WorldWideScience

Sample records for 1a glycan determined

  1. Mutations in HNF1A result in marked alterations of plasma glycan profile

    DEFF Research Database (Denmark)

    Thanabalasingham, Gaya; Huffman, Jennifer E; Kattla, Jayesh J;

    2013-01-01

    A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma...... to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167...

  2. Glycan analysis of the chicken synaptic plasma membrane glycoproteins - a major synaptic N-glycan carries the LewisX determinant

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The majority of synaptic plasma membrane components are glycosylated. It is now widely accepted that this post-translational modification is crucial during the establishment, maintenance and function of the nervous system. Despite its significance, structural information about the glycosylation of nervous system specific glycoproteins is very limited. In the present study the major glycan structures of the chicken synaptic plasma membrane (SPM associated glycoprotein glycans were determined. N-glycans were released by hydrazinolysis, labelled with 2-aminobenzamide, treated with neuraminidase and subsequently fractionated by size exclusion chromatography. Individual fractions were characterized by the combination of high-pressure liquid chromatography, exoglycosidase treatment or reagent array analysis method (RAAM. In addition to oligomannose-type glycans, core-fucosylated complex glycans with biantennary bisecting glycans carrying the LewisX epitope were most abundant. The overall chicken glycan profile was strikingly similar to the rat brain glycan profile. The presence of the LewisX determinant in relatively large proportions suggests a tissue-specific function for these glycans.

  3. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia.

    LENUS (Irish Health Repository)

    Coss, K P

    2012-02-01

    N-glycan processing and assembly defects have been demonstrated in untreated and partially treated patients with Classical Galactosaemia. These defects may contribute to the ongoing pathophysiology of this disease. The aim of this study was to develop an informative method of studying differential galactose tolerance levels and diet control in individuals with Galactosaemia, compared to the standard biochemical markers. Ten Galactosaemia adults with normal intellectual outcomes were analyzed in the study. Five subjects followed galactose liberalization, increments of 300 mg to 4000 mg\\/day over 16 weeks, and were compared to five adult Galactosaemia controls on a galactose restricted diet. All study subjects underwent clinical and biochemical monitoring of red blood cell galactose-1-phosphate (RBC Gal-1-P) and urinary galactitol levels. Serum N-glycans were isolated and analyzed by normal phase high-performance liquid chromatography (NP-HPLC) with galactosylation of IgG used as a specific biomarker of galactose tolerance. IgG N-glycan profiles showed consistent individual alterations in response to diet liberalization. The individual profiles were improved for all, but one study subject, at a galactose intake of 1000 mg\\/day, with decreases in agalactosylated (G0) and increases in digalactosylated (G2) N-glycans. We conclude that IgG N-glycan profiling is an improved method of monitoring variable galactosylation and determining individual galactose tolerance in Galactosaemia compared to the standard methods.

  4. beta-D-Glucose 1-phosphate. A structural unit and an immunological determinant of a glycan from streptococcal cell walls.

    Science.gov (United States)

    Pazur, J H

    1982-01-25

    Glycose 1-phosphate moieties are emerging as important structural units of macromolecular substances imparting special biological functions to these molecules. In the present study, beta-D-glucose 1-phosphate moieties are shown to be structural units and immunological determinants of a bacterial glycan. The glycan is a tetraheteroglycan from the cell wall of Streptococcus faecalis, strain N and is composed of glucose, galactose, rhamnose, N-acetylgalactosamine, and phosphate. Several lines of evidence have been obtained for the presence of beta-D-glucose 1-phosphate units in the glycan, including the liberation of glucose by mild acid hydrolysis, the inhibition of the precipitin reaction by beta-D-glucose 1-phosphate, and the formation of levoglucosan on treatment of the glycan with alkali. Work on the preparation of affinity adsorbents for isolating the new types of antibodies directed at the beta-D-glucose 1-phosphate moieties is in progress. PMID:6172422

  5. Parvovirus glycan interactions.

    Science.gov (United States)

    Huang, Lin-Ya; Halder, Sujata; Agbandje-McKenna, Mavis

    2014-08-01

    Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.

  6. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells.

    Science.gov (United States)

    An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T; Schaffer, David V; Bertozzi, Carolyn R; Lebrilla, Carlito B

    2012-04-01

    Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine

  7. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karthik Viswanathan

    Full Text Available The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA. The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004 that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58 HA.

  8. Automated motif discovery from glycan array data.

    Science.gov (United States)

    Cholleti, Sharath R; Agravat, Sanjay; Morris, Tim; Saltz, Joel H; Song, Xuezheng; Cummings, Richard D; Smith, David F

    2012-10-01

    Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface ( http://glycanmotifminer.emory.edu ). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  9. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity.

    Science.gov (United States)

    Grant, Oliver C; Tessier, Matthew B; Meche, Lawrence; Mahal, Lara K; Foley, Bethany L; Woods, Robert J

    2016-07-01

    Defining how a glycan-binding protein (GBP) specifically selects its cognate glycan from among the ensemble of glycans within the cellular glycome is an area of intense study. Powerful insight into recognition mechanisms can be gained from 3D structures of GBPs complexed to glycans; however, such structures remain difficult to obtain experimentally. Here an automated 3D structure generation technique, called computational carbohydrate grafting, is combined with the wealth of specificity information available from glycan array screening. Integration of the array data with modeling and crystallography allows generation of putative co-complex structures that can be objectively assessed and iteratively altered until a high level of agreement with experiment is achieved. Given an accurate model of the co-complexes, grafting is also able to discern which binding determinants are active when multiple potential determinants are present within a glycan. In some cases, induced fit in the protein or glycan was necessary to explain the observed specificity, while in other examples a revised definition of the minimal binding determinants was required. When applied to a collection of 10 GBP-glycan complexes, for which crystallographic and array data have been reported, grafting provided a structural rationalization for the binding specificity of >90% of 1223 arrayed glycans. A webtool that enables researchers to perform computational carbohydrate grafting is available at www.glycam.org/gr (accessed 03 March 2016).

  10. Direct glycan structure determination of intact N-linked glycopeptides by low-energy collision-induced dissociation tandem mass spectrometry and predicted spectral library searching.

    Science.gov (United States)

    Pai, Pei-Jing; Hu, Yingwei; Lam, Henry

    2016-08-31

    Intact glycopeptide MS analysis to reveal site-specific protein glycosylation is an important frontier of proteomics. However, computational tools for analyzing MS/MS spectra of intact glycopeptides are still limited and not well-integrated into existing workflows. In this work, a new computational tool which combines the spectral library building/searching tool, SpectraST (Lam et al. Nat. Methods2008, 5, 873-875), and the glycopeptide fragmentation prediction tool, MassAnalyzer (Zhang et al. Anal. Chem.2010, 82, 10194-10202) for intact glycopeptide analysis has been developed. Specifically, this tool enables the determination of the glycan structure directly from low-energy collision-induced dissociation (CID) spectra of intact glycopeptides. Given a list of possible glycopeptide sequences as input, a sample-specific spectral library of MassAnalyzer-predicted spectra is built using SpectraST. Glycan identification from CID spectra is achieved by spectral library searching against this library, in which both m/z and intensity information of the possible fragmentation ions are taken into consideration for improved accuracy. We validated our method using a standard glycoprotein, human transferrin, and evaluated its potential to be used in site-specific glycosylation profiling of glycoprotein datasets from LC-MS/MS. In addition, we further applied our method to reveal, for the first time, the site-specific N-glycosylation profile of recombinant human acetylcholinesterase expressed in HEK293 cells. For maximum usability, SpectraST is developed as part of the Trans-Proteomic Pipeline (TPP), a freely available and open-source software suite for MS data analysis. PMID:27506355

  11. Improve accuracy and sensibility in glycan structure prediction by matching glycan isotope abundance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guang [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan (China); National Research Council Canada, Ottawa, Ont., K1A 0R6 (Canada); Liu Xin [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan (China); Liu Qingyan [National Research Council Canada, Ottawa, Ont., Canada K1A 0R6 (Canada); Zhou Yanhong, E-mail: yhzhou@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan (China); Li Jianjun, E-mail: Jianjun.Li@nrc-cnrc.gc.ca [National Research Council Canada, Ottawa, Ont., Canada K1A 0R6 (Canada)

    2012-09-19

    Highlights: Black-Right-Pointing-Pointer A glycan isotope pattern recognition strategy for glycomics. Black-Right-Pointing-Pointer A new data preprocessing procedure to detect ion peaks in a giving MS spectrum. Black-Right-Pointing-Pointer A linear soft margin SVM classification for isotope pattern recognition. - Abstract: Mass Spectrometry (MS) is a powerful technique for the determination of glycan structures and is capable of providing qualitative and quantitative information. Recent development in computational method offers an opportunity to use glycan structure databases and de novo algorithms for extracting valuable information from MS or MS/MS data. However, detecting low-intensity peaks that are buried in noisy data sets is still a challenge and an algorithm for accurate prediction and annotation of glycan structures from MS data is highly desirable. The present study describes a novel algorithm for glycan structure prediction by matching glycan isotope abundance (mGIA), which takes isotope masses, abundances, and spacing into account. We constructed a comprehensive database containing 808 glycan compositions and their corresponding isotope abundance. Unlike most previously reported methods, not only did we take into count the m/z values of the peaks but also their corresponding logarithmic Euclidean distance of the calculated and detected isotope vectors. Evaluation against a linear classifier, obtained by training mGIA algorithm with datasets of three different human tissue samples from Consortium for Functional Glycomics (CFG) in association with Support Vector Machine (SVM), was proposed to improve the accuracy of automatic glycan structure annotation. In addition, an effective data preprocessing procedure, including baseline subtraction, smoothing, peak centroiding and composition matching for extracting correct isotope profiles from MS data was incorporated. The algorithm was validated by analyzing the mouse kidney MS data from CFG, resulting in the

  12. The non glycanated endocan polypeptide slows tumor growth by inducing stromal inflammatory reaction

    OpenAIRE

    Yassine, Hanane; De Freitas Caires, Nathalie; Depontieu, Florence; Scherpereel, Arnaud; Awad, Ali,; Tsicopoulos, Anne; Leboeuf, Christophe; Janin, Anne; Duez, Catherine; Grigoriu, Bogdan,; Lassalle, Philippe

    2014-01-01

    Endocan expression is increasingly studied in various human cancers. Experimental evidence showed that human endocan, through its glycan chain, is implicated in various processes of tumor growth. We functionally characterize mouse endocan which is also a chondroitin sulfate proteoglycan but much less glycanated than human endocan. Distant domains from the O-glycanation site, located within exons 1 and 2 determine the glycanation pattern of endocan. In opposite to the human homologue, overexpr...

  13. Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling.

    Science.gov (United States)

    Arabyan, Narine; Park, Dayoung; Foutouhi, Soraya; Weis, Allison M; Huang, Bihua C; Williams, Cynthia C; Desai, Prerak; Shah, Jigna; Jeannotte, Richard; Kong, Nguyet; Lebrilla, Carlito B; Weimer, Bart C

    2016-01-01

    Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. Gene expression analysis indicated that the host cell responded by regulating more than 50 genes resulting in remodeled glycans in response to Salmonella treatment. This study established the glycan structures on colonic epithelial cells, determined that Salmonella required two keystone GHs for internalization, and left remodeled host glycans as a result of infection. These data indicate that microbial GHs are undiscovered virulence factors. PMID:27389966

  14. CROSSWORK for Glycans: Glycan Identificatin Through Mass Spectrometry and Bioinformatics

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Thaysen-Andersen, Morten; Højrup, Peter

      We have developed "GLYCANthrope " - CROSSWORKS for glycans:  a bioinformatics tool, which assists in identifying N-linked glycosylated peptides as well as their glycan moieties from MS2 data of enzymatically digested glycoproteins. The program runs either as a stand-alone application or as a plug...

  15. Structure and function of the N-linked glycans of HBP/CAP37/azurocidin

    DEFF Research Database (Denmark)

    Iversen, L F; Kastrup, Jette Sandholm Jensen; Bjørn, S E;

    1999-01-01

    structure rather than the glycan itself. The biological in vitro activity assay data show that ng-HBP, contrary to glycosylated HBP, mediates only a very limited stimulation of the lipopolysaccharide induced cytokine release from human monocytes. In animal models of fecal peritonitis, glycosylated HBP......The three N-glycosylation sites of human heparin binding protein (HBP) have been mutated to produce a nonglycosylated HBP (ng-HBP) mutant. ng-HBP has been crystallized and tested for biological activity. Complete X-ray data have been collected to 2.1 A resolution, and the structure has been fully......), and only minor local structural differences are observed. Also, the overall stability of the protein seems to be unaffected by glycosylation, as judged by the B-factors derived from the two X-ray structures. The flexibility of a glycan site may be determined by the local polypeptide sequence and...

  16. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    Science.gov (United States)

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-01

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. PMID:27318307

  17. Exquisite specificity of mitogenic lectin from Cephalosporium curvulum to core fucosylated N-glycans.

    Science.gov (United States)

    Inamdar, Shashikala R; Eligar, Sachin M; Ballal, Suhas; Belur, Shivakumar; Kalraiya, Rajiv D; Swamy, Bale M

    2016-02-01

    Lectins are carbohydrate binding proteins that are gaining attention as important tools for the identification of specific glycan markers expressed during different stages of the cancer. We earlier reported the purification of a mitogenic lectin from human pathogenic fungus Cephalosporium curvulum (CSL) that has complex sugar specificity when analysed by hapten inhibition assay. In the present study, we report the fine sugar specificity of CSL as determined by glycan array analysis. The results revealed that CSL has exquisite specificity towards core fucosylated N-glycans. Fucosylated trimannosyl core is the basic structure required for the binding of CSL. The presence of fucose in the side chain further enhances the avidity of CSL towards such glycans. The affinity of CSL is drastically reduced towards the non-core fucosylated glycans, in spite of their side chain fucosylation. CSL showed no binding to the tested O-glycans and monosaccharides. These observations suggest the unique specificity of CSL towards core fucosylated N-glycans, which was further validated by binding of CSL to human colon cancer epithelial and hepatocarcinoma cell lines namely HT29 and HepG2, respectively, that are known to express core fucosylated N-glycans, using AOL and LCA as positive controls. LCA and AOL are fucose specific lectins that are currently being used clinically for the diagnosis of hepatocellular carcinomas. Most of the gastrointestinal markers express core fucosylated N-glycans. The high affinity and exclusive specificity of CSL towards α1-6 linkage of core fucosylated glycans compared to other fucose specific lectins, makes it a promising molecule that needs to be further explored for its application in the diagnosis of gastrointestinal cancer.

  18. Effect of high mannose glycan pairing on IgG antibody clearance.

    Science.gov (United States)

    Liu, Yaoqing Diana; Flynn, Gregory C

    2016-05-01

    IgG antibodies contain N-linked glycans on the Fc portion of each heavy chain. The glycan on one heavy chain can either match the glycan on the other heavy chain (symmetrical pairing) or be different (asymmetrical pairing). These Fc glycans influence effector functions and can alter clearance rates. Previous studies showing that high mannose forms result in faster mAb clearance in humans were incapable of differentiating the impact of symmetrically vs. asymmetrically paired HM forms, and, therefore, the effect of pairing on clearance was not clear. Traditional analytical methods, which are used to measure glycans in such studies, do not determine the number of HM glycans per antibody. With a sensitive method designed to measure HM pairing, we followed the levels of symmetrically and asymmetrically paired HM on antibodies in human pharmacokinetic serum samples to determine the impact of Fc HM glycan pairing on therapeutic human IgG clearance in humans. The two HM paired forms cleared at the same rate, indicating that the effect on clearance was not proportional to the degree of modification. Since both forms can exist on therapeutic antibodies and the ratio can differ between products, measuring their relative levels is necessary to properly estimate effects on clearance. PMID:26992607

  19. Glycan Engineering for Cell and Developmental Biology

    Science.gov (United States)

    Griffin, Matthew E.; Hsieh-Wilson, Linda C.

    2016-01-01

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. PMID:26933739

  20. GlycoBase and autoGU: resources for interpreting HPLC-glycan data.

    Science.gov (United States)

    Campbell, Matthew P; Royle, Lousie; Rudd, Pauline M

    2015-01-01

    The biological relevance of protein glycosylation has made glycomics, the comprehensive study to identify all glycans in an organism, indispensable in many research fields. Determining the structure and functional relationship of glycoproteins requires the comprehensive characterization of glycan structures by a range of analytical methods. High performance liquid chromatography (HPLC) is a well-established technology commonly used for the complete structural elucidation of N- and O-linked glycans; however, the analysis of data is a major bottleneck and robust bioinformatic solutions are required. This chapter describes the availability of databases and tools, GlycoBase and autoGU developed in conjunction with the EUROCarbDB initiative, to assist the interpretation of HPLC-glycan data collections.

  1. Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism.

    Directory of Open Access Journals (Sweden)

    Shunji Natsuka

    Full Text Available Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA- glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.

  2. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    Directory of Open Access Journals (Sweden)

    Y Lei

    Full Text Available DENV envelope glycoprotein (E is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  3. Notable Aspects of Glycan-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Miriam Cohen

    2015-09-01

    Full Text Available This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry. Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells, stick and roll (bacteria or surfacing (viruses.

  4. N-glycans of human protein C inhibitor: tissue-specific expression and function.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Protein C inhibitor (PCI is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s and the NH₂-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9 had a composition of Fuc₃Hex₅HexNAc₄, consistent with a core fucosylated bi-antennary glycan with terminal Lewis(x. A major serine protease in semen, prostate specific antigen (PSA, was used to evaluate the effects of N-glycans and the NH₂-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M⁻¹ s⁻¹ for the natural full-length PCI and a form lacking six amino acids at the NH₂-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M⁻¹ s⁻¹ for the corresponding PNGase F-treated forms. The 7-8-fold higher rate constants obtained when both the N-glycans and the NH₂-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA.

  5. N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    Science.gov (United States)

    Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia

    2011-01-01

    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989

  6. Glycobiology simplified: diverse roles of glycan recognition in inflammation.

    Science.gov (United States)

    Schnaar, Ronald L

    2016-06-01

    Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers). Nowhere is the importance of glycan recognition better understood than in infection and immunity, and knowledge in this area has already led to glycan mimetic anti-infective and anti-inflammatory drugs. This review includes a brief tutorial on human glycobiology and a limited number of specific examples of glycan-binding protein-glycan interactions that initiate and regulate inflammation. Examples include representatives from different glycan-binding protein families, including the C-type lectins (E-selectin, P-selectin, dectin-1, and dectin-2), sialic acid-binding immunoglobulin-like lectins (sialic acid-binding immunoglobulin-like lectins 8 and 9), galectins (galectin-1, galectin-3, and galectin-9), as well as hyaluronic acid-binding proteins. As glycoscience technologies advance, opportunities for enhanced understanding of glycans and their roles in leukocyte cell biology provide increasing opportunities for discovery and therapeutic intervention. PMID:27004978

  7. Comparisons of Caenorhabditis Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures.

    Science.gov (United States)

    Yan, Shi; Jin, Chunsheng; Wilson, Iain B H; Paschinger, Katharina

    2015-12-01

    Recent studies have shown a remarkable degree of plasticity in the N-glycome of the model nematode Caenorhabditis elegans; ablation of glycosylation-relevant genes can result in radically altered N-glycan profiles despite only minor biological phenotypic effects. Up to four fucose residues and five different linkages of fucose are known on the N-glycans of C. elegans. Due to the complexity in the wild type, we established three mutant strains defective in two core fucosyltransferases each (fut-1;fut-6, fut-1;fut-8, and fut-6;fut-8). Enzymatically released N-glycans were subject to HPLC and MALDI-TOF MS/MS, in combination with various treatments, to verify structural details. The N-glycome of the fut-1;fut-6 mutant was the most complex of the three double-mutant strains due to the extension of the core α1,6-fucose as well as the presence of fucose on the bisecting galactose. In contrast, maximally two fucoses were found on N-glycans of the fut-1;fut-8 and fut-6;fut-8 strains. The different locations and capping of fucose meant that up to 13 isomeric structures, many highly galactosylated, were determined for some single masses. These data not only show the high variability of the N-glycomic capacity of a "simple" nematode but also exemplify the need for multiple approaches to reveal individual glycan structures within complex invertebrate glycomes.

  8. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  9. Automated glycan assembly of xyloglucan oligosaccharides.

    Science.gov (United States)

    Dallabernardina, Pietro; Schuhmacher, Frank; Seeberger, Peter H; Pfrengle, Fabian

    2016-01-01

    We report the automated glycan assembly of oligosaccharide fragments related to the hemicellulose xyloglucan (XG). Iterative addition of monosaccharide and disaccharide building blocks to a solid support provided seven cellulose and xyloglucan fragments including XXGG- and XXXG-type oligosaccharides. PMID:26553949

  10. Kinetic characterization of a novel endo-β-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans.

    Science.gov (United States)

    Karav, Sercan; Parc, Annabelle Le; de Moura Bell, Juliana Maria Leite Nobrega; Rouquié, Camille; Mills, David A; Barile, Daniela; Block, David E

    2015-09-01

    EndoBI-1 is a recently isolated endo-β-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans. PMID:26138399

  11. Characterizing the release of bioactive N-glycans from dairy products by a novel endo-β-N-acetylglucosaminidase.

    Science.gov (United States)

    Karav, Sercan; Bell, Juliana Maria Leite Nobrega De Moura; Le Parc, Annabelle; Liu, Yan; Mills, David A; Block, David E; Barile, Daniela

    2015-01-01

    Endo-β-N-acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI-1) is a novel enzyme that cleaves N-N'-diacetyl chitobiose moieties found in the N-glycan core of high mannose, hybrid, and complex N-glycans. These conjugated N-glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45-8.45), temperature (27.5-77.5°C), reaction time (15-475 min), and enzyme/protein ratio (1:3,000-1:333) were evaluated on the release of N-glycans from bovine colostrum whey by EndoBI-1. A central composite design was used, including a two-level factorial design (2(4)) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N-glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan-free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI-1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies. PMID:26097235

  12. Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status.

    Science.gov (United States)

    Anugraham, Merrina; Jacob, Francis; Nixdorf, Sheri; Everest-Dass, Arun Vijay; Heinzelmann-Schwarz, Viola; Packer, Nicolle H

    2014-09-01

    Epithelial ovarian cancer is the fifth most common cause of cancer in women worldwide bearing the highest mortality rate among all gynecological cancers. Cell membrane glycans mediate various cellular processes such as cell signaling and become altered during carcinogenesis. The extent to which glycosylation changes are influenced by aberrant regulation of gene expression is nearly unknown for ovarian cancer and remains crucial in understanding the development and progression of this disease. To address this effect, we analyzed the membrane glycosylation of non-cancerous ovarian surface epithelial (HOSE 6.3 and HOSE 17.1) and serous ovarian cancer cell lines (SKOV 3, IGROV1, A2780, and OVCAR 3), the most common histotype among epithelial ovarian cancers. N-glycans were released from membrane glycoproteins by PNGase F and analyzed using nano-liquid chromatography on porous graphitized carbon and negative-ion electrospray ionization mass spectrometry (ESI-MS). Glycan structures were characterized based on their molecular masses and tandem MS fragmentation patterns. We identified characteristic glycan features that were unique to the ovarian cancer membrane proteins, namely the "bisecting N-acetyl-glucosamine" type N-glycans, increased levels of α 2-6 sialylated N-glycans and "N,N'-diacetyl-lactosamine" type N-glycans. These N-glycan changes were verified by examining gene transcript levels of the enzymes specific for their synthesis (MGAT3, ST6GAL1, and B4GALNT3) using qRT-PCR. We further evaluated the potential epigenetic influence on MGAT3 expression by treating the cell lines with 5-azacytidine, a DNA methylation inhibitor. For the first time, we provide evidence that MGAT3 expression may be epigenetically regulated by DNA hypomethylation, leading to the synthesis of the unique "bisecting GlcNAc" type N-glycans on the membrane proteins of ovarian cancer cells. Linking the observation of specific N-glycan substructures and their complex association with epigenetic

  13. Sulfated di-, tri- and tetraantennary N-glycans in human Tamm-Horsfall glycoprotein

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Rooijen, J.J.M. van; Kamerling, J.P.

    1998-01-01

    The primary structures of 32 sulfated di-, tri- and tetraantennary N-glycans of human Tamm-Horsfall glycoprotein (THP) have been determined. THP was isolated from the urine of one healthy male donor. The intact carbohydrate chains were released by PNGase-F and fractionated via FPLC on Resource Q, HP

  14. Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray.

    Directory of Open Access Journals (Sweden)

    Angela van Diepen

    Full Text Available BACKGROUND: Schistosomiasis (bilharzia is a chronic and potentially deadly parasitic disease that affects millions of people in (subtropical areas. An important partial immunity to Schistosoma infections does develop in disease endemic areas, but this takes many years of exposure and maturation of the immune system. Therefore, children are far more susceptible to re-infection after treatment than older children and adults. This age-dependent immunity or susceptibility to re-infection has been shown to be associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against the numerous glycans expressed by Schistosoma. The nature of glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: The binding of serum antibodies to glycans can be analyzed efficiently and quantitatively using glycan microarray approaches. Very small amounts of a large number of glycans are presented on a solid surface allowing binding properties of various glycan binding proteins to be tested. We have generated a so-called shotgun glycan microarray containing natural N-glycan and lipid-glycan fractions derived from 4 different life stages of S. mansoni and applied this array to the analysis of IgG and IgM antibodies in sera from children and adults living in an endemic area. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups, possibly reflecting differences in age or differences in length of exposure or infection. CONCLUSIONS/SIGNIFICANCE: Using the shotgun glycan microarray approach to study antibody response profiles against schistosome-derived glycan elements, we have defined groups of infected individuals as well as glycan element clusters to which antibody responses are directed in S. mansoni infections. These findings are significant for further

  15. IBD-associated TL1A gene (TNFSF15 haplotypes determine increased expression of TL1A protein.

    Directory of Open Access Journals (Sweden)

    Kathrin S Michelsen

    Full Text Available BACKGROUND: The recently identified member of the TNF superfamily TL1A (TNFSF15 increases IFN-gamma production by T cells in peripheral and mucosal CCR9+ T cells. TL1A and its receptor DR3 are up-regulated during chronic intestinal inflammation in ulcerative colitis and Crohn's disease (CD. TL1A gene haplotypes increase CD susceptibility in Japanese, European, and US cohorts. METHODOLOGY AND PRINCIPAL FINDINGS: Here we report that the presence of TL1A gene haplotype B increases risk in Jewish CD patients with antibody titers for the E. coli outer membrane porin C (OmpC+ (Haplotype B frequency in Jewish CD patients: 24.9% for OmpC negative and 41.9% for OmpC positive patients, respectively, P< or =0.001. CD14+ monocytes isolated from Jewish OmpC+ patients homozygous for TL1A gene haplotype B express higher levels of TL1A in response to FcgammaR stimulation, a known inducing pathway of TL1A, as measured by ELISA. Furthermore, the membrane expression of TL1A is increased on peripheral monocytes from Jewish but not non-Jewish CD patients with the risk haplotype. CONCLUSIONS AND SIGNIFICANCE: These findings suggest that TL1A gene variation exacerbates induction of TL1A in response to FcgammaR stimulation in Jewish CD patients and this may lead to chronic intestinal inflammation via overwhelming T cell responses. Thus, TL1A may provide an important target for therapeutic intervention in this subgroup of IBD patients.

  16. A Panel of Recombinant Mucins Carrying a Repertoire of Sialylated O-Glycans Based on Different Core Chains for Studies of Glycan Binding Proteins

    Directory of Open Access Journals (Sweden)

    Reeja Maria Cherian

    2015-08-01

    Full Text Available Sialylated glycans serve as key elements of receptors for many viruses, bacteria, and bacterial toxins. The microbial recognition and their binding specificity can be affected by the linkage of the terminal sugar residue, types of underlying sugar chains, and the nature of the entire glycoconjugate. Owing to the pathobiological significance of sialylated glycans, we have engineered Chinese hamster ovary (CHO cells to secrete mucin-type immunoglobulin-fused proteins carrying terminal α2,3- or α2,6-linked sialic acid on defined O-glycan core saccharide chains. Besides stably expressing P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b cDNA (PSGL-1/mIgG2b, CHO cells were stably transfected with plasmids encoding glycosyltransferases to synthesize core 2 (GCNT1, core 3 (B3GNT6, core 4 (GCNT1 and B3GNT6, or extended core 1 (B3GNT3 chains with or without the type 1 chain-encoding enzyme B3GALT5 and ST6GAL1. Western blot and liquid chromatography-mass spectrometry analysis confirmed the presence of core 1, 2, 3, 4, and extended core 1 chains carrying either type 1 (Galb3GlcNAc or type 2 (Galb4GlcNAc outer chains with or without α2,6-linked sialic acids. This panel of recombinant mucins carrying a repertoire of sialylated O-glycans will be important tools in studies aiming at determining the fine O-glycan binding specificity of sialic acid-specific microbial adhesins and mammalian lectins.

  17. Mass Spectrometric Screening of Ovarian Cancer with Serum Glycans

    Directory of Open Access Journals (Sweden)

    Jae-Han Kim

    2014-01-01

    Full Text Available Changes of glycosylation pattern in serum proteins have been linked to various diseases including cancer, suggesting possible development of novel biomarkers based on the glycomic analysis. In this study, N-linked glycans from human serum were quantitatively profiled by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry (MS and compared between healthy controls and ovarian cancer patients. A training set consisting of 40 healthy controls and 40 ovarian cancer cases demonstrated an inverse correlation between P value of ANOVA and area under the curve (AUC of each candidate biomarker peak from MALDI-TOF MS, providing standards for the classification. A multibiomarker panel composed of 15 MALDI-TOF MS peaks resulted in AUC of 0.89, 80~90% sensitivity, and 70~83% specificity in the training set. The performance of the biomarker panel was validated in a separate blind test set composed of 23 healthy controls and 37 ovarian cancer patients, leading to 81~84% sensitivity and 83% specificity with cut-off values determined by the training set. Sensitivity of CA-125, the most widely used ovarian cancer marker, was 74% in the training set and 78% in the test set, respectively. These results indicate that MALDI-TOF MS-mediated serum N-glycan analysis could provide critical information for the screening of ovarian cancer.

  18. Glycans pattern the phase behaviour of lipid membranes

    Science.gov (United States)

    Subramaniam, Anand Bala; Guidotti, Guido; Manoharan, Vinothan N.; Stone, Howard A.

    2013-02-01

    Hydrated networks of glycans (polysaccharides)—in the form of cell walls, periplasms or gel-like matrices—are ubiquitously present adjacent to cellular plasma membranes. Yet, despite their abundance, the function of glycans in the extracellular milieu is largely unknown. Here we show that the spatial configuration of glycans controls the phase behaviour of multiphase model lipid membranes: inhomogeneous glycan networks stabilize large lipid domains at the characteristic length scale of the network, whereas homogeneous networks suppress macroscopic lipid phase separation. We also find that glycan-patterned phase separation is thermally reversible—thus indicating that the effect is thermodynamic rather than kinetic—and that phase patterning probably results from a preferential interaction of glycans with ordered lipid phases. These findings have implications for membrane-mediated transport processes, potentially rationalize long-standing observations that differentiate the behaviour of native and model membranes and may indicate an intimate coupling between cellular lipidomes and glycomes.

  19. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs.

    Science.gov (United States)

    Smit, Cornelis H; van Diepen, Angela; Nguyen, D Linh; Wuhrer, Manfred; Hoffmann, Karl F; Deelder, André M; Hokke, Cornelis H

    2015-07-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1-4(Fucα1-3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1-4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1-3(Galβ1-6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated

  20. N-glycan MALDI Imaging Mass Spectrometry on Formalin-Fixed Paraffin-Embedded Tissue Enables the Delineation of Ovarian Cancer Tissues.

    Science.gov (United States)

    Everest-Dass, Arun V; Briggs, Matthew T; Kaur, Gurjeet; Oehler, Martin K; Hoffmann, Peter; Packer, Nicolle H

    2016-09-01

    Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the

  1. Delineating diseases by IMS-MS profiling of serum N-linked glycans.

    Science.gov (United States)

    Isailovic, Dragan; Plasencia, Manolo D; Gaye, Maissa M; Stokes, Sarah T; Kurulugama, Ruwan T; Pungpapong, Vitara; Zhang, Min; Kyselova, Zuzana; Goldman, Radoslav; Mechref, Yehia; Novotny, Milos V; Clemmer, David E

    2012-02-01

    Altered branching and aberrant expression of N-linked glycans is known to be associated with disease states such as cancer. However, the complexity of determining such variations hinders the development of specific glycomic approaches for assessing disease states. Here, we examine a combination of ion mobility spectrometry (IMS) and mass spectrometry (MS) measurements, with principal component analysis (PCA) for characterizing serum N-linked glycans from 81 individuals: 28 with cirrhosis of the liver, 25 with liver cancer, and 28 apparently healthy. Supervised PCA of combined ion-mobility profiles for several, to as many as 10 different mass-to-charge ratios for glycan ions, improves the delineation of diseased states. This extends an earlier study [J. Proteome Res.2008, 7, 1109-1117] of isomers associated with a single glycan (S(1)H(5)N(4)) in which PCA analysis of the IMS profiles appeared to differentiate the liver cancer group from the other samples. Although performed on a limited number of test subjects, the combination of IMS-MS for different combinations of ions and multivariate PCA analysis shows promise for characterizing disease states.

  2. Transduction of Glycan-Lectin Binding using Near Infrared Fluorescent Single Walled Carbon Nanotubes for Glycan Profiling

    Science.gov (United States)

    Reuel, Nigel; Ahn, Jin-Ho; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis; Mahal, Lara; Strano, Michael

    2012-02-01

    In this work, we demonstrate a sensor array employing recombinant lectins as glycan recognition sites tethered via Histidine tags to Ni2+ complexes that act as fluorescent quenchers for semi-conducting single walled carbon nanotubes embedded in a chitosan to measure binding kinetics of model glycans. Two higher-affined glycan-lectin pairs are explored: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD. The dissociation constants (KD) for these pairs as free glycans (106 and 19 μM respectively) and streptavidin-tethered (142 and 50 μM respectively) were found. The absolute detection limit for the current platform was found to be 2 μg of glycosylated protein or 100 ng of free glycan to 20 μg of lectin. Glycan detection is demonstrated at the single nanotube level (GlcNAc to GafD). Over a population of 1000 nanotubes, 289 of the SWNT sensors had signals strong enough to yield kinetic information (KD of 250 ± 10 μM). We are also able to identify the locations of ``strong-transducers'' on the basis of dissociation constant (4 sensors with KD 5% quench response). The ability to pinpoint strong-binding, single sensors is promising to build a nanoarray of glycan-lectin transducers as a method to profile glycans without protein labeling or glycan liberation pretreatment steps.

  3. Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans

    Science.gov (United States)

    Broecker, Felix; Hanske, Jonas; Martin, Christopher E.; Baek, Ju Yuel; Wahlbrink, Annette; Wojcik, Felix; Hartmann, Laura; Rademacher, Christoph; Anish, Chakkumkal; Seeberger, Peter H.

    2016-01-01

    Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan–antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort. PMID:27091615

  4. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans

    Directory of Open Access Journals (Sweden)

    M. Kristen Hall

    2016-06-01

    Full Text Available Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9 technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties.

  5. Comprehensive N-Glycan Profiling of Avian Immunoglobulin Y.

    Science.gov (United States)

    Gilgunn, Sarah; Millán Martín, Silvia; Wormald, Mark R; Zapatero-Rodríguez, Julia; Conroy, Paul J; O'Kennedy, Richard J; Rudd, Pauline M; Saldova, Radka

    2016-01-01

    Recent exploitation of the avian immune system has highlighted its suitability for the generation of high-quality, high-affinity antibodies to a wide range of antigens for a number of therapeutic and biotechnological applications. The glycosylation profile of potential immunoglobulin therapeutics is species specific and is heavily influenced by the cell-line/culture conditions used for production. Hence, knowledge of the carbohydrate moieties present on immunoglobulins is essential as certain glycan structures can adversely impact their physicochemical and biological properties. This study describes the detailed N-glycan profile of IgY polyclonal antibodies from the serum of leghorn chickens using a fully quantitative high-throughput N-glycan analysis approach, based on ultra-performance liquid chromatography (UPLC) separation of released glycans. Structural assignments revealed serum IgY to contain complex bi-, tri- and tetra-antennary glycans with or without core fucose and bisects, hybrid and high mannose glycans. High sialic acid content was also observed, with the presence of rare sialic acid structures, likely polysialic acids. It is concluded that IgY is heavily decorated with complex glycans; however, no known non-human or immunogenic glycans were identified. Thus, IgY is a potentially promising candidate for immunoglobulin-based therapies for the treatment of various infectious diseases. PMID:27459092

  6. Comprehensive N-Glycan Profiling of Avian Immunoglobulin Y

    Science.gov (United States)

    Millán Martín, Silvia; Wormald, Mark R.; Zapatero-Rodríguez, Julia; Conroy, Paul J.; O’Kennedy, Richard J.; Rudd, Pauline M.; Saldova, Radka

    2016-01-01

    Recent exploitation of the avian immune system has highlighted its suitability for the generation of high-quality, high-affinity antibodies to a wide range of antigens for a number of therapeutic and biotechnological applications. The glycosylation profile of potential immunoglobulin therapeutics is species specific and is heavily influenced by the cell-line/culture conditions used for production. Hence, knowledge of the carbohydrate moieties present on immunoglobulins is essential as certain glycan structures can adversely impact their physicochemical and biological properties. This study describes the detailed N-glycan profile of IgY polyclonal antibodies from the serum of leghorn chickens using a fully quantitative high-throughput N-glycan analysis approach, based on ultra-performance liquid chromatography (UPLC) separation of released glycans. Structural assignments revealed serum IgY to contain complex bi-, tri- and tetra-antennary glycans with or without core fucose and bisects, hybrid and high mannose glycans. High sialic acid content was also observed, with the presence of rare sialic acid structures, likely polysialic acids. It is concluded that IgY is heavily decorated with complex glycans; however, no known non-human or immunogenic glycans were identified. Thus, IgY is a potentially promising candidate for immunoglobulin-based therapies for the treatment of various infectious diseases. PMID:27459092

  7. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sukun [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Kai [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Du, Tao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Zheng, Chunfu [Soochow University, Institutes of Biology and Medical Sciences, Suzhou 215123 (China); Liu, Yalan [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Hu, Qinxue, E-mail: qhu@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Institute for Infection and Immunity, St George' s University of London, London SW17 0RE (United Kingdom)

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  8. Glycan characterization of biopharmaceuticals: Updates and perspectives.

    Science.gov (United States)

    Planinc, Ana; Bones, Jonathan; Dejaegher, Bieke; Van Antwerpen, Pierre; Delporte, Cédric

    2016-05-19

    Therapeutic proteins are rapidly becoming the most promising class of pharmaceuticals on the market due to their successful treatment of a vast array of serious diseases, such as cancers and immune disorders. Therapeutic proteins are produced using recombinant DNA technology. More than 60% of therapeutic proteins are posttranslationally modified following biosynthesis by the addition of N- or O-linked glycans. Glycosylation is the most common posttranslational modifications of proteins. However, it is also the most demanding and complex posttranslational modification from the analytical point of view. Moreover, research has shown that glycosylation significantly impacts stability, half-life, mechanism of action and safety of a therapeutic protein. Considering the exponential growth of biotherapeutics, this present review of the literature (2009-2015) focuses on the characterization of protein glycosylation, which has witnessed an improvement in methodology. Furthermore, it discusses current issues in the fields of production and characterization of therapeutic proteins. This review also highlights the problem of non-standard requirements for the approval of biosimilars with regard to their glycosylation and discusses recent developments and perspectives for improved glycan characterization. PMID:27126786

  9. Glycan characterization of biopharmaceuticals: Updates and perspectives.

    Science.gov (United States)

    Planinc, Ana; Bones, Jonathan; Dejaegher, Bieke; Van Antwerpen, Pierre; Delporte, Cédric

    2016-05-19

    Therapeutic proteins are rapidly becoming the most promising class of pharmaceuticals on the market due to their successful treatment of a vast array of serious diseases, such as cancers and immune disorders. Therapeutic proteins are produced using recombinant DNA technology. More than 60% of therapeutic proteins are posttranslationally modified following biosynthesis by the addition of N- or O-linked glycans. Glycosylation is the most common posttranslational modifications of proteins. However, it is also the most demanding and complex posttranslational modification from the analytical point of view. Moreover, research has shown that glycosylation significantly impacts stability, half-life, mechanism of action and safety of a therapeutic protein. Considering the exponential growth of biotherapeutics, this present review of the literature (2009-2015) focuses on the characterization of protein glycosylation, which has witnessed an improvement in methodology. Furthermore, it discusses current issues in the fields of production and characterization of therapeutic proteins. This review also highlights the problem of non-standard requirements for the approval of biosimilars with regard to their glycosylation and discusses recent developments and perspectives for improved glycan characterization.

  10. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures

    Directory of Open Access Journals (Sweden)

    Dell Anne

    2007-08-01

    Full Text Available Abstract Background Carbohydrates play a critical role in human diseases and their potential utility as biomarkers for pathological conditions is a major driver for characterization of the glycome. However, the additional complexity of glycans compared to proteins and nucleic acids has slowed the advancement of glycomics in comparison to genomics and proteomics. The branched nature of carbohydrates, the great diversity of their constituents and the numerous alternative symbolic notations, make the input and display of glycans not as straightforward as for example the amino-acid sequence of a protein. Every glycoinformatic tool providing a user interface would benefit from a fast, intuitive, appealing mechanism for input and output of glycan structures in a computer readable format. Results A software tool for building and displaying glycan structures using a chosen symbolic notation is described here. The "GlycanBuilder" uses an automatic rendering algorithm to draw the saccharide symbols and to place them on the drawing board. The information about the symbolic notation is derived from a configurable graphical model as a set of rules governing the aspect and placement of residues and linkages. The algorithm is able to represent a structure using only few traversals of the tree and is inherently fast. The tool uses an XML format for import and export of encoded structures. Conclusion The rendering algorithm described here is able to produce high-quality representations of glycan structures in a chosen symbolic notation. The automated rendering process enables the "GlycanBuilder" to be used both as a user-independent component for displaying glycans and as an easy-to-use drawing tool. The "GlycanBuilder" can be integrated in web pages as a Java applet for the visual editing of glycans. The same component is available as a web service to render an encoded structure into a graphical format. Finally, the "GlycanBuilder" can be integrated into other

  11. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    Science.gov (United States)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  12. Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans

    OpenAIRE

    Romano, Patrick R.; Mackay, Andrew; Vong, Minh; deSa, Johann; Lamontagne, Anne; Comunale, Mary Ann; Hafner, Julie; Block, Timothy; Lec, Ryszard; Mehta, Anand

    2011-01-01

    Changes in glycosylation have long been associated with disease. While there are many methods to detect changes in glycosylation, plant derived lectins are often used to determine changes on specific proteins or molecules of interest. One change in glycosylation that has been observed by us and by others is a disease or antigen associated increase in fucosylation on N-linked glycans. To measure this change, the fucose binding Aleuria aurantia lectin (AAL) is often utilized in plate and soluti...

  13. Complex N-Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells.

    Directory of Open Access Journals (Sweden)

    M Kristen Hall

    Full Text Available The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these

  14. Discovery and Structural Characterization of Fucosylated Oligomannosidic N-Glycans in Mushrooms

    OpenAIRE

    Grass, Josephine; Pabst, Martin; Kolarich, Daniel; Pöltl, Gerald; Léonard, Renaud; Brecker, Lothar; Altmann, Friedrich

    2010-01-01

    l-Fucose is a common constituent of Asn-linked glycans in vertebrates, invertebrates, and plants, but in fungal glycoproteins, fucose has not been found so far. However, by mass spectrometry we detected N-glycans and O-glycans containing one to six deoxyhexose residues in fruit bodies of several basidiomycetes. The N-glycans of chanterelles (Cantharellus cibarius) contained a deoxyhexose chromatographically identical to fucose and sensitive to α-l-fucosidase. Analysis of individual glycan spe...

  15. Glycans and glycosylation of platelets: current concepts and implications for transfusion

    DEFF Research Database (Denmark)

    Sørensen, Anne Louise; Hoffmeister, Karin M; Wandall, Hans H

    2008-01-01

    the risk of transfusion-mediated sepsis and accelerates platelet deterioration, limiting platelet shelf life. Recent evidence suggests that glycoengineering of platelets might allow for their cold storage, significantly improving the quality of platelet products.......PURPOSE OF REVIEW: Platelet products are currently stored at room temperature, because refrigeration causes their rapid clearance from the circulation upon transfusion. Glycans have recently been emphasized as important determinants for the clearance of refrigerated platelets. The present review...... addresses the current knowledge of platelet glycans and the potential of glycosylation for improving platelet storage. RECENT FINDINGS: Removal of refrigerated platelets from the circulation is partly mediated by recognition of clustered beta-N-acetylglucosamine on platelet surface glycoproteins...

  16. Upregulation of glycans containing 3' fucose in a subset of pancreatic cancers uncovered using fusion-tagged lectins.

    Science.gov (United States)

    Singh, Sudhir; Pal, Kuntal; Yadav, Jessica; Tang, Huiyuan; Partyka, Katie; Kletter, Doron; Hsueh, Peter; Ensink, Elliot; Kc, Birendra; Hostetter, Galen; Xu, H Eric; Bern, Marshall; Smith, David F; Mehta, Anand S; Brand, Randall; Melcher, Karsten; Haab, Brian B

    2015-06-01

    The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a 3' linkage; CGL2 for motifs with fucose in a 2' linkage; and RSL for fucose in all linkages. We used several practical methods to test the lectins and determine the optimal mode of detection, and we then tested whether the lectins detected glycans in pancreatic cancer patients who did not elevate the sialyl-Lewis A glycan, which is upregulated in ∼75% of pancreatic adenocarcinomas. Patients who did not upregulate sialyl-Lewis A, which contains fucose in a 4' linkage, tended to upregulate fucose in a 3' linkage, as detected by CCL2, but they did not upregulate total fucose or fucose in a 2' linkage. CCL2 binding was high in cancerous epithelia from pancreatic tumors, including areas negative for sialyl-Lewis A and a related motif containing 3' fucose, sialyl-Lewis X. Thus, glycans containing 3' fucose may complement sialyl-Lewis A to contribute to improved detection of pancreatic cancer. Furthermore, the use of panels of recombinant lectins may uncover details about glycosylation that could be important for characterizing and detecting cancer.

  17. Glycotope sharing between snail hemolymph and larval schistosomes: larval transformation products alter shared glycan patterns of plasma proteins.

    Science.gov (United States)

    Yoshino, Timothy P; Wu, Xiao-Jun; Liu, Hongdi; Gonzalez, Laura A; Deelder, André M; Hokke, Cornelis H

    2012-01-01

    Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs) to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes) on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs) could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions ( 100 kDa) from susceptible (NMRI) and resistant (BS-90) snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN), fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma (LTPs significantly altered the reactivity of specific mABs to shared glycotopes on blots, mainly through the binding of LTPs to plasma proteins resulting in either glycotope blocking or increased glycotope attachment to plasma. Many LTP-mediated changes in shared glycans were snail-strain specific, especially those in the 100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B. glabrata strains may significantly impact early anti-larval immune reactivity, and in turn, compatibility, in this parasite-host system. PMID:22448293

  18. Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions.

    Science.gov (United States)

    Wilson, I B; Zeleny, R; Kolarich, D; Staudacher, E; Stroop, C J; Kamerling, J P; Altmann, F

    2001-04-01

    The N-glycans from 27 "plant" foodstuffs, including one from a gymnospermic plant and one from a fungus, were prepared by a new procedure and examined by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For several samples, glycan structures were additionally investigated by size-fractionation and reverse-phase high-performance liquid chromatography in conjunction with exoglycosidase digests and finally also (1)H-nuclear magnetic resonance spectroscopy. The glycans found ranged from the typical vacuolar "horseradish peroxidase" type and oligomannose to complex Le(a)-carrying structures. Though the common mushroom exclusively contained N-glycans of the oligomannosidic type, all plant foods contained mixtures of the above-mentioned types. Apple, asparagus, avocado, banana, carrot, celery, hazelnut, kiwi, onion, orange, pear, pignoli, strawberry, and walnut were particularly rich in Le(a)-carrying N-glycans. Although traces of Le(a)-containing structures were also present in almond, pistachio, potato, and tomato, no such glycans could be found in cauliflower. Coconut exhibited almost exclusively N-glycans containing only xylose but no fucose. Oligomannosidic N-glycans dominated in buckwheat and especially in the legume seeds mung bean, pea, peanut, and soybean. Papaya presented a unique set of hybrid type structures partially containing the Le(a) determinant. These results are not only compatible with the hypothesis that the carbohydrate structures are another potential source of immunological cross-reaction between different plant allergens, but they also demonstrate that the Le(a)-type structure is very widespread among plants.

  19. Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions.

    Science.gov (United States)

    Wilson, I B; Zeleny, R; Kolarich, D; Staudacher, E; Stroop, C J; Kamerling, J P; Altmann, F

    2001-04-01

    The N-glycans from 27 "plant" foodstuffs, including one from a gymnospermic plant and one from a fungus, were prepared by a new procedure and examined by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For several samples, glycan structures were additionally investigated by size-fractionation and reverse-phase high-performance liquid chromatography in conjunction with exoglycosidase digests and finally also (1)H-nuclear magnetic resonance spectroscopy. The glycans found ranged from the typical vacuolar "horseradish peroxidase" type and oligomannose to complex Le(a)-carrying structures. Though the common mushroom exclusively contained N-glycans of the oligomannosidic type, all plant foods contained mixtures of the above-mentioned types. Apple, asparagus, avocado, banana, carrot, celery, hazelnut, kiwi, onion, orange, pear, pignoli, strawberry, and walnut were particularly rich in Le(a)-carrying N-glycans. Although traces of Le(a)-containing structures were also present in almond, pistachio, potato, and tomato, no such glycans could be found in cauliflower. Coconut exhibited almost exclusively N-glycans containing only xylose but no fucose. Oligomannosidic N-glycans dominated in buckwheat and especially in the legume seeds mung bean, pea, peanut, and soybean. Papaya presented a unique set of hybrid type structures partially containing the Le(a) determinant. These results are not only compatible with the hypothesis that the carbohydrate structures are another potential source of immunological cross-reaction between different plant allergens, but they also demonstrate that the Le(a)-type structure is very widespread among plants. PMID:11358875

  20. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido

    Full Text Available Bifidobacterium longum subsp. infantis (B. infantis is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO. Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs, part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

  1. Emerging Technologies for Making Glycan-Defined Glycoproteins

    OpenAIRE

    Wang, Lai-Xi; Lomino, Joseph V.

    2011-01-01

    Protein glycosylation is a common and complex posttranslational modification of proteins, which expands functional diversity while boosting structural heterogeneity. Glycoproteins, the end products of such a modification, are typically produced as mixtures of glycoforms possessing the same polypeptide backbone but differ in the site of glycosylation and/or in the structures of pendant glycans, from which single glycoforms are difficult to isolate. The urgent need for glycan-defined glycoprote...

  2. Profiling IgG N-glycans as potential biomarker of chronological and biological ages

    Science.gov (United States)

    Yu, Xinwei; Wang, Youxin; Kristic, Jasminka; Dong, Jing; Chu, Xi; Ge, Siqi; Wang, Hao; Fang, Honghong; Gao, Qing; Liu, Di; Zhao, Zhongyao; Peng, Hongli; Pucic Bakovic, Maja; Wu, Lijuan; Song, Manshu; Rudan, Igor; Campbell, Harry; Lauc, Gordan; Wang, Wei

    2016-01-01

    Abstract As an important post-translation modifying process, glycosylation significantly affects the structure and function of immunoglobulin G (IgG) molecules and is essential in many steps of the inflammatory cascade. Studies have demonstrated the potential of using glycosylation features of IgG as a component of predictive biomarkers for chronological age in several European populations, whereas no study has been reported in Chinese. Herein, we report various patterns of changes in IgG glycosylation associated with age by analyzing IgG glycosylation in 701 community-based Han Chinese (244 males, 457 females; 23–68 years old). Eleven IgG glycans, including FA2B, A2G1, FA2[6]G1, FA2[3]G1, FA2[6]BG1, FA2[3]BG1, A2G2, A2BG2, FA2G2, FA2G2S1, and FA2G2S2, change considerably with age and specific combinations of these glycan features can explain 23.3% to 45.4% of the variance in chronological age in this population. This indicates that these combinations of glycan features provide more predictive information than other single markers of biological age such as telomere length. In addition, the clinical traits such as fasting plasma glucose and aspartate aminotransferase associated with biological age are strongly correlated with the combined glycan features. We conclude that IgG glycosylation appears to correlate with both chronological and biological ages, and thus its possible role in the aging process merits further study. PMID:27428197

  3. Reduced immunogenicity of Arabidopsis hgl1 mutant N-glycans caused by altered accessibility of xylose and core fucose epitopes.

    Science.gov (United States)

    Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje

    2011-07-01

    Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.

  4. Neutral glycans from sandfish skin can reduce friction of polymers

    Science.gov (United States)

    Vihar, Boštjan; Hanisch, Franz Georg; Baumgartner, Werner

    2016-01-01

    The lizard Scincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(methyl methacrylate) or acrylic car coatings at a density of approximately one molecule per 4 nm², friction for and adhesion of sand particles could be reduced to levels close to those observed with sandfish scales. This was also found true, if the glycans were isolated from sources other than sandfish scales like plants such as almonds or mistletoe. We speculate that these neutral glycans act as low density spacers separating sand particles from the dense scales thereby reducing van der Waals forces. PMID:27030038

  5. Human DC-SIGN Binds Specific Human Milk Glycans

    Science.gov (United States)

    Noll, Alexander J.; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H.; Smith, David F.; Cummings, Richard D.

    2016-01-01

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys, and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBPs) expressed by dendritic cells (DC) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and Siglecs expressed by DC for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-SIGN showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglecs-5 and -9 showed weak binding to a few glycans. By contrast, most hGBPs bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2′-fucosyllactose (2′-FL) and 3-fucosyllactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2′-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2′-FL had an IC50 of ~1 mM for DC-SIGN, which is within the physiological concentration of 2′-FL in human milk. These results demonstrate that DC-SIGN among the many hGBPs expressed by DC binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant. PMID:26976925

  6. Neutral glycans from sandfish skin can reduce friction of polymers.

    Science.gov (United States)

    Vihar, Boštjan; Hanisch, Franz Georg; Baumgartner, Werner

    2016-03-01

    The lizardScincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(methyl methacrylate) or acrylic car coatings at a density of approximately one molecule per 4 nm², friction for and adhesion of sand particles could be reduced to levels close to those observed with sandfish scales. This was also found true, if the glycans were isolated from sources other than sandfish scales like plants such as almonds or mistletoe. We speculate that these neutral glycans act as low density spacers separating sand particles from the dense scales thereby reducing van der Waals forces. PMID:27030038

  7. Characterization of changes in serum anti-glycan antibodies in Crohn's disease--a longitudinal analysis.

    Directory of Open Access Journals (Sweden)

    Florian Rieder

    Full Text Available INTRODUCTION: Anti-glycan antibodies are a promising tool for differential diagnosis and disease stratification of patients with Crohn's disease (CD. We longitudinally assessed level and status changes of anti-glycan antibodies over time in individual CD patients as well as determinants of this phenomenon. METHODS: 859 serum samples derived from a cohort of 253 inflammatory bowel disease (IBD patients (207 CD, 46 ulcerative colitis (UC were tested for the presence of anti-laminarin (Anti-L, anti-chitin (Anti-C, anti-chitobioside (ACCA, anti-laminaribioside (ALCA, anti-mannobioside (AMCA and anti-Saccharomyces cerevisiae (gASCA antibodies by ELISA. All patients had at least two and up to eleven serum samples taken during the disease course. RESULTS: Median follow-up time for CD was 17.4 months (Interquartile range (IQR 8.0, 31.6 months and for UC 10.9 months (IQR 4.9, 21.0 months. In a subgroup of CD subjects marked changes in the overall immune response (quartile sum score and levels of individual markers were observed over time. The marker status (positive versus negative remained widely stable. Neither clinical phenotype nor NOD2 genotype was associated with the observed fluctuations. In a longitudinal analysis neither changes in disease activity nor CD behavior led to alterations in the levels of the glycan markers. The ability of the panel to discriminate CD from UC or its association with CD phenotypes remained stable during follow-up. In the serum of UC patients neither significant level nor status changes were observed. CONCLUSIONS: While the levels of anti-glycan antibodies fluctuate in a subgroup of CD patients the antibody status is widely stable over time.

  8. Multi-Site N-glycan mapping study 1: Capillary electrophoresis – laser induced fluorescence

    Science.gov (United States)

    Szekrényes, Ákos; Park, SungAe Suhr; Santos, Marcia; Lew, Clarence; Jones, Aled; Haxo, Ted; Kimzey, Michael; Pourkaveh, Shiva; Szabó, Zoltán; Sosic, Zoran; Feng, Peng; Váradi, Csaba; de l'Escaille, François; Falmagne, Jean-Bernard; Sejwal, Preeti; Niedringhaus, Thomas; Michels, David; Freckleton, Gordon; Hamm, Melissa; Manuilov, Anastasiya; Schwartz, Melissa; Luo, Jiann-Kae; van Dyck, Jonathan; Leung, Pui-King; Olajos, Marcell; Gu, Yingmei; Gao, Kai; Wang, Wenbo; Wegstein, Jo; Tep, Samnang; Guttman, András

    2016-01-01

    An international team that included 20 independent laboratories from biopharmaceutical companies, universities, analytical contract laboratories and national authorities in the United States, Europe and Asia was formed to evaluate the reproducibility of sample preparation and analysis of N-glycans using capillary electrophoresis of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled glycans with laser induced fluorescence (CE-LIF) detection (16 sites) and ultra high-performance liquid chromatography (UHPLC, 12 sites; results to be reported in a subsequent publication). All participants used the same lot of chemicals, samples, reagents, and columns/capillaries to run their assays. Migration time, peak area and peak area percent values were determined for all peaks with >0.1% peak area. Our results demonstrated low variability and high reproducibility, both, within any given site as well across all sites, which indicates that a standard N-glycan analysis platform appropriate for general use (clone selection, process development, lot release, etc.) within the industry can be established. PMID:26466659

  9. Concept, strategy and realization of lectin-based glycan profiling.

    Science.gov (United States)

    Hirabayashi, Jun

    2008-08-01

    Lectins are a diverse group of carbohydrate-binding proteins. Each lectin has its own specificity profile. It is believed that lectins exist in all living organisms that produce glycans. From a practical viewpoint, lectins have been used extensively in biochemical fields including proteomics due to their usefulness as detection and enrichment tools for specific glycans. Nevertheless, they have often been underestimated as probes, especially compared with antibodies, because of their low affinity and broad specificity. However, together with the concept of glycomics, such properties of lectins are now considered to be suitable for the task of 'profiling' in order to cover a wider range of ligands. Recently there has been rapid movement in the field of proteomics aimed at the investigation of glycan-related biomarkers. This is partly because of limitations of the present approach of simply following changes in protein-level expression, without paying sufficient attention to the fact and effects of glycosylation. The trend is reflected in the frequent use of lectins in the contexts of glycoprotein enrichment and glycan profiling. However, there are many aspects to be considered in using lectins, which differ considerably from antibodies. In this article, the author, as a developer of two unique methodologies, frontal affinity chromatography (FAC) and the lectin microarray, describes critical points concerning the use of lectins, together with the concept, strategy and means to achieve advances in these emerging glycan profiling technologies. PMID:18390573

  10. Approaches toward High-Mannose-Type Glycan Libraries.

    Science.gov (United States)

    Fujikawa, Kohki; Seko, Akira; Takeda, Yoichi; Ito, Yukishige

    2016-02-01

    Asparagine-linked (N-linked) sugar chains are widely found in the rough endoplasmic reticulum (ER), which has attracted renewed attention because of its participation in the glycoprotein quality control process. In the ER, newly formed glycoproteins are properly folded to higher-order structures by the action of a variety of lectin chaperones and processing enzymes and are transported into the Golgi, while terminally misfolded glycoproteins are carried into the cytosol for degradation. A group of proteins related to this system are known to recognize subtle differences in the high-mannose-type oligosaccharide structures of glycoproteins; however, their molecular foundations are still unclear. In order to gain a more precise understanding, our group has established a strategy for the systematic synthesis of high-mannose-type glycans. More recently, we have developed "top-down" chemoenzymatic approaches that allow expeditious access to theoretically all types of high-mannose glycans. This strategy comprehensively delivered 37 high-mannose-type glycans, including G1M9-M3 glycans, and opened up the possibility of the elucidation of structure-function relationships with a series of high-mannose-type glycans. PMID:26493153

  11. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Science.gov (United States)

    Sommerstein, Rami; Flatz, Lukas; Remy, Melissa M; Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; Ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D

    2015-11-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  12. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Directory of Open Access Journals (Sweden)

    Rami Sommerstein

    2015-11-01

    Full Text Available Arenaviruses such as Lassa virus (LASV can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  13. Detailed glycan structural characterization by electronic excitation dissociation.

    Science.gov (United States)

    Yu, Xiang; Jiang, Yan; Chen, Yajie; Huang, Yiqun; Costello, Catherine E; Lin, Cheng

    2013-11-01

    The structural complexity and diversity of glycans parallel their multilateral functions in living systems. To better understand the vital roles glycans play in biological processes, it is imperative to develop analytical tools that can provide detailed glycan structural information. This was conventionally achieved by multistage tandem mass spectrometry (MS(n)) analysis using collision-induced dissociation (CID) as the fragmentation method. However, the MS(n) approach lacks the sensitivity and throughput needed to analyze complex glycan mixtures from biological sources, often available in limited quantities. We define herein the critical parameters for a recently developed fragmentation technique, electronic excitation dissociation (EED), which can yield rich structurally informative fragment ions during liquid chromatographic (LC)-MS/MS analysis of glycans. We further demonstrate that permethylation, reducing end labeling and judicious selection of the metal charge carrier, can greatly facilitate spectral interpretation. With its high sensitivity, throughput, and compatibility with online chromatographic separation techniques, EED appears to hold great promise for large-scale glycomics studies. PMID:24080071

  14. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor

    OpenAIRE

    Hushegyi, András; Pihíková, Dominika; Bertók, Tomáš; Adam, Vojtech; Kizek, René; Tkac, Jan

    2015-01-01

    An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force ...

  15. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    Science.gov (United States)

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  16. Glycotope sharing between snail hemolymph and larval schistosomes: larval transformation products alter shared glycan patterns of plasma proteins.

    Directory of Open Access Journals (Sweden)

    Timothy P Yoshino

    Full Text Available Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions ( 100 kDa from susceptible (NMRI and resistant (BS-90 snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN, fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma ( 100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B. glabrata strains may significantly impact early anti-larval immune reactivity, and in turn, compatibility, in this parasite-host system.

  17. Using CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and Glycosphingolipids to human leukocyte-endothelium adhesion

    Science.gov (United States)

    Stolfa, Gino; Mondal, Nandini; Zhu, Yuqi; Yu, Xinheng; Buffone, Alexander; Neelamegham, Sriram

    2016-01-01

    There is often interest in dissecting the relative contributions of the N-glycans, O-glycans and glycosphingolipids (GSLs) in regulating complex biological traits like cell signaling, adhesion, development and metastasis. To address this, we developed a CRISPR-Cas9 toolkit to selectively truncate each of these commonly expressed glycan-types. Here, O-glycan biosynthesis was truncated by knocking-out Core 1 β3Gal-T Specific Molecular Chaperone (COSMC), N-glycans by targeting the β1,2 GlcNAc-transferase (MGAT1) and GSLs by deleting UDP-glucose ceramide glucosyltransferase (UGCG). These reagents were applied to reveal the glycoconjugates regulating human myeloid cell adhesion to selectins under physiological shear-flow observed during inflammation. These functional studies show that leukocyte rolling on P- and L-selectin is ablated in cells lacking O-glycans, with N-glycan truncation also increasing cell rolling velocity on L-selectin. All three glycan families contributed to E-selectin dependent cell adhesion with N-glycans contributing to all aspects of the leukocyte adhesion cascade, O-glycans only being important during initial recruitment, and GSLs stabilizing slow cell rolling and the transition to firm arrest. Overall, the genome editing tools developed here may be broadly applied in studies of cellular glycosylation. PMID:27458028

  18. Human DC-SIGN binds specific human milk glycans.

    Science.gov (United States)

    Noll, Alexander J; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H; Smith, David F; Cummings, Richard D

    2016-05-15

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant. PMID:26976925

  19. Glycan Node Analysis: A Bottom-up Approach to Glycomics.

    Science.gov (United States)

    Zaare, Sahba; Aguilar, Jesús S; Hu, Yueming; Ferdosi, Shadi; Borges, Chad R

    2016-01-01

    Synthesized in a non-template-driven process by enzymes called glycosyltransferases, glycans are key players in various significant intra- and extracellular events. Many pathological conditions, notably cancer, affect gene expression, which can in turn deregulate the relative abundance and activity levels of glycoside hydrolase and glycosyltransferase enzymes. Unique aberrant whole glycans resulting from deregulated glycosyltransferase(s) are often present in trace quantities within complex biofluids, making their detection difficult and sometimes stochastic. However, with proper sample preparation, one of the oldest forms of mass spectrometry (gas chromatography-mass spectrometry, GC-MS) can routinely detect the collection of branch-point and linkage-specific monosaccharides ("glycan nodes") present in complex biofluids. Complementary to traditional top-down glycomics techniques, the approach discussed herein involves the collection and condensation of each constituent glycan node in a sample into a single independent analytical signal, which provides detailed structural and quantitative information about changes to the glycome as a whole and reveals potentially deregulated glycosyltransferases. Improvements to the permethylation and subsequent liquid/liquid extraction stages provided herein enhance reproducibility and overall yield by facilitating minimal exposure of permethylated glycans to alkaline aqueous conditions. Modifications to the acetylation stage further increase the extent of reaction and overall yield. Despite their reproducibility, the overall yields of N-acetylhexosamine (HexNAc) partially permethylated alditol acetates (PMAAs) are shown to be inherently lower than their expected theoretical value relative to hexose PMAAs. Calculating the ratio of the area under the extracted ion chromatogram (XIC) for each individual hexose PMAA (or HexNAc PMAA) to the sum of such XIC areas for all hexoses (or HexNAcs) provides a new normalization method that

  20. Implications of plant glycans in the development of innovative vaccines.

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Salazar-González, Jorge A; Decker, Eva L; Reski, Ralf

    2016-07-01

    Plant glycans play a central role in vaccinology: they can serve as adjuvants and/or delivery vehicles or backbones for the synthesis of conjugated vaccines. In addition, genetic engineering is leading to the development of platforms for the production of novel polysaccharides in plant cells, an approach with relevant implications for the design of new types of vaccines. This review contains an updated outlook on this topic and provides key perspectives including a discussion on how the molecular pharming field can be linked to the production of innovative glycan-based and conjugate vaccines. PMID:26890067

  1. Implications of plant glycans in the development of innovative vaccines.

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Salazar-González, Jorge A; Decker, Eva L; Reski, Ralf

    2016-07-01

    Plant glycans play a central role in vaccinology: they can serve as adjuvants and/or delivery vehicles or backbones for the synthesis of conjugated vaccines. In addition, genetic engineering is leading to the development of platforms for the production of novel polysaccharides in plant cells, an approach with relevant implications for the design of new types of vaccines. This review contains an updated outlook on this topic and provides key perspectives including a discussion on how the molecular pharming field can be linked to the production of innovative glycan-based and conjugate vaccines.

  2. Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses

    OpenAIRE

    von Schaewen, Antje; Rips, Stephan; Jeong, In Sil; Koiwa, Hisashi

    2015-01-01

    Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation...

  3. N-glycan transition of the early developmental stage in Oryza sativa.

    Science.gov (United States)

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2016-08-26

    N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed that the main type of N-glycan transition is from the paucimannosidic to complex type before and after germination in Oryza sativa, suggesting that transitions of N-glycan, including those of glycoproteins and glycosyltransferases, are closely associated with plant growth. To further elucidate the relationship between N-glycan structure and plant growth, we analyzed the structures of N-glycans expressed in O. sativa seedlings grown under light conditions and performed comparative analyses of the structures in the shoot and root. The analyses show that fundamental N-glycan structures are common to the shoot and root, whereas paucimannosidic-type N-glycans dramatically decreased in the root grown under light conditions. Further, to investigate the effects of light on N-glycan structures in O. sativa seedlings, we analyzed N-glycan structures in O. sativa seedlings grown in the dark. Understandably, N-glycan expression in the root was almost unaffected by light. However, despite a marked difference in phenotype, N-glycan expression in the shoot was also unaffected by light. This result suggests that the shoot and root of O. sativa have different glycoproteins and distinct N-glycan synthetic systems. Thus, we propose that the N-glycan synthetic system of the O. sativa shoot is almost unaffected by light conditions and that many photosynthesis-related proteins are not modified by N-glycans.

  4. N-glycan transition of the early developmental stage in Oryza sativa.

    Science.gov (United States)

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2016-08-26

    N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed that the main type of N-glycan transition is from the paucimannosidic to complex type before and after germination in Oryza sativa, suggesting that transitions of N-glycan, including those of glycoproteins and glycosyltransferases, are closely associated with plant growth. To further elucidate the relationship between N-glycan structure and plant growth, we analyzed the structures of N-glycans expressed in O. sativa seedlings grown under light conditions and performed comparative analyses of the structures in the shoot and root. The analyses show that fundamental N-glycan structures are common to the shoot and root, whereas paucimannosidic-type N-glycans dramatically decreased in the root grown under light conditions. Further, to investigate the effects of light on N-glycan structures in O. sativa seedlings, we analyzed N-glycan structures in O. sativa seedlings grown in the dark. Understandably, N-glycan expression in the root was almost unaffected by light. However, despite a marked difference in phenotype, N-glycan expression in the shoot was also unaffected by light. This result suggests that the shoot and root of O. sativa have different glycoproteins and distinct N-glycan synthetic systems. Thus, we propose that the N-glycan synthetic system of the O. sativa shoot is almost unaffected by light conditions and that many photosynthesis-related proteins are not modified by N-glycans. PMID:27320861

  5. Evidence for PPC1, a determinant of the pilei-pellis color of Agaricus bisporus fruitbodies.

    Science.gov (United States)

    Callac, P; Moquet, F; Imbernon, M; Guedes-Lafargue, M R; Mamoun, M; Olivier, J M

    1998-03-01

    In the present study, we investigated the genetic basis of mushroom cap color. In first generation hybrids between a brown isolate and the white commercial hybrid U 1, the white trait was recessive. Color was determined using color meter technology in second generation hybrids obtained by crossing the homokaryotic progeny of a first generation hybrid with a homokaryon from U 1. Statistical analysis revealed a bimodal distribution describing two classes of white and not-white hybrids. We postulate that a recessive allele at a single locus (PPC1) encodes the white pilei-pellis color. Joint segregation analyses indicated that PPC1 was linked to the ADH (alcohol dehydrogenase) locus. Through the analysis of the heterokaryotic progeny of the first generation hybrid, a recombination model is proposed in which PPC1 is located between the centromere and the ADH locus. PMID:9578631

  6. Determination of site-specific glycan heterogeneity on glycoproteins

    DEFF Research Database (Denmark)

    Kolarich, Daniel; Jensen, Pia Hønnerup; Altmann, Friedrich;

    2012-01-01

    site-specific heterogeneity, showing examples of the analysis of recombinant human erythropoietin (rHuEPO), α1-proteinase inhibitor (A1PI) and immunoglobulin (IgG). Glycoproteins of interest can be proteolytically digested either in solution or in-gel after electrophoretic separation, and the (glyco......The comprehensive analysis of protein glycosylation is a major requirement for understanding glycoprotein function in biological systems, and is a prerequisite for producing recombinant glycoprotein therapeutics. This protocol describes workflows for the characterization of glycopeptides and their...

  7. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T...

  8. Glycan bioengineering in immunogen design for tumor T antigen immunotargeting.

    Science.gov (United States)

    Sendra, Victor G; Zlocowski, Natacha; Ditamo, Yanina; Copioli, Silvina; Tarp, Mads P; Bennett, Eric P; Clausen, Henrik; Roth, German A; Nores, Gustavo A; Irazoqui, Fernando J

    2009-10-01

    Bioengineering of Galbeta3GalNAcalpha, known as Thomsen-Friedenreich disaccharide (TFD), is studied to promote glycan immunogenicity and immunotargeting to tumor T antigen (Galbeta3GalNAcalpha-O-Ser/Thr). Theoretical studies on disaccharide conformations by energy minimization of structures using MM2 energy function showed that pentalysine (Lys5) linker and benzyl (Bzl) residue enhance TFD rigidity of the glycosidic bond. Antibodies raised against BzlalphaTFD-Lys5 immunogen recognize tumor T antigen. Competitive assays confirm that TFD-related structures are the main glycan epitope. Antibodies produced by glycan bioengineering recognize HT29, T47D, MCF7, and CT26 epithelial tumor cells. Epithelial tumor cell adhesion to T antigen-binding lectins and endothelial cells was lower in the presence of antibodies raised against the engineered immunogen. The immune response directed to the bioengineered glycoconjugate inhibited CT26 tumor cell proliferation and reduced tumor growth in an in vivo mouse model. These results show that TFD bioengineering is a useful immunogenic strategy with potential application in cancer therapy. The same approach can be extended to other glycan immunogens for immunotargeting purposes. PMID:19726087

  9. Glycan bioengineering in immunogen design for tumor T antigen immunotargeting

    DEFF Research Database (Denmark)

    Sendra, Victor G; Zlocowski, Natacha; Ditamo, Yanina;

    2009-01-01

    MM2 energy function showed that pentalysine (Lys5) linker and benzyl (Bzl) residue enhance TFD rigidity of the glycosidic bond. Antibodies raised against BzlalphaTFD-Lys5 immunogen recognize tumor T antigen. Competitive assays confirm that TFD-related structures are the main glycan epitope...

  10. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a

    Science.gov (United States)

    Bende, Niraj S.; Dziemborowicz, Sławomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M.; King, Glenn F.; Bosmans, Frank

    2014-07-01

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1-S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, a concept that will be valuable for the design of insect-selective insecticides.

  11. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2 Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Directory of Open Access Journals (Sweden)

    Masaki Kurogochi

    Full Text Available Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain, and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC and complement dependent cytotoxicity (CDC. To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases, one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2, high-mannose type (Man4-9GlcNAc2, and complex type (Man3GlcNAc3-4 N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL, the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1 were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q, and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2 was performed using SKBR-3 and BT-474 as target

  12. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs

    NARCIS (Netherlands)

    Smit, C.H.; Diepen, A. van; Nguyen, D.L.; Wuhrer, M.; Hoffmann, K.F.; Deelder, A.M.; Hokke, C.H.

    2015-01-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles o

  13. Differential Expression of O-Glycans in CD4(+) T Lymphocytes from Patients with Systemic Lupus Erythematosus.

    Science.gov (United States)

    Ramos-Martínez, Edgar; Lascurain, Ricardo; Tenorio, Eda Patricia; Sánchez-González, Antonio; Chávez-Rueda, Karina; Chávez-Sánchez, Luis; Jara-Quezada, Luis J; Chávez-Sánchez, Raúl; Zenteno, Edgar; Blanco-Favela, Francisco

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) show a decreased activation threshold and increased apoptosis. These processes seem to be regulated by glycosylated molecules on the T cell surface. Here, we determined through flow cytometry the expression of mucin-type O-glycans on T helper cells in peripheral blood mononuclear cells (PBMC) from 23 SLE patients and its relation with disease activity. We used lectins specific for the disaccharide Gal-GalNAc, such as Amaranthus leucocarpus lectin (ALL), Artocarpus integrifolia lectin (jacalin) and Arachis hypogaea lectin (peanut agglutinin, PNA), as well as lectins for sialic acid such as Sambucus nigra agglutinin (SNA) and Maakia amurensis agglutinin (MAA). The results showed that ALL, but not jacalin or PNA, identified significant differences in O-glycan expression on T helper cells from active SLE patients (n = 10). Moreover, an inverse correlation was found between the frequency of T helper cells recognized by ALL and SLE Disease Activity Index (SLEDAI) score in SLE patients. In contrast, SNA and MAA lectins did not identify any differences between CD4(+) T cells from SLE patients. There was no difference in the recognition by ALL on activated T helper cells and T regulatory (Treg) cells. Our findings point out that activation of SLE disease diminishes the expression of O-glycans in T helper cells; ALL could be considered as a marker to determine activity of the disease. PMID:27600584

  14. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search.

    Directory of Open Access Journals (Sweden)

    Davide Alocci

    Full Text Available Resource description framework (RDF and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP. In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues.

  15. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Anna-Janina Behrens

    2016-03-01

    Full Text Available The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664 maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.

  16. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

    Science.gov (United States)

    Behrens, Anna-Janina; Vasiljevic, Snezana; Pritchard, Laura K.; Harvey, David J.; Andev, Rajinder S.; Krumm, Stefanie A.; Struwe, Weston B.; Cupo, Albert; Kumar, Abhinav; Zitzmann, Nicole; Seabright, Gemma E.; Kramer, Holger B.; Spencer, Daniel I.R.; Royle, Louise; Lee, Jeong Hyun; Klasse, Per J.; Burton, Dennis R.; Wilson, Ian A.; Ward, Andrew B.; Sanders, Rogier W.; Moore, John P.; Doores, Katie J.; Crispin, Max

    2016-01-01

    Summary The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs) that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664) maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens. PMID:26972002

  17. Characterization of the Secondary Binding Sites of Maclura pomifera agglutinin by Glycan Array and Crystallographic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    J Huang; Z Xu; D Wang; C Ogata; K Palczewski; X Lee; N Young

    2011-12-31

    The Maclura pomifera agglutinin (MPA) recognizes the T-antigen disaccharide Gal{beta}1,3GalNAc mainly through interaction of the {alpha}-GalNAc moiety with its primary site, but the interactions of the two flanking subsites A and B with aglycones and substituents other than Gal, respectively, are not well understood. We therefore characterized the specificity of MPA in more detail by glycan microarray analysis and determined the crystal structures of MPA without ligand and in complexes with Gal{beta}1,3GalNAc and p-nitrophenyl {alpha}-GalNAc. In both sugar complexes, pairs of ligands created inter-tetramer hydrogen-bond bridging networks. While subsite A showed increased affinity for hydrophobic aglycones, it also accommodated several sugar substituents. Notably, a GalNAc-O-tripeptide, a Tn-antigen mimic, showed lower affinity than these compounds in surface plasmon resonance (SPR) experiments. The glycan array data that showed subsite B accepted compounds in which the O3 position of the GalNAc was substituted with various sugars other than Gal, but substitutions at O6 led to inactivity. Additions to the Gal moiety of the disaccharide also had only small effects on reactivity. These results are all compatible with the features seen in the crystal structures.

  18. Glycan Side Reaction May Compromise ETD-Based Glycopeptide Identification

    Science.gov (United States)

    Darula, Zsuzsanna; Medzihradszky, Katalin F.

    2014-06-01

    Tris(hydroxymethyl)aminomethane (Tris) is one of the most frequently used buffer ingredients. Among other things, it is recommended and is usually used for lectin-based affinity enrichment of glycopeptides. Here we report that sialic acid, a common `capping' unit in both N- and O-linked glycans may react with this chemical, and this side reaction may compromise glycopeptide identification when ETD spectra are the only MS/MS data used in the database search. We show that the modification may alter N- as well as O-linked glycans, the Tris-derivative is still prone to fragmentation both in `beam-type' CID (HCD) and ETD experiments, at the same time—since the acidic carboxyl group was `neutralized'—it will display a different retention time than its unmodified counterpart. We also suggest solutions that—when incorporated into existing search engines—may significantly improve the reliability of glycopeptide assignments.

  19. Sweet complementarity: the functional pairing of glycans with lectins.

    Science.gov (United States)

    Gabius, H-J; Manning, J C; Kopitz, J; André, S; Kaltner, H

    2016-05-01

    Carbohydrates establish the third alphabet of life. As part of cellular glycoconjugates, the glycans generate a multitude of signals in a minimum of space. The presence of distinct glycotopes and the glycome diversity are mapped by sugar receptors (antibodies and lectins). Endogenous (tissue) lectins can read the sugar-encoded information and translate it into functional aspects of cell sociology. Illustrated by instructive examples, each glycan has its own ligand properties. Lectins with different folds can converge to target the same epitope, while intrafamily diversification enables functional cooperation and antagonism. The emerging evidence for the concept of a network calls for a detailed fingerprinting. Due to the high degree of plasticity and dynamics of the display of genes for lectins the validity of extrapolations between different organisms of the phylogenetic tree yet is inevitably limited. PMID:26956894

  20. Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals

    OpenAIRE

    Vitor H. Pomin

    2015-01-01

    Sulfated fucans (SFs) and sulfated galactans (SGs) are currently the marine non-glycosaminoglycan (GAG) sulfated glycans most studied in glycomics. These compounds exhibit therapeutic effects in several pathophysiological systems such as blood coagulation, thrombosis, neovascularization, cancer, inflammation, and microbial infections. As analogs of the largely employed GAGs and due to some limitations of the GAG-based therapies, SFs and SGs comprise new carbohydrate-based therapeutics availab...

  1. Direct visualization of specifically modified extracellular glycans in living animals

    OpenAIRE

    Attreed, Matthew; Desbois, Muriel; van Kuppevelt, Toin H.; Bülow, Hannes E.

    2012-01-01

    Modification patterns of the extracellular glycan heparan sulfate coordinate protein function in metazoans, yet in vivo imaging of such non-genetically encoded structures has been impossible. Here we report a transgenic method in Caenorhabditis elegans that allows direct live imaging of specific heparan sulfate modification patterns. This experimental approach reveals a dynamic and cell-specific heparan sulfate landscape and could in principle be adapted to visualize and analyze any extracell...

  2. Green algae Chlamydomonas reinhardtii possess endogenous sialylated N-glycans

    OpenAIRE

    Mamedov, Tarlan; Yusibov, Vidadi

    2011-01-01

    Green algae have a great potential as biofactories for the production of proteins. Chlamydomonas reinhardtii, a representative of eukaryotic microalgae, has been extensively used as a model organism to study light-induced gene expression, chloroplast biogenesis, photosynthesis, light perception, cell–cell recognition, and cell cycle control. However, little is known about the glycosylation machinery and N-linked glycan structures of green algae. In this study, we performed mass spectrometry a...

  3. Biosynthesis and Function of Extracellular Glycans in Cyanobacteria

    OpenAIRE

    Jan-Christoph Kehr; Elke Dittmann

    2015-01-01

    The cell surface of cyanobacteria is covered with glycans that confer versatility and adaptability to a multitude of environmental factors. The complex carbohydrates act as barriers against different types of stress and play a role in intra- as well as inter-species interactions. In this review, we summarize the current knowledge of the chemical composition, biosynthesis and biological function of exo- and lipo-polysaccharides from cyanobacteria and give an overview of sugar-binding lectins c...

  4. Neutrophil mobilization by surface-glycan altered Th17-skewing bacteria mitigates periodontal pathogen persistence and associated alveolar bone loss.

    Directory of Open Access Journals (Sweden)

    Rajendra P Settem

    Full Text Available Alveolar bone (tooth-supporting bone erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.

  5. Glycan Moieties as Bait to Fish Plasma Membrane Proteins.

    Science.gov (United States)

    Fang, Fei; Zhao, Qun; Sui, Zhigang; Liang, Yu; Jiang, Hao; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-05-17

    Plasma membrane proteome analysis is of significance for screening candidate biomarkers and drug targets. However, due to their low abundance and lack of specific groups that can enable their capture, the plasma membrane proteins (PMPs) are under-represented. On the basis of the fact that PMPs are embedded in or anchored to the phospholipid bilayer of the plasma membrane and the glycan moieties of proteins and lipids located on the plasma membrane are exposed outside of the cell surface, we proposed a strategy to capture PMPs, termed as glycan moieties-directed PMPs enrichment (GMDPE). With the glycan moieties exposed outside of the cells as bait to ensure the selectivity and the phospholipid bilayer as raft to provide the sensitivity, we applied this strategy into the plasma membrane proteome analysis of HeLa cells, and in total, 772 PMPs were identified, increased by 4.5 times compared to those identified by the reported cell surface biotinylation method. Notably, among them, 86 CD antigens and 16 ion channel proteins were confidently identified. All these results demonstrated that our proposed approach has great potential in the large scale plasma membrane proteome profiling.

  6. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  7. Simultaneous determination of cytochrome P450 1A, 2A and 3A activities in porcine liver microsomes.

    Science.gov (United States)

    Johansson, Monika; Tomankova, Jana; Li, Shengjie; Zamaratskaia, Galia

    2012-09-01

    The aim of this study was to develop a robust method for the simultaneous determination of the activities of three porcine CYP450 enzymes in hepatic microsomes. A cocktail consisting of three selective CYP450 probe substrates, 7-ethoxyresorufin (CYP1A), coumarin (CYP2A) and 7-benzyloxy-4-trifluoromethylcoumarin (BFC; CYP3A), was incubated with porcine liver microsomes. The presence of 7-ethoxyresorufin appears to significantly influence the kinetics of coumarin hydroxylation and BFC O-debenzylation. These results indicate that the use of 7-ethoxyresorufin in substrate cocktails together with coumarin and BFC should be avoided.

  8. Biological significance of complex N-glycans in plants and their impact on plant physiology

    OpenAIRE

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create...

  9. A Bitter Sweet Symphony: Immune Responses to Altered O-glycan Epitopes in Cancer

    OpenAIRE

    Lenneke A.M. Cornelissen; Van Vliet, Sandra J.

    2016-01-01

    The appearance of aberrant glycans on the tumor cell surface is one of the emerging hallmarks of cancer. Glycosylation is an important post-translation modification of proteins and lipids and is strongly affected by oncogenesis. Tumor-associated glycans have been extensively characterized regarding their composition and tumor-type specific expression patterns. Nevertheless whether and how tumor-associated glycans contribute to the observed immunomodulatory actions by tumors has not been exten...

  10. In good company: association between fungal glycans generates molecular complexes with unique functions

    OpenAIRE

    MarcioRodrigues

    2012-01-01

    The biological properties of fungal immunogens have historically utilized testing of isolated molecules. Recent findings, however, indicate that fungal glycans differing in structure and function can interact to form hybrid complexes with unique properties. In the pathogenic yeast Cryptococcus neoformans, chitin-like molecules associate with capsular glucuronoxylomannan to form functionally distinct glycan complexes. Such interactions between glycans that result in the formation of structures...

  11. In good company: association between fungal glycans generates molecular complexes with unique functions

    OpenAIRE

    Rodrigues, Marcio L.; Nimrichter, Leonardo

    2012-01-01

    The biological properties of fungal immunogens have historically utilized testing of isolated molecules. Recent findings, however, indicate that fungal glycans differing in structure and function can interact to form hybrid complexes with unique properties. In the pathogenic yeast Cryptococcus neoformans, chitin-like molecules associate with capsular glucuronoxylomannan (GXM) to form functionally distinct glycan complexes. Such interactions between glycans that result in the formation of stru...

  12. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates

    OpenAIRE

    YOSHINO, TIMOTHY P.; Wu, Xiao-Jun; Gonzalez, Laura A.; Cornelis H Hokke

    2012-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunor...

  13. Determination of U (1 )A restoration from pion and a0 -meson screening masses: Toward the chiral regime

    Science.gov (United States)

    Ishii, Masahiro; Yonemura, Koji; Takahashi, Junichi; Kouno, Hiroaki; Yahiro, Masanobu

    2016-01-01

    We incorporate the effective restoration of U (1 )A symmetry in the 2 +1 -flavor entanglement Polyakov-loop extended Nambu-Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength K (T ) to the Kobayashi-Maskawa-'t Hooft determinant interaction. T dependence of K (T ) is well determined from pion and a0-meson screening masses obtained by lattice QCD (LQCD) simulations with improved p4 staggered fermions. The strength is strongly suppressed in the vicinity of the pseudocritical temperature of chiral transition. The EPNJL model with the K (T ) well reproduces meson susceptibilities calculated by LQCD with domain-wall fermions. The model shows that the chiral transition is second order at the "light-quark chiral-limit" point where the light quark mass is zero and the strange quark mass is fixed at the physical value. This indicates that there exists a tricritical point. Hence, the location is estimated.

  14. Comparative analysis of N-glycans in the ungerminated and germinated stages of Oryza sativa.

    Science.gov (United States)

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2015-12-11

    All fundamental information such as signal transduction, metabolic control, infection, cell-to-cell signaling, and cell differentiation related to the growth of plants are preserved in germs. In preserving these information, glycans have a key role and are involved in the development and differentiation of organisms. Glycans which exist in rice germ are expected to have an important role in germination. In this study, we performed structural and correlation analysis of the N-glycans in rice germ before and after germination. Our results confirmed that the N-glycans in the ungerminated stage of the rice germ had low number of N-glycans consisting only of six kinds especially with high-mannose and paucimannose type N-glycans being 16.0% and 76.7%, respectively. On the other hand, after 48 hours germinated germ stage, there was an increase in the complex type N-glycans with the appearance of Lewis a structure, the most complex type and a decrease in paucimannose types. These results suggest that at least six kinds of N-glycans are utilized for long time preservation of rice seed, while the diversification of most complex types of N-glycans is produced an environment dependent for shoot formation of rice. PMID:26513758

  15. N-glycans of growth factor receptors: their role in receptor function and disease implications.

    Science.gov (United States)

    Takahashi, Motoko; Hasegawa, Yoshihiro; Gao, Congxiao; Kuroki, Yoshio; Taniguchi, Naoyuki

    2016-10-01

    Numerous signal-transduction-related molecules are secreted proteins or membrane proteins, and the mechanism by which these molecules are regulated by glycan chains is a very important issue for developing an understanding of the cellular events that transpire. This review covers the functional regulation of epidermal growth factor receptor (EGFR), ErbB3 and the transforming growth factor β (TGF-β) receptor by N-glycans. This review shows that the N-glycans play important roles in regulating protein conformation and interactions with carbohydrate recognition molecules. These results point to the possibility of a novel strategy for controlling cell signalling and developing novel glycan-based therapeutics. PMID:27612953

  16. Pre-embedding Method of Electron Microscopy for Glycan Localization in Mammalian Tissues and Cells Using Lectin Probes.

    Science.gov (United States)

    Akimoto, Yoshihiro; Takata, Kuniaki; Kawakami, Hayato

    2016-01-01

    In recent years, the study of glycans is progressing remarkably by the development of glycan analysis systems using mass spectrometry, glycan profiling systems using lectin microarrays, and glycoprotein analysis by the isotope-coded glycosylation site-specific tagging method. With these methodologies, glycan structures and biological functions are being elucidated. In the study of glycan function as well as disease diagnosis, it is important to examine the localization of glycans in tissues and cells. Histochemical methods using lectin probes can localize glycans in the tissues and cells. This chapter describes a pre-embedding electron microscopic method for glycan localization in which tissue sections and cells are incubated with lectin prior to embedding in resin. PMID:27515086

  17. A simple chromatographic method for determining norfloxacin and enoxacin in pharmacokinetic study assessing CYP1A2 inhibition.

    Science.gov (United States)

    Kobayashi, Toshimi; Homma, Masato; Momo, Kenji; Kobayashi, Daisuke; Kohda, Yukinao

    2011-04-01

    We developed a simple assay method for the determination of serum and urine norfloxacin and enoxacin using reversed-phase high-performance liquid chromatography and perchloric acid precipitation for sample pre-treatment. Optimized conditions can permit detection of norfloxacin and enoxacin in the same chromatogram, so either compound can be used as an internal standard for another determinant. Supernatants of the precipitated samples were analyzed by the octadecylsilyl silica-gel column under ambient temperature and an ultraviolet wavelength of 272  nm. A mobile phase solvent consisting of 20 mm sodium dihydrogenphosphate (pH 3.0) and acetonitrile (85:15, v/v) was pumped at a flow rate of 1.0 mL/min. The calibration curves for norfloxacin and enoxacin at a concentration of 62.5-1000 ng/mL for serum and 250-4000 ng/mL for urine were linear (r > 0.9997). The recoveries of norfloxacin and enoxacin from serum and urine were >94% with the coefficient of variations (CV) <5%. The CVs for intra- and inter-day assay of norfloxacin and enoxacin were <4.2 and <5.5%, respectively. This method can be applied to the pharmacokinetic study of norfloxacin and enoxacin after repeated administration to assess changes in CYP1A2 activity in healthy subjects.

  18. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    NARCIS (Netherlands)

    R. Pejchal; K.J. Doores; L.M. Walker; R. Khayat; P.S. Huang; S.K. Wang; R.L. Stanfield; J.P. Julien; A. Ramos; M. Crispin; R. Depetris; U. Katpally; A. Marozsan; A. Cupo; S. Maloveste; Y. Liu; R. McBride; Y. Ito; R.W. Sanders; C. Ogohara; J.C. Paulson; T. Feizi; C.N. Scanlan; C.H. Wong; J.P. Moore; W.C. Olson; A.B. Ward; P. Poignard; W.R. Schief; D.R. Burton; I.A. Wilson

    2011-01-01

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 a

  19. Direct chemoselective synthesis of glyconanoparticles from unprotected reducing glycans and glycopeptide aldehydes

    DEFF Research Database (Denmark)

    Thygesen, Mikkel Boas; Sørensen, Kasper Kildegaard; Cló, Emiliano;

    2009-01-01

    Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell.......Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core-shell gold nanoparticles carrying reactive aminooxy groups on the organic shell....

  20. ZIC-HILIC monolithic capillary column coupled with MALDI-MS: A tool for glycan analysis

    OpenAIRE

    Šesták, J. (Jozef); Křenková, J. (Jana); Moravcová, D. (Dana); Planeta, J. (Josef); Kahle, V. (Vladislav)

    2014-01-01

    In this contribution, we report analysis of glycans enzymatically released from bovine ribonuclease B (RNase B) and human immunoglobulin G (hIgG) combining glycan separation using the synthesized zwitterionic silica-based monolithic capillary column and off-line MALDI-MS detection.

  1. Further insight into the roles of the glycans attached to human blood protein C inhibitor

    DEFF Research Database (Denmark)

    Sun, Wei; Parry, Simon; Ubhayasekera, Wimal;

    2010-01-01

    . Furthermore, we have provided experimental evidence that PCI in both individuals is O-glycosylated on Thr20 with a core type 1 O-glycan, which is mostly NeuAcGalGalNAc. Modeling suggested that the O-glycan attachment site is located in proximity to several ligand-binding sites of the inhibitor....

  2. The conserved PA14 domain of cell wall-associated fungal adhesins governs their glycan-binding specificity

    NARCIS (Netherlands)

    P.W.J. de Groot; F.M. Klis

    2008-01-01

    Yeast cell wall-associated, lectin-like adhesins form large families that mediate flocculation and host cell recognition. The glycan specificity of individual adhesins is largely unknown. Zupancic et al. (this issue of Molecular Microbiology) used glycan microarrays to compare the glycan-binding cha

  3. Surface expression patterns of defined glycan antigens change during Schistosoma mansoni cercarial transformation and development of schistosomula

    NARCIS (Netherlands)

    Smit, C.H.; Homann, A.; Hensbergen, V.P. van; Schramm, G.; Haas, H. de; Diepen, A. van; Hokke, C.H.

    2015-01-01

    During the complex lifecycle of Schistosoma mansoni, a large variety of glycans is expressed. To many of these glycans, antibodies are induced by the infected host and some might be targets for vaccines or diagnostic tests. Spatial changes in glycan expression during schistosome development are larg

  4. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    Energy Technology Data Exchange (ETDEWEB)

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A. (UWASH); (Progenics); (ICL); (Weill-Med); (NIH); (JSTA); (Scripps); (Oxford)

    2015-10-15

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  5. The multiple roles of epidermal growth factor repeat O-glycans in animal development.

    Science.gov (United States)

    Haltom, Amanda R; Jafar-Nejad, Hamed

    2015-10-01

    The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457

  6. Glycan changes: cancer metastasis and anti-cancer vaccines

    Indian Academy of Sciences (India)

    Min Li; Lujun Song; Xinyu Qin

    2010-12-01

    Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell–cell and cell–extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.

  7. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans.

    Directory of Open Access Journals (Sweden)

    Carsten Jers

    Full Text Available This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used to investigate the structural requirements for trans-sialidase activity. We observed that the T. cruzi trans-sialidase has a seven-amino-acid motif (197-203 at the border of the substrate binding cleft. The motif differs substantially in chemical properties and substitution probability from the homologous sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197-203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli sialidase mutant, Tr13. Conditions for efficient trans-sialylation were determined, and Tr13's acceptor specificity demonstrated promiscuity with respect to the acceptor molecule enabling sialylation of glycans containing terminal galactose and glucose and even monomers of glucose and fucose. Sialic acid is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197-203 motif stands out in the native trans-sialidase, is markedly different from the wild-type sialidase compared to previous mutants, and is shown here to confer efficient and broad trans-sialidase activity, we suggest that this motif can serve as a framework for future optimization of trans-sialylation towards prebiotic production.

  8. Schistosoma mansoni-infected mice produce antibodies that cross-react with plant, insect, and mammalian glycoproteins and recognize the truncated biantennaryN-glycan Man3GlcNAc2-R.

    OpenAIRE

    Remoortere, van, A.; Bank, CM; Nyame, AK; Cummings, RD; Deelder, A. M.; Die, de, M.

    2003-01-01

    To reveal the role of cross-reactive carbohydrate determinants in the host immune response in helminth infections and allergenicity, we developed monoclonal antibodies (mAbs) that recognize glycan epitopes present on glycoconjugates from both helminths and plants. An IgM mAb (100-4G11-A) was selected from a panel of anti-glycan mAbs generated from Schistosoma-infected or immunized mice because it recognized both a plant glycoprotein horseradish peroxidase and phospholipase A2 from honeybee ve...

  9. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Doores, Katie J.; Fulton, Zara; Hong, Vu; Patel, Mitul K.; Scanlan, Christopher N.; Wormald, Mark R.; Finn, M.G.; Burton, Dennis R.; Wilson, Ian A.; Davis, Benjamin G. (Scripps); (Oxford)

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.

  10. GlyTouCan 1.0 – The international glycan structure repository

    Science.gov (United States)

    Aoki-Kinoshita, Kiyoko; Agravat, Sanjay; Aoki, Nobuyuki P.; Arpinar, Sena; Cummings, Richard D.; Fujita, Akihiro; Fujita, Noriaki; Hart, Gerald M.; Haslam, Stuart M.; Kawasaki, Toshisuke; Matsubara, Masaaki; Moreman, Kelley W.; Okuda, Shujiro; Pierce, Michael; Ranzinger, René; Shikanai, Toshihide; Shinmachi, Daisuke; Solovieva, Elena; Suzuki, Yoshinori; Tsuchiya, Shinichiro; Yamada, Issaku; York, William S.; Zaia, Joseph; Narimatsu, Hisashi

    2016-01-01

    Glycans are known as the third major class of biopolymers, next to DNA and proteins. They cover the surfaces of many cells, serving as the ‘face’ of cells, whereby other biomolecules and viruses interact. The structure of glycans, however, differs greatly from DNA and proteins in that they are branched, as opposed to linear sequences of amino acids or nucleotides. Therefore, the storage of glycan information in databases, let alone their curation, has been a difficult problem. This has caused many duplicated efforts when integration is attempted between different databases, making an international repository for glycan structures, where unique accession numbers are assigned to every identified glycan structure, necessary. As such, an international team of developers and glycobiologists have collaborated to develop this repository, called GlyTouCan and is available at http://glytoucan.org/, to provide a centralized resource for depositing glycan structures, compositions and topologies, and to retrieve accession numbers for each of these registered entries. This will thus enable researchers to reference glycan structures simply by accession number, as opposed to by chemical structure, which has been a burden to integrate glycomics databases in the past. PMID:26476458

  11. GlyTouCan 1.0--The international glycan structure repository.

    Science.gov (United States)

    Aoki-Kinoshita, Kiyoko; Agravat, Sanjay; Aoki, Nobuyuki P; Arpinar, Sena; Cummings, Richard D; Fujita, Akihiro; Fujita, Noriaki; Hart, Gerald M; Haslam, Stuart M; Kawasaki, Toshisuke; Matsubara, Masaaki; Moreman, Kelley W; Okuda, Shujiro; Pierce, Michael; Ranzinger, René; Shikanai, Toshihide; Shinmachi, Daisuke; Solovieva, Elena; Suzuki, Yoshinori; Tsuchiya, Shinichiro; Yamada, Issaku; York, William S; Zaia, Joseph; Narimatsu, Hisashi

    2016-01-01

    Glycans are known as the third major class of biopolymers, next to DNA and proteins. They cover the surfaces of many cells, serving as the 'face' of cells, whereby other biomolecules and viruses interact. The structure of glycans, however, differs greatly from DNA and proteins in that they are branched, as opposed to linear sequences of amino acids or nucleotides. Therefore, the storage of glycan information in databases, let alone their curation, has been a difficult problem. This has caused many duplicated efforts when integration is attempted between different databases, making an international repository for glycan structures, where unique accession numbers are assigned to every identified glycan structure, necessary. As such, an international team of developers and glycobiologists have collaborated to develop this repository, called GlyTouCan and is available at http://glytoucan.org/, to provide a centralized resource for depositing glycan structures, compositions and topologies, and to retrieve accession numbers for each of these registered entries. This will thus enable researchers to reference glycan structures simply by accession number, as opposed to by chemical structure, which has been a burden to integrate glycomics databases in the past. PMID:26476458

  12. Presence of galactosylated core fucose on N-glycans in the planaria Dugesia japonica.

    Science.gov (United States)

    Paschinger, Katharina; Razzazi-Fazeli, Ebrahim; Furukawa, Kiyoshi; Wilson, Iain B H

    2011-06-01

    Planarial species are of especial interest to biologists due to the phenomenon of pluripotency and, in comparison to other developmental processes, it can be hypothesised that glycan-lectin interactions may play a role. In order to examine the N-glycans of one of these organisms, Dugesia japonica, peptide:N-glycosidase A was employed and the released glycans were subject to pyridylamination, HPLC and mass spectrometric analysis. A range of oligomannosidic glycans was observed with a trimethylated Man(5) GlcNAc(2) structure being the dominant species. Three glycans were also observed to contain deoxyhexose; in particular, a glycan with the composition Hex(4) HexNAc(2) Fuc(1) Me(2) was revealed by exoglycosidase digestion, in combination with MS/MS, to contain a galactosylated core α1,6-fucose residue, whereas this core modification was found to be capped with a methylhexose residue in the case of a Hex(5) HexNAc(2) Fuc(1) Me(3) structure. This is the first report of these types of structures in a platyhelminth and indicates that the 'GalFuc' modification of N-glycans is not just restricted to molluscs and nematodes.

  13. Surface expression patterns of defined glycan antigens change during Schistosoma mansoni cercarial transformation and development of schistosomula.

    Science.gov (United States)

    Smit, Cornelis H; Homann, Arne; van Hensbergen, Vincent P; Schramm, Gabriele; Haas, Helmut; van Diepen, Angela; Hokke, Cornelis H

    2015-12-01

    During the complex lifecycle of Schistosoma mansoni, a large variety of glycans is expressed. To many of these glycans, antibodies are induced by the infected host and some might be targets for vaccines or diagnostic tests. Spatial changes in glycan expression during schistosome development are largely unexplored. To study the surface-exposed glycans during the important initial stages of infection, we analyzed the binding of a panel of anti-glycan monoclonal antibodies (mAbs) to cercariae and schistosomula up to 72 h after transformation by immunofluorescence microscopy. The mAb specificity toward their natural targets was studied using a microarray containing a wide range of schistosomal N-glycans, O-glycans and glycosphingolipid glycans. With the exception of GalNAcβ1-4(Fucα1-3)GlcNAc (LDN-F), mono- and multifucosylated GalNAcβ1-4GlcNAc (LDN)-motifs were exposed at the surface of all developmental stages studied. Multifucosylated LDN-motifs were present on cercarial glycocalyx-derived O-glycans as well as cercarial glycolipids. In contrast, the Galβ1-4(Fucα1-3)GlcNAc (Lewis X) and LDN-F-motifs, also expressed on cercarial glycolipids, and in addition on a range of cercarial N- and O-glycans, became surface expressed only after transformation of cercariae to schistosomula. In line with the documented shedding of the O-glycan-rich cercarial glycocalyx after transformation these observations suggest that surface accessible multifucosylated LDN-motifs are mostly expressed by O-glycans in cercariae, but principally by glycosphingolipids in schistosomula. We hypothesize that these temporal changes in surface exposure of glycan antigens are relevant to the interaction with the host during the initial stages of infection with schistosomes and discuss the potential of these glycan antigens as intervention targets. PMID:26347524

  14. N-Glycans in Xenopus laevis testis characterised by lectin histochemistry.

    Science.gov (United States)

    Valbuena, Galder; Madrid, Juan Francisco; Martínez de Ubago, María; Gómez-Santos, Laura; Alonso, Edurne; Díaz-Flores, Lucio; Sáez, Francisco J

    2016-03-01

    Analysis of glycan chains of glycoconjugates is difficult because of their considerable variety. Despite this, several functional roles for these glycans have been reported. N-Glycans are oligosaccharides linked to asparagine residues of proteins. They are synthesised in the endoplasmic reticulum (ER) in a unique way, and later modified in both the ER and Golgi apparatus, developing different oligosaccharide chains. An essential role for complex N-glycans in mammalian spermatogenesis has been reported. The aim of the present study was to analyse the N-glycans of the Xenopus laevis testis by means of lectin histochemistry. Five lectins were used that specifically recognise mannose-containing and complex glycans, namely Galanthus nivalis agglutinin (GNA) from snowdrops, concanavalin A (Con A) from the Jack bean, Lens culinaris agglutinin (LCA) from lentils and Phaseolus vulgaris erythroagglutinin (PHA-E) and P. vulgaris leukoagglutinin (PHA-L) from the common bean. GNA and Con A labelled the interstitium and most of the germ cell types, whereas LCA and PHA-E showed affinity only for the interstitium. A granular cytoplasmic region was labelled in spermatogonia and spermatocytes by GNA and PHA-L, whereas GNA and LCA labelled a spermatid region that is probably associated with the centriolar basal body of the nascent flagellum. There was no specific labelling in the acrosome. Some unexpected results were found when deglycosylative pretreatments were used: pre-incubation of tissue sections with peptide N glycosidase F, which removes N-linked glycans, reduced or removed labelling with most lectins, as expected. However, after this pretreatment, the intensity of labelling remained or increased for Con A in the follicle (Sertoli) and post-meiotic germ cells. The β-elimination procedure, which removes O-linked glycans, revealed new labelling patterns with GNA, LCA and PHA-L, suggesting that some N-glycans were masked by O-glycans, and thus they became accessible to these

  15. Neonatal Gut Microbiota and Human Milk Glycans Cooperate to Attenuate Infection and Inflammation.

    Science.gov (United States)

    Newburg, David S; He, Yingying

    2015-12-01

    Glycans of the intestinal mucosa and oligosaccharides of human milk influence the early colonization of the infant gut and establishment of mucosal homeostasis, and differences in colonization of the gut influence the ontogeny of glycans on the surface of the intestinal mucosa, proinflammatory signaling, homeostasis, and resilience to insult. This interkingdom reciprocal interaction is typical of a mutualistic symbiotic relationship. The period in which the infant gut most needs protection from hypersensitive inflammation overlaps with the recommended period of exclusive nursing; electively substituting artificial formula that lacks human milk protective glycans seems ill advised, especially for premature infants.

  16. In good company: association between fungal glycans generates molecular complexes with unique functions

    Directory of Open Access Journals (Sweden)

    Marcio eRodrigues

    2012-07-01

    Full Text Available The biological properties of fungal immunogens have historically utilized testing of isolated molecules. Recent findings, however, indicate that fungal glycans differing in structure and function can interact to form hybrid complexes with unique properties. In the pathogenic yeast Cryptococcus neoformans, chitin-like molecules associate with capsular glucuronoxylomannan to form functionally distinct glycan complexes. Such interactions between glycans that result in the formation of structures with different functions strongly suggest that additional molecular complexes with unknown properties may exist in fungal pathogens. Moreover, the identification of these novel complexes has stimulated the search of new immunogens with potential to protect human and animal hosts against systemic mycoses.

  17. Application of lectin microarray to crude samples: differential glycan profiling of lec mutants.

    Science.gov (United States)

    Ebe, Youji; Kuno, Atsushi; Uchiyama, Noboru; Koseki-Kuno, Shiori; Yamada, Masao; Sato, Takashi; Narimatsu, Hisashi; Hirabayashi, Jun

    2006-03-01

    We recently developed a novel system for lectin microarray based on the evanescent-field fluorescence-detection principle, by which even weak lectin-oligosaccharide interactions are detectable without a washing procedure. For its practical application, cell glycan analysis was performed for Chinese hamster ovary (CHO) cells and their glycan profile was compared with those of their glycosylation-defective Lec mutants. Each of the cell surface extracts gave a significantly different profile from that of the parental CHO cells in a manner reflecting denoted biosynthetic features. Hence, the developed lectin microarray system is considered to be fully applicable for differential glycan profiling of crude samples.

  18. Biosynthesis and Function of Extracellular Glycans in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Jan-Christoph Kehr

    2015-01-01

    Full Text Available The cell surface of cyanobacteria is covered with glycans that confer versatility and adaptability to a multitude of environmental factors. The complex carbohydrates act as barriers against different types of stress and play a role in intra- as well as inter-species interactions. In this review, we summarize the current knowledge of the chemical composition, biosynthesis and biological function of exo- and lipo-polysaccharides from cyanobacteria and give an overview of sugar-binding lectins characterized from cyanobacteria. We discuss similarities with well-studied enterobacterial systems and highlight the unique features of cyanobacteria. We pay special attention to colony formation and EPS biosynthesis in the bloom-forming cyanobacterium, Microcystis aeruginosa.

  19. Glycan complexity dictates microbial resource allocation in the large intestine

    Science.gov (United States)

    Rogowski, Artur; Briggs, Jonathon A.; Mortimer, Jennifer C.; Tryfona, Theodora; Terrapon, Nicolas; Lowe, Elisabeth C.; Baslé, Arnaud; Morland, Carl; Day, Alison M.; Zheng, Hongjun; Rogers, Theresa E.; Thompson, Paul; Hawkins, Alastair R.; Yadav, Madhav P.; Henrissat, Bernard; Martens, Eric C.; Dupree, Paul; Gilbert, Harry J.; Bolam, David N.

    2015-01-01

    The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. PMID:26112186

  20. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  1. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  2. Schistosoma mansoni-infected mice produce antibodies that cross-react with plant, insect, and mammalian glycoproteins and recognize the truncated biantennaryN-glycan Man3GlcNAc2-R.

    NARCIS (Netherlands)

    Remoortere, van A.; Bank, CM; Nyame, AK; Cummings, RD; Deelder, A.M.; Die, van I.M.

    2003-01-01

    To reveal the role of cross-reactive carbohydrate determinants in the host immune response in helminth infections and allergenicity, we developed monoclonal antibodies (mAbs) that recognize glycan epitopes present on glycoconjugates from both helminths and plants. An IgM mAb (100-4G11-A) was selecte

  3. Modulation of O-glycans and N-glycans on murine CD8 T cells fails to alter annexin V ligand induction by galectin 1.

    Science.gov (United States)

    Carlow, Douglas A; Williams, Michael J; Ziltener, Hermann J

    2003-11-15

    Thymic negative selection and contraction of responding T cell oligoclones after infection represent important cell ablation processes required for maintaining T cell homeostasis. It has been proposed that galectin 1 contributes to these processes through interaction with lactosyl sequences principally on cell surface glycoproteins bearing core 2 (C2GnT1)-branched O-glycans. According to this model, specific T cell surface proteins cross-linked by galectin 1 induce signaling, ligand redistribution, and apoptosis in both immature thymocytes and activated T cells. The influence of lactosyl residues contained in branched O-glycans or complex N-glycans on galectin 1 binding and induction of annexin V ligand in murine CD8 T cells was assessed. Neither galectin binding nor galectin-induced expression of annexin V ligand was perturbed under conditions in which: 1) C2GnT1 activity was differentially induced by CD8 T cell activation/culture with IL-2 vs IL-4; 2) activated CD8(+) T cells lacked C2GnT1 expression; or 3) complex N-glycan formation was blocked by swainsonine. The maintenance of galectin 1 binding and induced annexin V expression under conditions that alter lactosamine abundance on O- or complex N-glycans suggest that galectin 1-mediated apoptosis is neither a simple function of fluctuating C2GnT1 activity nor a general C2GnT1-dependent mechanism underlying contraction of CD8 T cells subsequent to activation.

  4. Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation.

    Science.gov (United States)

    Nie, Huan; Liu, Xia; Zhang, Yubao; Li, Tingting; Zhan, Chao; Huo, Wenjuan; He, Anshun; Yao, Yuanfei; Jin, Yu; Qu, Youpeng; Sun, Xue-Long; Li, Yu

    2015-11-05

    Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC.

  5. Assay for quantitative determination of CYP1A1 enzyme activity using 7-Ethoxyresorufin as standard substrate (EROD assay)

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Afshin Mohammadi-Bardbori ### Abstract The activity of the enzyme 7-ethoxy-resorufin-O-deethylase (EROD) has been extensively employed in biomonitoring studies of persistent organic pollutants (POPs) for more than a decade. Although the procedure is simple, convenient, sensitive and accurate. The cytochrome P450 monooxygenase 1A (CYP1A) is induced by several planar toxic compounds and endogenous chemicals, and the induction of this protein is often measured in terms of EROD a...

  6. Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans.

    Science.gov (United States)

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-05-15

    Mannose-6-phosphate (M-6-P) glycan analysis is important for quality control of therapeutic enzymes for lysosomal storage diseases. Here, we found that the analysis of glycans containing two M-6-Ps was highly affected by the hydrophilicity of the elution solvent used in high-performance liquid chromatography (HPLC). In addition, the performances of three fluorescent tags--2-aminobenzoic acid (2-AA), 2-aminobenzamide (2-AB), and 3-(acetyl-amino)-6-aminoacridine (AA-Ac)--were compared with each other for M-6-P glycan analysis using HPLC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The best performance for analyzing M-6-P glycans was shown by 2-AA labeling in both analyses. PMID:26876105

  7. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Lavrsen, Kirstine; Steentoft, Catharina;

    2013-01-01

    only the shortest possible mucin-like glycans (Tn and STn). Glyco-engineering was performed by zinc finger nuclease (ZFN) knockout (KO) of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast...... steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr), STn (NeuAcα2-6GalNAc-Ser/Thr), T (Galβ1-3GalNAc-Ser/Thr), and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr) antigens...

  8. Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer.

    Science.gov (United States)

    Kizuka, Yasuhiko; Taniguchi, Naoyuki

    2016-01-01

    N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb)] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy. PMID:27136596

  9. Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Yasuhiko Kizuka

    2016-04-01

    Full Text Available N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.

  10. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates.

    Science.gov (United States)

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2015-10-01

    There is an unprecedented interest in glycobiology due to the increasing appreciation of its impact on all aspects of life. Likewise, bacteriophage biology is enjoying a new renaissance as the post-antibiotic era fuels the search for novel ways to control harmful bacteria. Phages have spent the last 3 billion years developing ways of recognizing and manipulating bacterial surface glycans. Therefore, phages comprise a massive reservoir of glycan-binding and -hydrolyzing proteins with the potential to be exploited for glycan analysis, bacterial diagnostics and therapeutics. We discuss phage tail proteins that recognize bacterial surface polysaccharides, endolysins that bind and cleave peptidoglycan, Ig-like proteins that attach to mucin glycans, and phage effector proteins that recognize both bacterial and eukaryotic oligosaccharides.

  11. Chemoenzymatic synthesis of GDP-l-fucose and the Lewis X glycan derivatives

    OpenAIRE

    Wang, Wei; Hu, Tianshun; Frantom, Patrick A.; Zheng, Tianqing; Gerwe, Brian; Del Amo, David Soriano; Garret, Sarah; Seidel, Ronald D.; Wu, Peng

    2009-01-01

    Lewis X (Lex)-containing glycans play important roles in numerous cellular processes. However, the absence of robust, facile, and cost-effective methods for the synthesis of Lex and its structurally related analogs has severely hampered the elucidation of the specific functions of these glycan epitopes. Here we demonstrate that chemically defined guanidine 5′-diphosphate-β-l-fucose (GDP-fucose), the universal fucosyl donor, the Lex trisaccharide, and their C-5 substituted derivatives can be s...

  12. Increased levels of anti-glycan antibodies in patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Hirche TO

    2011-09-01

    Full Text Available Abstract Background The prevalence of Crohn's disease (CD is increased in patients with cystic fibrosis (CF. Anti-Saccharomyces cerevisiae antibodies (ASCA have been suggested as a screening tool to detect CD in CF. Recently, several new anti-glycan antibodies have been reported in CD. Materials and methods The sera of 119 CF patients of various age groups were prospectively screened for ASCA type IgG (gASCA, anti-laminaribioside carbohydrate IgG antibodies (ALCA, anti-chitobioside carbohydrate IgA antibodies (ACCA, and anti-mannobioside carbohydrate IgG antibodies (AMCA. The frequency of these anti-glycan antibodies was then compared in patients with CD, ulcerative colitis, rheumatoid arthritis and healthy volunteers. Results A significant number of CF patients were positive for gASCA (51.3% [41.6-60.6] and up to three other anti-glycan antibodies concurrently. Serum levels of anti-glycan antibodies in CF and CD were not related to parameters of inflammation. Despite the well-documented difference in clinical course between male and female CF patients no gender difference of anti-glycan antibodies was found. In contrast, there was a significant positive correlation between anti-glycan markers and age in CF patients. Conclusions Our findings demonstrate for the first time the increased frequency of a panel of anti-glycan antibodies in CF and provide a link between the presence of these serological biomarkers and patient's age. Anti-glycan antibody profiling may therefore become a valuable tool in the care of patients with CF.

  13. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    Science.gov (United States)

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo.

  14. Characterization of the Structurally Diverse N-Linked Glycans of Campylobacter Species

    OpenAIRE

    Jervis, Adrian J.; Butler, Jonathan A.; Lawson, Andrew J.; Langdon, Rebecca; Wren, Brendan W.; Linton, Dennis

    2012-01-01

    The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In th...

  15. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    Science.gov (United States)

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. PMID:27503803

  16. Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus.

    Science.gov (United States)

    Paschinger, Katharina; Wilson, Iain B H

    2015-06-01

    N-Glycans from the nematode Haemonchus contortus (barber pole worm), a parasite of sheep and cattle, were the first to be described to possess up to three fucose residues associated with the N,N'-diacetylchitobiosyl core, two being on the reducing-terminal proximal GlcNAc and one on the distal core GlcNAc residue. The assumption was that truncated glycans from this organism with three hexose residues have the composition Man3GlcNAc2Fuc1-3. In this study, we have performed HPLC and MALDI-TOF MS/MS in combination with selected digestions of N-glycans from Haemonchus. A dominant trifucosylated Hex3HexNAc2Fuc3 glycan was modified not only with α1,6-fucose but also with a proximal core α1,3-fucose and a galactosylated distal α1,3-fucose; thereby, only two of the hexose residues were mannose. Other N-glycans displayed galactosylation of the core α1,6-fucose, antennal fucosylation or modification with phosphorylcholine. Thus, the N-glycans of Haemonchus contain a number of potentially immunogenic glycan epitopes also found in other parasites and our proposed structures are in line with the previously defined specificity of nematode glycosyltransferases as we show that distal fucosylation and the presence of an α1,6-mannose are apparently mutually exclusive. These data are thereby of importance for engineering cell lines capable of mimicking Haemonchus-type N-glycans in the preparation of recombinant proteins as vaccine candidates.

  17. Glycans in sera of amyotrophic lateral sclerosis patients and their role in killing neuronal cells.

    Directory of Open Access Journals (Sweden)

    Meital Edri-Brami

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N(297-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG. This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC. Therefore, we explore whether the Fc-N(297-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage.

  18. Quantitative profiling of O-glycans by electrospray ionization- and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry after in-gel derivatization with isotope-coded 1-phenyl-3-methyl-5-pyrazolone.

    Science.gov (United States)

    Sić, Siniša; Maier, Norbert M; Rizzi, Andreas M

    2016-09-01

    The potential and benefits of isotope-coded labeling in the context of MS-based glycan profiling are evaluated focusing on the analysis of O-glycans. For this purpose, a derivatization strategy using d0/d5-1-phenyl-3-methyl-5-pyrazolone (PMP) is employed, allowing O-glycan release and derivatization to be achieved in one single step. The paper demonstrates that this release and derivatization reaction can be carried out also in-gel with only marginal loss in sensitivity compared to in-solution derivatization. Such an effective in-gel reaction allows one to extend this release/labeling method also to glycoprotein/glycoform samples pre-separated by gel-electrophoresis without the need of extracting the proteins/digested peptides from the gel. With highly O-glycosylated proteins (e.g. mucins) LODs in the range of 0.4 μg glycoprotein (100 fmol) loaded onto the electrophoresis gel can be attained, with minor glycosylated proteins (like IgAs, FVII, FIX) the LODs were in the range of 80-100 μg (250 pmol-1.5 nmol) glycoprotein loaded onto the gel. As second aspect, the potential of isotope coded labeling as internal standardization strategy for the reliable determination of quantitative glycan profiles via MALDI-MS is investigated. Towards this goal, a number of established and emerging MALDI matrices were tested for PMP-glycan quantitation, and their performance is compared with that of ESI-based measurements. The crystalline matrix 2,6-dihydroxyacetophenone (DHAP) and the ionic liquid matrix N,N-diisopropyl-ethyl-ammonium 2,4,6-trihydroxyacetophenone (DIEA-THAP) showed potential for MALDI-based quantitation of PMP-labeled O-glycans. We also provide a comprehensive overview on the performance of MS-based glycan quantitation approaches by comparing sensitivity, LOD, accuracy and repeatability data obtained with RP-HPLC-ESI-MS, stand-alone nano-ESI-MS with a spray-nozzle chip, and MALDI-MS. Finally, the suitability of the isotope-coded PMP labeling strategy for O-glycan

  19. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags.

    Science.gov (United States)

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-06-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in "Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans" (Kang et al., 2016 [1]). PMID:27222848

  20. The HIV glycan shield as a target for broadly neutralizing antibodies.

    Science.gov (United States)

    Doores, Katie J

    2015-12-01

    The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.

  1. Biological significance of complex N-glycans in plants and their impact on plant physiology

    Directory of Open Access Journals (Sweden)

    Richard eStrasser

    2014-07-01

    Full Text Available Asparagine (N-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of beta1,2-xylose, core alpha1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signalling events. By contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  2. Homology with vesicle fusion mediator syntaxin-1a predicts determinants ofepimorphin/syntaxin-2 function in mammary epithelial morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Connie S.; Nelson, Celeste M.; Khauv, Davitte; Bennett, Simone; Radisky, Evette S.; Hirai, Yohei; Bissell, Mina J.; Radisky, Derek C.

    2009-06-03

    We have shown that branching morphogenesis of mammary ductal structures requires the action of the morphogen epimorphin/syntaxin-2. Epimorphin, originally identified as an extracellular molecule, is identical to syntaxin-2, an intracellular molecule that is a member of the extensively investigated syntaxin family of proteins that mediate vesicle trafficking. We show here that although epimorphin/syntaxin-2 is highly homologous to syntaxin-1a, only epimorphin/syntaxin-2 can stimulate mammary branching morphogenesis. We construct a homology model of epimorphin/syntaxin-2 based on the published structure of syntaxin-1a, and we use this model to identify the structural motif responsible for the morphogenic activity. We identify four residues located within the cleft between helices B and C that differ between syntaxin-1a and epimorphin/syntaxin-2; through site-directed mutagenesis of these four amino acids, we confer the properties of epimorphin for cell adhesion, gene activation, and branching morphogenesis onto the inactive syntaxin-1a template. These results provide a dramatic demonstration of the use of structural information about one molecule to define a functional motif of a second molecule that is related at the sequence level but highly divergent functionally.

  3. Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles.

    Science.gov (United States)

    Engelmann, Katja; Kinlough, Carol L; Müller, Stefan; Razawi, Hani; Baldus, Stephan E; Hughey, Rebecca P; Hanisch, Franz-Georg

    2005-11-01

    The human mucin MUC1 is expressed both as a transmembrane heterodimeric protein complex that recycles via the trans-Golgi network (TGN) and as a secreted isoform. To determine whether differences in cellular trafficking might influence the O-glycosylation profiles on these isoforms, we developed a model system consisting of membrane-bound and secretory-recombinant glycosylation probes. Secretory MUC1-S contains only a truncated repeat domain, whereas in MUC1-M constructs this domain is attached to the native transmembrane and cytoplasmic domains of MUC1 either directly (M0) or via an intermitting nonfunctional (M1) or functional sperm protein-enterokinase-agrin (SEA) module (M2); the SEA module contains a putative proteolytic cleavage site and is associated with proteins receiving extensive O-glycosylation. We showed that MUC1-M2 simulates endogenous MUC1 by recycling from the cell surface of Chinese hamster ovary (CHO) mutant ldlD14 cells through intracellular compartments where its glycosylation continues. The profiles of O-linked glycans on MUC1-S secreted by epithelial EBNA-293 and MCF-7 breast cancer cells revealed patterns dominated by core 2-based oligosaccharides. In contrast, the respective membrane-shed probes expressed in the same cells showed a complete shift to patterns dominated by sialyl core 1. In conclusion, glycan core profiles reflected the subcellular trafficking pathways of the secretory or membranous probes and the modifying activities of the resident glycosyltransferases.

  4. Emerging Structural Insights into Glycoprotein Quality Control Coupled with N-Glycan Processing in the Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    Tadashi Satoh

    2015-01-01

    Full Text Available In the endoplasmic reticulum (ER, the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2. The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.

  5. Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin

    International Nuclear Information System (INIS)

    A novel, fast and practical two-step purification strategy, consisting of a classical ion exchange and a reversed-phase high performance liquid chromatography (RP-HPLC), for rapidly obtaining CHO-derived hTSH, was set up providing r-hTSH with 70% yield and > 99% purity. A consistent increase of ∼ 60% in the secretion yields of r-hTSH-IPEN was observed by changing cell culture CO2 conditions from 5% CO2 to air environment (0.03% CO2). The overall quality of the products obtained under both conditions was evaluated for what concerns N-glycan structure, charge isomers and biological activity in comparison with a well known recombinant biopharmaceutical (ThyrogenR) and with a pituitary reference preparation (p-hTSH) from National Hormone and Pituitary Program (NIDDK, USA). The N-glycans identified in the recombinant preparations were of the complex type, presenting bi-, tri- and tetra-antennary structures, sometimes fucosylated, 86-88% of the identified structures being sialylated at variable levels. The three most abundant structures were monosialylated glycans, representing ∼ 69% of all identified forms in the three preparations. The main difference was found in terms of antennarity, with 8-10% more bi-antennary structures obtained in the absence of CO2 and 7-9% more tri-antennary structures in its presence. In the case of p-hTSH, complex, high-mannose and hybrid N-glycan structures were identified, most of them containing sialic acid and/or sulphate terminal residues. The two most abundant structures were shown to contain one or two sulphate residues, one of which unexpectedly bound to galactose. The sialic acid-galactose linkage was also determined, having found that 68 3 ± 10% was in the α 2,6 and 32 ± 10% in the α2,3 conformation. No remarkable difference in charge isomers was observed between the three recombinant preparations, the isoelectric focusing profiles showing six distinct bands in the 5.39 - 7.35 pl range. A considerably different distribution

  6. Effect of Bu-Zhong-Yi-Qi-Tang on deficiency of N-glycan/nitric oxide and islet damage induced by streptozotocin in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qiu Liu; Ling Wu; Xue-Jun Guo

    2009-01-01

    AIM: To investigate the effect of Bu-Zhong-Yi-Qi-Tang (Decoction for Reinforcing Middle Jiao and Replenishing Qi) on deficiency of N-glycan/nitric oxide (NO) and islet damage induced by injecting two medium doses of streptozotocin (STZ). METHODS: Diabetes was induced by intraperitoneal injection of STZ at 55 mg/kg on day 1 and day 8. Islet damage was evaluated using a scoring system. Nitrite, nitrate, α-mannosidase and amylase activities were measured by colorimetry. N-glycan patterns of amylase were determined with lectin [ConA, pisum sativum agglutinin (PSA), peanut agglutinin (PNA), and lens culinaris agglutinin (LCA)] affinity precipitation method. RESULTS: Severe islet necrosis and mild islet atrophy were observed in diabetic rats. The number and size of islets, the activities of α-mannosidase, amylase and nitrite were decreased, while the binding of PNA and LCA to amylase was increased. All of which were improved after treatment with Bu-Zhong-Yi-Qi-Tang. Islet damage was significantly correlated with nitrite, nitrate, α-mannosidase, amylase and the binding of LCA, PNA, and PSA to amylase. PNA, and PSA to amylase.CONCLUSION: STZ- induced i s let damage i s related to N-glycan def iciency in proteins by blocking α-mannosidase activity and no deficiency, accumulation of unfolded proteins, and endoplasmic reticulum stress and activation of cellular signals, all of which are improved after treatment with Bu-Zhong-Yi- Qi-Tang.

  7. Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance?

    Science.gov (United States)

    Eynon, Nir; Alves, Alberto Jorge; Meckel, Yoav; Yamin, Chen; Ayalon, Moshe; Sagiv, Michael; Sagiv, Moran

    2010-06-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that regulates gene expression in response to hypoxia and has been associated with athletic performance. The aims of this study were (1) to determine the frequency distribution of HIF1A Pro582Ser (rs11549465) polymorphism among 155 Israeli athletes (sprinters and endurance athletes) and 240 healthy controls and (2) to analyze the influence of the interaction between HIF1A Pro582Ser and ACTN3 R577X (rs1815739) genotypes on sprint performance. There were no differences across the HIF1A genotype and allele frequencies among endurance athletes, sprinters, and controls. Similarly, no differences were found between the subgroups of top-level and national-level endurance athletes, or between top-level and national-level sprinters. Conversely, interaction effects were found between HIF1A Pro582Ser and ACTN3 R577X polymorphisms and sprinters. The proportion of HIF1A Pro/Pro + ACTN3 R/R genotypes was significantly higher in sprinters than in endurance athletes and healthy controls (P = .002). In addition, the odds ratio for HIF1A Pro/Pro + ACTN3 R/R genotype carriers being a sprinter was 2.25 (95% confidence interval, 1.24-4.1); and that for HIF1A Pro/Pro + ACTN3 R/R genotype carriers being an endurance athlete was 0.5 (95% confidence interval, 0.2-1.24). We conclude that HIF1A Pro582Ser polymorphism by itself is not critical in determining sprint performance. However, sprinter performance is determined by the interaction between the wild-type HIF1A Pro/Pro genotype and ACTN3 RR genotype.

  8. Upregulation of Glycans Containing 3’ Fucose in a Subset of Pancreatic Cancers Uncovered Using Fusion-Tagged Lectins

    OpenAIRE

    Singh, Sudhir; Pal, Kuntal; Yadav, Jessica; Tang, Huiyuan; Partyka, Katie; Kletter, Doron; Hsueh, Peter; Ensink, Elliot; Birendra, KC; Hostetter, Galen; Xu, H. Eric; Bern, Marshall; Smith, David F; Anand S Mehta; Brand, Randall

    2015-01-01

    The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a ...

  9. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies

    Science.gov (United States)

    Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey

    2016-04-01

    A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.

  10. Restricted motion of the conserved immunoglobulin G1 N-glycan is essential for efficient FcγRIIIa binding

    Science.gov (United States)

    Subedi, Ganesh P.; Hanson, Quinlin M.; Barb, Adam W.

    2014-01-01

    Summary Immunoglobulin G1(IgG1)-based therapies are widespread and many function through interactions with low-affinity Fc γ receptors (FcγR). N-glycosylation of the IgG1 Fc domain is required for FcγR binding, though it is unclear why. Structures of the FcγR:Fc complex fail to explain this because the FcγR polypeptide does not bind the N-glycan. Here we identify a link between motion of the N-glycan and Fc:FcγRIIIa affinity that explains the N-glycan requirement. Fc F241 and F243 mutations decreased the N-glycan/polypeptide interaction and increased N-glycan mobility. The affinity of the Fc mutants for FcγRIIIa was directly proportional to the degree of glycan restriction (R2=0.82). The IgG1 Fc K246F mutation stabilized the N-glycan and enhanced affinity for FcγRIIIa. Allosteric modulation of a protein/protein interaction represents a previously undescribed role for N-glycans in biology. Conserved features suggesting a similar N-glycan/aromatic interaction were also found in IgD, E and M, but not A. PMID:25199692

  11. Characterization of the N-glycans of female Angiostrongylus cantonensis worms.

    Science.gov (United States)

    Veríssimo, Carolina M; Morassutti, Alessandra L; von Itzstein, Mark; Sutov, Grigorij; Hartley-Tassell, Lauren; McAtamney, Sarah; Dell, Anne; Haslam, Stuart M; Graeff-Teixeira, Carlos

    2016-07-01

    Glycoconjugates play a crucial role in the host-parasite relationships of helminthic infections, including angiostrongyliasis. It has previously been shown that the antigenicity of proteins from female Angiostrongylus cantonensis worms may depend on their associated glycan moieties. Here, an N-glycan profile of A. cantonensis is reported. A total soluble extract (TE) was prepared from female A. cantonensis worms and was tested by western blot before and after glycan oxidation or N- and O-glycosidase treatment. The importance of N-glycans for the immunogenicity of A. cantonensis was demonstrated when deglycosylation of the TE with PNGase F completely abrogated IgG recognition. The TE was also fractionated using various lectin columns [Ulex europaeus (UEA), concanavalin A (Con A), Arachis hypogaea (PNA), Triticum vulgaris (WGA) and Lycopersicon esculentum (LEA)], and then each fraction was digested with PNGase F. Released N-glycans were analyzed with matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) and MALDI-TOF/TOF-MS/MS. Complex-type, high mannose, and truncated glycan structures were identified in all five fractions. Sequential MALDI-TOF-TOF analysis of the major MS peaks identified complex-type structures, with a α1-6 fucosylated core and truncated antennas. Glycoproteins in the TE were labeled with BodipyAF558-SE dye for a lectin microarray analysis. Fluorescent images were analyzed with ProScanArray imaging software followed by statistical analysis. A total of 29 lectins showed positive binding to the TE. Of these, Bandeiraea simplicifolia (BS-I), PNA, and Wisteria floribunda (WFA), which recognize galactose (Gal) and N-acetylgalactosamine (GalNAc), exhibited high affinity binding. Taken together, our findings demonstrate that female A. cantonensis worms have characteristic helminth N-glycans.

  12. A Combinatorial Approach to Biophysically Characterise Chemokine-Glycan Binding Affinities for Drug Development

    Directory of Open Access Journals (Sweden)

    Tanja Gerlza

    2014-07-01

    Full Text Available Chemokine binding to glycosaminoglycans (GAGs is recognised to be an important step in inflammation and other pathological disorders like tumor growth and metastasis. Although different ways and strategies to interfere with these interactions are being pursued, no major breakthrough in the development of glycan-targeting drugs has been reported so far. We have engineered CXCL8 towards a dominant-negative form of this chemokine (dnCXCL8 which was shown to be highly active in various inflammatory animal models due to its inability to bind/activate the cognate CXCL8 GPC receptors on neutrophils in combination with its significantly increased GAG-binding affinity [1]. For the development of GAG-targeting chemokine-based biopharmaceuticals, we have established a repertoire of methods which allow the quantification of protein-GAG interactions. Isothermal fluorescence titration (IFT, surface plasmon resonance (SPR, isothermal titration calorimetry (ITC, and a novel ELISA-like competition assay (ELICO have been used to determine Kd and IC50 values for CXCL8 and dnCXCL8 interacting with heparin and heparan sulfate (HS, the proto-typical members of the GAG family. Although the different methods gave different absolute affinities for the four protein-ligand pairs, the relative increase in GAG-binding affinity of dnCXCL8 compared to the wild type chemokine was found by all methods. In combination, these biophysical methods allow to discriminate between unspecific and specific protein-GAG interactions.

  13. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates.

    Science.gov (United States)

    Yoshino, Timothy P; Wu, Xiao-Jun; Gonzalez, Laura A; Hokke, Cornelis H

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval Schistosoma mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins

  14. Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards.

    Science.gov (United States)

    Mehta, Nickita; Porterfield, Mindy; Struwe, Weston B; Heiss, Christian; Azadi, Parastoo; Rudd, Pauline M; Tiemeyer, Michael; Aoki, Kazuhiro

    2016-09-01

    Environmental and metabolic processes shape the profile of glycoprotein glycans expressed by cells, whether in culture, developing tissues, or mature organisms. Quantitative characterization of glycomic changes associated with these conditions has been achieved historically by reductive coupling of oligosaccharides to various fluorophores following release from glycoprotein and subsequent HPLC or capillary electrophoretic separation. Such labeling-based approaches provide a robust means of quantifying glycan amount based on fluorescence yield. Mass spectrometry, on the other hand, has generally been limited to relative quantification in which the contribution of the signal intensity for an individual glycan is expressed as a percent of the signal intensity summed over the total profile. Relative quantification has been valuable for highlighting changes in glycan expression between samples; sensitivity is high, and structural information can be derived by fragmentation. We have investigated whether MS-based glycomics is amenable to absolute quantification by referencing signal intensities to well-characterized oligosaccharide standards. We report the qualification of a set of N-linked oligosaccharide standards by NMR, HPLC, and MS. We also demonstrate the dynamic range, sensitivity, and recovery from complex biological matrices for these standards in their permethylated form. Our results indicate that absolute quantification for MS-based glycomic analysis is reproducible and robust utilizing currently available glycan standards. PMID:27432553

  15. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans.

    Science.gov (United States)

    Stanley, Pamela; Guidos, Cynthia J

    2009-07-01

    Notch signaling is required for the development of all T cells and marginal zone (MZ) B cells. Specific roles in T- and B-cell differentiation have been identified for different Notch receptors, the canonical Delta-like (Dll) and Jagged (Jag) Notch ligands, and downstream effectors of Notch signaling. Notch receptors and ligands are post-translationally modified by the addition of glycans to extracellular domain epidermal growth factor-like (EGF) repeats. The O-fucose glycans of Notch cell-autonomously modulate Notch-ligand interactions and the strength of Notch signaling. These glycans are initiated by protein O-fucosyltransferase 1 (Pofut1), and elongated by the transfer of N-acetylglucosamine (GlcNAc) to the fucose by beta1,3GlcNAc-transferases termed lunatic, manic, or radical fringe. This review discusses T- and B-cell development from progenitors deficient in O-fucose glycans. The combined data show that Lfng and Mfng regulate T-cell development by enhancing the interactions of Notch1 in T-cell progenitors with Dll4 on thymic epithelial cells. In the spleen, Lfng and Mfng cooperate to modify Notch2 in MZ B progenitors, enhancing their interaction with Dll1 on endothelial cells and regulating MZ B-cell production. Removal of O-fucose affects Notch signaling in myelopoiesis and lymphopoiesis, and the O-fucose glycan in the Notch1 ligand-binding domain is required for optimal T-cell development.

  16. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans.

    Science.gov (United States)

    Brzezicka, Katarzyna; Echeverria, Begoña; Serna, Sonia; van Diepen, Angela; Hokke, Cornelis H; Reichardt, Niels-Christian

    2015-05-15

    The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosome-infected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannose-binding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans.

  17. Benchmark study of automatic annotation of MALDI-TOF N-glycan profiles.

    Science.gov (United States)

    Brito, Alejandro E; Kletter, Doron; Singhal, Mudita; Bern, Marshall

    2015-11-01

    Human experts can annotate peaks in MALDI-TOF profiles of detached N-glycans with some degree of accuracy. Even though MALDI-TOF profiles give only intact masses without any fragmentation information, expert knowledge of the most common glycans and biosynthetic pathways in the biological system can point to a small set of most likely glycan structures at the "cartoon" level of detail. Cartoonist is a recently developed, fully automatic annotation tool for MALDI-TOF glycan profiles. Here we benchmark Cartoonist's automatic annotations against human expert annotations on human and mouse N-glycan data from the Consortium for Functional Glycomics. We find that Cartoonist and expert annotations largely agree, but the expert tends to annotate more specifically, meaning fewer suggested structures per peak, and Cartoonist more comprehensively, meaning more annotated peaks. On peaks for which both Cartoonist and the expert give unique cartoons, the two cartoons agree in over 90% of all cases. This article is part of a Special Issue entitled: Computational Proteomics.

  18. The N-glycans of Trichomonas vaginalis contain variable core and antennal modifications.

    Science.gov (United States)

    Paschinger, Katharina; Hykollari, Alba; Razzazi-Fazeli, Ebrahim; Greenwell, Pamela; Leitsch, David; Walochnik, Julia; Wilson, Iain B H

    2012-02-01

    Trichomonad species are widespread unicellular flagellated parasites of vertebrates which interact with their hosts through carbohydrate-lectin interactions. In the past, some data have been accumulated regarding their lipo(phospho)glycans, a major glycoconjugate on their cell surfaces; on the other hand, other than biosynthetic aspects, few details about their N-linked oligosaccharides are known. In this study, we present both mass spectrometric and high-performance liquid chromatography data about the N-glycans of different strains of Trichomonas vaginalis, a parasite of the human reproductive tract. The major structure in all strains examined is a truncated oligomannose form (Man(5)GlcNAc(2)) with α1,2-mannose residues, compatible with a previous bioinformatic examination of the glycogenomic potential of T. vaginalis. In addition, dependent on the strain, N-glycans modified by pentose residues, phosphate or phosphoethanolamine and terminal N-acetyllactosamine (Galβ1,4GlcNAc) units were found. The modification of N-glycans by N-acetyllactosamine in at least some strains is shared with the lipo(phospho)glycan and may represent a further interaction partner for host galectins, thereby playing a role in binding of the parasite to host epithelia. On the other hand, the variation in glycosylation between strains may be the result of genetic diversity within this species. PMID:21983210

  19. Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans

    Science.gov (United States)

    Liebminger, Eva; Grass, Josephine; Jez, Jakub; Neumann, Laura; Altmann, Friedrich; Strasser, Richard

    2012-01-01

    In all eukaryotes N-glycosylation is the most prevalent protein modification of secretory and membrane proteins. Although the N-glycosylation capacity and the individual steps of the N-glycan processing pathway have been well studied in the model plant Arabidopsis thaliana, little attention has been paid to the characterization of the glycosylation status of individual proteins. We report here the structural analysis of all N-glycans present on the endogenous thioglucoside glucohydrolases (myrosinases) TGG1 and TGG2 from A. thaliana. All nine glycosylation sites of TGG1 and all four glycosylation sites of TGG2 are occupied by oligomannosidic structures with Man5GlcNAc2 as the major glycoform. Analysis of the oligomannosidic isomers from wild-type plants and mannose trimming deficient mutants by liquid chromatography with porous graphitic carbon and mass spectrometry revealed that the N-glycans from both myrosinases are processed by Golgi-located α-mannosidases. PMID:23009876

  20. When Galectins Recognize Glycans: From Biochemistry to Physiology and Back Again

    Science.gov (United States)

    Di Lella, Santiago; Sundblad, Victoria; Cerliani, Juan P.; Guardia, Carlos M.; Estrin, Dario A.; Vasta, Gerardo R.; Rabinovich, Gabriel A.

    2012-01-01

    In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings. PMID:21848324

  1. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine

    DEFF Research Database (Denmark)

    Scott, Nichollas E; Nothaft, Harald; Edwards, Alistair V G;

    2012-01-01

    . Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the p...

  2. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  3. A Miniaturized Glycan Microarray Assay for Assessing Avidity and Specificity of Influenza A Virus Hemagglutinins.

    Science.gov (United States)

    McBride, Ryan; Paulson, James C; de Vries, Robert P

    2016-01-01

    Influenza A virus (IAV) hemagglutinins recognize sialic acids on the cell surface as functional receptors to gain entry into cells. Wild waterfowl are the natural reservoir for IAV, but IAV can cross the species barrier to poultry, swine, horses and humans. Avian viruses recognize sialic acid attached to a penultimate galactose by a α2-3 linkage (avian-type receptors) whereas human viruses preferentially recognize sialic acid with a α2-6 linkage (human-type receptors). To monitor if avian viruses are adapting to human type receptors, several methods can be used. Glycan microarrays with diverse libraries of synthetic sialosides are increasingly used to evaluate receptor specificity. However, this technique is not used for measuring avidities. Measurement of avidity is typically achieved by evaluating the binding of serially diluted hemagglutinin or virus to glycans adsorbed to conventional polypropylene 96-well plates. In this assay, glycans with α2-3 or α2-6 sialic acids are coupled to biotin and adsorbed to streptavidin plates, or are coupled to polyacrylamide (PAA) which directly adsorb to the plastic. We have significantly miniaturized this assay by directly printing PAA-linked sialosides and their non PAA-linked counterparts on micro-well glass slides. This set-up, with 48 arrays on a single slide, enables simultaneous assays of 6 glycan binding proteins at 8 dilutions, interrogating 6 different glycans, including two non-sialylated controls. This is equivalent to 18x 96-well plates in the traditional plate assay. The glycan array format decreases consumption of compounds and biologicals and thus greatly enhances efficiency. PMID:27284789

  4. C-terminus glycans with critical functional role in the maturation of secretory glycoproteins.

    Directory of Open Access Journals (Sweden)

    Daniela Cioaca

    Full Text Available The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs--one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I.

  5. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  6. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies.

    Science.gov (United States)

    McCoy, Laura E; van Gils, Marit J; Ozorowski, Gabriel; Messmer, Terrence; Briney, Bryan; Voss, James E; Kulp, Daniel W; Macauley, Matthew S; Sok, Devin; Pauthner, Matthias; Menis, Sergey; Cottrell, Christopher A; Torres, Jonathan L; Hsueh, Jessica; Schief, William R; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W; Burton, Dennis R

    2016-08-30

    A major advance in the search for an HIV vaccine has been the development of a near-native Envelope trimer (BG505 SOSIP.664) that can induce robust autologous Tier 2 neutralization. Here, potently neutralizing monoclonal antibodies (nAbs) from rabbits immunized with BG505 SOSIP.664 are shown to recognize an immunodominant region of gp120 centered on residue 241. Residue 241 occupies a hole in the glycan defenses of the BG505 isolate, with fewer than 3% of global isolates lacking a glycan site at this position. However, at least one conserved glycan site is missing in 89% of viruses, suggesting the presence of glycan holes in most HIV isolates. Serum evidence is consistent with targeting of holes in natural infection. The immunogenic nature of breaches in the glycan shield has been under-appreciated in previous attempts to understand autologous neutralizing antibody responses and has important potential consequences for HIV vaccine design. PMID:27545891

  7. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Laura E. McCoy

    2016-08-01

    Full Text Available A major advance in the search for an HIV vaccine has been the development of a near-native Envelope trimer (BG505 SOSIP.664 that can induce robust autologous Tier 2 neutralization. Here, potently neutralizing monoclonal antibodies (nAbs from rabbits immunized with BG505 SOSIP.664 are shown to recognize an immunodominant region of gp120 centered on residue 241. Residue 241 occupies a hole in the glycan defenses of the BG505 isolate, with fewer than 3% of global isolates lacking a glycan site at this position. However, at least one conserved glycan site is missing in 89% of viruses, suggesting the presence of glycan holes in most HIV isolates. Serum evidence is consistent with targeting of holes in natural infection. The immunogenic nature of breaches in the glycan shield has been under-appreciated in previous attempts to understand autologous neutralizing antibody responses and has important potential consequences for HIV vaccine design.

  8. TWO TYPES OF GALACTOSYLATED FUCOSE MOTIFS ARE PRESENT ON N-GLYCANS OF HAEMONCHUS CONTORTUS

    OpenAIRE

    Paschinger, Katharina; Wilson, Iain B. H.

    2015-01-01

    N-glycans from the nematode Haemonchus contortus (barber pole worm), a parasite of sheep and cattle, were the first to be described to possess up to three fucose residues associated with the N,N’-diacetylchitobiosyl core, two being on the reducing-terminal proximal GlcNAc and one on the distal core GlcNAc residue. The assumption was that truncated glycans from this organism with three hexose residues have the composition Man3GlcNAc2Fuc1-3. In this study we have performed HPLC and MALDI-TOF MS...

  9. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus.

    Science.gov (United States)

    Hewitson, James P; Nguyen, D Linh; van Diepen, Angela; Smit, Cornelis H; Koeleman, Carolien A; McSorley, Henry J; Murray, Janice; Maizels, Rick M; Hokke, Cornelis H

    2016-03-01

    Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory-secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC-MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory-secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1-4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory-secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory-secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory-secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host. PMID:26688390

  10. Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition

    Science.gov (United States)

    Venditto, Immacolata; Luis, Ana S.; Rydahl, Maja; Schückel, Julia; Fernandes, Vânia O.; Vidal-Melgosa, Silvia; Bule, Pedro; Goyal, Arun; Pires, Virginia M. R.; Dourado, Catarina G.; Ferreira, Luís M. A.; Coutinho, Pedro M.; Henrissat, Bernard; Knox, J. Paul; Baslé, Arnaud; Najmudin, Shabir; Gilbert, Harry J.; Willats, William G. T.; Fontes, Carlos M. G. A.

    2016-01-01

    The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens. The data identified six previously unidentified CBM families that targeted β-glucans, β-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize β-glucans and β-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose. PMID:27298375

  11. Characterisation of N-glycans bound to IGFBP-3 in sera from healthy adults.

    Science.gov (United States)

    Masnikosa, Romana; Baricević, Ivona; Lagundzin, Dragana; Nedić, Olgica

    2010-01-01

    Human IGFBP-3 contains three potential N-linked glycosylation sites. Published data concerning the type and saccharide composition of the N-glycans is scarce. The aim of this study was to characterise N-glycans covalently attached to IGFBP-3 from sera of healthy adults (men and women). In order to do that a panel of eight lectins covering broad saccharide specificity was used: agarose-immobilised SNA (Sambucus nigra agglutinin), Con A (lectin from Canavalia ensiformis), RCA I (Ricinus communis agglutinin I), PHA-E (Phaseolus vulgaris erythroagglutinin), PHA-L (P. vulgaris leukoagglutinin), succinylated WGA (wheat germ agglutinin), ECL (Erythrina cristagalli lectin) and UEA (Ulex europaeus agglutinin). IGFBP-3 interacted with SNA, Con A, RCA I, PHA-E and, to a much lesser extent, with PHA-L. These results indicate that human IGFBP-3 bears mostly biantennary complex type N-glycans with a very high content of alpha-2,6-linked Sia at their termini. Hybrid type and high-mannose type N-glycans are present, as well as a bisecting GlcNAc residue, which may be core fucosylated. N-glycosylation of IGFBP-3 follows the N-glycosylation pattern of major serum proteins. This study represents a ground for the future research of glycosylation pattern of IGFBP-3 from the circulation of men and women diagnosed with different illnesses. PMID:19800385

  12. Azahar: a PyMOL plugin for construction, visualization and analysis of glycan molecules.

    Science.gov (United States)

    Arroyuelo, Agustina; Vila, Jorge A; Martin, Osvaldo A

    2016-08-01

    Glycans are key molecules in many physiological and pathological processes. As with other molecules, like proteins, visualization of the 3D structures of glycans adds valuable information for understanding their biological function. Hence, here we introduce Azahar, a computing environment for the creation, visualization and analysis of glycan molecules. Azahar is implemented in Python and works as a plugin for the well known PyMOL package (Schrodinger in The PyMOL molecular graphics system, version 1.3r1, 2010). Besides the already available visualization and analysis options provided by PyMOL, Azahar includes 3 cartoon-like representations and tools for 3D structure caracterization such as a comformational search using a Monte Carlo with minimization routine and also tools to analyse single glycans or trajectories/ensembles including the calculation of radius of gyration, Ramachandran plots and hydrogen bonds. Azahar is freely available to download from http://www.pymolwiki.org/index.php/Azahar and the source code is available at https://github.com/agustinaarroyuelo/Azahar . PMID:27549814

  13. Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis.

    Science.gov (United States)

    Bhat, Ramray; Belardi, Brian; Mori, Hidetoshi; Kuo, Peiwen; Tam, Andrew; Hines, William C; Le, Quynh-Thu; Bertozzi, Carolyn R; Bissell, Mina J

    2016-08-16

    Branching morphogenesis in the mammary gland is achieved by the migration of epithelial cells through a microenvironment consisting of stromal cells and extracellular matrix (ECM). Here we show that galectin-1 (Gal-1), an endogenous lectin that recognizes glycans bearing N-acetyllactosamine (LacNAc) epitopes, induces branching migration of mammary epithelia in vivo, ex vivo, and in 3D organotypic cultures. Surprisingly, Gal-1's effects on mammary patterning were independent of its glycan-binding ability and instead required localization within the nuclei of mammary epithelia. Nuclear translocation of Gal-1, in turn, was regulated by discrete cell-surface glycans restricted to the front of the mammary end buds. Specifically, α2,6-sialylation of terminal LacNAc residues in the end buds masked Gal-1 ligands, thereby liberating the protein for nuclear translocation. Within mammary epithelia, Gal-1 localized within nuclear Gemini bodies and drove epithelial invasiveness. Conversely, unsialylated LacNAc glycans, enriched in the epithelial ducts, sequestered Gal-1 in the extracellular environment, ultimately attenuating invasive potential. We also found that malignant breast cells possess higher levels of nuclear Gal-1 and α2,6-SA and lower levels of LacNAc than nonmalignant cells in culture and in vivo and that nuclear localization of Gal-1 promotes a transformed phenotype. Our findings suggest that differential glycosylation at the level of tissue microanatomy regulates the nuclear function of Gal-1 in the context of mammary gland morphogenesis and in cancer progression. PMID:27496330

  14. Chemoenzymatic synthesis of the sialyl Lewis X glycan and its derivatives

    OpenAIRE

    del Amo, David Soriano; Wang, Wei; Besanceney, Christen; Zheng, Tianqing; He, Yizheng; Gerwe, Brian; Seidel, Ronald D; Wu, Peng

    2010-01-01

    A combination of recombinant FKP and α-(1→3)-fucosyltransferase allows the facile synthesis of the sialyl Lewis X tetrasaccharide glycan and its derivatives in excellent yield. In this system, the universal fucosyl donor, guanidine 5′-diphosphate-β-L-fucose (GDP-fucose), or its analogues can be generated in situ by cofactor recycling using pyruvate kinase.

  15. Viral hemagglutinin-esterases: Mediators of dynamic virion-glycan interactions

    NARCIS (Netherlands)

    Langereis, M.A.

    2011-01-01

    The sialic acids (Sias), a diverse family of 9-carbon sugars, are among the most important molecules of life. Commonly occurring as terminal residues of glycans on proteins and lipids, they are key elements of glycotopes of cellular lectins and there is accumulating evidence for them to act as chemi

  16. Rational Design of a New Trypanosoma rangeli Trans-Sialidase for Efficient Sialylation of Glycans

    DEFF Research Database (Denmark)

    Jers, Carsten; Michalak, Malwina; Larsen, Dorte Møller;

    2014-01-01

    This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been use...

  17. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.

    Science.gov (United States)

    Okajima, Tetsuya; Matsuura, Aiko; Matsuda, Tsukasa

    2008-07-01

    Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.

  18. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation

    DEFF Research Database (Denmark)

    Yin, Bojiao; Gao, Yuan; Chung, Cheng-yu;

    2015-01-01

    increased by 26%. The increase in sialic acid content was further verified by detailed profiling of the N-glycan structures using mass spectra (MS) analysis. In order to enhance antennarity/branching, UDP-N-acetylglucosamine: α-1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (GnTIV/Mgat4) and UDP...

  19. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr, STn (NeuAcα2-6GalNAc-Ser/Thr, T (Galβ1-3GalNAc-Ser/Thr, and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn. Glyco-engineering was performed by zinc finger nuclease (ZFN knockout (KO of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC and cytotoxic T lymphocyte (CTL-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.

  20. Kinetics and thermodynamics of glycans and glycoproteins binding to Holothuria scabra lectin: a fluorescence and surface plasmon resonance spectroscopic study.

    Science.gov (United States)

    Gowda, Nagaraj M; Gaikwad, Sushama M; Khan, M Islam

    2013-11-01

    Holothuria scabra produces a monomeric lectin (HSL) of 182 kDa. HSL showed strong antibacterial activity and induced bacterial agglutination under in vitro conditions, indicating its role in animals' innate immune responses. Very few lectins have been reported from echinoderms and none of these lectins have been explored in detail for their sugar-binding kinetics. Affinity, kinetics and thermodynamic analysis of glycans and glycoproteins binding to HSL were studied by fluorescence and surface plasmon resonance spectroscopy. Lectin binds with higher affinity to O-linked than N-linked asialo glycans, and the affinities were relatively higher than that for sialated glycans and glycoproteins. T-antigen α-methyl glycoside was the most potent ligand having the highest affinity (Ka 8.32 ×10(7) M(-1)). Thermodynamic and kinetic analysis indicated that the binding of galactosyl Tn-antigen and asialo glycans is accompanied by an enthalpic contribution in addition to higher association rate coupled by low activation energy for the association process. Presence of sialic acid or protein matrix inhibits binding. Higher affinity of HSL for O-glycans than N-glycans had biological implications; since HSL specifically recognizes bacteria, which have mucin or O-glycan cognate on their cell surfaces and play a major role in animal innate immunity. Since, HSL had higher affinity to T-antigen, makes it a useful tool for cancer diagnostic purpose. PMID:23736907

  1. Protein N-glycosylation and N-glycan trimming are required for postembryonic development of the pest beetle Tribolium castaneum

    Science.gov (United States)

    Walski, Tomasz; Van Damme, Els J. M.; Smargiasso, Nicolas; Christiaens, Olivier; De Pauw, Edwin; Smagghe, Guy

    2016-01-01

    In holometabolous insects the transition from larva to adult requires a complete body reorganization and relies on N-glycosylated proteins. N-glycosylation is an important posttranslational modification that influences protein activity but its impact on the metamorphosis has not been studied yet. Here we used the red flour beetle, Tribolium castaneum, to perform a first comprehensive study on the involvement of the protein N-glycosylation pathway in metamorphosis. The transcript levels for genes encoding N-glycan processing enzymes increased during later developmental stages and, in turn, transition from larva to adult coincided with an enrichment of more extensively modified paucimannose glycans, including fucosylated ones. Blockage of N-glycan attachment resulted in larval mortality, while RNAi of α-glucosidases involved in early N-glycan trimming and quality control disrupted the larva to pupa transition. Additionally, simultaneous knockdown of multiple genes responsible for N-glycan processing towards paucimannose structures revealed their novel roles in pupal appendage formation and adult eclosion. Our findings revealed that, next to hormonal control, insect post-embryonic development and metamorphosis depend on protein N-glycan attachment and efficient N-glycan processing. Consequently, disruption of these processes could be an effective new approach for insect control. PMID:27731363

  2. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition.

    Directory of Open Access Journals (Sweden)

    Sujata Halder

    Full Text Available The recognition of sialic acids by two strains of minute virus of mice (MVM, MVMp (prototype and MVMi (immunosuppressive, is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM. Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3'SIA-LN and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3'SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3'SIA-Le(X identified in a previous glycan microarray screen.

  3. Cell surface N-glycans influence the level of functional E-cadherin at the cell–cell border

    OpenAIRE

    M Kristen Hall; Douglas A Weidner; Sahil Dayal; Ruth A. Schwalbe

    2014-01-01

    E-cadherin is crucial for adhesion of cells to each other and thereby development and maintenance of tissue. While it is has been established that N-glycans inside the cell impact the level of E-cadherin at the cell surface of epithelial-derived cells, it is unclear whether N-glycans outside the cell control the clustering of E-cadherin at the cell–cell border. Here, we demonstrate reduction of N-glycans at the cell surface weakened the recruitment and retention of E-cadherin at the cell–cell...

  4. Restricted motion of the conserved immunoglobulin G1 N-glycan is essential for efficient FcγRIIIa binding

    OpenAIRE

    Subedi, Ganesh P.; Hanson, Quinlin M.; Barb, Adam W

    2014-01-01

    Immunoglobulin G1(IgG1)-based therapies are widespread and many function through interactions with low-affinity Fc γ receptors (FcγR). N-glycosylation of the IgG1 Fc domain is required for FcγR binding, though it is unclear why. Structures of the FcγR:Fc complex fail to explain this because the FcγR polypeptide does not bind the N-glycan. Here we identify a link between motion of the N-glycan and Fc:FcγRIIIa affinity that explains the N-glycan requirement. Fc F241 and F243 mutations decreased...

  5. First determination of the incidence of the unique TOR1A gene mutation, c.907delGAG, in a Mediterranean population.

    Science.gov (United States)

    Frédéric, Mélissa; Lucarz, Estelle; Monino, Christine; Saquet, Céline; Thorel, Delphine; Claustres, Mireille; Tuffery-Giraud, Sylvie; Collod-Béroud, Gwenaelle

    2007-04-30

    The c.907delGAG mutation in the TOR1A gene (also named DYT1) is the most common cause of early-onset primary dystonia. The mutation frequency and prevalence have so far been only estimated from rare clinical epidemiological reports in some populations. The purpose of this study was to investigate the incidence at birth of the c.907delGAG mutation in a French-representative mixed population of newborn from South-Eastern France. We applied an automated high-throughput genotyping method to dried blood spot samples from 12,000 newborns registered in Hérault between 2004 and 2005. Only one allele was found to carry the mutation, which allows to determine its incidence at birth as 1/12,000 per year in this area.

  6. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides

    OpenAIRE

    Sun, Shisheng; Shah, Punit; Eshghi, Shadi Toghi; Yang, Weiming; Trikannad, Namita; Yang, Shuang; Chen, Lijun; Aiyetan, Paul; Höti, Naseruddin; Zhang, Zhen; Chan, Daniel W.; Hui ZHANG

    2015-01-01

    Comprehensive characterization of protein glycosylation is critical for understanding the structure and function of glycoproteins. However, due to the complexity and heterogeneity of glycoprotein conformations, current glycoprotein analyses focus mainly on either the de-glycosylated glycosylation site (glycosite)-containing peptides or the released glycans. Here, we describe a chemoenzymatic method called solid phase extraction of N-linked glycans and glycosite-containing peptides (NGAG) for ...

  7. Comparative Genome Sequence Analysis Reveals the Extent of Diversity and Conservation for Glycan-Associated Proteins in Burkholderia spp.

    OpenAIRE

    Ong, Hui San; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2012-01-01

    Members of the Burkholderia family occupy diverse ecological niches. In pathogenic family members, glycan-associated proteins are often linked to functions that include virulence, protein conformation maintenance, surface recognition, cell adhesion, and immune system evasion. Comparative analysis of available Burkholderia genomes has revealed a core set of 178 glycan-associated proteins shared by all Burkholderia of which 68 are homologous to known essential genes. The genome sequence compari...

  8. Microfluidic Chip-LC/MS-based Glycomic Analysis Revealed Distinct N-glycan Profile of Rat Serum

    OpenAIRE

    Wei-Na Gao; Lee-Fong Yau; Liang Liu; Xing Zeng; Da-Can Chen; Min Jiang; Ju Liu; Jing-Rong Wang; Zhi-Hong Jiang

    2015-01-01

    The rat is an important alternative for studying human pathology owing to certain similarities to humans. Glycomic studies on rat serum have revealed that variations in the N-glycans of glycoproteins correlated with disease progression, which is consistent with the findings in human serum. Therefore, we comprehensively characterized the rat serum N-glycome using microfluidic chip-LC-ESI-QTOF MS and MS/MS techniques. In total, 282 N-glycans, including isomers, were identified. This study is th...

  9. N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues

    OpenAIRE

    Pöltl, Gerald; Kerner, Denise; Paschinger, Katharina; Wilson, Iain B. H.

    2006-01-01

    In recent years, the glycoconjugates of many parasitic nematodes have attracted interest due to their immunogenic and immunomodulatory nature. Previous studies with the porcine roundworm parasite Ascaris suum have focussed on its glycosphingolipids which were found, in part, to be modified by phosphorylcholine. Using mass spectrometry and Western blotting, we have now analysed the PNGase A-released N-glycans of adults of this species. The presence of hybrid, bi- and triantennary N-glycans, so...

  10. Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards.

    Science.gov (United States)

    Zhou, Shiyue; Tello, Nadia; Harvey, Alex; Boyes, Barry; Orlando, Ron; Mechref, Yehia

    2016-06-01

    Glycans have numerous functions in various biological processes and participate in the progress of diseases. Reliable quantitative glycomic profiling techniques could contribute to the understanding of the biological functions of glycans, and lead to the discovery of potential glycan biomarkers for diseases. Although LC-MS is a powerful analytical tool for quantitative glycomics, the variation of ionization efficiency and MS intensity bias are influencing quantitation reliability. Internal standards can be utilized for glycomic quantitation by MS-based methods to reduce variability. In this study, we used stable isotope labeled IgG2b monoclonal antibody, iGlycoMab, as an internal standard to reduce potential for errors and to reduce variabililty due to sample digestion, derivatization, and fluctuation of nanoESI efficiency in the LC-MS analysis of permethylated N-glycans released from model glycoproteins, human blood serum, and breast cancer cell line. We observed an unanticipated degradation of isotope labeled glycans, tracked a source of such degradation, and optimized a sample preparation protocol to minimize degradation of the internal standard glycans. All results indicated the effectiveness of using iGlycoMab to minimize errors originating from sample handling and instruments. PMID:26913967

  11. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus.

    Science.gov (United States)

    Tang, Shu-Lun; Linz, Lucas B; Bonning, Bryony C; Pohl, Nicola L B

    2015-11-01

    Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid. PMID:26457763

  12. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus.

    Science.gov (United States)

    Tang, Shu-Lun; Linz, Lucas B; Bonning, Bryony C; Pohl, Nicola L B

    2015-11-01

    Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid.

  13. Structural studies on a non toxic homologue of type II RIPs from bitter gourd: Molecular basis of non toxicity, conformational selection and glycan structure

    Indian Academy of Sciences (India)

    Thyageshwar Chandran; Alok Sharma; M Vijayan

    2015-12-01

    The structures of nine independent crystals of bitter gourd seed lectin (BGSL), a non-toxic homologue of type II RIPS, and its sugar complexes have been determined. The four-chain, two-fold symmetric, protein is made up of two identical two-chain modules, each consisting of a catalytic chain and a lectin chain, connected by a disulphide bridge. The lectin chain is made up of two domains. Each domain carries a carbohydrate binding site in type II RIPS of known structure. BGSL has a sugar binding site only on one domain, thus impairing its interaction at the cell surface. The adenine binding site in the catalytic chain is defective. Thus, defects in sugar binding as well as adenine binding appear to contribute to the non-toxicity of the lectin. The plasticity of the molecule is mainly caused by the presence of two possible well defined conformations of a surface loop in the lectin chain. One of them is chosen in the sugar complexes, in a case of conformational selection, as the chosen conformation facilitates an additional interaction with the sugar, involving an arginyl residue in the loop. The -glycosylation of the lectin involves a plant-specific glycan while that in toxic type H RIPS of known structure involves a glycan which is animal as well as plant specific.

  14. Growth phase-dependent expression of proteins with decreased plant-specific N-glycans and immunogenicity in tobacco BY2 cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Plants possess some desirable characteristics to synthesize recombinant glycoproteins for pharma-ceutical application.However,the mammalian glycoproteins produced in plants are somewhat different from their natural counterparts in terms of N-glycoforms.The immunogenicity of plant-specific glyco-epitopes is the major concern in human therapy.Here,the distribution of N-glycans in different growth phases of tobacco BY2 cells and their immunogenicity in mice were determined.It was ob-served that the percentage of β1,2-xylose and α1,3-fucose in proteins of growing cells increased and the corresponding protein extracts caused accelerated immune response in mice.Based on this observation,the recombinant erythropoietin in BY2 cells was expressed and characterized,and Western blot analysis showed that the recombinant erythropoietin contained a relatively small amount of plant-specific glyco-epitopes in the early phase of culture growth.This study may provide a simple but effective strategy for the production of therapeutic glycoproteins with human-like N-glycan structures in plant hosts to avoid a great allergenic risk.

  15. Novel structural features of the immunocompetent ceramide phospho-inositol glycan core from Trichomonas vaginalis.

    Science.gov (United States)

    Heiss, Christian; Wang, Zhirui; Black, Ian; Azadi, Parastoo; Fichorova, Raina N; Singh, Bibhuti N

    2016-01-01

    The ceramide phosphoinositol glycan core (CPI-GC) of the lipophosphoglycan of Trichomonas vaginalis is a major virulent factor of this common genitourinary parasite. While its carbohydrate composition has been reported before, its structure has remained largely unknown. We isolated the glycan portions of CPI-GC by nitrous acid deamination and hydrofluoric acid treatment and investigated their structures by methylation analysis and 1- and 2-D NMR. We found that the α-anomer of galactose is a major constituent of CPI-GC. The β-anomer was found exclusively at the non-reducing end of CPI-GC side chains. Furthermore the data showed that the rhamnan backbone is more complex than previously thought and that the inositol residue at the reducing end is linked to a 4-linked α-glucuronic acid (GlcA) residue. This appears to be the most striking and novel feature of this GPI-anchor type molecule.

  16. Travelling-wave ion mobility and negative ion fragmentation of high-mannose N-glycans.

    Science.gov (United States)

    Harvey, David J; Scarff, Charlotte A; Edgeworth, Matthew; Struwe, Weston B; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim

    2016-03-01

    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility mass spectrometry for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra, and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed, but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers or anomers were being separated. Collision cross sections of the isomers in positive and negative fragmentation mode were estimated from travelling-wave ion mobility mass spectrometry data using dextran glycans as calibrant. More complete collision cross section data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross-sectional data, details of the negative ion collision-induced dissociation spectra of all resolved isomers are discussed. PMID:26956389

  17. Sialoglycoproteins and N-Glycans from Secreted Exosomes of Ovarian Carcinoma Cells

    OpenAIRE

    Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S.; Costa, Júlia

    2013-01-01

    Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abun...

  18. Targeting the glycans of gp120: a novel approach aimed at the Achilles heel of HIV

    OpenAIRE

    Balzarini, Jan

    2005-01-01

    The development of drug resistance in HIV compromises the long-term efficacy of current therapies. Furthermore, vaccine development faces huge problems, mainly because of the low antigenicity and immunogenicity of the HIV envelope glycoprotein gp120 and the efficient hiding of highly immunogenic epitopes by its glycans. There is evidence that mutant HIV strains containing glycosylation site deletions trigger the production of specific neutralising antibodies to previously hidden gp120 epitope...

  19. Glycan-Foraging Systems Reveal the Adaptation of Capnocytophaga canimorsus to the Dog Mouth

    OpenAIRE

    Renzi, Francesco; Manfredi, Pablo; Dol, Mélanie; Fu, Jian; Vincent, Stéphane; Cornelis, Guy Richard

    2015-01-01

    ABSTRACT Capnocytophaga canimorsus is known to form two kinds of cells on blood agar plates (coccoid and bacillary), evoking phase variation. When grown in coculture with animal cells these bacteria appeared only as bacilli, but in the presence of vancomycin they were round, indicating that coccoid shapes likely result from weakening of the peptidoglycan layer. Polysaccharide utilization locus 5 (PUL5) and sialidase mutant bacteria, unable to retrieve glycans from glycoproteins, grew less tha...

  20. The N-glycan Glycoprotein Deglycosylation Complex (Gpd) from Capnocytophaga canimorsus Deglycosylates Human IgG

    OpenAIRE

    Renzi, Francesco; Manfredi, Pablo; Mally, Manuela; Moes, Suzanne; Jenö, Paul; Cornelis, Guy R

    2011-01-01

    Author Summary Capnocytophaga canimorsus are Gram-negative bacteria from the normal oral flora of dogs and cats. They cause rare but severe infections in humans that have been bitten or simply licked by a dog or cat. Fulminant septicemia and peripheral gangrene with a high mortality are the most common symptoms. A surprising feature of these bacteria is their capacity to feed by foraging the glycan moieties of glycoproteins from animal cells, including phagocytes. Here we show that C. canimor...

  1. Quantitative description of glycan-receptor binding of influenza A virus H7 hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses. We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7 and North American (H7N2 lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.

  2. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins

    Science.gov (United States)

    Ielasi, Francesco S.; Alioscha-Perez, Mitchel; Donohue, Dagmara; Claes, Sandra; Sahli, Hichem; Schols, Dominique

    2016-01-01

    ABSTRACT The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. PMID:27406561

  3. Glycan heterogeneity on gold nanoparticles increases lectin discrimination capacity in label-free multiplexed bioassays.

    Science.gov (United States)

    Otten, Lucienne; Vlachou, Denise; Richards, Sarah-Jane; Gibson, Matthew I

    2016-07-21

    The development of new analytical tools as point-of-care biosensors is crucial to combat the spread of infectious diseases, especially in the context of drug-resistant organisms, or to detect biological warfare agents. Glycan/lectin interactions drive a wide range of recognition and signal transduction processes within nature and are often the first site of adhesion/recognition during infection making them appealing targets for biosensors. Glycosylated gold nanoparticles have been developed that change colour from red to blue upon interaction with carbohydrate-binding proteins and may find use as biosensors, but are limited by the inherent promiscuity of some of these interactions. Here we mimic the natural heterogeneity of cell-surface glycans by displaying mixed monolayers of glycans on the surface of gold nanoparticles. These are then used in a multiplexed, label-free bioassay to create 'barcodes' which describe the lectin based on its binding profile. The increased information content encoded by using complex mixtures of a few sugars, rather than increased numbers of different sugars makes this approach both scalable and accessible. These nanoparticles show increased lectin identification power at a range of lectin concentrations, relative to single-channel sensors. It was also found that some information about the concentration of the lectins can be extracted, all from just a simple colour change, taking this technology closer to being a realistic biosensor. PMID:27181289

  4. Glycan heterogeneity on gold nanoparticles increases lectin discrimination capacity in label-free multiplexed bioassays†

    Science.gov (United States)

    Otten, Lucienne; Vlachou, Denise; Richards, Sarah-Jane; Gibson, Matthew I.

    2016-01-01

    The development of new analytical tools as point-of-care biosensors is crucial to combat the spread of infectious diseases, especially in the context of drug-resistant organisms, or to detect biological warfare agents. Glycan/lectin interactions drive a wide range of recognition and signal transduction processes within nature and are often the first site of adhesion/recognition during infection making them appealing targets for biosensors. Glycosylated gold nanoparticles have been developed that change colour from red to blue upon interaction with carbohydrate-binding proteins and may find use as biosensors, but are limited by the inherent promiscuity of some of these interactions. Here we mimic the natural heterogeneity of cell-surface glycans by displaying mixed monolayers of glycans on the surface of gold nanoparticles. These are then used in a multiplexed, label-free bioassay to create ‘barcodes’ which describe the lectin based on its binding profile. The increased information content encoded by using complex mixtures of a few sugars, rather than increased numbers of different sugars makes this approach both scalable and accessible. These nanoparticles show increased lectin identification power at a range of lectin concentrations, relative to single-channel sensors. It was also found that some information about the concentration of the lectins can be extracted, all from just a simple colour change, taking this technology closer to being a realistic biosensor. PMID:27181289

  5. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology.

    Science.gov (United States)

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2015-10-16

    Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.

  6. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer.

    Directory of Open Access Journals (Sweden)

    Julius W Kim

    Full Text Available BACKGROUND: Vectors based on human adenovirus serotype 5 (HAdV-5 continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting. METHODOLOGY/PRINCIPAL FINDINGS: As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4. This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells. CONCLUSIONS/SIGNIFICANCE: These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.

  7. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase.

    Science.gov (United States)

    Pinter, Tyler B J; Stillman, Martin J

    2015-11-01

    Mammalian metallothioneins (MTs) bind up to seven Zn(2+) using a large number of cysteine residues relative to their small size and can act as zinc-chaperones. In metal-saturated Zn7-MTs, the seven zinc ions are co-ordinated tetrahedrally into two distinct clusters separated by a linker; the N-terminal β-domain [(Zn3Cys9)(3-)] and C-terminal α-domain [(Zn4Cys11)(3-)]. We report on the competitive zinc metalation of apo-carbonic anhydrase [CA; metal-free CA (apo-CA)] in the presence of apo-metallothionein 1A domain fragments to identify domain specific determinants of zinc binding and zinc donation in the intact two-domain Znn-βαMT1A (human metallothionein 1A isoform; n=0-7). The apo-CA is shown to compete effectively only with Zn2-3-βMT and Zn4-αMT. Detailed modelling of the ESI mass spectral data have revealed the zinc-binding affinities of each of the zinc-binding sites in the two isolated fragments. The three calculated equilibrium zinc affinities [log(KF)] of the isolated β-domain were: 12.2, 11.7 and 11.4 and the four isolated α-domain affinities were: 13.5, 13.2, 12.7 and 12.6. These data provide guidance in identification of the location of the strongest-bound and weakest-bound zinc in the intact two-domain Zn7βαMT. The β-domain has the weakest zinc-binding site and this is where zinc ions are donated from in the Zn7-βαMT. The α-domain with the highest affinity binds the first zinc, which we propose leads to an unscrambling of the cysteine ligands from the apo-peptide bundle. We propose that stabilization of the intact Zn6-MT and Zn7-MT, relative to that of the sum of the separated fragments, is due to the availability of additional cysteine ligand orientations (through interdomain interactions) to support the clustered structures.

  8. 糖链的生物质谱分析%Glycan analysis by biological mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    王承健; 王仲孚

    2011-01-01

    糖链是重要的生物信息分子,在许多生理和病理过程中都发挥着独特作用.糖链结构非常复杂,具有微观不均一性,其分析和结构解析一直是糖生物学研究的瓶颈.质谱具有灵敏度高、可获得多种结构信息和适于分析混合物等优点,是糖链定性定量分析的一种理想手段.电喷雾电离质谱和基质辅助激光解析电离质谱两大生物质谱技术已被广泛应用于糖链的相对分子质量指纹谱分析、序列和连接方式测定及相对定量分析.对近年来以质谱为主要分析手段的糖链分析方法研究进展做一综述.%As a group of bioinformation molecules, glycans play significant roles in many physiological and pathological processes. Due to their structural complexity and microheterogeneity, analysis and structural characterization of glycans are the bottleneck of glycobiology research. Mass spectrometry, which has advantages in the ability to minimize sample consumption, obtain diverse structural information, and analyse mixtures, is an ideal device for qualitation and quantitation of glycans. The two biological mass spectrometry technologies, electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), have been widely used in the analysis of glycan molecular mass fingerprint, sequence, linkage, and relative quantitation. This article summarizes the recent progress in the methodology investigation of glycan analysis using mass spectrometry as a fundamental analysing instrument.

  9. Alteration of N-glycans and Expression of Their Related Glycogenes in the Epithelial-Mesenchymal Transition of HCV29 Bladder Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2014-12-01

    Full Text Available The epithelial-mesenchymal transition (EMT is an essential step in the proliferation and metastasis of solid tumor cells, and glycosylation plays a crucial role in the EMT process. Certain aberrant glycans have been reported as biomarkers during bladder cancer progression, but global variation of N-glycans in this type of cancer has not been previously studied. We examined the profiles of N-glycan and glycogene expression in transforming growth factor-beta (TGFβ-induced EMT using non-malignant bladder transitional epithelium HCV29 cells. These expression profiles were analyzed by mass spectrometry, lectin microarray analysis, and GlycoV4 oligonucleotide microarray analysis, and confirmed by lectin histochemistry and real-time RT-PCR. The expression of 5 N-glycan-related genes were notably altered in TGFβ-induced EMT. In particular, reduced expression of glycogene man2a1, which encodes α-mannosidase 2, contributed to the decreased proportions of bi-, tri- and tetra-antennary complex N-glycans, and increased expression of hybrid-type N-glycans. Decreased expression of fuca1 gene, which encodes Type 1 α-L-fucosidase, contributed to increased expression of fucosylated N-glycans in TGFβ-induced EMT. Taken together, these findings clearly demonstrate the involvement of aberrant N-glycan synthesis in EMT in these cells. Integrated glycomic techniques as described here will facilitate discovery of glycan markers and development of novel diagnostic and therapeutic approaches to bladder cancer.

  10. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer

    Science.gov (United States)

    Cagnoni, Alejandro J.; Pérez Sáez, Juan M.; Rabinovich, Gabriel A.; Mariño, Karina V.

    2016-01-01

    Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to

  11. Structure of a SusD Homologue, BT1043, Involved in Mucin O-Glycan Utilization in a Prominent Human Gut Symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J.; (Danforth); (WU-MED)

    2009-05-21

    Mammalian distal gut bacteria have an expanded capacity to utilize glycans. In the absence of dietary sources, some species rely on host-derived mucosal glycans. The ability of Bacteroides thetaiotaomicron, a prominent human gut symbiont, to forage host glycans contributes to both its ability to persist within an individual host and its ability to be transmitted naturally to new hosts at birth. The molecular basis of host glycan recognition by this species is still unknown but likely occurs through an expanded suite of outermembrane glycan-binding proteins that are the primary interface between B. thetaiotaomicron and its environment. Presented here is the atomic structure of the B. thetaiotaomicron protein BT1043, an outer membrane lipoprotein involved in host glycan metabolism. Despite a lack of detectable amino acid sequence similarity, BT1043 is a structural homologue of the B. thetaiotaomicron starch-binding protein SusD. Both structures are dominated by tetratrico peptide repeats that may facilitate association with outer membrane {beta}-barrel transporters required for glycan uptake. The structure of BT1043 complexed with N-acetyllactosamine reveals that recognition is mediated via hydrogen bonding interactions with the reducing end of {beta}-N-acetylglucosamine, suggesting a role in binding glycans liberated from the mucin polypeptide. This is in contrast to CBM 32 family members that target the terminal nonreducing galactose residue of mucin glycans. The highly articulated glycan-binding pocket of BT1043 suggests that binding of ligands to BT1043 relies more upon interactions with the composite sugar residues than upon overall ligand conformation as previously observed for SusD. The diversity in amino acid sequence level likely reflects early divergence from a common ancestor, while the unique and conserved {alpha}-helical fold the SusD family suggests a similar function in glycan uptake.

  12. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation.

    Science.gov (United States)

    Lu, Diannan; Yang, Cheng; Liu, Zheng

    2012-01-12

    Glycosylation is one of the most common post-translational modifications in the biosynthesis of protein, but its effect on the protein conformational transitions underpinning folding and stabilization is poorly understood. In this study, we present a coarse-grained off-lattice 46-β barrel model protein glycosylated by glycans with different hydrophobicity and glycosylation sites to examine the effect of glycans on protein folding and stabilization using a Langevin dynamics simulation, in which an H term was proposed as the index of the hydrophobicity of glycan. Compared with its native counterpart, introducing glycans of suitable hydrophobicity (0.1 enthalpy effect. The simulations have shown both the stabilization and the destabilization effects of glycosylation, as experimentally reported in the literature, and provided molecular insight into glycosylated proteins. The understanding of the effects of glycans with different hydrophobicities on the folding and stability of protein, as attempted by the present work, is helpful not only to explain the stabilization and destabilization effect of real glycoproteins but also to design protein-polymer conjugates for biotechnological purposes.

  13. DYRK1A, a novel determinant of the methionine-homocysteine cycle in different mouse models overexpressing this Down-syndrome-associated kinase.

    Directory of Open Access Journals (Sweden)

    Christophe Noll

    Full Text Available BACKGROUND: Hyperhomocysteinemia, characterized by increased plasma homocysteine level, is associated with an increased risk of atherosclerosis. On the contrary, patients with Down syndrome appear to be protected from the development of atherosclerosis. We previously found a deleterious effect of hyperhomocysteinemia on expression of DYRK1A, a Down-syndrome-associated kinase. As increased expression of DYRK1A and low plasma homocysteine level have been associated with Down syndrome, we aimed to analyze the effect of its over-expression on homocysteine metabolism in mice. METHODOLOGY/PRINCIPAL FINDINGS: Effects of DYRK1A over-expression were examined by biochemical analysis of methionine metabolites, real-time quantitative reverse-transcription polymerase chain reaction, and enzyme activities. We found that over-expression of Dyrk1a increased the hepatic NAD(PH:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities, concomitant with decreased level of plasma homocysteine in three mice models overexpressing Dyrk1a. Moreover, these effects were abolished by treatment with harmine, the most potent and specific inhibitor of Dyrk1a. The increased NAD(PH:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities were also found in lymphoblastoid cell lines from patients with Down syndrome. CONCLUSIONS/SIGNIFICANCE: Our results might give clues to understand the protective effect of Down syndrome against vascular defect through a decrease of homocysteine level by DYRK1A over-expression. They reveal a link between the Dyrk1a signaling pathway and the homocysteine cycle.

  14. Genome-wide meta-analysis identifies regions on 7p21 (AHR and 15q24 (CYP1A2 as determinants of habitual caffeine consumption.

    Directory of Open Access Journals (Sweden)

    Marilyn C Cornelis

    2011-04-01

    Full Text Available We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10(-19, near AHR, and 15q24 (P = 5.2 × 10(-14, between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.

  15. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms.

    Directory of Open Access Journals (Sweden)

    Ying-Ming Wang

    Full Text Available Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.

  16. Synthesis, processing, and function of N-glycans in N-glycoproteins

    OpenAIRE

    Bieberich, Erhard

    2014-01-01

    Many membrane-resident and secrected proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure consists of 14 sugar residues (Glc3Man9GlcNAc2) that are first synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, “en bloc” transferred and linked via N-acetylglucosamine (GlcNAc) to asparagine within a specific N-glycosylation acceptor sequence (Asn-X-Ser/Thr) of...

  17. Branch Specific Sialylation of IgG-Fc Glycans by ST6Gal-I

    OpenAIRE

    Barb, Adam W; Brady, Evan K.; Prestegard, James H.

    2009-01-01

    Sialylated forms of the Fc fragment of immunoglobulin G, produced by the human α2–6 sialyltransferase ST6Gal-I, were identified as potent anti-inflammatory mediators in a mouse model of rheumatoid arthritis and are potentially the active components in IVIG therapies. The activities and specificities of hST6Gal-I are, however, poorly characterized. Here MS and NMR methodology demonstrates glycan modification occurs in a branch-specific manner with the α1–3Man branch of the complex, biantennary...

  18. Highly specific purification of N-glycans using phosphate-based derivatization as an affinity tag in combination with Ti(4+)-SPE enrichment for mass spectrometric analysis.

    Science.gov (United States)

    Zhang, Ying; Peng, Ye; Bin, Zhichao; Wang, Huijie; Lu, Haojie

    2016-08-31

    N-linked protein glycosylation is involved in regulation of a wide variety of cellular processes and associated with numerous diseases. Highly specific identification of N-glycome remains a challenge while its biological significance is acknowledged. The relatively low abundance of glycan in complex biological mixtures, lack of basic sites for protonation, and suppression by other highly abundant proteins/peptides lead to the particularly poor detection sensitivity of N-glycans in the MS analysis. Therefore, the highly specific purification procedure becomes a crucial step prior to MS analysis of the N-glycome. Herein, a novel N-glycans enrichment approach based on phosphate derivatization combined with Ti(4+)-SPE (solid phase extraction) was developed. Briefly, in this strategy, N-glycans were chemically labeled with a phospho-group at their reducing ends, such that the Ti(4+)-SPE microspheres were able to capture the phospho-containing glycans. The enrichment method was developed and optimized using model oligosaccharides (maltoheptaose DP7 and sialylated glycan A1) and also glycans from a standard glycoprotein (asialofetuin, ASF). This method experimentally showed high derivatization efficiency (almost 100%), excellent selectivity (analyzing DP7 in the digests of bovine serum albumin at a mass ratio of 1:100), high enriching recovery (90%), good reproducibility (CVN-glycome in human serum, in which a total of 31 N-glycan masses were identified.

  19. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging.

    Science.gov (United States)

    Lee, Chih-Hung; Hsu, Chia-Yen; Huang, Pei-Yu; Chen, Ching-Iue; Lee, Yao-Chang; Yu, Hsin-Su

    2016-03-22

    Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan

  20. Dual Roles of O-Glucose Glycans Redundant with Monosaccharide O-Fucose on Notch in Notch Trafficking.

    Science.gov (United States)

    Matsumoto, Kenjiroo; Ayukawa, Tomonori; Ishio, Akira; Sasamura, Takeshi; Yamakawa, Tomoko; Matsuno, Kenji

    2016-06-24

    Notch is a transmembrane receptor that mediates cell-cell interactions and controls various cell-fate specifications in metazoans. The extracellular domain of Notch contains multiple epidermal growth factor (EGF)-like repeats. At least five different glycans are found in distinct sites within these EGF-like repeats. The function of these individual glycans in Notch signaling has been investigated, primarily by disrupting their individual glycosyltransferases. However, we are just beginning to understand the potential functional interactions between these glycans. Monosaccharide O-fucose and O-glucose trisaccharide (O-glucose-xylose-xylose) are added to many of the Notch EGF-like repeats. In Drosophila, Shams adds a xylose specifically to the monosaccharide O-glucose. We found that loss of the terminal dixylose of O-glucose-linked saccharides had little effect on Notch signaling. However, our analyses of double mutants of shams and other genes required for glycan modifications revealed that both the monosaccharide O-glucose and the terminal dixylose of O-glucose-linked saccharides function redundantly with the monosaccharide O-fucose in Notch activation and trafficking. The terminal dixylose of O-glucose-linked saccharides and the monosaccharide O-glucose were required in distinct Notch trafficking processes: Notch transport from the apical plasma membrane to adherens junctions, and Notch export from the endoplasmic reticulum, respectively. Therefore, the monosaccharide O-glucose and terminal dixylose of O-glucose-linked saccharides have distinct activities in Notch trafficking, although a loss of these activities is compensated for by the presence of monosaccharide O-fucose. Given that various glycans attached to a protein motif may have redundant functions, our results suggest that these potential redundancies may lead to a serious underestimation of glycan functions. PMID:27129198

  1. Dual Roles of O-Glucose Glycans Redundant with Monosaccharide O-Fucose on Notch in Notch Trafficking.

    Science.gov (United States)

    Matsumoto, Kenjiroo; Ayukawa, Tomonori; Ishio, Akira; Sasamura, Takeshi; Yamakawa, Tomoko; Matsuno, Kenji

    2016-06-24

    Notch is a transmembrane receptor that mediates cell-cell interactions and controls various cell-fate specifications in metazoans. The extracellular domain of Notch contains multiple epidermal growth factor (EGF)-like repeats. At least five different glycans are found in distinct sites within these EGF-like repeats. The function of these individual glycans in Notch signaling has been investigated, primarily by disrupting their individual glycosyltransferases. However, we are just beginning to understand the potential functional interactions between these glycans. Monosaccharide O-fucose and O-glucose trisaccharide (O-glucose-xylose-xylose) are added to many of the Notch EGF-like repeats. In Drosophila, Shams adds a xylose specifically to the monosaccharide O-glucose. We found that loss of the terminal dixylose of O-glucose-linked saccharides had little effect on Notch signaling. However, our analyses of double mutants of shams and other genes required for glycan modifications revealed that both the monosaccharide O-glucose and the terminal dixylose of O-glucose-linked saccharides function redundantly with the monosaccharide O-fucose in Notch activation and trafficking. The terminal dixylose of O-glucose-linked saccharides and the monosaccharide O-glucose were required in distinct Notch trafficking processes: Notch transport from the apical plasma membrane to adherens junctions, and Notch export from the endoplasmic reticulum, respectively. Therefore, the monosaccharide O-glucose and terminal dixylose of O-glucose-linked saccharides have distinct activities in Notch trafficking, although a loss of these activities is compensated for by the presence of monosaccharide O-fucose. Given that various glycans attached to a protein motif may have redundant functions, our results suggest that these potential redundancies may lead to a serious underestimation of glycan functions.

  2. Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions by ultraviolet photodissociation mass spectrometry.

    Science.gov (United States)

    Madsen, James A; Ko, Byoung Joon; Xu, Hua; Iwashkiw, Jeremy A; Robotham, Scott A; Shaw, Jared B; Feldman, Mario F; Brodbelt, Jennifer S

    2013-10-01

    O-Glycopeptides are often acidic owing to the frequent occurrence of acidic saccharides in the glycan, rendering traditional proteomic workflows that rely on positive mode tandem mass spectrometry (MS/MS) less effective. In this report, we demonstrate the utility of negative mode ultraviolet photodissociation (UVPD) MS for the characterization of acidic O-linked glycopeptide anions. This method was evaluated for a series of singly and multiply deprotonated glycopeptides from the model glycoprotein kappa casein, resulting in production of both peptide and glycan product ions that afforded 100% sequence coverage of the peptide and glycan moieties from a single MS/MS event. The most abundant and frequent peptide sequence ions were a/x-type products which, importantly, were found to retain the labile glycan modifications. The glycan-specific ions mainly arose from glycosidic bond cleavages (B, Y, C, and Z ions) in addition to some less common cross-ring cleavages. On the basis of the UVPD fragmentation patterns, an automated database searching strategy (based on the MassMatrix algorithm) was designed that is specific for the analysis of glycopeptide anions by UVPD. This algorithm was used to identify glycopeptides from mixtures of glycosylated and nonglycosylated peptides, sequence both glycan and peptide moieties simultaneously, and pinpoint the correct site(s) of glycosylation. This methodology was applied to uncover novel site-specificity of the O-linked glycosylated OmpA/MotB from the "superbug" A. baumannii to help aid in the elucidation of the functional role that protein glycosylation plays in pathogenesis. PMID:24006841

  3. Discovery of specific metastasis-related N-glycan alterations in epithelial ovarian cancer based on quantitative glycomics.

    Directory of Open Access Journals (Sweden)

    Xingwang Zhang

    Full Text Available Generally, most of ovarian cancer cannot be detected until large scale and remote metastasis occurs, which is the major cause of high mortality in ovarian cancer. Therefore, it is urgent to discover metastasis-related biomarkers for the detection of ovarian cancer in its occult metastasis stage. Altered glycosylation is a universal feature of malignancy and certain types of glycan structures are well-known markers for tumor progressions. Thus, this study aimed to reveal specific changes of N-glycans in the secretome of the metastatic ovarian cancer. We employed a quantitative glycomics approach based on metabolic stable isotope labeling to compare the differential N-glycosylation of secretome between an ovarian cancer cell line SKOV3 and its high metastatic derivative SKOV3-ip. Intriguingly, among total 17 N-glycans identified, the N-glycans with bisecting GlcNAc were all significantly decreased in SKOV3-ip in comparison to SKOV3. This alteration in bisecting GlcNAc glycoforms as well as its corresponding association with ovarian cancer metastatic behavior was further validated at the glycotransferase level with multiple techniques including real-time PCR, western blotting, transwell assay, lectin blotting and immunohistochemistry analysis. This study illustrated metastasis-related N-glycan alterations in ovarian cancer secretome in vitro for the first time, which is a valuable source for biomarker discovery as well. Moreover, N-glycans with bisecting GlcNAc shed light on the detection of ovarian cancer in early peritoneal metastasis stage which may accordingly improve the prognosis of ovarian cancer patients.

  4. Disruption of O-GlcNAc cycling in C. elegans perturbs Nucleotide Sugar pools and Complex Glycans

    Directory of Open Access Journals (Sweden)

    Salil K Ghosh

    2014-11-01

    Full Text Available The carbohydrate modification of serine and threonine residues with O-linked beta-N-acetylglucosamine (O-GlcNAc is ubiquitous and governs cellular processes ranging from cell signaling to apoptosis. The O-GlcNAc modification along with other carbohydrate modifications, including N-linked and O-linked glycans, glycolipids, and sugar polymers, all require the use of the nucleotide sugar UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway. In this paper, we describe the biochemical consequences resulting from perturbation of the O-GlcNAc pathway in C. elegans lacking O-GlcNAc transferase and O-GlcNAcase activities. In ogt-1 null animals, steady-state levels of UDP-GlcNAc/UDP-GalNAc and UDP-glucose were substantially elevated. Transcripts of genes encoding for key members in the Hexosamine Biosynthetic Pathway (gfat-2, gna-2, C36A4.4 and trehalose metabolism (tre-1, tre-2, and tps-2 were elevated in ogt-1 null animals. While there is no evidence to suggest changes in the profile of N-linked glycans in the ogt-1 and oga-1 mutants, glycans insensitive to PNGase digestion (including O-linked glycans, glycolipids, and glycopolymers were altered in these strains. Our data supports that changes in O-GlcNAcylation alters nucleotide sugar production, overall glycan composition, and transcription of genes encoding glycan processing enzymes. These data along with our previous findings that disruption in O-GlcNAc cycling alters macronutrient storage underscores the noteworthy influence this posttranslational modification plays in nutrient sensing.

  5. Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori.

    Science.gov (United States)

    Moonens, Kristof; Gideonsson, Pär; Subedi, Suresh; Bugaytsova, Jeanna; Romaõ, Ema; Mendez, Melissa; Nordén, Jenny; Fallah, Mahsa; Rakhimova, Lena; Shevtsova, Anna; Lahmann, Martina; Castaldo, Gaetano; Brännström, Kristoffer; Coppens, Fanny; Lo, Alvin W; Ny, Tor; Solnick, Jay V; Vandenbussche, Guy; Oscarson, Stefan; Hammarström, Lennart; Arnqvist, Anna; Berg, Douglas E; Muyldermans, Serge; Borén, Thomas; Remaut, Han

    2016-01-13

    The Helicobacter pylori adhesin BabA binds mucosal ABO/Le(b) blood group (bg) carbohydrates. BabA facilitates bacterial attachment to gastric surfaces, increasing strain virulence and forming a recognized risk factor for peptic ulcers and gastric cancer. High sequence variation causes BabA functional diversity, but the underlying structural-molecular determinants are unknown. We generated X-ray structures of representative BabA isoforms that reveal a polymorphic, three-pronged Le(b) binding site. Two diversity loops, DL1 and DL2, provide adaptive control to binding affinity, notably ABO versus O bg preference. H. pylori strains can switch bg preference with single DL1 amino acid substitutions, and can coexpress functionally divergent BabA isoforms. The anchor point for receptor binding is the embrace of an ABO fucose residue by a disulfide-clasped loop, which is inactivated by reduction. Treatment with the redox-active pharmaceutic N-acetylcysteine lowers gastric mucosal neutrophil infiltration in H. pylori-infected Le(b)-expressing mice, providing perspectives on possible H. pylori eradication therapies.

  6. Fluorinated carbon tag derivatization combined with fluorous solid-phase extraction: a new method for the highly sensitive and selective mass spectrometric analysis of glycans.

    Science.gov (United States)

    Li, Lulu; Jiao, Jing; Cai, Yan; Zhang, Ying; Lu, Haojie

    2015-01-01

    The sensitive and specific detection of glycans via mass spectrometry (MS) remains a significant challenge due to their low abundance in complex biological mixtures, inherent lack of hydrophobicity, and suppression by other, more abundant biological molecules (proteins/peptides) or contaminants. A new strategy for the sensitive and selective MS analysis of glycans based on fluorous chemistry is reported. Glycan reducing ends were derivatized with a hydrophobic fluorinated carbon tag, increasing glycan ionization efficiency during MS by more than an order of magnitude. More importantly, the fluorinated carbon tag enabled efficient fluorous solid-phase extraction (FSPE) to specifically enrich the glycans from contaminated solutions and protein mixtures. Finally, we successfully analyzed the N-glycome in human serum using this new method. PMID:25884104

  7. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7.

    Science.gov (United States)

    Belyakov, Alexei Ye; Burygin, Gennady L; Arbatsky, Nikolai P; Shashkov, Alexander S; Selivanov, Nikolai Yu; Matora, Larisa Yu; Knirel, Yuriy A; Shchyogolev, Sergei Yu

    2012-11-01

    This is the first report to have identified an O-linked repetitive glycan in bacterial flagellin, a structural protein of the flagellum. Studies by sugar analysis, Smith degradation, (1)H and (13)C NMR spectroscopy, and mass spectrometry showed that the glycan chains of the polar flagellum flagellin of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 are represented by a polysaccharide with a molecular mass of 7.7 kDa, which has a branched tetrasaccharide repeating unit of the following structure:

  8. Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core.

    Directory of Open Access Journals (Sweden)

    Karen De Pourcq

    Full Text Available Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as "generally recognized as safe." Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man(3GlcNAc(2 structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man(5GlcNAc(2 and GlcMan(5GlcNAc(2 glycans, and to a lesser extent with Glc(2Man(5GlcNAc(2 glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man(3GlcNAc(2 structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man(3GlcNAc(2, which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.

  9. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G.; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.

    2014-09-02

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.

  10. Interaction of the transcription start site core region and transcription factor YY1 determine ascorbate transporter SVCT2 exon 1a promoter activity.

    Directory of Open Access Journals (Sweden)

    Huan Qiao

    Full Text Available Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a "bridge" mechanism with upstream sequences.

  11. Expression of LacdiNAc Groups on N-Glycans among Human Tumors Is Complex

    Directory of Open Access Journals (Sweden)

    Kiyoko Hirano

    2014-01-01

    Full Text Available Aberrant glycosylation of proteins and lipids is one of the characteristic features of malignantly transformed cells. The GalNAcβ1 → 4GlcNAc (LacdiNAc or LDN group at the nonreducing termini of both N- and O-glycans is not generally found in mammalian cells. We previously showed that the expression level of the LacdiNAc group in N-glycans decreases dramatically during the progression of human breast cancer. In contrast, the enhanced expression of the LacdiNAc group has been shown to be associated with the progression of human prostate, ovarian, and pancreatic cancers. Therefore, the expression of the disaccharide group appears to be dependent on types of tumors. The mechanism of formation of the LacdiNAc group in human tumors and cancer cells has been studied, and two β4-N-acetylgalacto-saminyltransferases (β4GalNAcTs, β4GalNAcT3 and β4GalNAcT4, have been shown to be involved in the biosynthesis of this disaccharide group in a tissue-dependent manner. Transfection of the β4GalNAcT3 gene brought about significant changes in the malignant phenotypes of human neuroblastoma, indicating that this disaccharide group is important for suppressing the tumor growth.

  12. Glycan modulation and sulfoengineering of anti–HIV-1 monoclonal antibody PG9 in plants

    Science.gov (United States)

    Loos, Andreas; Gach, Johannes S.; Hackl, Thomas; Maresch, Daniel; Henkel, Theresa; Porodko, Andreas; Bui-Minh, Duc; Sommeregger, Wolfgang; Wozniak-Knopp, Gordana; Forthal, Donald N.; Altmann, Friedrich; Steinkellner, Herta; Mach, Lukas

    2015-01-01

    Broadly neutralizing anti–HIV-1 monoclonal antibodies, such as PG9, and its derivative RSH hold great promise in AIDS therapy and prevention. An important feature related to the exceptional efficacy of PG9 and RSH is the presence of sulfated tyrosine residues in their antigen-binding regions. To maximize antibody functionalities, we have now produced glycan-optimized, fucose-free versions of PG9 and RSH in Nicotiana benthamiana. Both antibodies were efficiently sulfated in planta on coexpression of an engineered human tyrosylprotein sulfotransferase, resulting in antigen-binding and virus neutralization activities equivalent to PG9 synthesized by mammalian cells (CHOPG9). Based on the controlled production of both sulfated and nonsulfated variants in plants, we could unequivocally prove that tyrosine sulfation is critical for the potency of PG9 and RSH. Moreover, the fucose-free antibodies generated in N. benthamiana are capable of inducing antibody-dependent cellular cytotoxicity, an activity not observed for CHOPG9. Thus, tailoring of the antigen-binding site combined with glycan modulation and sulfoengineering yielded plant-produced anti–HIV-1 antibodies with effector functions superior to PG9 made in CHO cells. PMID:26417081

  13. Multiplexed detection of lectins using integrated glycan-coated microring resonators.

    Science.gov (United States)

    Ghasemi, Farshid; Hosseini, Ehsan Shah; Song, Xuezheng; Gottfried, David S; Chamanzar, Maysamreza; Raeiszadeh, Mehrsa; Cummings, Richard D; Eftekhar, Ali A; Adibi, Ali

    2016-06-15

    We present the systematic design, fabrication, and characterization of a multiplexed label-free lab-on-a-chip biosensor using silicon nitride (SiN) microring resonators. Sensor design is addressed through a systematic approach that enables optimizing the sensor according to the specific noise characteristics of the setup. We find that an optimal 6 dB undercoupled resonator consumes 40% less power in our platform to achieve the same limit-of-detection as the conventional designs using critically coupled resonators that have the maximum light-matter interaction. We lay out an optimization framework that enables the generalization of our method for any type of optical resonator and noise characteristics. The device is fabricated using a CMOS-compatible process, and an efficient swabbing lift-off technique is introduced for the deposition of the protective oxide layer. This technique increases the lift-off quality and yield compared to common lift-off methods based on agitation. The complete sensor system, including microfluidic flow cell and surface functionalization with glycan receptors, is tested for the multiplexed detection of Aleuria Aurantia Lectin (AAL) and Sambucus Nigra Lectin (SNA). Further analysis shows that the sensor limit of detection is 2 × 10(-6) RIU for bulk refractive index, 1 pg/mm(2) for surface-adsorbed mass, and ∼ 10 pM for the glycan/lectins studied here. PMID:26826877

  14. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine

    Science.gov (United States)

    Nothaft, Harald; Davis, Brandi; Lock, Yee Ying; Perez-Munoz, Maria Elisa; Vinogradov, Evgeny; Walter, Jens; Coros, Colin; Szymanski, Christine M.

    2016-01-01

    Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain. PMID:27221144

  15. Comparative Analysis of Ο-glycans from Human Hepatocellular Carcinoma HepG2 and Normal Liver Cells L02†%人肝癌细胞HepG2与正常肝细胞L02的Ο-糖链的比较分析

    Institute of Scientific and Technical Information of China (English)

    潘丽英; 顾笑; 王承健; 强珊; 黄琳娟; 张英; 王仲孚

    2015-01-01

    HepG2 ( a primary hepatocellular carcinoma cell line ) and L02 ( ones derived from normal liver tissue) cells were chosen as model cell lines for research. The O-glycans of the total proteins extracted from HepG2 and L02 cells were released by Carlson reductive β-elimination. The released O-glycans previously purified by Dowex 50 WX8-400 cation exchange resin and C18 cartridges were identified by electrospray ioniza-tion mass spectrometry( ESI-MS) and MS/MS. For comparision studies, β-cyclodextrin was used as the inter-nal standard for relative quantitative analysis of the O-glycans derived from HepG2 and L02 cells by MS. As results, 10 O-glycans were observed in HepG2 cell line and 9 O-glycans were detected in L02 cell line. More-over, 9 O-glycans were observed in both HepG2 and L02 cells, wherears 1 truncated O-glycan assigned as H1A1(NeuAc-GalNAc, sialyl Tn antigen, ubiquitous in cancer cells), was only found in HepG2 cells. t-Test results show that 5 and 2 O-glycans in HepG2 cells have significant differences ( P<0. 01 and P<0. 05 , recpectively) , when compared to those of L02 cells. Our studies show methodological significance in structural investigation of O-glycans expressed in hepatocellular carcinoma and early biomarker discovery in clinical diag-nose.%以培养的原发性肝细胞癌HepG2细胞和正常肝细胞L02为研究对象,用细胞裂解液提取总蛋白,然后采用Carlson还原性β-消除法释放O-糖链,以阳离子交换柱结合C18柱纯化分离O-糖链,用电喷雾电离质谱( ESI-MS)和串联质谱( MS/MS)对O-糖链进行序列鉴定,以β-环糊精为内标对2种细胞系的O-糖链进行定量比较分析.结果表明,在肝癌细胞系HepG2中检测到10种O-糖链,正常细胞系L02中检测到9种O-糖链,其中9种O-糖链是2种细胞系中共有的,但HepG2中存在癌细胞中特有的缩短的O-糖链N1A1( NeuAc-GalNAc, sialyl Tn 抗原). t检验结果表明, HepG2与L02相比,在检测到的10种O-糖链中有5种的

  16. Regioselectivity of Human UDP-Glucuronsyltransferase 1A1 in the Synthesis of Flavonoid Glucuronides Determined by Metal Complexation and Tandem Mass Spectrometry

    OpenAIRE

    Davis, Barry D.; Brodbelt, Jennifer S.

    2007-01-01

    A three-part tandem mass spectrometric strategy that entails MSn analysis and a post-column LC-MS cobalt complexation method is developed to identify flavonoid monoglucuronide metabolites synthesized using the 1A1 isozyme of human UDP-glucuronosyltransferase (UGT). Ten flavonoid aglycons were used as substrates, spanning the subclasses of flavones, flavonols and flavanones. The products were characterized by LC-MS and LC-MSn, with post-column cobalt complexation employed to pinpoint the speci...

  17. Near-parabolic comets observed in 2006-2010. The individualized approach to 1/a-determination and the new distribution of original and future orbits

    CERN Document Server

    Krolikowska, Malgorzata

    2013-01-01

    Dynamics of a complete sample of 22 small perihelion distance near-parabolic comets discovered in the years 2006 - 2010 is studied. First, osculating orbits are obtained after a careful positional data inspection and processing, including where appropriate, the method of data partitioning for determination of pre- and post-perihelion orbit for tracking then its dynamical evolution. The nongravitational acceleration in the motion is detected for 50 per cent of investigated comets, in a few cases for the first time. Different sets of nongravitational parameters are determined from pre- and post-perihelion data for some of them. The influence of the positional data structure on the possibility of the detection of nongravitational effects and the overall precision of orbit determination is widely discussed. Secondly, both original and future orbits were derived by means of numerical integration of swarms of virtual comets obtained using a Monte Carlo cloning method. This method allows to follow the uncertainties ...

  18. L1CAM from human melanoma carries a novel type of N-glycan with Galβ1-4Galβ1- motif. Involvement of N-linked glycans in migratory and invasive behaviour of melanoma cells.

    Science.gov (United States)

    Hoja-Łukowicz, Dorota; Link-Lenczowski, Paweł; Carpentieri, Andrea; Amoresano, Angela; Pocheć, Ewa; Artemenko, Konstantin A; Bergquist, Jonas; Lityńska, Anna

    2013-04-01

    Dramatic changes in glycan biosynthesis during oncogenic transformation result in the emergence of marker glycans on the cell surface. We analysed the N-linked glycans of L1CAM from different stages of melanoma progression, using high-performance liquid chromatography combined with exoglycosidase sequencing, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and lectin probes. L1CAM oligosaccharides are heavily sialylated, mainly digalactosylated, biantennary complex-type structures with galactose β1-4/3-linked to GlcNAc and with or without fucose α1-3/6-linked to GlcNAc. Hybrid, bisected hybrid, bisected triantennary and tetraantennary complex oligosaccharides, and β1-6-branched complex-type glycans with or without lactosamine extensions are expresses at lower abundance. We found that metastatic L1CAM possesses only α2-6-linked sialic acid and the loss of α2-3-linked sialic acid in L1CAM is a phenomenon observed during the transition of melanoma cells from VGP to a metastatic stage. Unexpectedly, we found a novel monoantennary complex-type oligosaccharide with a Galβ1-4Galβ1- epitope capped with sialic acid residues A1[3]G(4)2S2-3. To our knowledge this is the first report documenting the presence of this oligosaccharide in human cancer. The novel and unique N-glycan should be recognised as a new class of human melanoma marker. In functional tests we demonstrated that the presence of cell surface α2-3-linked sialic acid facilitates the migratory behaviour and increases the invasiveness of primary melanoma cells, and it enhances the motility of metastatic cells. The presence of cell surface α2-6-linked sialic acid enhances the invasive potential of both primary and metastatic melanoma cells. Complex-type oligosaccharides in L1CAM enhance the invasiveness of metastatic melanoma cells. PMID:22544341

  19. A quantitative method to discriminate between non-specific and specific lectin-glycan interactions on silicon-modified surfaces.

    Science.gov (United States)

    Yang, Jie; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal

    2016-02-15

    Essential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces. An efficient conjugation protocol featuring a key "click"-based coupling step has been developed which ensures the obtention of interfaces with controlled glycan density. The adsorption behavior of these newly developed interfaces with the lectins, Lens culinaris and Peanut agglutinin, has been probed using quantitative IR-ATR and the data interpreted using various isothermal models. The analysis reveals that protein physisorption to the interface is more prevalent than specific chemisorption for the majority of washing protocols investigated. Physisorption can be greatly suppressed through application of a strong surfactinated rinse. The coexistence of chemisorption and physisorption processes is further demonstrated by quantification of the amounts of adsorbed proteins distributed on the surface, in correlation with the results obtained by atomic force microscopy (AFM). Taken together, the data demonstrates that the nonspecific adsorption of proteins to these glycan-terminated surfaces can be effectively eliminated through the proper control of the chemical structure of the surface monolayer combined with the implementation of an appropriate surface-rinse protocol.

  20. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling.

    Directory of Open Access Journals (Sweden)

    Neil Dani

    Full Text Available A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS 6-O-sulfotransferase (hs6st and sulfatase (sulf1, which bidirectionally control HS proteoglycan (HSPG sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st and increased (sulf1 neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg and BMP (Glass Bottom Boat; Gbb ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.

  1. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi; Feng, Ju; Deng, Shuang; Cao, Li; Zhang, Qibin; Zhao, Rui; Zhang, Zhaorui; Jiang, Yuxuan; Zink, Erika M.; Baker, Scott E.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Hu, Jian Z.; Wu, Si

    2014-11-19

    Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.

  2. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens

    NARCIS (Netherlands)

    Fehres, Cynthia M.; Kalay, Hakan; Bruijns, Sven C M; Musaafir, Sara A M; Ambrosini, Martino; Van Bloois, Louis; Van Vliet, Sandra J.; Storm, Gert; Garcia-Vallejo, Juan J.; Van Kooyk, Yvette

    2015-01-01

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based

  3. Cross-presentation through langerin and DC-SIGN targeting requires different formulation of glycan-modified antigens

    NARCIS (Netherlands)

    Fehres, Cynthia M.; Kalay, Hakan; Bruijns, Sven C.M.; Musaafir, Sara A.M.; Ambrosini, Martino; Bloois, van Louis; Vliet, van Sandra J.; Storm, Gert; Garcia-Vallejo, Juan J.; Kooyk, van Yvette

    2015-01-01

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based

  4. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans.

    Science.gov (United States)

    Garcia-Campos, Andres; Ravidà, Alessandra; Nguyen, D Linh; Cwiklinski, Krystyna; Dalton, John P; Hokke, Cornelis H; O'Neill, Sandra; Mulcahy, Grace

    2016-05-01

    Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F

  5. Mass spectrometric analysis of neutral and anionic N-glycans from a Dictyostelium discoideum model for human congenital disorder of glycosylation CDG IL.

    Science.gov (United States)

    Hykollari, Alba; Balog, Crina I A; Rendić, Dubravko; Braulke, Thomas; Wilson, Iain B H; Paschinger, Katharina

    2013-03-01

    The HL241 mutant strain of the cellular slime mold Dictyostelium discoideum is a potential model for human congenital disorder of glycosylation type IL (ALG9-CDG) and has been previously predicted to possess a lower degree of modification of its N-glycans with anionic moieties than the parental wild-type. In this study, we first showed that this strain has a premature stop codon in its alg9 mannosyltransferase gene compatible with the occurrence of truncated N-glycans. These were subject to an optimized analytical workflow, considering that the mass spectrometry of acidic glycans often presents challenges due to neutral loss and suppression effects. Therefore, the protein-bound N-glycans were first fractionated, after serial enzymatic release, by solid phase extraction. Then primarily single glycan species were isolated by mixed hydrophilic-interaction/anion-exchange or reversed-phase HPLC and analyzed using chemical and enzymatic treatments and MS/MS. We show that protein-linked N-glycans of the mutant are of reduced size as compared to those of wild-type AX3, but still contain core α1,3-fucose, intersecting N-acetylglucosamine, bisecting N-acetylglucosamine, methylphosphate, phosphate, and sulfate residues. We observe that a single N-glycan can carry up to four of these six possible modifications. Due to the improved analytical procedures, we reveal fuller details regarding the N-glycomic potential of this fascinating model organism. PMID:23320427

  6. Profiling of core fucosylated N-glycans using a novel bacterial lectin that specifically recognizes α1,6 fucosylated chitobiose

    Science.gov (United States)

    Vainauskas, Saulius; Duke, Rebecca M.; McFarland, James; McClung, Colleen; Ruse, Cristian; Taron, Christopher H.

    2016-01-01

    A novel fucose-binding lectin (SL2-1) from the bacterium Streptomyces rapamycinicus was identified by analysis of metagenomic DNA sequences. SL2-1 belongs to a new group of bacterial fucose-specific lectins that have no similarity to known bacterial fucose-binding proteins, but are related to certain eukaryotic fucose-binding lectins. The 17 kDa protein was expressed recombinantly in E. coli and purified by affinity chromatography. Glycan microarray analysis with fluorescently labeled recombinant SL2-1 demonstrated its ability to bind to core α1-6 fucosylated N-glycans, but not to core α1-3 fucosylated N-glycans, or other α1-2, α1-3 and α1-4 fucosylated oligosaccharides. The minimal high affinity binding epitope of SL2-1 was α1-6 fucosylated di-n-acetylchitobiose. The recombinant lectin was efficient in detection of N-glycan core fucosylation using lectin blotting and lectin ELISA assays. Finally, a workflow using SL2-1 for selective and quantitative profiling of core fucosylated N-glycans using UPLC-HILIC-FLR analysis was established. The approach was validated for selective capture and analysis of core fucosylated N-glycans present in complex glycan mixtures derived from mammalian serum IgG. PMID:27678371

  7. Linkage-Specific in Situ Sialic Acid Derivatization for N-Glycan Mass Spectrometry Imaging of Formalin-Fixed Paraffin-Embedded Tissues.

    Science.gov (United States)

    Holst, Stephanie; Heijs, Bram; de Haan, Noortje; van Zeijl, René J M; Briaire-de Bruijn, Inge H; van Pelt, Gabi W; Mehta, Anand S; Angel, Peggy M; Mesker, Wilma E; Tollenaar, Rob A; Drake, Richard R; Bovée, Judith V M G; McDonnell, Liam A; Wuhrer, Manfred

    2016-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a rapidly evolving field in which mass spectrometry techniques are applied directly on tissues to characterize the spatial distribution of various molecules such as lipids, protein/peptides, and recently also N-glycans. Glycans are involved in many biological processes and several glycan changes have been associated with different kinds of cancer, making them an interesting target group to study. An important analytical challenge for the study of glycans by MALDI mass spectrometry is the labile character of sialic acid groups which are prone to in-source/postsource decay, thereby biasing the recorded glycan profile. We therefore developed a linkage-specific sialic acid derivatization by dimethylamidation and subsequent amidation and transferred this onto formalin-fixed paraffin-embedded (FFPE) tissues for MALDI imaging of N-glycans. Our results show (i) the successful stabilization of sialic acids in a linkage specific manner, thereby not only increasing the detection range, but also adding biological meaning, (ii) that no noticeable lateral diffusion is induced during to sample preparation, (iii) the potential of mass spectrometry imaging to spatially characterize the N-glycan expression within heterogeneous tissues. PMID:27145236

  8. EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth.

    Directory of Open Access Journals (Sweden)

    Julia Garbe

    Full Text Available Glycosidases are widespread among bacteria. The opportunistic human pathogen Enterococcus faecalis encodes several putative glycosidases but little is known about their functions. The identified endo-β-N-acetylglucosaminidase EndoE has activity on the N-linked glycans of the human immunoglobulin G (IgG. In this report we identified the human glycoprotein lactoferrin (hLF as a new substrate for EndoE. Hydrolysis of the N-glycans from hLF was investigated using lectin blot, UHPLC and mass spectrometry, showing that EndoE releases major glycoforms from this protein. hLF was shown to inhibit biofilm formation of E. faecalis in vitro. Glycans of hLF influence the binding to E. faecalis, and EndoE-hydrolyzed hLF inhibits biofilm formation to lesser extent than intact hLF indicating that EndoE prevents the inhibition of biofilm. In addition, hLF binds to a surface-associated enolase of E. faecalis. Culture experiments showed that the activity of EndoE enables E. faecalis to use the glycans derived from lactoferrin as a carbon source indicating that they could be used as nutrients in vivo when no other preferred carbon source is available. This report adds important information about the enzymatic activity of EndoE from the commensal and opportunist E. faecalis. The activity on the human glycoprotein hLF, and the functional consequences with reduced inhibition of biofilm formation highlights both innate immunity functions of hLF and a bacterial mechanism to evade this innate immunity function. Taken together, our results underline the importance of glycans in the interplay between bacteria and the human host, with possible implications for both commensalism and opportunism.

  9. 枸杞子糖缀合物及其糖链对LDL氧化修饰的抑制作用%STUDIES ON THE GLYCOCONJUGATES AND GLYCANS FROM LYCIUM BARBARUM L IN INHIBITING LOW DENSITY LIPOPROTEIN (LDL) PEROXIDATION

    Institute of Scientific and Technical Information of China (English)

    黄琳娟; 田庚元; 王仲孚; 董继斌; 吴满平

    2001-01-01

    的 研究枸杞子糖缀合物及其糖链对LDL氧化修饰的抑制作用。方法 在Cu2+诱导的LDL氧化模型中测定了脂质过氧化产物硫代巴比妥酸反应物质(TBARS)的含量及LDL在琼脂糖凝胶电泳上的迁移率以反映从枸杞子中分离、纯化得到的糖缀合物及糖链对LDL氧化修饰的抑制作用。结果 枸杞子糖缀合物及糖链抗LDL氧化的能力是不同的,其中LbGp5可明显的抑制LDL的氧化。结论 枸杞子糖缀合物具有抗LDL氧化作用,而糖链不具有抗LDL氧化的作用。%AIM To determine the effects of glycoconjugates and their glycans from Lycium barbarum L. on inhibiting low density lipoprotein (LDL) peroxidation. METHODS Using Cu2+-induced oxidation as a model, the oxidative production of thiobarbituric acid-reactive substances (TBARS) and the LDL electrophoresis migration on agarose gel were measured. RESULTS The effects of glycoconjugates and their glycans from Lycium barbarum L. on inhibiting LDL peroxidation were different, among them, glycoconjugate LbGp5 showed the best effect on inhibiting LDLperoxidation. CONCLUSION The glycoconjugates can inhibit LDL peroxidatin while their glycans showed no effects on inhibiting LDL peroxidation.

  10. The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors

    DEFF Research Database (Denmark)

    Rasmussen, Birgitte B; Brix, Thomas H; Kyvik, Kirsten O;

    2002-01-01

    . The mean (+/- SD) caffeine ratio was 5.9 +/- 3.4. The caffeine ratio was statistically significantly higher in men compared to women, in smoking men and women compared to non-smoking persons of the same gender and in women not taking oral contraceptives compared with women on oral contraceptives. Thus, we...... confirmed that CYP1A2 is more active in men than in women, that it is induced by smoking and inhibited by oral contraceptives. In the subsequent analysis of heritability, we included 49 monozygotic twin pairs and 34 same gender dizygotic twin pairs concordant for non-smoking and non-use of oral...... contraceptives. The intraclass correlation coefficient was 0.798 (95% confidence interval, 0.696-0.900) and 0.394 (95% confidence interval, 0.109-0.680) in the monozygotic and dizygotic twins, respectively. The correlation was statistically significantly higher (P = 0.0015) in the former compared with the latter...

  11. Glycan profiling of gel forming mucus layer from the scleractinian symbiotic coral Oculina arbuscula.

    Science.gov (United States)

    Coddeville, Bernadette; Maes, Emmanuel; Ferrier-Pages, Christine; Guerardel, Yann

    2011-06-13

    The gel forming mucus layer surrounding scleractinian corals play fundamental functions in the maintenance of a favorable microenvironment required for the survival of these organisms. In particular, it harbors a rich partially species-specific symbiotic community through yet poorly understood molecular interactions. However, removal or contamination of this community by exogenous bacteria is closely linked to the worldwide bleaching events that are presently devastating coral colonies. The present study investigates the structure of major high molecular weight glycoconjugates that are responsible for both rheological properties of mucus and sugar-protein interactions with microbial communities. We demonstrated that it is composed by two distinct types of sulfated macromolecules: mucin type glycoproteins densely substituted by short unusual O-linked glycans and repetitive polysaccharides. PMID:21517058

  12. Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Placental alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] is a member of a diverse group of membrane proteins whose attachment to the lipid bilayer is mediated by a phosphatidylinositol-glycan. To investigate structural aspects of the glycolipid anchor, cultured WISH cells were used because, they produce the enzyme in abundant quantities. When cell suspensions were incubated with purified phosphatidylinositol-specific phospholipase C, most of the placental alkaline phosphatase was released from membranes in a hydrophilic form. On incubation of the cells with [14C]ethanolamine, [14C]myristic acid, or myo[3H]inositol, each was incorporated into the phosphatase near the carboxyl terminus, showing that these components, which are found in other phosphatidylinositol membrane-linked proteins, are also present in placental alkaline phosphatase

  13. Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength

    Science.gov (United States)

    Ghasemi, Farshid; Eftekhar, Ali A.; Gottfried, David S.; Song, Xuezheng; Cummings, Richard D.; Adibi, Ali

    2013-02-01

    We report on application of on-chip referencing to improve the limit-of-detection (LOD) in compact silicon nitride (SiN) microring arrays. Microring resonators, fabricated by e-beam lithography and fluorine-based etching, are designed for visible wavelengths (656nm) and have a footprint of 20 x 20 μm. GM1 ganglioside is used as the specific ligand for recognition of Cholera Toxin Subunit B (CTB), with Ricinus Communis Agglutinin I (RCA I) as a negative control. Using micro-cantilever based printing less than 10 pL of glycan solution is consumed per microring. Real-time data on analyte binding is extracted from the shifts in resonance wavelengths of the microrings.

  14. Combining polysaccharide biosynthesis and transport in a single enzyme: dual-function cell wall glycan synthases.

    Directory of Open Access Journals (Sweden)

    Jonathan Kent Davis

    2012-06-01

    Full Text Available Extracellular polysaccharides are synthesized by a wide variety of species, from unicellular bacteria and Archaea to the largest multicellular plants and animals in the biosphere. In every case, the biosynthesis of these polymers requires transport across a membrane, from the cytosol to either the lumen of secretory pathway organelles or directly into the extracellular space. Although some polysaccharide biosynthetic substrates are moved across the membrane to sites of polysaccharide synthesis by separate transporter proteins before being incorporated into polymers by glycosyltransferase proteins, many polysaccharide biosynthetic enzymes appear to have both transporter and transferase activities. In these cases, the biosynthetic enzymes utilize substrate on one side of the membrane and deposit the polymer product on the other side. This review discusses structural characteristics of plant cell wall glycan synthases that couple synthesis with transport, drawing on what is known about such dual-function enzymes in other species.

  15. Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers.

    Science.gov (United States)

    Frenz, Theresa; Grabski, Elena; Durán, Verónica; Hozsa, Constantin; Stępczyńska, Anna; Furch, Marcus; Gieseler, Robert K; Kalinke, Ulrich

    2015-09-01

    Targeted drug delivery systems hold promise for selective provision of active compounds to distinct tissues or cell subsets. Thus, locally enhanced drug concentrations are obtained that would confer improved efficacy. As a consequence adverse effects should be diminished, as innocent bystander cells are less affected. Currently, several controlled drug delivery systems based on diverse materials are being developed. Some systems exhibit material-associated toxic effects and/or show low drug loading capacity. In contrast, liposomal nanocarriers are particularly favorable because they are well tolerated, poorly immunogenic, can be produced in defined sizes, and offer a reasonable payload capacity. Compared with other immune cells, professional antigen-presenting cells (APCs) demonstrate enhanced liposome uptake mediated by macropinocytosis, phagocytosis and presumably also by clathrin- and caveolae-mediated endocytosis. In order to further enhance the targeting efficacy toward APCs, receptor-mediated uptake appears advisable. Since APC subsets generally do not express single linage-specific receptors, members of the C-type lectin receptor (CLR) family are compelling targets. Examples of CLR expressed by APCs include DEC-205 (CD205) expressed by myeloid dendritic cells (DC) and monocytes, the mannose receptor C type 1 (MR, CD206) expressed by DC, monocytes and macrophages, DC-SIGN (CD209) expressed by DC, and several others. These receptors bind glycans, which are typically displayed by pathogens and thus support pathogen uptake and endocytosis. Further research will elucidate whether glycan-decorated liposomes will not only enhance APCs targeting but also enable preferential delivery of their payload to discrete subcellular compartments. PMID:25701806

  16. O-glycans direct selectin ligands to lipid rafts on leukocytes.

    Science.gov (United States)

    Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D'souza, Padmaja; Fu, Jianxin; Crocker, Paul R; Rodgers, William; Xia, Lijun; McEver, Rodger P

    2015-07-14

    Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.

  17. Presence of beta-linked GalNAc residues on N-glycans of human thyroglobulin.

    Science.gov (United States)

    Takeya, Akira; Hosomi, Osamu; Nishijima, Hironori; Ohe, Yoshihide; Sugahara, Kunio; Sagi, Morihisa; Yamazaki, Kentaro; Hayakawa, Hideyuki; Takeshita, Hiroshi; Sasaki, Chizuko; Kogure, Tadahisa; Mukai, Toshiji

    2007-01-16

    Hepatic asialoglycoprotein receptor, which may mediate the clearance of circulating thyroglobulin, is known to have a high affinity for GalNAc. Recently, the receptor has been reported to be present also in the thyroid, implicating interaction with thyroglobulin. Here, mammalian thyroglobulins were analyzed for GalNAc termini by Western blotting with GalNAc-recognizing lectins labeled with peroxidase or (125)I. Wistaria floribunda lectin was found to bind human thyroglobulin and, to some extent, bovine, but not porcine thyroglobulin. After desialylation, the lectin bound all of the thyroglobulins tested. The binding was inhibited by competitive inhibitor GalNAc. Peptide N-glycanase treatment of human desialylated thyroglobulin resulted in the complete loss of reactivity with W. floribunda lectin, indicating that the binding sites are exclusively on N-glycans. The binding sites on human desialylated thyroglobulin were partly sensitive to beta-galactosidase, and the remainder was essentially sensitive to beta-N-acetylhexosaminidase. On the other hand, the binding sites of bovine and porcine desialylated thyroglobulins were totally sensitive to beta-galactosidase. Thus the lectin binds beta-Gal termini, as well as beta-GalNAc. GalNAc-specific Dolichos biflorus lectin also bound human thyroglobulin weakly. In contrast to W. floribunda lectin, desialylation diminished binding, suggesting that these two lectins recognize different GalNAc-terminated structures. Again, the binding was inhibited by GalNAc and by treatment with peptide N-glycanase. These results strongly indicate the presence of distinct GalNAc termini of N-glycans on human thyroglobulin.

  18. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace

  19. Small-scale, high-throughput method for plant N-glycan preparation for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.

    Science.gov (United States)

    Matsuo, Kouki

    2011-06-15

    A simple, small-scale, and high-throughput method for preparation of plant N-glycans for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is described. This method entailed the extraction of soluble proteins, pepsin digestion, release of N-glycans by glycopeptidase A, and a three-step chromatographic purification process using cation exchange, anion exchange, and graphitized carbon. Homemade minicolumns using commercially available filter unit devices were used for N-glycan purification steps. All purification steps were designed to be easy. Using this method, N-glycans from 10-mg leaf samples of different plant species and only 2 μg of pure horseradish peroxidase were successfully purified. PMID:21320463

  20. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans.

    Science.gov (United States)

    Ilg, T; Overath, P; Ferguson, M A; Rutherford, T; Campbell, D G; McConville, M J

    1994-09-30

    The protozoan parasite Leishmania mexicana secretes a heavily glycosylated 100-kDa acid phosphatase (sAP) which is associated with one or more polydisperse proteophosphoglycans. Most of the glycans in this complex were released using mild acid hydrolysis conditions that preferentially cleave phosphodiester linkages. The released saccharides were shown to consist of monomeric mannose and a series of neutral and phosphorylated glycans by Dionex high performance liquid chromatography, methylation analysis, exoglycosidase digestions, and one-dimensional 1H NMR spectroscopy. The neutral species comprised a linear series of oligosaccharides with the structures [Man alpha 1-2]1-5Man. The phosphorylated oligosaccharides were characterized as PO4-6Gal beta 1-4Man and PO4-6[Glc beta 1-3]Gal beta 1-4Man. The attachment of these glycans to the polypeptide backbone via the linkage, Man alpha 1-PO4-Ser, is suggested by: 1) the finding that more than 60% of the serine residues in the polypeptide are phosphorylated and 2) the resistance of the phosphoserine residues to alkaline phosphatase digestion unless the sAP was first treated with either mild acid (to release all glycans) or jack bean alpha-mannosidase (to release neutral mannose glycans). Analysis of the partially resolved components of the complex indicated that the most of the O-linked glycans on the 100-kDa phosphoglycoprotein comprised mannose and the mannose-oligosaccharides. In contrast the major O-linked glycans on the proteophosphoglycan were short phosphoglycan chains, containing on average two repeat units per chain. In addition to the O-linked glycans, both components in the sAP complex contained N-linked glycans. The N-glycanase F-released glycans were characterized by Bio-Gel P4 chromatography and exoglycosidase digestions to be the biantennary oligomannose type with the structures Glc1Man6GlcNAc2 and Man6GlcNAc2. The O-linked glycans of the sAP complex are similar to those found in the phosphoglycan chains of

  1. Structural and immunological characterization of the N-glycans from the major yellow jacket allergen Ves v 2: The N-glycan structures are needed for the human antibody recognition

    DEFF Research Database (Denmark)

    Seppälä, Ulla; Selby, David; Monsalve, Rafael;

    2009-01-01

    .01, and residues 66 and 81 of Ves v 2.02. Structural analysis of the glycopeptides showed that the majority of the N-glycans contained at least one alpha1,3-fucose and/or alpha1,6-fucose residues in a structure. Interestingly, serum IgE antibodies from vespid allergic patients recognized nVes v 2 but not rVes v 2...

  2. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence.

    Science.gov (United States)

    Kondaurova, Elena M; Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2016-09-01

    Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested.

  3. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear-induced aggression or its absence.

    Science.gov (United States)

    Kondaurova, Elena M; Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2016-09-01

    Serotonin 5-HT1A receptor is known to play a crucial role in the mechanisms of genetically defined aggression. In its turn, 5-HT1A receptor functional state is under control of multiple factors. Among others, transcriptional factors Freud-1 and Freud-2 are known to be involved in the repression of 5-HT1A receptor gene expression. However, implication of these factors in the regulation of behavior is unclear. Here, we investigated the expression of 5-HT1A receptor and silencers Freud-1 and Freud-2 in the brain of rats selectively bred for 85 generations for either high level of fear-induced aggression or its absence. It was shown that Freud-1 and Freud-2 levels were different in aggressive and nonaggressive animals. Freud-1 protein level was decreased in the hippocampus, whereas Freud-2 protein level was increased in the frontal cortex of highly aggressive rats. There no differences in 5-HT1A receptor gene expression were found in the brains of highly aggressive and nonaggressive rats. However, 5-HT1A receptor protein level was decreased in the midbrain and increased in the hippocampus of highly aggressive rats. These data showed the involvement of Freud-1 and Freud-2 in the regulation of genetically defined fear-induced aggression. However, these silencers do not affect transcription of the 5-HT1A receptor gene in the investigated rats. Our data indicate the implication of posttranscriptional rather than transcriptional regulation of 5-HT1A receptor functional state in the mechanisms of genetically determined aggressive behavior. On the other hand, the implication of other transcriptional regulators for 5-HT1A receptor gene in the mechanisms of genetically defined aggression could be suggested. PMID:27150226

  4. A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans.

    Science.gov (United States)

    Sok, Devin; Pauthner, Matthias; Briney, Bryan; Lee, Jeong Hyun; Saye-Francisco, Karen L; Hsueh, Jessica; Ramos, Alejandra; Le, Khoa M; Jones, Meaghan; Jardine, Joseph G; Bastidas, Raiza; Sarkar, Anita; Liang, Chi-Hui; Shivatare, Sachin S; Wu, Chung-Yi; Schief, William R; Wong, Chi-Huey; Wilson, Ian A; Ward, Andrew B; Zhu, Jiang; Poignard, Pascal; Burton, Dennis R

    2016-07-19

    The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the (324)GDIR(327) peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both (324)GDIR(327) peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env. PMID:27438765

  5. The presence of outer arm fucose residues on the N-glycans of tissue inhibitor of metalloproteinases-1 reduces its activity.

    Science.gov (United States)

    Kim, Han Ie; Saldova, Radka; Park, Jun Hyoung; Lee, Young Hun; Harvey, David J; Wormald, Mark R; Wynne, Kieran; Elia, Giuliano; Kim, Hwa-Jung; Rudd, Pauline M; Lee, Seung-Taek

    2013-08-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits matrix metalloproteinases (MMPs) by binding at a 1:1 stoichiometry. Here we have shown the involvement of N-glycosylation in the MMP inhibitory ability of TIMP-1. TIMP-1, purified from HEK 293 cells overexpressing TIMP-1 (293 TIMP-1), showed less binding and inhibitory abilities to MMPs than TIMP-1 purified from fibroblasts or SF9 insect cells infected with TIMP-1 baculovirus. Following deglycosylation of TIMP-1, all forms of TIMP-1 showed similar levels of MMP binding and inhibition, suggesting that glycosylation is involved in the regulation of these TIMP-1 activities. Analysis of the N-glycan structures showed that SF9 TIMP-1 has the simplest N-glycan structures, followed by fibroblast TIMP-1 and 293 TIMP-1, in order of increasing complexity in their N-glycan structures. Further analyses showed that cleavage of outer arm fucose residues from the N-glycans of 293 TIMP-1 or knockdown of both FUT4 and FUT7 (which encode for fucosyltransferases that add outer arm fucose residues to N-glycans) enhanced the MMP-binding and catalytic abilities of 293 TIMP-1, bringing them up to the levels of the other TIMP-1. These results demonstrate that the ability of TIMP-1 to inhibit MMPs is at least in part regulated by outer arm fucosylation of its N-glycans.

  6. GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSL5 induced platelet activation and direct toward glycans as potential inhibitors.

    Directory of Open Access Journals (Sweden)

    Houyuan Hu

    Full Text Available BACKGROUND: Staphylococcus aureus (S. aureus is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5 has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects. METHODOLOGY/PRINCIPAL FINDINGS: In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro. CONCLUSIONS/SIGNIFICANCE: These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in vivo.

  7. μ-Theraphotoxin-An1a: primary structure determination and assessment of the pharmacological activity of a promiscuous anti-insect toxin from the venom of the tarantula Acanthoscurria natalensis (Mygalomorphae, Theraphosidae).

    Science.gov (United States)

    Rates, Breno; Prates, Maura V; Verano-Braga, Thiago; da Rocha, Angela P; Roepstorff, Peter; Borges, Carlos L; Lapied, Bruno; Murillo, Laurence; Pimenta, Adriano M C; Biondi, Ilka; De Lima, Maria Elena

    2013-08-01

    Tarantulas are included in the mygalomorph spider family Theraphosidae. Although the pharmacological diversity of theraphosid toxins (theraphotoxins) is broad, studies dedicated to the characterization of biologically active molecules from the theraphosid genus Acanthoscurria have been restricted to the investigation of antimicrobial peptides and polyamines produced by the hemocytes of Acanthoscurria gomesiana. The present study reports the purification, primary structure determination and electrophysiological effects of an anti-insect toxin, named μ-theraphotoxin-An1a (μ-TRTX-An1a), from the venom of Acanthoscurria natalensis - a tarantula species occurring in the Brazilian biomes caatinga and cerrado. The analysis of the primary structure of μ-TRTX-An1a revealed the similarity of this toxin to theraphosid toxins bearing a huwentoxin-II-like fold. Electrophysiological experiments showed that μ-TRTX-An1a (100 nM) induces membrane depolarization, increases the spontaneous firing frequency and reduces spike amplitude of cockroach dorsal unpaired median (DUM) neurons. In addition, under voltage-clamp conditions, μ-TRTX-An1a (100 nM) only partially blocks voltage-dependent sodium current amplitudes in DUM neurons without any effect on their voltage dependence. This effect correlates well with the reduction of the spontaneous action potential amplitudes. Altogether, these last results suggest that μ-TRTX-An1a affects insect neuronal voltage-dependent sodium channels, which are among possible channels targeted by this promiscuous toxin. PMID:23651762

  8. Influence of the host (Cho) and of the cultivation strategy on glycan structures and molecular properties of human thyrotrophin; Influencia do hospedeiro (Cho) e da estrategia de cultivo nas estruturas glicidicas e propriedades moleculares da tireotrofina humana

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joao Ezequiel de

    2007-07-01

    A novel, fast and practical two-step purification strategy, consisting of a classical ion exchange and a reversed-phase high performance liquid chromatography (RP-HPLC), for rapidly obtaining CHO-derived hTSH, was set up providing r-hTSH with 70% yield and > 99% purity. A consistent increase of {approx} 60% in the secretion yields of r-hTSH-IPEN was observed by changing cell culture CO{sub 2} conditions from 5% CO{sub 2} to air environment (0.03% CO{sub 2}). The overall quality of the products obtained under both conditions was evaluated for what concerns N-glycan structure, charge isomers and biological activity in comparison with a well known recombinant biopharmaceutical (Thyrogen{sup R}) and with a pituitary reference preparation (p-hTSH) from National Hormone and Pituitary Program (NIDDK, USA). The N-glycans identified in the recombinant preparations were of the complex type, presenting bi-, tri- and tetra-antennary structures, sometimes fucosylated, 86-88% of the identified structures being sialylated at variable levels. The three most abundant structures were monosialylated glycans, representing {approx} 69% of all identified forms in the three preparations. The main difference was found in terms of antennarity, with 8-10% more bi-antennary structures obtained in the absence of CO{sub 2} and 7-9% more tri-antennary structures in its presence. In the case of p-hTSH, complex, high-mannose and hybrid N-glycan structures were identified, most of them containing sialic acid and/or sulphate terminal residues. The two most abundant structures were shown to contain one or two sulphate residues, one of which unexpectedly bound to galactose. The sialic acid-galactose linkage was also determined, having found that 68 3 {+-} 10% was in the {alpha} 2,6 and 32 {+-} 10% in the {alpha}2,3 conformation. No remarkable difference in charge isomers was observed between the three recombinant preparations, the isoelectric focusing profiles showing six distinct bands in the 5

  9. Mining the “glycocode”—exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy

    OpenAIRE

    Gunning, A. Patrick; Kirby, Andrew R.; Fuell, Christine; Pin, Carmen; Tailford, Louise E.; Juge, Nathalie

    2013-01-01

    Mucins are the main components of the gastrointestinal mucus layer. Mucin glycosylation is critical to most intermolecular and intercellular interactions. However, due to the highly complex and heterogeneous mucin glycan structures, the encoded biological information remains largely encrypted. Here we have developed a methodology based on force spectroscopy to identify biologically accessible glycoepitopes in purified porcine gastric mucin (pPGM) and purified porcine jejunal mucin (pPJM). The...

  10. Regulation of Mac-2BP secretion is mediated by its N-glycan binding to ERGIC-53.

    Science.gov (United States)

    Chen, Yang; Hojo, Sanae; Matsumoto, Naoki; Yamamoto, Kazuo

    2013-07-01

    The leguminous-type (L-type) lectin ER-Golgi intermediate compartment (ERGIC)-53, a homo-oligomeric endoplasmic reticulum (ER)-Golgi recycling protein, functions as a transport receptor for newly synthesized glycoproteins in the early secretory pathway. Although a limited subset of cargo glycoproteins transported by ERGIC-53, such as the coagulation factors V and VIII, cathepsin C and Z and α1-antitrypsin, has been identified, the exact role of the N-glycan binding of ERGIC-53 in the transport of secretory glycoproteins for ER exit has yet to be clarified. By screening a cDNA library isolated from HepG2 cells via a green fluorescent protein fragment complementation assay, we assessed several candidate luminal ERGIC-53-interacting partners and identified Mac-2 binding protein (Mac-2BP) as a novel ERGIC-53-transported cargo glycoprotein. Using an N-glycan-binding-deficient mutant of ERGIC-53 (N156A) or treatment with N-glycosylation processing inhibitors, as well as the introduction of the ER-mis-targeting mutant (KKAA), we demonstrated that the high-mannose-type N-glycan binding of ERGIC-53 contributes to its interaction with Mac-2BP, which is essential for the ERGIC-53-mediated ER-Golgi transport of nascent proteins during early secretion. Furthermore, we also provide evidence that MCFD2 is involved in the secretion of Mac-2BP. These observations reveal a distinct role for the N-glycan binding of ERGIC-53 in the receptor-mediated ER exit of newly synthesized Mac-2BP in the early secretion pathway.

  11. A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures

    OpenAIRE

    2011-01-01

    Background Measuring similarities between tree structured data is important for analysis of RNA secondary structures, phylogenetic trees, glycan structures, and vascular trees. The edit distance is one of the most widely used measures for comparison of tree structured data. However, it is known that computation of the edit distance for rooted unordered trees is NP-hard. Furthermore, there is almost no available software tool that can compute the exact edit distance for unordered trees. Result...

  12. The complexity of membrane-bound glycans in health and disease and the beneficial properties of glyconutrients

    OpenAIRE

    Wagner, Lynn

    2013-01-01

    The surface of all free living cells and all multicellular cell types are covered with a dense and complex array of sugars mostly attached to proteins and lipids. These specific sugars are referred to as glycans and the biological role of these sugars includes cell-cell, cell-matrix, cell-molecule interactions, and interactions between other organisms. The chemistry of carbohydrates has been studied well since the first part of the 20th century without understanding the complexity of the glyc...

  13. Concurrent Automated Sequencing of the Glycan and Peptide Portions of O-Linked Glycopeptide Anions by Ultraviolet Photodissociation Mass Spectrometry

    OpenAIRE

    Madsen, James A.; Ko, Byoung Joon; Xu, Hua; Iwashkiw, Jeremy A; Robotham, Scott A.; Shaw, Jared B.; Feldman, Mario F.; Brodbelt, Jennifer S.

    2013-01-01

    O -glycopeptides are often acidic owing to the frequent occurrence of acidic saccharides in the glycan, rendering traditional proteomic workflows that rely on positive mode tandem mass spectrometry (MS/MS) less effective. In this report, we demonstrate the utility of negative mode ultraviolet photodissociation (UVPD) MS for the characterization of acidic O-linked glycopeptide anions. This method was evaluated for a series of singly- and multiply-deprotonated glycopeptides from the model glyco...

  14. Glycotope Sharing between Snail Hemolymph and Larval Schistosomes: Larval Transformation Products Alter Shared Glycan Patterns of Plasma Proteins

    OpenAIRE

    YOSHINO, TIMOTHY P.; Wu, Xiao-Jun; Liu, Hongdi; Gonzalez, Laura A.; Deelder, André M; Cornelis H Hokke

    2012-01-01

    Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivi...

  15. Construction of N-glycan microarrays by using modular synthesis and on-chip nanoscale enzymatic glycosylation.

    Science.gov (United States)

    Serna, Sonia; Etxebarria, Juan; Ruiz, Nerea; Martin-Lomas, Manuel; Reichardt, Niels-Christian

    2010-11-22

    An effective chemoenzymatic strategy is reported that has allowed the construction, for the first time, of a focused microarray of synthetic N-glycans. Based on modular approaches, a variety of N-glycan core structures have been chemically synthesized and covalently immobilized on a glass surface. The printed structures were then enzymatically diversified by the action of three different glycosyltransferases in nanodroplets placed on top of individual spots of the microarray by a printing robot. Conversion was followed by lectin binding specific for the terminal sugars. This enzymatic extension of surface-bound ligands in nanodroplets reduces the amount of precious glycosyltransferases needed by seven orders of magnitude relative to reactions carried out in the solution phase. Moreover, only those ligands that have been shown to be substrates to a specific glycosyltransferase can be individually chosen for elongation on the array. The methodology described here, combining focused modular synthesis and nanoscale on-chip enzymatic elongation, could open the way for the much needed rapid construction of large synthetic glycan arrays.

  16. Protein expression and fucosylated glycans of the serum haptoglobin-β subunit in hepatitis B virus-based liver diseases

    Institute of Scientific and Technical Information of China (English)

    Hong Shu; Shu Zhang; Xiaonan Kang; Shan Li; Xue Qin; Chun Sun; Haojie Lu; Yinkun Liu

    2011-01-01

    Glycosylation, which regulates the configuration and function of glycoproteins, is the most important post-translational modification. The aim of this study was to observe the differential patterns in glycan and protein parts of the serum haptoglobin-β subunit (Hp-β) purified from patients with hepatitis B virus (HBV) infection, liver cirrhosis (LC), or hepatocellular carcinoma (HCC). 2-D gel electrophoresis and multiplexed proteomics staining technique were employed to investigate whether the Hp-β glycan level was proportional to the protein level. Multilectin blot, high-performance liquid chromatography (HPLC), and western blot analysis were carried out to identify the glycoform of Hp-β quantitatively. Our experiments showed that the ratio of total serum Hp-β to the glycosylated form of Hp-β varied among the patients with different liver diseases. The total Hp-β protein expression level was much higher in HCC than LC, while an incremental proportion of fucosylated Hp-β was also observed in LC and HCC patients compared with that in HBV and healthy controls. Differential fucosylation was firther identified as a Lewis X structure by HPLC and antihuman SialyI-Lewis X antibody. In conclusion, the aberrant alternation of Hp-β glycan and total protein expression may be a promising biomarker for early hepatocarcinogenesis.

  17. Glycans expressed on Trichinella spiralis excretory-secretory antigens are important for anti-inflamatory immune response polarization.

    Science.gov (United States)

    Cvetkovic, Jelena; Ilic, Natasa; Sofronic-Milosavljevic, Ljiljana; Gruden-Movsesijan, Alisa

    2014-12-01

    Trichinella spiralis muscle larvae excretory-secretory antigens (ES L1) are most likely responsible for the induction of immune response during infection by this parasitic. The antigens bear carbohydrate structures that may contribute to immune system activation resulting in a Th2/anti-inflammatory immune response. We show that T. spiralis glycans affect the expression and the production of IL-4 and IL-10 in vivo. Alteration of carbohydrate structures on ES L1 altered dendritic cell (DC) maturation. Periodate treatment of ES L1 led to the reduction in both ERK and p38 phosphorylation which may be the cause of reduced IL-10 and IL-12p70 production. In vitro priming of naïve T cells with DCs stimulated with native and periodate-treated ES L1 emphasized the importance of intact glycans for IL-10 production. We conclude that T. spiralis glycans affect the anti-inflammatory environment and can interfere with the development of inflammatory diseases.

  18. The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans.

    Science.gov (United States)

    Donohue, Dagmara S; Ielasi, Francesco S; Goossens, Katty V Y; Willaert, Ronnie G

    2011-06-01

    The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.

  19. Fluorescence assay for glycan expression on living cancer cells based on competitive strategy coupled with dual-functionalized nanobiocomposites.

    Science.gov (United States)

    Fu, Ying; Lu, Danqin; Lin, Bin; Sun, Qianqian; Liu, Kai; Xu, Lili; Zhang, Shengping; Hu, Chen; Wang, Chuangui; Xu, Zhiai; Zhang, Wen

    2013-11-21

    Cell surface glycans are a class of sophisticated biomolecules related to cancer development and progression, and their analysis is of great significance for early cancer diagnosis and treatment. In this paper, we proposed a fluorescence assay to evaluate glycan expression on living cancer cells based on a competitive strategy coupled with dual-functionalized nanobiocomposites. The competitive assay was conducted between living cancer cells and thiomannosyl derivatives using concanavalin A (Con A)-modified electrode as the interaction platform. To impart fluorescence signaling ability to competitive derivatives, quantum dots (QDs) were anchored on BSA-protected Au nanoparticles, and thiomannosyl derivatives were further immobilized on the nanoparticle surface through Au-S binding. Due to the spacing between QDs and Au nanoparticles by BSA, the {QDs-Au-BSA-mannose} nanobiocomposites maintained the fluorescence of QDs and showed binding ability with the Con A-modified electrode. Au nanorods (AuNRs)-modified electrode was used as an effective substrate to immobilize Con A. This assay was successfully applied to the analysis of two cancer cells lines (A549 and QGY-7701). The method is simple and shows promise for the study of glycan expression on living cancer cells.

  20. Evaluation of a di-O-methylated glycan as a potential antigenic target for the serodiagnosis of human toxocariasis.

    Science.gov (United States)

    Elefant, G R; Roldán, W H; Seeböck, A; Kosma, P

    2016-04-01

    Serodiagnosis of human toxocariasis is based on the detection of specific IgG antibodies by the enzyme-linked immunosorbent assay (ELISA) using Toxocara larvae excretory-secretory (TES) antigens, but its production is a laborious and time-consuming process being also limited by the availability of adult females of T. canis as source for ova to obtain larvae. Chemical synthesis of the di-O-methylated (DiM) glycan structure found in the TES antigens has provided material for studying the antibody reactivity in a range of mammalian hosts, showing reactivity with human IgM and IgG. In this study, we have evaluated the performance of the DiM glycan against a panel of sera including patients with toxocariasis (n = 60), patients with other helminth infections (n = 75) and healthy individuals (n = 94), showing that DiM is able to detect IgG antibodies with a sensitivity and specificity of 91·7% and 94·7%, respectively, with a very good agreement with the TES antigens (kappa = 0·825). However, cross-reactivity was observed in some sera from patients with ascariasis, hymenolepiasis and fascioliasis. These results show that the DiM glycan could be a promising antigenic tool for the serodiagnosis of human toxocariasis. PMID:26896376

  1. MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis.

    Science.gov (United States)

    Briggs, Matthew T; Kuliwaba, Julia S; Muratovic, Dzenita; Everest-Dass, Arun V; Packer, Nicolle H; Findlay, David M; Hoffmann, Peter

    2016-06-01

    Magnetic resonance imaging (MRI) is a non-invasive technique routinely used to investigate pathological changes in knee osteoarthritis (OA) patients. MRI uniquely reveals zones of the most severe change in the subchondral bone (SCB) in OA, called bone marrow lesions (BMLs). BMLs have diagnostic and prognostic significance in OA, but MRI does not provide a molecular understanding of BMLs. Multiple N-glycan structures have been observed to play a pivotal role in the OA disease process. We applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of N-glycans to formalin-fixed paraffin-embedded (FFPE) SCB tissue sections from patients with knee OA, and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was conducted on consecutive sections to structurally characterize and correlate with the N-glycans seen by MALDI-MSI. The application of this novel MALDI-MSI protocol has enabled the first steps to spatially investigate the N-glycome in the SCB of knee OA patients. PMID:26992165

  2. Changes in the profile of simple mucin-type O-glycans and polypeptide GalNAc-transferases in human testis and testicular neoplasms are associated with germ cell maturation and tumour differentiation

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, E; Poll, S N; Goukasian, I;

    2007-01-01

    -type O-glycans (Tn, sialyl-Tn, T), histo-blood group H and A variants and six polypeptide GalNAc-transferases (T1-4, T6, T11) that control the site and density of O-glycosylation were analysed by immunohistochemistry during human testis development and in TGCT. Normal testis showed a restricted pattern......; gonocytes expressed abundant sialyl-Tn and sialyl-T, and adult spermatogonia were devoid of any glycans, whereas spermatocytes and spermatids expressed exclusively glycans Tn and T and the GalNAc-T3 isoform. A subset of mature ejaculated spermatozoa expressed an additional glycan sialyl-T. The pattern found...... in testicular neoplasms recapitulated the developmental order: Pre-invasive carcinoma in situ (CIS) cells and seminoma expressed fetal type sialylated glycans in keeping with their gonocyte-like phenotype. Neither simple mucin-type O-glycans nor GalNAc-transferase isoforms were found in undifferentiated...

  3. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1.

    Science.gov (United States)

    Razawi, Hanieh; Kinlough, Carol L; Staubach, Simon; Poland, Paul A; Rbaibi, Youssef; Weisz, Ora A; Hughey, Rebecca P; Hanisch, Franz-Georg

    2013-08-01

    The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111-1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [(35)S]Met/Cys or glycans with [(3)H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [(3)H]MUC1 when compared with [(35)S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O-glycan

  4. Similar prevalence of low-abundance drug-resistant variants in treatment-naive patients with genotype 1a and 1b hepatitis C virus infections as determined by ultradeep pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Severine Margeridon-Thermet

    Full Text Available Hepatitis C virus (HCV variants that confer resistance to direct-acting-antiviral agents (DAA have been detected by standard sequencing technology in genotype (G 1 viruses from DAA-naive patients. It has recently been shown that virological response rates are higher and breakthrough rates are lower in G1b infected patients than in G1a infected patients treated with certain classes of HCV DAAs. It is not known whether this corresponds to a difference in the composition of G1a and G1b HCV quasispecies in regards to the proportion of naturally occurring DAA-resistant variants before treatment.We used ultradeep pyrosequencing to determine the prevalence of low-abundance (<25% of the sequence reads DAA-resistant variants in 191 NS3 and 116 NS5B isolates from 208 DAA-naive G1-infected patients.A total of 3.5 million high-quality reads of ≥ 200 nucleotides were generated. The median coverage depth was 4150x and 4470x per NS3 and NS5B amplicon, respectively. Both G1a and G1b populations showed Shannon entropy distributions, with no difference between G1a and G1b in NS3 or NS5B region at the nucleotide level. A higher number of substitutions that confer resistance to protease inhibitors were observed in G1a isolates (mainly at amino acid 80 of the NS3 region. The prevalence of amino acid substitutions that confer resistance to NS5B non-nucleoside inhibitors was similar in G1a and G1b isolates. The NS5B S282T variant, which confers resistance to the polymerase inhibitors mericitabine and sofosbuvir, was not detected in any sample.The quasispecies genetic diversity and prevalence of DAA-resistant variants was similar in G1a and G1b isolates and in both NS3 and NS5B regions, suggesting that this is not a determinant for the higher level of DAA resistance observed across G1a HCV infected patients upon treatment.

  5. Sequential processing of mannose-containing glycans by two α-mannosidases from Solitalea canadensis.

    Science.gov (United States)

    Liu, Fang F; Kulinich, Anna; Du, Ya M; Liu, Li; Voglmeir, Josef

    2016-04-01

    Two putative α-mannosidase genes isolated from the rather unexplored soil bacterium Solitalea canadensis were cloned and biochemically characterised. Both recombinant enzymes were highly selective in releasing α-linked mannose but no other sugars. The α-mannosidases were designated Sca2/3Man2693 and Sca6Man4191, and showed the following biochemical properties: the temperature optimum for both enzymes was 37 °C, and their pH optima lay at 5.0 and 5.5, respectively. The activity of Sca2/3Man2693 was found to be dependent on Ca(2+) ions, whereas Cu(2+) and Zn(2+) ions almost completely inhibited both α-mannosidases. Specificity screens with various substrates revealed that Sca2/3Man2693 could release both α1-2- and α1-3-linked mannose, whereas Sca6Man4191 only released α1-6-linked mannose. The combined enzymatic action of both recombinant α-mannosidases allowed the sequential degradation of high-mannose-type N-glycans. The facile expression and purification procedures in combination with strict substrate specificities make α-mannosidases from S. canadensis promising candidates for bioanalytical applications. PMID:26864077

  6. Separation window dependent multiple injection (SWDMI) for large scale analysis of therapeutic antibody N-glycans.

    Science.gov (United States)

    Kovács, Zsuzsanna; Szarka, Máté; Szigeti, Márton; Guttman, András

    2016-09-01

    There is a growing demand in the biopharmaceutical industry for large scale N-glycosylation analysis of biotherapeutics, especially monoclonal antibodies. To fulfill this high throughput analysis requirement with single column separation systems in most instances require finishing the entire analysis cycle including conditioning, injection and separation between sample injections. While in liquid chromatography it represents a challenge, multiple sample injection in capillary electrophoresis has already been demonstrated for one or two sample components by utilizing the concept of introducing sequential sample and buffer zones into the capillary tubing before the start of the separation process. It was also demonstrated in CE-MS mode, mostly to follow one sample component, identified by precise mass measurement. Here we introduce a novel multiple injection approach for rapid large scale capillary electrophoresis analysis of samples with biopharmaceutical interest supporting multicomponent optical detection with laser induced fluorescence. In Separation Window Dependent Multiple Injection (SWDMI) mode, the samples are consecutively injected in predefined time intervals, based on the window that covers the separation of all sample components. As a practical example, this newly developed SWDMI protocol was applied to rapid and large scale analysis of APTS labeled monoclonal antibody N-glycans using a short (20cm effective length) capillary column. Full analysis of 96 samples (injected from a well plate) was obtained in 4h, in contrast to consecutive individual separation cycle processing of the same samples that required 12h. PMID:27337190

  7. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    Directory of Open Access Journals (Sweden)

    Jean Dubuisson

    2011-10-01

    Full Text Available Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.

  8. Automated glycan assembly of a S. pneumoniae serotype 3 CPS antigen

    Science.gov (United States)

    Weishaupt, Markus W; Matthies, Stefan; Hurevich, Mattan; Pereira, Claney L; Hahm, Heung Sik

    2016-01-01

    Summary Vaccines against S. pneumoniae, one of the most prevalent bacterial infections causing severe disease, rely on isolated capsular polysaccharide (CPS) that are conjugated to proteins. Such isolates contain a heterogeneous oligosaccharide mixture of different chain lengths and frame shifts. Access to defined synthetic S. pneumoniae CPS structures is desirable. Known syntheses of S. pneumoniae serotype 3 CPS rely on a time-consuming and low-yielding late-stage oxidation step, or use disaccharide building blocks which limits variability. Herein, we report the first iterative automated glycan assembly (AGA) of a conjugation-ready S. pneumoniae serotype 3 CPS trisaccharide. This oligosaccharide was assembled using a novel glucuronic acid building block to circumvent the need for a late-stage oxidation. The introduction of a washing step with the activator prior to each glycosylation cycle greatly increased the yields by neutralizing any residual base from deprotection steps in the synthetic cycle. This process improvement is applicable to AGA of many other oligosaccharides. PMID:27559395

  9. Blocking Pseudomonas Aeruginosa, Chromobacterium Violaceum, and Ralstonia Solanacearum Adhesion by Fruit Glycans

    Directory of Open Access Journals (Sweden)

    Nechama Gilboa-Garber

    2014-05-01

    Full Text Available The soil-borne pathogens Pseudomonas aeruginosa, Chromobacterium violaceum, and Ralstonia solanacearum, possess the lectins PA-IL, PA-IIL, CV-IIL, RSL, and RS-IIL, which may mediate their adhesion onto animal and plant target cells, enabling infections. Such infections may be prevented by surrounding the sensitive cells with competing glycans, which act as glycodecoys that block patholectins and capture pathogens that bear them. The above-mentioned five lectins have been used by us as probes to reveal progeny-protecting glycodecoys in avian eggs, milk, royal jelly, and seeds. Herein we describe their usage as probes for fruit and onion glycodecoys. They revealed lectin-blocking galactosides, fructose, oligo/polysaccharides, and glycoproteins in most of the examined fruits. Galactose/arabinose- bearing compounds were detected by PA-IL in banana, carob, pineapple, pomegranate, kiwifruit, and dates. Diverse mannose/fucose-bearing compounds were detected by PA-IIL in banana, onion, and pomegranate; by CV-IIL in pineapple; by RSL in banana, carob, date, onion, and pineapple, and by RS-IIL in date and fig. The results show the high efficiency of these lectins as probes for natural infection-preventing glycodecoys. Usage of fruit and seed embryo-protecting glycodecoys, unless allergenic, is advantageous for preventing animal intestinal and external and plant wilting infections since they are natural, harmless, inexpensive, and widely available.

  10. High-Sensitivity and Low-Toxicity Fucose Probe for Glycan Imaging and Biomarker Discovery.

    Science.gov (United States)

    Kizuka, Yasuhiko; Funayama, Sho; Shogomori, Hidehiko; Nakano, Miyako; Nakajima, Kazuki; Oka, Ritsuko; Kitazume, Shinobu; Yamaguchi, Yoshiki; Sano, Masahiro; Korekane, Hiroaki; Hsu, Tsui-Ling; Lee, Hsiu-Yu; Wong, Chi-Huey; Taniguchi, Naoyuki

    2016-07-21

    Fucose, a terminal sugar in glycoconjugates, critically regulates various physiological and pathological phenomena, including cancer development and inflammation. However, there are currently no probes for efficient labeling and detection of this sugar. We chemically synthesized a novel series of alkynyl-fucose analogs as probe candidates and found that 7-alkynyl-fucose gave the highest labeling efficiency and low cytotoxicity. Among the fucose analogs, 7-alkynyl-fucose was the best substrate against all five fucosyltransferases examined. We confirmed its conversion to the corresponding guanosine diphosphate derivative in cells and found that cellular glycoproteins were labeled much more efficiently with 7-alkynyl-fucose than with an existing probe. 7-Alkynyl-fucose was detected in the N-glycan core by mass spectrometry, and 7-alkynyl-fucose-modified proteins mostly disappeared in core-fucose-deficient mouse embryonic fibroblasts, suggesting that this analog mainly labeled core fucose in these cells. These results indicate that 7-alkynyl-fucose is a highly sensitive and powerful tool for basic glycobiology research and clinical application for biomarker discovery. PMID:27447047

  11. High-Sensitivity and Low-Toxicity Fucose Probe for Glycan Imaging and Biomarker Discovery.

    Science.gov (United States)

    Kizuka, Yasuhiko; Funayama, Sho; Shogomori, Hidehiko; Nakano, Miyako; Nakajima, Kazuki; Oka, Ritsuko; Kitazume, Shinobu; Yamaguchi, Yoshiki; Sano, Masahiro; Korekane, Hiroaki; Hsu, Tsui-Ling; Lee, Hsiu-Yu; Wong, Chi-Huey; Taniguchi, Naoyuki

    2016-07-21

    Fucose, a terminal sugar in glycoconjugates, critically regulates various physiological and pathological phenomena, including cancer development and inflammation. However, there are currently no probes for efficient labeling and detection of this sugar. We chemically synthesized a novel series of alkynyl-fucose analogs as probe candidates and found that 7-alkynyl-fucose gave the highest labeling efficiency and low cytotoxicity. Among the fucose analogs, 7-alkynyl-fucose was the best substrate against all five fucosyltransferases examined. We confirmed its conversion to the corresponding guanosine diphosphate derivative in cells and found that cellular glycoproteins were labeled much more efficiently with 7-alkynyl-fucose than with an existing probe. 7-Alkynyl-fucose was detected in the N-glycan core by mass spectrometry, and 7-alkynyl-fucose-modified proteins mostly disappeared in core-fucose-deficient mouse embryonic fibroblasts, suggesting that this analog mainly labeled core fucose in these cells. These results indicate that 7-alkynyl-fucose is a highly sensitive and powerful tool for basic glycobiology research and clinical application for biomarker discovery.

  12. Automated glycan assembly of a S. pneumoniae serotype 3 CPS antigen.

    Science.gov (United States)

    Weishaupt, Markus W; Matthies, Stefan; Hurevich, Mattan; Pereira, Claney L; Hahm, Heung Sik; Seeberger, Peter H

    2016-01-01

    Vaccines against S. pneumoniae, one of the most prevalent bacterial infections causing severe disease, rely on isolated capsular polysaccharide (CPS) that are conjugated to proteins. Such isolates contain a heterogeneous oligosaccharide mixture of different chain lengths and frame shifts. Access to defined synthetic S. pneumoniae CPS structures is desirable. Known syntheses of S. pneumoniae serotype 3 CPS rely on a time-consuming and low-yielding late-stage oxidation step, or use disaccharide building blocks which limits variability. Herein, we report the first iterative automated glycan assembly (AGA) of a conjugation-ready S. pneumoniae serotype 3 CPS trisaccharide. This oligosaccharide was assembled using a novel glucuronic acid building block to circumvent the need for a late-stage oxidation. The introduction of a washing step with the activator prior to each glycosylation cycle greatly increased the yields by neutralizing any residual base from deprotection steps in the synthetic cycle. This process improvement is applicable to AGA of many other oligosaccharides. PMID:27559395

  13. IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Benkhoucha Mahdia

    2012-09-01

    Full Text Available Abstract Studies in experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis, have shown that B cells markedly influence the course of the disease, although whether their effects are protective or pathological is a matter of debate. EndoS hydrolysis of the IgG glycan has profound effects on IgG effector functions, such as complement activation and Fc receptor binding, suggesting that the enzyme could be used as an immunomodulatory therapeutic agent against IgG-mediated diseases. We demonstrate here that EndoS has a protective effect in myelin oligodendrocyte glycoprotein peptide amino acid 35–55 (MOG35-55-induced EAE, a chronic neuroinflammatory demyelinating disorder of the central nervous system (CNS in which humoral immune responses are thought to play only a minor role. EndoS treatment in chronic MOG35-55-EAE did not impair encephalitogenic T cell priming and recruitment into the CNS of mice, consistent with a primary role of EndoS in controlling IgG effector functions. In contrast, reduced EAE severity coincided with poor serum complement activation and deposition within the spinal cord, suggesting that EndoS treatment impairs B cell effector function. These results identify EndoS as a potential therapeutic agent against antibody-mediated CNS autoimmune disorders.

  14. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives.

    Science.gov (United States)

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-03-21

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.

  15. Anomalous N-glycan structures with an internal fucose branched to GlcA and GlcN residues isolated from a mollusk shell-forming fluid.

    Science.gov (United States)

    Zhou, Hui; Hanneman, Andrew J; Chasteen, N Dennis; Reinhold, Vernon N

    2013-10-01

    This report describes the structural details of a unique N-linked valence epitope on the major protein within the extrapallial (EP) fluid of the mollusk, Mytilus edulis. Fluids from this area are considered to be responsible for shell expansion by a self-assembly process that provides an organic framework for the growth of CaCO3 crystals. Previous reports from our laboratories have described the purification and amino acid sequence of this EP protein, which was found to be a glycoprotein (EPG) of approximately 28 KDa with 14.3% carbohydrate on a single N-linked consensus site. Described herein is the de novo sequence of the major glycan and its glycomers. The sequence was determined by ion trap sequential mass spectrometry (ITMS(n)) resolving structure by tracking precursor-product relationships through successive rounds of collision induced disassociation (CID), thereby spatially resolving linkage and branching details within the confines of the ion trap. Three major glycomers were detected, each possessing a 6-linked fucosylated N-linked core. Two glycans possessed four and five identical antennae, while the third possessed four antennas, but with an additional methylfucose 2-linked to the glucuronic acid moiety, forming a pentasaccharide. The tetrasaccharide structure was: 4-O-methyl-GlcA(1-4)[GlcNAc(1-3)]Fuc(1-4)GlcNAc, while the pentasaccharide was shown to be as follows: mono-O-methyl-Fuc(1-2)-4-O-methyl-GlcA(1-4)[GlcNAc(1-3)]Fuc(1-4)GlcNAc. Samples were differentially deuteriomethylated (CD3/CH3) to localize indigenous methylation, further analyzed by high resolution mass spectrometry (HRMS) to confirm monomer compositions, and finally gas chromatography mass spectrometry (GC-MS) to assign structural and stereoisomers. The interfacial shell surface location of this major extrapallial glycoprotein, its calcium and heavy metal binding properties and unique structure suggests a probable role in shell formation and possibly metal ion detoxification. A closely

  16. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  17. F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans.

    Directory of Open Access Journals (Sweden)

    Daniël J Wurpel

    Full Text Available Uropathogenic Escherichia coli (UPEC is the leading causative agent of urinary tract infections (UTI in the developed world. Among the major virulence factors of UPEC, surface expressed adhesins mediate attachment and tissue tropism. UPEC strains typically possess a range of adhesins, with type 1 fimbriae and P fimbriae of the chaperone-usher class the best characterised. We previously identified and characterised F9 as a new chaperone-usher fimbrial type that mediates biofilm formation. However, the regulation and specific role of F9 fimbriae remained to be determined in the context of wild-type clinical UPEC strains. In this study we have assessed the distribution and genetic context of the f9 operon among diverse E. coli lineages and pathotypes and demonstrated that f9 genes are significantly more conserved in a UPEC strain collection in comparison to the well-defined E. coli reference (ECOR collection. In the prototypic UPEC strain CFT073, the global regulator protein H-NS was identified as a transcriptional repressor of f9 gene expression at 37°C through its ability to bind directly to the f9 promoter region. F9 fimbriae expression was demonstrated at 20°C, representing the first evidence of functional F9 fimbriae expression by wild-type E. coli. Finally, glycan array analysis demonstrated that F9 fimbriae recognise and bind to terminal Galβ1-3GlcNAc structures.

  18. Heterogeneity and glycan masking of cell wall microstructures in the stems of Miscanthus x giganteus, and its parents M. sinensis and M. sacchariflorus.

    Directory of Open Access Journals (Sweden)

    Jie Xue

    Full Text Available Plant cell walls, being repositories of fixed carbon, are important sources of biomass and renewable energy. Miscanthus species are fast growing grasses with a high biomass yield and they have been identified as potential bioenergy crops. Miscanthus x giganteus is the sterile hybrid between M. sinensis and M. sacchariflorus, with a faster and taller growth than its parents. In this study, the occurrence of cell wall polysaccharides in stems of Miscanthus species has been determined using fluorescence imaging with sets of cell wall directed monoclonal antibodies. Heteroxylan and mixed linkage-glucan (MLG epitopes are abundant in stem cell walls of Miscanthus species, but their distributions are different in relation to the interfascicular parenchyma and these epitopes also display different developmental dynamics. Detection of pectic homogalacturonan (HG epitopes was often restricted to intercellular spaces of parenchyma regions and, notably, the high methyl ester LM20 HG epitope was specifically abundant in the pith parenchyma cell walls of M. x giganteus. Some cell wall probes cannot access their target glycan epitopes because of masking by other polysaccharides. In the case of Miscanthus stems, masking of xyloglucan by heteroxylan and masking of pectic galactan by heteroxylan and MLG was detected in certain cell wall regions. Knowledge of tissue level heterogeneity of polysaccharide distributions and molecular architectures in Miscanthus cell wall structures will be important for both understanding growth mechanisms and also for the development of potential strategies for the efficient deconstruction of Miscanthus biomass.

  19. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    Science.gov (United States)

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  20. N-glycan analysis of recombinant L-Selectin reveals sulfated GalNAc and GalNAc-GalNAc motifs.

    Science.gov (United States)

    Wedepohl, Stefanie; Kaup, Matthias; Riese, Sebastian B; Berger, Markus; Dernedde, Jens; Tauber, Rudolf; Blanchard, Véronique

    2010-07-01

    The leukocytic adhesion receptor L-selectin plays a crucial role in the first step of the adhesion cascade, enabling leukocytes to migrate into surrounding tissues during inflammation and immune surveillance. We analyzed the site-specific N-glycosylation of the lectin and EGF-like domain of L-selectin using recombinant variants ("LEHis"). The three glycosylation sites of LEHis were mutated to obtain singly glycosylated variants that were expressed in HEK293F cells. alpha1-Acid glycoprotein (AGP), expressed in the same system, was used to distinguish between cell type- and protein-specific glycosylation. Using mass spectrometry and exoglycosidase digestions, we established that LEHis was mostly bearing multifucosylated diantennary N-glycans with a major fraction terminating with GalNAc residues replacing the more common Gal. We could also show that parts of the GalNAc residues were sulfated. Furthermore, we identified novel diantennary glycan structures terminating with the motif GalNAc-GalNAc or SO(4)-GalNAc-GalNAc, which have not been described for N-glycans yet. Interestingly, none of these specific features were found in the N-glycan profile of AGP. This indicates that protein intrinsic information of L-selectin leads to decoration with specific N-glycans, which in turn may be related to L-selectin function.

  1. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals.

    Science.gov (United States)

    McCarthy, Cormac; Saldova, Radka; O'Brien, M Emmet; Bergin, David A; Carroll, Tomás P; Keenan, Joanne; Meleady, Paula; Henry, Michael; Clynes, Martin; Rudd, Pauline M; Reeves, Emer P; McElvaney, Noel G

    2014-02-01

    Alpha-1 antitrypsin (AAT) is the major physiological inhibitor of a range of serine proteases, and in the lung, it maintains a protease-antiprotease balance. AAT deficiency (AATD) is an autosomal co-dominant condition with the Z mutation being the most common cause. Individuals homozygous for Z (PiZZ) have low levels of circulating mutant Z-AAT protein leading to premature emphysematous lung disease. Extensive glycoanalysis has been performed on normal AAT (M-AAT) from healthy individuals and the importance of glycosylation in affecting the immune modulatory roles of AAT is documented. However, no glycoanalysis has been carried out on Z-AAT from deficient individuals to date. In this study, we investigate whether the glycans present on Z-AAT differ to those found on M-AAT from healthy controls. Plasma AAT was purified from 10 individuals: 5 AATD donors with the PiZZ phenotype and 5 PiMM healthy controls. Glycoanalysis was performed employing N-glycan release, exoglycosidase digestion and UPLC analysis. No difference in branched glycans was identified between AATD and healthy controls. However, a significant increase in both outer arm (α1-3) (p = 0.04) and core (α1-6) fucosylated glycans (p < 0.0001) was found on Z-AAT compared to M-AAT. This study has identified increased fucosylation on N-glycans of Z-AAT indicative of ongoing inflammation in AATD individuals with implications for early therapeutic intervention.

  2. Fluorous modified magnetic mesoporous silica composites-incorporated fluorous solid-phase extraction for the specific enrichment of N-linked glycans with simultaneous exclusion of proteins.

    Science.gov (United States)

    Zhao, Man; Deng, Chunhui

    2016-10-01

    Taking advantage of fluorine-fluorine interactions, fluorous solid-phase extraction (FSPE) is emerging as a novel approach in proteomics research. Notably, silica gel bound with perfluoroalkyl groups was applied to the FSPE of N-linked glycans. Based on previous studies, mesoporous silica coated magnetic nanoparticles bound with perfluoroalkyl groups were synthesized for the specific enrichment of N-linked glycans in this study. The magnetic nanoparticles-incorporated FSPE strategy successfully identified 22 N-linked glycans from the OVA digest with a concentration of 0.5μg/μL, and achieved a detection limit of 5ng/μL (with 16 N-linked glycans identified). It also showed good day-to-day reproducibility. Its selectivity towards BSA protein is 1:200 (molar ratio), showing excellent size-exclusion effect. In addition, the present method proved to be effective for the analysis of the human serum digest, opening up new prospect for the identification of glycans and proteins with other post-translational modifications in biological environment. PMID:27474286

  3. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  4. Novel endogenous glycan therapy for retinal diseases: safety, in vitro stability, ocular pharmacokinetic modeling, and biodistribution.

    Science.gov (United States)

    Swaminathan, Shankar; Li, Huiling; Palamoor, Mallika; de Obarrio, Walter T Luchsinger; Madhura, Dorababu; Meibohm, Bernd; Jablonski, Monica M

    2014-03-01

    Asialo, tri-antennary oligosaccharide (NA3 glycan) is an endogenous compound, which supports proper folding of outer segment membranes, promotes normal ultrastructure, and maintains protein expression patterns of photoreceptors and Müller cells in the absence of retinal pigment epithelium support. It is a potential new therapeutic for atrophic age-related macular degeneration (AMD) and other retinal degenerative disorders. Herein, we evaluate the safety, in vitro stability, ocular pharmacokinetics and biodistribution of NA3. NA3 was injected into the vitreous of New Zealand white rabbits at two concentrations viz. 1 nM (minimum effective concentration (MEC)) and 100 nM (100XMEC) at three time points. Safety was evaluated using routine clinical and laboratory tests. Ocular pharmacokinetics and biodistribution of [(3)H]NA3 were estimated using scintillation counting in various parts of the eye, multiple peripheral organs, and plasma. Pharmacokinetic parameters were estimated by non-compartmental modeling. A 2-aminobenzamide labeling and hydrophilic interaction liquid interaction chromatography were used to assess plasma and vitreous stability. NA3 was well tolerated by the eye. The concentration of NA3 in eye tissues was in the order: vitreous > retina > sclera/choroid > aqueous humor > cornea > lens. Area under the curve (0 to infinity) (AUC∞) was the highest in the vitreous thereby providing a positive concentration gradient for NA3 to reach the retina. Half-lives in critical eye tissues ranged between 40 and 60 h. NA3 concentrations were negligible in peripheral organs. Radioactivity from [(3)H]NA3 was excreted via urine and feces. NA3 was stable at 37°C in vitreous over a minimum of 6 days, while it degraded rapidly in plasma. Collectively, these results document that NA3 shows a good safety profile and favorable ocular pharmacokinetics.

  5. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells.

    Science.gov (United States)

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-12-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis.

  6. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens.

    Science.gov (United States)

    Fehres, Cynthia M; Kalay, Hakan; Bruijns, Sven C M; Musaafir, Sara A M; Ambrosini, Martino; van Bloois, Louis; van Vliet, Sandra J; Storm, Gert; Garcia-Vallejo, Juan J; van Kooyk, Yvette

    2015-04-10

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based antigen targeting to both the human DC-specific C-type lectin receptor (CLR) DC-SIGN and the LC-specific CLR langerin. Since DC-SIGN and langerin are able to recognize the difucosylated oligosaccharide Lewis Y (Le(Y)), we prepared neoglycoconjugates bearing this glycan epitope to allow targeting of both lectins. Le(Y)-modified liposomes, with an approximate diameter of 200nm, were significantly endocytosed by DC-SIGN(+) DCs and mediated efficient antigen presentation to CD4(+) and CD8(+) T cells. Surprisingly, although langerin bound to Le(Y)-modified liposomes, LCs exposed to Le(Y)-modified liposomes could not endocytose liposomes nor mediate antigen presentation to T cells. However, LCs mediated an enhanced cross-presentation when antigen was delivered through langerin using Le(Y)-modified synthetic long peptides. In contrast, Le(Y)-modified synthetic long peptides were recognized by DC-SIGN, but did not trigger antigen internalization nor antigen cross-presentation. These data demonstrate that langerin and DC-SIGN have different size requirements for antigen uptake. Although using glycans remains an interesting option in the design of anti-cancer vaccines targeting multiple CLRs, aspects such as molecule size and conformation need to be taken in consideration. PMID:25656175

  7. Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants

    Directory of Open Access Journals (Sweden)

    Martina eDicker

    2016-01-01

    Full Text Available The production of therapeutic antibodies to combat pathogens and treat diseases such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG, less effort has been undertaken to express immunoglobulin A (IgA, which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumour activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered deltaXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that deltaXT/FT Nicotiana benthamiana plants can be engineered towards the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  8. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    plants, ferns have been largely neglected in cell wall comparative studies. Results: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species...... across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...... in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. Conclusions: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan...

  9. Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer

    DEFF Research Database (Denmark)

    Remmers, Neeley; Anderson, Judy M; Linde, Erin M;

    2013-01-01

    Mucin expression is a common feature of most adenocarcinomas and features prominently in current attempts to improve diagnosis and therapy for pancreatic cancer and other adenocarcinomas. We investigated the expression of a number of mucin core proteins and associated O-linked glycans expressed...... in pancreatic adenocarcinoma-sialyl Tn (STn), Tn, T antigen, sialyl Lewis A (CA19-9), sialyl Lewis C (SLeC), Lewis X (LeX), and sialyl LeX (SLeX)-during the progression of pancreatic cancer from early stages to metastatic disease....

  10. On the path to glycan conformer identification: Gas-phase study of the anomers of methyl glycosides of N-acetyl-d-glucosamine and N-acetyl-d-galactosamine

    NARCIS (Netherlands)

    Contreras, C. S.; Polfer, N. C.; Oomens, J.; Steill, J. D.; Bendiak, B.; Eyler, J. R.

    2012-01-01

    The methyl glycosides of N-acetyl-d-glucosamine (d-GlcNAc) and N-acetyl-d-galactosamine (d-GalNAc) have been used as model glycan analogs to study the effects of lithium cation binding on glycan structure in gas-phase experiments. Infrared multiple photon dissociation (IRMPD) spectra for the two Li+

  11. On the path to glycan conformer identification: Gas-phase study of the anomers of methyl glycosides of N-acetyl-D-glucosamine and N-acetyl-D-galactosamine

    NARCIS (Netherlands)

    C.S. Contreras; N.C. Polfer; J. Oomens; J.D. Steill; B. Bendiak; J.R. Eyler

    2012-01-01

    The methyl glycosides of N-acetyl-d-glucosamine (d-GlcNAc) and N-acetyl-d-galactosamine (d-GalNAc) have been used as model glycan analogs to study the effects of lithium cation binding on glycan structure in gas-phase experiments. Infrared multiple photon dissociation (IRMPD) spectra for the two Li+

  12. Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor.

    Science.gov (United States)

    Hideshima, Sho; Hinou, Hiroshi; Ebihara, Daisuke; Sato, Ryosuke; Kuroiwa, Shigeki; Nakanishi, Takuya; Nishimura, Shin-Ichiro; Osaka, Tetsuya

    2013-06-18

    Influenza virus, through cell invasion and propagation with the interaction between hemagglutinin (HA) present on its surface and glycans on the host cell, causes a rapidly spreading infection throughout the world. In the present investigation, we succeeded for the first time in the attomolar-level sensing and discrimination of influenza A viral HA molecules H1 and H5 by using a glycan-immobilized field effect transistor (FET) biosensor. The small ligand glycans immobilized on the FET device, which make effective use of the charge-detectable region for FET-based detection in terms of Debye length, gave an advantage in the highly sensitive detection of the proteins. Two kinds of trisaccharides receptors terminating in sialic acid-α2,6-galactose (6'-sialyllactose) and in sialic acid-α2,3-galactose (3'-sialyllactose) were conjugated directly with the SiO2 surface of FET devices by a simple glycoblotting method using the self-assembled monolayer (SAM) of aminooxy terminated silane-coupling reagent, 3-aminooxypropyltriethoxysilane. Furthermore, it was demonstrated that the FETs with densely immobilized glycans, which possess the high capture ability by achieving the glycoside cluster effect, clearly distinguish HA molecules between their subtypes H1 (human) and H5 (avian) at the attomolar level, while the conventional method based on HA antibodies achieves only picomolar-level detection. Our findings indicate that the glycan-immobilized FET is a promising device to detect various pathogenic bacteria and viruses through glycan-protein interaction found ubiquitously in many infectious diseases. PMID:23675869

  13. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  14. Neofunctionalization of the Sec1 α1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus.

    OpenAIRE

    Kristina Nyström; Joana Abrantes; Ana Margarida Lopes; Béatrice Le Moullac-Vaidye; Stéphane Marchandeau; Jézabel Rocher; Nathalie Ruvoën-Clouet; Esteves, Pedro J.; Jacques Le Pendu

    2015-01-01

    International audience RHDV (rabbit hemorrhagic disease virus), a virulent calicivirus, causes high mortalities in European rabbit populations (Oryctolagus cuniculus). It uses α1,2fucosylated glycans, histo-blood group antigens (HBGAs), as attachment factors, with their absence or low expression generating resistance to the disease. Synthesis of these glycans requires an α1,2fucosyltransferase. In mammals, there are three closely located α1,2fucosyltransferase genes rSec1, rFut2 and rFut1 ...

  15. Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes

    Science.gov (United States)

    Liu, Yang; Ramelot, Theresa A.; Huang, Pengwei; Liu, Yan; Li, Zhen; Feizi, Ten; Zhong, Weiming; Wu, Fang-Tzy; Tan, Ming; Kennedy, Michael A.

    2016-01-01

    ABSTRACT The P[19] genotype belongs to the P[II] genogroup of group A rotaviruses (RVs). However, unlike the other P[II] RVs, which mainly infect humans, P[19] RVs commonly infect animals (pigs), making P[19] unique for the study of RV diversity and host ranges. Through in vitro binding assays and saturation transfer difference (STD) nuclear magnetic resonance (NMR), we found that P[19] could bind mucin cores 2, 4, and 6, as well as type 1 histo-blood group antigens (HBGAs). The common sequences of these glycans serve as minimal binding units, while additional residues, such as the A, B, H, and Lewis epitopes of the type 1 HBGAs, can further define the binding outcomes and therefore likely the host ranges for P[19] RVs. This complex binding property of P[19] is shared with the other three P[II] RVs (P[4], P[6], and P[8]) in that all of them recognized the type 1 HBGA precursor, although P[4] and P[8], but not P[6], also bind to mucin cores. Moreover, while essential for P[4] and P[8] binding, the addition of the Lewis epitope blocked P[6] and P[19] binding to type 1 HBGAs. Chemical-shift NMR of P[19] VP8* identified a ligand binding interface that has shifted away from the known RV P-genotype binding sites but is conserved among all P[II] RVs and two P[I] RVs (P[10] and P[12]), suggesting an evolutionary connection among these human and animal RVs. Taken together, these data are important for hypotheses on potential mechanisms for RV diversity, host ranges, and cross-species transmission. IMPORTANCE In this study, we found that our P[19] strain and other P[II] RVs recognize mucin cores and the type 1 HBGA precursors as the minimal functional units and that additional saccharides adjacent to these units can alter binding outcomes and thereby possibly host ranges. These data may help to explain why some P[II] RVs, such as P[6] and P[19], commonly infect animals but rarely humans, while others, such as the P[4] and P[8] RVs, mainly infect humans and are predominant

  16. HIV-1 clade C escapes broadly neutralizing autologous antibodies with N332 glycan specificity by distinct mechanisms.

    Science.gov (United States)

    Deshpande, Suprit; Patil, Shilpa; Kumar, Rajesh; Hermanus, Tandile; Murugavel, Kailapuri G; Srikrishnan, Aylur K; Solomon, Suniti; Morris, Lynn; Bhattacharya, Jayanta

    2016-01-01

    The glycan supersite centered on N332 in the V3 base of the HIV-1 envelope (Env) is a target for broadly neutralizing antibodies (bnAbs) such as PGT121 and PGT128. In this study, we examined the basis of resistance of HIV-1 clade C Envs obtained from broadly cross neutralizing (BCN) plasma of an Indian donor with N332 specificity. Pseudotyped viruses expressing autologous envs were found to be resistant to autologous BCN plasma as well as to PGT121 and PGT128 mAbs despite the majority of Envs containing an intact N332 residue. While resistance of one of the Envs to neutralization by autologous plasma antibodies with shorter V1 loop length was found to be correlated with a N332S mutation, resistance to neutralization of rest of the Envs was found to be associated with longer V1 loop length and acquisition of protective N-glycans. In summary, we show evidence of escape of circulating HIV-1 clade C in an individual from autologous BCN antibodies by three distinct mechanisms. PMID:27576440

  17. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition

    Science.gov (United States)

    Praissman, Jeremy L; Willer, Tobias; Sheikh, M Osman; Toi, Ants; Chitayat, David; Lin, Yung-Yao; Lee, Hane; Stalnaker, Stephanie H; Wang, Shuo; Prabhakar, Pradeep Kumar; Nelson, Stanley F; Stemple, Derek L; Moore, Steven A; Moremen, Kelley W; Campbell, Kevin P; Wells, Lance

    2016-01-01

    Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure—a ribitol in a phosphodiester linkage—for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains. DOI: http://dx.doi.org/10.7554/eLife.14473.001 PMID:27130732

  18. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition.

    Science.gov (United States)

    Praissman, Jeremy L; Willer, Tobias; Sheikh, M Osman; Toi, Ants; Chitayat, David; Lin, Yung-Yao; Lee, Hane; Stalnaker, Stephanie H; Wang, Shuo; Prabhakar, Pradeep Kumar; Nelson, Stanley F; Stemple, Derek L; Moore, Steven A; Moremen, Kelley W; Campbell, Kevin P; Wells, Lance

    2016-01-01

    Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure-a ribitol in a phosphodiester linkage-for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains. PMID:27130732

  19. Insights into transcriptional regulation of β-D-N-acetylhexosaminidase, an N-glycan-processing enzyme involved in ripening-associated fruit softening.

    Science.gov (United States)

    Irfan, Mohammad; Ghosh, Sumit; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2014-11-01

    Tomato (Solanum lycopersicum) fruit ripening-specific N-glycan processing enzyme, β-D-N-acetylhexosaminidase (β-Hex), plays an important role in the ripening-associated fruit-softening process. However, the regulation of fruit ripening-specific expression of β-Hex is not well understood. We have identified and functionally characterized the fruit ripening-specific promoter of β-Hex and provided insights into its transcriptional regulation during fruit ripening. Our results demonstrate that RIPENING INHIBITOR (RIN), a global fruit ripening regulator, and ABSCISIC ACID STRESS RIPENING 1 (SlASR1), a poorly characterized ripening-related protein, are the transcriptional regulators of β-Hex. Both RIN and SlASR1 directly bound to the β-Hex promoter fragments containing CArG and C₂₋₃(C/G)A cis-acting elements, the binding sites for RIN and SlASR1, respectively. Moreover, β-Hex expression/promoter activity in tomato fruits was downregulated once expression of either RIN or SlASR1 was suppressed; indicating that RIN and SlASR1 positively regulate the transcription of β-Hex during fruit ripening. Interestingly, RIN could also bind to the SlASR1 promoter, which contains several CArG cis-acting elements, and SlASR1 expression was suppressed in rin mutant fruits, indicating that RIN also acts as a positive regulator of SlASR1 expression during fruit ripening. Taken together, these results suggest that RIN, both directly and indirectly, through SlASR1, regulates the transcription of β-Hex during fruit ripening. The fruit ripening-specific promoter of β-Hex could be a useful tool in regulating gene expression during fruit ripening.

  20. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer's Disease Biomarker Development

    Directory of Open Access Journals (Sweden)

    Keiro Shirotani

    2011-01-01

    Full Text Available We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf in cerebrospinal fluid (CSF using lectins and an anti-transferrin antibody (TfAb. Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin bound an unique N-acetylglucosamine-terminated N-glycans on “CSF-type” Tf whereas SSA (Sambucus sieboldiana agglutinin bound α2,6-N-acetylneuraminic acid-terminated N-glycans on “serum-type” Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected “CSF-type” Tf but not “serum-type” Tf whereas SSA-TfAb ELISA detected “serum-type” Tf but not “CSF-type” Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH, a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases.

  1. Specifically Binding of L-ficolin to N-glycans of HCV Envelope Glycoproteins E1 and E2 Leads to Complement Activation

    Institute of Scientific and Technical Information of China (English)

    Jun Liu; Mohammed A.M.Ali; Yinghua Shi; Yinglan Zhao; Fenglin Luo; Jin Yu; Tian Xiang; Jie Tang; Dongqing Li; Quan Hu; Wenzhe Ho; Xiaolian Zhang

    2009-01-01

    L-ficolin and HCV E1 and E2 glycoproteins was attributed to the N-glycans of E1 and E2.These findings provide new insights into the biological functions of L-ficolin in clinically important hepatic viral diseases.

  2. LpMab-12 Established by CasMab Technology Specifically Detects Sialylated O-Glycan on Thr52 of Platelet Aggregation-Stimulating Domain of Human Podoplanin.

    Directory of Open Access Journals (Sweden)

    Yukinari Kato

    Full Text Available Podoplanin (PDPN, also known as Aggrus, possesses three tandem repeat of platelet aggregation-stimulating (PLAG domains in its N-terminus. Among the PLAG domains, sialylated O-glycan on Thr52 of PLAG3 is essential for the binding to C-type lectin-like receptor-2 (CLEC-2 and the platelet-aggregating activity of human PDPN (hPDPN. Although various anti-hPDPN monoclonal antibodies (mAbs have been generated, no specific mAb has been reported to target the epitope containing glycosylated Thr52. We recently established CasMab technology to develop mAbs against glycosylated membrane proteins. Herein, we report the development of a novel anti-glycopeptide mAb (GpMab, LpMab-12. LpMab-12 detected endogenous hPDPN by flow cytometry. Immunohistochemical analyses also showed that hPDPN-expressing lymphatic endothelial and cancer cells were clearly labeled by LpMab-12. The minimal epitope of LpMab-12 was identified as Asp49-Pro53 of hPDPN. Furthermore, LpMab-12 reacted with the synthetic glycopeptide of hPDPN, corresponding to 38-54 amino acids (hpp3854: 38-EGGVAMPGAEDDVVTPG-54, which carries α2-6 sialylated N-acetyl-D-galactosamine (GalNAc on Thr52. LpMab-12 did not recognize non-sialylated GalNAc-attached glycopeptide, indicating that sialylated GalNAc on Thr52 is necessary for the binding of LpMab-12 to hPDPN. Thus, LpMab-12 could serve as a new diagnostic tool for determining whether hPDPN possesses the sialylation on Thr52, a site-specific post-translational modification critical for the hPDPN association with CLEC-2.

  3. Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor

    Science.gov (United States)

    Chen, Xiaojiao; He, Yao; Zhang, Youyu; Liu, Meiling; Liu, Yang; Li, Jinghong

    2014-09-01

    A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode interface, affording fast and highly sensitive ECL cytosensing and cell surface glycan evaluation. Combining the multivalent aptamer interface and ALP nanoprobes, the ECL cytosensor showed a detection limit of 38 CCRF-CEM cells per mL in human serum samples, broad dynamic range and excellent selectivity. In addition, the proposed biosensor provided a valuable insight into dynamic profiling of the expression of different glycans on cell surfaces, based on the carbohydrates recognized by lectins applied to the nanoprobes. This biosensor exhibits great promise in clinical diagnosis and drug screening.A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode

  4. Comparative evaluation of T11 target structure and its deglycosylated derivative nullifies the importance of glycan moieties in immunotherapeutic efficacy

    Institute of Scientific and Technical Information of China (English)

    Sirshendu Chatterjee; Sagar Acharya; Pankaj Kumar; Ananya Chatterjee; Suhnrita Chaudhuri; Anirban Ghosh; Swapna Chaudhuri

    2012-01-01

    Sheep red blood cell (SRBC),a non-specific biological response modifier that has long been used as a classical antigen,has been shown to exert an immunomodulatory and anti-tumor activities in experimental animals.The active component of SRBC,which is responsible for such effects,was found to be a cell surface acidic glycoprotein molecule,known as T11 target structure (T11TS).In the present study,T11TS was isolated and purified to homogeneity using a five-step protocol involving isolation of sheep erythrocyte membrane from packed cell volume,20% ammonium sulfate cut of the crude membrane proteins mixture,immunoaffinity purification using mouse anti-sheep CD58 mAb (L180/1) tagged matrix,preparative gel electrophoresis,and gel electroelution process.Finally,the purity and identity of the proteins were confirmed by the matrix-assisted laser desorption/ionization (MALDI) mass spectrometric analysis.The in silico glycosylation site analysis showed that the extracellular domain contained three N-glycosylation sites (N-12,N-62,and N-111) and one O-glycosylation site (T-107).However,the experimental analysis negated the presence of O-linked glycan moieties on T11TS.To investigate the role of glycan moieties in the current immunotherapeutic regime,T11TS and its deglycosylated form (dT11TS) were administered intraperitoneally (i.p.) in N-ethyl-N-nitrosoureainduced immune-compromised mice at 0.4 mg/kg body weight.It was observed that both the forms of T11TS could activate the compromised immune status of mice by augmenting immune receptor expression (CD2,CD25,CD8,and CD11b),T-helper 1 shift of cytokine network,enhanced cytotoxicity,and phagocytosis activity.Therefore,the results nullify the active involvement of the N-linked glycan moieties in immunotherapeutic efficacy of T11TS.

  5. Phase-Variable Heptose I Glycan Extensions Modulate Efficacy of 2C7 Vaccine Antibody Directed against Neisseria gonorrhoeae Lipooligosaccharide.

    Science.gov (United States)

    Chakraborti, Srinjoy; Lewis, Lisa A; Cox, Andrew D; St Michael, Frank; Li, Jianjun; Rice, Peter A; Ram, Sanjay

    2016-06-01

    Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection, gonorrhea, has developed resistance to most conventional antibiotics. Safe and effective vaccines against gonorrhea are needed urgently. A candidate vaccine that targets a lipooligosaccharide (LOS) epitope recognized mAb 2C7 attenuates gonococcal burden in the mouse vaginal colonization model. Glycan extensions from the LOS core heptoses (HepI and HepII) are controlled by phase-variable LOS glycosyltransferase (lgt) genes; we sought to define how HepI glycan extensions affect mAb 2C7 function. Isogenic gonococcal mutants in which the lgt required for mAb 2C7 reactivity (lgtG) was genetically locked on and the lgt loci required for HepI variation (lgtA, lgtC, and lgtD) were genetically locked on or off in different combinations were created. We observed 100% complement-dependent killing by mAb 2C7 of a mutant that expressed lactose (Gal-Glc) from HepI, whereas a mutant that expressed Gal-Gal-Glc-HepI fully resisted killing (>100% survival). Mutants that elaborated 4- (Gal-GlcNAc-Gal-Glc-HepI) and 5-glycan (GalNAc-Gal-GlcNAc-Gal-Glc-HepI) structures displayed intermediate phenotypes (95% killing with 4 μg/ml mAb 2C7). The contrasting phenotypes of the lactose-HepI and the Gal-Gal-Glc-HepI LOS structures were recapitulated with phase variants of a recently isolated clinical strain. Despite lack of killing of the Gal-Gal-Glc-HepI mutants, mAb 2C7 deposited sufficient C3 on these bacteria for opsonophagocytic killing by human neutrophils. In conclusion, mAb 2C7 showed functional activity against all gonococcal HepI LOS structures defined by various lgtA/C/D on/off combinations, thereby providing further impetus for use of the 2C7 epitope in a gonococcal vaccine. PMID:27183633

  6. Systematic review: new serological markers (anti-glycan, anti-GP2, anti-GM-CSF Ab) in the prediction of IBD patient outcomes.

    Science.gov (United States)

    Bonneau, J; Dumestre-Perard, C; Rinaudo-Gaujous, M; Genin, C; Sparrow, M; Roblin, X; Paul, S

    2015-03-01

    Traditionally, IBD diagnosis is based on clinical, radiological, endoscopic, and histological criteria. Biomarkers are needed in cases of uncertain diagnosis, or to predict disease course and therapeutic response. No guideline recommends the detection of antibodies (including ASCA and ANCA) for diagnosis or prognosis of IBD to date. However, many recent data suggest the potential role of new serological markers (anti-glycan (ACCA, ALCA, AMCA, anti-L and anti-C), anti-GP2 and anti-GM-CSF Ab). This review focuses on clinical utility of these new serological markers in diagnosis, prognosis and therapeutic monitoring of IBD. Literature review of anti-glycan, anti-GP2 and anti-GM-CSF Ab and their impact on diagnosis, prognosis and prediction of therapeutic response was performed in PubMed/MEDLINE up to June 2014. Anti-glycan, anti-GP2 and anti-GM-CSF Ab are especially associated with CD and seem to be correlated with complicated disease phenotypes even if results differ between studies. Although anti-glycan Ab and anti-GP2 Ab have low sensitivity in diagnosis of IBD, they could identify a small number of CD patients not detected by other tests such as ASCA. Anti-glycan Abs are associated with a progression to a more severe disease course and a higher risk for IBD-related surgery. Anti-GP2 Ab could particularly contribute to better stratify cases of pouchitis. Anti-GM-CSF Ab seems to be correlated with disease activity and could help predict relapses. These new promising biomarkers could particularly be useful in stratification of patients according to disease phenotype and risk of complications. They could be a valuable aid in prediction of disease course and therapeutic response but more prospective studies are needed.

  7. Galatrox is a C-type lectin in Bothrops atrox snake venom that selectively binds LacNAc-terminated glycans and can induce acute inflammation.

    Science.gov (United States)

    Sartim, Marco A; Riul, Thalita B; Del Cistia-Andrade, Camillo; Stowell, Sean R; Arthur, Connie M; Sorgi, Carlos A; Faccioli, Lucia H; Cummings, Richard D; Dias-Baruffi, Marcelo; Sampaio, Suely V

    2014-11-01

    Previous studies indicate that snake venom contains glycan-binding proteins (GBPs), although the binding specificity and biological activities of many of these GBPs is unclear. Here we report our studies on the glycan binding specificity and activities of galatrox, a Bothrops atrox snake venom-derived GBP. Glycan microarray analysis indicates that galatrox binds most strongly to glycans expressing N-acetyllactosamine (LacNAc), with a significant preference for Galβ1-4GlcNAcβ over Galβ1-3GlcNAcβ compounds. Galatrox also bound immobilized laminin, a LacNAc-dense extracellular matrix component, suggesting that this GBP can bind LacNAc-bearing glycoproteins. As several endogenous mammalian GBPs utilize a similar binding LacNAc binding preference to regulate neutrophil and monocyte activity, we hypothesized that galatrox may mediate B. atrox toxicity through regulation of leukocyte activity. Indeed, galatrox bound neutrophils and promoted leukocyte chemotaxis in a carbohydrate-dependent manner. Similarly, galatrox administration into the mouse peritoneal cavity induced significant neutrophil migration and the release of pro-inflammatory cytokines IL-1α and IL-6. Exposure of bone marrow-derived macrophages to galatrox induced generation of pro-inflammatory mediators IL-6, TNF-α, and keratinocyte-derived chemokine. This signaling by galatrox was mediated via its carbohydrate recognition domain by activation of the TLR4-mediated MyD88-dependent signaling pathway. These results indicate that galatrox has pro-inflammatory activity through its interaction with LacNAc-bearing glycans on neutrophils, macrophages and extracellular matrix proteins and induce the release of pro-inflammatory mediators. PMID:24973254

  8. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A;

    1994-01-01

    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation in the...... V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor...

  9. Effect of lead-excretion glycan on removing lead and essential metal elements in mice%排铅聚糖对染铅小鼠的驱铅作用及对必需元素的影响

    Institute of Scientific and Technical Information of China (English)

    冯国昌; 朱振平; 刘萍

    2012-01-01

    various dose of lead-excretion glycan. The negative control group and the model group were given the normal saline. The mice were sacrificed by decapitation after the last administration. The contents of lead essential elements in blood, liver, kidney, bone and brain were determined by graphite furnace atomic absorption spectro-photometer. Results The contents of lead in blood, liver, kidney, bone and brain in the treated groups were all lower than that in the model group (P< 0.05). Magnesiumcontents of the high-dose group in blood and bone were lower than that of the negative control group (P<0.05). Iron contents of the medium and high dose groups in liver was higher than that of model group (P<0.05). There was no statistically significant difference between the negative group and various dose groups in the content of calcium, copper zinc and manganese in liver, kidney, bone and brain (P> 0.05). Conclusion Lead-excretion glycan can effectively eliminate lead from lead-poisoned mice, but there is no significant dose-effect relationship. Lead-excretion glycan has no effect on other essential metal elements except that the high dose glycan can eliminate magnesium from blood and bone. The medium and high dose glycan can protect iron in the liver.

  10. Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment

    Science.gov (United States)

    Milani, Christian; Turroni, Francesca; Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Ferrario, Chiara; van Sinderen, Douwe

    2015-01-01

    Bifidobacteria represent one of the dominant microbial groups that occur in the gut of various animals, being particularly prevalent during the suckling period of humans and other mammals. Their ability to compete with other gut bacteria is largely attributed to their saccharolytic features. Comparative and functional genomic as well as transcriptomic analyses have revealed the genetic background that underpins the overall saccharolytic phenotype for each of the 47 bifidobacterial (sub)species representing the genus Bifidobacterium, while also generating insightful information regarding carbohydrate resource sharing and cross-feeding among bifidobacteria. The abundance of bifidobacterial saccharolytic features in human microbiomes supports the notion that metabolic accessibility to dietary and/or host-derived glycans is a potent evolutionary force that has shaped the bifidobacterial genome. PMID:26590291

  11. Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies.

    Science.gov (United States)

    Długosz, Ewa; Wiśniewski, Marcin

    2016-01-01

    The impact of sugar moieties of Toxocara canis glycoprotein antigens on their recognition by infected mouse antibodies was investigated in this study. Native TES and recombinant Toxocara mucins generated in Pichia pastoris yeast as well as their deglycosylated forms were used in ELISA. TES and recombinant mucins were equally recognized by T. canis infected mouse IgG1 antibodies. IgM immunoglobulins predominantly recognized TES antigens. Among mucins recognition of Tc-MUC-4 was the most significant. Deglycosylation of antigens resulted in significant loss of IgM and IgG1 reactivity to TES, mucins, Tc-MUC-3 and Tc-MUC-4. The presence of sugar moieties had no influence on IgE binding to native or recombinant T. canis antigens. Our results suggest that glycans are involved in epitope formation what should be taken into consideration in production of recombinant helminth antigens for diagnostic purposes. PMID:26751891

  12. The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin.

    Science.gov (United States)

    De, Swastik; Bubnys, Adele; Alonzo, Francis; Hyun, Jinsol; Lary, Jeffrey W; Cole, James L; Torres, Victor J; Olson, Rich

    2015-11-20

    Bacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell surface receptors that increase the local toxin concentration on cell membranes, thereby facilitating channel formation. Vibrio cholerae cytolysin (VCC) is a toxin secreted by the human pathogen responsible for pandemic cholera disease and acts as a defensive agent against the host immune system. Although it has been shown that VCC utilizes specific glycan receptors on the cell surface, additional direct contacts with the membrane must also play a role in toxin binding. To better understand the nature of these interactions, we conducted a systematic investigation of the membrane-binding surface of VCC to identify additional membrane interactions important in cell targeting. Through cell-based assays on several human-derived cell lines, we show that VCC is unlikely to utilize high affinity protein receptors as do structurally similar toxins from Staphylococcus aureus. Next, we identified a number of specific amino acid residues that greatly diminish the VCC potency against cells and investigated the interplay between glycan binding and these direct lipid contacts. Finally, we used model membranes to parse the importance of these key residues in lipid and cholesterol binding. Our study provides a complete functional map of the VCC membrane-binding surface and insights into the integration of sugar, lipid, and cholesterol binding interactions. PMID:26416894

  13. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeuchi

    Full Text Available The AMPA-type glutamate receptor (AMPAR, which is a tetrameric complex composed of four subunits (GluA1-4 with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc, human natural killer-1 (HNK-1 carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413 within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  14. Propriedades funcionais (tecnológicas da parede celular de leveduras da fermentação alcoólica e das frações glicana, manana e glicoproteína Functional (technological properties of yeast cellular wall of alcoholic fermentation and its glycan, mannan, and glycoprotein fractions

    Directory of Open Access Journals (Sweden)

    Saula Goulart Chaud

    2006-06-01

    glycan, mannan and glycoprotein. Fractionation was realized by the physico-chemical processes of extraction, centrifugation and spray drying; chemical characterization, by determination of centesimal composition and the functional properties through well-known techniques. In the cellular wall (CW, predominated protein (19% and soluble fiber (74%. Glycoprotein presented 35.5% protein and 56% soluble fiber. In the mannnan (M and soluble glycan (SG, the soluble fiber (70% was predominant, whereas in the insoluble glycan (IG predominated the insoluble fiber (70.7%. Solubility of the various fractions in aqueous media ranged from 40% to 100% and was not pH dependent. Soluble glycan showed the highest water retention capacity (14.4 g H2O/g sample and the higher water solubility indices (WSI were found for mannan (60% and for glycoprotein (83.8%. The glycans (soluble and insoluble presented good gelling properties at 12 and 14% solid concentrations. Glycoprotein, mannan and soluble glycan presented excellent emulsifying capacity (1,500 to 2,000 ml oil/g sample. The glycoprotein and soluble glycan emulsitions were the most stable. Addition of ovalbumin (0.2% in the emulsifying media increased significantly the cellular wall and soluble glycan emulsifying capacity. It also contributed for the stabilization of the mannan (M and glycans (IG and SG emultions.

  15. Characterization of N-type glycosylation sites and glycan structures of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing;

    2011-01-01

    wheat grain is dominated by TaPAPhy_a which, after chromatographic purification, has been characterized by extensive peptide and glycopeptide sequencing by mass spectrometry. Seven N-linked glycosylation sites were found. Three of these sites were dominated by variant forms of the XylMan3FucGlcNAc2, i.e....... the HRP-type of glycan. Complex-type glycans with one or two additional GlcNAc were observed, however in trace amount only. The mature protein is ca. 500 residues in size and appears to be truncated at the N- and C-termini (Dionisio G. et al., 2011b). References: Brejnholt S., Dionisio G., Glitsoe V...

  16. Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans

    International Nuclear Information System (INIS)

    A systematic method for 13C labeling of the glycan of immunoglobulin G for NMR study has been developed. A mouse immunoglobulin of subclass IgG2b has been used for the experiment. On the basis of chemical shift and linewidth data, it has been concluded that (1) the mobility of the carbohydrate chain in IgG2b is comparable to that of the backbone polypeptide chain with the exception of the galactose residue at the nonreducing end of the Manα1-3 branch, which is extremely mobile and (2) agalactosylation does not induce any significant change in the mobility. The results obtained indicate that even in the agalactosyl form the glycans are buried in the protein. Biological significance of the NMR results obtained is also briefly discussed

  17. Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma

    OpenAIRE

    Suzuki, Osamu; ABE, MASAFUMI; Hashimoto, Yuko

    2015-01-01

    The interaction between cell surface glycans and extracellular matrix (ECM) including galectins is known to be closely associated with tumor cell adhesion, invasion and metastasis. We analyzed the roles of cell surface sialylation or glycosylation in galectin or ECM-mediated cell adhesion and invasion of human malignant lymphoma cells. Neuraminidase from Arthrobacter ureafaciens (AU) treatment resulted in reduction of cell adhesion to galectin-8 in human anaplastic large cell lymphoma (H-ALCL...

  18. The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function.

    Science.gov (United States)

    Kurimoto, Ayako; Kitazume, Shinobu; Kizuka, Yasuhiko; Nakajima, Kazuki; Oka, Ritsuko; Fujinawa, Reiko; Korekane, Hiroaki; Yamaguchi, Yoshiki; Wada, Yoshinao; Taniguchi, Naoyuki

    2014-04-25

    Glycans play key roles in a variety of protein functions under normal and pathological conditions, but several glycosyltransferase-deficient mice exhibit no or only mild phenotypes due to redundancy or compensation of glycan functions. However, we have only a limited understanding of the underlying mechanism for these observations. Our previous studies indicated that 70% of Fut8-deficient (Fut8(-/-)) mice that lack core fucose structure die within 3 days after birth, but the remainder survive for up to several weeks although they show growth retardation as well as emphysema. In this study, we show that, in mouse embryonic fibroblasts (MEFs) from Fut8(-/-) mice, another N-glycan branching structure, bisecting GlcNAc, is specifically up-regulated by enhanced gene expression of the responsible enzyme N-acetylglucosaminyltransferase III (GnT-III). As candidate target glycoproteins for bisecting GlcNAc modification, we confirmed that level of bisecting GlcNAc on β1-integrin and N-cadherin was increased in Fut8(-/-) MEFs. Moreover using mass spectrometry, glycan analysis of IgG1 in Fut8(-/-) mouse serum demonstrated that bisecting GlcNAc contents were also increased by Fut8 deficiency in vivo. As an underlying mechanism, we found that in Fut8(-/-) MEFs Wnt/β-catenin signaling is up-regulated, and an inhibitor against Wnt signaling was found to abrogate GnT-III expression, indicating that Wnt/β-catenin is involved in GnT-III up-regulation. Furthermore, various oxidative stress-related genes were also increased in Fut8(-/-) MEFs. These data suggest that Fut8(-/-) mice adapted to oxidative stress, both ex vivo and in vivo, by inducing various genes including GnT-III, which may compensate for the loss of core fucose functions.

  19. Versatile metal-organic framework-functionalized magnetic graphene nanoporous composites: As deft matrix for high-effective extraction and purification of the N-linked glycans.

    Science.gov (United States)

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2016-08-17

    The highly selective enrichment of N-linked glycans from complex biological sample is still very important but challenging task due to the ultra-low abundance, complicated structures and strong ion suppress effect caused by distractors such as proteins, peptides and salts. Here, we firstly present a novel metal-organic frameworks (MOFs)-functionalized magnetic nanoporous carbon-graphene composites (C-magG@ZIF-8) synthesized through a smart process. The obtained materials enjoy the unique properties including strong magnetic responsiveness, a large sum of graphitized carbon pore, remarkable biocompatibility and large specific surface area. By virtue of these unique properties, the C-magG@ZIF-8 composites displayed excellent selectivity and sensitivity, good recyclability and incredible size exclusion ability (roughly 2000 times) in the N-linked glycans analysis. Furthermore, 48 N-linked glycans were clearly identified from the normal human serum treated with the C-magG@ZIF-8. There is reason to believe that our smart strategy offers new possibilities for preparing the MOFs-functionalized composites for large-scale characterization of glycoproteomics by mass spectrometry analysis.

  20. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa).

    Science.gov (United States)

    Harmoko, Rikno; Yoo, Jae Yong; Ko, Ki Seong; Ramasamy, Nirmal Kumar; Hwang, Bo Young; Lee, Eun Ji; Kim, Ho Soo; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Dool-Yi; Lee, Sanghun; Li, Yang; Lee, Sang Yeol; Lee, Kyun Oh

    2016-10-01

    In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.

  1. Versatile metal-organic framework-functionalized magnetic graphene nanoporous composites: As deft matrix for high-effective extraction and purification of the N-linked glycans.

    Science.gov (United States)

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2016-08-17

    The highly selective enrichment of N-linked glycans from complex biological sample is still very important but challenging task due to the ultra-low abundance, complicated structures and strong ion suppress effect caused by distractors such as proteins, peptides and salts. Here, we firstly present a novel metal-organic frameworks (MOFs)-functionalized magnetic nanoporous carbon-graphene composites (C-magG@ZIF-8) synthesized through a smart process. The obtained materials enjoy the unique properties including strong magnetic responsiveness, a large sum of graphitized carbon pore, remarkable biocompatibility and large specific surface area. By virtue of these unique properties, the C-magG@ZIF-8 composites displayed excellent selectivity and sensitivity, good recyclability and incredible size exclusion ability (roughly 2000 times) in the N-linked glycans analysis. Furthermore, 48 N-linked glycans were clearly identified from the normal human serum treated with the C-magG@ZIF-8. There is reason to believe that our smart strategy offers new possibilities for preparing the MOFs-functionalized composites for large-scale characterization of glycoproteomics by mass spectrometry analysis. PMID:27286768

  2. State-of-the-art technologies for rapid and high-throughput sample preparation and analysis of N-glycans from antibodies.

    Science.gov (United States)

    Aich, Udayanath; Lakbub, Jude; Liu, Aston

    2016-06-01

    Glycosylation is a PTM that occurs during production of many protein-based biologic drugs and can have a profound impact on their biological, clinical, and pharmacological properties. Quality by design, process optimization, and advance in manufacturing technology create a demand for robust, sensitive, and accurate profiling and quantification of antibody glycosylation. Potential drawbacks in antibody glycosylation profiling include the high hands-on time required for sample preparation and several hours for data acquisition and analysis. Rapid and high-throughput (HTP) N-glycan profiling and characterization along with automation for sample preparation and analysis are essential for extensive antibody glycosylation analysis due to the substantial improvement of turnaround time. The first part of this review article will focus on the recent progress in rapid and HTP sample preparation and analysis of antibody glycosylation. Subsequently, the article will cover a brief overview of various separation and mass spectrometric methods for the rapid and HTP analysis of N-glycans in antibodies. Finally, we will discuss the recent developments in process analytical technologies for the screening and quantification of N-glycans in antibodies.

  3. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa).

    Science.gov (United States)

    Harmoko, Rikno; Yoo, Jae Yong; Ko, Ki Seong; Ramasamy, Nirmal Kumar; Hwang, Bo Young; Lee, Eun Ji; Kim, Ho Soo; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Dool-Yi; Lee, Sanghun; Li, Yang; Lee, Sang Yeol; Lee, Kyun Oh

    2016-10-01

    In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle. PMID:27241276

  4. State-of-the-art technologies for rapid and high-throughput sample preparation and analysis of N-glycans from antibodies.

    Science.gov (United States)

    Aich, Udayanath; Lakbub, Jude; Liu, Aston

    2016-06-01

    Glycosylation is a PTM that occurs during production of many protein-based biologic drugs and can have a profound impact on their biological, clinical, and pharmacological properties. Quality by design, process optimization, and advance in manufacturing technology create a demand for robust, sensitive, and accurate profiling and quantification of antibody glycosylation. Potential drawbacks in antibody glycosylation profiling include the high hands-on time required for sample preparation and several hours for data acquisition and analysis. Rapid and high-throughput (HTP) N-glycan profiling and characterization along with automation for sample preparation and analysis are essential for extensive antibody glycosylation analysis due to the substantial improvement of turnaround time. The first part of this review article will focus on the recent progress in rapid and HTP sample preparation and analysis of antibody glycosylation. Subsequently, the article will cover a brief overview of various separation and mass spectrometric methods for the rapid and HTP analysis of N-glycans in antibodies. Finally, we will discuss the recent developments in process analytical technologies for the screening and quantification of N-glycans in antibodies. PMID:26829758

  5. The cattle tick antigen, Bm95, expressed in Pichia pastoris contains short chains of N- and O-glycans.

    Science.gov (United States)

    González, Luis J; Cremata, José A; Guanche, Yazmín; Ramos, Yassel; Triguero, Ada; Cabrera, Gleysin; Montesino, Raquel; Huerta, Vivian; Pons, Tirso; Boué, Oscar; Farnós, Omar; Rodríguez, Manuel

    2004-12-15

    Bm95 is an antigen isolated from Boophilus microplus strains with low susceptibility to antibodies developed in cattle vaccinated with the recombinant Bm86 antigen (Gavac, HeberBiotec S.A., Cuba). It is a Bm86-like surface protein, which by similarity contains seven EGF-like domains and a lipid-binding GPI-anchor site at the C-terminal region. The primary structure of the recombinant (rBm95) protein expressed in Pichia pastoris was completely verified by LC/MS. The four potential glycosylation sites (Asn 122, 163, 329, and 363) are glycosylated partially with short N-glycans, from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) of which, Man(8-9)GlcNAc(2) were the most abundant. O-Glycopeptides are distributed mostly towards the protein N-terminus. While the first N-glycosylated site (Asn(122)) is located between EGF-like domains 2 and 3, where the O-glycopeptides were found, two other N-glycosylated sites (Asn(329) and Asn(363)) are located between EGF-like domains 5 and 6, a region devoid of O-glycosylated Ser or Thr. PMID:15542059

  6. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Giménez, Estela, E-mail: estelagimenez@ub.edu [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Balmaña, Meritxell [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Figueras, Joan [Department of Surgery, Dr. Josep Trueta University Hospital, IdlBGi, 17007 Girona (Spain); Fort, Esther [Digestive Unit, Dr. Josep Trueta University Hospital, 17007 Girona (Spain); Bolós, Carme de [Gastroesophagic Cancer Research Group, Research Programme in Cancer, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader, 88, 08003 Barcelona (Spain); Sanz-Nebot, Victòria [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Peracaula, Rosa [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Rizzi, Andreas [Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna (Austria)

    2015-03-25

    Highlights: • The method enables relative quantitation of hAGP glycans from pathological samples • Pancreatic cancer samples clearly showed an increase of hAGP fucosylated glycans. • Fucosylated glycans could be potential biomarkers for diagnosing pancreatic cancer. • The established method could be extremely useful to find novel glycoprotein biomarkers - Abstract: In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [{sup 12}C]- and [{sup 13}C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α{sub 1}-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in h

  7. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis

    International Nuclear Information System (INIS)

    Highlights: • The method enables relative quantitation of hAGP glycans from pathological samples • Pancreatic cancer samples clearly showed an increase of hAGP fucosylated glycans. • Fucosylated glycans could be potential biomarkers for diagnosing pancreatic cancer. • The established method could be extremely useful to find novel glycoprotein biomarkers - Abstract: In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [12C]- and [13C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α1-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a candidate

  8. Glycans affect DNA extraction and induce substantial differences in gut metagenomic studies

    OpenAIRE

    Angelakis, E; Bachar, D.; Henrissat, B; Armougom, Fabrice; Audoly, G.; Lagier, J. C.; Robert, C.; Raoult, Didier

    2016-01-01

    Exopolysaccharides produced by bacterial species and present in feces are extremely inhibitory to DNA restriction and can cause discrepancies in metagenomic studies. We determined the effects of different DNA extraction methods on the apparent composition of the gut microbiota using Illumina MiSeq deep sequencing technology. DNA was extracted from the stool from an obese female using 10 different methods and the choice of DNA extraction method affected the proportional abundance at the phylum...

  9. Glycan analysis of Fonsecaea monophora from clinical and environmental origins reveals different structural profile and human antigenic response

    Directory of Open Access Journals (Sweden)

    Juliana Reis Burjack

    2014-10-01

    Full Text Available Dematiaceous fungi constitute a large and heterogeneous group, characterized by having a dark pigment, the dihydroxynaftalen melanin - DHN, inside their cell walls. In nature they are found mainly as soil microbiota or decomposing organic matter, and are spread in tropical and subtropical regions. The fungus Fonsecaea monophora causes chromoblastomycosis in humans, and possesses essential mechanisms that may enhance pathogenicity, proliferation and dissemination inside the host. Glycoconjugates confer important properties to these pathogenic microorganisms. In this work, structural characterization of glycan structures present in two different strains of F. monophora MMHC82 and FE5p4, from clinical and environmental origins, respectively, was performed. Each one were grown on Minimal Medium (MM and Czapeck-Dox (CD medium, and the water soluble cell wall glycoconjugates and exopolysaccharides (EPS were evaluated by NMR, methylation and principal component analysis (PCA. By combining the methylation and 2D NMR analyses, it was possible to visualize the glycosidic profiles of the complex carbohydrate mixtures. Significant differences were observed in β-D-Galf-(1→5 and (1→6 linkages, α- and β-D-Glcp-(1→3, (1→4 and (1→6 units, as well as in α-D-Manp. PCA from 1H-NMR data showed that MMHC82 from CD medium showed a higher variation in the cell wall carbohydrates, mainly related to O-2 substituted β-D-Galf (δ 106.0/5.23 and δ 105.3/5.23 units. In order to investigate the antigenic response of the glycoconjugates, these were screened against serum from chromoblastomycosis patients. The antigen which contained the cell wall of MMHC82 grown in MM had β-D-Manp units that promoted higher antigenic response. The distribution of these fungal species in nature and the knowledge of how cell wall polysaccharides and glycoconjugates structure vary, may contribute to the better understanding and the elucidation of the pathology caused by this

  10. Glycan analysis of Fonsecaea monophora from clinical and environmental origins reveals different structural profile and human antigenic response.

    Science.gov (United States)

    Burjack, Juliana R; Santana-Filho, Arquimedes P; Ruthes, Andrea C; Riter, Daniel S; Vicente, Vania A; Alvarenga, Larissa M; Sassaki, Guilherme L

    2014-01-01

    Dematiaceous fungi constitute a large and heterogeneous group, characterized by having a dark pigment, the dihydroxynaftalen melanin-DHN, inside their cell walls. In nature they are found mainly as soil microbiota or decomposing organic matter, and are spread in tropical and subtropical regions. The fungus Fonsecaea monophora causes chromoblastomycosis in humans, and possesses essential mechanisms that may enhance pathogenicity, proliferation and dissemination inside the host. Glycoconjugates confer important properties to these pathogenic microorganisms. In this work, structural characterization of glycan structures present in two different strains of F. monophora MMHC82 and FE5p4, from clinical and environmental origins, respectively, was performed. Each one were grown on Minimal Medium (MM) and Czapeck-Dox (CD) medium, and the water soluble cell wall glycoconjugates and exopolysaccharides (EPS) were evaluated by NMR, methylation and principal component analysis (PCA). By combining the methylation and 2D NMR analyses, it was possible to visualize the glycosidic profiles of the complex carbohydrate mixtures. Significant differences were observed in β-D-Galf-(1→5) and (1→6) linkages, α- and β-D-Glcp-(1→3), (1→4), and (1→6) units, as well as in α-D-Manp. PCA from (1)H-NMR data showed that MMHC82 from CD medium showed a higher variation in the cell wall carbohydrates, mainly related to O-2 substituted β-D-Galf (δ 106.0/5.23 and δ 105.3/5.23) units. In order to investigate the antigenic response of the glycoconjugates, these were screened against serum from chromoblastomycosis patients. The antigen which contained the cell wall of MMHC82 grown in MM had β-D-Manp units that promoted higher antigenic response. The distribution of these fungal species in nature and the knowledge of how cell wall polysaccharides and glycoconjugates structure vary, may contribute to the better understanding and the elucidation of the pathology caused by this fungus.

  11. The recognition of N-glycans by the lectin ArtinM mediates cell death of a human myeloid leukemia cell line.

    Directory of Open Access Journals (Sweden)

    Fernanda Caroline Carvalho

    Full Text Available ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus (jackfruit, interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC(50 = 10 µg/mL, as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment.

  12. Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosamine-specific snail lectins: a comparative binding study.

    Science.gov (United States)

    Gomes, Michelle M; Suzuki, Hitoshi; Brooks, Monica T; Tomana, Milan; Moldoveanu, Zina; Mestecky, Jiri; Julian, Bruce A; Novak, Jan; Herr, Andrew B

    2010-07-13

    Aberrancies in IgA1 glycosylation have been linked to the pathogenesis of IgA nephropathy (IgAN), a kidney disease characterized by deposits of IgA1-containing immune complexes in the glomerular mesangium. IgA1 from IgAN patients is characterized by the presence of galactose (Gal)-deficient O-glycans in the hinge region that can act as epitopes for anti-glycan IgG or IgA1 antibodies. The resulting circulating immune complexes are trapped in the glomerular mesangium of the kidney where they trigger localized inflammatory responses by activating mesangial cells. Certain lectins recognize the terminal N-acetylgalactosamine (GalNAc)-containing O-glycans on Gal-deficient IgA1 and can be potentially used as diagnostic tools. To improve our understanding of GalNAc recognition by these lectins, we have conducted binding studies to assess the interaction of Helix aspersa agglutinin (HAA) and Helix pomatia agglutinin (HPA) with Gal-deficient IgA1. Surface plasmon resonance spectroscopy revealed that both HAA and HPA bind to a Gal-deficient synthetic hinge region glycopeptide (HR-GalNAc) as well as various aberrantly glycosylated IgA1 myeloma proteins. Despite having six binding sites, both HAA and HPA bind IgA1 in a functionally bivalent manner, with the apparent affinity for IgA1 related to the number of exposed GalNAc groups in the IgA1 hinge. Finally, HAA and HPA were shown to discriminate very effectively between the IgA1 secreted by cell lines derived from peripheral blood cells of patients with IgAN and that from cells of healthy controls. These studies provide insight into lectin recognition of the Gal-deficient IgA1 hinge region and lay the groundwork for the development of reliable diagnostic tools for IgAN.

  13. Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry.

    Science.gov (United States)

    Cao, Qichen; Zhao, Xinyuan; Zhao, Qing; Lv, Xiaodong; Ma, Cheng; Li, Xianyu; Zhao, Yan; Peng, Bo; Ying, Wantao; Qian, Xiaohong

    2014-07-15

    Core fucosylation (CF) is a special glycosylation pattern of proteins that has a strong relationship with cancer. The Food and Drug Administration (FDA) has approved the core fucosylated α-fetoprotein as a biomarker for the early diagnosis of hepatocellular carcinoma (HCC). The technology for identifying core fucosylated proteins has significant practical value. The major method for core fucosylated glycoprotein/glycopeptide analysis is neutral loss-based MS(3) scanning under collision-induced dissociation (CID) by ion trap mass spectrometry. However, due to the limited speed and low resolution of the MS(3) scan mode, it is difficult to achieve high-throughput, with only dozens of core fucosylated proteins identified in a single run. In this work, we developed a novel strategy for the identification of CF glycopeptides at a large scale, integrating the stepped fragmentation function, one novel feature of quadrupole-orbitrap mass spectrometry, with "glycan diagnostic ion"-based spectrum optimization. By using stepped fragmentation, we were able to obtain both highly accurate glycan and peptide information of a simplified CF glycopeptide in one spectrum. Moreover, the spectrum could be recorded with the same high speed as the conventional MS(2) scan. By using the "glycan diagnostic ion"-based spectrum refinement method, the efficiency of the CF glycopeptide discovery was significantly improved. We demonstrated the feasibility and reproducibility of our method by analyzing CF glycoproteomes of mouse liver tissue and HeLa cell samples spiked with standard CF glycoprotein. In total, 1364 and 856 CF glycopeptides belonging to 702 and 449 CF glycoproteins were identified, respectively, within a 78-min gradient analysis, which was approximately a 7-fold increase in the identification efficiency of CF glycopeptides compared to the currently used method. In this work, we took core fucosylated glycopeptides as a practical example to demonstrate the great potential of our

  14. A lectin recognizes differential arrangements of O-glycans on mucin repeats

    DEFF Research Database (Denmark)

    Kato, Kentaro; Takeuchi, Hideyuki; Ohki, Takao;

    2008-01-01

    Interaction of Vicia villosa agglutinin-B4 (VVA-B4) to glycopeptides with O-linked GalNAc residues was investigated by surface plasmon resonance. The affinity was shown to be influenced by the arrangement of O-glycosylation sites on a peptide, PTTTPITTTTK, representing the tandem repeat of MUC2....... The dissociation rate constant was low in the peptides containing consecutive GalNAc residues and PT( *)TTPIT( *)T( *)T( *)TK was the lowest of the glycopeptides tested. Dissociation constant (K(D)), calculated as k(d)/k(a) was the lowest with PTT( *)T( *)PITT( *)T( *)TK. Therefore, the arrangement...... but not the quantity of GalNAc residues apparently determines the affinity between VVA-B4 and peptides with attached GalNAc residues....

  15. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, HCD and ETD-MS applied to the N-linked glycoproteome of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Scott, Nichollas E; Parker, Benjamin L; Connolly, Angela M;

    2011-01-01

    -linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled...... by the resistance of the glycan-peptide bond to enzymatic digestion or ss-elimination, and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction...... chromatography (ZIC-HILIC) and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD), as well as CID / electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide...

  16. Synthesis of the tetrasaccharide repeating unit of the O-glycan from the polar flagellum flagellin of Azospirillum brasilense Sp7.

    Science.gov (United States)

    Pal, Kumar Bhaskar; Mukhopadhyay, Balaram

    2014-12-01

    Chemical synthesis of the tetrasaccharide repeating unit of the O-glycan from the polar flagellum flagellin of Azospirillum brasilense Sp7 in the form of its p-methoxyphenyl glycoside is reported. The required glycosidic linkages have been accomplished by activation of thioglycosides with N-iodosuccinimide in the presence of H2SO4-silica. H2SO4-silica was found to be an effective alternative to the classical acid promoters like TfOH or TMSOTf and it can lead to the formation of both 1,2-cis and 1,2-trans glycosidic linkages depending on the protecting group manipulation and control of the reaction condition.

  17. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy

    DEFF Research Database (Denmark)

    Renfrow, MB; Mackay, CL; Chalmers, MJ;

    2007-01-01

    IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis. In IgAN, IgA1 molecules with incompletely galactosylated O-linked glycans in the hinge region (HR) are present in mesangial immunodeposits and in circulating immune complexes. It is not known whether the galactose...... deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. We have previously demonstrated the first direct localization of multiple O-glycosylation sites on a single IgA1 myeloma protein by use of activated ion-electron capture dissociation (AI-ECD) Fourier transform ion cyclotron...

  18. Characterization of a monoclonal antibody to a novel glycan-dependent epitope in the V1/V2 domain of the HIV-1 envelope protein, gp120.

    Science.gov (United States)

    Doran, Rachel C; Morales, Javier F; To, Briana; Morin, Trevor J; Theolis, Richard; O'Rourke, Sara M; Yu, Bin; Mesa, Kathryn A; Berman, Phillip W

    2014-11-01

    Recent studies have described several broadly neutralizing monoclonal antibodies (bN-mAbs) that recognize glycan-dependent epitopes (GDEs) in the HIV-1 envelope protein, gp120. These were recovered from HIV-1 infected subjects, and several (e.g., PG9, PG16, CH01, CH03) target glycans in the first and second variable (V1/V2) domain of gp120. The V1/V2 domain is thought to play an important role in conformational masking, and antibodies to the V1/V2 domain were recently identified as the only immune response that correlated with protection in the RV144 HIV-1 vaccine trial. While the importance of antibodies to polymeric glycans is well established for vaccines targeting bacterial diseases, the importance of antibodies to glycans in vaccines targeting HIV has only recently been recognized. Antibodies to GDEs may be particularly significant in HIV vaccines based on gp120, where 50% of the molecular mass of the envelope protein is contributed by N-linked carbohydrate. However, few studies have reported antibodies to GDEs in humans or animals immunized with candidate HIV-1 vaccines. In this report, we describe the isolation of a mouse mAb, 4B6, after immunization with the extracellular domain of the HIV-1 envelope protein, gp140. Epitope mapping using glycopeptide fragments and in vitro mutagenesis showed that binding of this antibody depends on N-linked glycosylation at asparagine N130 (HXB2 numbering) in the gp120 V1/V2 domain. Our results demonstrate that, in addition to natural HIV-1 infection, immunization with recombinant proteins can elicit antibodies to the GDEs in the V1/V2 domain of gp120. Although little is known regarding conditions that favor antibody responses to GDEs, our studies demonstrate that these antibodies can arise from a short-term immunization regimen. Our results suggest that antibodies to GDEs are more common than previously suspected, and that further analysis of antibody responses to the HIV-1 envelope protein will lead to the discovery of

  19. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella -- their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin.

    Science.gov (United States)

    Nakanishi, Kazuko; Yaoi, Katsuro; Nagino, Yasushi; Hara, Hirotaka; Kitami, Madoka; Atsumi, Shogo; Miura, Nami; Sato, Ryoichi

    2002-05-22

    Novel aminopeptidase N (APN) isoform cDNAs, BmAPN3 and PxAPN3, from the midguts of Bombyx mori and Plutella xylostella, respectively, were cloned, and a total of eight APN isoforms cloned from B. mori and P. xylostella were classified into four classes. Bacillus thuringiensis Cry1Aa and Cry1Ab toxins were found to bind to specific APN isoforms from the midguts of B. mori and P. xylostella, and binding occurred with fragments that corresponded to the BmAPN1 Cry1Aa toxin-binding region of each APN isoform. The results suggest that APN isoforms have a common toxin-binding region, and that the apparent specificity of Cry1Aa toxin binding to each intact APN isoform seen in SDS-PAGE is determined by factors such as expression level in conjunction with differences in binding affinity. PMID:12023048

  20. Determination of fat tissue area in the abdomen and evaluation of degree of obesity. Pt. 1. A unique application of a densitometric technique of computed tomography for CT values of fat tissue area

    International Nuclear Information System (INIS)

    Computed tomography (CT) scanning images were taken from 26 normal subjects, 23 obesity patients and 11 with leanness to determine fat tissue values. Setting three regions of interest (ROIs) for fat tissues identified by a double-window display, a total of 52 images were employed. Histograms were constructed for each of the 3 ROIs, and the maximum, mean and minimum values were computed for each fat tissues. Areas of entire fat tissues were computed on each image with the above-cited CT software for thyroidal iodine contents by setting ROIs along the outline of body, the abdominal wall and the wall of colon, respectively. Areas of subcutaneous fat tissues were calculated by simply subtracting the values of visceral fat tissues from those of entire fat tissues. Means of maximum and minimum CT values of visceral fat tissues on 52 images were -34.7 HU and -162.1 HU, respectively. The double-window display indicated that the spectrum of CT values of fat tissue included not only visceral and subcutaneous fat tissues but fecal materials with air bubbles in the colon. Areas of fecal materials with the same CT values as that of the fat tissues occupied 2.5±3.0% of that of the visceral fat tissue. The areas of subcutaneous and visceral fat tissues were largest at the levels of -20 to 0 mm and 60 to 100 mm, respectively, on all images. At the level of 0 mm, the areas of visceral fat tissue did not show any differences among normal subjects, obesity patients and patients with leanness. It was concluded that the CT software is applicable to obtain satisfactory values for areas of visceral fat tissue, and that CT images at the levels of 0, 40, 60 and 100 mm are necessary to accurately determine areas of visceral fat tissues. (S.Y.)

  1. Determination of fat tissue area in the abdomen and evaluation of degree of obesity. Pt. 1. A unique application of a densitometric technique of computed tomography for CT values of fat tissue area

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumie [Saint Marianna Univ., Kawasaki, Kanagawa (Japan). School of Medicine

    1995-06-01

    Computed tomography (CT) scanning images were taken from 26 normal subjects, 23 obesity patients and 11 with leanness to determine fat tissue values. Setting three regions of interest (ROIs) for fat tissues identified by a double-window display, a total of 52 images were employed. Histograms were constructed for each of the 3 ROIs, and the maximum, mean and minimum values were computed for each fat tissues. Areas of entire fat tissues were computed on each image with the above-cited CT software for thyroidal iodine contents by setting ROIs along the outline of body, the abdominal wall and the wall of colon, respectively. Areas of subcutaneous fat tissues were calculated by simply subtracting the values of visceral fat tissues from those of entire fat tissues. Means of maximum and minimum CT values of visceral fat tissues on 52 images were -34.7 HU and -162.1 HU, respectively. The double-window display indicated that the spectrum of CT values of fat tissue included not only visceral and subcutaneous fat tissues but fecal materials with air bubbles in the colon. Areas of fecal materials with the same CT values as that of the fat tissues occupied 2.5{+-}3.0% of that of the visceral fat tissue. The areas of subcutaneous and visceral fat tissues were largest at the levels of -20 to 0 mm and 60 to 100 mm, respectively, on all images. At the level of 0 mm, the areas of visceral fat tissue did not show any differences among normal subjects, obesity patients and patients with leanness. It was concluded that the CT software is applicable to obtain satisfactory values for areas of visceral fat tissue, and that CT images at the levels of 0, 40, 60 and 100 mm are necessary to accurately determine areas of visceral fat tissues. (S.Y.).

  2. Mucin-type O-glycans in human cancer: structures and functions%黏蛋白型O-聚糖:结构、功能及与肿瘤的相关性

    Institute of Scientific and Technical Information of China (English)

    吴士良

    2011-01-01

    黏蛋白是细胞表面的或分泌的、具有高度O-糖基化修饰的糖蛋白.黏蛋白型O-聚糖是由多肽:N-乙酰氨基半乳糖转移酶(ppGalNAc-T)家族催化起始合成的,在肿瘤中常常伴随着黏蛋白型O-聚糖结构和数量上的改变,形成肿瘤特异聚糖结构(cancer-associated glycans),如肿瘤Tn和T抗原等.肿瘤特异聚糖使肿瘤细胞的抗原性和黏附能力发生改变,促进肿瘤细胞的恶性增生与转移.而这些肿瘤特异聚糖结构,也为肿瘤的诊断与抗肿瘤药物或疫苗开发提供了理论基础.%Mucins are heavily O-glycosylated glycoproteins found in mucous secretions and as transmembrane glycoproteins of the cell surface with the glycan exposed to the external environment. In mucins, O-glycans are covalently a-linked via an N-acetylgalactosamine (GalNAc)moiety to serine or threonine, and the structures are named mucin-type O-glycans. Mucin-type O-glycans are initiated by UDP-GalNAc: polypeptide N-Acetylgalactosa minyltransferases, which enzymatic mechanism and structural features have been a hot topic of glycosyltransferases research. Mucin-type O-glycans of cancer cells are often changed, both in structure and in quantity, developing several cancer-associated glycans, such as T and Tn antigens. These structural changes can alter the function of the cancer cells, and its antigenic and adhesive properties, as well as its potential to invade and metastasize. These cancer-associated glycans can be exploited to tumor diagnosis, and in the development of anti-tumor drug or vaccine.

  3. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3).

    Science.gov (United States)

    van Wijk, Xander M; Lawrence, Roger; Thijssen, Victor L; van den Broek, Sebastiaan A; Troost, Ran; van Scherpenzeel, Monique; Naidu, Natasha; Oosterhof, Arie; Griffioen, Arjan W; Lefeber, Dirk J; van Delft, Floris L; van Kuppevelt, Toin H

    2015-07-01

    Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 μM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50-60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5'-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis.

  4. Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins.

    Science.gov (United States)

    Marathe, Dhananjay D; Buffone, Alexander; Chandrasekaran, E V; Xue, Jun; Locke, Robert D; Nasirikenari, Mehrab; Lau, Joseph T Y; Matta, Khushi L; Neelamegham, Sriram

    2010-02-11

    Novel strategies to control the binding of adhesion molecules belonging to the selectin family are required for the treatment of inflammatory diseases. We tested the possibility that synthetic monosaccharide analogs can compete with naturally occurring sugars to alter the O-glycan content on human leukocyte cell surface selectin-ligand, P-selectin glycoprotein ligand-1 (PSGL-1). Resulting reduction in the sialyl Lewis-X-bearing epitopes on this ligand may reduce cell adhesion. Consistent with this hypothesis, 50muM per-acetylated 4F-GalNAc added to the growth media of promyelocytic HL-60 cells reduced the expression of the cutaneous lymphocyte associated-antigen (HECA-452 epitope) by 82% within 2 cell doubling cycles. Cell binding to all 3 selectins (L-, E-, and P-selectin) was reduced in vitro. 4F-GalNAc was metabolically incorporated into PSGL-1, and this was accompanied by an approximately 20% reduction in PSGL-1 glycan content. A 70% to 85% reduction in HECA-452 binding epitope and N-acetyl lactosamine content in PSGL-1 was also noted on 4F-GalNAc addition. Intravenous 4F-GalNAc infusion reduced leukocyte migration to the peritoneum in a murine model of thioglycolate-induced peritonitis. Thus, the compound has pharmacologic activity. Overall, the data suggest that 4F-GalNAc may be applied as a metabolic inhibitor to reduce O-linked glycosylation, sialyl Lewis-X formation, and leukocyte adhesion via the selectins.

  5. Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans.

    Directory of Open Access Journals (Sweden)

    Shih-Chang Lin

    Full Text Available Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA, a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9 cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic and mammalian cells (CHO. While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.

  6. Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor.

    Science.gov (United States)

    Kong, Leopold; Ju, Bin; Chen, Yajing; He, Linling; Ren, Li; Liu, Jiandong; Hong, Kunxue; Su, Bin; Wang, Zheng; Ozorowski, Gabriel; Ji, Xiaolin; Hua, Yuanzi; Chen, Yanli; Deller, Marc C; Hao, Yanling; Feng, Yi; Garces, Fernando; Wilson, Richard; Dai, Kaifan; O'Dell, Sijy; McKee, Krisha; Mascola, John R; Ward, Andrew B; Wyatt, Richard T; Li, Yuxing; Wilson, Ian A; Zhu, Jiang; Shao, Yiming

    2016-04-19

    VRC01-class antibodies neutralize diverse HIV-1 strains by targeting the conserved CD4-binding site. Despite extensive investigations, crucial events in the early stage of VRC01 development remain elusive. We demonstrated how VRC01-class antibodies emerged in a Chinese donor by antigen-specific single B cell sorting, structural and functional studies, and longitudinal antibody and virus repertoire analyses. A monoclonal antibody DRVIA7 with modest neutralizing breadth was isolated that displayed a subset of VRC01 signatures. X-ray and EM structures revealed a VRC01-like angle of approach, but less favorable interactions between the DRVIA7 light-chain CDR1 and the N terminus with N276 and V5 glycans of gp120. Although the DRVIA7 lineage was unable to acquire broad neutralization, longitudinal analysis revealed a repertoire-encoded VRC01 light-chain CDR3 signature and VRC01-like neutralizing heavy-chain precursors that rapidly matured within 2 years. Thus, light chain accommodation of the glycan shield should be taken into account in vaccine design targeting this conserved site of vulnerability.

  7. Differences in the mannose oligomer specificities of the closely related lectins from Galanthus nivalis and Zea mays strongly determine their eventual anti-HIV activity

    Directory of Open Access Journals (Sweden)

    Fouquaert Elke

    2011-02-01

    Full Text Available Abstract Background In a recent report, the carbohydrate-binding specificities of the plant lectins Galanthus nivalis (GNA and the closely related lectin from Zea mays (GNAmaize were determined by glycan array analysis and indicated that GNAmaize recognizes complex-type N-glycans whereas GNA has specificity towards high-mannose-type glycans. Both lectins are tetrameric proteins sharing 64% sequence similarity. Results GNAmaize appeared to be ~20- to 100-fold less inhibitory than GNA against HIV infection, syncytia formation between persistently HIV-1-infected HuT-78 cells and uninfected CD4+ T-lymphocyte SupT1 cells, HIV-1 capture by DC-SIGN and subsequent transmission of DC-SIGN-captured virions to uninfected CD4+ T-lymphocyte cells. In contrast to GNA, which preferentially selects for virus strains with deleted high-mannose-type glycans on gp120, prolonged exposure of HIV-1 to dose-escalating concentrations of GNAmaize selected for mutant virus strains in which one complex-type glycan of gp120 was deleted. Surface Plasmon Resonance (SPR analysis revealed that GNA and GNAmaize interact with HIV IIIB gp120 with affinity constants (KD of 0.33 nM and 34 nM, respectively. Whereas immobilized GNA specifically binds mannose oligomers, GNAmaize selectively binds complex-type GlcNAcβ1,2Man oligomers. Also, epitope mapping experiments revealed that GNA and the mannose-specific mAb 2G12 can independently bind from GNAmaize to gp120, whereas GNAmaize cannot efficiently bind to gp120 that contained prebound PHA-E (GlcNAcβ1,2man specific or SNA (NeuAcα2,6X specific. Conclusion The markedly reduced anti-HIV activity of GNAmaize compared to GNA can be explained by the profound shift in glycan recognition and the disappearance of carbohydrate-binding sites in GNAmaize that have high affinity for mannose oligomers. These findings underscore the need for mannose oligomer recognition of therapeutics to be endowed with anti-HIV activity and that mannose, but

  8. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A;

    1994-01-01

    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation...... in the V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor...... affecting viral infectivity in cell culture. We found that the mutated virus lacking an N-linked glycan in the V1-loop of gp120 was more resistant to neutralization by monoclonal antibodies to the V3-loop and neutralization by soluble recombinant CD4 (sCD4). Both viruses were equally well neutralized by Con...

  9. Printed glycan array

    DEFF Research Database (Denmark)

    Shilova, Nadezhda; Navakouski, Maxim; Khasbiullina, Nailya;

    2012-01-01

    usually has to dilute the starting material in order to have sufficient volume for PGA experimentation. The PGA used in this study allows for the use of whole serum without modifications to the protocol, and the background is surprisingly low. Antibodies profiles observed in undiluted serum versus 1......G/IgM ratio corresponds to their titer, whereas at 1:100 dilution the measured ratio corresponds to real molar concentration of IgG and IgM....

  10. Negligible elongation of mucin glycans with Gal β1-3 units distinguishes the laminated layer of Echinococcus multilocularis from that of Echinococcus granulosus.

    Science.gov (United States)

    Del Puerto, Lucía; Rovetta, Romina; Navatta, Marco; Fontana, Carolina; Lin, Gerardo; Moyna, Guillermo; Dematteis, Sylvia; Brehm, Klaus; Koziol, Uriel; Ferreira, Fernando; Díaz, Alvaro

    2016-05-01

    The larval stages of the cestodes Echinococcus multilocularis and Echinococcus granulosus cause the important zoonoses known as larval echinococcoses. These larvae are protected by a unique, massive, mucin-based structure known as the laminated layer. The mucin glycans of the E. granulosus laminated layer are core 1- or core 2-based O-glycans in which the core Galpβ1-3 residue can initiate a chain comprising one to three additional Galpβ1-3 residues, a motif not known in mammalian carbohydrates. This chain can be capped with a Galpα1-4 residue, and can be ramified with GlcNAcpβ1-6 residues. These, as well as the GlcNAcpβ1-6 residue in core 2, can be decorated with the Galpα1-4Galpβ1-4 disaccharide. Here we extend our analysis to the laminated layer of E. multilocularis, showing that the non-decorated cores, together with Galpβ1-3(Galpα1-4Galpβ1-4GlcNAcpβ1-6)GalNAc, comprise over 96% of the glycans in molar terms. This simple laminated layer glycome is exhibited by E. multilocularis grown either in vitro or in vivo. Interestingly, all the differences with the complex laminated layer glycome found in E. granulosus may be explained in terms of strongly reduced activity in E. multilocularis of a putative glycosyltransferase catalysing the elongation with Galpβ1-3. Comparative inter-species analysis of available genomic and transcriptomic data suggested a candidate for this enzyme, amongst more than 20 putative (non-core 1) Gal/GlcNAc β1-3 transferases present in each species as a result of a taeniid-specific gene expansion. The candidate gene was experimentally verified to be transcribed at much higher levels in the larva of E. granulosus than that of E. multilocularis. PMID:26891615

  11. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors

    Directory of Open Access Journals (Sweden)

    Sathyanarayana Bangalore K

    2006-10-01

    Full Text Available Abstract Background The mucin MUC16 and the glycosylphosphatidylinositol anchored glycoprotein mesothelin likely facilitate the peritoneal metastasis of ovarian tumors. The biochemical basis and the kinetics of the binding between these two glycoproteins are not clearly understood. Here we have addressed this deficit and provide further evidence supporting the role of the MUC16-mesothelin interaction in facilitating cell-cell binding under conditions that mimic the peritoneal environment. Results In this study we utilize recombinant-Fc tagged human mesothelin to measure the binding kinetics of this glycoprotein to MUC16 expressed on the ovarian tumor cell line OVCAR-3. OVCAR-3 derived sublines that did not express MUC16 showed no affinity for mesothelin. In a flow cytometry-based assay mesothelin binds with very high affinity to the MUC16 on the OVCAR-3 cells with an apparent Kd of 5–10 nM. Maximum interaction occurs within 5 mins of incubation of the recombinant mesothelin with the OVCAR-3 cells and significant binding is observed even after 10 sec. A five-fold molar excess of soluble MUC16 was unable to completely inhibit the binding of mesothelin to the OVCAR-3 cells. Oxidation of the MUC16 glycans, removal of its N-linked oligosaccharides, and treatment of the mucin with wheat germ agglutinin and erythroagglutinating phytohemagglutinin abrogates its binding to mesothelin. These observations suggest that at least a subset of the MUC16-asscociated N-glycans is required for binding to mesothelin. We also demonstrate that MUC16 positive ovarian tumor cells exhibit increased adherence to A431 cells transfected with mesothelin (A431-Meso+. Only minimal adhesion is observed between MUC16 knockdown cells and A431-Meso+ cells. The binding between the MUC16 expressing ovarian tumor cells and the A431-Meso+ cells occurs even in the presence of ascites from patients with ovarian cancer. Conclusion The strong binding kinetics of the mesothelin-MUC16

  12. Negligible elongation of mucin glycans with Gal β1-3 units distinguishes the laminated layer of Echinococcus multilocularis from that of Echinococcus granulosus.

    Science.gov (United States)

    Del Puerto, Lucía; Rovetta, Romina; Navatta, Marco; Fontana, Carolina; Lin, Gerardo; Moyna, Guillermo; Dematteis, Sylvia; Brehm, Klaus; Koziol, Uriel; Ferreira, Fernando; Díaz, Alvaro

    2016-05-01

    The larval stages of the cestodes Echinococcus multilocularis and Echinococcus granulosus cause the important zoonoses known as larval echinococcoses. These larvae are protected by a unique, massive, mucin-based structure known as the laminated layer. The mucin glycans of the E. granulosus laminated layer are core 1- or core 2-based O-glycans in which the core Galpβ1-3 residue can initiate a chain comprising one to three additional Galpβ1-3 residues, a motif not known in mammalian carbohydrates. This chain can be capped with a Galpα1-4 residue, and can be ramified with GlcNAcpβ1-6 residues. These, as well as the GlcNAcpβ1-6 residue in core 2, can be decorated with the Galpα1-4Galpβ1-4 disaccharide. Here we extend our analysis to the laminated layer of E. multilocularis, showing that the non-decorated cores, together with Galpβ1-3(Galpα1-4Galpβ1-4GlcNAcpβ1-6)GalNAc, comprise over 96% of the glycans in molar terms. This simple laminated layer glycome is exhibited by E. multilocularis grown either in vitro or in vivo. Interestingly, all the differences with the complex laminated layer glycome found in E. granulosus may be explained in terms of strongly reduced activity in E. multilocularis of a putative glycosyltransferase catalysing the elongation with Galpβ1-3. Comparative inter-species analysis of available genomic and transcriptomic data suggested a candidate for this enzyme, amongst more than 20 putative (non-core 1) Gal/GlcNAc β1-3 transferases present in each species as a result of a taeniid-specific gene expansion. The candidate gene was experimentally verified to be transcribed at much higher levels in the larva of E. granulosus than that of E. multilocularis.

  13. Neofunctionalization of the Sec1 α1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus.

    Directory of Open Access Journals (Sweden)

    Kristina Nyström

    2015-04-01

    Full Text Available RHDV (rabbit hemorrhagic disease virus, a virulent calicivirus, causes high mortalities in European rabbit populations (Oryctolagus cuniculus. It uses α1,2fucosylated glycans, histo-blood group antigens (HBGAs, as attachment factors, with their absence or low expression generating resistance to the disease. Synthesis of these glycans requires an α1,2fucosyltransferase. In mammals, there are three closely located α1,2fucosyltransferase genes rSec1, rFut2 and rFut1 that arose through two rounds of duplications. In most mammalian species, Sec1 has clearly become a pseudogene. Yet, in leporids, it does not suffer gross alterations, although we previously observed that rabbit Sec1 variants present either low or no activity. Still, a low activity rSec1 allele correlated with survival to an RHDV outbreak. We now confirm the association between the α1,2fucosyltransferase loci and survival. In addition, we show that rabbits express homogenous rFut1 and rFut2 levels in the small intestine. Comparison of rFut1 and rFut2 activity showed that type 2 A, B and H antigens recognized by RHDV strains were mainly synthesized by rFut1, and all rFut1 variants detected in wild animals were equally active. Interestingly, rSec1 RNA levels were highly variable between individuals and high expression was associated with low binding of RHDV strains to the mucosa. Co-transfection of rFut1 and rSec1 caused a decrease in rFut1-generated RHDV binding sites, indicating that in rabbits, the catalytically inactive rSec1 protein acts as a dominant-negative of rFut1. Consistent with neofunctionalization of Sec1 in leporids, gene conversion analysis showed extensive homogenization between Sec1 and Fut2 in leporids, at variance with its limited degree in other mammals. Gene conversion additionally involving Fut1 was also observed at the C-terminus. Thus, in leporids, unlike in most other mammals where it became extinct, Sec1 evolved a new function with a dominant-negative effect

  14. Neofunctionalization of the Sec1 α1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus.

    Science.gov (United States)

    Nyström, Kristina; Abrantes, Joana; Lopes, Ana Margarida; Le Moullac-Vaidye, Béatrice; Marchandeau, Stéphane; Rocher, Jézabel; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Le Pendu, Jacques

    2015-04-01

    RHDV (rabbit hemorrhagic disease virus), a virulent calicivirus, causes high mortalities in European rabbit populations (Oryctolagus cuniculus). It uses α1,2fucosylated glycans, histo-blood group antigens (HBGAs), as attachment factors, with their absence or low expression generating resistance to the disease. Synthesis of these glycans requires an α1,2fucosyltransferase. In mammals, there are three closely located α1,2fucosyltransferase genes rSec1, rFut2 and rFut1 that arose through two rounds of duplications. In most mammalian species, Sec1 has clearly become a pseudogene. Yet, in leporids, it does not suffer gross alterations, although we previously observed that rabbit Sec1 variants present either low or no activity. Still, a low activity rSec1 allele correlated with survival to an RHDV outbreak. We now confirm the association between the α1,2fucosyltransferase loci and survival. In addition, we show that rabbits express homogenous rFut1 and rFut2 levels in the small intestine. Comparison of rFut1 and rFut2 activity showed that type 2 A, B and H antigens recognized by RHDV strains were mainly synthesized by rFut1, and all rFut1 variants detected in wild animals were equally active. Interestingly, rSec1 RNA levels were highly variable between individuals and high expression was associated with low binding of RHDV strains to the mucosa. Co-transfection of rFut1 and rSec1 caused a decrease in rFut1-generated RHDV binding sites, indicating that in rabbits, the catalytically inactive rSec1 protein acts as a dominant-negative of rFut1. Consistent with neofunctionalization of Sec1 in leporids, gene conversion analysis showed extensive homogenization between Sec1 and Fut2 in leporids, at variance with its limited degree in other mammals. Gene conversion additionally involving Fut1 was also observed at the C-terminus. Thus, in leporids, unlike in most other mammals where it became extinct, Sec1 evolved a new function with a dominant-negative effect on rFut1

  15. Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity.

    Directory of Open Access Journals (Sweden)

    Leen Mathys

    Full Text Available N-linked glycans covering the surface of the HIV-1 glycoprotein gp120 are of major importance for the correct folding of this glycoprotein. Of the, on average, 24 N-linked glycans present on gp120, the glycan at Asn260 was reported to be essential for the correct expression of gp120 and gp41 in the virus particle and deletion of the N260 glycan in gp120 heavily compromised virus infectivity. We show here that gp160 containing the N260Q mutation reaches the Golgi apparatus during biosynthesis. Using pulse-chase experiments with [35S] methionine/cysteine, we show that oxidative folding was slightly delayed in case of mutant N260Q gp160 and that CD4 binding was markedly compromised compared to wild-type gp160. In the search of compensatory mutations, we found a mutation in the V1/V2 loop of gp120 (S128N that could partially restore the infectivity of mutant N260Q gp120 virus. However, the mutation S128N did not enhance any of the above-mentioned processes so its underlying compensatory mechanism must be a conformational effect that does not affect CD4 binding per se. Finally, we show that mutant N260Q gp160 was cleaved to gp120 and gp41 to a much lower extent than wild-type gp160, and that it was subject of lysosomal degradation to a higher extent than wild-type gp160 showing a prominent role of this process in the breakdown of N260-glycan-deleted gp160, which could not be counteracted by the S128N mutation. Moreover, at least part of the wild-type or mutant gp160 that is normally targeted for lysosomal degradation reached a conformation that enabled CD4 binding.

  16. Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2011-02-01

    Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant-produced glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a) ) epitope, i.e., Galβ(1-3)[Fucα(1-4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant-specific core α-1,3-fucose and α-1,4-fucose residues in the Le(a) epitopes by repressing the Guanosine 5'-diphosphate (GDP)-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus-induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose-free N-glycans found in total soluble protein from GMD gene-repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild-type plants. A small amount of putative galactose substitution in N-glycans from the NbGMD gene-repressed plants was observed, similar to what has been previously reported GMD-knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) with fucose-deleted N-glycans was successfully produced in NbGMD-RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants.

  17. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    Science.gov (United States)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  18. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor.

    Science.gov (United States)

    Ravidà, Alessandra; Aldridge, Allison M; Driessen, Nicole N; Heus, Ferry A H; Hokke, Cornelis H; O'Neill, Sandra M

    2016-04-01

    Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica's tegumental coat (FhTeg) and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs) were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR) was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg's binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg's ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S) were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS) 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host's immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg. PMID:27104959

  19. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN

    Directory of Open Access Journals (Sweden)

    Inaia Phoenix

    2016-05-01

    Full Text Available Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3 grabbing non-integrin (DC-SIGN acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV glycoproteins (Gn/Gc encode five putative N-glycan sequons (asparagine (N–any amino acid (X–serine (S/threonine (T at positions: N438 (Gn, and N794, N829, N1035, and N1077 (Gc. The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N to glutamine (Q mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: “Gc-large” and “Gc-small”, and N1077 was responsible for “Gc-large” band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN.

  20. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN.

    Science.gov (United States)

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E; Huante, Matthew B; Slack, Olga A L; Carpio, Victor H; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)-any amino acid (X)-serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: "Gc-large" and "Gc-small", and N1077 was responsible for "Gc-large" band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN. PMID:27223297

  1. Heterogeneity in gamma-glutamyltransferase mRNA expression and glycan structures. Search for tumor-specific variants in human liver metastases and colon carcinoma cells.

    Science.gov (United States)

    Pettersen, Ingvild; Andersen, Jeanette Hammer; Bjornland, Kristin; Mathisen, Øystein; Bremnes, Roy; Wellman, Maria; Visvikis, Athanase; Huseby, Nils-Erik

    2003-05-30

    The enzyme gamma-glutamyltransferase (GGT) is frequently overexpressed in cancer cells and tissues and has significant utility as a cancer marker. Significant heterogeneity of the enzyme has been described due to both transcriptional and post-translational variations. For possible use in diagnosis and follow-up of patients with colorectal cancer, a search was performed for specific mRNA subtypes and glycan structures of the enzyme in liver metastases. We found no differences in the distribution of three GGT mRNA subtypes (fetal liver, HepG2, placenta) in metastatic tissue and normal liver tissue. Furthermore, the three subtypes were present in leukocytes isolated from both normal individuals and cancer patients. Two colon carcinoma cell lines (Colo 205 and HCC 2998) also displayed the three forms and no consistent changes in mRNA composition were noted after butyrate-induced differentiation of the cells. Thus, neither of the GGT mRNA subforms appear to be tumor-specific, although some qualitative and quantitative variations were noted. Two distinct glycosylation features were detected for GGT in metastatic tissue in contrast to normal liver GGT; an extreme sialic acid heterogeneity and a significant increase in beta1,6GlcNAc branching. The GGT glycans from the two colon carcinoma cell lines also possessed these features. As butyrate treatment of the cells resulted in an increased sialic acid content and a reduced beta1,6GlcNAc branching, the described carbohydrate structures appear to be part of a tumor-related pattern. We were, however, unable to identify such GGT isoforms in serum from patients with advanced colorectal cancer. This indicates that their usefulness in diagnostic use is doubtful. PMID:12758164

  2. Introduction of an N-glycan sequon into HEXA enhances human beta-hexosaminidase cellular uptake in a model of Sandhoff disease.

    Science.gov (United States)

    Matsuoka, Kazuhiko; Tsuji, Daisuke; Aikawa, Sei-Ichi; Matsuzawa, Fumiko; Sakuraba, Hitoshi; Itoh, Kohji

    2010-08-01

    Human lysosomal beta-hexosaminidase A is a heterodimer composed of alpha- and beta-subunits encoded by HEXA and HEXB, respectively. We genetically introduced an additional N-glycosylation sequon into HEXA, which caused amino acid substitutions (S51 to N and A53 to T) at homologous positions to N84 and T86 in the beta-subunit. The mutant HexA (NgHexA) obtained from a Chinese hamster ovary (CHO) cell line co-expressing the mutated HEXA and wild-type HEXB complementary DNAs was demonstrated to contain an additional mannose-6-phosphate (M6P)-type-N-glycan. NgHexA was more efficiently taken up than the wild-type HexA and delivered to lysosomes, where it degraded accumulated substrates including GM2 ganglioside (GM2) when administered to cultured fibroblasts derived from a Sandhoff disease (SD) patient. On intracerebroventricular (i.c.v.) administration of NgHexA to SD model mice, NgHexA more efficiently restored the HexA activity and reduced the GM2 and GA2 (asialoGM2) accumulated in neural cells of the brain parenchyma than the wild-type HexA. These findings indicate that i.c.v. administration of the modified human HexA with an additional M6P-type N-glycan is applicable for enzyme replacement therapy (ERT) involving an M6P-receptor as a molecular target for HexA deficiencies including Tay-Sachs disease and SD. PMID:20571546

  3. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor.

    Science.gov (United States)

    Ravidà, Alessandra; Aldridge, Allison M; Driessen, Nicole N; Heus, Ferry A H; Hokke, Cornelis H; O'Neill, Sandra M

    2016-04-01

    Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica's tegumental coat (FhTeg) and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs) were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR) was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg's binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg's ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S) were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS) 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host's immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg.

  4. μ-Theraphotoxin-An1a

    DEFF Research Database (Denmark)

    Rates, Breno; Prates, Maura V; Verano-Braga, Thiago;

    2013-01-01

    Tarantulas are included in the mygalomorph spider family Theraphosidae. Although the pharmacological diversity of theraphosid toxins (theraphotoxins) is broad, studies dedicated to the characterization of biologically active molecules from the theraphosid genus Acanthoscurria have been restricted...... to the investigation of antimicrobial peptides and polyamines produced by the hemocytes of Acanthoscurria gomesiana. The present study reports the purification, primary structure determination and electrophysiological effects of an anti-insect toxin, named μ-theraphotoxin-An1a (μ-TRTX-An1a), from the venom...

  5. Main: PYRIMIDINEBOXOSRAMY1A [PLACE

    Lifescience Database Archive (English)

    Full Text Available PYRIMIDINEBOXOSRAMY1A S000259 19-August-2004 (last modified) kehi Pyrimidine box fo...und in rice (O.s.) alpha-amylase (RAmy1A) gene; Gibberellin-respons cis-element of GARE and pyrimidine box a...ically to this site; See S000265; alpha-amylase; sugar repression; GARE; pyrimidine box; feed-back metabolic

  6. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.

    Science.gov (United States)

    Matsuo, Kouki; Kagaya, Uiko; Itchoda, Noriko; Tabayashi, Noriko; Matsumura, Takeshi

    2014-10-01

    Production of pharmaceutical glycoproteins, such as therapeutic antibodies and cytokines, in plants has many advantages in safety and reduced costs. However, plant-made glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a)) epitope, Galβ(1-3)[Fucα(1-4)]GlcNAc. Because it is likely that these sugar residues and glycan structures are immunogenic, many attempts have been made to delete them. Previously, we reported the simultaneous deletion of the plant-specific core α-1,3-fucose and α-1,4-fucose residues in Le(a) epitopes by repressing the GDP-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants (rGMD plants, renamed to ΔGMD plants) (Matsuo and Matsumura, Plant Biotechnol. J., 9, 264-281, 2011). In the present study, we generated a core β-1,2-xylose residue-repressed transgenic N. benthamiana plant by co-suppression of β-1,2-xylosyltransferase (ΔXylT plant). By crossing ΔGMD and ΔXylT plants, we successfully generated plants in which plant-specific sugar residues were repressed (ΔGMDΔXylT plants). The proportion of N-glycans with deleted plant-specific sugar residues found in total soluble protein from ΔGMDΔXylT plants increased by 82.41%. Recombinant mouse granulocyte/macrophage-colony stimulating factor (mGM-CSF) and human monoclonal immunoglobulin G (hIgG) harboring N-glycans with deleted plant-specific sugar residues were successfully produced in ΔGMDΔXylT plants. Simultaneous repression of the GMD and XylT genes in N. benthamiana is thus very useful for deleting plant-specific sugar residues.

  7. P53 and Cancer-Associated Sialylated Glycans Are Surrogate Markers of Cancerization of the Bladder Associated with Schistosoma haematobium Infection

    Science.gov (United States)

    Lima, Luís; Tavares, Ana; Peixoto, Andreia; Parreira, Beatriz; Correia da Costa, José Manuel; Brindley, Paul J.; Lopes, Carlos

    2014-01-01

    Background Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers. Methodology/Principal Findings Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%), cell-surface cancer-associated glycan sialyl-Tn (sTn) and sialyl-Lewisa/x (sLea/sLex), involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed

  8. Monetarism Beyond M1A

    OpenAIRE

    Pablo García; Rodrigo O. Valdés

    2004-01-01

    This work analyzes, from an empirical standpoint, the information contained in the M1A aggregate in Chile and compares it with other aggregates. The findings reveal that, at least for now, the M1A aggregate does not seem to have particularly valuable information that would make it a better indicator of inflationary pressures within the monetary policy decision horizon. This is consistent with the practice that central banks followed in the past, when they used quantitative targets for money a...

  9. Human L-selectin preferentially binds synthetic glycosulfopeptides modeled after endoglycan and containing tyrosine sulfate residues and sialyl Lewis x in core 2 O-glycans

    Science.gov (United States)

    Leppänen, Anne; Parviainen, Ville; Ahola-Iivarinen, Elina; Kalkkinen, Nisse; Cummings, Richard D

    2010-01-01

    Endoglycan is a mucin-like glycoprotein expressed by endothelial cells and some leukocytes and is recognized by L-selectin, a C-type lectin important in leukocyte trafficking and extravasation during inflammation. Here, we show that recombinant L-selectin and human T lymphocytes expressing L-selectin bind to synthetic glycosulfopeptides (GSPs). These synthetic glycosulfopeptides contain 37 amino acid residues modeled after the N-terminus of human endoglycan and contain one or two tyrosine sulfates (TyrSO3) along with a nearby core-2-based Thr-linked O-glycan with sialyl Lewis x (C2-SLex). TyrSO3 at position Y118 was more critical for binding than at Y97. C2-SLex at T124 was required for L-selectin recognition. Interestingly, under similar conditions, neither L-selectin nor T lymphocytes showed appreciable binding to the sulfated carbohydrate epitope 6-sulfo-SLex. P-selectin also bound to endoglycan-based GSPs but with lower affinity than toward GSPs modeled after PSGL-1, the physiological ligand for P- and L-selectin that is expressed on leukocytes. These results demonstrate that TyrSO3 residues in association with a C2-SLex moiety within endoglycan and PSGL-1 are preferentially recognized by L-selectin. PMID:20507883

  10. Structural insights into the interaction of human IgG1 with FcγRI: no direct role of glycans in binding

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, Vaheh, E-mail: oganesyanv@medimmune.com; Mazor, Yariv; Yang, Chunning; Cook, Kimberly E.; Woods, Robert M. [MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878 (United States); Ferguson, Andrew [AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Mailstop E3, Waltham, MA 02451 (United States); Bowen, Michael A.; Martin, Tom; Zhu, Jie; Wu, Herren; Dall’Acqua, William F., E-mail: oganesyanv@medimmune.com [MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878 (United States)

    2015-10-31

    In an effort to identify the critical structural features responsible for the high-affinity interaction of IgG1 Fc with FcγRI, the structure of the corresponding complex was solved at a resolution of 2.4 Å. The three-dimensional structure of a human IgG1 Fc fragment bound to wild-type human FcγRI is reported. The structure of the corresponding complex was solved at a resolution of 2.4 Å using molecular replacement; this is the highest resolution achieved for an unmutated FcγRI molecule. This study highlights the critical structural and functional role played by the second extracellular subdomain of FcγRI. It also explains the long-known major energetic contribution of the Fc ‘LLGG’ motif at positions 234–237, and particularly of Leu235, via a ‘lock-and-key’ mechanism. Finally, a previously held belief is corrected and a differing view is offered on the recently proposed direct role of Fc carbohydrates in the corresponding interaction. Structural evidence is provided that such glycan-related effects are strictly indirect.

  11. Comparative Profiling of N-Glycans Isolated from Serum Samples of Ovarian Cancer Patients and Analyzed by Microchip Electrophoresis

    OpenAIRE

    Mitra, Indranil; Alley, William R.; Goetz, John A.; Vasseur, Jacqueline A.; Novotny, Milos V.; Jacobson, Stephen C.

    2013-01-01

    Ovarian cancer is the fifth leading cause of cancer-related mortalities for women in the United States and the most lethal gynecological cancer. Aberrant glycosylation has been linked to several human diseases, including ovarian cancer, and accurate measurement of changes in glycosylation may provide relevant diagnostic and prognostic information. In this work, we used microchip electrophoresis coupled with laser-induced fluorescence detection to determine quantitative differences among the N...

  12. O-fucose monosaccharide of Drosophila Notch has a temperature-sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation.

    Science.gov (United States)

    Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji

    2015-01-01

    Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1(R245A knock-in)), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1(R245A knock-in) and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions.

  13. The epitope of monoclonal antibodies blocking erythrocyte invasion by Plasmodium falciparum map to the dimerization and receptor glycan binding sites of EBA-175.

    Directory of Open Access Journals (Sweden)

    Xavier Ambroggio

    Full Text Available The malaria parasite, Plasmodium falciparum, and related parasites use a variety of proteins with Duffy-Binding Like (DBL domains to bind glycoproteins on the surface of host cells. Among these proteins, the 175 kDa erythrocyte binding antigen, EBA-175, specifically binds to glycophorin A on the surface of human erythrocytes during the process of merozoite invasion. The domain responsible for glycophorin A binding was identified as region II (RII which contains two DBL domains, F1 and F2. The crystal structure of this region revealed a dimer that is presumed to represent the glycophorin A binding conformation as sialic acid binding sites and large cavities are observed at the dimer interface. The dimer interface is largely composed of two loops from within each monomer, identified as the F1 and F2 β-fingers that contact depressions in the opposing monomers in a similar manner. Previous studies have identified a panel of five monoclonal antibodies (mAbs termed R215 to R218 and R256 that bind to RII and inhibit invasion of erythrocytes to varying extents. In this study, we predict the F2 β-finger region as the conformational epitope for mAbs, R215, R217, and R256, and confirm binding for the most effective blocking mAb R217 and R215 to a synthetic peptide mimic of the F2 β-finger. Localization of the epitope to the dimerization and glycan binding sites of EBA-175 RII and site-directed mutagenesis within the predicted epitope are consistent with R215 and R217 blocking erythrocyte invasion by Plasmodium falciparum by preventing formation of the EBA-175- glycophorin A complex.

  14. Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†.

    Science.gov (United States)

    Blackler, Ryan J; Evans, Dylan W; Smith, David F; Cummings, Richard D; Brooks, Cory L; Braulke, Thomas; Liu, Xinyu; Evans, Stephen V; Müller-Loennies, Sven

    2016-02-01

    The acquisition of mannose 6-phosphate (Man6P) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6P monosaccharide that, through an array-screening approach against a number of phosphorylated N-glycans, is shown to bind mono- and diphosphorylated Man6 and Man7 glycans that contain terminal αMan6P(1 → 2)αMan(1 → 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man8 or mono- or diphosphorylated Man9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second pKa of Man6P (pKa = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ∼ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6P recognition. PMID:26503547

  15. Distal Adding On in Lenke 1A Scoliosis

    DEFF Research Database (Denmark)

    Wang, Yu; Bünger, Cody Eric; Zhang, Yanqun;

    2013-01-01

    to determine the onset of distal adding-on in Lenke 1A scoliosis. Such questions as: "Which radiographical parameters should be used for measuring the extent of distal adding-on?" and "What criteria should be applied in determining the onset of distal adding-on?" need to be answered. METHODS: We reviewed all...

  16. The first total synthesis of ganglioside GalNAc-GD1a, a target molecule for autoantibodies in Guillain-Barré syndrome.

    Science.gov (United States)

    Fujikawa, Kohki; Nakashima, Shinya; Konishi, Miku; Fuse, Tomoaki; Komura, Naoko; Ando, Takayuki; Ando, Hiromune; Yuki, Nobuhiro; Ishida, Hideharu; Kiso, Makoto

    2011-05-01

    The first synthesis of ganglioside GalNAc-GD1a, featuring efficient glycan assembly and a cyclic glucosyl ceramide as a versatile unit for ganglioside synthesis is described. Although ganglioside GalNAc-GD1a was first found as a brain ganglioside, IgG autoantibodies to GalNAc-GD1a were subsequently found to be closely related to a human peripheral-nerve disorder, Guillain-Barré syndrome, which is the commonest cause of acute flaccid paralysis worldwide. In this study, the characteristic hexasaccharide part carrying two sialic acid residues was synthesized efficiently by use of a readily accessible GM2-core unit as a common unit. The potentially difficult coupling of the oligosaccharide and ceramide moieties was carried out by using a cyclic glucosyl ceramide as a coupling partner for the hexasaccharide part, thereby successfully providing the framework of the target compound. Global deprotection delivered the homogenous ganglioside GalNAc-GD1a. An enzyme-linked immunosorbent assay showed that sera from patients with Guillain-Barré syndrome reacted both with natural and with synthetic GalNAc-GD1a.

  17. The first total synthesis of ganglioside GalNAc-GD1a, a target molecule for autoantibodies in Guillain-Barré syndrome.

    Science.gov (United States)

    Fujikawa, Kohki; Nakashima, Shinya; Konishi, Miku; Fuse, Tomoaki; Komura, Naoko; Ando, Takayuki; Ando, Hiromune; Yuki, Nobuhiro; Ishida, Hideharu; Kiso, Makoto

    2011-05-01

    The first synthesis of ganglioside GalNAc-GD1a, featuring efficient glycan assembly and a cyclic glucosyl ceramide as a versatile unit for ganglioside synthesis is described. Although ganglioside GalNAc-GD1a was first found as a brain ganglioside, IgG autoantibodies to GalNAc-GD1a were subsequently found to be closely related to a human peripheral-nerve disorder, Guillain-Barré syndrome, which is the commonest cause of acute flaccid paralysis worldwide. In this study, the characteristic hexasaccharide part carrying two sialic acid residues was synthesized efficiently by use of a readily accessible GM2-core unit as a common unit. The potentially difficult coupling of the oligosaccharide and ceramide moieties was carried out by using a cyclic glucosyl ceramide as a coupling partner for the hexasaccharide part, thereby successfully providing the framework of the target compound. Global deprotection delivered the homogenous ganglioside GalNAc-GD1a. An enzyme-linked immunosorbent assay showed that sera from patients with Guillain-Barré syndrome reacted both with natural and with synthetic GalNAc-GD1a. PMID:21469228

  18. The interaction between the first transmembrane domain and the thumb of ASIC1a is critical for its N-glycosylation and trafficking.

    Directory of Open Access Journals (Sweden)

    Lan Jing

    Full Text Available Acid-sensing ion channel-1a (ASIC1a, the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1 and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacked the maturation of N-linked glycans through mid to late Golgi. These data suggest that disrupting the interaction between TM1 and thumb alters ASIC1a folding, impedes its glycosylation and reduces its trafficking. Moreover, reducing the culture temperature, an approach commonly used to facilitate protein folding, increased ASIC1a glycosylation, surface expression, current density and slowed the rate of desensitization. These results suggest that correct folding of extracellular ectodomain plays a critical role in ASIC1a biogenesis and function.

  19. 肠膜明串珠菌BD1710在TSM中的产糖条件优化%Optimization of the Condition for Leuconostoc mesenteroides BD1710 to Biosynthesis Glycan in Tomato Juice-sucrose Medium

    Institute of Scientific and Technical Information of China (English)

    韩瑨; 吴正钧; 游春苹; 徐晓芬

    2015-01-01

    研究了肠膜明串珠菌BD1710(L. mesenteroides BD1710,CGMCC NO.6432)以TSM为基料时,接种量、初始pH、番茄汁浓度、蔗糖浓度、发酵温度对多糖产量的影响,同时,比较了肠膜明串珠菌BD1710在最优条件下发酵TSM和CDM的多糖产量,并对所获得的多糖组成进行了分析。结果表明:肠膜明串珠菌BD1710发酵TSM产多糖的最适条件分别为接种量2.0%(体积分数)、初始pH 7.0、番茄汁浓度100%(体积分数)、蔗糖浓度15%、发酵温度28℃。在优化条件下,肠膜明串珠菌BD1710的多糖产量最高可达32.15 g/L,与在CDM中多糖的产量相当。采用乙醇沉淀的方法从BD1710发酵TSM得到的多糖碳水化合物含量为97.54%,蛋白质含量为0.72%。因此,TSM可替代CDM来应用于明串珠菌合成多糖。%The condition for Leuconostoc mesenteroides BD1710 to biosynthesis glycan in tomato juice-sucrose medium was optimizized, which was a combination of a medium composed of pure tomato juice supplemented with 15%sucrose, with the initial pH value of the medium adjusted to 7.0, and the fermentation undertaken at 28 ℃ with an inoculation ratio of 2.0 %. Under the optimized conditions , the glycan synthesized by L. mesenteroides BD1710 in the tomato juice-sucrose medium could reached 32.15 g/L , at the same level or a little higher than the yield of glycan by the same bacterial strain in a reported chemically defined medium suitable for Leuconostoc mesenteroides to express polysaccharides. The polymers obtained from the fermented tomato juice-sucrose medium by L.mesenteroides BD1710 via alchol participation was composed of 97.54 %carbohydrate and 0.72%protein, respectively. Therefore, tomato juice-sucrose medium could be an alternative of chemically defined medium for L. mesenteroides strains to biosynthesis glycan.

  20. 肠膜明串珠菌BD1710在TSM中的产糖条件优化%Optimization of the Condition for Leuconostoc mesenteroides BD1710 to Biosynthesis Glycan in Tomato Juice-sucrose Medium

    Institute of Scientific and Technical Information of China (English)

    韩瑨; 吴正钧; 游春苹; 徐晓芬

    2015-01-01

    The condition for Leuconostoc mesenteroides BD1710 to biosynthesis glycan in tomato juice-sucrose medium was optimizized, which was a combination of a medium composed of pure tomato juice supplemented with 15%sucrose, with the initial pH value of the medium adjusted to 7.0, and the fermentation undertaken at 28 ℃ with an inoculation ratio of 2.0 %. Under the optimized conditions , the glycan synthesized by L. mesenteroides BD1710 in the tomato juice-sucrose medium could reached 32.15 g/L , at the same level or a little higher than the yield of glycan by the same bacterial strain in a reported chemically defined medium suitable for Leuconostoc mesenteroides to express polysaccharides. The polymers obtained from the fermented tomato juice-sucrose medium by L.mesenteroides BD1710 via alchol participation was composed of 97.54 %carbohydrate and 0.72%protein, respectively. Therefore, tomato juice-sucrose medium could be an alternative of chemically defined medium for L. mesenteroides strains to biosynthesis glycan.%研究了肠膜明串珠菌BD1710(L. mesenteroides BD1710,CGMCC NO.6432)以TSM为基料时,接种量、初始pH、番茄汁浓度、蔗糖浓度、发酵温度对多糖产量的影响,同时,比较了肠膜明串珠菌BD1710在最优条件下发酵TSM和CDM的多糖产量,并对所获得的多糖组成进行了分析。结果表明:肠膜明串珠菌BD1710发酵TSM产多糖的最适条件分别为接种量2.0%(体积分数)、初始pH 7.0、番茄汁浓度100%(体积分数)、蔗糖浓度15%、发酵温度28℃。在优化条件下,肠膜明串珠菌BD1710的多糖产量最高可达32.15 g/L,与在CDM中多糖的产量相当。采用乙醇沉淀的方法从BD1710发酵TSM得到的多糖碳水化合物含量为97.54%,蛋白质含量为0.72%。因此,TSM可替代CDM来应用于明串珠菌合成多糖。

  1. Minimum Data Set Q1a Report

    Data.gov (United States)

    U.S. Department of Health & Human Services — The MDS Q1a report summarizes, by state and county, percentages of residents that answered Yes to Q1a - Residents expresses or indicates preference to return to the...

  2. The role of proton mobility in determining the energy-resolved vibrational activation/dissociation channels of N-glycopeptide ions.

    Science.gov (United States)

    Kolli, Venkata; Roth, Heidi A; De La Cruz, Gabriela; Fernando, Ganga S; Dodds, Eric D

    2015-10-01

    Site-specific glycoproteomic analysis largely hinges on the use of tandem mass spectrometry (MS/MS) to identify glycopeptides. Experiments of this type are usually aimed at drawing connections between individual oligosaccharide structures and their specific sites of attachment to the polypeptide chain. These determinations inherently require ion dissociation methods capable of interrogating both the monosaccharide and amino acid connectivity of the glycopeptide. Collision-induced dissociation (CID) shows potential to satisfy this requirement, as the vibrational activation/dissociation of protonated N-glycopeptides has been observed to access cleavage of either glycosidic bonds of the glycan or amide bonds of the peptide in an energy-resolved manner. Nevertheless, the relative energy requirement for these fragmentation pathways varies considerably among analytes. This research addresses the influence of proton mobility on the vibrational energy necessary to achieve either glycan or peptide cleavage in a collection of protonated N-glycopeptide ions. While greater proton mobility of the precursor ion was found to correlate with lower energy requirements for precursor ion depletion and appearance of glycosidic fragments, the vibrational energy deposition necessary for appearance of peptide backbone fragments showed no relation to the precursor ion proton mobility. These results are consistent with observations suggesting that peptide fragments arise from an intermediate fragment which is generally of lower proton mobility than the precursor ion. Such findings have potential to facilitate the rational selection of CID conditions which are best suited to provide either glycan or peptide cleavage products in MS/MS based N-glycoproteomic analysis.

  3. Main: PE2FNTRNR1A [PLACE

    Lifescience Database Archive (English)

    Full Text Available PE2FNTRNR1A S000455 29-November-2004 (last modified) kehi pE2F (proximal E2F elemen...of the cell cycle; Important for regulating specific RNR1a (ribonucleotide reductase large subunit) gene exp

  4. Determinação da composição química e energética do milheto e sua utilização em rações para frangos de corte de 1 a 21 dias de idade Determination of chemical composition and energy value of millet and their use in rations of broilers from 1 to 21 days of age

    Directory of Open Access Journals (Sweden)

    Paulo Cezar Gomes

    2008-09-01

    Full Text Available Este trabalho foi realizado para determinar o valor nutricional do milheto e avaliar sua utilização como alimento energético em rações para frangos de corte de 1 a 21 dias de idade. Foram realizados dois experimentos: no primeiro, foram determinados os teores de matéria seca (88,53%, energia bruta (3.604 kcal/kg, energia metabolizável aparente corrigida (2.656 kcal/kg, proteína bruta (12,71%, fibra bruta (5,40%, extrato etéreo (3,10%, cálcio (0,029% e fósforo (0,31% e, no segundo experimento, foi determinado o desempenho produtivo dos frangos no período de 1 a 21 dias de idade alimentados com rações contendo 0; 10; 20; 30 ou 40% de milheto. Utilizou-se delineamento experimental inteiramente casualizado em esquema fatorial 5 × 2, composto de cinco níveis de milheto e dois sexos, com quatro repetições de 20 aves por unidade experimental. Os parâmetros analisados foram o consumo de ração, o ganho de peso e a conversão alimentar. O desempenho dos frangos alimentados com as rações com maiores níveis de milheto foi significativamente melhor, o que pode estar relacionado ao aumento do nível de óleo na dieta. A inclusão de milheto é recomendável em níveis de até 20% em rações para frangos de corte de 1 a 21 dias de idade.This research was carried out to determine the nutritional value of pearl millet, and to evaluate their utilization as energetic source in broiler diets from 1 to 21 days old. Two experiment were conducted: in the first, the chemical composition (dry matter, crude protein, ether extract, calcium and phosphorus and gross energy, apparent metabolizable energy corrected by nitrogen balance were determined. In the second experiment, the performance of broilers from 1 to 21 days old fed diets with 0, 10, 20, 30 and 40% of pearl millet were determined. A completely randomized design, in a 5 × 2 factorial arrangement (level of millet and sex, with four replicates and 20 birds per experimental unit, was used

  5. Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeffrey E.; Fusco, Marnie L.; Abelson, Dafna M.; Hessell, Ann J.; Burton, Dennis R. [Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Saphire, Erica Ollmann, E-mail: erica@scripps.edu [Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2009-11-01

    Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing of the trimeric ebolavirus glycoprotein are described. The trimeric membrane-anchored ebolavirus envelope glycoprotein (GP) is responsible for viral attachment, fusion and entry. Knowledge of its structure is important both for understanding ebolavirus entry and for the development of medical interventions. Crystal structures of viral glycoproteins, especially those in their metastable prefusion oligomeric states, can be difficult to achieve given the challenges in production, purification, crystallization and diffraction that are inherent in the heavily glycosylated flexible nature of these types of proteins. The crystal structure of ebolavirus GP in its trimeric prefusion conformation in complex with a human antibody derived from a survivor of the 1995 Kikwit outbreak has now been determined [Lee et al. (2008 ▶), Nature (London), 454, 177–182]. Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing are described. Glycoproteins were produced in human embryonic kidney 293T cells, which allowed rapid screening of constructs and expression of protein in milligram quantities. Complexes of GP with an antibody fragment (Fab) promoted crystallization and a series of deglycosylation strategies, including sugar mutants, enzymatic deglycosylation, insect-cell expression and glycan anabolic pathway inhibitors, were attempted to improve the weakly diffracting glycoprotein crystals. The signal-to-noise ratio of the search model for molecular replacement was improved by determining the structure of the uncomplexed Fab. Phase combination with Fab model phases and a selenium anomalous signal, followed by NCS-averaged density modification, resulted in a clear interpretable electron-density map. Model building was assisted by the use of B-value-sharpened electron-density maps and the

  6. Altered Expression of Glycan-binding Protein in Hepatocellular Carcinoma Cell Lines%肝癌细胞系差异性表达的糖结合蛋白研究

    Institute of Scientific and Technical Information of China (English)

    钟耀刚; 秦鑫敏; 杜昊骐; 党刘毅; 李铮

    2014-01-01

    糖结合蛋白(t)lycan-binding protein,GBP)在细胞生命周期中扮演着重要角色,如细胞识别、运输、免疫、代谢、增殖分化及细胞间的相互作用等.目前,对GBP的改变对细胞生物过程产生影响的研究甚少.本研究用糖芯片技术对肝癌细胞系HepG2和正常肝细胞系L02表达的GBP进行研究;糖细胞化学验证确定差异表达GBP在肝癌细胞系中的变化和分布.结果显示,8种糖探针(如SL、LNT和GalNAc等)和5种糖探针(如Man、Man-9-Glycan,Xyl等)分别对应的GBP在HepG2细胞中表达上调或下调.糖细胞化学结果显示:GalNAc识别的GBPs主要表达在HepG2的胞膜、中央胞质、核周胞质区域,而在L02的相同区域表达减弱;NeuAc识别的GBPs主要表达在L02的胞膜区及核周胞质区,而在HepG2细胞的相同区域表达减弱.这些数据为寻找新的肝癌发病机制和抗肿瘤策略提供了有用信息.%Glycan-binding protein play important biological roles in biological processes.We use carbohydrate microarray to study the alteration of GBP in hepatocellular carcinoma cell line HepG2 and L02.Carbohydrate histochemistry was used to further validate the GBP and assess the distribution.As a result,8 carbohydrate probes (e.g.SL,LNT,and GalNAc) showed increased signal while 5 carbohydrate probes (e.g.Man,Man-9-Glycan,and Xyl) showed decreased signal in HepG2 compared with L02 cell line.Meanwhile,GalNAc staining showed moderate binding to the cytoplasma membrane,central cytoplasm,and perinuclear cytoplasm in the L02,and the binding intensified in the same regions of the HepG2.NeuAc staining showed moderate binding to the cytoplasma membrane,and perinuclear cytoplasm in the HepG2,and the binding intensified in the same regions of the L02.In conclusion,the precision alteration of GBP related to HepG2 may provide useful information to find new molecular mechanism of hepatocellular carcinoma and antitumor therapeutic strategies.

  7. Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins.

    Science.gov (United States)

    Mislovičová, D; Katrlík, J; Paulovičová, E; Gemeiner, P; Tkac, J

    2012-06-01

    A procedure for determination of apparent affinity constants K(D)(app) between Concanavalin A (Con A) and naturally d-mannose containing glycoproteins using enzyme-linked lectin assay (ELLA) is reported. Three distinct ELLA protocols are compared to each other with 3 different fitting models used (Liliom, Hill with and without a cooperativity factor). The glycoproteins were physisorbed on a highly charged polystyrene solid surface of immunoassay plates and the amount of lectin bound to the glycoproteins was determined by photometry. The interactions of Con A with five mannose-containing glycoproteins, invertase (INV), glucoamylase (GA), glucose oxidase (GOx), ovalbumin (OVA), and transferrin (TRF) were quantified with apparent affinity constant being in the range 2×10(-7) to 9×10(-6)M. The strength of interaction between Con A and glycoproteins is discussed on the basis of glycan structure/exposure on the protein backbone for each glycoprotein.

  8. 微波辅助萃取-液相色谱-串联质谱法测定植物源产品中的阿维菌素B1a残留量%Determination of Avermectin B1a Residues in Plant-originated Foodstuffs by Microwave Assisted Extraction-Liquid Chromatography Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    蒋宏; 胡贝贞; 宋伟华

    2012-01-01

    建立了植物源产品茶叶、粮谷、中药材中阿维菌素B1a残留量的液相色谱-串联质谱(LC-MS/MS)测定方法.样品用丙酮-二氯甲烷(体积比1∶1)微波辅助提取,提取液经石墨化炭黑/氨基(Carb/NH2)固相萃取小柱净化.采用Hypersil Gold C18色谱柱(150mm×2.1 mm,Sμ m),乙腈-2.5 mmol/L乙酸铵水溶液为流动相,以电喷雾电离正离子(ESI+)、多反应监测模式(MRM)定性、定量测定阿维菌素Bla,采用基质标准曲线外标法定量.在5~100 μg/L范围内,阿维菌素Bla的峰面积与质量浓度呈线性关系,相关系数大于0.998,方法的检出限(S/N>3)为5μg/kg,定量限(S/N>10)为10μg/kg.取有代表性的绿茶、小麦、丹参阴性样品进行加标回收试验,在10,50 μg/kg加标水平下,回收率为75%~87%,相对标准偏差为4.04%~6.38%(n=5).该法提取效果好、净化较彻底,灵敏度满足国内外限量标准的要求,适合复杂基质植物源产品中阿维菌素B1a残留量的测定.%A microwave assisted extraction—liquid chromatography—tandem mass spectrometry method for the determiantion of avermectin Bla residues in tea, cereals and Chinese herbal medicine was developed. The sample was extracted by microwave assisted extraction with acetone-dichloromethane(volume ratio was 1 : 1) as solvent, the extract was cleaned up by Carb/NH2 SPE column. The separation was performed on a Hypersil Gold C18 column(150 mm × 2.1 mm,5 μm) and with the gradient elution of acetonitrile and water (containing 2.S mmol/L ammonium acetate). Avermectin Bla was determined in the mode of electrospry positive ionization (ESI+) and multiple reaction monitoring(MRM). The quantification was carried out by matrix-matched external standard curve, the calibration curves showed good linearity in the concentration range of 5-100 μg/L and the correlation coefficient was more than 0.998. The limit of detection(S/N > 3) was 5 μg/kg and the limit of quantification {S/N > 10

  9. Determining impurities

    International Nuclear Information System (INIS)

    A method of determining the content of impurities in organic-origin natural fibrous materials, in which a specimen of said material is compacted to a surface density of from 0.05 to 50 g/cm2, whereupon it is exposed to the effect of a soft gamma-radiation, the mass attenuation coefficient (μ) is determined and the percentage content (Csub(A)) of impurities is assessed. The method has applications in the textile industry. (author)

  10. Plasma DYRK1A as a novel risk factor for Alzheimer's disease

    OpenAIRE

    Janel, N; Sarazin, M; Corlier, F; Corne, H; De Souza, Lc; Hamelin, L; Aka, A; Lagarde, J; Blehaut, H; Hindié, V; Rain, J-C; Arbones, Ml; Dubois, B; Potier, Mc; Bottlaender, M

    2014-01-01

    International audience; To determine whether apparent involvement of DYRK1A in Alzheimer's disease (AD) pathology makes it a candidate plasma biomarker for diagnosis, we developed a method to quantify plasma DYRK1A by immunoblot in transgenic mouse models having different gene dosages of Dyrk1a, and, consequently, different relative protein expression. Then, we measured plasma DYRK1A levels in 26 patients with biologically confirmed AD and 25 controls (negative amyloid imaging available on 13...

  11. Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas.

    Science.gov (United States)

    Chiodo, Fabrizio; Enríquez-Navas, Pedro M; Angulo, Jesús; Marradi, Marco; Penadés, Soledad

    2015-03-20

    In order to re-build Man9GlcNAc2 clusters of the HIV gp120 glycoprotein, ∼2 nm gold glyconanoparticles (GNPs) were coated with the synthetic partial structures of Man9, the tetramannoside Manα1-2Manα1-2Manα1-3Manα1- and the pentamannoside Manα1-2Manα1-3[Manα1-2Manα1-6]Manα1-. Their interactions with the anti-HIV broadly neutralizing antibody 2G12 were studied by surface plasmon resonance (SPR)-based biosensors and saturation transfer difference (STD)-NMR spectroscopy. A synergistic effect of the tetra- and pentamannosides multimerized on a same GNP was observed. The assembly of these antennas of the gp120 high-mannose type glycan on GNPs provided superior binding to the anti-HIV antibody 2G12 with respect to GNPs carrying only the individual oligomannosides. The results presented in this work provide new molecular information on the interactions between clusters of oligomannosides and 2G12 that could help in the design of a carbohydrate-based vaccine against HIV.

  12. SN1a Supernova Red Shifts

    OpenAIRE

    Collins, R. L.

    2001-01-01

    Recent SN1a data have probed deeper into space than ever before. Plotted as distance vs. recession speed, a disturbing non-linearity is found which has led to speculations about "dark energy" which somehow acts like anti-gravity. This study finds a full explanation in relativity theory. The metric of space shrinks, in the presence of a gravitational potential, V, by exp(V/c^2). Early in the big bang, when the SN1a's sent their signals, V was larger than now. By fitting the data to a relativis...

  13. 2006 Johnston Site 1A-P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 1A-P was established at Johnston Atoll by Dr. James Maragos, U.S. Fish & Wildlife Service, on June 29, 2000. With a start point (meter 0) at...

  14. 2000 Johnston Site 1A-P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 1A-P was established at Johnston Atoll by Dr. James Maragos, U.S. Fish & Wildlife Service, on June 29, 2000. With a start point (meter 0) at...

  15. Cyp1a reporter zebrafish reveals target tissues for dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun-Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Park, Hye-Jeong [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Jin Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Suhyun [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Williams, Darren R. [New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Myeong-Kyu [Department of Neurology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Jung, Young Do [Department of Biochemistry, Chonnam National University Medical School, Gwangju (Korea, Republic of); Teraoka, Hiroki [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Park, Hae-Chul [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Choy, Hyon E., E-mail: hyonchoy@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Shin, Boo Ahn, E-mail: bashin@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Choi, Seok-Yong, E-mail: zebrafish@chonnam.ac.kr [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); School of Biological Sciences and Technology, Chonnam National University, Gwangju (Korea, Republic of)

    2013-06-15

    Highlights: •2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic anthropogenic substance ever identified. •Transgenic cyp1a reporter zebrafish reveals target tissues for TCDD. •The retinal bipolar cells, otic vesicle, lateral line, pancreas, cloaca and pectoral fin bud are novel targets in zebrafish for TCDD. •Our findings will further understanding of human health risks by TCDD. -- Abstract: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.

  16. Yilmaz Theory of SNe 1a Redshift

    OpenAIRE

    Robertson, Stanley L.

    2015-01-01

    A redshift-luminosity distance relation in excellent agreement with observations is calculated here for SNe 1a using the Yilmaz gravitational theory. In contrast to the current conventional explanation based on general relativity, the Yilmaz theory does not require a cosmological constant term that implies the existence of "dark energy". The Yilmaz theory requires only one parameter; a mean mass-energy density of the cosmos. The required value is essentially the same as the critical density f...

  17. TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Karine Pallier

    Full Text Available Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT. The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33 and showed that TWIST1 expression was linked to EGFR mutations (P<0.001, to low CDH1 expression (P<0.05 and low disease free survival (P = 0.044. To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.

  18. Screen for CACNA1A and ATP1A2 mutations in sporadic hemiplegic migraine patients

    DEFF Research Database (Denmark)

    Thomsen, L.L.; Oestergaard, E.; Bjornsson, A.;

    2008-01-01

    The aim of this study was to investigate the involvement of the CACNA1A and ATP1A2 gene in a population-based sample of sporadic hemiplegic migraine (SHM). Patients with SHM (n = 105) were identified in a nationwide search in the Danish population. We sequenced all exons and promoter regions...... of the CACNA1A and ATP1A2 genes in 100 patients with SHM to search for possible SHM mutations. Novel DNA variants were discovered in eight SHM patients, four in exons of the CACNA1A gene and four in exons of the ATP1A2 gene. Six of the variants were considered non-pathogenic. The causal role of the two...... remaining DNA variants is unknown until functional studies have been made or independent genetic evidence is discovered. Only very few DNA variants were identified in 100 SHM patients, and regardless of whether the identified variants are causal the CACNA1A and ATP1A2 genes are not major genes in SHM...

  19. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    NARCIS (Netherlands)

    Passchier, Jan; van Waarde, A

    2001-01-01

    The 5-HT1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic beha

  20. Earth and Sky, Unit 1A

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    The assignment known as ‘Earth and sky’ is the final first year course at Unit 1a. The aim of the assignment is to strengthen the student’s abilities to manage a project process individu- ally. The process involves develop- ing the ability to make independent decisions.The point of departure...... for the ‘Earth and sky’ assignment is ex- perience students acquired during their group study tour to Austra- lia. Building in particular on the re- search conducted on the Sydney Opera House and the architectur- al principles of spatial creation that this building represents....

  1. Interacción entre proteínas y glicanos en la regulación fisiológica de las células T How do protein-glycan interactions regulate T-cell physiology?

    Directory of Open Access Journals (Sweden)

    Marta A. Toscano

    2006-08-01

    Full Text Available Las interacciones entre proteínas y glicanos juegan un papel fundamental en numerosos eventos de la regulación de la fisiología del sistema inmune, como maduración tímica, activación, migración y apoptosis de células T. Los carbohidratos son capaces de modular la fisiología linfocitaria a través de la interacción específica con lectinas endógenas como selectinas y galectinas. Estas lectinas endógenas son capaces de reconocer estructuras sacarídicas localizadas en glicoproteínas de la superficie celular y regular procesos tan diversos como proliferación, diferenciación y ciclo celular. Existen diversos niveles de control de la interacción entre lectinas y azúcares; en primer lugar podemos mencionar la expresión regulada de estas lectinas durante el desarrollo de una respuesta inmune, y en segundo lugar la regulación espacio-temporal de la actividad de glicosiltranferasas y glicosidasas cuya función es crear y modificar los azúcares específicos para estas lectinas. Existen evidencias de que la expresión y actividad de estas enzimas se regulan en forma positiva o negativa durante diferentes eventos del desarrollo, ejecución y finalización de la respuesta inmune. En este artículo se analizarán los mecanismos a través de los cuales las interacciones entre lectinas con sus carbohidratos específicos modulan en forma específica diversos procesos fisiológicos, como maduración de timocitos, migración linfocitaria, activación y diferenciación de células T y apoptosis.Recent evidence indicates that protein-glycan interactions play a critical role in different events associated with the physiology of T-cell responses including thymocyte maturation, T-cell activation, lymphocyte migration and T-cell apoptosis. Glycans decorating T-cell surface glycoproteins can modulate T-cell physiology by specifically interacting with endogenous lectins including selectins and galectins. These endogenous lectins are capable of

  2. Mammalian α-1,6-Fucosyltransferase (FUT8) Is the Sole Enzyme Responsible for the N-Acetylglucosaminyltransferase I-independent Core Fucosylation of High-mannose N-Glycans.

    Science.gov (United States)

    Yang, Qiang; Wang, Lai-Xi

    2016-05-20

    Understanding the biosynthetic pathway of protein glycosylation in various expression cell lines is important for controlling and modulating the glycosylation profiles of recombinant glycoproteins. We found that expression of erythropoietin (EPO) in a HEK293S N-acetylglucosaminyltransferase I (GnT I)(-/-) cell line resulted in production of the Man5GlcNAc2 glycoforms, in which more than 50% were core-fucosylated, implicating a clear GnT I-independent core fucosylation pathway. Expression of GM-CSF and the ectodomain of FcγIIIA receptor led to ∼30% and 3% core fucosylation, suggesting that the level of core fucosylation also depends on the nature of the recombinant proteins. To elucidate the GnT I-independent core fucosylation pathway, we generated a stable HEK293S GnT I(-/-) cell line with either knockdown or overexpression of FUT8 by a highly efficient lentivirus-mediated gene transfer approach. We found that the EPO produced from the FUT8 knockdown cell line was the pure Man5GlcNAc2 glycoform, whereas that produced from the FUT8-overexpressing cell line was found to be fully core-fucosylated oligomannose glycan (Man5GlcNAc2Fuc). These results provide direct evidence that FUT8, the mammalian α1,6-fucosyltransferase, is the sole enzyme responsible for the GnT I-independent core fucosylation pathway. The production of the homogeneous core-fucosylated Man5GlcNAc2 glycoform of EPO in the FUT8-overexpressed HEK293S GnT I(-/-) cell line represents the first example of production of fully core-fucosylated high-mannose glycoforms. PMID:27008861

  3. Modulator of Apoptosis 1: A Highly Regulated RASSF1A-Interacting BH3-Like Protein

    Directory of Open Access Journals (Sweden)

    Jennifer Law

    2012-01-01

    Full Text Available Modulator of apoptosis 1 (MOAP-1 is a BH3-like protein that plays key roles in both the intrinsic and extrinsic modes of cell death or apoptosis. MOAP-1 is part of the Ras association domain family 1A (RASSF1A/MOAP-1 pro-apoptotic extrinsic signaling pathway that regulates apoptosis by utilizing death receptors such as tumor necrosis factor α (TNFα or TNF-related apoptosis-inducing ligand (TRAIL to inhibit abnormal growth. RASSF1A is a bona fide tumor suppressor gene that is epigenetically silenced by promoter-specific methylation in numerous human cancers. MOAP-1 is a downstream effector of RASSF1A that promotes Bax activation and cell death and is highly regulated during apoptosis. We speculate that MOAP-1 and RASSF1A are important elements of an “apoptotic checkpoint” that directly influences the outcome of cell death. The failure to regulate this pro-apoptotic pathway may result in the appearance of cancer and possibly other disorders. Although loss of RASSF1A expression is frequently observed in human cancers, it is currently unknown if MOAP-1 expression may also be affected during carcinogenesis to result in uncontrolled malignant growth. In this article, we will summarize what is known about the biological role(s of MOAP-1 and how it functions as a downstream effector to RASSF1A.

  4. (1) (1)A' ← X (1)A' Electronic Transition of Protonated Coronene at 15 K.

    Science.gov (United States)

    Rice, C A; Hardy, F-X; Gause, O; Maier, J P

    2014-03-20

    The electronic spectrum of protonated coronene in the gas phase was measured at vibrational and rotational temperatures of ∼15 K in a 22-pole ion trap. The (1) (1)A' ← X (1)A' electronic transition of this larger polycyclic aromatic hydrocarbon cation has an origin band maximum at 14 383.8 ± 0.2 cm(-1) and shows distinct vibrational structure in the (1) (1)A' state. Neither the origin nor the strongest absorptions to the blue coincide with known diffuse interstellar bands, implying that protonated coronene is not a carrier.

  5. Induction of diphenytriazol on cytochrome CYP1A

    Institute of Scientific and Technical Information of China (English)

    Yun-zhen HU; Tong-wei YAO

    2004-01-01

    AIM: To study the effects of diphenytriazol on cytochrome P-450 (CYP) enzymes. METHODS: SD rats were pretreated with diphenytriazol. The catalytic activities of rat liver microsomes were determined by assaying ethoxyresorufin-O-deethylase (EROD) and pentoxyresorufin-O-dealkylase. Phenacetin and aminopyrine were selected as the substrate of CYP1A and CYP2B, respectively. The concentration of remaining substrate in microsomal incubates was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The inhibition of fluvoxamine or α-naphthoflavone on phenacetin metabolism was measured. RESULTS: Phenacetin was significantly metabolized in the diphenytriazol-treated microsomes and the metabolic degree increased according to the diphenytriazol-treatment days. There existed a significant correlation between the metabolic degree of phenacetin and EROD in the microsomes pretreated with diphenytriazol. Both fluvoxamine and α-naphthofiavone inhibited the metabolism of phenacetin significantly, and the inhibition constants (Ki) were (5.4± 1.0) μmol/L and (10.4±0.5)μmol/L, respectively. The activity of microsomes pretreated with diphenytriazol for 4 d was similar to that in β-naphthoflavone group, but was significantly different from those in control group and phenobarbital group.CONCLUSION: These results reveal that diphenytriazol is a novel inducer of CYP1A.

  6. TRPA1: A Gatekeeper for Inflammation

    Science.gov (United States)

    Bautista, Diana M.; Pellegrino, Maurizio; Tsunozaki, Makoto

    2014-01-01

    Tissue damage evokes an inflammatory response that promotes the removal of harmful stimuli, tissue repair, and protective behaviors to prevent further damage and encourage healing. However, inflammation may outlive its usefulness and become chronic. Chronic inflammation can lead to a host of diseases, including asthma, itch, rheumatoid arthritis, and colitis. Primary afferent sensory neurons that innervate target organs release inflammatory neuropeptides in the local area of tissue damage to promote vascular leakage, the recruitment of immune cells, and hypersensitivity to mechanical and thermal stimuli. TRPA1 channels are required for neuronal excitation, the release of inflammatory neuropeptides, and subsequent pain hypersensitivity. TRPA1 is also activated by the release of inflammatory agents from nonneuronal cells in the area of tissue injury or disease. This dual function of TRPA1 as a detector and instigator of inflammatory agents makes TRPA1 a gatekeeper of chronic inflammatory disorders of the skin, airways, and gastrointestinal tract. PMID:23020579

  7. Motor axon loss is associated with hand dysfunction in Charcot-Marie-Tooth disease 1a.

    NARCIS (Netherlands)

    Videler, A.J.; Dijk, J.P. van; Beelen, A.; Visser, M. de; Nollet, F.; Schaik, I.N. van

    2008-01-01

    BACKGROUND: Charcot Marie Tooth type 1a (CMT1a) is a primarily demyelinating neuropathy, characterized by slowly progressive muscle weakness, atrophy, and sensory loss, and is most pronounced in both feet and hands. There is increasing evidence that muscle weakness is determined by motor axonal dysf

  8. X-1A in flight over lakebed

    Science.gov (United States)

    1953-01-01

    The Bell Aircraft Corporation X-1A (48-1384) returning from an Air Force test flight over Edwards Air Force Base, California in late 1953. A North American F-86A Sabre as chase plane will follow the X-1A to touchdown. The Rogers Dry Lake is the whitish area under the planes with the airfield at the edge of the dry lake. Bell test pilot Jean 'Skip' Ziegler made six flights between 14 February and 25 April 1953. Air Force test pilots Maj. Charles 'Chuck' Yeager and Maj. Arthur 'Kit' Murray made 18 test flights between 21 November 1953 and 26 August 1954. NACA test pilot Joseph Walker made one successful flight on 20 July 1955. During a second flight attempt, on 8 August 1955, an explosion damaged the aircraft shortly before launch. Walker, unhurt, climbed up into the JTB-29A mothership, and the X-1A was jettisoned over the Edwards AFB bombing range. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system

  9. Climate determinism or Geomagnetic determinism?

    Science.gov (United States)

    Gallet, Y.; Genevey, A.; Le Goff, M.; Fluteau, F.; Courtillot, V.

    2006-12-01

    A number of episodes of sharp geomagnetic field variations (in both intensity and direction), lasting on the order of a century, have been identified in archeomagnetic records from Western Eurasia and have been called "archeomagnetic jerks". These seem to correlate well with multi-decadal cooling episodes detected in the North Atlantic Ocean and Western Europe, suggesting a causal link between both phenomena. A possible mechanism could be a geomagnetic modulation of the cosmic ray flux that would control the nucleation rate of clouds. We wish to underline the remarkable coincidence between archeomagnetic jerks, cooling events in Western Europe and drought periods in tropical and sub-tropical regions of the northern hemisphere. The latter two can be interpreted in terms of global teleconnections among regional climates. It has been suggested that these climatic variations had caused major changes in the history of ancient civilizations, such as in Mesopotamia, which were critically dependent on water supply and particularly vulnerable to lower rainfall amounts. This is one of the foundations of "climate determinism". Our studies, which suggest a geomagnetic origin for at least some of the inferred climatic events, lead us to propose the idea of a "geomagnetic determinism" in the history of humanity.

  10. UGT1A1 and UGT1A9 functional variants, meat intake, and colon cancer, among Caucasians and African Americans

    OpenAIRE

    Girard, Hugo; Butler, Lesley M.; Villeneuve, Lyne; Millikan, Robert C.; Sinha, Rashmi; Sandler, Robert S.; Guillemette, Chantal

    2008-01-01

    Glucuronidation by the UDP-glucuronosyltransferase enzymes (UGTs) is one of the primary detoxification pathways of dietary heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs). In a population-based case-control study of 537 cases and 866 controls, we investigated whether colon cancer was associated with genetic variations in UGT1A1 and UGT1A9 genes and we determined if those variations modify the association between colon cancer and dietary HCA and PAH exposure. We measured...

  11. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A: implications for autism

    Directory of Open Access Journals (Sweden)

    Tansey Katherine E

    2011-03-01

    Full Text Available Abstract Background Arginine vasopressin (AVP has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (AVPR1A is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at AVPR1A has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5'-flanking region of AVPR1A in variable gene expression and social behaviour. Methods We examined four tagging single nucleotide polymorphisms (SNPs (rs3803107, rs1042615, rs3741865, rs11174815 and three microsatellites (RS3, RS1 and AVR at the AVPR1A gene for association in an autism cohort from Ireland. Two 5'-flanking region polymorphisms in the human AVPR1A, RS3 and RS1, were also tested for their effect on relative promoter activity. Results The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (P = 0.036 and P = 0.008, respectively. Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y. Conclusions These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased AVPR1A transcription, which may proffer increased susceptibility to the autism phenotype.

  12. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism

    LENUS (Irish Health Repository)

    Tansey, Katherine E

    2011-03-31

    Abstract Background Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (AVPR1A) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at AVPR1A has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5\\'-flanking region of AVPR1A in variable gene expression and social behaviour. Methods We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the AVPR1A gene for association in an autism cohort from Ireland. Two 5\\'-flanking region polymorphisms in the human AVPR1A, RS3 and RS1, were also tested for their effect on relative promoter activity. Results The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (P = 0.036 and P = 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y. Conclusions These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased AVPR1A transcription, which may proffer increased susceptibility to the autism phenotype.

  13. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars.

    Science.gov (United States)

    Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2011-12-01

    The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from 'Shiroboro 21' by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.

  14. The Glycan Role in the Glycopeptide Immunogenicity Revealed by Atomistic Simulations and Spectroscopic Experiments on the Multiple Sclerosis Biomarker CSF114(Glc)

    Science.gov (United States)

    Bruno, Agostino; Scrima, Mario; Novellino, Ettore; D'Errico, Gerardino; D'Ursi, Anna Maria; Limongelli, Vittorio

    2015-03-01

    Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity.

  15. Basal HIF-1a expression levels are not predictive for radiosensitivity of human cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, D.; Multhoff, G. [Klinikum rechts der Isar der Technischen Univ. Muenchen (Germany). Dept. of Radiation Oncology; Helmholtz Center Munich, CCG - Innate Immunity in Tumor Biology, Munich (Germany). German Research Center for Environmental Health - Inst. of Pathology; Bayer, C.; Emmerich, K.; Molls, M.; Vaupel, P. [Klinikum rechts der Isar der Technischen Univ. Muenchen (Germany). Dept. of Radiation Oncology; Huber, R.M. [Klinikum der Univ. Muenchen (Germany). Dept. of Pneumology

    2012-04-15

    High levels of hypoxia inducible factor (HIF)-1a in tumors are reported to be associated with tumor progression and resistance to therapy. To examine the impact of HIF-1a on radioresistance under normoxia, the sensitivity towards irradiation was measured in human tumor cell lines that differ significantly in their basal HIF-1a levels. HIF-1a levels were quantified in lysates of H1339, EPLC-272H, A549, SAS, XF354, FaDu, BHY, and CX- tumor cell lines by ELISA. Protein levels of HIF-1a, HIF-2a, carbonic anhydrase IX (CA IX), and GAPDH were assessed by Western blot analysis. Knock-down experiments were performed using HIF-1a siRNA. Clonogenic survival after irradiation was determined by the colony forming assay. According to their basal HIF-1a status, the tumor cell lines were divided into low (SAS, XF354, FaDu, A549, CX-), intermediate (EPLC-272H, BHY), and high (H1339) HIF-1a expressors. The functionality of the high basal HIF-1a expression in H1339 cells was proven by reduced CA IX expression after knocking-down HIF-1a. Linear regression analysis revealed no correlation between basal HIF-1a levels and the survival fraction at either 2 or 4 Gy in all tumor cell lines investigated. Our data suggest that basal HIF-1a levels in human tumor cell lines do not predict their radiosensitivity under normoxia. (orig.)

  16. Structure and Active Stie Residues of Pg1D, an N-Acetyltransferase from the Bacillosamine Synthetic Pathway Required for N-Glycan Synthesis in Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan,E.; Ruane, K.; Sulea, T.; Watson, D.; Proteau, A.; Leclerc, S.; Cygler, M.; Matte, A.; Young, N.

    2008-01-01

    Campylobacter jejuni is highly unusual among bacteria in forming N-linked glycoproteins. The heptasaccharide produced by its pgl system is attached to protein Asn through its terminal 2, 4-diacetamido-2, 4,6-trideoxy-d-Glc (QuiNAc4NAc or N, N'-diacetylbacillosamine) moiety. The crucial, last part of this sugar's synthesis is the acetylation of UDP-2-acetamido-4-amino-2, 4,6-trideoxy-d-Glc by the enzyme PglD, with acetyl-CoA as a cosubstrate. We have determined the crystal structures of PglD in CoA-bound and unbound forms, refined to 1.8 and 1.75 Angstroms resolution, respectively. PglD is a trimer of subunits each comprised of two domains, an N-terminal {alpha}/{beta}-domain and a C-terminal left-handed {beta}-helix. Few structural differences accompany CoA binding, except in the C-terminal region following the {beta}-helix (residues 189-195), which adopts an extended structure in the unbound form and folds to extend the {beta}-helix upon binding CoA. Computational molecular docking suggests a different mode of nucleotide-sugar binding with respect to the acetyl-CoA donor, with the molecules arranged in an 'L-shape', compared with the 'in-line' orientation in related enzymes. Modeling indicates that the oxyanion intermediate would be stabilized by the NH group of Gly143', with His125' the most likely residue to function as a general base, removing H+ from the amino group prior to nucleophilic attack at the carbonyl carbon of acetyl-CoA. Site-specific mutations of active site residues confirmed the importance of His125', Glu124', and Asn118. We conclude that Asn118 exerts its function by stabilizing the intricate hydrogen bonding network within the active site and that Glu124' may function to increase the pKa of the putative general base, His125'.

  17. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    DEFF Research Database (Denmark)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell;

    2015-01-01

    Neuroticism is a personality trait associated with vulnerability for mood and anxiety disorders. Serotonergic mechanisms likely contribute to neuroticism. Serotonin 5-HT1A receptors are altered in mood and anxiety disorders, but whether 5-HT1A receptors are associated with neuroticism in healthy...... subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...

  18. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects

    DEFF Research Database (Denmark)

    Gillberg, Linn; Jacobsen, Stine; Rönn, Tina;

    2014-01-01

    -fat overfeeding increases PPARGC1A DNA methylation in muscle in a birth weight dependent manner. However, PPARGC1A DNA methylation in subcutaneous adipose tissue (SAT) in LBW subjects has not previously been investigated. Our objective was to determine PPARGC1A DNA methylation and mRNA expression in basal......OBJECTIVE: Increased DNA methylation of the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in skeletal muscle from type 2 diabetes (T2D) subjects and from low birth weight (LBW) subjects with an increased risk of T2D. High...

  19. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures.

    Science.gov (United States)

    Chandrasekaran, E V; Xue, Jun; Xia, Jie; Khaja, Siraj D; Piskorz, Conrad F; Locke, Robert D; Neelamegham, Sriram; Matta, Khushi L

    2016-10-01

    Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate

  20. Systematic Screening of the Serotonin Receptor 1A (5-HT1A) Gene in Chronic Tinnitus

    Institute of Scientific and Technical Information of China (English)

    Kleinjung T; Langguth B; Fischer B; Hajak G; Eichhammer P; Sand PG

    2006-01-01

    Objective Chronic tinnitus is a highly prevalent condition and has been hypothesized to result from an innate disturbance in central nervous serotonergic transmission. Given the frequent comorbidity with major depression and anxiety, we argue that candidate genes for these disorders are likely to overlap. The present study addresses the gene encoding for the 5-HT1A receptor as a putative risk factor for tinnitus. Methods In 88 subjects with a diagnosis of chronic subjective tinnitus who underwent a detailed neurootological examination, the entire 5-HT1A gene was amplified using overlapping PCR products. Amplicons were custom sequenced bidirectionally and were screened for variants in multiple alignments against the human genome reference. Results We identified a synonymous C > T exchange at residue 184 (Pro) in 7/88 subjects, but detected no missense variants in the population under study. Specifically, the following residues were fully conserved: 16 (Pro), 22 (Gly), 28 (Ile), 98 (Val), 220(Arg), 267 (Val), 273 (Gly), and 418 (Asn). Discussion The present data count against the causation of chronic tinnitus by a change in the 5-HT1A receptor's amino acid sequence. However, the allele frequency for the 184Pro minor allele (0.04) reached twice the frequency reported in control cohorts from the same ethnicity.Additional investigations are invited to clarify the role of the 5-HT1A polymorphism in larger samples, and to control for comorbid affective disorders.

  1. The single N-glycan deletion mutant of soluble ErbB3 protein attenuates heregulin β1-induced tumor progression by blocking of the HIF-1 and Nrf2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Rina, E-mail: rinataka0429@gmail.com; Takahashi, Motoko; Uehara, Yasuaki; Ariki, Shigeru; Hashimoto, Jiro; Hasegawa, Yoshihiro; Kuroki, Yoshio

    2014-11-21

    Highlights: • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of HIF-1α. • The sErbB3 N418Q mutant attenuates cancer cell migration induced by heregulin β1. • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of Nrf2. • The sErbB3 N418Q mutant may be a potential therapeutic application for tumor. - Abstract: It has been well documented that activation of the ErbB3–PI3K–Akt pathway is implicated in tumor survival and progression. We previously demonstrated that the single N-glycan deletion mutant of soluble ErbB3 protein (sErbB3 N418Q) attenuates heregulin β1-induced ErbB3 signaling. The active PI3K–Akt pathway augments the nuclear accumulation of hypoxia inducible factor (HIF)-1α, which activates the transcription of many target genes and drives cancer progression. In this study, we focused on the effects of sErbB3 N418Q mutant on nuclear accumulation of HIF-1α. Pretreatment with the sErbB3 N418Q mutant suppressed heregulin β1-induced HIF-1α activation in MCF7 cells. Similar results were also obtained in other breast cancer cell lines, T47D and BT474. Interestingly, these suppressive effects were not observed with the sErbB3 wild type. In addition, pretreatment with the sErbB3 N418Q mutant suppressed the cell migration of MCF7 cells induced by heregulin β1. Furthermore, incubation with heregulin β1 also induced the nuclear accumulation of Nrf2, and this effect was also reduced by the sErbB3 N418Q mutant, but not the sErbB3 wild type. These findings indicated that the sErbB3 N418Q mutant suppressed malignant formation of cancer cells by blocking of the HIF-1α and Nrf2 pathways.

  2. Bovine colostrum CMP-NeuAc:Gal beta(1-->4)GlcNAc-R alpha(2-->6)-sialyltransferase is involved in the synthesis of the terminal NeuAc alpha(2-->6)GalNAc beta(1-->4)GlcNAc sequence occurring on N-linked glycans of bovine milk glycoproteins.

    Science.gov (United States)

    Nemansky, M; Van den Eijnden, D H

    1992-01-01

    Bovine colostrum CMP-NeuAc:Gal beta(-->4)GlcNAc-R alpha(2-->6)-sialyltransferase (alpha 6-sialyltransferase) appears to be capable of catalysing alpha 6-sialylation of the disaccharide GalNAc beta(1-->4)GlcNAc to yield the trisaccharide NeuAc alpha(2-->6)GalNAc beta(1-->4)GlcNAc. This provides an enzymic basis for the occurrence of this sialylated structure on the N-linked glycans of a number of bovine milk glycoproteins. Competition experiments using Gal beta(1-->4)GlcNAc and GalNAc beta(-->4)GlcNAc as acceptors indicate that both substrates are recognized by a single active site on the alpha 6-sialyltransferase. Extrapolation of these results suggests that the NeuAc alpha(2-->6)GalNAc beta(1-->4)GlcNAc structural element occurring on the N-linked glycans of several human glycoproteins are similarly synthesized by the action of a Gal beta(1-->4)GlcNAc-R alpha(2-->6)-sialyltransferase. PMID:1417784

  3. Adsorption of Water on JSC-1A Lunar Simulant Samples

    Science.gov (United States)

    Goering, John; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W.

    2008-01-01

    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers.

  4. Lack of association between UGT1A7, UGT1A9, ARP, SPINK1 and CFTR gene polymorphisms and pancreatic cancer in Italian patients

    Institute of Scientific and Technical Information of China (English)

    Ada Piepoli; Annamaria Gentile; Maria Rosa Valvano; Daniela Barana; Cristina Oliani; Rosa Cotugno; Michele Quitadamo; Angelo Andriulli; Francesco Perri

    2006-01-01

    AIM: To investigate simultaneously UGT1A7, UGT1A9,ARP, SPINK and CFTR genes to verify whether genetic polymorphisms predispose to the development of pancreatic cancer (PC).METHODS: Genomic DNA of 61 pancreatic cancer patients and 105 healthy controls (HC) were analyzed.UGT1,47 genotyping was determined by PCR-RFLP analysis. Specific PCR and sequencing were used to analyze genetic variants of UGT1A9, ARP, SPINK1 and CFTR genes.RESULTS: Four different alleles (*1: WT;*2: N129Kand R131K;*3: N129K, R131K, and W208R;and *4:W208R) in UGT1A7 and three different alleles (*1: WT;*4: Y242X;and *5: D256N) in UGT1A9 were detected.All UGT1A polymorphisms were observed at similar frequency in PC patients and HC. Seven different alleles in ARP were found in PC patients and HC at similar frequency. The SPINK1 mutations N34S and P55Soccurred in five PC patients with a prevalence (4.1%) not significantly different from that observed (2.0%) in HC.The only CFTR ΔF508 mutation was recognized in three PC patients with a prevalence (4.9%) similar to HC.CONCLUSION: UGT1A7, UGT1A9, ARP, SPINK1 and CFTR gene polymorphisms are not associated with PC in Italian patients.

  5. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    International Nuclear Information System (INIS)

    The 5-HT1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-11C] WAY-100635 (WAY), [carbonyl-11C]desmethyl-WAY-100635 (DWAY), p-[18F]MPPF and [11C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  6. Targeted identification of Schistosoma mansoni egg glycans

    NARCIS (Netherlands)

    Robijn, Marjolein Louise Maria

    2008-01-01

    Schistosomiasis, also known as bilharzia, is a disease that still occurs in many parts of Africa, the Middle East and Southern America, mainly Brasil and the Caribbean. Schistosomiasis is, after malaria, the second most common parasitic infection. Currently 200 million people are infected with the w

  7. The key role of Cosmc and T-synthase in mucin-type O-glycan biosynthesis--implications in human diseases%Cosmc和T合酶在黏蛋白型O-聚糖合成中的重要作用及其与人类疾病的相关性

    Institute of Scientific and Technical Information of China (English)

    巨同忠; Richard D. Cummings; 靳嘉巍; 查锡良

    2011-01-01

    Mucin type O-glycans, primarily derived from the core 1 structure, play pivotal functions in many biological processes. The T-synthase (core 1 p3-galactosyltransferase) is the key enzyme responsible for synthesizing the core 1 O-glycan Galpl,3GalNAcal-Ser/Thr (T antigen) through addition of Gal to GalNAcal-Ser/ Thr (Tn antigen). Interestingly, formation of active T-synthase in human and other vertebrates requires a specific molecular chaperone, Cosmc. Dysfunction of Cosmc results in an inactive T-synthase leading to expression of the Tn antigen and its sialylated version, sialylTn (STn, Neu5Aca2,6GalNAcal-Ser/Thr). This review summarizes the current understanding of the T-synthase and Cosmc regarding their biochemistry and biology, as well as their roles in human diseases, such as Tn syndrome, igA nephropathy, and human tumors, which are associated with expression of abnormal O-glycans.%从核心1结构(Galβl,3GaINAcαl-O-Ser/Thr,core 1 structure,T antigen)中衍生出来的黏蛋白型0-聚糖在很多生理过程中发挥重要的生物学功能.T-合酶(core 1 β3-galactosyltransferase,Tsynthase)是合成核心1结构的唯一糖基转移酶,它主要的功能是将半乳糖(Galactose)添加到GaINAcαI-Ser/Thr (Tn抗原)糖链上.但是在人体和其他脊椎动物中有活性的T-合酶的形成需要一个重要的伴侣分子Cosmc ; Cosmc功能丧失将直接导致T-合酶失活,其结果是机体细胞只能合成Tn抗原以及唾液酰化Tn (sialylTn,STn,Neu5Aca2,6GaINAca1-O-Ser/Thr).综述目前对T-合酶和Cosmc的研究以及在人类疾病(如异常O-聚糖表达相关的Tn综合征、IgA肾病和肿瘤)发生发展中的作用.

  8. Syntheses and Bioactivity of 4"-Sulfonate-5-triphenylsilyl Avermectin B1a and Ivermectin B1a Derivatives

    Institute of Scientific and Technical Information of China (English)

    LIAO Lian-an; FANG Hong-yun; LI Zheng-ming; ZHAO Wei-guang; FAN Zhi-jin

    2004-01-01

    Fourteen new derivatives of avermectin B1a and ivermectin B1a were synthesized from C5-O-triphenylsilyl avermectin B1a and ivermectin B1a(yield from 40% to 83%). Their chemical structures were characterized by means of IR, 1H NMR, 13C NMR and FAB-MS spectrometries. Some of them show excellent insecticidal activity.

  9. Alpha-defensin DEFA1A3 gene copy number elevation in Danish Crohn's disease patients

    DEFF Research Database (Denmark)

    Jespersgaard, Cathrine; Fode, Peder; Dybdahl, Marianne;

    2011-01-01

    BACKGROUND AND PURPOSE OF STUDY: Extensive copy number variation is observed for the DEFA1A3 gene encoding alpha-defensins 1-3. The objective of this study was to determine the involvement of alpha-defensins in colonic tissue from Crohn's disease (CD) patients and the possible genetic association...... number of DEFA1A3 and individual alleles, DEFA1 and DEFA3, were compared with those for controls, by use of combined real-time quantitative PCR and pyrosequencing, and correlated with disease location. RESULTS: Inflammatory-dependent mRNA expression of DEFA1A3 (P

  10. Polyclonal T-Cells Express CD1a in Langerhans Cell Histiocytosis (LCH) Lesions

    Science.gov (United States)

    West, Jennifer A.; Olsen, Sharon L.; Mitchell, Jenée M.; Priddle, Ross E.; Luke, Jennifer M.; Åkefeldt, Selma Olsson; Henter, Jan-Inge; Turville, Christopher; Kannourakis, George

    2014-01-01

    Langerhans cell histiocytosis (LCH) is a complex and poorly understood disorder that has characteristics of both inflammatory and neoplastic disease. By using eight-colour flow cytometry, we have identified a previously unreported population of CD1a+/CD3+ T-cells in LCH lesions. The expression of CD1a is regarded as a hallmark of this disease; however, it has always been presumed that it was only expressed by pathogenic Langerhans cells (LCs). We have now detected CD1a expression by a range of T-cell subsets within all of the LCH lesions that were examined, establishing that CD1a expression in these lesions is no longer restricted to pathogenic LCs. The presence of CD1a+ T-cells in all of the LCH lesions that we have studied to date warrants further investigation into their biological function to determine whether these cells are important in the pathogenesis of LCH. PMID:25343480

  11. Novel European SLC1A4 variant: infantile spasms and population ancestry analysis.

    Science.gov (United States)

    Conroy, Judith; Allen, Nicholas M; Gorman, Kathleen; O'Halloran, Eoghan; Shahwan, Amre; Lynch, Bryan; Lynch, Sally A; Ennis, Sean; King, Mary D

    2016-08-01

    SLC1A4 deficiency is a recently described neurodevelopmental disorder associated with microcephaly, global developmental delay, abnormal myelination, thin corpus callosum and seizures. It has been mainly reported in the Ashkenazi-Jewish population with affected individuals homozygous for the p.Glu256Lys variant. Exome sequencing performed in an Irish proband identified a novel homozygous nonsense SLC1A4 variant [p.Trp453*], confirming a second case of SLC1A4-associated infantile spasms. As this is the first European identified, population ancestry analysis of the Exome Aggregation Consortium database was performed to determine the wider ethnic background of SLC1A4 deficiency carriers. p.Glu256Lys was found in Hispanic and South Asian populations. Other potential disease-causing variants were also identified. Investigation for SLC1A4 deficiency should be performed regardless of ethnicity and extend to include unexplained early-onset epileptic encephalopathy.

  12. Polyclonal T-cells express CD1a in Langerhans cell histiocytosis (LCH lesions.

    Directory of Open Access Journals (Sweden)

    Jennifer A West

    Full Text Available Langerhans cell histiocytosis (LCH is a complex and poorly understood disorder that has characteristics of both inflammatory and neoplastic disease. By using eight-colour flow cytometry, we have identified a previously unreported population of CD1a(+/CD3(+ T-cells in LCH lesions. The expression of CD1a is regarded as a hallmark of this disease; however, it has always been presumed that it was only expressed by pathogenic Langerhans cells (LCs. We have now detected CD1a expression by a range of T-cell subsets within all of the LCH lesions that were examined, establishing that CD1a expression in these lesions is no longer restricted to pathogenic LCs. The presence of CD1a(+ T-cells in all of the LCH lesions that we have studied to date warrants further investigation into their biological function to determine whether these cells are important in the pathogenesis of LCH.

  13. Heterologous expression of active human uridine diphosphate glucuronosyltransferase 1A3 in Chinese hamster lung cells

    Institute of Scientific and Technical Information of China (English)

    Ya-Kun Chen; Xin Li; Shu-Qing Chen; Su Zeng

    2005-01-01

    AIM: To obtain the active human recombinant uridine diphosphate glucuronosyltransferase 1A3 (UGT1A3) enzyme from Chinese hamster lung (CHL) cells.METHODS: The full-length UGT1A3 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR)using total RNA from human liver as template. The correct fragment confirmed by sequencing was subcloned into the mammalian expression vector pcDNA3.1 (+), and the recombinant vector was transfected into CHL cells using a calcium phosphate method. Expressed UGT1A3 protein was prepared from CHL cells resistant to neomycin (G418). Then the protein was added into a reaction mixture for glucuronidation of quercetin. The glucuronidation activity of UGT1A3 was determined by reverse phase-high performance liquid chromatography (RP-HPLC) coupled with a diode array detector (DAD). The quercetin glucuronide was confirmed by hydrolysis with β-glucuronidase. Control experiments were performed in parallel. The transcriptions of recombinants were also determined by RT-PCR.RESULTS: The gene was confirmed to be an allele (UGT1A3-3) of UGT1A3 by DNA sequencing. The fragment was introduced into pcDNA3.1 (+) successfully. Several colonies were obtained under the selection pressure of G418.The result of RT-PCR showed transcription of recombinants in mRNA level. Glucuronidation assay and HPLC analysis indicated UGT1A3 expressed heterologously in CHL cells was in an active form, and one of the gulcuronides corresponding to quercetin was also detected.CONCLUSION: Correct sequence of UGT1A3 gene can be obtained, and active UGT1A3 enzyme is expressed heterologously in CHL cells.

  14. Action of Halowax 1051 on Enzymes of Phase I (CYP1A1 and Phase II (SULT1A and COMT Metabolism in the Pig Ovary

    Directory of Open Access Journals (Sweden)

    Justyna Barć

    2013-01-01

    Full Text Available Polychlorinated naphthalenes (PCNs are a group of organochlorinated compounds exhibiting dioxin-like properties. Previously published data showed the direct action of PCN-rich Halowax 1051 on ovarian follicular steroidogenesis. Taking into consideration that the observed biological effects of PCNs may be frequently side effects of metabolites generated by their detoxification, the aim of this study was to determine the activity and expression of enzymes involved in phase I (cytochrome P450, family 1 (CYP1A1 and phase II (sulfotransferase (SULT1A and catechol-O-methyltransferase (COMT detoxification metabolism. Cocultures of granulosa and theca interna cells collected from sexually mature pigs were exposed to 1 pg/mL to 10 ng/mL of Halowax 1051 for 1 to 48 hours, after which levels and activities of CYP1A1, SULT1A, and COMT were measured. Dose-dependent increases of CYP1A1 activity and expression were observed. High doses of Halowax 1051 were inhibitory to COMT and SULT1A activity and reduced their protein levels. In conclusion, fast activation of phase I enzymes with simultaneous inhibition of phase II enzymes indicates that the previously observed effect of Halowax 1051 on follicular steroidogenesis may partially result from metabolite action occurring locally in ovarian follicles.

  15. Alteration of the glycan profile of serum glycoproteins during the seroconversion process in hepatitis B virus-infected patients treated with antiviral therapy and its clinical significance%抗HBV治疗后血清学转换中血清糖蛋白聚糖谱的变化及其临床意义

    Institute of Scientific and Technical Information of China (English)

    古幼兰; 汤宇文; 周晓东; 刘银坤

    2014-01-01

    Objective To use a lectin microarray to study the alteration of glycan affinity profiles of serum glycoproteins during the hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) seroconversion in patients with chronic hepatitis B (CHB) following treatment with antiviral therapy,and to explore its biological significance.Methods CHB patients were divided into the following four groups:untreated HBeAg-positive,HBeAg seroconversion after anti-HBV therapy,HBsAg loss after anti-HBV therapy,and healthy individuals (controls).Serum samples were collected from each participant,depleted of high abundance proteins and analyzed by a lectin microarray containing 50 lectins.The lectin-affinity glycan profiles of serum proteins were partially verified by lectin blotting.Between-group differences were analyzed by one-way analysis of variance,and pairwise comparisons were carried out with the Student-Newman-Keuls (SNK) method.Results The results from the lectin microarray and lectin blotting assay showed significantly reduced affinity for 16 lectins in the untreated HBeAg-positive group compared to the control group (P<0.05);in addition,the specific glycan profiles of the untreated HBeAg-positive group included decreased terminal and core fructose,GalNAc α-Thr/Ser (T,Tn-antigen),GalNac α,terminal β1-4,and β-D galactose,bisecting and/or GlcNAc,mannose and Sia.However,the HBeAg seroconversion after anti-HBV therapy group showed enhanced binding of PSA,MPL and the above-mentioned 16 lectins (P < 0.05),suggesting that the reduced serum glycoprotein glycan structures returned to normal or slightly higher than healthy levels after the therapy-induced seroconversion.Comparison of the group with HBsAg loss after anti-HBV therapy to the group with HBeAg seroconversion after anti-HBV therapy showed the binding ability of ten lectins (AAL,ACL,HAL,HPL,RCA-I,LEL,STL,PHA-E,NML and PCL) were weakened to near control levels and six lectins (VAL,LCA,GNL,PSA,MPL and JAC) were

  16. Testosterone replacement therapy promotes angiogenesis after acute myocardial infarction by enhancing expression of cytokines HIF-1a, SDF-1a and VEGF.

    Science.gov (United States)

    Chen, Yeping; Fu, Lu; Han, Ying; Teng, Yueqiu; Sun, Junfeng; Xie, Rongsheng; Cao, Junxian

    2012-06-01

    In order to investigate the effects of testosterone-replacement therapy on peripheral blood stem cells and angiogenesis after acute myocardial infarction, a castrated rat acute myocardial infarction model was established by ligation of the left anterior descending coronary followed by treatment with testosterone. CD34(+) cells in myocardium and in peripheral blood after 1 and 3 days were measured by immunohistochemistry and flow cytometry, respectively. In the early phase of acute myocardial infarction, the expression levels of hypoxia-inducible factor 1a (HIF-1a), stromal cell-derived factor 1a (SDF-1a) and vascular endothelium growth factor (VEGF) in ischemic myocardium were determined by real time RT-PCR and immunohistochemistry, respectively. Infarct size, cardiomyocyte apoptosis, capillary density and cardiac function were assessed after 28 days. These results showed that the number of CD34(+) cells in the peripheral blood and in myocardium was significantly decreased in castrated rats, and the early expression levels of HIF-1a, SDF-1a and VEGF in the myocardium were also decreased. Furthermore, reduced capillary density, worsened cardiac function, increased infarct size and cardiomyocyte apoptosis at 28 days post-infarction were found in castrated rats. But these adverse effects could be reversed by testosterone-replacement therapy. These findings suggested that testosterone can increase the mobilization and homing of CD34(+) cells into the ischemic myocardium and further promote neoangiogenesis after myocardial infarction. The pro-angiogenesis effect of testosterone-replacement therapy is associated with the enhanced expression of HIF-1a, SDF-1a and VEGF in myocardium after myocardial infarction.

  17. The clinical application of UGT1A1 pharmacogenetic testing: Gene-environment interactions

    Directory of Open Access Journals (Sweden)

    Marques Sara

    2010-04-01

    Full Text Available Abstract Over the past decade, the number of pharmacogenetic tests has increased considerably, allowing for the development of our knowledge of their clinical application. The uridine diphosphate glucuronosyltransferase 1A1 gene (UGT1A1 assay is an example of a pharmacogenetic test. Numerous variants have been found in UGT1A1, the main conjugating enzyme of bilirubin and drugs such as the anticancer drug irinotecan. Recently, the US Food and Drug Administration (FDA recommended testing for the presence of UGT1A1*28, an allele correlated with decreased transcriptional activity, to predict patients at risk of irinotecan toxicity. The administration of other drugs -- such as inhibitors of the UGT1A1 enzyme -- can clinically mimic the *28 phenotype, whereas inducers of UGT1A1 can increase the glucuronidation rate of the enzyme. The *28 polymorphism is not present in all ethnicities at a similar frequency, which suggests that it is important to study different populations to determine the clinical relevance of testing for UGT1A1*28 and to identify other clinically relevant UGT1A1 variants. Environmental factors such as lifestyle can also affect UGT1A1 activity. This review is a critical analysis of studies on drugs that can be affected by the presence of UGT1A1*28, the distribution of this polymorphism around the globe, distinct variants that may be clinically significant in African and Asian populations and how lifestyle can affect treatment outcomes that depend on UGT1A1 activity.

  18. Mode of action of Chrysosporium lucknowense C1 a-l-arabinohydrolases

    NARCIS (Netherlands)

    Kuhnel, S.; Westphal, Y.; Hinz, S.W.A.; Schols, H.A.; Gruppen, H.

    2011-01-01

    The mode of action of four Chrysosporium lucknowense C1 a-l-arabinohydrolases was determined to enable controlled and effective degradation of arabinan. The active site of endoarabinanase Abn1 has at least six subsites, of which the subsites -1 to +2 have to be occupied for hydrolysis. Abn1 was able

  19. Transcriptional activation by the E1A regions of adenovirus types 40 and 41

    NARCIS (Netherlands)

    Loon, A.E. van; Gilardi, P.; Perricaudet, M.; Rozijn, Th. H.; Sussenbach, J.S.

    1987-01-01

    In order to establish whether the poor growth of the two fastidious adenoviruses types 40 and 41 (Ad40 and Ad41) in HeLa cells is due to a reduced trans-activation by the early region to (E1A), we have determined the trans-activating effect of this region on the expression of the chloramphenicol ace

  20. Alpha-defensin DEFA1A3 gene copy number elevation in Danish Crohn's disease patients

    DEFF Research Database (Denmark)

    Jespersgaard, Cathrine; Fode, Peder; Dybdahl, Marianne;

    2011-01-01

    BACKGROUND AND PURPOSE OF STUDY: Extensive copy number variation is observed for the DEFA1A3 gene encoding alpha-defensins 1-3. The objective of this study was to determine the involvement of alpha-defensins in colonic tissue from Crohn's disease (CD) patients and the possible genetic association...

  1. Site-specific glycosylation of donkey milk lactoferrin investigated by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Gallina, Serafina; Saletti, Rosaria; Cunsolo, Vincenzo;

    2016-01-01

    , electrospray mass spectrometry, and high collision dissociation fragmentation. The results obtained allowed identifying 26 different glycan structures, including high mannose, complex and hybrid N-glycans, linked to the protein backbone via an amide bond to asparagine residues located at the positions 137, 281...... and 476. Altogether, the N-glycan structures determined revealed that most of the N-glycans identified in donkey milk lactoferrin are neutral complex/hybrid. Indeed, 10 neutral non-fucosylated complex/hybrid N-glycans and 4 neutral fucosylated complex/hybrid N-glycans were found. In addition, two high...

  2. Analysis list: ARID1A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ARID1A Liver + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ARID1A.1.tsv http://dbar...chive.biosciencedbc.jp/kyushu-u/hg19/target/ARID1A.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/AR...ID1A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ARID1A.Liver.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Liver.gml ...

  3. Analysis list: Hnf1a [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Hnf1a Kidney + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hnf1a.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hnf1a.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hnf...1a.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Hnf1a.Kidney.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kidney.gml ...

  4. Analysis list: DCP1A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DCP1A Uterus + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/DCP1A.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/DCP1A.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/DCP...1A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/DCP1A.Uterus.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Uterus.gml ...

  5. Intracellular Distribution of Differentially Phosphorylated Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A)

    OpenAIRE

    Kaczmarski, Wojciech; Barua, Madhabi; Mazur-Kolecka, Bozena; Frackowiak, Janusz; Dowjat, Wieslaw; Mehta, Pankaj; Bolton, David; Hwang, Yu-Wen; Rabe, Ausma; Albertini, Giorgio; Wegiel, Jerzy

    2013-01-01

    The gene encoding dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age-associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell-compartment–specific functions a...

  6. Analysis list: SMC1A [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SMC1A Blood,Liver,Pluripotent stem cell + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SMC...1A.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/SMC1A.5.tsv http://dba...rchive.biosciencedbc.jp/kyushu-u/hg19/target/SMC1A.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SMC...1A.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SMC1A.Liv...er.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/SMC1A.Pluripotent_stem_cell.tsv http://dbarchive

  7. The growth and tumor suppressors NORE1A and RASSF1A are targets for calpain-mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Sergey Kuznetsov

    Full Text Available BACKGROUND: NORE1A and RASSF1A are growth and tumour suppressors inactivated in a variety of cancers. Methylation of NORE1A and RASSF1A promoters is the predominant mechanism for downregulation of these proteins; however, other mechanisms are likely to exist. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a proteolysis of NORE1A and RASSF1A by calpains as alternative mechanism of their downregulation. Extracts of H358 cell line, a human bronchoalveolar carcinoma, and H460, a large cell carcinoma, were capable of proteolysis of NORE1A protein in the calpain-dependent manner. Likewise, RASSF1A tumor suppressor was proteolyzed by the H358 cell extract. Addition of calpain inhibitor to H358 and H460 cells growing in tissue culture resulted in re-expression of endogenous NORE1A. A survey of 10 human lung tumours revealed that three of them contain an activity capable of inducing NORE1A degradation. CONCLUSIONS/SIGNIFICANCE: Thus, degradation by calpains is a novel mechanism for downregulation of NORE1A and RASSF1A proteins and might be the mechanism allowing cancer cells to escape growth suppression.

  8. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    International Nuclear Information System (INIS)

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, β-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression

  9. Genome-wide analyses of HTLV-1aD strains from Cape Verde, Africa.

    Science.gov (United States)

    Zanella, Louise; Pina-Araujo I, Isabel de; Morgado, Mariza G; Vicente, Ana Carolina

    2016-09-01

    We characterised and reported the first full-length genomes of Human T-cell Lymphotropic Virus Type 1 subgroup HTLV-1aD (CV21 and CV79). This subgroup is one of the major determinants of HTLV-1 infections in North and West Africa, and recombinant strains involving this subgroup have been recently demonstrated. The CV21 and CV79 strains from Cape Verde/Africa were characterised as pure HTLV-1aD genomes, comparative analyses including HTLV-1 subtypes and subgroups revealed HTLV-1aD signatures in the envelope, pol, and pX regions. These genomes provide original information that will contribute to further studies on HTLV-1a epidemiology and evolution. PMID:27653363

  10. Genome-wide analyses of HTLV-1aD strains from Cape Verde, Africa

    Science.gov (United States)

    Zanella, Louise; de Pina-Araujo I, Isabel; Morgado, Mariza G; Vicente, Ana Carolina

    2016-01-01

    We characterised and reported the first full-length genomes of Human T-cell Lymphotropic Virus Type 1 subgroup HTLV-1aD (CV21 and CV79). This subgroup is one of the major determinants of HTLV-1 infections in North and West Africa, and recombinant strains involving this subgroup have been recently demonstrated. The CV21 and CV79 strains from Cape Verde/Africa were characterised as pure HTLV-1aD genomes, comparative analyses including HTLV-1 subtypes and subgroups revealed HTLV-1aD signatures in the envelope, pol, and pX regions. These genomes provide original information that will contribute to further studies on HTLV-1a epidemiology and evolution.

  11. Genome-wide analyses of HTLV-1aD strains from Cape Verde, Africa

    Science.gov (United States)

    Zanella, Louise; de Pina-Araujo I, Isabel; Morgado, Mariza G; Vicente, Ana Carolina

    2016-01-01

    We characterised and reported the first full-length genomes of Human T-cell Lymphotropic Virus Type 1 subgroup HTLV-1aD (CV21 and CV79). This subgroup is one of the major determinants of HTLV-1 infections in North and West Africa, and recombinant strains involving this subgroup have been recently demonstrated. The CV21 and CV79 strains from Cape Verde/Africa were characterised as pure HTLV-1aD genomes, comparative analyses including HTLV-1 subtypes and subgroups revealed HTLV-1aD signatures in the envelope, pol, and pX regions. These genomes provide original information that will contribute to further studies on HTLV-1a epidemiology and evolution. PMID:27653363

  12. NFKB1: a suppressor of inflammation, ageing and cancer.

    Science.gov (United States)

    Cartwright, Tyrell; Perkins, Neil D; L Wilson, Caroline

    2016-05-01

    The pleiotropic consequences of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) pathway activation result from the combinatorial effects of the five subunits that form the homo- and heterodimeric NF-κB complexes. Although biochemical and gene knockout studies have demonstrated overlapping and distinct functions for these proteins, much is still not known about the mechanisms determining context-dependent functions, the formation of different dimer complexes and transcriptional control in response to diverse stimuli. Here we discuss recent results that reveal that the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) (p105/p50) subunit is an important regulator of NF-κB activity in vivo. These effects are not restricted to being a dimer partner for other NF-κB subunits. Rather p50 homodimers have a critical role as suppressors of the NF-κB response, while the p105 precursor has a variety of NF-κB-independent functions. The importance of Nfkb1 function can be seen in mouse models, where Nfkb1(-/-) mice display increased inflammation and susceptibility to certain forms of DNA damage, leading to cancer, and a rapi