Science.gov (United States)

    Tang, Hui; Stordal, Frode; Berntsen, Terje K.; Bryn, Anders

    2016-04-01

    Vegetation interacts with climate on seasonal to inter-annual time scales through albedo, roughness, evapotranspiration, CO2 sequestration and by influencing snow accumulation and ablation. The Scandinavian mountains and high latitudes is a hot spot for land-atmosphere feedback, as the future's increased winter minimum temperature supports a boreal tree line advance, lowering the surface albedo. The northern ecosystem is dominated by mires, boreal forests and alpine heaths, in addition to agricultural land. Model studies have shown that vegetation-climate feedbacks are strong enough to lead to regime shifts in vegetation and local climate in boreal regions. Biogeophysical factors, such as albedo, the Bowen ratio, and surface roughness, are all involved in these feedbacks, and they are also altered by land use change such as reforestation. For calculations of the dynamical coupling between the atmosphere and the vegetation we have used the Earth System Model NorESM, which includes several advanced features in its land surface model (CLM4.5), such as the inclusion of the radiative forcing due to black carbon and dust deposit onto snow, improved representation of fire, permafrost and its hydrological impact, a new snow cover fraction parameterization reflecting the hysteresis in fractional snow cover for a given snow depth between accumulation and melt phases, as well as dynamic vegetation coupled with carbon-nitrogen cycles. These new features improve the representation of surface albedo feedback in Arctic. We have performed experiments with coupled as well fixed ocean for the current as a quadrupled atmospheric CO2 situation. This model configuration is used to study changes in vegetation in a high end radiative forcing case. It is contrasted with an experiment where vegetation dynamics is neglected. Changes in the features of the vegetation along with surface fluxes, albedo and atmospheric temperatures are analysed, with main emphasis on the boreal zone. In

  16. The dependence of land-atmosphere interactions on atmospheric parametrizations in the JULES/UM modelling system

    Science.gov (United States)

    Johnson, Helen; Best, Martin

    2015-04-01

    It has been understood for a while now that atmospheric behaviour is affected by land surface processes, modelling this relationship however still presents challenges. Most numerical weather prediction (NWP) models couple an atmospheric model to a land surface model in order to forecast the weather and/or climate. The Global Land-Atmosphere Coupling Experiment (GLACE) demonstrated that soil moisture variability has considerable control over atmospheric behaviour, particularly impacting on precipitation and temperature variability. The study also suggested that differences in coupling strengths between models may be due to differences in atmospheric parametrizations. There have since been other studies which support this claim but it is not yet clear which parameters control the land-atmosphere coupling strength or indeed what it should be. In this study we investigate whether certain atmospheric parameters hold more control than others over model sensitivity to land surface changes. We focus on the interaction of the JULES (Joint UK Land Environment Simulator) land surface model with the Met Office Unified Model (UM) that is used for operational NWP and climate prediction. For computational efficiency we ran the UM at a single site using a single column model (SCM) rather than running a global model simulation. A site in the Sahel region of West Africa was chosen as this is an area that was identified by GLACE as being especially responsive to changes in soil moisture. JULES was run several times with various different initial soil moisture profiles to create an ensemble of surface sensible and latent heat fluxes that could be used to force a set of different SCM runs in order to simulate a range of different atmospheric conditions. Various atmospheric parameters in the SCM were then perturbed to create additional sets of SCM runs with different sensitivities to soil moisture changes. By analysing the difference in spread between the standard configuration and the

  17. Atmospheric Modelling for Air Quality Study over the complex Himalayas

    Science.gov (United States)

    Surapipith, Vanisa; Panday, Arnico; Mukherji, Aditi; Banmali Pradhan, Bidya; Blumer, Sandro

    2014-05-01

    An Atmospheric Modelling System has been set up at International Centre for Integrated Mountain Development (ICIMOD) for the assessment of Air Quality across the Himalaya mountain ranges. The Weather Research and Forecasting (WRF) model version 3.5 has been implemented over the regional domain, stretching across 4995 x 4455 km2 centred at Ichhyakamana , the ICIMOD newly setting-up mountain-peak station (1860 m) in central Nepal, and covering terrains from sea-level to the Everest (8848 m). Simulation is carried out for the winter time period, i.e. December 2012 to February 2013, when there was an intensive field campaign SusKat, where at least 7 super stations were collecting meteorology and chemical parameters on various sites. The very complex terrain requires a high horizontal resolution (1 × 1 km2), which is achieved by nesting the domain of interest, e.g. Kathmandu Valley, into 3 coarser ones (27, 9, 3 km resolution). Model validation is performed against the field data as well as satellite data, and the challenge of capturing the necessary atmospheric processes is discussed, before moving forward with the fully coupled chemistry module (WRF-Chem), having local and regional emission databases as input. The effort aims at finding a better understanding of the atmospheric processes and air quality impact on the mountain population, as well as the impact of the long-range transport, particularly of Black Carbon aerosol deposition, to the radiative budget over the Himalayan glaciers. The higher rate of snowcap melting, and shrinkage of permafrost as noticed by glaciologists is a concern. Better prediction will supply crucial information to form the proper mitigation and adaptation strategies for saving people lives across the Himalayas in the changing climate.

  18. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    Science.gov (United States)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  19. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  20. An Adaptive Discontinuous Galerkin Method for Modeling Atmospheric Convection (Preprint)

    Science.gov (United States)

    2011-04-13

    J. Päpke, K. Dethloff, amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation, Ocean Modelling 10, pp.171–183 (2005). [24] P. K. Kundu , Fluid Mechanics . Academic Press, 638 pp. (1990). 20 ...further explanation we refer to the text. two fluids . Johari found that, depending on the strength of the buoyancy reversal, the morphology of the cloud...development could be vastly different. Similar results were found in highly idealized numerical two- fluid experiments by Gra- bowski4 in 1995. These

  1. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Laboratory; Nasstrom, John [Lawrence Livermore National Laboratory; Pobanz, Brenda [Lawrence Livermore National Laboratory; Foster, Kevin [Lawrence Livermore National Laboratory; Simpson, Matthew [Lawrence Livermore National Laboratory; Vogt, Phil [Lawrence Livermore National Laboratory; Aluzzi, Fernando [Lawrence Livermore National Laboratory; Homann, Steve [Lawrence Livermore National Laboratory

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  2. A sonic boom propagation model including mean flow atmospheric effects

    Science.gov (United States)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  3. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    Science.gov (United States)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  4. A New Astrobiological Model of the Atmosphere of Titan

    Science.gov (United States)

    Willacy, K.; Allen, M.; Yung, Y.

    2016-10-01

    We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model to cover the region below the tropopause, so the new model treats the atmosphere from Titan’s surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, particularly of HNC, HC3N, and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular interest is the chemistry of acrylonitrile (C2H3CN) which has been suggested by Stevenson et al. as a molecule that could form biological membranes in an oxygen-deficient environment. With the inclusion of haze formation, we find good agreement of our model predictions of acrylonitrile with the available observations.

  5. A High-Order Multiscale Global Atmospheric Model

    Science.gov (United States)

    Nair, Ram

    2016-04-01

    The High-Order Method Modeling Environment (HOMME), developed at NCAR, is a petascale hydrostatic framework, which employs the cubed-sphere grid system and high-order continuous or discontinuous Galerkin (DG) methods. Recently, the HOMME framework is being extended to a non-hydrostatic dynamical core, named as the "High-Order Multiscale Atmospheric Model (HOMAM)." The spatial discretization is based on DG or high-order finite-volume methods. Orography is handled by the terrain-following height-based coordinate system. To alleviate the stringent CFL stability requirement resulting from the vertical aspects of the dynamics, an operator-splitting time integration scheme based on the horizontally explicit and vertically implicit (HEVI) philosophy is adopted for HOMAM. Preliminary results with the benchmark test cases proposed in the Dynamical Core Model Intercomparison project (DCMIP) test-suite will be presented in the seminar.

  6. Puff models for simulation of fugitive radioactive emissions in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Camila P. da, E-mail: camila.costa@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Matematica e Estatistica; Pereira, Ledina L., E-mail: ledinalentz@yahoo.com.b [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tirabassi, Tiziano, E-mail: t.tirabassi@isac.cnr.i [Institute of Atmospheric Sciences and Climate (CNR/ISAC), Bologna (Italy)

    2009-07-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  7. Hydrodynamic models of a Cepheid atmosphere. I - Deep envelope models

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks has been modified to include radiative transfer effects. This modified code has been used to compute deep envelope models of a classical Cepheid with a period of 12 days. It is shown that in this particular model the hydrogen ionization region plays only a small role in producing the observed phase lag between the light and velocity curves. The cause of the bumps on the model's light curve is examined, and a mechanism is presented to explain those Cepheids with two secondary features on their light curves. This mechanism is shown to be consistent with the Hertzsprung sequence only if the evolutionary mass-luminosity law is used.

  8. Asteroid fragmentation approaches for modeling atmospheric energy deposition

    Science.gov (United States)

    Register, Paul J.; Mathias, Donovan L.; Wheeler, Lorien F.

    2017-03-01

    During asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or "pancake" model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve.

  9. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Directory of Open Access Journals (Sweden)

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  10. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  11. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    Science.gov (United States)

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil.

  12. Effects of avitriptan, a new 5 HT(1B/1D) receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential

    NARCIS (Netherlands)

    P.R. Saxena (Pramod Ranjan); P.A.M. de Vries (Peter); W. Wang (Wei); J.P. Heiligers (Jan); A. Maassen VanDenBrink (Antoinette); W.A. Bax (Willem); F.D. Yocca (Frank)

    1997-01-01

    markdownabstractAbstract Several acutely acting antimigraine drugs, including ergotamine and sumatriptan, have the ability to constrict porcine arteriovenous anastomoses as well as the human isolated coronary artery. These two experimental models seem to serve as indicators, respectively, for the

  13. Stellar models for very low mass main sequence stars the role of model atmospheres

    CERN Document Server

    Brocato, E; Castellani, V

    1997-01-01

    We present Very Low Mass stellar models as computed including non-grey model atmospheres for selected assumptions about the star metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation and with similar models appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass-luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighborhood reveals a satisfactory agreement together with the existence of some residual mismatches.

  14. Validating a 1-D SVAT model in a range of USA and Australian ecosystems: evidence towards its use as a tool to study Earth's system interactions

    Directory of Open Access Journals (Sweden)

    G. P. Petropoulos

    2015-03-01

    Full Text Available This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg, Net Radiation (Rnet, Latent Heat (LE, Sensible Heat (H, Air Temperature at 1.3 m (Tair 1.3 m and Air Temperature at 50 m (Tair 50 m. Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA and OzFlux (Australia monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m−2, 3.23, 3.77 °C respectively. A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m−2, MBE = 67.83, 58.69 W m−2 respectively was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash–Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an

  15. Simplified Atmospheric Dispersion Model andModel Based Real Field Estimation System ofAir Pollution

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The atmospheric dispersion model has been well developed and applied in pollution emergency and prediction. Based on thesophisticated air diffusion model, this paper proposes a simplified model and some optimization about meteorological andgeological conditions. The model is suitable for what is proposed as Real Field Monitor and Estimation system. The principle ofsimplified diffusion model and its optimization is studied. The design of Real Field Monitor system based on this model and itsfundamental implementations are introduced.

  16. Generalized Manning Condensation Model Captures the RNA Ion Atmosphere

    Science.gov (United States)

    Hayes, Ryan L.; Noel, Jeffrey K.; Mandic, Ana; Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Mohanty, Udayan; Onuchic, José N.

    2016-01-01

    RNA is highly sensitive to the ionic environment, and typically requires Mg2+ to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg2+ ions explicitly to account for ion-ion correlations neglected by mean field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, non-limiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg2+ associated with the RNA, Γ2+, because Γ2+ is directly related to the Mg2+-RNA interaction free energy. The excellent agreement with experiment demonstrates the model captures the ionic dependence of the RNA free energy landscape. PMID:26197147

  17. Forward and Inverse Modeling of Brown Dwarf Atmospheres

    Science.gov (United States)

    Fortney, Jonathan

    Ultracool dwarfs (UCDs), here defined as the L, T, and Y spectral classes, consist of the lowest mass stars and the substellar brown dwarfs. Over 1200 are currently known, from effective temperatures of 2400 K down to "room temperature" objects of 300 K. Observations of UCDs show tremendous diversity in their spectral characteristics. However, factors such as metallicity, non-solar C/O ratios, surface gravity, vertical mixing efficiency, cloud levels, and cloud thickness remain largely unexplored within atmosphere models. This leads to a very limited understanding of the physical and chemical causes of brown dwarf diversity. One of the main motivations of this proposal is to greatly expand the kinds of modeling efforts that we envision for UCD science to obtain fundamentally new insights from the spectra of several hundred objects. First, we will expand our self-consistent grids of combined atmosphere and evolution models. With this traditional approach we can test the sensitivity of synthetic spectra of changes in parameters like surface gravity, cloud thickness, partial cloudiness, cloud particle size, and vertical mixing efficiency. Second, we will use powerful retrieval techniques to invert the model-to-data comparison problem. These Bayesian techniques allow the inference of P-T profile structure and molecular abundances, directly from the data. The first target populations are benchmark brown dwarfs, which have a well-studied main sequence companion, and where metallicity, age, and even mass can be independently constrained. The second is the 500+ UCDs across all spectral types that have NIR spectra already in hand in the SpeX spectral library. The third population is brown dwarfs that are variable in emission. This work is directly relevant to the NASA Astrophysics Theory (ATP) program. The proposed falls within the ATP scope of "Stellar Astrophysics and Exoplanets," which specifically includes brown dwarfs. The current proposal both facilitates "the

  18. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with parametrization model

    CERN Document Server

    Artamonov, A A; Usoskin, I G

    2016-01-01

    A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....

  19. Study on recharge from dry farmland irrigation based on the Hydrus -1D model in Da’an irrigation district%基于 Hydrus -1D 模型的大安灌区旱田灌溉入渗补给研究

    Institute of Scientific and Technical Information of China (English)

    卞建民; 李育松; 胡昱欣; 李宏亮

    2014-01-01

    以吉林省大安灌区为研究对象,在野外调查和资料收集的基础上,借助 Hydrus -1D 模型,模拟分析了旱田(玉米地)灌溉条件下地下水入渗补给过程。结果表明:模拟期间蒸散发动态变化较大,蒸腾量约为蒸发量的2.18倍,玉米生育期内,土壤水分蒸腾损失约占蒸散发消耗的79.74%,蒸散发在作物生长旺季以蒸腾为主,其它时段则以蒸发为主;旱田灌溉条件下,降水灌溉大量入渗形成土壤水,土壤水与地下水发生双向的、动态的水量频繁交换,模拟中地下水入渗补给量约为33.63 mm ,入渗比为5.21%,其与研究区细密的包气带介质岩性有关。研究成果可为进一步开展旱田灌溉合理方案的制定提供科学依据。%Based on field investigations and data collection ,the process of groundwater recharge under irrigation in the dry farmland (maize field) in Da’an Irrigation District in Jilin Province was analyzed using the Hydrus -1D model . The result shows that evapotranspiration dynamic change is evident during the simulation ,transpiration is about 2 .18 times of evaporation ,soil water transpiration loss accounts for about 79 .74% of the evapotranspiration consumption in maize growth period ,the preponderance is transpiration among evapotranspiration in crop growth season ,other time is e-vaporation ;many precipitation and irrigation water infiltrates into soil water under irrigation in the dry farmland ,soil wa-ter and groundwater transforms quite frequently ,water quantity exchange is bidirectional and dynamic ,the total ground-water recharge is about 33 .63 mm during the simulation ,infiltration ratio is 5 .21% .the amount is relevant to fine aera-tion zone medium of study area .This research may offer scientific evidence to schedule reasonable irrigation scheme in dry farmland further .

  20. Stochastic Parametrisations and Regime Behaviour of Atmospheric Models

    Science.gov (United States)

    Arnold, Hannah; Moroz, Irene; Palmer, Tim

    2013-04-01

    The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study

  1. A new astrobiological model of the atmosphere of Titan

    CERN Document Server

    Willacy, Karen; Yung, Yuk

    2016-01-01

    We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model (Li et al. 2015, 2016) to cover the region below the tropopause, so the new model treats the atmosphere from Titan's surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, in particular of HNC, HC3N and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular intere...

  2. The balance model of oxygen enrichment of atmospheric air

    Science.gov (United States)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  3. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    Science.gov (United States)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  4. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5

    NARCIS (Netherlands)

    Bergamaschi, P.; Krol, M.C.; Dentener, F.; Vermeulen, A.; Meinhardt, F.; Graul, R.; Ramonet, M.; Peters, W.; Dlugokencky, E.J.

    2005-01-01

    A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of

  5. Land-Atmosphere Coupling in the Multi-Scale Modelling Framework

    Science.gov (United States)

    Kraus, P. M.; Denning, S.

    2015-12-01

    The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced

  6. Spectral classification of stars using synthetic model atmospheres

    CERN Document Server

    Bertone, E

    2001-01-01

    We devised a straightforward procedure to derive the atmosphere fundamental parameters of stars across the different MK spectral types by comparing mid-resolution spectroscopic observations with theoretical grids of synthetic spectra.The results of a preliminary experiment, by matching the Gunn and Stryker and Jacoby et al. spectrophotometric atlases with the Kurucz models, are briefly discussed. For stars in the A-K spectral range, effective temperature is obtained within a 1-2% relative uncertainty (at 2 sigma confidence level). This value raises to 4-5% for the hottest stars in the samples (O-B spectral types). A poorer fit is obtained throughout for stars cooler than 4000 K mainly due to the limiting input physics in the Kurucz models.

  7. Maximal atmospheric neutrino mixing in an SU(5) model

    Science.gov (United States)

    Grimus, W.; Lavoura, L.

    2003-05-01

    We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model.

  8. A three-dimensional general circulation model with coupled chemistry for the middle atmosphere

    Science.gov (United States)

    Rasch, P. J.; Boville, B. A.; Brasseur, G. P.

    1995-05-01

    We document a new middle atmosphere general circulation model that includes ozone photochemistry. The dynamical model component is based on the NCAR middle atmosphere version of the Community Climate Model. The chemistry model component simulates the evolution of 24 chemically reactive gases. The horizontal resolution is approximately 3° in latitude and 6° in longitude. It includes 44 levels, with a maximum vertical grid spacing of about 2.5 km and a top level at around 75 km. The chemical model distinguishes between species where we judge transport to be critical and those for which it may be neglected. Nine longer-lived species (N2O, CH4, H2O, HNO3, N2O5, CO, ClONO2, HCl, and HOCl) and four chemical families (NOy, NOx, Ox and Clx) are advected. Concentrations of 15 species which are typically shorter-lived or are members of the chemical families are diagnosed using quasi-equilibrium assumptions ( O(1D), OH, Cl, O(3P), O3, HO2, NO2, ClO, NO, HNO4, NO3, N, OClO, Cl2O2, H2O2). Distributions for a number of other species are prescribed. Results are presented from a 2-year simulation, which include only gas phase photochemical reactions and in which the ozone distribution forecast from the chemistry module does not affect the radiative forcing of the dynamical fields. The calculated distributions of trace species and their seasonal evolution are often quite realistic, particularly in the northern hemisphere extratropics. Distributions of long-lived species such as N2O and CH4 correspond well to satellite observations. Some features, such as the double peak structure occurring during equinoxes, are not reproduced. The latitudinal variation and seasonal evolution of the ozone column abundance is quite realistic. The calculated vertical distribution of the ozone mixing ratio exhibits significant differences from measured values. The model underestimates significantly the ozone in the upper stratosphere (40 km) and in the extratropics, where the maximum values occur at

  9. A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. [in earth bow shock region

    Science.gov (United States)

    Klimas, A. J.

    1983-01-01

    A numerical method is presented for studying one-dimensional electron plasma evolution under typical interplanetary conditions. The method applies the Fourier-Fourier transform approach to a plasma model that is a generalization of the electrostatic Vlasov-Poisson system of equations. Conservation laws that are modified to include the plasma model generalization and also the boundary effects of nonperiodic solutions are given. A new conservation law for entropy in the transformed space is then introduced. These conservation laws are used to verify the numerical solutions. A discretization error analysis is presented. Two numerical instabilities and the methods used for their suppression are treated. It is shown that in interplanetary plasma conditions, the bump-on-tail instability produces significant excitation of plasma oscillations at the Bohm-Gross frequency and its second harmonic. An explanation of the second harmonic excitation is given in terms of wave-wave coupling during the growth phase of the instability.

  10. Indirect Global Warming Potentials of Halons Using Atmospheric Models

    Science.gov (United States)

    Youn, D.; Patten, K. O.; Wuebbles, D. J.

    2007-05-01

    Emission of bromochlorofluorocarbons, or Halons, results in stratospheric ozone depletion. This leads to cooling of the climate system in the opposite direction to direct warming contribution of the Halons as greenhouse gases. This cooling is a key indirect effect of Halons on radiative forcing or climate. The Global Warming Potential (GWP) is a relative index used to compare the climate impact of an emitted greenhouse gas, relative to an equal amount of carbon dioxide. Until now, indirect GWPs have been calculated based on the concept of Equivalent Effective Stratospheric Chlorine (EESC), which oversimplifies the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, 2-D and 3-D global chemical transport models (CTM) were used as the computational tool to derive more realistic ozone changes caused by pulse perturbation of Halons at the surface. Indirect GWPs of Halon-1211 and -1301 for a 100-year time horizon were explicitly calculated based on the University of Illinois at Urbana-Champaign (UIUC) 2-D global CTM and radiative transport model (RTM) and the 3-D CTM, MOZART-3.1. The 2-D and 3-D model simulations show acceptable temporal variations in the atmosphere as well as derived lifetimes and direct GWP values of the Halons. The 2-D model-based indirect GWPs for a 100-year horizon are -16,294 for Halon-1211 and -33,648 for Halon-1301. 3-D indirect GWP for Halon-1211 is -18,216. The indirect GWPs for Halon-1211 presented here are much smaller than previous published results using the previous simplified appraoch.

  11. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  12. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  13. CR1Dinv : a Matlab program to invert 1D spectral induced polarization data for the Cole-Cole model including electromagnetic effects

    OpenAIRE

    A. Ghorbani; C. Camerlynck; Florsch, Nicolas

    2009-01-01

    An inversion code has been constructed using Matlab, to recover I D parameters of the Cole-Cole model from spectral induced polarization data. In a spectral induced polarization survey, impedances are recorded at various frequencies. Both induced polarization and electromagnetic coupling effects occur simultaneously over the experimental frequency bandwidth, and these become progressively more dominant when the frequency increases. We used the CR1Dmod code published by Ingeman-Nielsen and Bau...

  14. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  15. Part i: Lie-Backlund Theory and Linearization of Differential Equations. Part II: Monte Carlo Simulations of 1-D Quantum Spin Models.

    Science.gov (United States)

    Cullen, John J.

    Part I begins with an account of groups of Lie -Back-lund (L-B) tangent transformations; it is then shown that L-B symmetry operators depending on integrals (nonlocal variables), such as discussed by Konopelchenko and Mokhnachev (1979), are related by change of variables to the L-B operators which involve no more than derivatives. A general method is set down for transforming a given L-B operator into a new one, by any invertible transformation depending on (. . ., D(,x)('-1) u, u, u(,x), . . .). It is shown that once a given differential equation admits a L-B operator, there is in general a very large number of related ("secondary") equations which admit the same operator. The L-B Theory involving nonlocal variables is used to characterize group theoretically the linearization both of the Burgers equation, u(,t) + uu(,x) - u(,xx) = 0, and of the o.d.e. u(,xx) + (omega)('2)(x)u + Ku('-3) = 0. Secondary equations are found to play an important role in understanding the group theoretical background to the linearization of differential equations. Part II deals with Monte Carlo simulations of the l-d quantum Heisenberg and XY-models, using an approach suggested by Suzuki (1976). The simulation is actually carried out on a 2-d, m x N, Isinglike system, equivalent to the original N-spin quantum system when m (--->) (INFIN). The results for m (LESSTHEQ) 10 and kT/(VBAR)J(VBAR) (GREATERTHEQ) .0125 are good enough to show that the method is generally applicable to quantum spin models; however some difficulties caused by singular bonding in the classical lattice (Wiesler 1982) and by the generation of unwanted states have to be taken into account in practice. The finite-size scaling method of Fisher and Ferdinard is adapted for use near T = 0 in the ferromagnetic Heisenberg model; applied to the simulation data it shows that the low temperature susceptibiltiy behaves at T('-(gamma)), where (gamma) = 1.32 (+OR-) 10%. Also, simple and potentially useful finite-size scaling

  16. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-08-01

    Full Text Available Global models of atmospheric mercury generally assume that OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model

  17. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  18. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  19. Hybrid turbulence models for atmospheric flow: A proper comparison with RANS models

    Directory of Open Access Journals (Sweden)

    Bautista Mary C.

    2015-01-01

    Full Text Available A compromise between the required accuracy and the need for affordable simulations for the wind industry might be achieved with the use of hybrid turbulence models. Detached-Eddy Simulation (DES [1] is a hybrid technique that yields accurate results only if it is used according to its original formulation [2]. Due to its particular characteristics (i.e., the type of mesh required, the modeling of the atmospheric flow might always fall outside the original scope of DES. An enhanced version of DES called Simplify Improved Delayed Detached-Eddy Simulation (SIDDES [3] can overcome this and other disadvantages of DES. In this work the neutrally stratified atmospheric flow over a flat terrain with homogeneous roughness will be analyzed using a Reynolds-Averaged Navier–Stokes (RANS model called k – ω SST (shear stress transport [4], and the hybrids k – ω SST-DES and k – ω SST-SIDDES models. An obvious test is to validate these hybrid approaches and asses their advantages and disadvantages over the pure RANS model. However, for several reasons the technique to drive the atmospheric flow is generally different for RANS and LES or hybrid models. The flow in a RANS simulation is usually driven by a constant shear stress imposed at the top boundary [5], therefore modeling only the atmospheric surface layer. On the contrary the LES and hybrid simulations are usually driven by a constant pressure gradient, thus a whole atmospheric boundary layer is simulated. Rigorously, this represents two different simulated cases making the model comparison not trivial. Nevertheless, both atmospheric flow cases are studied with the mentioned models. The results prove that a simple comparison of the time average turbulent quantities obtained by RANS and hybrid simulations is not easily achieved. The RANS simulations yield consistent results for the atmospheric surface layer case, while the hybrid model results are not correct. As for the atmospheric boundary

  20. Mapping deep-sea hydrothermal deposits with an in-loop transient electromagnetic method: Insights from 1D forward and inverse modeling

    Science.gov (United States)

    Jang, Hangilro; Kim, Hee Joon

    2015-12-01

    In transient electromagnetic (TEM) measurements, secondary fields that contain information on conductive targets such as hydrothermal mineral deposits in the seafloor can be measured in the absence of strong primary fields. A TEM system using a loop source is useful to the development of compact, autonomous instruments, which are well suited to submersible-based surveys. In this paper, we investigate the possibility of applying an in-loop TEM system to the detection of marine hydrothermal deposits through a one-dimensional modeling and inversion study. We examine step-off responses for a layered model and compare the characteristics of horizontal and vertical loop systems for detecting hydrothermal deposits. The feasibility study shows that TEM responses are very sensitive to a highly conductive layer. Time-domain target responses are larger and appear earlier in horizontal magnetic fields than in vertical ones, although the vertical field has 2-3 times larger magnitude than the horizontal one. An inverse problem is formulated with the Gauss-Newton method and solved with the damped and smoothness-constrained least-squares approach. The test example for a marine hydrothermal TEM survey demonstrated that the depth extent, conductivity and thickness of the highly conductive layer are well resolved.

  1. A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars

    CERN Document Server

    Mashonkina, L; Shi, J -R; Korn, A J; Grupp, F

    2011-01-01

    A comprehensive model atom for Fe with more than 3000 energy levels is presented. As a test and first application of this model atom, Fe abundances are determined for the Sun and five stars with well determined stellar parameters and high-quality observed spectra. Non-LTE leads to systematically depleted total absorption in the Fe I lines and to positive abundance corrections in agreement with the previous studies, however, the magnitude of non-LTE effect is smaller compared to the earlier results. Non-LTE corrections do not exceed 0.1 dex for the solar metallicity and mildly metal-deficient stars, and they vary within 0.21 dex and 0.35 dex in the very metal-poor stars HD 84937 and HD 122563, respectively, depending on the assumed efficiency of collisions with hydrogen atoms. Based on the analysis of the Fe I/Fe II ionization equilibrium in these two stars, we recommend to apply the Drawin formalism in non-LTE studies of Fe with a scaling factor of 0.1. For the Fe II lines, non-LTE corrections do not exceed 0...

  2. The 1-way on-line coupled atmospheric chemistry model system MECO(n – Part 1: The limited-area atmospheric chemistry model COSMO/MESSy

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2011-06-01

    Full Text Available The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO, maintained by the German weather service (DWD, is connected with the Modular Earth Submodel System (MESSy. This effort is undertaken in preparation of a~new, limited-area atmospheric chemistry model. This model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented. Previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the tracer transport characteristics of the new COSMO/MESSy model system, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  3. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with a parametrization model

    Science.gov (United States)

    Artamonov, A. A.; Mishev, A. L.; Usoskin, I. G.

    2016-11-01

    Results of a comparison of a new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) with a commonly used parametric model of atmospheric ionization is presented. The CRAC:EPII is based on a Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth's atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. Propagation of precipitating electrons and their interactions with air is simulated with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE-00 atmospheric model. Ionization yields are computed and compared with a parametrization model for different energies of incident precipitating energetic electrons, using simulated fluxes of mono-energetic particles. A good agreement between the two models is achieved in the mesosphere but the contribution of Bremsstrahlung in the stratosphere, which is not accounted for in the parametric models, is found significant. As an example, we calculated profiles of the ion production rates in the middle and upper atmosphere (below 100 km) on the basis of balloon-born measured spectra of precipitating electrons for 30-October-2002 and 07-January-2004.

  4. Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model

    Science.gov (United States)

    Woody, M. C.; Wong, H.-W.; West, J. J.; Arunachalam, S.

    2016-12-01

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continental (spanning hundreds of kilometers) using the Community Multiscale Air Quality-Advanced Plume Treatment (CMAQ-APT) model. In our CMAQ-APT simulations, a plume scale treatment is applied to aircraft emissions from 99 major U.S. airports over the contiguous U.S. in January and July 2005. In addition to the plume scale treatment, we account for the formation of non-traditional secondary organic aerosols (NTSOA) from the oxidation of semivolatile and intermediate volatility organic compounds (S/IVOCs) emitted from aircraft, and utilize alternative emission estimates from the Aerosol Dynamics Simulation Code (ADSC). ADSC is a 1-D plume scale model that estimates engine specific PM and S/IVOC emissions at ambient conditions, accounting for relative humidity and temperature. We estimated monthly and contiguous U.S. average aviation-attributable PM2.5 to be 2.7 ng m-3 in January and 2.6 ng m-3 in July using CMAQ-APT with ADSC emissions. This represents an increase of 40% and 12% in January and July, respectively, over impacts using traditional modeling approaches (traditional emissions without APT). The maximum fine scale (subgrid scale) hourly impacts at a major airport were 133.6 μg m-3 in January and 165.4 μg m-3 in July, considerably higher than the maximum grid-based impacts at the airport of 4.3 μg m-3 in January and 0.5 μg m-3 in July.

  5. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  6. EGATEC: A new high-resolution engineering model of the global atmospheric electric circuit—Currents in the lower atmosphere

    Science.gov (United States)

    Odzimek, A.; Lester, M.; Kubicki, M.

    2010-09-01

    We present a new high-resolution model of the Earth's global atmospheric electric circuit (GEC) represented by an equivalent electrical network. Contributions of clouds to the total resistance of the atmosphere and as current generators are treated more realistically than in previous GEC models. The model of cloud current generators is constructed on the basis of the ISCCP cloud data and the OTD/LIS lightning flash rates and TRMM rainfall data. The current generated and the electric resistance can be estimated with a spatial resolution of several degrees in latitude and longitude and 3 hour time resolution. The resistance of the atmosphere is calculated using an atmospheric conductivity model which is spatially dependent and sensitive to the level of solar activity. An equivalent circuit is constructed assuming the ionosphere and ground are ideal conductors. The circuit solution provides diurnal variations of the ionospheric potential and the GEC global current at the 3 hour time resolution as well as the global distributions and diurnal variations of the air-Earth current density and electric field. The model confirms that the global atmospheric electric activity peaks daily at ˜21 UT. The diurnal variation of the ionospheric potential and the global current have a maximum at 12 and 21-24 UT in July and at 9 and 21 UT in December, and a global minimum at 3-6 UT independent of season. About 80% of the current is generated by thunderstorm convective clouds and 20% by mid-level rain clouds.

  7. Toward unification of the multiscale modeling of the atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arakawa

    2011-01-01

    Full Text Available This paper suggests two possible routes to achieve the unification of model physics in coarse- and fine-resolution atmospheric models. As far as representation of deep moist convection is concerned, only two kinds of model physics are used at present: highly parameterized as in the conventional general circulation models (GCMs and explicitly simulated as in the cloud-resolving models (CRMs. Ideally, these two kinds of model physics should be unified so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. With such unification, the GCM can converge to a global CRM (GCRM as the grid size is refined. ROUTE I for unification continues to follow the parameterization approach, but uses a unified parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and CRMs. It is shown that a key to construct such a unified parameterization is to eliminate the assumption of small fractional area covered by convective clouds, which is commonly used in the conventional cumulus parameterizations either explicitly or implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that such an assumption can be eliminated through a relatively minor modification of the existing mass-flux based parameterizations. Partial evaluations of the unified parameterization are also presented. ROUTE II for unification follows the "multi-scale modeling framework (MMF" approach, which takes advantage of explicit representation of deep moist convection and associated cloud-scale processes by CRMs. The Quasi-3-D (Q3-D MMF is an attempt to broaden the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using a network of cloud-resolving grids with gaps. An outline of the Q3-D algorithm and highlights of preliminary results are reviewed.

  8. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  9. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  10. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  11. Parallel Semi-Implicit Spectral Element Atmospheric Model

    Science.gov (United States)

    Fournier, A.; Thomas, S.; Loft, R.

    2001-05-01

    The shallow-water equations (SWE) have long been used to test atmospheric-modeling numerical methods. The SWE contain essential wave-propagation and nonlinear effects of more complete models. We present a semi-implicit (SI) improvement of the Spectral Element Atmospheric Model to solve the SWE (SEAM, Taylor et al. 1997, Fournier et al. 2000, Thomas & Loft 2000). SE methods are h-p finite element methods combining the geometric flexibility of size-h finite elements with the accuracy of degree-p spectral methods. Our work suggests that exceptional parallel-computation performance is achievable by a General-Circulation-Model (GCM) dynamical core, even at modest climate-simulation resolutions (>1o). The code derivation involves weak variational formulation of the SWE, Gauss(-Lobatto) quadrature over the collocation points, and Legendre cardinal interpolators. Appropriate weak variation yields a symmetric positive-definite Helmholtz operator. To meet the Ladyzhenskaya-Babuska-Brezzi inf-sup condition and avoid spurious modes, we use a staggered grid. The SI scheme combines leapfrog and Crank-Nicholson schemes for the nonlinear and linear terms respectively. The localization of operations to elements ideally fits the method to cache-based microprocessor computer architectures --derivatives are computed as collections of small (8x8), naturally cache-blocked matrix-vector products. SEAM also has desirable boundary-exchange communication, like finite-difference models. Timings on on the IBM SP and Compaq ES40 supercomputers indicate that the SI code (20-min timestep) requires 1/3 the CPU time of the explicit code (2-min timestep) for T42 resolutions. Both codes scale nearly linearly out to 400 processors. We achieved single-processor performance up to 30% of peak for both codes on the 375-MHz IBM Power-3 processors. Fast computation and linear scaling lead to a useful climate-simulation dycore only if enough model time is computed per unit wall-clock time. An efficient SI

  12. Optimization of atmospheric transport models on HPC platforms

    Science.gov (United States)

    de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María

    2016-12-01

    The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.

  13. Changes in the brain and plasma Aβ peptide levels with age and its relationship with cognitive impairment in the APPswe/PS1dE9 mouse model of Alzheimer's disease.

    Science.gov (United States)

    Izco, M; Martínez, P; Corrales, A; Fandos, N; García, S; Insua, D; Montañes, M; Pérez-Grijalba, V; Rueda, N; Vidal, V; Martínez-Cué, C; Pesini, P; Sarasa, M

    2014-03-28

    Double transgenic mice expressing mutant amyloid precursor protein (APPswe) and mutant presenilin 1 (PS1dE9) are a model of Alzheimer-type amyloidosis and are widely used in experimental studies. In the present work, the relationships between brain and plasma amyloid-β peptide (Aβ) levels and cognitive impairments were examined in male APPswe/PS1dE9 double transgenic mice at different ages. When compared with non-transgenic littermates, APPswe/PS1dE9 mice exhibited significant learning deficits from the age of 6months (M6), which were aggravated at later stages of life (M8 and M12). Sporadic brain amyloid plaques were observed in mice as early as M3 and progressively increased in number and size up to M12. A similar increase was observed in brain insoluble Aβ levels as assessed by enzyme-linked immunosorbent assay (ELISA). In particular, the levels of brain insoluble Aβ peptides rose steeply from M4 to M6. Interestingly, this pronounced amyloid deposition was accompanied by a temporary fall in the concentration of brain soluble and membrane-bound Aβ peptides at M6 that rose again at M8 and M12. The plasma levels of Aβ40 and Aβ42 decreased with advancing age up to M8, when they stabilized at M12. This decrease in plasma Aβ levels coincided with the observed increase in insoluble brain Aβ levels. These results could be useful for developing plasma Aβ levels as possible biomarkers of the cerebral amyloidosis and provide advances in the knowledge of the Aβ peptide biochemical changes that occur in the brain of Alzheimer's disease patients.

  14. On the practical applications of atmosphere-ocean and atmosphere-wave coupling in mesoscale numerical modeling

    Science.gov (United States)

    Kochanski, Adam

    The objectives of this work were to develop coupled atmosphere-ocean and atmosphere-wave models for the verification of the atmospheric simulations, model the small-scale ocean circulations, analyze the role of the atmospheric stability in the generation of coastal upwelling, improve the accuracy of numerical prediction over the coastal areas, and develop a parameterization of the swell-induced wind stress. The study confirmed the applicability of the high resolution Mesoscale Model 5 (MM5) wind field prediction to driving small scale ocean models applied to the U.S. West Coast, and showed that the small-scale circulation pattern of Bodega Bay can be well simulated even by the relatively simple 2D ocean model. Additional experiments performed with the complex 3D Princeton Ocean Model (POM) coupled with the MM5 showed the importance of the atmospheric stability in terms of the modification of the wind stress-curl pattern and the generation of coastal upwelling. The study revealed that the introduction of the stability effect to the wind stress computation may change the monthly mean wind stress curl by up to 0.15Pa/100km, and increase the simulated upwelling velocity by up to 25%, significantly improving the picture of the simulated upwelling and relaxation events. Further analysis performed with the MM5 model run at 9km resolution, showed that the introduction of the atmosphere-ocean coupling greatly improved the quality of the model results. The comparison with buoy data revealed that the atmosphere-ocean coupling led to a 95% increase in the correlation coefficients of the air temperature and heat fluxes, 23% for the wind direction, and up to 25% for the wind speed, and the reduction of the mean errors by up to 30%. The air-wave interaction model developed during this study showed the applicability of the innovative semi-analytical approach to the computation of the swell-induced stress. Its results also confirmed the importance of the swell-induced stress for

  15. Evaluation of the causes of inundation in a repeatedly flooded zone in the city of Cheongju, Korea, using a 1D/2D model.

    Science.gov (United States)

    Park, In-Hyeok; Lee, Jeong-Yong; Lee, Ji-Heon; Ha, Sung-Ryong

    2014-01-01

    Currently, unprecedented levels of damage arising from major weather events have been experienced in a number of major cities worldwide. Furthermore, the frequency and the scale of these disasters appear to be increasing and this is viewed by some as tangible proof of climate change. In the urbanized areas sewer overflows and resulting inundation are attributed to the conversion of previous surfaces into impervious surfaces, resulting in increased volumes of runoff which exceed the capacity of sewer systems and in particular combined sewer systems. In this study, the characteristics of sewer overflows and inundation have been analyzed in a repeatedly flooded zone in the city of Cheongju in Korea. This included an assessment of inundation in a 50-year storm event with total rainfall of 165 mm. A detailed XP-SWMM 2D model was assembled and run to simulate the interaction of the sewage system overflows and surface inundation to determine if inundation is due to hydraulic capacity limitations in the sewers or limitations in surface inlet capacities or a combination of both. Calibration was undertaken using observation at three locations (PT #1, PT #2, PT #3) within the study area. In the case of the subsurface flow calibration, R(2) value of 0.91 and 0.78 respectively were achieved at PT #1 and PT #2. Extremely good agreement between observed and predicted surface flow depths was achieved also at PT #1 and PT #2. However, at PT #3 the predicted flow depth was 4 cm lower than the observed depth, which was attributed to the impact of buildings on the local flow distribution. Areas subject to flooding were classified as either Type A (due to insufficient hydraulic capacity of a sewer), Type B (which is an area without flooding notwithstanding insufficient hydraulic capacity of a sewer) or Type C (due to inlet limitations, i.e. there is hydraulic capacity in a sewer which is not utilized). In the total flooded zone, 24% was classified as Type A (10.2 ha) and 25% was

  16. Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model.

    Science.gov (United States)

    Ekama, G A; Marais, P

    2004-02-01

    The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  17. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  18. Constraining Source Locations of Shallow Subduction Megathrust Earthquakes in 1-D and 3-D Velocity Models - A Case Study of the 2002 Mw=6.4 Osa Earthquake, Costa Rica

    Science.gov (United States)

    Grevemeyer, I.; Arroyo, I. G.

    2015-12-01

    Earthquake source locations are generally routinely constrained using a global 1-D Earth model. However, the source location might be associated with large uncertainties. This is definitively the case for earthquakes occurring at active continental margins were thin oceanic crust subducts below thick continental crust and hence large lateral changes in crustal thickness occur as a function of distance to the deep-sea trench. Here, we conducted a case study of the 2002 Mw 6.4 Osa thrust earthquake in Costa Rica that was followed by an aftershock sequence. Initial relocations indicated that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of ocean-bottom-hydrophones and land stations 80 km to the northwest were deployed. By adding readings from permanent Costa Rican stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocated this catalog using a nonlinear probabilistic approach using a 1-D and two 3-D P-wave velocity models. The 3-D model was either derived from 3-D tomography based on onshore stations and a priori model based on seismic refraction data. All epicentres occurred close to the trench axis, but depth estimates vary by several tens of kilometres. Based on the epicentres and constraints from seismic reflection data the main shock occurred 25 km from the trench and probably along the plate interface at 5-10 km depth. The source location that agreed best with the geology was based on the 3-D velocity model derived from a priori data. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interpolate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.

  19. Modeling the water decarbonization processes in atmospheric deaerators

    Science.gov (United States)

    Leduhovsky, G. V.

    2017-02-01

    A mathematical model of the water decarbonization processes in atmospheric deaerators is proposed to calculate the thermal decomposition degree of hydrocarbonates in a deaerator, pH of a deaerated water sample, and the mass concentration of free carbonic acid in it on a carbon dioxide basis. The mathematical description of these processes is based on the deaeration tank water flow model implemented in the specialized software suite for the calculation of three-dimensional liquid flows, where a real water flow is a set of parallel small plug-flow reactors, and the rate constant of the reaction representing a generalized model of the thermal decomposition of hydrocarbonates with consideration for its chemical and diffusion stages is identified by experimental data. Based on the results of experimental studies performed on deaerators of different designs with and without steam bubbling in their tanks, an empirical support of this model has been developed in the form of recommended reaction order and rate constant values selected depending on the overall alkalinity of water fed into a deaerator. A self-contained mathematical description of the water decarbonization processes in deaerators has been obtained. The proposed model precision has been proven to agree with the specified metrological characteristics of the potentiometric and alkalimetric methods for measuring pH and the free carbonic acid concentration in water. This allows us to recommend the obtained model for the solution of practical problems of forming a specified amount of deaerated water via the selection of the structural and regime parameters of deaerators during their design and regime adjustment.

  20. Atmospheric dispersion modelling over complex terrain at small scale

    Science.gov (United States)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  1. Atmospheric radiance interpolation for the modeling of hyperspectral data

    Science.gov (United States)

    Fuehrer, Perry; Healey, Glenn; Rauch, Brian; Slater, David; Ratkowski, Anthony

    2008-04-01

    The calibration of data from hyperspectral sensors to spectral radiance enables the use of physical models to predict measured spectra. Since environmental conditions are often unknown, material detection algorithms have emerged that utilize predicted spectra over ranges of environmental conditions. The predicted spectra are typically generated by a radiative transfer (RT) code such as MODTRAN TM. Such techniques require the specification of a set of environmental conditions. This is particularly challenging in the LWIR for which temperature and atmospheric constituent profiles are required as inputs for the RT codes. We have developed an automated method for generating environmental conditions to obtain a desired sampling of spectra in the sensor radiance domain. Our method provides a way of eliminating the usual problems encountered, because sensor radiance spectra depend nonlinearly on the environmental parameters, when model conditions are specified by a uniform sampling of environmental parameters. It uses an initial set of radiance vectors concatenated over a set of conditions to define the mapping from environmental conditions to sensor spectral radiance. This approach enables a given number of model conditions to span the space of desired radiance spectra and improves both the accuracy and efficiency of detection algorithms that rely upon use of predicted spectra.

  2. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Directory of Open Access Journals (Sweden)

    M. Krapp

    2011-11-01

    Full Text Available We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.

  3. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    Science.gov (United States)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  4. Observations and Modeling of Solar Flare Atmospheric Dynamics

    Science.gov (United States)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  5. One-Dimensional (1-D) Nanoscale Heterostructures

    Institute of Scientific and Technical Information of China (English)

    Guozhen SHEN; Di CHEN; Yoshio BANDO; Dmitri GOLBERG

    2008-01-01

    One-dimensional (1-D) nanostructures have been attracted much attention as a result of their exceptional properties, which are different from bulk materials. Among 1-D nanostructures, 1-D heterostructures with modulated compositions and interfaces have recently become of particular interest with respect to potential applications in nanoscale building blocks of future optoelectronic devices and systems. Many kinds of methods have been developed for the synthesis of 1-D nanoscale heterostructures. This article reviews the most recent development, with an emphasize on our own recent efforts, on 1-D nanoscale heterostructures, especially those synthesized from the vapor deposition methods, in which all the reactive precursors are mixed together in the reaction chamber. Three types of 1-D nanoscale heterostructures, defined from their morphologies characteristics, are discussed in detail, which include 1-D co-axial core-shell heterostructures, 1-D segmented heterostructures and hierarchical heterostructures. This article begins with a brief survey of various methods that have been developed for synthesizing 1-D nanoscale heterostructures and then mainly focuses on the synthesis, structures and properties of the above three types of nanoscale heterostructures. Finally, this review concludes with personal views towards the topic of 1-D nanoscale heterostructures.

  6. Long-wave forcing for regional atmospheric modelling

    Energy Technology Data Exchange (ETDEWEB)

    Storch, H. von; Langenberg, H.; Feser, F. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    A new method, named 'spectral nudging', of linking a regional model to the driving large-scale model simulated or analyzed by a global model is proposed and tested. Spectral nudging is based on the idea that regional-scale climate statistics are conditioned by the interplay between continental-scale atmospheric conditions and such regional features as marginal seas and mountain ranges. Following this 'downscaling' idea, the regional model is forced to satisfy not only boundary conditions, possibly in a boundary sponge region, but also large-scale flow conditions inside the integration area. We demonstrate that spectral nudging succeeds in keeping the simulated state close to the driving state at large scales, while generating smaller-scale features. We also show that the standard boundary forcing technique in current use allows the regional model to develop internal states conflicting with the large-scale state. It is concluded that spectral nudging may be seen as a suboptimal and indirect data assimilation technique. (orig.) [German] Eine neue Methode, genannt 'spektrales nudging', ein Regionalmodell an das durch ein Globalmodell simulierte grossskalige Antriebsfeld zu koppeln, wird vorgestellt und getestet. Das spektrale nudging basiert auf der Annahme, dass regionale Klimastatistik durch die Wechselwirkung zwischen dem kontinental-skaligen atmosphaerischen Zustand und regionalen Gegebenheiten, wie kleinere Seen und Gebirgszuege, bestimmt wird. Demnach muss das Regionalmodell nicht nur die Randbedingungen erfuellen, sondern auch die grossskaligen Zustaende innerhalb des Integrationsgebietes wiedergeben koennen. Wir zeigen, dass durch das spektrale nudging der grossskalige modellierte Zustand nahe an dem des Antriebsfeldes liegt, ohne die Modellierung regionaler Phaenomene zu beeintraechtigen. Ausserdem zeigen wir, dass das Regionalmodell durch die zur Zeit benutzte Antriebstechnik ueber den Modellrand interne Felder produzieren kann

  7. A sustained oscillation in a toy-model of the coupled atmosphere-ocean system

    CERN Document Server

    Bothe, Oliver

    2011-01-01

    Interaction between atmospheric mid-latitude flow and wind-driven ocean circulation is studied coupling two idealized low-order spectral models. The barotropic Charney-DeVore model with three components simulates a bimodal mid-latitude atmospheric circulation in a channel with two stable flow patterns induced by topography. The wind-driven ocean double gyre circulation in a square basin (of half the channel length) is modeled by an equivalent barotropic formulation of the Veronis model with 21 components, which captures Rossby-wave dynamics and nonlinear decadal variability. When coupled, the atmosphere forces the ocean by wind-stress while, simultaneously, the ocean affects the atmosphere by thermal forcing in terms of a vorticity source. Coupled atmosphere-ocean simulations show two stable flow patterns associated with the topographically induced atmospheric bimodality and a sustained oscillation due to interaction between atmospheric bimodality and oceanic Rossby dynamics. The oscillation is of inter-annua...

  8. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  9. Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS: model design and preliminary results

    Directory of Open Access Journals (Sweden)

    U. U. Turuncoglu

    2013-03-01

    Full Text Available We describe the development of a coupled regional atmosphere-ocean model (RegCM4-ROMS and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999–2008 (after a spin up of 4 yr and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, Caspian Sea Surface Temperature (SST, with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The sea ice extent over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced, however, a significant negative bias in sea-ice fraction exists due to the relatively poor representation of the bathymetry. ROMS also calculates the Caspian Sea Level (CSL, showing that for the present experiment excessive evaporation over the lake area leads to a drift in estimated CSL. Despite this problem, which requires further analysis due to many uncertainties in the estimation of CSL, overall the coupled RegCM4-ROMS system shows encouraging results in reproducing both the climatology of the region and the basic characteristics of the Caspian Sea.

  10. Modeling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM-ROMS: model design and preliminary results

    Directory of Open Access Journals (Sweden)

    U. U. Turuncoglu

    2012-11-01

    Full Text Available We describe the development of a coupled regional atmosphere-ocean model (RegCM-ROMS and its implementation over the Caspian Sea basin. The coupled model is run for the period 1999–2008 (after a spin up of 4 yr and it is compared to corresponding stand alone model simulations and a simulation in which a distributed 1d lake model is run for the Caspian Sea. All model versions show a good performance in reproducing the climatology of the Caspian Sea basin, with relatively minor differences across them. The coupled ROMS produces realistic, although somewhat overestimated, lake surface temperatures (LSTs, with a considerable improvement compared to the use of the simpler coupled lake model. Simulated near surface salinity and sea currents are also realistic, although the upwelling over the eastern coastal regions is underestimated. The distribution of sea ice over the shallow northern shelf of the Caspian Sea and its seasonal evolution are well reproduced. ROMS also calculates the Caspian Sea Level (CSL, showing that for the present experiment excessive evaporation over the lake area leads