WorldWideScience

Sample records for 1a e1a-like inhibitor

  1. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A-like inhibitor of differentiation 1 (EID1

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2008-01-01

    Full Text Available Transcriptional activation (TA mediated by the effect of thyroid hormones on target genes requires co-activator proteins such as the early region 1A (E1A associated 300 kDa binding protein (p300 and the cAMP response element binding protein (CREB binding protein (CBP, known as the p300/CBP complex, which acetylate histones 3 and 4 to allow transcriptional machinery access to the target gene promoter. Little is known on the role of p300 in thyroid hormone receptor (TR mediated TA but the E1A-like inhibitor of differentiation 1 (EID1, an inhibitor of p300 histone acetyltransferase (HAT, is a functional homolog of E1A and may inhibit myogenic differentiation factor D (MyoD transcriptional activity and reduces muscle cell differentiation. We evaluated the influence of EID1 on TR-mediated transcriptional activity using transfection and mammalian two-hybrid studies to show that EID1 may partially reduces TA activity of the TR receptor, probably due to p300 blockage since EID1 mutants cannot reduce TR-mediated TA. The EID1 does not affect the function of p160 co-activator proteins (160 kDa proteins of steroid receptor co-activators and is functionally independent of co-repressor proteins or TR binding. Summarizing, EID1 reduces TR-mediated transcriptional activity by blocking p300 and may play an important role in thyroid receptor activity in muscle and other tissues.

  2. Classification of Cytochrome P450 1A2 Inhibitors and Non-Inhibitors by Machine Learning Techniques

    DEFF Research Database (Denmark)

    Vasanthanathan, Poongavanam; Taboureau, Olivier; Oostenbrink, Chris

    2009-01-01

    of CYP1A2 inhibitors and non-inhibitors. Training and test sets consisted of about 400 and 7000 compounds, respectively. Various machine learning techniques, like binary QSAR, support vector machine (SVM), random forest, kappa nearest neighbors (kNN), and decision tree methods were used to develop...

  3. Accurate identification of UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibitors using UGT1A1-overexpressing HeLa cells.

    Science.gov (United States)

    Sun, Hua; Zhou, Xiaotong; Wu, Baojian

    2015-01-01

    1. UDP-glucuronosyltransferase 1A1 (UGT1A1) plays an irreplaceable role in detoxification of bilirubin and many drugs (e.g., SN-38). Here we aimed to explore the potential of UGT1A1-overexpressing HeLa cells (or HeLa1A1 cells) as a tool to accurately identify UGT1A1 inhibitors. 2. Determination of glucuronidation rates (β-estradiol and SN-38 as the substrates) was performed using HeLa1A1 cells and uridine diphosphoglucuronic acid (UDPGA)-supplemented cDNA expressed UGT1A1 enzyme (or microsomes). The inhibitory effects (IC50 values) of 20 structurally diverse compounds on the UGT1A1 activity were determined using HeLa1A1 cells and microsomal incubations. 3. In HeLa1A1 cells, the IC50 values for inhibition of β-estradiol glucuronidation by the tested compounds ranged from 0.33 to 94.6 µM. In the microsomal incubations, the IC50 values ranged from 0.47 to 155 µM. It was found that the IC50 values of all test compounds derived from the cells were well consistent with those from the microsomes (deviated by less than two-fold). Further, the IC50 values from the cells were strongly correlated with those from microsomes (r = 0.944, p HeLa cells were an appropriate tool to accurately depict the inhibition profiles of chemicals against UGT1A1.

  4. Library-based discovery of DYRK1A/CLK1 inhibitors from natural product extracts.

    Science.gov (United States)

    Grabher, Patrick; Durieu, Emilie; Kouloura, Eirini; Halabalaki, Maria; Skaltsounis, Leandros A; Meijer, Laurent; Hamburger, Matthias; Potterat, Olivier

    2012-06-01

    The dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A possesses diverse roles in neuronal development and adult brain physiology, and increased activity has been linked to neurodegenerative diseases. Very few inhibitors of this kinase have been reported up to now. Screening of a library of > 900 plant and fungal extracts afforded 25 extracts with IC₅₀s Larrea tridentata as the active constituents. Active extracts and compounds were also tested on the closely related cdc2-like kinase CLK1. Finally, the selectivity profile of compounds was evaluated by including other members of the DYRKs and CLKs families. While the flavonoids and emodin did not show significant differences in the potency of their activities, harmine (1) was most active against DYRK1A, CLK1, and CLK4, and less potent against the other kinases, with selectivity ranging from 2- to 20-fold.

  5. Systematic diversification of benzylidene heterocycles yields novel inhibitor scaffolds selective for Dyrk1A, Clk1 and CK2.

    Science.gov (United States)

    Mariano, Marica; Hartmann, Rolf W; Engel, Matthias

    2016-04-13

    The dual-specificity tyrosine-regulated kinase 1A (Dyrk1A) has gathered much interest as a pharmacological target in Alzheimer's disease (AD), but it plays a role in malignant brain tumors as well. As both diseases are multi-factorial, further protein kinases, such as Clk1 and CK2, were proposed to contribute to the pathogenesis. We designed a new class of α-benzylidene-γ-butyrolactone inhibitors that showed low micromolar potencies against Dyrk1A and/or Clk1 and a good selectivity profile among the most frequently reported off-target kinases. A systematic replacement of the heterocyclic moiety gave access to further inhibitor classes with interesting selectivity profiles, demonstrating that the benzylidene heterocycles provide a versatile tool box for developing inhibitors of the CMGC kinase family members Dyr1A/1B, Clk1/4 and CK2. Efficacy for the inhibition of Dyrk1A-mediated tau phosphorylation was demonstrated in a cell-based assay. Multi-targeted but not non-specific kinase inhibitors were also obtained, that co-inhibited the lipid kinases PI3Kα/γ. These compounds were shown to inhibit the proliferation of U87MG cells in the low micromolar range. Based on the molecular properties, the inhibitors described here hold promise for CNS activity.

  6. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    Momo, Kenji; Homma, Masato; Osaka, Yoshiko; Inomata, Shin-ichi; Tanaka, Makoto; Kohda, Yukinao

    2010-03-01

    The aim of this study was to determine whether mexiletine, a CYP1A2 inhibitor, altered the pharmacokinetics and pharmacodynamics of tizanidine. The pharmacokinetics of tizanidine were examined in an open-label study in 12 healthy participants after a single dose of tizanidine (2 mg) with and without mexiletine coadministration (50 mg, 3 times as a pretreatment for a day and 2 times on the study day). Compared with tizanidine alone, mexiletine coadministration increased the peak plasma concentration (1.8 +/- 0.8 vs 5.3 +/- 1.8 ng/mL), area under the curve (4.5 +/- 2.2 vs 15.4 +/- 6.5 ng x h/mL), and the half-life (1.3 +/- 0.2 vs 1.8 +/- 0.7 h) of tizanidine, respectively (P < .05). Reduction in systolic blood pressure (-10 +/- 8 vs -24 +/- 7 mm Hg) and diastolic blood pressure (-10 +/- 7 vs -18 +/- 8 mm Hg) after tizanidine administration was also significantly enhanced by coadministration of mexiletine (P < .01). Of the 15 patients treated with tizanidine and mexiletine, 4 suffered tizanidine-induced adverse effects such as drowsiness and dry mouth in the retrospective survey. Present results suggested that coadministration of mexiletine increased blood tizanidine concentrations and enhanced tizanidine pharmacodynamics in terms of reduction in blood pressure and adverse symptoms.

  7. Epidermal Growth Factor Receptor Kinase Inhibitors Synergize with TCDD to Induce CYP1A1/1A2 in Human Breast Epithelial MCF10A Cells.

    Science.gov (United States)

    Joiakim, Aby; Mathieu, Patricia A; Shelp, Catherine; Boerner, Julie; Reiners, John J

    2016-05-01

    CYP1A1 and CYP1A2 are transcriptionally activated in the human normal breast epithelial cell line MCF10A following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Shifting MCF10A cultures to medium deficient in serum and epidermal growth factor (EGF) caused rapid reductions in the activated (i.e., phosphorylated) forms of extracellular regulated kinases (ERKs) and the epidermal growth factor receptor (EGFR). Shifting to serum/EGF-deficient medium also enhanced TCDD-mediated induction of cytochrome P450 (CYP)1A1 Treatment of cells cultured in complete medium with the EGFR inhibitors gefitinib (Iressa), AG1478, and CI-1033 resulted in concentration-dependent reductions of active EGFR and ERKs, and increased CYP1A1 mRNA content ∼3- to 18-fold above basal level. EGFR inhibitors synergized with TCDD and resulted in transient CYP1A1 and CYP1A2 mRNA accumulations ∼8-fold greater (maximum at 5 hours) than that achieved with only TCDD. AG1478, gefitinib, and TCDD individually induced small increases (∼1.2- to 2.5-fold) in CYP1A1 protein content but did not cause additive or synergistic accumulations of CYP1A1 protein when used in combination. The mitogen-activated protein kinase kinase inhibitor PD184352 inhibited ERK and EGFR activation in a concentration-dependent fashion without causing CYP1A1 mRNA accumulation. However, cotreatment with PD184352 potentiated TCDD-mediated CYP1A1 induction. TCDD-mediated induction of CYP1A1 in MCF7-TET on-EGFR cells, a MCF7 variant in which EGFR expression can be controlled, was not affected by the activity status of EGFR or ERKs. Hence, EGFR signaling mutes both basal and ligand-induced expression of two aryl hydrocarbon receptor-responsive P450s in MCF10A cultures. However, these effects are cell context-dependent. Furthermore, CYP1A1 mRNA and protein abundance are not closely coupled in MCF10A cultures.

  8. Is plasminogen activator inhibitor-1 a physiological bottleneck bridging major depressive disorder and cardiovascular disease?

    Science.gov (United States)

    Savoy, C; Van Lieshout, R J; Steiner, M

    2016-06-01

    Major depressive disorder (MDD) is estimated to affect one in twenty people worldwide. MDD is highly comorbid with cardiovascular disease (CVD), itself one of the single largest causes of mortality worldwide. A number of pathological changes observed in MDD are believed to contribute to the development of cardiovascular disease, although no single mechanism has been identified. There are also no biological markers capable of predicting the future risk of developing heart disease in depressed individuals. Plasminogen activator inhibitor-1 (PAI-1) is a prothrombotic plasma protein secreted by endothelial tissue and has long been implicated in CVD. An expanding body of literature has recently implicated it in the pathogenesis of major depressive disorder as well. In this study, we review candidate pathways implicating MDD in CVD and consider how PAI-1 might act as a mediator by which MDD induces CVD development: chiefly through sleep disruption, adiposity, brain-derived neurotrophic factor (BDNF) metabolism, systemic inflammation and hypothalamic-pituitary-adrenal (HPA)-axis dysregulation. As both MDD and CVD are more prevalent in women than in men, and incidence of either condition is dramatically increased during reproductive milestones, we also explore hormonal and sex-specific associations between MDD, PAI-1 and CVD. Of special interest is the role PAI-1 plays in perinatal depression and in cardiovascular complications of pregnancy. Finally, we propose a theoretical model whereby PAI-1 might serve as a useful biomarker for CVD risk in those with depression, and as a potential target for future treatments.

  9. Attenuation of Doxorubicin-Induced Cardiotoxicity by mdivi-1: A Mitochondrial Division/Mitophagy Inhibitor

    Science.gov (United States)

    Gharanei, Mayel; Hussain, Afthab; Janneh, Omar; Maddock, Helen

    2013-01-01

    Doxorubicin is one of the most effective anti-cancer agents. However, its use is associated with adverse cardiac effects, including cardiomyopathy and progressive heart failure. Given the multiple beneficial effects of the mitochondrial division inhibitor (mdivi-1) in a variety of pathological conditions including heart failure and ischaemia and reperfusion injury, we investigated the effects of mdivi-1 on doxorubicin-induced cardiac dysfunction in naïve and stressed conditions using Langendorff perfused heart models and a model of oxidative stress was used to assess the effects of drug treatments on the mitochondrial depolarisation and hypercontracture of cardiac myocytes. Western blot analysis was used to measure the levels of p-Akt and p-Erk 1/2 and flow cytometry analysis was used to measure the levels p-Drp1 and p-p53 upon drug treatment. The HL60 leukaemia cell line was used to evaluate the effects of pharmacological inhibition of mitochondrial division on the cytotoxicity of doxorubicin in a cancer cell line. Doxorubicin caused a significant impairment of cardiac function and increased the infarct size to risk ratio in both naïve conditions and during ischaemia/reperfusion injury. Interestingly, co-treatment of doxorubicin with mdivi-1 attenuated these detrimental effects of doxorubicin. Doxorubicin also caused a reduction in the time taken to depolarisation and hypercontracture of cardiac myocytes, which were reversed with mdivi-1. Finally, doxorubicin caused a significant elevation in the levels of signalling proteins p-Akt, p-Erk 1/2, p-Drp1 and p-p53. Co-incubation of mdivi-1 with doxorubicin did not reduce the cytotoxicity of doxorubicin against HL-60 cells. These data suggest that the inhibition of mitochondrial fission protects the heart against doxorubicin-induced cardiac injury and identify mitochondrial fission as a new therapeutic target in ameliorating doxorubicin-induced cardiotoxicity without affecting its anti-cancer properties. PMID

  10. NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Wei-Jan Huang

    2012-01-01

    Full Text Available HDAC inhibitors (HDACis have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP, and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231 and rat glioma cells (C6, with an IC50 ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1, gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1, p21(Waf1/Cip1 gene expression had markedly increased while cyclin B1 and D1 gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor gene p53 in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activity in vitro and in vivo.

  11. Selective serotonin re-uptake inhibitors potentiate gene blunting induced by repeated methylphenidate treatment: Zif268 versus Homer1a.

    Science.gov (United States)

    Van Waes, Vincent; Vandrevala, Malcolm; Beverley, Joel; Steiner, Heinz

    2014-11-01

    There is a growing use of psychostimulants, such as methylphenidate (Ritalin; dopamine re-uptake inhibitor), for medical treatments and as cognitive enhancers in the healthy. Methylphenidate is known to produce some addiction-related gene regulation. Recent findings in animal models show that selective serotonin re-uptake inhibitors (SSRIs), including fluoxetine, can potentiate acute induction of gene expression by methylphenidate, thus indicating an acute facilitatory role for serotonin in dopamine-induced gene regulation. We investigated whether repeated exposure to fluoxetine, in conjunction with methylphenidate, in adolescent rats facilitated a gene regulation effect well established for repeated exposure to illicit psychostimulants such as cocaine-blunting (repression) of gene inducibility. We measured, by in situ hybridization histochemistry, the effects of a 5-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or a combination on the inducibility (by cocaine) of neuroplasticity-related genes (Zif268, Homer1a) in the striatum. Repeated methylphenidate treatment alone produced minimal gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine added to methylphenidate robustly potentiated methylphenidate-induced blunting for both genes. This potentiation was widespread throughout the striatum, but was most robust in the lateral, sensorimotor striatum, thus mimicking cocaine effects. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs, such as fluoxetine, may increase the addiction liability of methylphenidate.

  12. Development of an on-line high performance liquid chromatography detection system for human cytochrome P450 1A2 inhibitors in extracts of natural products

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Claassen, F.W.; Havlik, J.; Bouwmans, E.E.; Cnubben, N.H.P.; Sudhölter, E.J.R.; Rietjens, I.M.C.M.; Beek, T.A. van

    2007-01-01

    An on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent

  13. Insights into mechanism of pyrido[2,3-d]pyrimidines as DYRK1A inhibitors based on molecular dynamic simulations.

    Science.gov (United States)

    Li, Jiao Jiao; Tian, Yue Li; Zhai, Hong Lin; Lv, Min; Zhang, Xiao Yun

    2016-08-01

    DYRK1A is characterized by the early development and regulation of neuronal proliferation, and its over expression gives rise to neurological abnormalities. As the promising DYRK1A inhibitors, the binding mechanism between DYRK1A and pyrido[2,3-d]pyrimidines derivatives at molecular level are still veiled. In this article, it was achieved to get the structural insights into pyrido[2,3-d]pyrimidines derivatives as DYRK1A inhibitors by means of comprehensive computational approaches involving molecular docking, molecular dynamics simulation, free energy calculation, and energy decomposition analysis. The calculated energy values were highly consistent with the experimental activities. Based on the individual energy terms analysis, the van der Waals interaction was the major leading force in the DYRK1A-ligand interaction. Lys188 was the important residue that formed the hydrogen bond, which improved the inhibitory activity. Furthermore, four novel inhibitors with higher predicted activity were designed based on the obtained findings and confirmed by molecular simulations. Our study is expected to provide significant drug design strategy for the development of more promising DYRK1A inhibitors. Proteins 2016; 84:1108-1123. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation.

    Science.gov (United States)

    Miners, John O; Bowalgaha, Kushari; Elliot, David J; Baranczewski, Pawel; Knights, Kathleen M

    2011-04-01

    Enzyme selective inhibitors represent the most valuable experimental tool for reaction phenotyping. However, only a limited number of UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors have been identified to date. This study characterized the UGT enzyme selectivity of niflumic acid (NFA). It was demonstrated that 2.5 μM NFA is a highly selective inhibitor of recombinant and human liver microsomal UGT1A9 activity. Higher NFA concentrations (50-100 μM) inhibited UGT1A1 and UGT2B15 but had little effect on the activities of UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B17. NFA inhibited 4-methylumbelliferone and propofol (PRO) glucuronidation by recombinant UGT1A9 and PRO glucuronidation by human liver microsomes (HLM) according to a mixed (competitive-noncompetitive) mechanism, with K(i) values ranging from 0.10 to 0.40 μM. Likewise, NFA was a mixed or noncompetitive inhibitor of recombinant and human liver microsomal UGT1A1 (K(i) range 14-18 μM), whereas competitive inhibition (K(i) 62 μM) was observed with UGT2B15. NFA was subsequently applied to the reaction phenotyping of human liver microsomal acetaminophen (APAP) glucuronidation. Consistent with previous reports, APAP was glucuronidated by recombinant UGT1A1, UGT1A6, UGT1A9, and UGT2B15. NFA concentrations in the range of 2.5 to 100 μM inhibited APAP glucuronidation by UGT1A1, UGT1A9, and UGT2B15 but not by UGT1A6. The mean V(max) for APAP glucuronidation by HLM was reduced by 20, 35, and 40%, respectively, in the presence of 2.5, 50, and 100 μM NFA. Mean K(m) values decreased in parallel with V(max), although the magnitude of the decrease was smaller. Taken together, the NFA inhibition data suggest that UGT1A6 is the major enzyme involved in APAP glucuronidation.

  15. Lipid Synthetic Transcription Factor SREBP-1a Activates p21WAF1/CIP1, a Universal Cyclin-Dependent Kinase Inhibitor

    OpenAIRE

    INOUE, Noriyuki; Shimano, Hitoshi; Nakakuki, Masanori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yamamoto, Takashi; Sato, Ryuichiro; Takahashi, Akimitsu; Sone, Hirohito; Yahagi, Naoya; Suzuki, Hiroaki; Toyoshima, Hideo; Yamada, Nobuhiro

    2005-01-01

    Sterol regulatory element-binding proteins (SREBPs) are membrane-bound transcription factors that regulate lipid synthetic genes. In contrast to SREBP-2, which regulates cellular cholesterol level in normal cells, SREBP-1a is highly expressed in actively growing cells and activates entire programs of genes involved in lipid synthesis such as cholesterol, fatty acids, triglycerides, and phospholipids. Previously, the physiological relevance of this potent activity of SREBP-1a has been thought ...

  16. Toward the discovery of inhibitors of babesipain-1, a Babesia bigemina cysteine protease: in vitro evaluation, homology modeling and molecular docking studies.

    Science.gov (United States)

    Pérez, Bianca; Antunes, Sandra; Gonçalves, Lídia M; Domingos, Ana; Gomes, José R B; Gomes, Paula; Teixeira, Cátia

    2013-09-01

    Babesia bigemina is a protozoan parasite that causes babesiosis, a disease with a world-wide distribution in mammals, principally affecting cattle and man. The unveiling of the genome of B. bigemina is a project in active progress that has already revealed a number of new targets with potential interest for the design of anti-babesiosis drugs. In this context, babesipain-1 has been identified as a proteolytically active enzyme whose three-dimensional structure has not been resolved yet, but which is known to be inhibited by cysteine proteases inhibitors such as E64, ALLN, leupeptin, and vinyl sulfones. In this work, we introduce (1) a homology model of babesipain-1; (2) a comparison between babesipain-1 and falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum; (3) in vitro data for babesipain-1 inhibition by HEDICINs and HECINs, previously reported as modest inhibitors of falcipain-2; and (4) the docked binding conformations of HEDICINs and HECINs in the model of babesipain-1. HEDICINs presented similar preferred binding conformations for both babesipain-1 and falcipain-2. However, in vitro bioassay shows that HEDICINs and HECINs are better inhibitors of babesipain-1 than of falcipain-2, which could be explained by observed differences between the active pockets of these proteins in silico. Results presented herein provide a valuable contribution to future computer-aided molecular design of new babesipain-1 inhibitors.

  17. Toward the discovery of inhibitors of babesipain-1, a Babesia bigemina cysteine protease: in vitro evaluation, homology modeling and molecular docking studies

    Science.gov (United States)

    Pérez, Bianca; Antunes, Sandra; Gonçalves, Lídia M.; Domingos, Ana; Gomes, José R. B.; Gomes, Paula; Teixeira, Cátia

    2013-09-01

    Babesia bigemina is a protozoan parasite that causes babesiosis, a disease with a world-wide distribution in mammals, principally affecting cattle and man. The unveiling of the genome of B. bigemina is a project in active progress that has already revealed a number of new targets with potential interest for the design of anti-babesiosis drugs. In this context, babesipain-1 has been identified as a proteolytically active enzyme whose three-dimensional structure has not been resolved yet, but which is known to be inhibited by cysteine proteases inhibitors such as E64, ALLN, leupeptin, and vinyl sulfones. In this work, we introduce (1) a homology model of babesipain-1; (2) a comparison between babesipain-1 and falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum; (3) in vitro data for babesipain-1 inhibition by HEDICINs and HECINs, previously reported as modest inhibitors of falcipain-2; and (4) the docked binding conformations of HEDICINs and HECINs in the model of babesipain-1. HEDICINs presented similar preferred binding conformations for both babesipain-1 and falcipain-2. However, in vitro bioassay shows that HEDICINs and HECINs are better inhibitors of babesipain-1 than of falcipain-2, which could be explained by observed differences between the active pockets of these proteins in silico. Results presented herein provide a valuable contribution to future computer-aided molecular design of new babesipain-1 inhibitors.

  18. Peptide inhibitor of complement C1 (PIC1, a novel suppressor of classical pathway activation: mechanistic studies and clinical potential

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    2014-08-01

    Full Text Available The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses as well as an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease (CAD, acute intravascular hemolytic transfusion reaction (AIHTR and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH, is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema (HAE, which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibit complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these Peptide Inhibitors of Complement C1 (PIC1 bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s-C1r-C1r-C1s and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of fifteen amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro as well as inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR.

  19. Inhibitors from Carob (Ceratonia siliqua L.): II. Effect on Growth Induced by Indoleacetic Acid or Gibberellins A(1), A(4), A(5), and A(7).

    Science.gov (United States)

    Corcoran, M R

    1970-10-01

    Two inhibitory fractions (B(1) and C) from extracts of immature fruit of carob were tested for their ability to inhibit the action of indoleacetic acid (IAA) in three bioassays. There was no reduction of IAA-induced reactions in the Avena curvature test, abscission of debladed coleus petioles, or growth of cucumber hypocotyls. The highest ratio of inhibitor to IAA was 10,000 times greater than the ratio necessary to inhibit by 50% the growth caused by an equivalent amount of gibberellin A(3) in pea seedlings. At the highest concentration used, fraction C alone caused curvature of Avena coleoptiles. The inhibitory fractions appeared to enhance the effect of IAA in the cucumber test.Concentrated whole extract and fractions B(1) and C were tested for reduction of growth caused by gibberellins A(1), A(4), A(5), A(7), and a neutral gibberellin-like substance from beans in the dwarf-5 maize bioassay. Each gibberellin was inhibited and required the same amount of inhibitor for a 50% reduction of the induced growth. The inhibiting effect could be completely overcome by increasing the amount of gibberellin while maintaining the same concentration of inhibitor. Fractions B(1) and C were also tested with gibberellins A(2) and A(4) in the cucumber hypocotyl test. Both inhibitory fractions reduced growth but were more effective against gibberellin A(3) than gibberellin A(4) in the assay. The ability to reduce gibberellin-induced growth and not reduce IAA-induced growth indicates that the inhibitors from carob have a greater specificity of action than that previously reported for any inhibitor.

  20. Hologram QSAR models of a series of 6-arylquinazolin-4-amine inhibitors of a new Alzheimer's disease target: dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme.

    Science.gov (United States)

    Leal, Felipe Dias; da Silva Lima, Camilo Henrique; de Alencastro, Ricardo Bicca; Castro, Helena Carla; Rodrigues, Carlos Rangel; Albuquerque, Magaly Girão

    2015-01-01

    Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A) is an enzyme directly involved in Alzheimer's disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based) models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test) of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659) presents high goodness-of-fit (R2 > 0.9), as well as high internal (q2 > 0.7) and external (R2pred > 0.5) predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors.

  1. The upstream open reading frame of cyclin-dependent kinase inhibitor 1A mRNA negatively regulates translation of the downstream main open reading frame

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Mi; Cho, Hana [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Yoon Ki, E-mail: yk-kim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CDKN1A mRNA is a bona fide NMD substrate. Black-Right-Pointing-Pointer The uORF of CDKN1A mRNA is efficiently translated. Black-Right-Pointing-Pointer Translation of downstream main ORF is negatively regulated by translation of uORF in CDKN1A mRNA. -- Abstract: The first round of translation occurs on mRNAs bound by nuclear cap-binding complex (CBC), which is composed of nuclear cap-binding protein 80 and 20 (CBP80/20). During this round of translation, aberrant mRNAs are recognized and downregulated in abundance by nonsense-mediated mRNA decay (NMD), which is one of the mRNA quality control mechanisms. Here, our microarray analysis reveals that the level of cyclin-dependent kinase inhibitor 1A (CDKN1A; also known as Waf1/p21) mRNAs increases in cells depleted of cellular NMD factors. Intriguingly, CDKN1A mRNA contains an upstream open reading frame (uORF), which is a NMD-inducing feature. Using chimeric reporter constructs, we find that the uORF of CDKN1A mRNA negatively modulates translation of the main downstream ORF. These findings provide biological insights into the possible role of NMD in diverse biological pathways mediated by CDKN1A.

  2. Effects of systemic injections of vilazodone, a selective serotonin reuptake inhibitor and serotonin 1A receptor agonist, on anxiety induced by predator stress in rats.

    Science.gov (United States)

    Adamec, Robert; Bartoszyk, Gerd D; Burton, Paul

    2004-11-03

    We examined the effect of Vilazodone, a selective serotonin reuptake inhibitor (SSRI) and serotonin 1A (5-HT(1A)) receptor agonist [Bartoszyk, G.D., Hegenbart, R., Ziegler, H., 1997. EMD 68843, a serotonin reuptake inhibitor with selective presynaptic 5-HT1A receptor agonistic properties. Eur. J. Pharmacol. 322, 147-153.], on change in affect following predator stress. Vilazodone and vehicle injection (intraperitoneal) occurred either 10 min after predator stress (prophylactic testing), or 90 min prior to behavioral testing for the effects of predator stress (therapeutic testing). Predator stress involved unprotected exposure of rats to a domestic cat. Behavioral effects of stress were evaluated with hole board, plus-maze, and acoustic startle tests 1 week after stress. Predator stress increased anxiety-like behavior in the plus-maze and elevated response to acoustic startle. In prophylactic testing, Vilazodone affected stress potentiation of startle at doses above 5 mg/kg. Vilazodone increased stress elevation of startle at 10 mg/kg. Higher doses of Vilazodone (20 and 40 mg/kg) blocked stress potentiation of startle. In contrast, Vilazodone had no effect on stress potentiation of anxiety in the plus-maze. In therapeutic testing, Vilazodone increased stress elevation of startle at all doses. In contrast, therapeutic Vilazodone had no effect on stress potentiation of anxiety in the plus-maze. Taken together, the data suggest a prophylactic potential for Vilazodone in the treatment of changes in hypervigilance following severe stress.

  3. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation.

    Directory of Open Access Journals (Sweden)

    Matteo eLambrughi

    2012-11-01

    Full Text Available Cyclin-dependent kinase inhibitors (CKIs are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs, which lack a well-defined and organized three-dimensional structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs and collapsed conformations. These structural features can be relevant to protein function in vivo.The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models of the compact conformations of the Sic1 kinase-inhibitory domain (KID by all-atom molecular-dynamics simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of hub residues and electrostatic interactions which are likely to be involved in the stabilization of globular states.

  4. Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer's?

    Science.gov (United States)

    Smith, Breland; Medda, Federico; Gokhale, Vijay; Dunckley, Travis; Hulme, Christopher

    2012-11-21

    With 24.3 million people affected in 2005 and an estimated rise to 42.3 million in 2020, dementia is currently a leading unmet medical need and costly burden on public health. Seventy percent of these cases have been attributed to Alzheimer's disease (AD), a neurodegenerative pathology whose most evident symptom is a progressive decline in cognitive functions. Dual specificity tyrosine phosphorylation regulated kinase-1A (DYRK1A) is important in neuronal development and plays a variety of functional roles within the adult central nervous system. The DYRK1A gene is located within the Down syndrome critical region (DSCR) on human chromosome 21 and current research suggests that overexpression of DYRK1A may be a significant factor leading to cognitive deficits in people with Alzheimer's disease (AD) and Down syndrome (DS). Currently, treatment options for cognitive deficiencies associated with Down syndrome, as well as Alzheimer's disease, are extremely limited and represent a major unmet therapeutic need. Small molecule inhibition of DYRK1A activity in the brain may provide an avenue for pharmaceutical intervention of mental impairment associated with AD and other neurodegenerative diseases. We herein review the current state of the art in the development of DYRK1A inhibitors.

  5. Dipeptidyl peptidase-IV inhibitors are efficient adjunct therapy in HNF1A maturity-onset diabetes of the young patients--report of two cases.

    Science.gov (United States)

    Katra, Barbara; Klupa, Tomasz; Skupien, Jan; Szopa, Magdalena; Nowak, Natalia; Borowiec, Maciej; Kozek, Elzbieta; Malecki, Maciej T

    2010-04-01

    In HNF1A maturity-onset diabetes of the young (MODY), sulfonylurea (SU) is the first-line treatment. Over time, such therapy fails, and additional treatment is required. Dipeptidyl peptidase IV (DPP-IV) inhibitors are new agents that lower blood glucose by prolonging the activity of circulating incretins. We applied DPP-IV inhibitors in two HNF1A MODY patients whose earlier therapeutic regimen included SU. Case 1, a 39-year-old woman, a carrier of the ArgR171X HNF1A mutation, with a 7-year history of diabetes was on 160 mg of gliclazide and 2,000 mg of metformin. Her initial hemoglobin A1c (HbA1c) level was 7.2%, while the mean glucose level on the CGMS((R)) (Medtronic, Northridge, CA) record was 162 mg/dL. Sitagliptine, in a dose of 100 mg/day, was added to the previous treatment. Case 2, a 62-year-old woman, a carrier of the IVS7nt-6G>A mutation, with a 41-year history of diabetes was treated with 240 mg/day gliclazide and 6 IU of insulin/day. Her initial HbA1c was 8.8%, and average glycemia reached 172 mg/dL. In her case, we started the combined therapy with 50 mg of vildagliptine twice daily. Patients were reexamined after 3 months, and HbA1c fell to 6.3% in both subjects. Similarly, significant improvement in glycemic control on CGMS was observed as the average glycemia decreased to 114 mg/dL and 134 mg/dL in Case 1 and Case 2, respectively. No episodes of hypoglycemia or other side effects were recorded. As intravenous glucose tolerance tests (IVGTTs) were performed before and after DPP-IV implementation, we were able to assess their impact on insulin secretion under fasting conditions. We saw a substantial rise in insulin level increment during IVGTT (by 9.8 and13.4 mIU/L in Case 1 and Case 2, respectively). DPP-IV inhibitors may be an effective tool of combined therapy in HNF1A MODY, and they seem to improve beta-cell function under fasting conditions.

  6. DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant effect with minimal undesirable effects in juvenile rats.

    Science.gov (United States)

    Kato, Taro; Matsumoto, Yuji; Yamamoto, Masanori; Matsumoto, Kenji; Baba, Satoko; Nakamichi, Keiko; Matsuda, Harumi; Nishimuta, Haruka; Yabuuchi, Kazuki

    2015-06-01

    Enhancement of serotonergic neurotransmission has been the main stream of treatment for patients with depression. However, delayed therapeutic onset and undesirable side effects are major drawbacks for conventional serotonin reuptake inhibitors. Here, we show that DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant efficacy with minimal undesirable effects, especially nausea and emesis in animal models. DSP-1053 bound human serotonin transporter and 5-HT1A receptor with the K i values of 1.02 ± 0.06 and 5.05 ± 1.07 nmol/L, respectively. This compound inhibited the serotonin transporter with an IC50 value of 2.74 ± 0.41 nmol/L and had an intrinsic activity for 5-HT1A receptors of 70.0 ± 6.3%. In rat microdialysis, DSP-1053, given once at 3 and 10 mg kg(-1), dose-dependently increased extracellular 5-HT levels. In the rat forced swimming test, 2-week administration of DSR-1053 (1 mg kg(-1)) significantly reduced rats immobility time after treatment, whereas paroxetine (3 and 10 mg kg(-1)) required 3-week administration to reduce rats immobility time. In olfactory bulbectomy model, 1- and 2-week administration of DSP-1053 reduced both of emotional scores and activity in the open field, whereas paroxetine required 2 weeks to show similar beneficial effects. Although single administration of DSP-1053-induced emesis and vomiting in the rat and Suncus murinus, multiple treatment with this compound, but not with paroxetine, decreased the number of vomiting episodes. These results highlight the important role of 5-HT1A receptors in both the efficacy and tolerability of DSP-1053 as a new therapeutic option for the treatment of depression.

  7. Identification, characterization, and cloning of TIP-B1, a novel protein inhibitor of tumor necrosis factor-induced lysis.

    Science.gov (United States)

    Berleth, E S; Nadadur, S; Henn, A D; Eppolito, C; Shiojiri, S; Gurtoo, H L; Ehrke, M J; Mihich, E

    1999-11-01

    Some cancer cells evade elimination by virtue of their insensitivity to agents that induce apoptosis. Conversely, the side effects of anticancer agents could be diminished if normal cells were more resistant. To further elucidate the factors that contribute to the susceptibility of a cell to apoptosis, these investigations were designed to identify proteins isolated from cells exposed to low concentrations of tumor necrosis factor (TNF) that, when incubated with normally TNF-sensitive cells, protect these cells from TNF-induced cytotoxicity. TIP-B1, a novel protein, has been identified, purified, and characterized from cytosolic extracts of TNF-treated human fibroblasts. The approximately 27 kDa pI-4.5 TIP-B1 protein is unique based on both the sequence of three internal peptides (comprising 51 amino acids) and the nucleotide sequence of the corresponding 783-bp cDNA partial clone. Western blot analyses using polyclonal antisera raised against both the purified native TIP-B1 and the approximately 14 kDa product of the cDNA partial TIP-B1 clone, as well as Northern blot analyses using the cDNA insert as a probe, indicate that TIP-B1 may belong to a family of proteins that are expressed in a number of cell lines from diverse tissues. TNF-sensitive cells, when exposed to 4-10 microg/ml concentrations of TIP-B1 prior to the addition of TNF, are completely protected from TNF-induced lysis. Furthermore, TIP-B1 protects cells from apoptotic lysis induced by TNF. Preincubation of TIP-B1 with TNF does not affect the ability of TNF to induce lysis. Moreover, TIP-B1 does not seem to interfere with the interactions between TNF and the TNF receptors, based on a preliminary flow cytometric analysis of the cellular binding of biotinylated TNF. On the basis of these characteristics, TIP-B1 is not a soluble TNF receptor, an anti-TNF antibody, nor a protease that degrades TNF; yet TIP-B1 functions when added exogenously to cells. These characteristics, its novel sequence, and its

  8. Metabolism of the EGFR tyrosin kinase inhibitor gefitinib by cytochrome P450 1A1 enzyme in EGFR-wild type non small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Alfieri Roberta R

    2011-11-01

    Full Text Available Abstract Background Gefitinib is a tyrosine kinase inhibitor (TKI of the epidermal growth factor receptor (EGFR especially effective in tumors with activating EGFR gene mutations while EGFR wild-type non small cell lung cancer (NSCLC patients at present do not benefit from this treatment. The primary site of gefitinib metabolism is the liver, nevertheless tumor cell metabolism can significantly affect treatment effectiveness. Results In this study, we investigated the intracellular metabolism of gefitinib in a panel of EGFR wild-type gefitinib-sensitive and -resistant NSCLC cell lines, assessing the role of cytochrome P450 1A1 (CYP1A1 inhibition on gefitinib efficacy. Our results indicate that there is a significant difference in drug metabolism between gefitinib-sensitive and -resistant cell lines. Unexpectedly, only sensitive cells metabolized gefitinib, producing metabolites which were detected both inside and outside the cells. As a consequence of gefitinib metabolism, the intracellular level of gefitinib was markedly reduced after 12-24 h of treatment. Consistent with this observation, RT-PCR analysis and EROD assay showed that mRNA and activity of CYP1A1 were present at significant levels and were induced by gefitinib only in sensitive cells. Gefitinib metabolism was elevated in crowded cells, stimulated by exposure to cigarette smoke extract and prevented by hypoxic condition. It is worth noting that the metabolism of gefitinib in the sensitive cells is a consequence and not the cause of drug responsiveness, indeed treatment with a CYP1A1 inhibitor increased the efficacy of the drug because it prevented the fall in intracellular gefitinib level and significantly enhanced the inhibition of EGFR autophosphorylation, MAPK and PI3K/AKT/mTOR signalling pathways and cell proliferation. Conclusion Our findings suggest that gefitinib metabolism in lung cancer cells, elicited by CYP1A1 activity, might represent an early assessment of gefitinib

  9. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Eriksson, Therese M; Holst, Sarah; Stan, Tiberiu L; Hager, Torben; Sjögren, Benita; Ogren, Sven Öve; Svenningsson, Per; Stiedl, Oliver

    2012-11-01

    This study utilized pharmacological manipulations to analyze the role of direct and indirect activation of 5-HT(7) receptors (5-HT(7)Rs) in passive avoidance learning by assessing emotional memory in male C57BL/6J mice. Additionally, 5-HT(7)R binding affinity and 5-HT(7)R-mediated protein phosphorylation of downstream signaling targets were determined. Elevation of 5-HT by the selective serotonin reuptake inhibitor (SSRI) fluoxetine had no effect by itself, but facilitated emotional memory performance when combined with the 5-HT(1A)R antagonist NAD-299. This facilitation was blocked by the selective 5-HT(7)R antagonist SB269970, revealing excitatory effects of the SSRI via 5-HT(7)Rs. The enhanced memory retention by NAD-299 was blocked by SB269970, indicating that reduced activation of 5-HT(1A)Rs results in enhanced 5-HT stimulation of 5-HT(7)Rs. The putative 5-HT(7)R agonists LP-44 when administered systemically and AS19 when administered both systemically and into the dorsal hippocampus failed to facilitate memory. This finding is consistent with the low efficacy of LP-44 and AS19 to stimulate protein phosphorylation of 5-HT(7)R-activated signaling cascades. In contrast, increasing doses of the dual 5-HT(1A)R/5-HT(7)R agonist 8-OH-DPAT impaired memory, while co-administration with NAD-299 facilitated of emotional memory in a dose-dependent manner. This facilitation was blocked by SB269970 indicating 5-HT(7)R activation by 8-OH-DPAT. Dorsohippocampal infusion of 8-OH-DPAT impaired passive avoidance retention through hippocampal 5-HT(1A)R activation, while 5-HT(7)Rs appear to facilitate memory processes in a broader cortico-limbic network and not the hippocampus alone.

  10. Aminoalkyl Derivatives of 8-Alkoxypurine-2,6-diones: Multifunctional 5-HT1A /5-HT7 Receptor Ligands and PDE Inhibitors with Antidepressant Activity.

    Science.gov (United States)

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Żmudzki, Paweł; Bucki, Adam; Kołaczkowski, Marcin; Partyka, Anna; Wesołowska, Anna; Kazek, Grzegorz; Głuch-Lutwin, Monika; Siwek, Agata; Starowicz, Gabriela; Pawłowski, Maciej

    2016-12-01

    In the search for potential psychotropic agents, a new series of 3,7-dimethyl- and 1,3-dimethyl-8-alkoxypurine-2,6-dione derivatives of arylpiperazines, perhydroisoquinolines, or tetrahydroisoquinolines with flexible alkylene spacers (5-16 and 21-32) were synthesized and evaluated for 5-HT1A /5-HT7 receptor affinities as well as PDE4B1 and PDE10A inhibitory properties. The 1-(4-(4-(2-hydroxyphenyl)piperazin-1-yl)butyl)-3,7-dimethyl-8-propoxypurine-2,6-dione (16) and 7-(2-hydroxyphenyl)piperazinylalkyl-1,3-dimethyl-8-ethoxypurine-2,6-diones (31 and 32) as potent dual 5-HT1A /5-HT7 receptor ligands with antagonistic activity produced an antidepressant-like effect in the forced swim test in mice. This effect was similar to that produced by citalopram. All the tested compounds were stronger phosphodiesterase isoenzyme inhibitors than theophylline and theobromine. The most potent compounds, 15 and 16, were characterized by 51 and 52% inhibition, respectively, of PDE4B1 activity at a concentration of 10(-5)  M. Concerning the above findings, it may be assumed that the inhibition of PDE4B1 may impact on the signal strength and specificity resulting from antagonism toward the 5-HT1 and 5-HT7 receptors, especially in the case of compounds 15 and 16. This dual receptor and enzyme binding mode was analyzed and explained via molecular modeling studies.

  11. In vitro and in vivo anti-uveal melanoma activity of JSL-1, a novel HDAC inhibitor.

    Science.gov (United States)

    Wang, Yun; Liu, Maoxing; Jin, Yanli; Jiang, Sheng; Pan, Jingxuan

    2017-08-01

    Uveal melanoma (UM) is the most common intraocular malignant neoplasm in adults. Despite the availability of enucleation, radiation and chemotherapy, the prognosis of patients with metastasis remains poor. Therefore, novel effective therapies for patients with metastatic UM are urgently needed. In the present study, we demonstrated that JSL-1, a novel HDAC inhibitor, effectively inhibited the proliferation. JSL-1 induced apoptosis with increased expression of proapoptotic BH3-only protein BIM in UM cells. JSL-1 suppressed migration and invasion of UM cells with MMP-2 decreased. Furthermore, JSL-1 blocked the canonical Wnt/β-catenin pathway, impaired self-renewal capacity and decreased percentage of ALDH(+) cells, thereby reflecting elimination of UM cancer stem-like cells (CSCs) which are believed seeds of metastasis. Importantly, JSL-1 potently inhibited the growth of uveal melanoma xenograft in NOD-SCID mice. These results suggested that JSL-1 may be a promising therapeutic agent for UM. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of γH2AX foci.

    Science.gov (United States)

    Abramova, Maria V; Svetlikova, Svetlana B; Kukushkin, Alexander N; Aksenov, Nikolai D; Pospelova, Tatiana V; Pospelov, Valery A

    2011-12-15

    HDAC inhibitors (HDACi) suppress the growth of tumor cells due to induction of cell cycle arrest, senescence or apoptosis. Recent data demonstrate that HDACi can interfere with DNA Damage Response (DDR) thereby sensitizing the cells to DNA damaging agents. Here, we show that HDACi sodium butyrate (NaBut) potentiates the formation of γH2AX foci predominantly in S-phase E1A+Ras cells. Accumulation of γH2AX foci sensitizes the cells toward such DNA damaging agents as irradiation (IR) and adriamycin. In fact, NaBut potentiates the persistence of γH2AX foci induced by genotoxic agents. The synergizing effects depend on DNA damaging factors and on the order of NaBut treatment. Indeed, NaBut treatment for 24 h leads to an accumulation of G 1-phase cells and a lack of S-phase cells, therefore, adriamycin, a powerful S-phase-specific inhibitor, when added to NaBut-treated cells, is unable to substantially add γH2AX foci. In contrast, IR produces both single- and double-strand DNA breaks at any stage of the cell cycle and was shown to increase γH2AX foci in NaBut-treated cells. Further, a lifetime of IR-induced γH2AX foci depends on the subsequent presence of HDACi. Correspondingly, NaBut withdrawal leads to the extinction of IR-induced γH2AX foci. This necessitates HDACi to hold the IR-induced γH2AX foci unrepaired. However, the IR-induced γH2AX foci persist after long-term NaBut treatment (72 h) even after washing the drug. Thus, although signaling pathways regulating H2AX phosphorylation in NaBut-treated cells remain to be investigated, the obtained results show that NaBut potentiates effects of DNA damaging agents by facilitating formation and persistence of γH2AX foci.

  13. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat.

    Science.gov (United States)

    Yuan, Quan; Bleiziffer, Oliver; Boos, Anja M; Sun, Jiaming; Brandl, Andreas; Beier, Justus P; Arkudas, Andreas; Schmitz, Marweh; Kneser, Ulrich; Horch, Raymund E

    2014-12-28

    The Arterovenous Loop (AV Loop) model is a vascularization model in tissue engineering research, which is capable of generating a three dimensional in vivo unit with cells as well as the supporting vessels within an isolation chmaber. In our previous studies the AV loop in the isolation chamber was discovered to undergo hypoxia, characterized by Hypoxia Inducible Factor (HIF) up-regulation. The vascularization followed the increase of HIF-α temporally, while it was spatially positively correlated with the HIF-α level, as well. This study aims to prove that HIF-1a up-regulation is the stimulus for vascularization in the AV loop model. The AV loop model in rats was created by interposing a femoral vein graft into the distal ends of the contralateral femoral artery and vein, and the loop was embeded in fibrin matrix and fixed in isolation chamber. PHD (prolyl hydroxylases) inhibitor DMOG (Dimethyloxallyl Glycine) was applied systemically in the rats in 40 mg/KG at day 0 and day 3 (DMOG-1), or in 15 mg/KG at day 8, day10 and day12 (DMOG-2). Two weeks later the specimens were explanted and underwent morphological and molecular evaluations. Compared to the control group, in the DMOG-2 group the HIF-1α positive rate was siginicantly raised as shown in immunohistochemistry staining, accompanied with a smaller cross section area and greater vessel density, and a HIF-1α accumulation in the kidney. The mRNA of HIF-1α and its angiogenic target gene all increased in different extends. Ki67 IHC demostrate more positive cells. There were no significant change in the DMOG-1 group. By applying DMOG systemically, HIF-1α was up-regulated at the protein level and at the mRNA level, acompanied with angiogenic target gene up-regulateion, and the vascularization was promoted correspondingly. DMOG given at lower dosage constantly after one week tends to have better effect than the group given at larger dosage in the early stage in this model, and promotes cell proliferation, as

  14. Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1, a Potential Drug Target in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Thavy Long

    2016-01-01

    Full Text Available Schistosoma flatworm parasites cause schistosomiasis, a chronic and debilitating disease of poverty in developing countries. Praziquantel is employed for treatment and disease control. However, its efficacy spectrum is incomplete (less active or inactive against immature stages of the parasite and there is a concern of drug resistance. Thus, there is a need to identify new drugs and drug targets.We show that RNA interference (RNAi of the Schistosoma mansoni ortholog of human polo-like kinase (huPLK1 elicits a deleterious phenotypic alteration in post-infective larvae (schistosomula or somules. Phenotypic screening and analysis of schistosomula and adult S. mansoni with small molecule inhibitors of huPLK1 identified a number of potent anti-schistosomals. Among these was a GlaxoSmithKline (GSK benzimidazole thiophene inhibitor that has completed Phase I clinical trials for treatment of solid tumor malignancies. We then obtained GSKs Published Kinase Inhibitor Sets (PKIS 1 and 2, and phenotypically screened an expanded series of 38 benzimidazole thiophene PLK1 inhibitors. Computational analysis of controls and PLK1 inhibitor-treated populations of somules demonstrated a distinctive phenotype distribution. Using principal component analysis (PCA, the phenotypes exhibited by these populations were mapped, visualized and analyzed through projection to a low-dimensional space. The phenotype distribution was found to have a distinct shape and topology, which could be elicited using cluster analysis. A structure-activity relationship (SAR was identified for the benzimidazole thiophenes that held for both somules and adult parasites. The most potent inhibitors produced marked phenotypic alterations at 1-2 μM within 1 h. Among these were compounds previously characterized as potent inhibitors of huPLK1 in cell assays.The reverse genetic and chemical SAR data support a continued investigation of SmPLK1 as a possible drug target and/or the prosecution of

  15. Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens.

    Science.gov (United States)

    Cardoso, Fernanda C; Dekan, Zoltan; Rosengren, K Johan; Erickson, Andelain; Vetter, Irina; Deuis, Jennifer R; Herzig, Volker; Alewood, Paul F; King, Glenn F; Lewis, Richard J

    2015-08-01

    Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.

  16. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom.

    Science.gov (United States)

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M; Neves-Ferreira, Ana G C; Sánchez, Elda E; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2016-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1nM). Aprotinin (2nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05nM) was inhibited by 67% following incubation with TP1 (0.1nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2nM) acts like aprotinin (0.4nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed.

  17. Distribution of natural resistance to NS3 protease inhibitors in hepatitis C genotype 1a separated into clades 1 and 2 and in genotype 1b of HIV-infected patients.

    Science.gov (United States)

    Bagaglio, S; Uberti-Foppa, C; Messina, E; Merli, M; Hasson, H; Andolina, A; Galli, A; Lazzarin, A; Morsica, G

    2016-04-01

    Naturally occurring resistance-associated variants (RAVs) within the protease domain of hepatitis C virus (HCV) genotype (G) 1a separated into clades 1 and 2, and G1b were investigated in 59 HIV/HCV coinfected patients. RAVs were detected in 10/23 G1a/clade 1 and 1/19 G1b (p 0.0059). A similar frequency of RAVs was found when comparing G1a/clade 2 and G1b (p 0.1672). A cross-resistance to the macrocyclic compounds simeprevir and paritaprevir was detected in two G1a/clade 2 and 1 G1b sequences and none of G1a/clade 1 sequences. The simultaneous characterization of subtype and natural RAVs by population analysis of the NS3 domain by may add important information for anti-HCV treatment strategies including protease inhibitors.

  18. Hologram QSAR Models of a Series of 6-Arylquinazolin-4-Amine Inhibitors of a New Alzheimer’s Disease Target: Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase-1A Enzyme

    Directory of Open Access Journals (Sweden)

    Felipe Dias Leal

    2015-03-01

    Full Text Available Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A is an enzyme directly involved in Alzheimer’s disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659 presents high goodness-of-fit (R2 > 0.9, as well as high internal (q2 > 0.7 and external (R2pred > 0.5 predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors.

  19. Biologics beyond TNF-α inhibitors and the effect of targeting the homologues TL1A-DR3 pathway in chronic inflammatory disorders

    DEFF Research Database (Denmark)

    Tougaard, Peter; Zervides, Kristoffer Alexander; Skov, Søren

    2016-01-01

    not respond to anti-TNF-α treatment and one possible explanation may be the heterogeneity of chronic inflammatory diseases and a dominance of other significant TNF family members. Indeed, polymorphisms in the TNF family member, TL1A gene, is associated with the development of IBD and increased serum...... concentrations of TL1A has been demonstrated in patients with various chronic inflammatory disorders. Here, we describe the current knowledge of TL1As immunobiology and present results from human disease, animal models, and pre-clinical intervention studies that point toward development of anti-TL1A therapy...

  20. Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid (STO-609).

    Science.gov (United States)

    Monteiro, Patricia; Gilot, David; Langouet, Sophie; Fardel, Olivier

    2008-12-01

    This study was designed to analyze the effects of the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-609 (7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid) toward the aryl hydrocarbon receptor (AhR) pathway because Ca2+/calmodulin-dependent protein kinase (CaMK) Ialpha, known as a downstream CaMKK effector, has been recently shown to contribute to the AhR cascade. STO-609 failed to alter up-regulation of the AhR target CYP1A1 in response to the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. STO-609, used at a 25 muM concentration known to fully inhibit CaMKK activity, was surprisingly found to markedly induce CYP1A1 expression and activity by itself in MCF-7 cells; it similarly up-regulated various other AhR target genes in human macrophages. STO-609-related CYP1A1 induction was prevented by chemical inhibition or small interfering RNA-mediated knockdown expression of AhR. Moreover, STO-609 was demonstrated to physically interact with the ligand-binding domain of AhR, as assessed by TCDD binding competition assay, and to induce AhR translocation to the nucleus. As already reported for AhR agonists, STO-609 triggered the increase of [Ca2+](i) and activation of CaMKIalpha, whose inhibition through the use of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester or the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), respectively, prevented STO-609-mediated CYP1A1 activity induction. Taken together, these results demonstrate that the CaMKK inhibitor STO-609 can act as an AhR ligand and, in this way, fully activates the Ca2+/CaMKIalpha/AhR cascade. Such data, therefore, make unlikely any contribution of CaMKK activity to the AhR pathway and, moreover, suggest that caution may be required when using STO-609 as a specific inhibitor of CaMKKs.

  1. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping

    2013-01-01

    -FL) recombinants relying only on the JFH1 NS3 helicase, NS5B, and the 3' untranslated region. With identified adaptive mutations, semi-FL recombinants of genotypes(isolates) 1a(TN) and 3a(S52) produced supernatant infectivity titers of ~4 log(10) focus-forming units/ml in Huh7.5 cells. Genotype 1a(TN) adaptive...

  2. JANEX-1, a JAK3 inhibitor, protects pancreatic islets from cytokine toxicity through downregulation of NF-{kappa}B activation and the JAK/STAT pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Na; Kim, Eun-Kyung; Song, Mi-Young [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Choi, Ha-Na; Moon, Woo Sung [Department of Pathology, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sung-Joo [Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Park, Jin-Woo [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kwon, Kang-Beom, E-mail: desson@wonkwang.ac.kr [Department of Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Park, Byung-Hyun, E-mail: bhpark@chonbuk.ac.kr [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2009-07-15

    JANEX-1/WHI-P131, a selective Janus kinase 3 (JAK3) inhibitor, has been shown to delay the onset of diabetes in the NOD mouse model. However, the molecular mechanism by which JANEX-1 protects pancreatic {beta}-cells is unknown. In the current study, we investigated the role of JANEX-1 on interleukin (IL)-1{beta} and interferon (IFN)-{gamma}-induced {beta}-cell damage using isolated islets. JANEX-1-pretreated islets showed resistance to cytokine toxicity, namely suppressed nitric oxide (NO) production, reduced inducible form of NO synthase (iNOS) expression, and decreased islet destruction. The molecular mechanism by which JANEX-1 inhibits iNOS expression was mediated through suppression of the nuclear factor {kappa}B (NF-{kappa}B) and JAK/signal transducer and activator of transcription (STAT) pathways. Islets treated with the cytokines downregulated the protein levels of suppressor of cytokine signaling (SOCS)-1 and SOCS-3, but pretreatment with JANEX-1 attenuated these decreases. Additionally, islets from JAK3{sup -/-} mice were more resistant to cytokine toxicity than islets from control mice. These results demonstrate that JANEX-1 protects {beta}-cells from cytokine toxicity through suppression of the NF-{kappa}B and JAK/STAT pathways and upregulation of SOCS proteins, suggesting that JANEX-1 may be used to preserve functional {beta}-cell mass.

  3. [In vivo evaluation of the metabolic ratio of CYP2C9 and CYP1A2 drug markers after administration of afobazole in comparison to standard inducers and inhibitors of cytochromes].

    Science.gov (United States)

    Novitskaia, Ia G; Gribakina, O G; Kolyvanov, G B; Zherdev, V P; Smirnov, V V; Seredenin, S B

    2013-01-01

    The effect of subchronic peroral administration in effective doses of afobazole (5 mg/kg), and cytochrome P450 inductors (rifampicin, 13.4 mg/kg; phenytoin, 10.4 mg/kg) and inhibitors (fluconazole, 35.7 mg/kg; ciprofloxacin, 44.0 mg/kg) on the metabolic ratio (MR) of drugs-markers of CYP2C9 and CYP1A2 activity was studied in rats. Afobazole did not change the MR of compounds metabolized by the P450 isoforms studied. After peroral administration of standard P450 inductors and inhibitors, statistically significant bidirectional effects were identified, which demonstrated the expedience of administering a complex of selected compounds, markers, and CYP2C9 and CYP1A2 activity modificators for comparative evaluation of the effects of new drugs in rats. It is recommended to evaluate the activity of CYP1A2 by determining the MR for one of two caffeine metabolites, paraxanthine or theobromine, and the activity of CYP2C9 by determining the MR of metabolite Exp-3174 to losartan.

  4. DIMP53-1: A novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties.

    Science.gov (United States)

    Soares, Joana; Espadinha, Margarida; Raimundo, Liliana; Ramos, Helena; Gomes, Ana Sara; Gomes, Sara; Loureiro, Joana B; Inga, Alberto; Reis, Flávio; Gomes, Célia; Santos, Maria M M; Saraiva, Lucília

    2017-03-10

    The transcription factor p53 plays a crucial role in cancer development and dissemination, and thus p53-targeted therapies are amongst the most encouraging anticancer strategies. In human cancers with wild-type (wt) p53, its inactivation by interaction with murine double minute (MDM)2 and MDMX is a common event. Simultaneous inhibition of the p53 interaction with both MDMs is crucial to restore the tumor suppressor activity of p53. Here we describe the synthesis of the new tryptophanol-derived oxazoloisoindolinone DIMP53-1 and identify its activity as a dual inhibitor of the p53-MDM2/X interactions using a yeast-based assay. DIMP53-1 caused growth inhibition, mediated by p53 stabilization and upregulation of p53 transcriptional targets involved in cell cycle arrest and apoptosis, in wt p53-expressing tumor cells, including MDM2- or MDMX-overexpressing cells. Importantly, DIMP53-1 abolishes the p53-MDM2/X interactions by binding to p53, in human colon adenocarcinoma HCT116 cells. DIMP53-1 also inhibited the migration and invasion of HCT116 cells, and the migration and tube formation of HMVEC-D endothelial cells. Notably, in human tumor xenograft mice models, DIMP53-1 showed a p53-dependent antitumor activity through induction of apoptosis and inhibition of proliferation and angiogenesis. Finally, no genotoxicity or undesirable toxic effects were observed with DIMP53-1. In conclusion, DIMP53-1 is a novel p53 activator, which potentially binds to p53 inhibiting its interaction with MDM2 and MDMX. Although target-directed, DIMP53-1 has a multifunctional activity, targeting major hallmarks of cancer through its anti-proliferative, pro-apoptotic, anti-angiogenic, anti-invasive and anti-migratory properties. DIMP53-1 is a promising anticancer drug candidate and an encouraging starting point to develop improved derivatives for clinical application.

  5. Identification of Potent and Selective CYP1A1 Inhibitors via Combined Ligand and Structure-Based Virtual Screening and Their in Vitro Validation in Sacchrosomes and Live Human Cells.

    Science.gov (United States)

    Joshi, Prashant; McCann, Glen J P; Sonawane, Vinay R; Vishwakarma, Ram A; Chaudhuri, Bhabatosh; Bharate, Sandip B

    2017-06-26

    Target structure-guided virtual screening (VS) is a versatile, powerful, and inexpensive alternative to experimental high-throughput screening (HTS). To discover potent CYP1A1 enzyme inhibitors for cancer chemoprevention, a commercial library of 50 000 small molecules was utilized for VS guided by both ligand and structure-based strategies. For experimental validation, 300 ligands were proposed based on combined analysis of fitness scores from ligand based e-pharmacophore screening and docking score, prime MMGB/SA binding affinity and interaction pattern analysis from structure-based VS. These 300 compounds were screened, at 10 μM concentration, for in vitro inhibition of CYP1A1-Sacchrosomes (yeast-derived microsomal enzyme) in the ethoxyresorufin-O-de-ethylase assay. Thirty-two compounds displayed >50% inhibition of CYP1A1 enzyme activity at 10 μM. 2-Phenylimidazo-[1,2-a]quinoline (5121780, 119) was found to be the most potent with 97% inhibition. It also inhibited ∼95% activity of CYP1B1 and CYP1A2, the other two CYP1 enzymes. The compound 5121780 (119) showed high selectivity toward inhibition of CYP1 enzymes with respect to CYP2 and CYP3 enzymes (i.e., there was no detectable inhibition of CYP2D6/CYP2C9/CYP2C19 and CYP3A4 at 10 μM). It was further investigated in live CYP-expressing human cell system, which confirmed that compound 5121780 (119) potently inhibited CYP1A1, CYP1A2, CYP1B1 enzymes with IC50 values of 269, 30, and 56 nM, respectively. Like in Sacchrosomes, inhibition of CYP2D6/CYP2C9/CYP2C19 and CYP3A4 enzymes, expressed within live human cells, could hardly be detected at 10 μM. The compound 119 rescued CYP1A1 overexpressing HEK293 cells from CYP1A1 mediated benzo[a]pyrene (B[a]P) toxicity and also overcame cisplatin resistance in CYP1B1 overexpressing HEK293 cells. Molecular dynamics simulations of 5121780 (119) with CYP1 enzymes was performed to understand the interaction pattern to CYP isoforms. Results indicate that VS can successfully

  6. Structure of N-(3,4-Dimethoxyphenylpyrido[3′,2′:4,5]-thieno[3,2-d]pyrimidin-4-amine, a New Inhibitor of CLK1 and DYRK1A Kinases

    Directory of Open Access Journals (Sweden)

    Jean Guillon

    2013-01-01

    Full Text Available The complete crystal structure of N-(3,4-dimethoxyphenylpyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-amine, synthesized via a Dimroth rearrangement and designed as new inhibitor of CLK1 and DYRK1A kinases, was established by a single-crystal X-ray diffraction. The crystal is orthorhombic, space group Pca21; a = 13.1593  (9, b = 13.9823  (10, c=8.5403  (7 Å, α=β=γ=90°, V = 1571.4  (2  Å3, and Z=4, C17H14N4O2S. Solid-state data could be used to enlighten the biological mechanism of action.

  7. Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mariko Abe

    Full Text Available Internal tandem duplication (ITD mutations in the Fms-related tyrosine kinase 3 (FLT3 gene (FLT3-ITD are associated with poor prognosis in patients with acute myeloid leukemia (AML. Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21 and pre-B cell leukemia transcription factor 1 (Pbx1 that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression.

  8. 酶抑制剂对V79-hCYP2E1-SULT1A1细胞酶依赖性化学诱变的影响%Effects of enzyme inhibitors on enzyme-dependent and chemical-induced mutagenesis in V79-hCYP2E1-hSULT1A1 cells

    Institute of Scientific and Technical Information of China (English)

    刘云岗; 胡克歧

    2011-01-01

    0bjective: V79-hCYP2E1-hSULT1A1 ,a genetically engineered Chinese hamster V79 cell line expressing human CYP2E1 and human sulfotransferase(SULT) 1A1 ,demonstrates mutagenic response to promutagens requiring metabolic activation by either expressed enzyme. For the purpose of investigating the effect of either enzyme alone, it is highly necessary to establish a test model wherein either of the enzymes is specifically inhibited. Methods:Using the forward mutation at Hprt locus as the end point to observe, N-nitrosodimethylamine (NDMA) and 2-nitropropane (2-NP) as CYP2E1- and SULT1A1-dependent promutagen.the effects of CYP inhibitors,trans-1,2-dichloroethylene (DCE) and 1-aminobenzotriazole (ABT),and that of SULT1 inhibitors,quercetin and pentachlorophenol (PCP) on each promutagen-induced mutagenic response were observed. Results:ABT prohibited NDMA-induced mutagenic activity by 99% with the action of 2-NP unaffected,while DCE reduced it only by 55% and simultaneously potentiated 2-NP-induced cytotoxicity. Quercetin and PCP reduced 2-NP-induced mutagenic activity by 63% and 98%, with the action of NDMA unaffected. Conclusion:Specifically and completely, ABT and PCP are capable of prohibiting CYP2El-and SULT1A1 -dependent mutagenic response, respectively, which is a test model of reliable value for investigating metabolic activation of genotoxicants.%目的:V79-hCYP2E1-hSULT1A1是一个表达人细胞色素P450(CYP)2E1和硫酸基转移酶(Sulfotransferase,SULT) 1A1的重组中国地鼠V79[Chinese hamster lung (V79)cells]细胞系,它对于需有关代谢酶活化的间接诱变剂有基因突变反应;为观察单个酶的作用,需要建立对细胞中任一酶特异抑制的模型.方法:以细胞Hprt位点的正向突变为试验终点,N-二甲基亚硝胺(N-Nitrosodimethylamine,NDMA)和2-硝基丙烷(2-Nitropropane,2-NP)为依赖CYP2E1和SULT1A1的间接诱变剂,观察CYP抑制剂反式二氯乙烯(Trans-1,2-dichloroethylene,DCE)和1-氨基苯并三唑(1

  9. RUBY-1: a randomized, double-blind, placebo-controlled trial of the safety and tolerability of the novel oral factor Xa inhibitor darexaban (YM150) following acute coronary syndrome

    DEFF Research Database (Denmark)

    Steg, Ph Gabriel; Mehta, Shamir R; Jukema, J Wouter

    2011-01-01

    To establish the safety, tolerability and most promising regimen of darexaban (YM150), a novel, oral, direct factor Xa inhibitor, for prevention of ischaemic events in acute coronary syndrome (ACS)....

  10. Quantitative Structure-Activity Relationship of Inhibitors of Cytochrome P450 1A2 Based on Density Functional Theory%基于密度泛函理论的细胞色素P450 1A2抑制剂的定量构效关系

    Institute of Scientific and Technical Information of China (English)

    易忠胜; 叶廷文; 刘红艳; 莫凌云

    2013-01-01

    In order to establish the QSAR model of inhibitors of cytochrome P450 1A2,19 quantum chemical and thermodynamics parameters of 50 compounds,which include naphthalene,lactone and quinoline derivatives,are calculated at B3LYP/6-31G* level by density funcional theory method with Gaussian 09 program.Using VSMP (variable selection and modeling based on prediction) technique to select the optimal subset,a two-descriptor QSAR model is constructed.The results of modeling show that there is a strong linear relationship between two descriptors (energies of the highest occupied molecular orbital,EHOMO and the molecular volume,Vm) and the inhibited activity of 50 compounds (correlation coefficient of model,r2 =0.907 0),and high inner predicted ability (correlation coefficient leave-multiple-out cross validation,q2 =0.751 7).Meanwhile,50 compounds are divided into odd set and even set,and two-descriptor QSAR model are constructed with external validated by each other.Then,the y-Randomization validation is performed within the models of all compounds set,odd set and even set.The models of three sets built by EHOMO and Vm have stability and high prediction.%在B3LYP/6-31G*水平上采用高斯09全优化计算了50个P450 1A2抑制剂的量子化学参数,应用基于预测的模型变量选择方法(VSMP)选择描述子最佳子集,建立了最高轨道占有能(EHOMO)和分子体积(k)与萘、内酯衍生物及其他化合物对细胞色素氧化酶P450 1A2抑制剂的两变量线性QSAR模型,结果表明:所选的2个分子结构描述符与50个抑制剂的活性之间具有很强的线性关系(相关系数r2=0.907 0)和内部预测能力(留多法交叉验证相关系数q2 =0.751 7).同时,将50个化合物分成奇数集和偶数集各自进行筛选建模,并彼此进行外部预测,对全部样本集、奇数集和偶数集样本模型进行了y-Randomization检验,结果表明描述符EHOMO和Vm建立的模型均非常稳定并具有很高的预测能力.

  11. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development.

    Science.gov (United States)

    Kaur, Gagandeep; Cholia, Ravi P; Mantha, Anil K; Kumar, Raj

    2014-12-26

    The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.

  12. PARP inhibitors.

    Science.gov (United States)

    Anwar, Maheen; Aslam, Hafiz Muhammad; Anwar, Shahzad

    2015-01-01

    Poly (ADP-ribose) polymerases, abbreviated as PARPs, are a group of familiar proteins that play a central role in DNA repair employing the base excision repair (BER) pathway. There about 17 proteins in this family out of which the primary nuclear PARPs are PARP-1, PARP-2, PARP-3, and tankyrases 1 and 2 (PARP-5a and -5b) .The PARP family members are known to engage in a wide range of cellular activities, for example, DNA repair, transcription, cellular signaling, cell cycle regulation and mitosis amongst others. The chief functional units of PARP-1 are an amino terminal DNA binding domain (DBD), a central auto modification domain (AMD), and a carboxyl-terminal catalytic domain (CD). PARP inhibitors are currently undergoing clinical trials as targeted treatment modalities of breast, uterine, colorectal and ovarian cancer. This review summarizes current insights into the mechanism of action of PARP inhibitors, its recent clinical trials, and potential next steps in the evaluation of this promising class of anti-cancer drugs.

  13. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase.

    Science.gov (United States)

    Bago, Ruzica; Malik, Nazma; Munson, Michael J; Prescott, Alan R; Davies, Paul; Sommer, Eeva; Shpiro, Natalia; Ward, Richard; Cross, Darren; Ganley, Ian G; Alessi, Dario R

    2014-11-01

    The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the Ptd

  14. Is the Inhibition of Dipeptidyl Peptidase-4 (DDP-4) Enzyme Route Dependent and/or Driven by High Peak Concentration?- Seeking Answers with ZYDPLA1, a Novel Long Acting DPP-4 Inhibitor, in a Rodent Model.

    Science.gov (United States)

    Patel, Harilal; Joharapurkar, Amit A; Bahekar, Rajesh; Patel, Prakash; Kshirsagar, Samadhan G; Modi, Nirav; Ghoghari, Ashok; Patel, Vishal J; Jain, Mukul R; Srinivas, Nuggehally R; Patel, Pankaj R; Desai, Ranjit C

    2017-04-01

    ZYDPLA1 is a long acting enzyme dipeptidyl peptidase-4 (DPP-4) inhibitor. The comparative effect of DPP-4 inhibition after intravenous (IV) and oral administration of ZYDPLA1 in a rat model was evaluated to answer the question of route dependency and/or the need of high plasma levels of ZYDPLA1. The study was conducted using parallel design in male Wistar rats for IV/oral route (n=9 and 6, for IV and oral respectively). A single 30 mg/kg dose of ZYDPLA1 was administered. Plasma samples were analysed for ZYDPLA1 concentration and DPP-4 inhibition. Pharmacokinetic analysis was carried out to assess peak concentration, area under the concentration-time curve, total body clearance, elimination half-life, and mean residence time. The PK/PD correlation was performed using standard sigmoidal Emax modelling to derive; maximum effect (Emax) and concentration to exert 50% Emax effect (EC50). ZYDPLA1 showed rapid absorption, high volume of distribution, low clearance, and complete oral bioavailability. The Emax derived after both routes and corresponding PK/PD profile showed comparable DDP-4 inhibition. The EC50 for IV (0.021 µg/mL) was comparable to the oral route (0.019 µg/mL). ZYDPLA1 showed full DPP-4 inhibition without regard to the route of administration. Higher systemic peak levels showed no bearing on the DDP-4 inhibition. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of antiatherogenic activity of hydroxymethylglutaryl-coenzyme A reductase inhibitor Atorvastatin and hepatic LRP1 expression.

    Science.gov (United States)

    Moon, Jae Hoon; Kang, Saet Byol; Park, Jong Suk; Lee, Byung Wan; Kang, Eun Seok; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo

    2011-07-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) binds to apolipoprotein E and serves as a receptor for remnant lipoproteins in the liver, thus playing an important role in clearing these atherogenic particles. In this study, we investigated the effect of atorvastatin, a hydroxymethylglutaryl-coenzyme A reductase inhibitor, on hepatic LRP1 expression. We used HepG2 and Hep3B cells for in vitro study, and Otsuka Long-Evans Tokushima fatty and Sprague-Dawley rats for in vivo study. We used relatively high pharmacologic dose of atorvastatin in this study (in vitro, 0.5 μmol/L in culture media, for 48 hours; in vivo, 20 mg/[kg d], for 6 weeks). Atorvastatin increased LRP1 and low-density lipoprotein (LDL) receptor expression in HepG2 and Hep3B cells and induced hepatic LRP1 and LDL receptor expression in chow diet-fed Sprague-Dawley rats and high-fat diet-fed Otsuka Long-Evans Tokushima fatty rats. Atorvastatin decreased intracellular sterol level and increased the amount of the nuclear form of sterol response element-binding protein-2 (SREBP-2) in both HepG2 and Hep3B cells as well as in two animal models. Treatment of HepG2 cells with LDL increased intracellular sterol level and reduced LRP1, LDL receptor, and SREBP-2. When SREBP-2 in HepG2 cells was knocked down by small interfering RNA, the induction of LRP1 expression by atorvastatin did not take place. In conclusion, up-regulation of hepatic LRP1 might be a novel mechanism by which statin treatment decreases remnant lipoproteins. In addition, SREBP-2 acts as a mediator of atorvastatin-induced up-regulation of hepatic LRP1. Future studies using standard doses of atorvastatin in humans are needed to elucidate clinical relevance of these findings.

  16. Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A.

    Science.gov (United States)

    Pulvino, Mary; Liang, Yue; Oleksyn, David; DeRan, Michael; Van Pelt, Elise; Shapiro, Joel; Sanz, Ignacio; Chen, Luojing; Zhao, Jiyong

    2012-08-23

    Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma, remains a partially curable disease. Genetic alterations affecting components of NF-κB signaling pathways occur frequently in DLBCL. Almost all activated B cell-like (ABC) DLBCL, which is the least curable group among the 3 major subtypes of this malignancy, and a substantial fraction of germinal center B cell-like (GCB) DLBCL exhibit constitutive NF-κB pathway activity. It has been demonstrated that ABC-DLBCL cells require such activity for proliferation and survival. Therefore, inhibition of NF-κB activation in DLBCL may provide an efficient and targeted therapy. In screening for small-molecule compounds that may inhibit NF-κB activation in DLBCL cells, we identified a compound, NSC697923, which inhibits the activity of the ubiquitin-conjugating (E2) enzyme Ubc13-Uev1A. NSC697923 impedes the formation of the Ubc13 and ubiquitin thioester conjugate and suppresses constitutive NF-κB activity in ABC-DLBCL cells. Importantly, NSC697923 inhibits the proliferation and survival of ABC-DLBCL cells and GCB-DLBCL cells, suggesting the Ubc13-Uev1A may be crucial for DLBCL growth. Consistently, knockdown of Ubc13 expression also inhibited DLBCL cell survival. The results of the present study indicate that Ubc13-Uev1A may represent a potential therapeutic target in DLBCL. In addition, compound NSC697923 may be exploited for the development of DLBCL therapeutic agents.

  17. SB-649915-B, a novel 5-HT1A/B autoreceptor antagonist and serotonin reuptake inhibitor, is anxiolytic and displays fast onset activity in the rat high light social interaction test.

    Science.gov (United States)

    Starr, Kathryn R; Price, Gary W; Watson, Jeannette M; Atkinson, Peter J; Arban, Roberto; Melotto, Sergio; Dawson, Lee A; Hagan, Jim J; Upton, Neil; Duxon, Mark S

    2007-10-01

    Preclinically, the combination of an SSRI and 5-HT autoreceptor antagonist has been shown to reduce the time to onset of anxiolytic activity compared to an SSRI alone. In accordance with this, clinical data suggest the coadministration of an SSRI and (+/-) pindolol can decrease the time to onset of anxiolytic/antidepressant activity. Thus, the dual-acting novel SSRI and 5-HT(1A/B) receptor antagonist, SB-649915-B, has been assessed in acute and chronic preclinical models of anxiolysis. SB-649915-B (0.1-1.0 mg/kg, i.p.) significantly reduced ultrasonic vocalization in male rat pups separated from their mothers (ED(50) of 0.17 mg/kg). In the marmoset human threat test SB-649915-B (3.0 and 10 mg/kg, s.c.) significantly reduced the number of postures with no effect on locomotion. In the rat high light social interaction (SI), SB-649915-B (1.0-7.5 mg/kg, t.i.d.) and paroxetine (3.0 mg/kg, once daily) were orally administered for 4, 7, and 21 days. Ex vivo inhibition of [(3)H]5-HT uptake was also measured following SI. SB-649915-B and paroxetine had no effect on SI after 4 days. In contrast to paroxetine, SB-649915-B (1.0 and 3.0 mg/kg, p.o., t.i.d.) significantly (p<0.05) increased SI time with no effect on locomotion, indicative of an anxiolytic-like profile on day 7. Anxiolysis was maintained after chronic (21 days) administration by which time paroxetine also increased SI significantly. 5-HT uptake was inhibited by SB-649915-B at all time points to a similar magnitude as that seen with paroxetine. In conclusion, SB-649915-B is acutely anxiolytic and reduces the latency to onset of anxiolytic behavior compared to paroxetine in the SI model.

  18. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  19. Antidepressant-like effects of YL-0919, a novel dual-acting antidepressant with 5-HT1A receptor agonist and serotonin reuptake inhibitor%5-HT1A受体激动和5-HT重摄取抑制双靶标新药YL-0919抗抑郁作用的药效学评价

    Institute of Scientific and Technical Information of China (English)

    陈红霞; 徐晓丹; 薛瑞; 袁莉; 杨日芳; 李云峰

    2011-01-01

    目的 评价兼有5-HT1A受体激动和5-HT重摄取抑制双靶标化合物YL-0919的抗抑郁作用,并在靶标水平探讨其作用机制.方法和结果 在小鼠悬尾和小鼠强迫游泳实验中,YL-0919(1.25,2.5,5 mg/kg,ig)能够显著地缩短小鼠悬尾不动时间和游泳不动时间,5-HT1A受体拮抗剂WAY100635(0.3 mg/kg,sc)能够完全拮抗YL-0919(2.5 mg/kg,ig)在小鼠悬尾实验中的抗抑郁作用;在药物诱发抑郁模型上,YL-0919增强5-羟色氨酸(5-hydroxytryptophan,5-HTP,120 mg/kg,ip)诱导的小鼠甩头行为,但不能拮抗高剂量阿扑吗啡(16 mg/kg,sc)诱导的降温作用;YL-0919在抗抑郁有效剂量范围内对小鼠的自主活动性无显著性影响.结论 新型双靶标新药YL-0919具有明确的抗抑郁作用,此作用与激动5-HT1A受体,增强5-HT系统的功能有关.%Objective To investigate the antidepressant-like effect and possible mechanism of YL-0919, a novel dual-acting antidepressant with 5-HT1A receptor agonist and serotonin reuptake inhibitor. Methods and Results In the tail suspension test and forced swimming test in mice, YL-0919( 1. 25, 2. 5 and 5 mg/kg, ig )significantly decreased the immobility time. 5-HT1A receptor antagonist ( WAY100635 , 0. 3 mg/kg, sc ) could completely prevent the antidepressant-like effect in the tail suspension test. In the 5-hydroxytryptophan ( 5-HTP,120 mg/kg, ip ) potentiation test, YL-0919 significantly increased the symptom of head-twitches induced by 5-HTP. However, YL-0919 had no significant effect on the apomorphine (16 mg/kg,sc )induced hypothermia or the locomotor activity in mice. Conclusion YL-0919 produces reliable antidpres-sant-like effect, which may be attributed to the activation of 5-HT1A receptor and the potentiation of 5-HT system.

  20. Cholinesterase inhibitors from botanicals

    Directory of Open Access Journals (Sweden)

    Faiyaz Ahmed

    2013-01-01

    Full Text Available Alzheimer′s disease (AD is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh, appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com are also presented and the scope for future research is discussed.

  1. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    of the invention are useful for treating, alleviating, and/or preventing various conditions, including for example, a metabolic disorder such as type 1 or type 2 diabetes, dyslipidemias, lipodystrophies, liver disease associated with metabolic syndrome, polycystic ovarian syndrome, or obesity; inflammatory disease...... of making and using them. In one aspect, the invention relates to selective HDAC3 inhibitors useful for protecting beta-cells and improving insulin resistence. The selective HDAC3 inhibitors are also useful for promoting cognitive function and enhancing learning and memory formation. Compounds...

  2. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H;

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  3. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to compounds of formula (I) or a pharmaceutically acceptable salt, hydrate, solvate, or prodrug thereof, wherein X1, X2, X3, X4, X5, W1, W2, W3, and W4 are as described. The present invention relates generally to inhibitors of histone deacetylase and to methods...

  4. ACE inhibitors and proteinuria

    NARCIS (Netherlands)

    Gansevoort, RT; deZeeuw, D; deJong, PE

    1996-01-01

    This review discusses the clinical consequences of urinary protein loss and the effects of inhibitors of the angiotensin converting enzyme (ACE) on this clinical finding. Proteinuria appears to be an important risk factor for renal function deterioration and for cardiovascular mortality. ACE inhibit

  5. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.

    2003-01-01

    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of tra

  6. Thrombin inhibitor design.

    Science.gov (United States)

    Sanderson, P E; Naylor-Olsen, A M

    1998-08-01

    Recently, iv formulated direct thrombin inhibitors have been shown to be safe and efficacious alternatives to heparin. These results have fueled the hopes for an orally active compound. Such a compound could be a significant advance over warfarin if it had predictable pharmacokinetics and a duration of action sufficient for once or twice a day dosing. In order to develop an orally active compound which meets these criteria, the deficiencies of the prototype inhibitor efegatran have had to be addressed. First, using a combination of structure based design and empirical structure optimization, more selective compounds have been identified by modifying the P1 group or by incorporating different peptidomimetic P2/P3 scaffolds. Secondly, this optimization has resulted in the development of potent and selective non-covalent inhibitors, thus bypassing the liabilities of the serine trap. Thirdly, oral bioavailability has been achieved while maintaining selectivity and efficacy through the incorporation of progressively less basic P1 groups. The duration of action of these compounds remains to be optimized. Other advances in thrombin inhibitor design have included the development of uncharged P1 groups and the discovery of two non-peptide templates.

  7. Effect of G protein-coupled receptor inhibitor on 17β-estradiol-induced proliferation and apoptosis in Ishikawa and HEC-1A cells%GPER抑制剂PTX对雌激素作用下子宫内膜癌细胞增殖、凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    乔玉环; 马秀英; 郭瑞霞; 李留霞; 葛新; 胡冬梅; 张燕彩

    2013-01-01

    Objective:To observe the influence of GPER inhibitor (PTX) on proliferation, cell cycle progression, and apoptosis of endometrial carcinoma cells stimulated by E2 and to explore the preliminary possible effect of PTX on treating endometrial carcinoma. Methods:The effects of PTX on E2-induced proliferation, apoptosis, and cell cycle distrubution of endometrial cancer cells were detected by monotetrazolium ( MTT) assay and fluorescence-activated cell sorting technique. Results; ( 1 ) With increased concentrations of E2, the A490nm values of endometrial cancer cells increased gradually especially in Ishikawa cells in a time-dependent manner (P<0.001 ). Cell cycle distribution analysis revealed that percentage of Ishikawa cells at G0~ G1 phase (F = 34.078,P = 0.001) decreased and percentage of S phase cells (P = 0. 002) increased significantly,whereas those of HEC-1A cells didn't show significant alteration. (2) Co-treatment of endometrial cancer cells with PTX, A490nm values of both cells decreased and also showed a time-dependent manner (P<0.001). The percentage of apoptotic cells increased significantly (P<0.001) ,the percentage of the cell population at G1 phase increased (P<0. 05) and the percentage of HEC-1A cells at S phase decreased (P = 0. 002), whereas those of Ish-ikawa cell did not show significant alteration. The percentage of Ishikawa cells at G2 ~M phase increased and that of HEC-1A cells did not show significant alteration. Conclusion; Inhibition of GPER activity by PTX can inhibit Ishikawa cells proliferation induced by E2 and induce the endometrial cancer cell cycle arrest and cell apoptosis. GPER pathway presents an appealing therapeutic target on endometrial cancer.%目的:探讨G蛋白偶联雌激素受体(GPER)抑制剂百日咳毒素(PTX)对17β-雌二醇(E2)作用下子宫内膜癌系ER阳性的Ishikawa及ER低表达的HEC-1A的细胞增殖、凋亡和细胞周期的影响,初步探讨阻断GPER介导的信号传导通路治疗子宫内膜

  8. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  9. Sequencing of aromatase inhibitors

    OpenAIRE

    2005-01-01

    Since the development of the third-generation aromatase inhibitors (AIs), anastrozole, letrozole and exemestane, these agents have been the subject of intensive research to determine their optimal use in advanced breast cancer. Not only have they replaced progestins in second-line therapy and challenged the role of tamoxifen in first-line, but there is also evidence for a lack of cross-resistance between the steroidal and nonsteroidal AIs, meaning that they may be used in sequence to obtain p...

  10. Update on Aromatase Inhibitors

    Directory of Open Access Journals (Sweden)

    Seifert-Klauss V

    2015-01-01

    Full Text Available Aromatase inhibitors (AI block the last phase of estrogen production in many types of tissues which express the enzym aromatase, among them muscle, liver, adrenal, brain and fat. The enzyme catalyzes the last step of the biosynthesis of the estrogens, i. e. the aromatisation of testosterone to estradiol and of androstendion to estrone. Aromatase is localized in the membrane of the endoplasmatic reticulum and is also produced in the placenta and the gonads. Mutations in the gene CYP19A1, which codes for aromatase, can lead either to lack or excess of aromatase. Gene polymorphisms also influence the amount of bioavailable estrogen and bone density.br Indications: AI are approved for the treatment of postmenopausal women with hormone receptor positive breast cancer, both in the adjuvant setting as well as after recurrence and in progressive disease. In premenopausal and in perimenopausal women AI cause an increased sensitivity of the ovaries to follicle stimulating hormone (FSH and can thereby lead to a boosted estrogen answer – this effect is particularly pronounced in early perimenopausal women – so that these situations demand a combination with GnRH-analogue if AI treatment is to be initiated. Alternatively, tamoxifene may be used in premenopausal patients, with or without GnRH analogues. Treatment of premenopausal patients with hormone receptor positive breast cancer with aromatase inhibiting therapy alone constitutes an absolute contraindication. Aromatase inhibitors do not lead to estrogen receptor downregulation or block the receptor such as tamoxifene. An exceptional application is the application in reproductive medicine in women who do not have hormone receptor positive breast cancer: because of the higher sensitivity induced by AI-co-therapy, FSH-doses and -costs for assisted reproduction are reduced, and ovarian hyperstimulation syndrome (OHSS may be avoided. For premenopausal diseases which are said to be positively affected by

  11. A Novel SERCA Inhibitor Demonstrates Synergy with Classic SERCA Inhibitors and Targets Multidrug-Resistant AML

    Science.gov (United States)

    Bleeker, Nicholas P.; Cornea, Razvan L.; Thomas, David D.; Xing, Chengguo

    2013-01-01

    Drug resistance exists as a major obstacle in the treatment of cancer and drug molecules that retain effectiveness against resistant cancers are a high clinical priority. Ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) was recently identified as a promising lead for the treatment of multidrug-resistant leukemia, which elicits its cytotoxic effect, in part, through inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Herein initial experiments with SERCA1a, CXL017 demonstrated no significant effect on calcium affinity, competed with ATP, and induced a dose-dependent decrease in ATPase activity. Among all CXLs tested, (−)-CXL017 exhibited the greatest SERCA inhibition with an IC50 = 13.5 ± 0.5 μM. Inhibitor combination studies were used to assess potential interactions between (−)-CXL017 and well-known SERCA inhibitors: thapsigargin, cyclopiazonic acid, and 2, 5-di-tert-butylhydroquinone. Surprisingly, (−)-CXL017 exhibited marked synergy with each of the known SERCA inhibitors whereas all combinations of the known inhibitors yielded additive effects, indicating that (−)-CXL017 may bind at a unique allosteric site. Treatment of parental (HL60) and multidrug-resistant (HL60/MX2) acute myeloid leukemia cells with the known SERCA inhibitors revealed that all of these inhibitors demonstrate selective cytotoxicity (7.7 to 400 fold) for the resistant cell line. Within the CXL series, a positive correlation exists between SERCA inhibition and cytotoxicity in HL60/MX2 but not HL60. (−)-CXL017 was also shown to enhance the cytotoxicity of thapsigargin in HL60/MX2 cells. Given the elevated SERCA levels and ER calcium content in HL60/MX2, SERCA likely plays a significant role in the collateral sensitivity of this multidrug-resistance cell line to CXL molecules as well as known SERCA inhibitors. PMID:24079514

  12. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  13. ACE INHIBITORS: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Arora* and Ashish Chauhan

    2013-02-01

    Full Text Available Hypertension is a chronic increase in blood pressure, characterized as primary and secondary hypertension. The disorder is associated with various risk factors like obesity, diabetes, age, lack of exercise etc. Hypertension is being treated since ancient times by Ayurvedic, Chinese and Unani medicine. Now various allopathic drugs are available which include diuretics, calcium channel blockers, α-blockers, β-blockers, vasodilators, central sympatholytics and ACE-inhibitors. Non-pharmacological treatments include weight reduction, dietary sodium reduction, increased potassium intake and reduction in alcohol consumption. ACE-inhibitors are widely used in the treatment of hypertension by inhibiting the angiotensin converting enzyme responsible for the conversion of angiotensin I to angiotensin II (responsible for vasoconstriction. Various structure activity relationship studies led to the synthesis of ACE-inhibitors, some are under clinical development. This comprehensive review gives various guidelines on classification of hypertension, hypertension therapy including ancient, pharmacological, non-pharmacological therapies, pharmacoeconomics, historical perspectives of ACE, renin, renin angiotensin system (circulating vs local RAS, mechanism of ACE inhibitors, and development of ACE inhibitors. Review also emphasizes on the recent advancements on ACE inhibitors including drugs in clinical trials, computational studies on ACE-inhibitors, peptidomimetics, dual, natural, multi-functional ACE inhibitors, and conformational requirements for ACE-inhibitors.

  14. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    OpenAIRE

    Čolović, Mirjana B.; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are appl...

  15. Proteinase inhibitors in Brazilian leguminosae

    Directory of Open Access Journals (Sweden)

    C. A. M. Sampaio

    1991-01-01

    Full Text Available Serine proteinase inhitors, in the seeds of several Leguminosae from the Pantanal region (West Brazil, were studied using bovine trypsin, a digestive enzyme, Factor XIIa and human plasma Kallikrein, two blood clotting factors. The inhibitors were purified from Enterolobium contortisiliquum (Mr=23,000, Torresea cearensis (Mr = 13,000, Bauhinia pentandra (Mr = 20,000 and Bauhinia bauhinioides (Mr = 20,000. E. contortisiliquum inhibitor inactivates all three enzymes, whereas the T. cearensis inhibitor inactivates trypsin and Factor XSSa, but does nor affect plasma kallikrein; both Bauhinia inhibitors, on the other hand, inactivate trypsin and plasma kallikrein but only the Bpentandra inhibitor affects Factor XIIa. Ki values were calculated between 10 [raised to the power of] -7 and 10 [raised to the power of] -8 M.

  16. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous a-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase...... inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases...... in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological...

  17. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...... in the low µM range (1, a catechol), a subset of structurally related compounds was selected and tested against a panel of HDMs. In this subset, two inhibitors (2 and 10) had comparable affinities towards KDM4C and KDM6A but no effect on PHF8. One inhibitor restored H3K9me3 levels in KDM4C transfected U2-OS...

  18. Carbocyclic Carbohydrate Mimics as Potential Glycosidase Inhibitors

    DEFF Research Database (Denmark)

    Fanefjord, Mette; Lundt, Inge

    It has been proven that aminocyclopentanols having the aminogroup adjacent to a carbon sidechain could be potential anomer-selective glycosidase inhibitors [1]. A successful pathway for synthesising mimics to L-carbohydrates 2, by introducing nitrogen to the C6 position in compound 1, has been...... developed in our group. A similar strategy has been used for synthesising mimics of D-carbohydrates. The α,β-unsaturated lactone 3 was cyclised to compound 4 which was further transformed into 5. The nitrogen functionality in compound 7 is introduced by an Overman rearrangement of 6 and the hydroxyl...

  19. Cholinesterase inhibitors and memory.

    Science.gov (United States)

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2010-09-06

    A consensus exists that cholinesterase inhibitors (ChEIs) are efficacious for mild to moderate Alzheimer's Disease (AD). Unfortunately, the number of non-responders is large and the therapeutic effect is usually short-lasting. In experimental animals, ChEIs exert three main actions: inhibit cholinesterase (ChE), increase extracellular levels of brain acetylcholine (ACh), improve cognitive processes, particularly when disrupted in models of AD. In this overview we shall deal with the cognitive processes that are improved by ChEI treatment because they depend on the integrity of brain cholinergic pathways and their activation. The role of cholinergic system in cognition can be investigated using different approaches. Microdialysis experiments demonstrate the involvement of the cholinergic system in attention, working, spatial and explicit memory, information encoding, sensory-motor gating, skill learning. No involvement in long-term memory has yet been demonstrated. Conversely, memory consolidation is facilitated by low cholinergic activity. Experiments on healthy human subjects, notwithstanding caveats concerning age, dose, and different memory tests, confirm the findings of animal experiments and demonstrate that stimulation of the cholinergic system facilitates attention, stimulus detection, perceptual processing and information encoding. It is not clear whether information retrieval may be improved but memory consolidation is reduced by cholinergic activation. ChEI effects in AD patients have been extensively investigated using rating scales that assess cognitive and behavioural responses. Few attempts have been made to identify which scale items respond better to ChEIs and therefore, presumably, depend on the activity of the cholinergic system. Improvement in attention and executive functions, communication, expressive language and mood stability have been reported. Memory consolidation and retrieval may be impaired by high ACh levels. Therefore, considering

  20. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  1. [Cancer therapy by PARP inhibitors].

    Science.gov (United States)

    Seimiya, Hiroyuki

    2015-08-01

    Poly(ADP-ribose) polymerases(PARP) synthesize the ADP-ribose polymers onto proteins and play a role in DNA repair. PARP inhibitors block the repair of single-strand breaks, which in turn gives rise to double-strand breaks during DNA replication. Thus, PARP inhibitors elicit synthetic lethality in cancer with BRCA1/2 loss-of-function mutations that hamper homologous recombination repair of double-strand breaks. Olaparib, the first-in-class PARP inhibitor, was approved for treatment of BRCA-mutated ovarian cancer in Europe and the United States in 2014. Other PARP inhibitors under clinical trials include rucaparib, niraparib, veliparib, and the "PARP-trapping" BMN-673. BRCA1/2 sequencing is an FDA-approved companion diagnostics, which predicts the cancer vulnerability to PARP inhibition. Together, synthetic lethal PARP inhibition is a novel promising strategy for cancer intervention even in cases without prominent driver oncogenes.

  2. X-linked inhibitor of apoptosis (XIAP) deficiency

    DEFF Research Database (Denmark)

    Speckmann, C.; Lehmberg, K.; Albert, M.H.

    2013-01-01

    X-linked inhibitor of apoptosis (XIAP) deficiency caused by mutations in BIRC4 was initially described in patients with X-linked lymphoproliferative syndrome (XLP) who had no mutations in SH2D1A. In the initial reports, EBV-associated hemophagocytic lymphohistiocytosis (HLH) was the predominant...

  3. N-Substituted pyrazole-3-carboxamides as inhibitors of human 15-lipoxygenase.

    Science.gov (United States)

    Pelcman, Benjamin; Sanin, Andrei; Nilsson, Peter; Schaal, Wesley; Olofsson, Kristofer; Krog-Jensen, Christian; Forsell, Pontus; Hallberg, Anders; Larhed, Mats; Boesen, Thomas; Kromann, Hasse; Claesson, Hans-Erik

    2015-08-01

    High-throughput screening was used to find selective inhibitors of human 15-lipoxygenase-1 (15-LOX-1). One hit, a 1-benzoyl substituted pyrazole-3-carboxanilide (1a), was used as a starting point in a program to develop potent and selective 15-LOX-1 inhibitors.

  4. [Trypsin inhibitor from Gleditsia triacanthos L. seeds].

    Science.gov (United States)

    Mosolov, V V; Kolosova, G V; Valueva, T A; Dronova, L A

    1982-05-01

    The trypsin inhibitor from Gleditsia triacanthos (L.) seeds was purified by affinity chromatography on a column with trypsin-Sepharose 4B. The isolated inhibitor is a single-chain protein with molecular weight of about 20 000. The inhibitor suppresses bovine trypsin at a molar rate of 1 : 1, but weakly inhibits chymotrypsin in a non-stoichiometric manner. Some properties of the isolated inhibitor closely resembled those of soybean trypsin inhibitor (Kunitz).

  5. Enantioselective Synthesis of Protease Inhibitors and AntiHIV Agents

    Institute of Scientific and Technical Information of China (English)

    WANG Zhe

    2001-01-01

    @@ Part 1: A highly enantio-and diastereoselective Ireland-Claisen rearrangement of chiral C3(acyloxy)-vinyl silanes for the synthesis of anti-disubstituted succinic acid, an important intermediate for matrix metalloprotease inhibitors, has been developed (enantio-and anti/syn selectivities up to 95% and 38/1). The diastereoselectivity of this reaction was found to be sensitive to remote hydroxyl protecting groups, for example, with-OMOM group, the anti/syn ratio was 19/1, while with-OTBDMS, the ratio was 38/1. The resultant Ireland-Claisen rearrangement product was applied to the synthesis of macrocyclic MMP inhibitors, such as SL 422.

  6. Diverse inhibitors of aflatoxin biosynthesis.

    Science.gov (United States)

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  7. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  8. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C;

    1997-01-01

    Fibrinolytic enzyme inhibitors hamper the determination of the specific fibrinolytic serine protease activity. Reportedly, chemical anti-inhibitors eliminate the influence of fibrinolytic inhibitors, but it remains unclear to what extent they change the specific activity of fibrinolytic serine pr...

  9. Biocatalysts with enhanced inhibitor tolerance

    Science.gov (United States)

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  10. Renal targeting of kinase inhibitors

    NARCIS (Netherlands)

    Dolman, M. E. M.; Fretz, M. M.; Segers, Gj. W.; Lacombe, M.; Prakash, J.; Storm, G.; Hennink, W. E.; Kok, R. J.

    2008-01-01

    Activation of proximal tubular cells by fibrotic and inflammatory mediators is an important hallmark of chronic kidney disease. We have developed a novel strategy to intervene in renal fibrosis, by means of locally delivered kinase inhibitors. Such compounds will display enhanced activity within tub

  11. Biocatalysts with enhanced inhibitor tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  12. Proton pump inhibitors and gastroenteritis

    NARCIS (Netherlands)

    R.J. Hassing (Robert); A. Verbon (Annelies); H. de Visser (Herman); A. Hofman (Albert); B.H.Ch. Stricker (Bruno)

    2016-01-01

    textabstractAn association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam Study

  13. Renal targeting of kinase inhibitors

    NARCIS (Netherlands)

    Dolman, M. E. M.; Fretz, M. M.; Segers, Gj. W.; Lacombe, M.; Prakash, J.; Storm, G.; Hennink, W. E.; Kok, R. J.

    2008-01-01

    Activation of proximal tubular cells by fibrotic and inflammatory mediators is an important hallmark of chronic kidney disease. We have developed a novel strategy to intervene in renal fibrosis, by means of locally delivered kinase inhibitors. Such compounds will display enhanced activity within

  14. Proteasome Inhibitors with Photocontrolled Activity

    NARCIS (Netherlands)

    Hansen, Mickel J.; Velema, Willem A.; de Bruin, Gerjan; Overkleeft, Herman S.; Szymanski, Wiktor; Feringa, Ben L.

    2014-01-01

    Proteasome inhibitors are widely used in cancer treatment as chemotherapeutic agents. However, their employment often results in severe side effects, due to their non-specific cytotoxicity towards healthy tissue. This problem might be overcome by using a photopharmacological approach, that is, by

  15. CORROSION INHIBITOR FOR CARBON STEELS

    African Journals Online (AJOL)

    corrosion inhibitor for carbon steel in 3% ac]neon.s' NaCl solution (pH 6) ... compared to stainless steels (Buchweishaija & Hagen 1997). Organic compounds are ... resistant dust for break and clutch linings, wood binders and mould (Gedam.

  16. Corrosion Inhibitors for Reinforced Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Steel corrosion in reinforced concrete structures has been a major problem across the U.S. Steel-reinforced concrete structures are continually subject to attack by corrosion brought on by naturally occurring environmental conditions. FerroGard, a corrosion inhibitor, developed by Sika Corporation, penetrates hardened concrete to dramatically reduce corrosion by 65% and extend the structure's service life.

  17. PARP inhibitors in ovarian cancer.

    Science.gov (United States)

    Ledermann, J A

    2016-04-01

    Slow progress in improving the outcome of ovarian cancer with chemotherapy over the last decade has stimulated research into molecularly targeted therapy. Poly(ADP-ribose) polymerase (PARP) inhibitors target DNA repair and are specifically active in cells that have impaired repair of DNA by the homologous recombination (HR) pathway. Cells with mutated BRCA function have HR deficiency (HRD), which is also present in a significant proportion of non-BRCA-mutated ovarian cancer. In the last decade, olaparib, the first and most-investigated oral PARP inhibitor, has undergone phase I-III trials as a single agent, in comparison with and in addition to chemotherapy, and as a maintenance therapy following chemotherapy. The greatest benefit to-date has been in the maintenance setting, prolonging the progression-free survival of high-grade serous ovarian cancer with a BRCA1/2 mutation. In this group of patients, olaparib has received approval as maintenance following chemotherapy from the EMA, and accelerated approval as a single agent in women who have had three or more lines of therapy. Olaparib can be given for a prolonged period with few significant side-effects in most patients. Similar trials with other PARP inhibitors (rucaparib, niraparib and veliparib) are in progress and include non-BRCA-mutated ovarian cancer. Second-generation studies are exploring the combination of PARP inhibitors with anti-angiogenic drugs. PARP inhibitors represent a step change in the management of ovarian cancer. BRCA mutations are the first genotypic predictive markers in ovarian cancer and can be used to select patients who will most likely benefit from PARP inhibitors. BRCA testing is now becoming a routine part of the evaluation of women with ovarian cancer, and tests for HRD are being used to evaluate PARP inhibitors in an extended population of non-BRCA-mutated ovarian cancer. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical

  18. Phosphodiesterase inhibitors: history of pharmacology.

    Science.gov (United States)

    Schudt, Christian; Hatzelmann, Armin; Beume, Rolf; Tenor, Hermann

    2011-01-01

    The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions - although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today's successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.

  19. PLA2-mediated catalytic activation of its inhibitor 25-acetyl-petrosaspongiolide M: serendipitous identification of a new PLA2 suicide inhibitor.

    Science.gov (United States)

    Monti, M C; Casapullo, A; Riccio, R; Gomez-Paloma, L

    2004-12-17

    25-Acetyl-petrosaspongiolide M (PMAc) (1), a mild non-covalent PLA(2) inhibitor, unexpectedly recovers, after incubation with bvPLA(2), the ability to covalently modify the enzyme target. This study demonstrates the catalytic effect of bvPLA(2) in converting 1 in its deacetylated congener petrosaspongiolide M (PM) (2), a strong covalent PLA(2) inhibitor whose molecular mechanism of inhibition has already been clarified. Moreover, our findings outline the potential role of PMAc as anti-inflammatory pro-drug, by virtue of its ability of delivering the active PM agent at the site of inflammation, functioning as a suicide inhibitor.

  20. The growth and tumor suppressors NORE1A and RASSF1A are targets for calpain-mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Sergey Kuznetsov

    Full Text Available BACKGROUND: NORE1A and RASSF1A are growth and tumour suppressors inactivated in a variety of cancers. Methylation of NORE1A and RASSF1A promoters is the predominant mechanism for downregulation of these proteins; however, other mechanisms are likely to exist. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a proteolysis of NORE1A and RASSF1A by calpains as alternative mechanism of their downregulation. Extracts of H358 cell line, a human bronchoalveolar carcinoma, and H460, a large cell carcinoma, were capable of proteolysis of NORE1A protein in the calpain-dependent manner. Likewise, RASSF1A tumor suppressor was proteolyzed by the H358 cell extract. Addition of calpain inhibitor to H358 and H460 cells growing in tissue culture resulted in re-expression of endogenous NORE1A. A survey of 10 human lung tumours revealed that three of them contain an activity capable of inducing NORE1A degradation. CONCLUSIONS/SIGNIFICANCE: Thus, degradation by calpains is a novel mechanism for downregulation of NORE1A and RASSF1A proteins and might be the mechanism allowing cancer cells to escape growth suppression.

  1. Isolation and partial identification of eight endogenous G1 inhibitors of JB-1 ascites tumor cell proliferation.

    Science.gov (United States)

    Barfod, N M

    1982-06-01

    Eight endogenous G1 inhibitors of the proliferation of JB-1 ascites tumor cells have been isolated and characterized. The activity of the inhibitors has been analyzed on synchronized JB-1 (murine plasmacytoma) and L1A2 (murine sarcoma) cells in vitro using flow cytometry. The purified inhibitors have been tested for in vivo activity on partially synchronized JB-1 and L1A2 ascites tumors in situ. Four of the inhibitors exhibited a high degree of cell specificity (chalone-like inhibitors) and were chemically related, whereas the other four showed no cell specificity. In most extractions, the amount of cell-specific activity is more than 50% of the total G1-inhibitory activity. Most of the inhibitors are low-molecular-weight peptides and glycopeptides.

  2. Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis.

    Science.gov (United States)

    Ferretti, Roberta; Palumbo, Valeria; Di Savino, Augusta; Velasco, Silvia; Sbroggiò, Mauro; Sportoletti, Paolo; Micale, Lucia; Turco, Emilia; Silengo, Lorenzo; Palumbo, Gioacchino; Hirsch, Emilio; Teruya-Feldstein, Julie; Bonaccorsi, Silvia; Pandolfi, Pier Paolo; Gatti, Maurizio; Tarone, Guido; Brancaccio, Mara

    2010-03-16

    Centrosome abnormalities lead to genomic instability and are a common feature of many cancer cells. Here we show that mutations in morgana/chp-1 result in centrosome amplification and lethality in both Drosophila and mouse, and that the fly centrosome phenotype is fully rescued by the human ortholog of morgana. In mouse cells, morgana forms a complex with Hsp90 and ROCK I and II, and directly binds ROCK II. Morgana downregulation promotes the interaction between ROCK II and nucleophosmin (NPM), leading to an increased ROCK II kinase activity, which results in centrosome amplification. Morgana(+/-) primary cells and mice display an increased susceptibility to neoplastic transformation. In addition, tumor tissue array histochemical analysis revealed that morgana is underexpressed in a large fraction of breast and lung human cancers. Thus, morgana/chp-1 appears to prevent both centrosome amplification and tumorigenesis. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    Science.gov (United States)

    2008-10-01

    suppressor gene, androgen receptor (AR), and p16 , which has been previously shown to be hypermethylated in human prostate cancers (4), and myoblast...hypermethylation in the prostate cancer tissues was low for the ESR1 gene. There was no methylation in the prostate cancer tissues for MYOD1, AR, and p16 CpG...discrepant. The MYOD1 has been shown to be hypermethy- lated in cervical cancer (23) and undergoes age-related methylation in colon cancer (9). We did

  4. Nicotinamide phosphoribosyltransferase inhibitors, design, preparation and SAR

    DEFF Research Database (Denmark)

    Christensen, Mette Knak; Erichsen, Kamille Dumong; Olesen, Uffe Hogh;

    2013-01-01

    Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are promising therapeutics for treating cancer. Using medicinal and computational chemistry methods, the structure-activity relationship for novel classes of NAMPT inhibitors is described and compounds optimized....... Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine inhibitor scaffolds. In comparison with recently published derivatives the new analogues exhibit an equally potent anti-proliferative activity in vitro and comparable activity in vivo. The best performing compounds from...

  5. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  6. Proteasome inhibitors in cancer therapy

    Directory of Open Access Journals (Sweden)

    Wioletta Romaniuk

    2015-12-01

    Full Text Available Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238, delanzomib (CEP-18770, oprozomib (ONX0912/PR-047 and marizomib (NPI-0052.

  7. Nelfinavir: fourth protease inhibitor approved.

    Science.gov (United States)

    1997-01-01

    The Food and Drug Administration (FDA) has granted accelerated approval to nelfinavir in both adult and pediatric formulations. Agouron, the manufacturer, used innovative computerized drug design techniques to discover, design, and refine the nelfinavir molecule. Nelfinavir is marketed under the trade name Viracept, and costs $5,000 per year. Early clinical trials find it to be as powerful as the other protease inhibitors, but with a different resistance profile. The drug has relatively few drug indications; however, several compounds have been contraindicated.

  8. Notch Inhibitors for Cancer Treatment

    OpenAIRE

    Espinoza, Ingrid; Miele, Lucio

    2013-01-01

    Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been de...

  9. PARP Inhibitors for Cancer Therapy.

    Science.gov (United States)

    Lin, Ken Y; Kraus, W Lee

    2017-04-06

    Rucaparib is an inhibitor of nuclear poly (ADP-ribose) polymerases (inhibition of PARP-1 > PARP-2 > PARP-3), following a similar drug, Olaparib. It disrupts DNA repair and replication pathways (and possibly transcription), leading to selective killing of cancer cells with BRCA1/2 mutations. Rucaparib is approved for recurrent ovarian cancers with germline or somatic mutations in BRCA1/2. Copyright © 2017. Published by Elsevier Inc.

  10. Conversion of calcineurin inhibitors with mammalian target of rapamycin inhibitors after kidney transplant.

    Science.gov (United States)

    Nikoueinejad, Hassan; Soleimani, Alireza; Mirshafiey, Abbas; Amirzargar, Aliakbar; Sarrafnejad, Abdolfattah; Kamkar, Ideh; Einollahi, Behzad

    2013-02-01

    One way to overcome chronic allograft nephropathy induced by calcineurin inhibitors in immunosuppression protocols for organ transplants is to replace such inhibitors with mammalian target of rapamycin inhibitors, which are not clinically nephrotoxic because they have better renal function. If patients tolerate replacement, there could be a clear preference for mammalian target of rapamycin inhibitors as a maintenance immunosuppressant after renal transplant. This replacement could be sufficient if it were used for a certain time after calcineurin inhibitors. This review considers the conversion effects of calcineurin inhibitors with mammalian target of rapamycin inhibitors from the view point of kidney function during different periods after a kidney transplant.

  11. Inhibitors of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    LIU Shiying; JIANG Yuyang; CAO Jian; LIU Feng; MA Li; ZHAO Yufen

    2005-01-01

    Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups of protein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family. They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer, inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.

  12. Carbonic anhydrase inhibitors drug design.

    Science.gov (United States)

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported.

  13. Substituted androstanes as aromatase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Levina, Inna S [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    1998-11-30

    The synthesis and structure-activity relationships of inhibitors of steroid aromatase which catalyses the last stage of a multistep biotransformation of cholesterol into estrogens, viz., aromatisation of C{sub 19}-steroids into C{sub 18}-phenolic steroids, are discussed. Compounds of the androstane series which are structurally related to the natural substrate, viz., androst-4-ene-3,17-dione, are the subjects of consideration. The review encompasses problems of synthesis of various substituted androstanes and their aromatase-inhibiting activities and structural requirements for selective specific aromatase inhibitors based on in vitro and in vivo structure-activity studies of compounds synthesised, their biological properties and the results of clinical trials. Special attention is paid to practical applications of aromatase inhibitors in the treatment of hormone-dependent mammary and ovarian tumours as well as benign prostatic tumours. In writing this report, the author has used all the information currently available in the chemical, biochemical, endocrinological and medicinal literature as well as in patents. The bibliography includes 173 references.

  14. Substituted androstanes as aromatase inhibitors

    Science.gov (United States)

    Levina, Inna S.

    1998-11-01

    The synthesis and structure-activity relationships of inhibitors of steroid aromatase which catalyses the last stage of a multistep biotransformation of cholesterol into estrogens, viz., aromatisation of C19-steroids into C18-phenolic steroids, are discussed. Compounds of the androstane series which are structurally related to the natural substrate, viz., androst-4-ene-3,17-dione, are the subjects of consideration. The review encompasses problems of synthesis of various substituted androstanes and their aromatase-inhibiting activities and structural requirements for selective specific aromatase inhibitors based on in vitro and in vivo structure-activity studies of compounds synthesised, their biological properties and the results of clinical trials. Special attention is paid to practical applications of aromatase inhibitors in the treatment of hormone-dependent mammary and ovarian tumours as well as benign prostatic tumours. In writing this report, the author has used all the information currently available in the chemical, biochemical, endocrinological and medicinal literature as well as in patents. The bibliography includes 173 references.

  15. Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors.

    Science.gov (United States)

    Niphakis, Micah J; Cognetta, Armand B; Chang, Jae Won; Buczynski, Matthew W; Parsons, Loren H; Byrne, Frederika; Burston, James J; Chapman, Victoria; Cravatt, Benjamin F

    2013-09-18

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme's function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors.

  16. Conformation-specific inhibitors of Raf kinases.

    Science.gov (United States)

    Wang, Xiaolun; Schleicher, Kristin

    2013-01-01

    Since the discovery linking B-Raf mutations to human tumors in 2002, significant advances in the development of Raf inhibitors have been made, leading to the recent approval of two Raf inhibitor drugs. This chapter includes a brief introduction to B-Raf as a validated target and focuses on the three different binding modes observed with Raf small-molecule inhibitors. These various binding modes lock the Raf kinase in different conformations that impact the toxicity profiles of the inhibitors. Possible solutions to mitigate the side effects caused by inhibitor-induced dimerization are also discussed.

  17. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending...... of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden....

  18. Inhibitors

    Science.gov (United States)

    ... Project (CHAMP) mutation list: a new online resource. Human Mutation. 2012; E2382-E2392. Li T, Miller CH, Payne AB, Hooper CW. The CDC Hemophilia B mutation project mutation list: a new online resource. Molecular Genetics and Genomic Medicine. 2013; 1(4):238-245. ...

  19. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol.

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    Full Text Available Cilostazol, a type-3 phosphodiesterase (PDE3 inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3 receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK, and the Ras/Raf/ERK/MAPK significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.

  20. Main: PYRIMIDINEBOXOSRAMY1A [PLACE

    Lifescience Database Archive (English)

    Full Text Available PYRIMIDINEBOXOSRAMY1A S000259 19-August-2004 (last modified) kehi Pyrimidine box fo...und in rice (O.s.) alpha-amylase (RAmy1A) gene; Gibberellin-respons cis-element of GARE and pyrimidine box a...ically to this site; See S000265; alpha-amylase; sugar repression; GARE; pyrimidine box; feed-back metabolic

  1. Reference: PYRIMIDINEBOXOSRAMY1A [PLACE

    Lifescience Database Archive (English)

    Full Text Available PYRIMIDINEBOXOSRAMY1A Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J Functional disse...ction of a sugar-repressed alpha-amylase gene (Ramy1A) promoter in rice embryos FEBS Lett 423:81-85 (1998) PubMed: 9506846; ...

  2. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases.

    Science.gov (United States)

    Cozza, Giorgio; Sarno, Stefania; Ruzzene, Maria; Girardi, Cristina; Orzeszko, Andrzej; Kazimierczuk, Zygmunt; Zagotto, Giuseppe; Bonaiuto, Emanuela; Di Paolo, Maria Luisa; Pinna, Lorenzo A

    2013-07-01

    Advantage has been taken of the relative promiscuity of commonly used inhibitors of protein kinase CK2 to develop compounds that can be exploited for the selective inhibition of druggable kinases other than CK2 itself. Here we summarize data obtained by altering the scaffold of CK2 inhibitors to give rise to novel selective inhibitors of DYRK1A and to a powerful cell permeable dual inhibitor of PIM1 and CK2. In the former case one of the new compounds, C624 (naphto [1,2-b]benzofuran-5,9-diol) displays a potency comparable to that of the first-in-class DYRK1A inhibitor, harmine, lacking however the drawback of drastically inhibiting monoamine oxidase-A (MAO-A) as harmine does. On the other hand the promiscuous CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole (TBI,TBBz) has been derivatized with a sugar moiety to generate a 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (TDB) compound which inhibits PIM1 and CK2 with comparably high efficacy (IC50 valuescancer cells consistent with concomitant inhibition of both its onco-kinase targets. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).

  3. Resistance to mTOR kinase inhibitors in lymphoma cells lacking 4EBP1.

    Directory of Open Access Journals (Sweden)

    Sharmila Mallya

    Full Text Available Inhibitors of the mechanistic target of rapamycin (mTOR hold promise for treatment of hematological malignancies. Analogs of the allosteric mTOR inhibitor rapamycin are approved for mantle cell lymphoma but have limited efficacy in other blood cancers. ATP-competitive "active-site" mTOR inhibitors produce more complete mTOR inhibition and are more effective than rapamycin in preclinical models of leukemia, lymphoma and multiple myeloma. In parallel to clinical trials of active-site mTOR inhibitors, it will be important to identify resistance mechanisms that might limit drug efficacy in certain patients. From a panel of diffuse large B-cell lymphoma cell lines, we found that the VAL cell line is particularly resistant to apoptosis in the presence of active-site mTOR inhibitors. Mechanistic investigation showed that VAL does not express eukaryotic initiation factor 4E-binding protein-1 (4EBP1, a key negative regulator of translation controlled by mTOR. Although VAL cells express the related protein 4EBP2, mTOR inhibitor treatment fails to displace eukaryotic initiation factor 4G from the mRNA cap-binding complex. Knockdown of eukaryotic initiation factor 4E, or re-expression of 4EBP1, sensitizes cells to apoptosis when treated with active-site mTOR inhibitors. These findings provide a naturally occurring example of 4EBP deficiency driving lymphoma cell resistance to active-site mTOR inhibitors.

  4. Novel Anthranilamide-Based FXa Inhibitors: Drug Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-04-01

    Full Text Available Factor Xa (FXa plays a significant role in the blood coagulation cascade and it has become a promising target for anticoagulation drugs. Three oral direct FXa inhibitors have been approved by the FDA for treating thrombotic diseases. By structure-activity relationship (SAR analysis upon these FXa inhibitors, a series of novel anthranilamide-based FXa inhibitors were designed and synthesized. According to our study, compounds 1a, 1g and 1s displayed evident FXa inhibitory activity and excellent selectivity over thrombin in in vitro inhibition activities studies. Compounds 1g and 1s also exhibited pronounced anticoagulant activities in in vitro anticoagulant activity studies.

  5. Tissue factor pathway inhibitor endocytosis.

    Science.gov (United States)

    Schwartz, A L; Broze, G J

    1997-10-01

    Tissue factor pathway inhibitor (TFPI), a 42 kD protein, provides the physiological inhibition of tissue factor initiated coagulation by inhibition of both factor Xa and factor VIIa/tissue factor. In plasma, most TFPI is lipoprotein bound with an additional "releasable" pool bound to the endothelial cell surface. TFPI clearance is via receptor mediated endocytosis into liver. Heparin sulfate proteoglycans and LRP (low density lipoprotein receptor-related protein), an extremely large (∼600 kD) cell surface protein, primarily mediate this clearance, although additional TFPI binding sites and endocytosis pathways exist. (Trends Cardiovasc Med 1997; 7:234-239). © 1997, Elsevier Science Inc.

  6. Main: WBOXGACAD1A [PLACE

    Lifescience Database Archive (English)

    Full Text Available WBOXGACAD1A S000448 19-August-2004 (last modified) kehi W-box found in the promoter region of the CAD...GAC), S000142 (TTGACC); W-box; TGAC; CAD; WRKY; Gossypium arboreum (cotton) AGTCAAAATTGACC ...

  7. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  8. Myeloperoxidase Inhibitors as Potential Drugs.

    Science.gov (United States)

    Lazarević-Pasti, Tamara; Leskovac, Andreja; Vasić, Vesna

    2015-01-01

    Myeloperoxidase (MPO) is an important member of the haem peroxidase - cyclooxygenase superfamily. This enzyme is physiologically expressed in circulating neutrophils, monocytes and some tissue macrophages including microglia. MPO plays an essential role in the antimicrobial and antiviral system of humans. The microbicidal activity of MPO exists due to its capability to oxidize halide and pseudohalide ions (CI(-), Br(-), I(-) and SCN(-)) by H2O2, thereby producing respective hypohalous acids (HOX). During the phagocytosis of pathogens, azurophilic granules release their content together with MPO into phagolysosomes. On the other hand, MPO can be discharged outside the phagocytes. Due to this, tissue damage during inflammation is greatly promoted by MPO-derived oxidants. Regarding its activity, MPO is a key factor in a great number of conditions within the group of cardiovascular diseases, inflammatory diseases, neurodegenerative diseases, kidney diseases and immune-mediated diseases. Therefore, MPO and its downstream inflammatory pathways might be attractive targets for both prognostic and therapeutic intervention in the prophylaxis of all mentioned illnesses. Nowadays, structure and reaction mechanism of MPO are known, which enable rational strategy in the development of specific MPO inhibitors that still preserve MPO activity during host defense from bacteria, but hinder pathophysiologically persistent activation of MPO. Various methods for MPO activity inhibition and unfavorable effects of MPO-derived oxidants remodeling will be discussed. Emphasis will be put on various known inhibitors, as well as on newly investigated natural products, which can also inhibit MPO activity.

  9. Aromatase inhibitors and bone loss.

    Science.gov (United States)

    Perez, Edith A; Weilbaecher, Katherine

    2006-08-01

    The aromatase inhibitors (AIs) anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin) are significantly more effective than the selective estrogen-receptor modulator (SERM) tamoxifen in preventing recurrence in estrogen receptor-positive early breast cancer. Aromatase inhibitors are likely to replace SERMs as first-line adjuvant therapy for many patients. However, AIs are associated with significantly more osteoporotic fractures and greater bone mineral loss. As antiresorptive agents, oral and intravenous bisphosphonates such as alendronate (Fosamax), risedronate (Actonel), ibandronate (Boniva), pamidronate (Aredia), and zoledronic acid (Zometa) have efficacy in preventing postmenopausal osteoporosis, cancer treatment-related bone loss, or skeletal complications of metastatic disease. Clinical practice guidelines recommend baseline and annual follow-up bone density monitoring for all patients initiating AI therapy. Bisphosphonate therapy should be prescribed for patients with osteoporosis (T score vitamin D intake, weight-bearing exercise, and smoking cessation should be addressed. Adverse events associated with bisphosphonates include gastrointestinal toxicity, renal toxicity, and osteonecrosis of the jaw. These safety concerns should be balanced with the potential of bisphosphonates to minimize or prevent the debilitating effects of AI-associated bone loss in patients with early, hormone receptor-positive breast cancer.

  10. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  11. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    -molecule allosteric inhibitor trametinib in 2013, the progress of more than 10 other allosteric inhibitors in clinical trials, and the emergence of a pipeline of highly selective and potent preclinical molecules, have been reported in the past decade. In this article, we present the current knowledge on allosteric...... inhibition in terms of conception, classification, potential advantages, and summarized debatable topics in the field. Recent progress and allosteric inhibitors that were identified in the past three years are highlighted in this paper....

  12. Molecular mechanisms of cold-induced CYP1A activation in rat liver microsomes.

    Science.gov (United States)

    Perepechaeva, Maria; Kolosova, Natalia; Grishanova, Alevtina

    2011-12-01

    Cytochrome P4501A (the CYP1A1 and CYP1A2 enzymes) is known to metabolize anthropogenic xenobiotics to carcinogenic and mutagenic compounds. CYP1A1 transcriptional activation is regulated via the aryl hydrocarbon receptor (AhR)-dependent signal transduction pathway. CYP1A2 activation may occur through the AhR-dependent or AhR-independent signal transduction pathways. We used male Wistar rats to explore possible mechanisms of CYP1A activation induced by exposure to cold and the effects of the protein-tyrosine kinase inhibitors genistein, herbimycin A, and geldanamycin on the properties of hepatic CYP1A1 and CYP1A2 proteins following exposure to cold and to classic CYP1A inducers. The molecular mechanisms of cold-induced CYP1A1 and CYP1A2 activation are different. The CYP1A2 activation apparently occurs at the post-transcriptional level. The CYP1A1 activation, whether caused by exposure to cold or by classic CYP1A inducers, is AhR-dependent and occurs at the transcriptional level. Protein tyrosine kinase inhibitors have no effect on benzo(a)pyrene-induced CYP1A expression but alter cold-induced CYP1A1 activity and the CYP1A1 mRNA level. Thus, treatment with herbimycin A or geldanamycin leads to an increase in CYP1A1 activity, while treatment with genistein increases CYP1A1 mRNA expression and decreases CYP1A2 activity. These data elucidate the molecular mechanisms of cold-induced CYP1A activation and the role of protein kinases in the regulation of CYP1A during exposure to cold. Our results can also help identify the differences between the molecular mechanisms underlying the effects of the classic CYP1A inducers and the effects of cooling.

  13. Enantioselective Synthesis of Protease Inhibitors and AntiHIV Agents

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhe

    2001-01-01

    Part 1: A highly enantio-and diastereoselective Ireland-Claisen rearrangement of chiral C3(acyloxy)-vinyl silanes for the synthesis of anti-disubstituted succinic acid, an important intermediate for matrix metalloprotease inhibitors, has been developed (enantio-and anti/syn selectivities up to 95% and 38/1). The diastereoselectivity of this reaction was found to be sensitive to remote hydroxyl protecting groups, for example, with-OMOM group, the anti/syn ratio was 19/1, while with-OTBDMS, the ratio was 38/1. The resultant Ireland-Claisen rearrangement product was applied to the synthesis of macrocyclic MMP inhibitors, such as SL 422.……

  14. Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis

    DEFF Research Database (Denmark)

    Selzer-Plon, J.; Bornholdt, J.; Friis, S.

    2009-01-01

    Background: Clinical trials where cancer patients were treated with protease inhibitors have suggested that the serine protease, prostasin, may act as a tumour suppressor. Prostasin is proteolytically activated by the serine protease, matriptase, which has a very high oncogenic potential. Prostasin...... is inhibited by protease nexin-1 (PN-1) and the two isoforms encoded by the mRNA splice variants of hepatocyte growth factor activator inhibitor-1 (HAI-1), HAI-1A, and HAI-1B. Methods: Using quantitative RT-PCR, we have determined the mRNA levels for prostasin and PN-1 in colorectal cancer tissue (n = 116...... and HAI-1B. mRNA levels were normalised to beta-actin. Immunohistochemical analysis of prostasin and HAI-1 was performed on normal and cancer tissue. Results: The mRNA level of prostasin was slightly but significantly decreased in both mild/moderate dysplasia (p

  15. TYROSINE KINASE INHIBITORS AND PREGNANCY

    Directory of Open Access Journals (Sweden)

    Elisabetta Abruzzese

    2014-04-01

    Full Text Available The management of patients with chronic myeloid leukemia (CML during pregnancy has became recently a matter of continuous debate.  The introduction of the Tyrosine Kinase Inhibitors (TKIs in clinical practice has dramatically changed the prognosis of CML patients.  Patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy.  This fact has come the necessity to address issues relating to fertility and pregnancy. Physicians are not infrequently being asked for advice regarding the need for, and or the appropriateness of, stopping treatment in order to conceive. In this report we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for all the approved TKIs, as well as suggest how to manage a planned and/or unplanned pregnancy.

  16. Glycine Transporters and Their Inhibitors

    Science.gov (United States)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  17. A proteasome inhibitor confers cardioprotection.

    Science.gov (United States)

    Lüss, Hartmut; Schmitz, Wilhelm; Neumann, Joachim

    2002-04-01

    In several cell types, proteasome inhibitors like carbobenzoxyl-leucinyl-leucinyl-leucinal (MG132) induce the 72 kDa heat shock protein (Hsp72) and exert cell protective effects. However, data in cardiomyocytes are currently lacking. We investigated the effects of MG132 in cultured neonatal rat cardiomyocytes. MG132 time- and concentration-dependently induced Hsp72 and Hsp32 at mRNA and protein levels. Although Hsp60 mRNA was induced, Hsp60 protein levels were not altered. MG132 activated p38 MAP kinase already after 0.5 h. Hsp mRNA induction started after 2 h of MG132 treatment. Subsequently, Hsp72 and Hsp32 protein levels were increased after 4 h. SB202190, an inhibitor of p38 MAP kinase, concentration-dependently attenuated MG132-induced Hsp72-and Hsp32-elevations (by 59% and 41%, respectively, at 1 microM SB202190). In contrast, herbimycin A, a known inductor of Hsp72 in cardiomyocytes, enhanced the MG132-induced Hsp72 and Hsp32 expression even further: additionally applied 2 microM herbimycin A induced Hsp72 and Hsp32 about 2-fold higher than 1 microM MG132 alone. MG132 (1 microM) decreased the hyperthermia- or hydrogen peroxide-induced release of lactate dehydrogenase by 45% and by 35%, respectively (P<0.05, n=5). MG132 (1 microM) prolonged the spontaneous beating time of cardiomyocytes at 46 degrees C from 5+/-2 min (control hyperthermia) to 28+/-5 min (P<0.05, n=4). Thus, inhibition of the proteasome function by MG132 protects cardiomyocytes against hyperthermic or oxidative injury. This protective effect and Hsp induction were abolished by 1 microM SB202190. Proteasome inhibition results in p38 MAP kinase-dependent induction of Hsp72 and Hsp32 and might be a novel cardioprotective modality.

  18. Aromatase inhibitors in gynecologic cancers.

    Science.gov (United States)

    Krasner, Carolyn

    2007-01-01

    The female genital tract is hormonally responsive, and consequently some tumors, which arise within in it, may be treated at least in part, with hormonal manipulation. The range of responses in clinical trials and case reports will be reviewed. Many of these diseases are too rare for clinical trial testing, and in some cases evidence is anecdotal at best. Recurrences of ovarian cancer have been treated with tamoxifen and megesterol acetate with variable response rates from 0 to 56%. The favorable toxicity profile of aromatase inhibitors led to trials of these agents for the treatment of relapsed epithelial ovarian cancer. These agents have proved tolerable with minor response rates but a significant disease stabilization rate, which may be prolonged in a minority of cases. It is unclear if these responses may be predicted by estrogen receptor expression or aromatase expression. Anastrazole has also been tried in combination with an EGFR receptor-inhibitor, again showing minor responses but possibly an increase in TTT in some patients. Granulosa cell tumors of the ovary are rare, hormonally sensitive tumors, with reported responses to a variety of hormonal manipulations, including aromatase inhibition. In addition, combined endocrine blockade, including aromatase inhibition, has been tried with reports of success. Endometrial cancers, particularly type I lesions, are often treated with hormonal manipulation, most commonly with progestins, but also with antiestrogens such as tamoxifen. A trial of aromatase inhibition in the treatment of recurrent endometrial cancer showed minimal responses. Endometrial stromal sarcoma, an uncommon uterine malignancy, has shown response to hormonal treatments, with multiple case reports of efficacy of aromatase inhibition. Despite the rarity of some of these tumor types, rare tumor study groups, such as within the Gynecologic Oncology Group, should make an effort to prospectively define the utility of these treatments.

  19. New associations: INFG and TGFB1 genes and the inhibitor development in severe haemophilia A.

    Science.gov (United States)

    de Alencar, J B; Macedo, L C; de Barros, M F; Rodrigues, C; Shinzato, A H; Pelissari, C B; Machado, J; Sell, A M; Visentainer, J E L

    2015-07-01

    The development of factor VIII (FVIII) inhibitor is the main complication of replacement therapy in patients with haemophilia A (HA). A ratio of 5-7% of individuals HA develops antibodies (inhibitors) against the FVIII infused during the treatment, thereby reducing their pro-coagulant activity. The immunomodulatory cytokine genes have been related to the risk of development of alloantibodies in several studies, mainly in HA with severe form. We investigated the polymorphisms in regulatory regions of cytokine genes (IL1A, IL1B, IL1R, IL1RA, IL4RA, IL12, INFG, TGFB1, TNF, IL2, IL4, IL6, IL10) that could influence the risk of developing inhibitors in patients with severe HA. The genotyping of cytokine genes of 117 patients with HA was performed by polymerase chain reaction with sequence-specific primers (PCR-SSP) using the protocol recommended by the manufacturer (Invitrogen kit Cytokines(®) , Canoga Park, USA) RESULTS: From the cohort of 117 patients with severe HA, 35 developed inhibitors. There was a higher frequency of +874 T allele in INFG and of +869 TT and TG/TG in TGFB1 genes on patients with inhibitors. This suggests that polymorphisms in INFG and in TGFB1 genes are related to risk of developing inhibitor, and could contribute to a genetic profile of the individual HA for the risk of inhibitors development to FVIII. © 2015 John Wiley & Sons Ltd.

  20. Alkylamino derivatives of 4-aminomethylpyridine as inhibitors of copper-containing amine oxidases.

    Science.gov (United States)

    Bertini, Vincenzo; Buffoni, Franca; Ignesti, Giovanni; Picci, Nevio; Trombino, Sonia; Iemma, Francesca; Alfei, Silvana; Pocci, Marco; Lucchesini, Francesco; De Munno, Angela

    2005-02-10

    The first substratelike, reversible inhibitors of different copper amine oxidases (CAOs) with IC50 (M) as low as 2.0 x 10(-8) corresponding to derivatives of 4-aminomethylpyridine with alkoxy (1a-d), alkylthio (2a,b), and alkylamino (3a-e, 4a-j) groups in the positions 3 and 5 have been prepared and studied. The inhibitors 1a-d are active on benzylamine oxidase and semicarbazide-sensitive amine oxidase and are very selective with respect to diamine oxidase, lysyl oxidase, and monoamine oxidases. The inhibitors 2a,b are selective for benzylamine oxidase whereas 2a is also a new type of good substrate of diamine oxidase. The inhibitors 3a-e and 4a-j are substratelike, reversible, nonselective inhibitors of various CAOs including pea seedling amine oxidase and Hansenula polymorpha amine oxidase, whose enzymatic sites are known from X-ray structure determinations. The inhibitors 3b,c and 4b,c are excellent substratelike tools for studies correlating CAOs that afford crystals suitable for X-ray structure determinations with CAOs from mammals.

  1. MAO inhibitors: risks, benefits, and lore.

    Science.gov (United States)

    Wimbiscus, Molly; Kostenko, Olga; Malone, Donald

    2010-12-01

    Monoamine oxidase (MAO) inhibitors were the first antidepressants introduced, but their use has dwindled because of their reported side effects, their food and drug interactions, and the introduction of other classes of agents. However, interest in MAO inhibitors is reviving. Here, we discuss their use, risks, and benefits in clinical medicine.

  2. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...

  3. Inhibitors targeting two-component signal transduction.

    Science.gov (United States)

    Watanabe, Takafumi; Okada, Ario; Gotoh, Yasuhiro; Utsumi, Ryutaro

    2008-01-01

    A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.

  4. [Interaction between clopidogrel and proton pump inhibitors

    NARCIS (Netherlands)

    Harmsze, A.M.; Boer, A. de; Boot, H.; Deneer, V.H.; Heringa, M.; Mol, P.G.; Schalekamp, T.; Verduijn, M.M.; Verheugt, F.W.A.; Comte, M. le

    2011-01-01

    The drug interaction between proton pump inhibitors and clopidogrel has been the subject of much study in recent years. Contradictory results regarding the effect of proton pump inhibitors on platelet reactivity and on clinical outcome in clopidogrel-treated patients have been reported in literature

  5. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  6. Exploring the scaffold universe of kinase inhibitors.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2015-01-08

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  7. COX-2 Inhibitors and Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-01-01

    Full Text Available The evidence that cyclooxygenase-2 (COX-2 is upregulated and plays an important role in carcinogenesis of gastric cancer has triggered the topic of COX-2 inhibitors as chemopreventive agents for gastric cancer. Studies find that COX-2 inhibitors are associated not only with chemoprophylactic effects, but also with chemotherapeutic potentials in gastric cancer. Both COX-dependent and COX-independent pathways have a role in the anticancer efficiency of COX-2 inhibitors. However, enthusiasm is thwarted by the potential toxicity, that is, gastrointestinal toxicity of nonselective COX-2 inhibitors and cardiovascular risk of selective COX-2 inhibitors. Therefore, more studies are needed to develop new targeted antitumor agents (such as prostaglandin E receptor antagonist and to define fundamental questions such as optimal treatment regimens, integration of cotherapy, and careful selection of candidates.

  8. Discovery of a Highly Selective, Brain-Penetrant Aminopyrazole LRRK2 Inhibitor.

    Science.gov (United States)

    Chan, Bryan K; Estrada, Anthony A; Chen, Huifen; Atherall, John; Baker-Glenn, Charles; Beresford, Alan; Burdick, Daniel J; Chambers, Mark; Dominguez, Sara L; Drummond, Jason; Gill, Andrew; Kleinheinz, Tracy; Le Pichon, Claire E; Medhurst, Andrew D; Liu, Xingrong; Moffat, John G; Nash, Kevin; Scearce-Levie, Kimberly; Sheng, Zejuan; Shore, Daniel G; Van de Poël, Hervé; Zhang, Shuo; Zhu, Haitao; Sweeney, Zachary K

    2013-01-10

    The modulation of LRRK2 kinase activity by a selective small molecule inhibitor has been proposed as a potentially viable treatment for Parkinson's disease. By using aminopyrazoles as aniline bioisosteres, we discovered a novel series of LRRK2 inhibitors. Herein, we describe our optimization effort that resulted in the identification of a highly potent, brain-penetrant aminopyrazole LRRK2 inhibitor (18) that addressed the liabilities (e.g., poor solubility and metabolic soft spots) of our previously disclosed anilino-aminopyrimidine inhibitors. In in vivo rodent PKPD studies, 18 demonstrated good brain exposure and engendered significant reduction in brain pLRRK2 levels post-ip administration. The strategies of bioisosteric substitution of aminopyrazoles for anilines and attenuation of CYP1A2 inhibition described herein have potential applications to other drug discovery programs.

  9. Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimising the internal hydrogen bond network.

    Directory of Open Access Journals (Sweden)

    Joakim E Swedberg

    Full Text Available BACKGROUND: Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s. The smallest of these is sunflower trypsin inhibitor (SFTI-1, a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4, a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn(14 which displayed both a 125-fold increased capacity to inhibit KLK4 (K(i = 0.0386±0.0060 nM and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn(14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion. CONCLUSION/SIGNIFICANCE: These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.

  10. Designing Inhibitors of Anthrax Toxin

    Science.gov (United States)

    Nestorovich, Ekaterina M.; Bezrukov, Sergey M.

    2014-01-01

    Introduction Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates, and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded “for the development of multiscale models for complex chemical systems” once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial and error approach to a minimum. The “rational drug design” term is rather comprehensive as it includes all contemporary methods of drug discovery where serendipity and screening are substituted by the information-guided search for new and existing compounds. Successful implementation of these innovative drug discovery approaches is inevitably preceded by learning the physics, chemistry, and physiology of functioning of biological structures under normal and pathological conditions. Areas covered This article provides an overview of the recent rational drug design approaches to discover inhibitors of anthrax toxin. Some of the examples include small-molecule and peptide-based post-exposure therapeutic agents as well as several polyvalent compounds. The review also directs the reader to the vast literature on the recognized advances and future possibilities in the field. Expert opinion Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (PA-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, in our view, the situation is still insecure. The FDA’s animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Besides, unlike PA, which is known to be unstable, LF remains active in cells and in animal tissues for days. Therefore, the effectiveness of the post-exposure treatment of the individuals

  11. Quantum Chemistry Calculation of Angiotensin Converting Enzyme Inhibitors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Angiotensin Converting-Enzyme (ACE) inhibitors are potential drugs for hypertension.There are three requirements to be necessary for successful inhibition of ACE:1) a functional group capable of binding to zine in the active site (i.e.carboxylate,phosphonate,or sulfhydryl);2) a carbonyl oxygen capable of accepting a hydryogen bond from some donor residue functional groups and 3) an ionizable C-terminal carboxylate moiety which interacts with positively charged residue〔1〕. We reported active conformers of some ACE inhibitor molecules,which were derived by Distance Comparison〔2〕.In this paper,the electronic structure of the lowest energy conformers and active conformers of the ACE inhibitor molecules (Figure 1) were calculated through ab initio calculation by using Gaussian94 package.The Density Functional Theory (DFT) method and 6-31G** basis set were used 〔3〕.The calculation results were listed in Table 1.The total energies、HOMO energies and the charges of the marked atoms of all active conformers were higher than that of the correspondent lowest energy conformers.They were useful clues for designing novel analogs to inhibit the activity of ACE.

  12. The Role of RASSF1A Methylation in Cancer

    Directory of Open Access Journals (Sweden)

    Luke B. Hesson

    2007-01-01

    Full Text Available Tumour suppressor gene inactivation is critical to the pathogenesis of cancers; such loss of function may be mediated by irreversible processes such as gene deletion or mutation. Alternatively tumour suppressor genes may be inactivated via epigenetic processes a reversible mechanism that promises to be more amenable to treatment by therapeutic agents. The CpG dinucleotide is under-represented in the genome, but it is found in clusters within the promoters of some genes, and methylation of these CpG islands play a critical role in the control of gene expression. Inhibitors of the DNA methyltransferases DNMT1 and DNMT3b have been used in a clinical setting, these nucleotide analogues lack specificity but the side effects of low dose treatments were minimal and in 2004 Vidaza (5-azacitidine was licensed for use in myelodysplastic syndrome. Methylation inhibitors are also entering trials in conjunction with another class of epigenetic modifiers, the histone deacetylase inhibitors and this epigenetic double bullet offers hope of improved treatment regimes. Recently there has been a plethora of reports demonstrating epigenetic inactivation of genes that play important roles in development of cancer, including Ras-association domain family of genes. Epigenetic inactivation of RASSF1A (Ras-association domain family 1, isoform A is one of the most common molecular changes in cancer. Hypermethylation of the RASSF1A promoter CpG island silences expression of the gene in many cancers including lung, breast, prostate, glioma, neuroblastoma and kidney cancer. Several recent studies have illustrated the diagnostic and prognostic potential of RASSF1A methylation. This presents RASSF1A methylation as an attractive biomarker for early cancer detection which, for most cancers, results in improved clinical outcome. DNA methylation analysis is applicable to a range of body fluids including serum, urine, bronchioalveolar lavage and sputum. The ease with which these

  13. Vascular calcification: Inducers and inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun, E-mail: dhlee@cau.ac.kr [Department of Biomedical Engineering, Division of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} Types of vascular calcification processes. {center_dot} Inducers of vascular calcification. {center_dot} Inhibitors of vascular calcifications. {center_dot} Clinical utility for vascular calcification therapy. {center_dot} Implications for the development of new tissue engineering strategies. - Abstract: Unlike the traditional beliefs, there are mounting evidences suggesting that ectopic mineral depositions, including vascular calcification are mostly active processes, many times resembling that of the bone mineralization. Numbers of agents are involved in the differentiation of certain subpopulation of smooth muscle cells (SMCs) into the osteoblast-like entity, and the activation and initiation of extracellular matrix ossification process. On the other hand, there are factors as well, that prevent such differentiation and ectopic calcium phosphate formation. In normal physiological environments, activities of such procalcific and anticalcific regulatory factors are in harmony, prohibiting abnormal calcification from occurring. However, in certain pathophysiological conditions, such as atherosclerosis, chronic kidney disease (CKD), and diabetes, such balances are altered, resulting in abnormal ectopic mineral deposition. Understanding the factors that regulate the formation and inhibition of ectopic mineral formation would be beneficial in the development of tissue engineering strategies for prevention and/or treatment of such soft-tissue calcification. Current review focuses on the factors that seem to be clinically relevant and/or could be useful in developing future tissue regeneration strategies. Clinical utilities and implications of such factors are also discussed.

  14. ALK inhibitors, a pharmaceutical perspective

    Directory of Open Access Journals (Sweden)

    Arturo eGalvani

    2012-02-01

    Full Text Available In 2007, the ALK tyrosine kinase, already known to be translocated and activated in Anaplastic Large Cell Lymphoma, and a few other rare cancers, was described as a potential therapeutic target for a subset of non small-cell lung cancer (NSCLC patients. Clinical proof of concept, culminating in the recent approval by the FDA of the Pfizer drug Xalkori (crizotinib, formerly known as PF-02341066 followed in record time. The drug was approved together with a companion diagnostic, the Vysis ALK Break Apart FISH Probe Kit (Abbott Molecular, Inc. for detection of eligible patients. This remarkable example of the coming of age of personalized medicine in cancer therapy is hopefully only an auspice of things to come in this rapidly developing field. Perhaps unsurprisingly, however, the appearance of clinical acquired resistance to crizotinib has already been observed early on in clinical testing, with the identification of several ALK secondary point mutations which diminish drug efficacy, and which open the way for development of second-generation inhibitors. It is also emerging that acquired resistance to crizotinib may also occur through ALK-independent mechanisms, which still need to be elucidated in detail.

  15. Leflunomide, a Reversible Monoamine Oxidase Inhibitor.

    Science.gov (United States)

    Petzer, Jacobus P; Petzer, Anél

    2016-01-01

    A screening study aimed at identifying inhibitors of the enzyme, monoamine oxidase (MAO), among clinically used drugs have indicated that the antirheumatic drug, leflunomide, is an inhibitor of both MAO isoforms. Leflunomide inhibits human MAO-A and MAO-B and exhibits IC50 values of 19.1 μM and 13.7 μM, respectively. The corresponding Ki values are 17.7 μM (MAO-A) and 10.1 μM (MAO-B). Dialyses of mixtures of the MAO enzymes and leflunomide show that inhibition of the MAOs by leflunomide is reversible. The principal metabolite of leflunomide, teriflunomide (A77 1726), in contrast is not an MAO inhibitor. This study concludes that, although leflunomide is only moderately potent as an MAO inhibitor, isoxazole derivatives may represent a general class of MAO inhibitors and this heterocycle may find application in MAO inhibitor design. In this respect, MAO inhibitors are used in the clinic for the treatment of depressive illness and Parkinson's disease, and are under investigation as therapy for certain types of cancer, Alzheimer's disease and age-related impairment of cardiac function.

  16. Design and Synthesis of Caspase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    BAI; Xu

    2001-01-01

    Apoptosis (programmed cell death) is an evolutionarily conserved process of cell suicide. It requires specialized machinery which involving a family of proteases named caspases. Manipulation of apoptosis through inhibiting or activating caspases has been of great therapeutic interests in the pharmaceutical industry.  Using substrate based approach, a systematic investigation of conformationally constrained peptidomimetic inhibitors has led to the discovery of highly selective ones against selected members of the caspase family. It also resulted novel dipeptide inhibitors as useful tools and possible therapeutic agents against diseases caused by excessive apoptotic cell death. This presentation will focus on the design, synthesis and application of novel caspase inhibitors.  ……

  17. Design and Synthesis of Caspase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    BAI Xu

    2001-01-01

    @@ Apoptosis (programmed cell death) is an evolutionarily conserved process of cell suicide. It requires specialized machinery which involving a family of proteases named caspases. Manipulation of apoptosis through inhibiting or activating caspases has been of great therapeutic interests in the pharmaceutical industry. Using substrate based approach, a systematic investigation of conformationally constrained peptidomimetic inhibitors has led to the discovery of highly selective ones against selected members of the caspase family. It also resulted novel dipeptide inhibitors as useful tools and possible therapeutic agents against diseases caused by excessive apoptotic cell death. This presentation will focus on the design, synthesis and application of novel caspase inhibitors.

  18. Migrating corrosion inhibitor protection of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  19. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  20. The primary structure of Vipera ammodytes venom trypsin inhibitor I.

    Science.gov (United States)

    Ritonja, A; Meloun, B; Gubensek, F

    1983-11-14

    The primary structure of Vipera ammodytes venom trypsin inhibitor I consists of 61 amino acid residues [sequence in text]. The N-terminal group of the inhibitor is pyrrolidonecarboxylic acid. The sequential data were obtained by analysis of peptides isolated from tryptic and chymotryptic digests and by analysis of peptides derived from the hydrolysis of the aspartyl-prolyl bond of the carboxymethylated inhibitor. The primary structure of trypsin inhibitor I presented shows approximately 80% sequence homology with chymotrypsin inhibitor isolated from the venom of the same snake, and nearly 50% homology with bovine basic pancreatic trypsin inhibitor. It belongs to the Kunitz-pancreatic trypsin inhibitor family of inhibitors.

  1. Musical hallucinations treated with acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Jan Dirk eBlom

    2015-04-01

    Full Text Available Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss.

  2. Strategies for discontinuation of proton pump inhibitors

    DEFF Research Database (Denmark)

    Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M

    2014-01-01

    PURPOSE: Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. METHODS: Systematic review based on clinical studies investigating...

  3. Musical hallucinations treated with acetylcholinesterase inhibitors.

    Science.gov (United States)

    Blom, Jan Dirk; Coebergh, Jan Adriaan F; Lauw, René; Sommer, Iris E C

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss.

  4. Drug design from the cryptic inhibitor envelope.

    Science.gov (United States)

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J; Zhou, Pei

    2016-02-25

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC--an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target--access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics.

  5. Drug design from the cryptic inhibitor envelope

    Science.gov (United States)

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  6. Kinase inhibitors for advanced medullary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Martin Schlumberger

    2012-01-01

    Full Text Available The recent availability of molecular targeted therapies leads to a reconsideration of the treatment strategy for patients with distant metastases from medullary thyroid carcinoma. In patients with progressive disease, treatment with kinase inhibitors should be offered.

  7. Polypeptide Inhibitors of Mineral Scaling and Corrosion

    Science.gov (United States)

    1989-06-01

    peptides are based on natural protein inhibitors of mineral formation and generally are enriched in aspartic acid and phosphoserine. Specifically, the...the protein inhibitors of mineral formation , we evaluated several methods of preparation of phosphopeptides. These included direct polymerization of 2...number of assays have been developed to measure the ability of the peptides to inhibit mineral formation . These include methods for assessing effects on

  8. Inhibitor development in nonsevere hemophilia A

    OpenAIRE

    2014-01-01

    Hemophilia A is an X-linked inherited bleeding disorder that affects approximately 1 in 5000 male live births. It is caused by a deficient plasma level of clotting factor VIII and can be treated by the intravenous administration of factor VIII concentrates. A severe complication of the treatment with factor VIII concentrates is the development of inhibiting antibodies against factor VIII, also called inhibitors. Inhibitors challenge the treatment of hemophilia A as they inactivate factor VIII...

  9. Enzyme-inhibitor mediated red cell labelling

    Energy Technology Data Exchange (ETDEWEB)

    Ackery, D.M.; Singh, J.; Wyeth, P. (Southampton Univ. (UK). Dept. of Chemistry)

    Red blood cells contain 90% of the body's enzyme carbonic anhydrase to which aromatic sulphonamide inhibitors bind tightly. P-iodo-benzene sulphonamide (PIBS) is a lipophilic inhibitor which would afford rapid cell labelling. Radioiodinated PIBS was prepared, in high yield, by radio ion exchange in the presence of ammonium sulphate. After intravenous injection of /sup 131/I-PIBS the radiolabel was found in the blood pool.

  10. Combinatorial Optimization of Cystine-Knot Peptides towards High-Affinity Inhibitors of Human Matriptase-1

    Science.gov (United States)

    Weber, Niklas; Fabritz, Sebastian; Tomaszowski, Michael; Fittler, Heiko; Christmann, Andreas; Avrutina, Olga; Kolmar, Harald

    2013-01-01

    Cystine-knot miniproteins define a class of bioactive molecules with several thousand natural members. Their eponymous motif comprises a rigid structured core formed by six disulfide-connected cysteine residues, which accounts for its exceptional stability towards thermic or proteolytic degradation. Since they display a remarkable sequence tolerance within their disulfide-connected loops, these molecules are considered promising frameworks for peptide-based pharmaceuticals. Natural open-chain cystine-knot trypsin inhibitors of the MCoTI (Momordica cochinchinensis trypsin inhibitor) and SOTI (Spinacia oleracea trypsin inhibitor) families served as starting points for the generation of inhibitors of matriptase-1, a type II transmembrane serine protease with possible clinical relevance in cancer and arthritic therapy. Yeast surface-displayed libraries of miniproteins were used to select unique and potent matriptase-1 inhibitors. To this end, a knowledge-based library design was applied that makes use of detailed information on binding and folding behavior of cystine-knot peptides. Five inhibitor variants, four of the MCoTI family and one of the SOTI family, were identified, chemically synthesized and oxidatively folded towards the bioactive conformation. Enzyme assays revealed inhibition constants in the low nanomolar range for all candidates. One subnanomolar binder (Ki = 0.83 nM) with an inverted selectivity towards trypsin and matriptase-1 was identified. PMID:24146945

  11. Inhibiting interleukin-1 and tumor necrosis factor-α does not reduce induction of plasminogen activator inhibitor type-1 by endotoxin in rats in vivo

    NARCIS (Netherlands)

    Emeis, J.E.; Hoekzema, R.; Vos, A.F. de

    1995-01-01

    In experimental animals and humans, intravenous (IV) injection of endotoxin induces large increases in circulating plasminogen activator inhibitor type-1 (PAI-1), a major inhibitor of blood fibrinolysis. A similar increase is seen after the injection of interleukin-1 (IL-1) or of tumor necrosis

  12. Inhibiting interleukin-1 and tumor necrosis factor-α does not reduce induction of plasminogen activator inhibitor type-1 by endotoxin in rats in vivo

    NARCIS (Netherlands)

    Emeis, J.E.; Hoekzema, R.; Vos, A.F. de

    1995-01-01

    In experimental animals and humans, intravenous (IV) injection of endotoxin induces large increases in circulating plasminogen activator inhibitor type-1 (PAI-1), a major inhibitor of blood fibrinolysis. A similar increase is seen after the injection of interleukin-1 (IL-1) or of tumor necrosis fact

  13. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  14. PARP1 Inhibitors: antitumor drug design.

    Science.gov (United States)

    Malyuchenko, N V; Kotova, E Yu; Kulaeva, O I; Kirpichnikov, M P; Studitskiy, V M

    2015-01-01

    The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1-2 million molecules per cell) serving as a "sensor" for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed.

  15. Discovering anti-platelet drug combinations with an integrated model of activator-inhibitor relationships, activator-activator synergies and inhibitor-inhibitor synergies.

    Directory of Open Access Journals (Sweden)

    Federica Lombardi

    2015-04-01

    Full Text Available Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators; inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling.

  16. Selective serotonin reuptake inhibitor exposure.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  17. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Iserloh, U.; Wu, Y.; Cumming, J.N.; Pan, J.; Wang, L.Y.; Stamford, A.W.; Kennedy, M.E.; Kuvelkar, R.; Chen, X.; Parker, E.M.; Strickland, C.; Voigt, J. (Schering-Plough)

    2008-08-18

    Based on lead compound 1 identified from the patent literature, we developed novel patentable BACE-1 inhibitors by introducing a cyclic amine scaffold. Extensive SAR studies on both pyrrolidines and piperidines ultimately led to inhibitor 2f, one of the most potent inhibitors synthesized to date. The discovery and development of novel BACE-1 inhibitors incorporating a cyclic amine scaffold is described.

  18. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  19. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  20. The therapeutic potential of aromatase inhibitors.

    Science.gov (United States)

    Miller, W R; Jackson, J

    2003-03-01

    The third generation aromatase inhibitors are both remarkably potent and specific endocrine agents inhibiting aromatase activity and reducing circulating oestrogen levels in postmenopausal women to levels never previously seen. Their therapeutic potential is consequently much greater than the earlier prototype drugs. Their excellent side-effect profile also allows for potential wider indications in the treatment of oestrogen-related diseases, including breast cancer. It still remains to determine whether their potent endocrine effects translate into increased therapeutic benefit. In advanced breast cancer, aromatase inhibitors have been shown to have improved efficacy and toxicity profiles when compared with progestins, aminoglutethimide and tamoxifen. Aromatase inhibitors have also been used in the neoadjuvant setting, where they have been shown to achieve higher response rates than tamoxifen and to be more successful at downstaging tumours. Early results comparing an aromatase inhibitor with tamoxifen in the adjuvant setting in early breast cancer show anastrozole to be superior to tamoxifen in terms of both disease-free survival and a lower incidence of new contralateral tumours. There was also a more favourable side-effect profile, which has implications for potential future prophylactic treatment. Additionally, since aromatase inhibitors have different mechanisms of action, unlike antioestrogens, they may be particularly useful as chemopreventive agents if oestrogens are themselves genotoxic. Aromatase inhibitors have been used to date almost exclusively in postmenopausal women. The potential of combining them with luteinising hormone-releasing hormone analogues allows the possibility of treating premenopausal women with either oestrogen receptor-positive breast cancer or benign conditions such as cyclical breast pain, fibroadenomata, recurrent cystic disease or endometriosis. There is also the potential for their use in men with conditions such as

  1. Proteasome inhibitor treatment in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2011-01-01

    Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade(r)). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease

  2. The Effects of Class-Specific Histone Deacetylase Inhibitors on the Development of Limbs During Organogenesis.

    Science.gov (United States)

    Paradis, France-Hélène; Hales, Barbara F

    2015-11-01

    Histone deacetylases (HDACs) play a major role in chromatin remodeling, gene regulation, and cellular signaling. While the role of each class of HDAC during normal development is unclear, several HDAC inhibitors are embryotoxic; the mechanisms leading to the teratogenicity of HDAC inhibitors are not known. Here, we investigated the effects of class-specific HDAC inhibitors on the development of organogenesis-stage murine limbs. Timed-pregnant COL2A1-ECFP, COL10A1-mCherry, and COL1A1-YFP CD1 reporter mice were euthanized on gestation day 12; embryonic forelimbs were excised and cultured in vitro for 1, 3, and 6 days in the presence or absence of MS275 (a class I HDAC inhibitor), MC1568 (a class III HDAC inhibitor), Sirtinol (a class II HDAC inhibitor), or valproic acid, our positive control. Fluorescently tagged COL2A1, COL10A1, and COL1A1 served as markers of the differentiation of proliferative chondrocytes, hypertrophic chondrocytes, and osteoblasts, respectively. MS275 and valproic acid caused a reduction in expression of all three markers, suggesting effects on both chondrogenesis and osteogenesis. MC1568 had no effect on chondrocyte markers and mildly inhibited COL1A1 expression at 6 days. Sirtinol had no effect on COL2A1 expression or chondrocyte differentiation 1 day following exposure; however, it caused a drastic regression in limb cartilage and reduced the expression of all three differentiation markers to nearly undetectable levels at 6 days. MS275 and Sirtinol caused a 2.2- and 2.7-fold increase, respectively, in cleaved-caspase 3, a marker of apoptosis, suggesting embryotoxicity. These data demonstrate that inhibition of class I or III HDACs causes severe developmental toxicity and is highly teratogenic.

  3. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells.

    NARCIS (Netherlands)

    Bladergroen, B.A.; Strik, M.C.; Wolbink, A.M.; Wouters, D.; Broekhuizen, R.; Kummer, J.A.; Hack, C.E.

    2005-01-01

    The activity of granzyme B, a main effector molecule of cytotoxic T lymphocytes (CTL) and natural killer cells, is regulated by the human intracellular serpin proteinase inhibitor 9 (PI9). This inhibitor is particularly expressed by CTL and dendritic cells, in which it serves to protect these cells

  4. [Antiviral activity in vitro and pharmacokinetics of HCV entry inhibitor AVR560].

    Science.gov (United States)

    Ivashchenko, A V; Iamanushkin, P M; Mit'kin, O D; Ezhova, E V; Korzinov, O M; Bulanova, E A; Koriakova, A G; Vyshemirskaia, P V; Bychko, V V; Ivashchenko, A A

    2014-01-01

    Several novel compounds were found to be potent inhibitors of the HCV (JFH-1 isolate) infection in vitro. Human serum did not significantly reduce antiviral activity of the lead compound, AVR560 (New Guinea type 2) in in vitro infection experiments. AVR560 also did not inhibit any of the tested human CYP450 isozymes (3A4, 1A2, 2C19 and 2D6). In the pharmacokinetic studies in mice, rats and dogs, favorable pharmacokinetic profiles and good oral bioavailability were observed for AV560. Further pre-clinical studies with this novel HCV inhibitor are in progress.

  5. Protease Inhibitors from Plants with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2009-06-01

    Full Text Available Antimicrobial proteins (peptides are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides. Plants produce a variety of proteins (peptides that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins. Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents.

  6. Janus kinase inhibitors: jackpot or potluck?

    Directory of Open Access Journals (Sweden)

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  7. Resistance to AHAS inhibitor herbicides: current understanding.

    Science.gov (United States)

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  8. Evolutionary mechanisms acting on proteinase inhibitor variability.

    Science.gov (United States)

    Christeller, John T

    2005-11-01

    The interaction of proteinase inhibitors produced, in most cases, by host organisms and the invasive proteinases of pathogens or parasites or the dietary proteinases of predators, results in an evolutionary 'arms race' of rapid and ongoing change in both interacting proteins. The importance of these interactions in pathogenicity and predation is indicated by the high level and diversity of observable evolutionary activity that has been found. At the initial level of evolutionary change, recruitment of other functional protein-folding families has occurred, with the more recent evolution of one class of proteinase inhibitor from another, using the same mechanism and proteinase contact residues. The combination of different inhibitor domains into a single molecule is also observed. The basis from which variation is possible is shown by the high rate of retention of gene duplication events and by the associated process of inhibitory domain multiplication. At this level of reorganization, mutually exclusive splicing is also observed. Finally, the major mechanism by which variation is achieved rapidly is hypervariation of contact residues, an almost ubiquitous feature of proteinase inhibitors. The diversity of evolutionary mechanisms in a single class of proteins is unlikely to be common, because few systems are under similar pressure to create variation. Proteinase inhibitors are therefore a potential model system in which to study basic evolutionary process such as functional diversification.

  9. Acrosin inhibitor detection along the boar epididymis.

    Science.gov (United States)

    Maňásková-Postlerová, Pavla; Cozlová, Nina; Dorosh, Andriy; Šulc, Miroslav; Guyonnet, Benoit; Jonáková, Věra

    2016-01-01

    Epididymal sperm maturation represents a key step in the reproduction process. Spermatozoa are exposed to epididymal fluid components representing the natural environment essential for their post-testicular maturation. Changes in sperm membrane proteins are influenced by proteolytic, glycosylation and deglycosylation enzymes present in the epididymal fluid. Accordingly, the occurrence of inhibitors of these enzymes in the epididymis is very important for the regulation of sperm membrane protein processing. In the present study, we monitored acrosin inhibitor distribution in boar epididymal fluid and in spermatozoa from different segments of the organ. Using specific polyclonal antibody we registered increasing signal of the acrosin inhibitor (AI) from caput to cauda epididymis. Mass spectroscopy examination of the immunoprecipitated acrosin inhibitor (12 kDa) unequivocally identified sperm-associated acrosin inhibitor (SAAI) in the epididymal tissue. Lectin staining showed N-glycosylation in AI from boar epididymis. Protein detection of AI was supported by the results of semi-quantitative RT-PCR showing the presence of mRNA specifically coding for SAAI and similarly increasing throughout the epididymal duct, from its proximal to distal part. Additionally, the immunofluorescence technique showed the AI localization in the secretory tissue of caput, corpus and cauda epididymis, and in the acrosome region and midpiece of the sperm.

  10. CYP1A inhibition in fish gill filaments: A novel assay applied on pharmaceuticals and other chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Beijer, Kristina; Abrahamson, Alexandra; Brunstroem, Bjoern [Department of Environmental Toxicology, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden); Brandt, Ingvar, E-mail: ingvar.brandt@ebc.uu.se [Department of Environmental Toxicology, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden)

    2010-01-31

    The gill filament 7-ethoxyresorufin O-deethylase (EROD) assay was originally developed as a biomarker for cytochrome P4501A (CYP1A) induction by Ah-receptor agonists in water. In this study, the assay was adapted to measure inhibition of CYP1A activity in fish gill filaments ex vivo. The experiments were carried out using gill arch filaments from {beta}-naphthoflavone ({beta}NF)-exposed three-spined stickleback (Gasterosteus aculeatus). Candidate CYP1A inhibitors were added to the assay buffer. Nine selected pharmaceuticals and five known or suspected CYP1A-modulating chemicals were examined with regard to their ability to reduce EROD activity in gill filaments. Ellipticine, a well characterized CYP1A inhibitor, was the most effective inhibitor of the compounds tested. At a concentration in the assay buffer of 1 {mu}M the antifungal azoles ketoconazole, miconazole and bitertanol, and the plant flavonoid acacetin reduced gill EROD activity by more than 50%, implying IC50 values below 1 {mu}M. These compounds have previously been shown to inhibit EROD activity in liver microsomes from fish and mammals at similar concentrations. The proton pump inhibitor omeprazole reduced the gill EROD activity by 39% at 10 {mu}M. It is concluded that the modified gill filament EROD assay is useful to screen for waterborne pollutants that inhibit catalytic CYP1A activity in fish gills.

  11. SHH inhibitors for the treatment of medulloblastoma.

    Science.gov (United States)

    Samkari, Ayman; White, Jason; Packer, Roger

    2015-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. It is currently stratified into four molecular variants through the advances in transcriptional profiling. They include: wingless, sonic hedgehog (SHH), Group III, and Group IV. The SHH group is characterized by constitutive activation of the SHH signaling pathway, and genetically characterized by mutations in patched homolog 1 (PTCH1) or other downstream pathway mutations. SHH inhibitors have become of great clinical interest in treating SHH-driven medulloblastoma. Many inhibitors are currently in different stages of development, some already approved for other SHH-driven cancers, such as basal cell carcinoma. In vitro and in vivo medulloblastoma studies have shown efficacy and these findings have been translated into Phase I and II clinical trials. In this review, we present an overview of SHH medulloblastoma, as well as a discussion of currently available SHH inhibitors, and the challenges associated with their use.

  12. Corrosion inhibitors; Los inhibidores de corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Godinez, L. A.; Meas, Y.; Ortega-Borges, R.; Corona, A.

    2003-07-01

    In this paper, we briefly describe the characteristics, cost and electrochemical nature of the corrosion phenomena as well as some of the technologies that are currently employed to minimize its effect. The main subject of the paper however, deals with the description, classification and mechanism of protection of the so-called corrosion inhibitors. Examples of the use of these substances in different aggressive environments are also presented as means to show that these compounds, or their combination, can in fact be used as excellent and relatively cheap technologies to control the corrosion of some metals. In the last part of the paper, the most commonly used techniques to evaluate the efficiency and performance of corrosion inhibitors are presented as well as some criteria to make a careful and proper selection of a corrosion inhibitor technology in a given situation. (Author) 151 refs.

  13. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    Science.gov (United States)

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  14. Drug screening for influenza neuraminidase inhibitors

    Institute of Scientific and Technical Information of China (English)

    LIU; Ailin; CAO; Hongpeng; DU; Guanhua

    2005-01-01

    Neuraminidase (NA) is one of the most important targets to screen the drugs of anti-influenza virus A and B. After virtual screening approaches were applied to a compound database which possesses more than 10000 compound structures, 160 compounds were selected for bioactivity assay, then a High Throughput Screening (HTS) model established for influenza virus NA inhibitors was applied to detect these compounds. Finally, three compounds among them displayed higher inhibitory activities, the range of their IC50 was from 0.1 μmol/L to 3μmol/L. Their structural scaffolds are novel and different from those of NA inhibitors approved for influenza treatment, and will be useful for the design and research of new NA inhibitors. The resuit indicated that the combination of virtual screening with HTS was very significant to drug screening and drug discovery.

  15. Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis

    Directory of Open Access Journals (Sweden)

    Kure Elin H

    2009-06-01

    Full Text Available Abstract Background Clinical trials where cancer patients were treated with protease inhibitors have suggested that the serine protease, prostasin, may act as a tumour suppressor. Prostasin is proteolytically activated by the serine protease, matriptase, which has a very high oncogenic potential. Prostasin is inhibited by protease nexin-1 (PN-1 and the two isoforms encoded by the mRNA splice variants of hepatocyte growth factor activator inhibitor-1 (HAI-1, HAI-1A, and HAI-1B. Methods Using quantitative RT-PCR, we have determined the mRNA levels for prostasin and PN-1 in colorectal cancer tissue (n = 116, severe dysplasia (n = 13, mild/moderate dysplasia (n = 93, and in normal tissue from the same individuals. In addition, corresponding tissues were examined from healthy volunteers (n = 23. A part of the cohort was further analysed for the mRNA levels of the two variants of HAI-1, here denoted HAI-1A and HAI-1B. mRNA levels were normalised to β-actin. Immunohistochemical analysis of prostasin and HAI-1 was performed on normal and cancer tissue. Results The mRNA level of prostasin was slightly but significantly decreased in both mild/moderate dysplasia (p PN-1 was more that two-fold elevated in colorectal cancer tissue as compared to healthy individuals (p HAI-1A and HAI-1B mRNAs showed the same patterns of expression. Immunohistochemistry showed that prostasin is located mainly on the apical plasma membrane in normal colorectal tissue. A large variation was found in the degree of polarization of prostasin in colorectal cancer tissue. Conclusion These results show that the mRNA level of PN-1 is significantly elevated in colorectal cancer tissue. Future studies are required to clarify whether down-regulation of prostasin activity via up regulation of PN-1 is causing the malignant progression or if it is a consequence of it.

  16. Hereditary angioedema with normal C1 inhibitor.

    Science.gov (United States)

    Bork, Konrad

    2013-11-01

    Until recently it was assumed that hereditary angioedema was a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity, and protein in plasma were described. Since then, numerous patients and families with that condition have been reported. Most of the patients were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. In some families mutations in the coagulation factor XII (Hageman factor) gene were detected.

  17. Rational design of protein kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Yarmoluk S. M.

    2013-07-01

    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  18. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

    Science.gov (United States)

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong

    2014-03-15

    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts.

  19. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites.

    Science.gov (United States)

    Giannini, Giuseppe; Battistuzzi, Gianfranco

    2015-02-01

    A set of compounds, previously selected as potent Hsp90α inhibitors, has been studied on a panel of human parasites. 5-Aryl-3,4-isoxazolediamide derivatives (1) were active against two protozoa, Trypanosoma brucei rhodesiense and Plasmodium falciparum, with a good tolerability toward cytotoxicity on non-malignant L6 rat myoblast cell line, unlike the 1,5-diaryl,4-carboxamides-1,2,3-triazole derivatives (2) which, while showing a single-digit nM range activity against the same protozoa, were also highly cytotoxic on L6 cells. In a subsequent in vivo study, two isoxazolediamide derivatives, 1a and 1b, were very efficacious on the sleeping sickness-causing agent with a clear parasitaemia during treatment. These data, however, showed that not all protozoa are sensitive to Hsp90 inhibitors, as well as not all Hsp90 inhibitors are equally active on parasites.

  20. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium–glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents

    Directory of Open Access Journals (Sweden)

    Takahiro Oguma

    2016-12-01

    Full Text Available We investigated whether structurally different sodium–glucose cotransporter (SGLT 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4 inhibitors, could enhance glucagon-like peptide-1 (GLP-1 secretion during oral glucose tolerance tests (OGTTs in rodents. Three different SGLT inhibitors—1-(β-d-Glucopyranosyl-4-chloro-3-[5-(6-fluoro-2-pyridyl-2-thienylmethyl]benzene (GTB, TA-1887, and canagliflozin—were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1 elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus.

  1. Main: TGA1ANTPR1A [PLACE

    Lifescience Database Archive (English)

    Full Text Available TGA1ANTPR1A S000247 16-Feb-2001 (last modified) seki TGA1a binding site in tobacco ...(N.t.) PR1a gene; as-1-like sequence; Contains two TGACG elements reminiscent of activation sequence-1 (as-1...); See other as-1-like sequences; TGA1a is preferentially expressed in root tip meristems; TGA1a may contrib...ute to the expression of GST isoenzymes, especially in root tip meristems; TGA1a;... as-1; PR1a; xenobiotic stress; root; tip; meristem; tobacco (Nicotiana tabacum) CGTCATCGAGATGACG ...

  2. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6.

    Science.gov (United States)

    Barrie, Mahmoud B; Stout, Heather W; Abougergi, Marwan S; Miller, Bonnie C; Thiele, Dwain L

    2004-05-15

    Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.

  3. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death.

    Science.gov (United States)

    Probst, Lukas; Dächert, Jasmin; Schenk, Barbara; Fulda, Simone

    2017-09-15

    Ferroptosis has recently been identified as a mode of programmed cell death. However, little is yet known about the signaling mechanism. Here, we report that lipoxygenases (LOX) contribute to the regulation of RSL3-induced ferroptosis in acute lymphoblastic leukemia (ALL) cells. We show that the glutathione (GSH) peroxidase 4 (GPX4) inhibitor RSL3 triggers lipid peroxidation, production of reactive oxygen species (ROS) and cell death in ALL cells. All these events are impeded in the presence of Ferrostatin-1 (Fer-1), a small-molecule inhibitor of lipid peroxidation. Also, lipid peroxidation and ROS production precede the induction of cell death, underscoring their contribution to cell death upon exposure to RSL3. Importantly, LOX inhibitors, including the selective 12/15-LOX inhibitor Baicalein and the pan-LOX inhibitor nordihydroguaiaretic acid (NDGA), protect ALL cells from RSL3-stimulated lipid peroxidation, ROS generation and cell death, indicating that LOX contribute to ferroptosis. RSL3 triggers lipid peroxidation and cell death also in FAS-associated Death Domain (FADD)-deficient cells which are resistant to death receptor-induced apoptosis indicating that the induction of ferroptosis may bypass apoptosis resistance. By providing new insights into the molecular regulation of ferroptosis, our study contributes to the development of novel treatment strategies to reactivate programmed cell death in ALL. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents.

    Science.gov (United States)

    Piano, Valentina; Benjamin, Daniel I; Valente, Sergio; Nenci, Simone; Marrocco, Biagina; Mai, Antonello; Aliverti, Alessandro; Nomura, Daniel K; Mattevi, Andrea

    2015-11-20

    Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-active pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy.

  5. A small molecule inhibitor of PAI-1 protects against doxorubicin-induced cellular senescence.

    Science.gov (United States)

    Ghosh, Asish K; Rai, Rahul; Park, Kitae E; Eren, Mesut; Miyata, Toshio; Wilsbacher, Lisa D; Vaughan, Douglas E

    2016-11-08

    Doxorubicin, an anthracycline antibiotic, is a commonly used anticancer drug. In spite of its widespread usage, its therapeutic effect is limited by its cardiotoxicity. On the cellular level, Doxorubicin-induced cardiotoxicity manifests as stress induced premature senescence. Previously, we demonstrated that plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of serine proteases, is an important biomarker and regulator of cellular senescence and aging. Here, we tested the hypothesis that pharmacological inhibition of cellular PAI-1 protects against stress- and aging-induced cellular senescence and delineated the molecular basis of protective action of PAI-1 inhibition. Results show that TM5441, a potent small molecule inhibitor of PAI-1, effectively prevents Doxorubicin-induced senescence in cardiomyocytes, fibroblasts and endothelial cells. TM5441 exerts its inhibitory effect on Doxorubicin-induced cellular senescence by decreasing reactive oxygen species generation, induction of antioxidants like catalase and suppression of stress-induced senescence cadre p53, p21, p16, PAI-1 and IGFBP3. Importantly, TM5441 also reduces replicative senescence of fibroblasts. Together these results for the first time demonstrate the efficacy of PAI-1 inhibitor in prevention of Doxorubicin-induced and replicative senescence in normal cells. Thus PAI-1 inhibitor may form an important adjuvant component of chemotherapy regimens, limiting not only Doxorubicin-induced cardiac senescence but also ameliorating the prothrombotic profile.

  6. Metabolic interactions of central nervous system medications and selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Naranjo, C A; Sproule, B A; Knoke, D M

    1999-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are prescribed alone and in combination with other psychotropic medications in the treatment of a variety of psychiatric disorders. Such combinations create the potential for pharmacokinetic interactions by affecting the activity of the cytochromes P450 (CYP450), drug metabolizing oxidative enzymes. SSRIs are not equivalent in their potential for interactions when combined with other central nervous system (CNS) medication. Generally citalopram and sertraline are characterized by weaker inhibition of CYP450 enzymes and, therefore, hold less potential for interaction than the other SSRIs. Paroxetine potently inhibits CYP2D6, which can result in increased neuroleptic serum concentrations, accompanied by increased CNS side-effects. Similarly, as a potent inhibitor of CYP2D6, fluoxetine can increase serum concentrations of neuroleptics and antidepressants and numerous case reports have documented concomitant adverse events. Fluoxetine also inhibits CYP3A and CYP2C19, increasing serum concentrations of some benzodiazepines. Fluvoxamine is a potent inhibitor of CYP1A2, a moderate inhibitor of CYP3A and a mild inhibitor of CYP2D6. Therefore, interactions with clozapine and benzodiazepines are evident.

  7. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use.

    Directory of Open Access Journals (Sweden)

    Joost C M Uitdehaag

    Full Text Available The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1 a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2 a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013, and for six of these drugs, the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR, ABL1 and BRAF(V600E-driven cell growth, and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors, we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action.

  8. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available BACKGROUND: Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear. METHODOLOGY AND PRINCIPAL FINDINGS: Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the

  9. [Application of process engineering to remove lignocellulose fermentation inhibitors].

    Science.gov (United States)

    Wang, Lan; Xia, Menglei; Chen, Hongzhang

    2014-05-01

    Fermentation inhibitors are toxic to cells, which is one of the bottlenecks for lignocellulose bio-refinery process. How to remove those inhibitors serves a key role in the bioconversion of lignocellulose. This article reviews the sources and the types of the inhibitors, especially the updated removal strategies including physical methods, chemical methods, biological methods and inhibitor-tolerant strain construction strategies. Based on these, we introduce a new bio-refinery model named "fractional conversion", which reduces the production of inhibitors at pretreatment stage, and a novel in situ detoxification method named "fermentation promoter exploitation technology". This review could provide new research ideas on the removal of fermentation inhibitors.

  10. Developmental expression of a catalase inhibitor in maize

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, J.C.; Scandalios, J.G.

    1976-01-01

    The expression of an endogenous catalase inhibitor has been studied during development of Zea mays. In the 3-day seedling, the inhibitor is expressed primarily in the scutellum and in the aleurone layer of the endosperm. These tissues also show the highest catalase activity at this stage. Inhibitor expression has also been studied temporally in the scutellum, roots, and shoot over the first 12 days of germination. Inhibitor expression shows an inverse relationship with catalase activity in the scutellum and in the shoot. The relationship is less rigid in the root, due probably to the low levels of inhibitor found in that tissue. The role of the inhibitor in catalase regulation is discussed.

  11. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  12. TLC bioautographic method for detecting lipase inhibitors.

    Science.gov (United States)

    Hassan, Abdel Moniem Sadek

    2012-01-01

    Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC bioautographic assay has previously been established for the detection of acetylcholinesterase inhibitors but not for lipases. Development of a TLC bioautographic method for detecting lipase inhibitors in plant extracts. After migration of the plant extracts, the TLC plate was sprayed with α-naphtyl acetate and enzyme solutions before incubation at 37°C for 20 min. Finally, the solution of Fast Blue B salt was sprayed onto the TLC plate giving a purple background colouration. Lipase inhibitors were visualised as white spots on the TLC plates. Orlistat (a known lipase inhibitor) inhibited lipase down to 0.01 µg. Methanolic extracts of Camellia sinensis (L.) kuntz and Rosmarinus officinalis L after migration on TLC gave enzymatic inhibition when applied in amounts of 82 and 56 µg, respectively. On the other hand the methanolic extract of Morus alba leaves did not exhibit any lipase inhibitory activity. The screening test was able to detect lipase inhibition by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Protease inhibitor mediated resistance to insects

    NARCIS (Netherlands)

    Outchkourov, N.S.

    2003-01-01

    Protease inhibitors (PIs) are among the defensive molecules that plants produce in order to defend themselves against herbivores. A major aim of this thesis is to develop novel insect resistance traits usingheterologous, non-plant PIs. Prerequisite for the success of the th

  14. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases

    Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based dru

  15. Inhibitors of p21-activated kinases (PAKs).

    Science.gov (United States)

    Rudolph, Joachim; Crawford, James J; Hoeflich, Klaus P; Wang, Weiru

    2015-01-08

    The p21-activated kinase (PAK) family of serine/threonine protein kinases plays important roles in cytoskeletal organization, cellular morphogenesis, and survival, and members of this family have been implicated in many diseases including cancer, infectious diseases, and neurological disorders. Owing to their large and flexible ATP binding cleft, PAKs, particularly group I PAKs (PAK1, -2, and -3), are difficult to drug; hence, few PAK inhibitors with satisfactory kinase selectivity and druglike properties have been reported to date. Examples are a recently discovered group II PAK (PAK4, -5, -6) selective inhibitor series based on a benzimidazole core, a group I PAK selective series based on a pyrido[2,3-d]pyrimidine-7-one core, and an allosteric dibenzodiazepine PAK1 inhibitor series. Only one compound, an aminopyrazole based pan-PAK inhibitor, entered clinical trials but did not progress beyond phase I trials. Clinical proof of concept for pan-group I, pan-group II, or PAK isoform selective inhibition has yet to be demonstrated.

  16. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases

    Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based

  17. Aromatase inhibitors in stimulated IVF cycles

    DEFF Research Database (Denmark)

    Papanikolaou, Evangelos G; Polyzos, Nikolaos P; Al Humaidan, Peter Samir Heskjær

    2011-01-01

    Aromatase inhibitors have been introduced as a new treatment modality that could challenge clomiphene citrate as an ovulation induction regiment in patients with PCOS. Although several randomized trials have been conducted regarding their use as ovulation induction agents, only few trials are ava...

  18. Novel proteinase inhibitor promotes resistance to insects

    Science.gov (United States)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  19. The Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Pedersen, Katrine Egelund; Christensen, Anni

    Plasminogen activator inhibitor type-1 (PAI-1) has three potential sites for N-linked glycosylation, including Asn209Tyr210Thr211, Asn265Met266Thr267, and Asn329Glu330Ser331. Using a HEK293 expression system, we have made mutants with Asp or Gln substitutions of the Asn residue in each of these s...

  20. Corrosion inhibitors for intermediate cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Falk, I.; Suhr, L.

    1985-04-01

    The selected inhibitors were tested for heat and radiation stability and corrosion protection on the bench scale. Based on the results from these tests two of the products were selected, Bycoguard 81 and Bycoguard MP4S for continuing corrosion tests in an autoclave loop at 90 degrees C and 120 degrees C. Oxygen saturated deionized water with an addition of 1 ppm chloride was recirculated in the loop. Samples of copper and carbon steel were exposed to the water in the autoclave for periods up to 10 weeks. The purpose of this project was to find a substitute for hydrazine and chromates. Besides good corrosion protection qualities the toxic and environmental effect of the inhibitors should be minimal. The investigation has shown that the copper inhibitor BTA (benzotriazole) loses its corrosion protection qualities at a water temperature of 120 degrees C. The protection effects at 90 degrees C were satisfactory for both of the materials. The corrosion rates measured were 0.01 mm/y or less for the copper and carbon steel samples. The environment in the autoclave during the testing was more corrosive than is to be found in intermediate cooling systems. Due to the low corrosion rates measured the two inhibitors are to be recommended as alternatives to hydrazine and chromates.

  1. Novel bis-arylalkylamines as myeloperoxidase inhibitors

    DEFF Research Database (Denmark)

    Aldib, Iyas; Gelbcke, Michel; Soubhye, Jalal;

    2016-01-01

    Human myeloperoxidase (MPO) plays an important role in innate immunity but also aggravates tissue damage by oxidation of biomolecules at sites of inflammation. As a result from a recent high-throughput virtual screening approach for MPO inhibitors, bis-2,2'-[(dihydro-1,3(2H,4H) pyrimidinediyl)bis...

  2. A Fluorescent Broad-Spectrum Proteasome Inhibitor

    NARCIS (Netherlands)

    Verdoes, Martijn; Florea, Bogdan I.; Menendez-Benito, Victoria; Maynard, Christa J.; Witte, Martin D.; Linden, Wouter A. van der; Nieuwendijk, Adrianus M.C.H. van den; Hofmann, Tanja; Berkers, Celia R.; Leeuwen, Fijs W.B. van; Groothuis, Tom A.; Leeuwenburgh, Michiel A.; Ovaa, Huib; Neefjes, Jacques J.; Filippov, Dmitri V.; Marel, Gijs A. van der; Dantuma, Nico P.; Overkleeft, Herman S.

    2006-01-01

    The proteasome is an essential evolutionary conserved protease involved in many regulatory systems. Here, we describe the synthesis and characterization of the activity-based, fluorescent, and cell-permeable inhibitor Bodipy TMR-Ahx3L3VS (MV151), which specifically targets all active subunits of the

  3. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    mortality after heart attack (6), and RU486, which is used as emergency birth control (7). New NR inhibitors would most likely be useful for...mifepristone and levonorgestrel when used for emergency contraception. Hum Reprod Update 10:341-348 8. Webb P NN, Chiellini G, Yoshihara HA, Cunha Lima ST

  4. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2015-01-01

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  5. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp) 3 scarcely dissolves

  6. Bolstering your armamentarium with SGLT2 inhibitors.

    Science.gov (United States)

    Novak, Lucia M; Kruger, Davida F

    2017-10-18

    Sodium-glucose cotransporter-2 inhibitors have a unique mechanism of action in the kidneys that causes glucosuria, which lowers plasma glucose. They are also associated with reduced body weight and BP, and a low incidence of hypoglycemia. This article reviews the pharmacologic profiles and clinical implications of canagliflozin, dapagliflozin, and empagliflozin.

  7. Structure-Based Design of Ricin Inhibitors

    Directory of Open Access Journals (Sweden)

    Jon D. Robertus

    2011-10-01

    Full Text Available Ricin is a potent cytotoxin easily purified in large quantities. It presents a significant public health concern due to its potential use as a bioterrorism agent. For this reason, extensive efforts have been underway to develop antidotes against this deadly poison. The catalytic A subunit of the heterodimeric toxin has been biochemically and structurally well characterized, and is an attractive target for structure-based drug design. Aided by computer docking simulations, several ricin toxin A chain (RTA inhibitors have been identified; the most promising leads belonging to the pterin family. Development of these lead compounds into potent drug candidates is a challenging prospect for numerous reasons, including poor solubility of pterins, the large and highly polar secondary binding pocket of RTA, as well as the enzyme’s near perfect catalytic efficiency and tight binding affinity for its natural substrate, the eukaryotic ribosome. To date, the most potent RTA inhibitors developed using this approach are only modest inhibitors with apparent IC50 values in the 10−4 M range, leaving significant room for improvement. This review highlights the variety of techniques routinely employed in structure-based drug design projects, as well as the challenges faced in the design of RTA inhibitors.

  8. Phenyltriazolinones as potent factor Xa inhibitors.

    Science.gov (United States)

    Quan, Mimi L; Pinto, Donald J P; Rossi, Karen A; Sheriff, Steven; Alexander, Richard S; Amparo, Eugene; Kish, Kevin; Knabb, Robert M; Luettgen, Joseph M; Morin, Paul; Smallwood, Angela; Woerner, Francis J; Wexler, Ruth R

    2010-02-15

    We have discovered that phenyltriazolinone is a novel and potent P1 moiety for coagulation factor Xa. X-ray structures of the inhibitors with a phenyltriazolinone in the P1 position revealed that the side chain of Asp189 has reoriented resulting in a novel S1 binding pocket which is larger in size to accommodate the phenyltriazolinone P1 substrate.

  9. Combined multi-pharmacophore, molecular docking and molecular dynamic study for discovery of promising MTH1 inhibitors

    Science.gov (United States)

    Dai, Duoqian; Zhou, Lu; Zhu, Xiaohong; You, Rong; Zhong, Liangliang

    2017-06-01

    MutT homolog 1 (MTH1), a nudix phosphohydrolase enzyme participates in the process of repairing of DNA damage by hydrolyzing oxidized deoxy-ribonucleoside triphosphate in cancer cells, is regarded as a potential target for anticancer therapy. In order to seek for promising inhibitor of MTH1, structured-based pharmacophore and 3D-QSAR pharmacophore hypotheses combine with the ADMET analysis and Lipinski's rule of five were used for screening the public molecules libraries (Asinex, Ibscreen and Natural). Then molecular docking studies were performed on screened hits via various docking programs (Glide SP, GOLD and Glide XP), five molecules with three scaffolds were picked out as potential inhibitors against MTH1. Eventually, 20 ns molecular dynamics simulation was implemented on the potential inhibitors. The RMSD (Root Mean Square Deviation) values were used to illustrate bind stability between potential molecules and MTH1. Therefore, the five hits may be considered as promising MTH1 inhibitors by all above studies.

  10. Cost of care of haemophilia with inhibitors.

    Science.gov (United States)

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors.

  11. Dermatologic adverse events to chemotherapeutic agents, Part 2: BRAF inhibitors, MEK inhibitors, and ipilimumab.

    Science.gov (United States)

    Choi, Jennifer Nam

    2014-03-01

    The advent of novel targeted chemotherapeutic agents and immunotherapies has dramatically changed the arena of cancer treatment in recent years. BRAF inhibitors, MEK inhibitors, and ipilimumab are among the newer chemotherapy drugs that are being used at an increasing rate. Dermatologic adverse events to these medications are common, and it is important for dermatologists and oncologists alike to learn to recognize and treat such side effects in order to maintain both patients' quality of life and their anticancer treatment. This review describes the cutaneous side effects seen with BRAF inhibitors (eg, maculopapular eruption, photosensitivity, squamoproliferative growths, melanocytic proliferations), MEK inhibitors (eg, papulopustular eruption), and ipilimumab (eg, maculopapular eruption, vitiligo), with a mention of vismodegib and anti-PD-1 agents.

  12. Calcineurin inhibitor minimisation versus continuation of calcineurin inhibitor treatment for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, Andre; Chan, An-Wen;

    2012-01-01

    The therapeutic success of liver transplantation has been largely attributable to the development of effective immunosuppressive treatment regimens. In particular, calcineurin inhibitors were essential in reducing acute rejection and improving early survival. Currently, more than 90% of all liver...

  13. Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX.

    Science.gov (United States)

    Yang, Ke-Wu; Cheng, Xu; Zhao, Chuan; Liu, Cheng-Cheng; Jia, Chao; Feng, Lei; Xiao, Jian-Min; Zhou, Li-Sheng; Gao, Hui-Zhou; Yang, Xia; Zhai, Le

    2011-12-01

    In an effort to develop inhibitors of VanX, the phosphonamidate analogs of D-Ala-D-Ala dipeptides, N-[(1-aminoethyl) hydroxyphosphinyl]-glycine (1a), -alanine (1b), -valine (1c), -leucine (1d) and -phenylalanine (1e) were synthesized, characterized and evaluated using recombinant VanX. The crystal structure of the intermediate 6d was obtained (Deposition number: CCDC 839134), and structural analysis revealed that it is orthorhombic with a space group P2(1)2(1)2(1), the bond length of P-N is 1.62Å and angle of C-N-P is 123.6°. Phosphonamidate 1(a-e) showed to be inhibitors of VanX with IC(50) values of 0.39, 0.70, 1.12, 2.82, and 4.13mM, respectively, which revealed that the inhibition activities of the phosphonamidates were dependent on the size of R-substituent of them, with the best inhibitor 1a having the smallest substituent. Also, 1a showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with a MIC value of 0.25 μg/ml.

  14. Desvenlafaxine succinate: A new serotonin and norepinephrine reuptake inhibitor.

    Science.gov (United States)

    Deecher, Darlene C; Beyer, Chad E; Johnston, Grace; Bray, Jenifer; Shah, S; Abou-Gharbia, M; Andree, Terrance H

    2006-08-01

    The purpose of this study was to characterize a new chemical entity, desvenlafaxine succinate (DVS). DVS is a novel salt form of the isolated major active metabolite of venlafaxine. Competitive radioligand binding assays were performed using cells expressing either the human serotonin (5-HT) transporter (hSERT) or norepinephrine (NE) transporter (hNET) with K(i) values for DVS of 40.2 +/- 1.6 and 558.4 +/- 121.6 nM, respectively. DVS showed weak binding affinity (62% inhibition at 100 microM) at the human dopamine (DA) transporter. Inhibition of [3H]5-HT or [3H]NE uptake by DVS for the hSERT or hNET produced IC50 values of 47.3 +/- 19.4 and 531.3 +/- 113.0 nM, respectively. DVS (10 microM), examined at a large number of nontransporter targets, showed no significant activity. DVS (30 mg/kg orally) rapidly penetrated the male rat brain and hypothalamus. DVS (30 mg/kg orally) significantly increased extracellular NE levels compared with baseline in the male rat hypothalamus but had no effect on DA levels using microdialysis. To mimic chronic selective serotonin reuptake inhibitor treatment and to block the inhibitory 5-HT(1A) autoreceptors, a 5-HT(1A) antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclo hexanecarboxamide maleate salt (WAY-100635) (0.3 mg/kg s.c.), was administered with DVS (30 mg/kg orally). 5-HT increased 78% compared with baseline with no additional increase in NE or DA levels. In conclusion, DVS is a new 5-HT and NE reuptake inhibitor in vitro and in vivo that demonstrates good brain-to-plasma ratios, suggesting utility in a variety of central nervous system-related disorders.

  15. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    Science.gov (United States)

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.

  16. Interferon Beta-1a Intramuscular Injection

    Science.gov (United States)

    Interferon beta-1a intramuscular injection is used to reduce the number of episodes of symptoms and slow ... and problems with vision, speech, and bladder control). Interferon beta-1a is in a class of medications ...

  17. Interferon Beta-1a Subcutaneous Injection

    Science.gov (United States)

    Interferon beta-1a subcutaneous injection is used to reduce episodes of symptoms and slow the development of ... and problems with vision, speech, and bladder control). Interferon beta-1a is in a class of medications ...

  18. Minimum Data Set Q1a Report

    Data.gov (United States)

    U.S. Department of Health & Human Services — The MDS Q1a report summarizes, by state and county, percentages of residents that answered Yes to Q1a - Residents expresses or indicates preference to return to the...

  19. Comparative Study on the Protease Inhibitors from Fish Eggs

    Institute of Scientific and Technical Information of China (English)

    Ustadi; K.Y.Kim; S.M.Kim

    2005-01-01

    The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and 16.8kDa, respectively. The specific inhibitory activity of glassfish egg protease inhibitor was the highest followed by those of Pacific herring and Alaska pollock in order. The specific inhibitory activity and purity of glassfish egg protease inhibitor were 19.70 U mg-1 protein and 164.70 folds of purification, respectively. Glassfish egg protease inhibitor was reasonably stable at 50 - 65 ℃ and pH 8,which was more stable at high temperature and pH than protease inhibitors from the other fish species. Glassfish egg protease inhibitor was noncompetitive with inhibitor constant (Ki) of 4.44 nmol L-1.

  20. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes

    Science.gov (United States)

    Eagling, Victoria A; Tjia, John F; Back, David J

    1998-01-01

    Aims Chemical inhibitors of cytochrome P450 (CYP) are a useful tool in defining the role of individual CYPs involved in drug metabolism. The aim of the present study was to evaluate the selectivity and rank the order of potency of a range of isoform-selective CYP inhibitors and to compare directly the effects of these inhibitors in human and rat hepatic microsomes. Methods Four chemical inhibitors of human cytochrome P450 isoforms, furafylline (CYP1A2), sulphaphenazole (CYP2C9), diethyldithiocarbamate (CYP2E1), and ketoconazole (CYP3A4) were screened for their inhibitory specificity towards CYP-mediated reactions in both human and rat liver microsomal preparations. Phenacetin O-deethylation, tolbutamide 4-hydroxylation, chlorzoxazone 6-hydroxylation and testosterone 6β-hydroxylation were monitored for enzyme activity. Results Furafylline was a potent, selective inhibitor of phenacetin O-deethylation (CYP1A2-mediated) in human liver microsomes (IC50 = 0.48 μm), but inhibited both phenacetin O-deethylation and tolbutamide 4-hydroxylation (CYP2C9-mediated) at equimolar concentrations in rat liver microsomes (IC50 = 20.8 and 24.0 μm respectively). Sulphaphenazole demonstrated selective inhibition of tolbutamide hydroxylation in human liver microsomes but failed to inhibit this reaction in rat liver microsomes. DDC demonstrated a low level of selectivity as an inhibitory probe for chlorzoxazone 6-hydroxylation (CYP2E1-mediated). DDC also inhibited testosterone 6β-hydroxylation (CYP3A-mediated) in man and rat, and tolbutamide 4-hydroxylase activity in rat. Ketoconazole was a very potent, selective inhibitor of CYP3A4 activity in human liver (IC50 = 0.04 μm). Although inhibiting CYP3A in rat liver it also inhibited all other reactions at concentrations ≤5 μm. Conclusions It is evident that CYP inhibitors do not exhibit the same selectivity in human and rat liver microsomes. This is due to differential selectivity of the inhibitors and/or differences in the CYP

  1. [Clinical survey of tizanidine-induced adverse effects--impact of concomitant drugs providing cytochrome P450 1A2 modification--].

    Science.gov (United States)

    Momo, Kenji; Homma, Masato; Matsumoto, Sayaka; Sasaki, Tadanori; Kohda, Yukinao

    2013-01-01

    The drug-drug interactions of tizanidine and cytochrome (CYP) P450 1A2 inhibitors, which potentially alter the hepatic metabolism of tizanidine, were investigated by retrospective survey of medical records with regard to prescription. One thousand five hundred sixty-three patients treated with tizanidine at University of Tsukuba Hospital were investigated. Of those, 713 patients (45.6%) were treated with coadministration of tizanidine and CYP1A2 inhibitors (37 drugs). The patients who received a combination of tizanidine and CYP1A2 inhibitors were characterized as elderly, having multiple diseases, and taking a large number of comedications (over 10 drugs) for a long period as compared with the patients who did not receive CYP1A2 inhibitors. Tizanidine-induced adverse effects were examined in 100 patients treated with coadministration of tizanidine and 8 CYP1A2 inhibitors. Adverse effects (e.g., drowsiness: 10 patients; low blood pressure: 9 patients; low heart rate: 9 patients) were observed in 23 patients (23%) 8±10 days after CYP1A2 inhibitors were coadministered. The patients with tizanidine-induced adverse effects were of older age (64.3±9.8 vs. 57.5±18.1 years, p<0.05) and received a higher daily dose of tizanidine (3.00±0.74 vs. 2.56±0.86 mg/day, p<0.05) than the patients without adverse effects. The present results suggest that coadministration of tizanidine and CYP1A2 inhibitors enhances tizanidine-induced adverse effects, especially in elderly patients treated with a higher dose of tizanidine.

  2. Identification of neuron selective androgen receptor inhibitors.

    Science.gov (United States)

    Otto-Duessel, Maya; Tew, Ben Yi; Vonderfecht, Steven; Moore, Roger; Jones, Jeremy O

    2017-05-26

    To identify neuron-selective androgen receptor (AR) signaling inhibitors, which could be useful in the treatment of spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease, a neuromuscular disorder in which deterioration of motor neurons leads to progressive muscle weakness. Cell lines representing prostate, kidney, neuron, adipose, and muscle tissue were developed that stably expressed the CFP-AR-YFP FRET reporter. We used these cells to screen a library of small molecules for cell type-selective AR inhibitors. Secondary screening in luciferase assays was used to identify the best cell-type specific AR inhibitors. The mechanism of action of a neuron-selective AR inhibitor was examined in vitro using luciferase reporter assays, immunofluorescence microscopy, and immunoprecipitations. Rats were treated with the most potent compound and tissue-selective AR inhibition was examined using RT-qPCR of AR-regulated genes and immunohistochemistry. We identified the thiazole class of antibiotics as compounds able to inhibit AR signaling in a neuronal cell line but not a muscle cell line. One of these antibiotics, thiostrepton is able to inhibit the activity of both wild type and polyglutamine expanded AR in neuronal GT1-7 cells with nanomolar potency. The thiazole antibiotics are known to inhibit FOXM1 activity and accordingly, a novel FOXM1 inhibitor FDI-6 also inhibited AR activity in a neuron-selective fashion. The selective inhibition of AR is likely indirect as the varied structures of these compounds would not suggest that they are competitive antagonists. Indeed, we found that FOXM1 expression correlates with cell-type selectivity, FOXM1 co-localizes with AR in the nucleus, and that shRNA-mediated knock down of FOXM1 reduces AR activity and thiostrepton sensitivity in a neuronal cell line. Thiostrepton treatment reduces FOXM1 levels and the nuclear localization of beta-catenin, a known co-activator of both FOXM1 and AR, and reduces the association between beta

  3. Cellular growth kinetics distinguish a cyclophilin inhibitor from an HSP90 inhibitor as a selective inhibitor of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Rudolf K F Beran

    Full Text Available During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA and heat-shock protein 90 (HSP90 which have each been reported to inhibit replication of hepatitis C virus (HCV. By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino-17-demethoxygeldanamycin (17-AAG to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA, exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.

  4. Ex vivo evaluation of the serotonin 1A receptor partial agonist [³H]CUMI-101 in awake rats

    DEFF Research Database (Denmark)

    Palner, Mikael; Underwood, Mark D; Kumar, Dileep J S;

    2011-01-01

    -DL-phenylalanine, a serotonin synthesis inhibitor, did not show any effect on the standardized uptake values (SUVs) in any region. Citalopram did alter SBR, but this was due to changes in cerebellar SUVs. Our results indicate that [³H]CUMI-101 is a good radioligand for imaging 5-HT(1A) high-density regions in rats; however...

  5. SGLT inhibitors: a novel target for diabetes.

    Science.gov (United States)

    Kanwal, Abhinav; Banerjee, Sanjay K

    2013-01-01

    Inhibiting sodium-glucose co-transporters (SGLT1/SGLT2), which have a key role in the absorption of glucose in the kidney and/or GI tract has been proposed as a novel therapeutic strategy for diabetes. Thus, screening and patenting of chemical compounds for SGLT1/SGLT2 gets more importance in the development of new drugs in diabetes. Several companies are developing SGLT inhibitors, some of which are now in various stages of clinical development. Some molecules in the pipeline, including dapagliflozin, canagliflozin, ASP1941, BI10773, LX4211, RG7201 and TS071, are at various stages of drug development. This patent review presents the overall progress carried out in the development of SGLT inhibitors over the last decade with the active participation of various pharmaceutical companies. This class of drug is anticipated to have a large impact on diabetes field and predicting to attain a blockbuster status.

  6. New potential AChE inhibitor candidates.

    Science.gov (United States)

    de Paula, A A N; Martins, J B L; dos Santos, M L; Nascente, L de C; Romeiro, L A S; Areas, T F M A; Vieira, K S T; Gambôa, N F; Castro, N G; Gargano, R

    2009-09-01

    We have theoretically studied new potential candidates of acetylcholinesterase (AChE) inhibitors designed from cardanol, a non-isoprenoid phenolic lipid of cashew Anacardium occidentale nut-shell liquid. The electronic structure calculations of fifteen molecule derivatives from cardanol were performed using B3LYP level with 6-31G, 6-31G(d), and 6-311+G(2d,p) basis functions. For this study we used the following groups: methyl, acetyl, N,N-dimethylcarbamoyl, N,N-dimethylamine, N,N-diethylamine, piperidine, pyrrolidine, and N,N-methylbenzylamine. Among the proposed compounds we identified that the structures with substitution by N,N-dimethycarbamoyl, N,N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine, and represent possible AChE inhibitors against Alzheimer disease.

  7. Raltegravir: first in class HIV integrase inhibitor

    Directory of Open Access Journals (Sweden)

    Zelalem Temesgen

    2008-06-01

    Full Text Available Zelalem Temesgen1, Dawd S Siraj21Mayo Clinic, Rochester, MN, USA; 2East Carolina University Greenville, NC, USAAbstract: On October 16, 2007, the US Food and Drug Administration (FDA approved raltegravir for treatment of human immunodeficiency virus (HIV-1 infection in combination with other antiretroviral agents in treatment-experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents. Raltegravir is first in a novel class of antiretroviral drugs known as integrase inhibitors. It has demonstrated potent anti HIV activity in both antiretroviral treatment-naïve and experienced patients. The most common adverse events reported with raltegravir during phase 2 and 3 clinical trials were diarrhea, nausea, and headache. Laboratory abnormalities include mild elevations in liver transaminases and creatine phosphokinase.Keywords: raltegravir, HIV, antiretroviral agents, integrase inhibitors

  8. Simplified captopril analogues as NDM-1 inhibitors.

    Science.gov (United States)

    Li, Ningning; Xu, Yintong; Xia, Qiang; Bai, Cuigai; Wang, Taiyi; Wang, Lei; He, Dingdi; Xie, Nannan; Li, Lixin; Wang, Jing; Zhou, Hong-Gang; Xu, Feng; Yang, Cheng; Zhang, Quan; Yin, Zheng; Guo, Yu; Chen, Yue

    2014-01-01

    Captopril is a New Delhi metallo-β-lactamase-1 (NDM-1) inhibitor with an IC50 value of 7.9μM. It is composed of two units: a 3-mercapto-2-methylpropanoyl fragment and a proline residue. In this study, we synthesized simple amide derivatives of 3-mercapto-2-methylpropanoic acid, and then tested them as NDM-1 inhibitors in order to identify the pharmacophore for NDM-1 inhibition. We found that the lead compound 22 had an IC50 value of 1.0μM. Further structure simplification provided compounds 31 and 32, which had IC50 values of 15 and 10μM, respectively. As compound 32 is a clinically used antidote for metal poisoning, it has great potential to be repurposed to treat bacterial infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Inhibitors of the Cellular Trafficking of Ricin

    Directory of Open Access Journals (Sweden)

    Daniel Gillet

    2012-01-01

    Full Text Available Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput phenotypic screens for small molecules acting on the intracellular targets required for entry of ricin into cells. These screens have identified inhibitory compounds that can protect cells, and sometimes even animals against ricin. We review these newly discovered cellular inhibitors of ricin intoxication, discuss the advantages and drawbacks of chemical-genetics approaches, and address the issues to be resolved so that the therapeutic development of these small-molecule compounds can progress.

  10. SGLT2 Inhibitors: Benefit/Risk Balance.

    Science.gov (United States)

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  11. Design and characterization of bivalent BET inhibitors.

    Science.gov (United States)

    Tanaka, Minoru; Roberts, Justin M; Seo, Hyuk-Soo; Souza, Amanda; Paulk, Joshiawa; Scott, Thomas G; DeAngelo, Stephen L; Dhe-Paganon, Sirano; Bradner, James E

    2016-12-01

    Cellular signaling is often propagated by multivalent interactions. Multivalency creates avidity, allowing stable biophysical recognition. Multivalency is an attractive strategy for achieving potent binding to protein targets, as the affinity of bivalent ligands is often greater than the sum of monovalent affinities. The bromodomain and extraterminal domain (BET) family of transcriptional coactivators features tandem bromodomains through which BET proteins bind acetylated histones and transcription factors. All reported antagonists of the BET protein BRD4 bind in a monovalent fashion. Here we describe, to our knowledge for the first time, a bivalent BET bromodomain inhibitor-MT1-which has unprecedented potency. Biophysical and biochemical studies suggest MT1 is an intramolecular bivalent BRD4 binder that is more than 100-fold more potent, in cellular assays, than the corresponding monovalent antagonist, JQ1. MT1 significantly (P BET bromodomains and a rationale for further development of multidomain inhibitors of epigenetic reader proteins.

  12. SGLT-2 inhibitors: the glucosuric antidiabetics

    OpenAIRE

    Rekha Thaddanee; Ajeet Kumar Khilnani; Gurudas Khilnani

    2013-01-01

    Despite availability of a number of oral antidiabetics, a sizeable population of diabetics remains uncontrolled. Thus there is growing need of new group of drugs for diabetic control. Understanding renal conservation of glucose by efficient reabsorption through sodium glucose cotransporter-2 (SGLT-2) has paved way for development of an entirely new group of drugs, the SGLT-2 inhibitors. These glucosuric antidiabetic agents have shown promise in early clinical studies. Canagliflozin is recentl...

  13. Transition State Analog Inhibitors for Esterases.

    Science.gov (United States)

    1983-06-02

    Propanones." SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED DURING THIS REPORTING PERIOD Dr. Alan Dafforn Dr. Antoon Brouwer Dr. John P...294, Raven Press, New York. 11. Hansch, C. and Leo , A., (1979) "Substituent Constants for Correlation Analysis in Chemistry and Biology," pp. 69-70...BORONIC ACIDS AS 1INSITION STATE ANALOG INHIBITORS OF ACTYLCHOLINESTERASE by Alan Dafforn and Antoon C. Brouwer Department of Chemistry Bowling Green

  14. Inhibitors of the AAA+ Chaperone p97

    Directory of Open Access Journals (Sweden)

    Eli Chapman

    2015-02-01

    Full Text Available It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®, which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+ chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and

  15. Inhibitors of the AAA+ chaperone p97.

    Science.gov (United States)

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J

    2015-02-12

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology.

  16. A new "brew" of MALT1 inhibitors.

    Science.gov (United States)

    Young, Ryan M; Staudt, Louis M

    2012-12-11

    The activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL) is an aggressive lymphoma that is addicted to NF-κB signaling through the CARD11-BCL10-MALT1 complex. In this issue of Cancer Cell, Nagel and colleagues and Fontan and colleagues describe MALT1 inhibitors suitable for clinical use that are selectively toxic to this malignancy.

  17. Quinoxaline derivatives: novel and selective butyrylcholinesterase inhibitors.

    Science.gov (United States)

    Zeb, Aurang; Hameed, Abdul; Khan, Latifullah; Khan, Imran; Dalvandi, Kourosh; Choudhary, M Iqbal; Basha, Fatima Z

    2014-01-01

    Alzheimer's disease (AD) is a progressive brain disorder which occurs due to lower levels of acetylcholine (ACh) neurotransmitters, and results in a gradual decline in memory and other cognitive processes. Acetycholinesterase (AChE) and butyrylcholinesterase (BChE) are considered to be primary regulators of the ACh levels in the brain. Evidence shows that AChE activity decreases in AD, while activity of BChE does not change or even elevate in advanced AD, which suggests a key involvement of BChE in ACh hydrolysis during AD symptoms. Therefore, inhibiting the activity of BChE may be an effective way to control AD associated disorders. In this regard, a series of quinoxaline derivatives 1-17 was synthesized and biologically evaluated against cholinesterases (AChE and BChE) and as well as against α- chymotrypsin and urease. The compounds 1-17 were found to be selective inhibitors for BChE, as no activity was found against other enzymes. Among the series, compounds 6 (IC50 = 7.7 ± 1.0 µM) and 7 (IC50 = 9.7 ± 0.9 µM) were found to be the most active inhibitors against BChE. Their IC50 values are comparable to the standard, galantamine (IC50 = 6.6 ± 0.38 µM). Their considerable BChE inhibitory activity makes them selective candidates for the development of BChE inhibitors. Structure-activity relationship (SAR) of this new class of selective BChE inhibitors has been discussed.

  18. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  19. Cyclooxygenase (COX) Inhibitors and the Newborn Kidney

    OpenAIRE

    Wei Qi; Smith, Francine G.; Megan L. Lewis; Wade, Andrew W

    2012-01-01

    This review summarizes our current understanding of the role of cyclo-oxygenase inhibitors (COXI) in influencing the structural development as well as the function of the developing kidney. COXI administered either during pregnancy or after birth can influence kidney development including nephronogenesis, and can decrease renal perfusion and ultrafiltration potentially leading to acute kidney injury in the newborn period. To date, which COX isoform (COX-1 or COX-2) plays a more important role...

  20. A Bacterial Cell Shape-Determining Inhibitor.

    Science.gov (United States)

    Liu, Yanjie; Frirdich, Emilisa; Taylor, Jennifer A; Chan, Anson C K; Blair, Kris M; Vermeulen, Jenny; Ha, Reuben; Murphy, Michael E P; Salama, Nina R; Gaynor, Erin C; Tanner, Martin E

    2016-04-15

    Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials

  1. Corrosion protection with eco-friendly inhibitors

    Science.gov (United States)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  2. DABIGATRAN ETEXILATE: NEW DIRECT THROMBIN INHIBITORS ANTICOAGULANTS

    OpenAIRE

    Patel Kinjal B; Galani Varsha; Patel Paresh B; Mehta Hiren R

    2011-01-01

    Thrombin plays a key role in thrombotic events, and therefore thrombin inhibition represents a therapeutic target for numerous thromboembolic diseases. Thrombin is responsible for the conversion of soluble fibrinogen to fibrin; clot stabilization through activation of factor XIII and the formation of cross-linkage among fibrin molecules; and the generation of additional thrombin through activation of factors V, VIII, and XI. Direct thrombin inhibitors are an innovative class of anticoagulant...

  3. Protein Aggregation Inhibitors for ALS Therapy

    Science.gov (United States)

    2013-07-01

    irritated by the HCl salt, mildly irritated by the tartrate salt, but not irritated by the citrate salt. However, citric acid was not sufficiently acidic to... cycles were incorporated in place of the pyrazolone ring (2-4); none of these were active. These results support the importance of N2-H in its activity...experimental studies using 3-nitropropionic acid as a mitochondrial inhibitor resulting in mitochondrial dysfunction. We have furthered these

  4. Artificial neural network cascade identifies multi-P450 inhibitors in natural compounds

    Directory of Open Access Journals (Sweden)

    Zhangming Li

    2015-12-01

    Full Text Available Substantial evidence has shown that most exogenous substances are metabolized by multiple cytochrome P450 (P450 enzymes instead of by merely one P450 isoform. Thus, multi-P450 inhibition leads to greater drug-drug interaction risk than specific P450 inhibition. Herein, we innovatively established an artificial neural network cascade (NNC model composed of 23 cascaded networks in a ladder-like framework to identify potential multi-P450 inhibitors among natural compounds by integrating 12 molecular descriptors into a P450 inhibition score (PIS. Experimental data reporting in vitro inhibition of five P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were obtained for 8,148 compounds from the Cytochrome P450 Inhibitors Database (CPID. The results indicate significant positive correlation between the PIS values and the number of inhibited P450 isoforms (Spearman’s ρ = 0.684, p < 0.0001. Thus, a higher PIS indicates a greater possibility for a chemical to inhibit the enzyme activity of at least three P450 isoforms. Ten-fold cross-validation of the NNC model suggested an accuracy of 78.7% for identifying whether a compound is a multi-P450 inhibitor or not. Using our NNC model, 22.2% of the approximately 160,000 natural compounds in TCM Database@Taiwan were identified as potential multi-P450 inhibitors. Furthermore, chemical similarity calculations suggested that the prevailing parent structures of natural multi-P450 inhibitors were alkaloids. Our findings show that dissection of chemical structure contributes to confident identification of natural multi-P450 inhibitors and provides a feasible method for virtually evaluating multi-P450 inhibition risk for a known structure.

  5. Drug-Drug Interactions with the NS3/4A Protease Inhibitor Simeprevir.

    Science.gov (United States)

    Ouwerkerk-Mahadevan, Sivi; Snoeys, Jan; Peeters, Monika; Beumont-Mauviel, Maria; Simion, Alexandru

    2016-02-01

    Simeprevir is an NS3/4A protease inhibitor approved for the treatment of hepatitis C infection, as a component of combination therapy. Simeprevir is metabolized by the cytochrome P450 (CYP) system, primarily CYP3A, and is a substrate for several drug transporters, including the organic anion transporting polypeptides (OATPs). It is susceptible to metabolic drug-drug interactions with drugs that are moderate or strong CYP3A inhibitors (e.g. ritonavir and erythromycin) or CYP3A inducers (e.g. rifampin and efavirenz); coadministration of these drugs may increase or decrease plasma concentrations of simeprevir, respectively, and should be avoided. Clinical studies have shown that simeprevir is a mild inhibitor of CYP1A2 and intestinal CYP3A but does not inhibit hepatic CYP3A. The effects of simeprevir on these enzymes are of clinical relevance only for narrow-therapeutic-index drugs that are metabolized solely by these enzymes (e.g. oral midazolam). Simeprevir does not have a clinically relevant effect on the pharmacokinetics of rilpivirine, tacrolimus, oral contraceptives and several other drugs metabolized by CYP enzymes. Simeprevir is a substrate and inhibitor of the transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and OATP1B1/3. Cyclosporine is an inhibitor of OATP1B1/3, BCRP and P-gp, and a mild inhibitor of CYP3A; cyclosporine causes a significant increase in simeprevir plasma concentrations, and coadministration is not recommended. Clinical studies have demonstrated increases in coadministered drug concentrations for drugs that are substrates of the OATP1B1/3, BRCP (e.g. rosuvastatin) and P-gp (e.g. digoxin) transporters; these drugs should be administered with dose titration and or/close monitoring.

  6. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    Science.gov (United States)

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  7. Inhibition of DYRK1A Stimulates Human β-Cell Proliferation.

    Science.gov (United States)

    Dirice, Ercument; Walpita, Deepika; Vetere, Amedeo; Meier, Bennett C; Kahraman, Sevim; Hu, Jiang; Dančík, Vlado; Burns, Sean M; Gilbert, Tamara J; Olson, David E; Clemons, Paul A; Kulkarni, Rohit N; Wagner, Bridget K

    2016-06-01

    Restoring functional β-cell mass is an important therapeutic goal for both type 1 and type 2 diabetes (1). While proliferation of existing β-cells is the primary means of β-cell replacement in rodents (2), it is unclear whether a similar principle applies to humans, as human β-cells are remarkably resistant to stimulation of division (3,4). Here, we show that 5-iodotubercidin (5-IT), an annotated adenosine kinase inhibitor previously reported to increase proliferation in rodent and porcine islets (5), strongly and selectively increases human β-cell proliferation in vitro and in vivo. Remarkably, 5-IT also increased glucose-dependent insulin secretion after prolonged treatment. Kinome profiling revealed 5-IT to be a potent and selective inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) and cell division cycle-like kinase families. Induction of β-cell proliferation by either 5-IT or harmine, another natural product DYRK1A inhibitor, was suppressed by coincubation with the calcineurin inhibitor FK506, suggesting involvement of DYRK1A and nuclear factor of activated T cells signaling. Gene expression profiling in whole islets treated with 5-IT revealed induction of proliferation- and cell cycle-related genes, suggesting that true proliferation is induced by 5-IT. Furthermore, 5-IT promotes β-cell proliferation in human islets grafted under the kidney capsule of NOD-scid IL2Rg(null) mice. These results point to inhibition of DYRK1A as a therapeutic strategy to increase human β-cell proliferation.

  8. Novel pyrrole carboxamide inhibitors of JAK2 as potential treatment of myeloproliferative disorders.

    Science.gov (United States)

    Brasca, Maria Gabriella; Gnocchi, Paola; Nesi, Marcella; Amboldi, Nadia; Avanzi, Nilla; Bertrand, Jay; Bindi, Simona; Canevari, Giulia; Casero, Daniele; Ciomei, Marina; Colombo, Nicoletta; Cribioli, Sabrina; Fachin, Gabriele; Felder, Eduard R; Galvani, Arturo; Isacchi, Antonella; Motto, Ilaria; Panzeri, Achille; Donati, Daniele

    2015-05-15

    Compound 1, a hit from the screening of our chemical collection displaying activity against JAK2, was deconstructed for SAR analysis into three regions, which were explored. A series of compounds was synthesized leading to the identification of the potent and orally bioavailable JAK2 inhibitor 16 (NMS-P830), which showed an encouraging tumour growth inhibition in SET-2 xenograft tumour model, with evidence for JAK2 pathway suppression demonstrated by in vivo pharmacodynamic effects.

  9. Early Intervention with Cdk9 Inhibitors to Prevent Post-Traumatic Osteoarthritis

    Science.gov (United States)

    2015-10-01

    collected as part of Task 1A, with n=6 for each data point Progress: Blood/serum has been collected and stored appropriately B. Multiplexed bead...stimuli (interleukin-1 [IL-1], lipopolysaccharides, and tumor necrosis factor ) in the presence or absence of either the CDK-9 inhibitor...stiff- ness of the cartilage is provided by the proteoglycan components, through their attraction of water mole - cules. Although the cause of OA

  10. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase.

    Directory of Open Access Journals (Sweden)

    Kenneth W Yip

    Full Text Available Uroporphyrinogen decarboxylase (UROD catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16, was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM, but did not affect porphobilinogen deaminase (at 62.5 µM, thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1. This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.

  11. SGLT inhibitors in management of diabetes.

    Science.gov (United States)

    Tahrani, Abd A; Barnett, Anthony H; Bailey, Clifford J

    2013-10-01

    The two main sodium-glucose cotransporters (SGLTs), SGLT1 and SGLT2, provide new therapeutic targets to reduce hyperglycaemia in patients with diabetes. SGLT1 enables the small intestine to absorb glucose and contributes to the reabsorption of glucose filtered by the kidney. SGLT2 is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors with varying specificities for these transporters (eg, dapagliflozin, canagliflozin, and empagliflozin) can slow the rate of intestinal glucose absorption and increase the renal elimination of glucose into the urine. Results of randomised clinical trials have shown the blood glucose-lowering efficacy of SGLT inhibitors in type 2 diabetes when administered as monotherapy or in addition to other glucose-lowering therapies including insulin. Increased renal glucose elimination also assists weight loss and could help to reduce blood pressure. Effective SGLT2 inhibition needs adequate glomerular filtration and might increase risk of urinary tract and genital infection, and excessive inhibition of SGLT1 can cause gastro-intestinal symptoms. However, the insulin-independent mechanism of action of SGLT inhibitors seems to offer durable glucose-lowering efficacy with low risk of clinically significant hypoglycaemia at any stage in the natural history of type 2 diabetes. SGLT inhibition might also be considered in conjunction with insulin therapy in type 1 diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Translating HDAC inhibitors in Friedreich's ataxia.

    Science.gov (United States)

    Soragni, Elisabetta; Gottesfeld, Joel M

    2016-01-01

    Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing.

  13. Therapeutic Innovations: Tyrosine Kinase Inhibitors in Cancer

    Directory of Open Access Journals (Sweden)

    Nikolaos Dervisis

    2016-01-01

    Full Text Available Conventional cytotoxic chemotherapy involving DNA-interacting agents and indiscriminate cell death is no longer the future of cancer management. While chemotherapy is not likely to completely disappear from the armamentarium; the use of targeted therapies in combination with conventional treatment is becoming the standard of care in human medicine. Tyrosine kinases are pivotal points of functional cellular pathways and have been implicated in malignancy, inflammatory, and immune-mediated diseases. Pharmaceutical interventions targeting aberrant tyrosine kinase signaling has exploded and is the second most important area of drug development. The “Valley of Death” between drug discovery and approval threatens to blunt the enormous strides in cancer management seen thus far. Kinase inhibitors, as targeted small molecules, hold promise in the treatment and diagnosis of cancer. However, there are still many unanswered questions regarding the use of kinase inhibitors in the interpretation and management of cancer. Comparative oncology has the potential to address restrictions and limitations in the advancement in kinase inhibitor therapy.

  14. Functional Stability of Plasminogen Activator Inhibitor-1

    Directory of Open Access Journals (Sweden)

    Songul Yasar Yildiz

    2014-01-01

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1 is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA and urokinase-type plasminogen activator (u-PA, and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT and myocardial infarction (MI. The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease.

  15. The hunt for HIV-1 integrase inhibitors.

    Science.gov (United States)

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.

  16. Scale Inhibition of Green Inhibitor Polyepoxysuccinic Sodium

    Institute of Scientific and Technical Information of China (English)

    Feng Hui-xia; Wang Yi; Yu Shu-rong; Liang Bao-feng

    2004-01-01

    Polyepoxysuccinic acid (PESA) is the green water treatment agents recognized all over the world[1-3]. It is found that when PESA is used alone, it had good scale inhibition. PESA should be included in the category of green scale inhibitor.PESA is synthesized with maleicanhydride in the presence of catalysts. The effect on scale-in-hibiting property of the product from amount and feed times of catalyst, the reaction temperature, the reaction time were investigated. The optimum reaction conditions are as follows:n(maleic anhydride):n(Ca(OH)2):n(NaOH)=1:0.05-0.2:0.5, reaction temperature 95C, reaction time 4h.In all the references about PESA, PESA is researched as a kind of highly effective scale inhibitor or chelate. In this paper, the performance of scale inhibition of PESA is evaluated by scale static inhibitor.The results are shown in Figture1.It is evident from our experimental data (Figture1) that when inhibition for CaCO3.With the increase of PESA dosage, scale inhibition increases. When dosage is more than 6mg/L, inhibition efficiency is over 50%. The formulas give scale inhibition efficiency more than 95% at 12mg/L of total dosage.

  17. Knipholone, a selective inhibitor of leukotriene metabolism.

    Science.gov (United States)

    Wube, A A; Bucar, F; Asres, K; Gibbons, S; Adams, M; Streit, B; Bodensieck, A; Bauer, R

    2006-06-01

    Inhibition of leukotriene formation is one of the approaches to the treatment of asthma and other inflammatory diseases. We have investigated knipholone, isolated from the roots of Kniphofia foliosa, Hochst (Asphodelaceae), for inhibition of leukotriene biosynthesis in an ex vivo bioassay using activated human neutrophile granulocytes. Moreover, activities on 12-lipoxygenase from human platelets and cycloxygenase (COX)-1 and -2 from sheep cotyledons and seminal vesicles, respectively, have been evaluated. Knipholone was found to be a selective inhibitor of leukotriene metabolism in a human blood assay with an IC(50) value of 4.2microM. However, at a concentration of 10microg/ml, the compound showed weak inhibition of 12(S)-HETE production in human platelets and at a concentration of 50microM it produced no inhibition of COX-1 and -2. In our attempt to explain the mechanism of inhibition, we examined the antioxidant activity of knipholone using various in vitro assay systems including free radical scavenging, non-enzymatic lipid peroxidation, and metal chelation. Knipholone was found to be a weak dose-independent free radical scavenger and lipid peroxidation inhibitor, but not a metal chelator. Therefore, the leukotriene biosynthesis inhibitory effect of knipholone was evident by its ability either to inhibit the 5-lipoxygenase activating protein (FLAP) or as a competitive (non-redox) inhibitor of the enzyme. Cytotoxicity results also provided evidence that knipholone exhibits less toxicity for a mammalian host cell.

  18. Functional analysis of Hsp70 inhibitors.

    Directory of Open Access Journals (Sweden)

    Rainer Schlecht

    Full Text Available The molecular chaperones of the Hsp70 family have been recognized as targets for anti-cancer therapy. Since several paralogs of Hsp70 proteins exist in cytosol, endoplasmic reticulum and mitochondria, we investigated which isoform needs to be down-regulated for reducing viability of cancer cells. For two recently identified small molecule inhibitors, VER-155008 and 2-phenylethynesulfonamide (PES, which are proposed to target different sites in Hsp70s, we analyzed the molecular mode of action in vitro. We found that for significant reduction of viability of cancer cells simultaneous knockdown of heat-inducible Hsp70 (HSPA1 and constitutive Hsc70 (HSPA8 is necessary. The compound VER-155008, which binds to the nucleotide binding site of Hsp70, arrests the nucleotide binding domain (NBD in a half-open conformation and thereby acts as ATP-competitive inhibitor that prevents allosteric control between NBD and substrate binding domain (SBD. Compound PES interacts with the SBD of Hsp70 in an unspecific, detergent-like fashion, under the conditions tested. None of the two inhibitors investigated was isoform-specific.

  19. Structure-Based Search for New Inhibitors of Cholinesterases

    Directory of Open Access Journals (Sweden)

    Barbara Malawska

    2013-03-01

    Full Text Available Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.

  20. [Development of alpha-glucosidase inhibitor from medicinal herbs].

    Science.gov (United States)

    Ji, Fang; Xiao, Guochun; Dong, Li; Ma, Zijiao; Ni, Jingman

    2010-06-01

    Alpha-glucosidase inhibitor can reduce the postprandial hyperglycemia and have good effect on preventing and treating the diabetes and diabetic complication. Along with the application of acarbose which is a kind of alpha-glucosidase inhibitor, many research groups pay attention to the crude alpha-glucosidase inhibitor screened from the medicinal herbs in order to find new, safe, and effective medicine. The development of alpha-glucosidase inhibitor screened from the medicinal herbs and its evaluation in vivo and vitro as well as the varieties of the medicinal herbs that contain alpha-glucosidase inhibitor in recent 30 years were summarized in this paper.

  1. Histone Deacetylase Inhibitors: Synthesis of Tetrapeptide Analogue SAHA/TPX

    Directory of Open Access Journals (Sweden)

    Lynda Ekou

    2011-01-01

    Full Text Available The inhibition of HDAC (histone deacetylase activity by specific inhibitors induces growth arrest, differentiation and apoptosis of transformed or several cancer cells. Some of these inhibitors are in clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy. In this paper we describe the synthesis of simple inhibitor B hybrid analogue suberoylanilide hydroxamic acid (SAHA, trapoxin B (TPX B in as little as five steps. This compound is interesting lead for the design of potent inhibitors of histone deacetylase.

  2. β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids.

    Science.gov (United States)

    Condello, S; Morgan, C A; Nagdas, S; Cao, L; Turek, J; Hurley, T D; Matei, D

    2015-04-30

    Cancer cells form three-dimensional (3D) multicellular aggregates (or spheroids) under non-adherent culture conditions. In ovarian cancer (OC), spheroids serve as a vehicle for cancer cell dissemination in the peritoneal cavity, protecting cells from environmental stress-induced anoikis. To identify new targetable molecules in OC spheroids, we investigated gene expression profiles and networks upregulated in 3D vs traditional monolayer culture conditions. We identified ALDH1A1, a cancer stem cell marker as being overexpressed in OC spheroids and directly connected to key elements of the β-catenin pathway. β-Catenin function and ALDH1A1 expression were increased in OC spheroids vs monolayers and in successive spheroid generations, suggesting that 3D aggregates are enriched in cells with stem cell characteristics. β-Catenin knockdown decreased ALDH1A1 expression levels and β-catenin co-immunoprecipitated with the ALDH1A1 promoter, suggesting that ALDH1A1 is a direct β-catenin target. Both short interfering RNA-mediated β-catenin knockdown and A37 ((ethyl-2-((4-oxo-3-(3-(pryrrolidin-1-yl)propyl)-3,4-dihydrobenzo [4,5]thioeno [3,2-d]pyrimidin-2-yl)thio)acetate)), a novel ALDH1A1 small-molecule enzymatic inhibitor described here for the first time, disrupted OC spheroid formation and cell viability (Pmodel. These data strongly support the role of β-catenin-regulated ALDH1A1 in the maintenance of OC spheroids and propose new ALDH1A1 inhibitors targeting this cell population.

  3. PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells.

    Science.gov (United States)

    Kaur, Amanpreet; Denisova, Oxana V; Qiao, Xi; Jumppanen, Mikael; Peuhu, Emilia; Ahmed, Shafiq U; Raheem, Olayinka; Haapasalo, Hannu; Eriksson, John; Chalmers, Anthony J; Laakkonen, Pirjo; Westermarck, Jukka

    2016-12-01

    Glioblastoma multiforme lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in glioblastoma multiforme, glioma cells exhibit intrinsic resistance toward many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here, we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the coexpression of proapoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in glioblastoma multiforme. Cancer Res; 76(23); 7001-11. ©2016 AACR.

  4. Recent advances in designing substrate-competitive protein kinase inhibitors.

    Science.gov (United States)

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  5. Chemical origins of isoform selectivity in histone deacetylase inhibitors.

    Science.gov (United States)

    Butler, Kyle V; Kozikowski, Alan P

    2008-01-01

    Histones undergo extensive posttranslational modifications that affect gene expression. Acetylation is a key histone modification that is primarily regulated by two enzymes, one of which is histone deacetylase (HDAC). The activity of HDAC causes transcriptional silencing of DNA. Eleven distinct zinc-dependent histone deacetylase isoforms have been identified in humans. Each isoform has a unique structure and function, and regulates a unique set of genes. HDAC is responsible for the regulation of many genes involved in cancer cell proliferation, and it has been implicated in the pathogenesis of many neurological conditions. HDAC inhibitors are known to be very effective anti-cancer agents, and research has shown them to be potential treatments for many other conditions. Histone deacetylase inhibitors modify the expression of many genes, and it is possible that inhibition of one isoform could cause epigenetic changes that are beneficial to treatment of a disease, while inhibition of another isoform could cause contradictory changes. Selective HDAC inhibitors will be better able to avoid these types of situations than non-specific inhibitors, and may also be less toxic than pan-HDAC inhibitors. Many potent pan-HDAC inhibitors have already been developed, leaving the development of selective inhibitors at the forefront of HDAC drug development. Certain structural moieties may be added to HDAC inhibitors to give isoform selectivity, and these will be discussed in this review. This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.

  6. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  7. [Treatment of endometriosis by aromatase inhibitors: efficacy and side effects].

    Science.gov (United States)

    Racine, A-C; Legrand, E; Lefebvre-Lacoeuille, C; Hoppe, E; Catala, L; Sentilhes, L; Descamps, P

    2010-05-01

    The recent demonstration that aromatase is expressed at higher levels in endometriosis implants than in normal endometrium has led to pilot studies using inhibitor aromatasis in patients with endometriosis. We conducted a systematic review of the literature and studied the efficacy of aromatase inhibitors on endometriosis. There were seventeen studies (case reports/series) evaluating outcomes of aromatase inhibitors. Studies suggest that aromatase inhibitors alone or co-administered with progestins, oral contraceptives or gonadotrophin releasing hormone (GnRH) agonist could reduce pain and endometriosis. There is only one randomized controlled trial comparing aromatase inhibitor+GnRH agonist and GnRH agonist and one study with eighty patients. Side-effects profiles of aromatase inhibitor regimens are favorable; it does not appear a significant bone loss. Aromatase inhibitors seem to have a promising effect on endometriosis but randomized controlled trials are needed to prove their effects and their safety.

  8. xtraction and Characterization of Cathepsin Inhibitor from Milkfish

    Directory of Open Access Journals (Sweden)

    Tati Nurhayati

    2015-06-01

    Full Text Available Abstract Proteolytic enzyme is distributed acros all organism including fish. Cysteine proteases are the largest group of proteolytic enzyme. Lysosomal cathepsin, one of cysteine protease enzyme, cause softening and degradation of myofibril protein and it’s activity is regulated by endogenous inhibitors. The purposes of this study were to optimize the extraction cathepsin inhibitors from the skin, muscles, and viscera of fish, to partially purify the cathepsin inhibitors of selected sources, and to study the characteristics of the cathepsin inhibitor. The cathepsin inhibitor could be extracted from muscle fish and partially purified using ammonium sulfate of 70%. The purified cathepsin inhibitor had optimum temperature at 40°C and the optimum at pH 8. Metal ions decreased the activity of the protease inhibitor, except 1 mM of metal ion Mn2+ and Na+.

  9. Docking and scoring of metallo-beta-lactamases inhibitors

    DEFF Research Database (Denmark)

    Olsen, Lars; Pettersson, Ingrid; Hemmingsen, Lars

    2004-01-01

    The performance of the AutoDock, GOLD and FlexX docking programs was evaluated for docking of dicarboxylic acid inhibitors into metallo-beta-lactamases (MBLs). GOLD provided the best overall performance, with RMSDs between experimental and docked structures of 1.8-2.6 A and a good correlation...... between the experimentally determined MBL-inhibitor affinities and the GOLD scores. GOLD was selected for a test including a broad spectrum of inhibitors for which experimental MBL-inhibitor binding affinities are available. This study revealed that (1) for most compound classes (dicarboxylic acids...... and descriptors associated with binding of the IMP-1 inhibitors to the enzyme. The external Q2 for the test set is 0.73. This final model for prediction of IMP-1 MBL-inhibitor affinity handled all known classes of MBL-inhibitors, except small sulphur compounds....

  10. Sirtuins are Unaffected by PARP Inhibitors Containing Planar Nicotinamide Bioisosteres.

    Science.gov (United States)

    Ekblad, Torun; Schüler, Herwig

    2016-03-01

    PARP-family ADP-ribosyltransferases (PARPs) and sirtuin deacetylases all use NAD(+) as cosubstrate for ADP-ribosyl transfer. PARP inhibitors are important research tools and several are being evaluated in cancer treatment. With the exception of a few tankyrase inhibitors, all current PARP inhibitors mimic the nicotinamide moiety in NAD(+) and block the nicotinamide binding pocket. We report here that while the activities of the four human sirtuin isoforms SIRT1, SIRT2, SIRT3 and SIRT6 are blocked by sirtuin inhibitor Ex527 in vitro, they are unaffected by the seven clinical and commonly used PARP inhibitors niraparib, olaparib, rucaparib, talazoparib, veliparib, PJ34, and XAV939. These findings indicate that PARP inhibitors containing planar nicotinamide mimetics do not bind to sirtuin cofactor sites. In conclusion, a simple commercially available assay can be used to rule out interference of novel PARP inhibitors with sirtuin NAD(+) binding. © 2015 John Wiley & Sons A/S.

  11. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium-glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents.

    Science.gov (United States)

    Oguma, Takahiro; Kuriyama, Chiaki; Nakayama, Keiko; Matsushita, Yasuaki; Hikida, Kumiko; Tsuda-Tsukimoto, Minoru; Saito, Akira; Arakawa, Kenji; Ueta, Kiichiro; Minami, Masabumi; Shiotani, Masaharu

    2016-12-01

    We investigated whether structurally different sodium-glucose cotransporter (SGLT) 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4) inhibitors, could enhance glucagon-like peptide-1 (GLP-1) secretion during oral glucose tolerance tests (OGTTs) in rodents. Three different SGLT inhibitors-1-(β-d-Glucopyranosyl)-4-chloro-3-[5-(6-fluoro-2-pyridyl)-2-thienylmethyl]benzene (GTB), TA-1887, and canagliflozin-were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1) elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Structure-based screening and optimization of cytisine derivatives as inhibitors of the menin-MLL interaction.

    Science.gov (United States)

    Zhong, Hai-Jing; Lee, Bo Ra; Boyle, Joshua William; Wang, Wanhe; Ma, Dik-Lung; Hong Chan, Philip Wai; Leung, Chung-Hang

    2016-04-30

    The natural product-like compound 1 was identified as a direct inhibitor of the menin-MLL interaction by in silico screening. Structure-based optimization furnished analogue 1a, which showed significantly higher potency than both the lead structure 1 and the reference compound MI-2.

  13. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    Science.gov (United States)

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  14. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1

    Science.gov (United States)

    Pautus, Stéphane; Alami, Mouad; Adam, Fréderic; Bernadat, Guillaume; Lawrence, Daniel A.; de Carvalho, Allan; Ferry, Gilles; Rupin, Alain; Hamze, Abdallah; Champy, Pierre; Bonneau, Natacha; Gloanec, Philippe; Peglion, Jean-Louis; Brion, Jean-Daniel; Bianchini, Elsa P.; Borgel, Delphine

    2016-11-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.

  15. 1,1-Difluoroethyl-substituted triazolothienopyrimidines as inhibitors of a human urea transport protein (UT-B): new analogs and binding model.

    Science.gov (United States)

    Liu, Y; Esteva-Font, C; Yao, C; Phuan, P W; Verkman, A S; Anderson, M O

    2013-06-01

    The kidney urea transport protein UT-B is an attractive target for the development of small-molecule inhibitors with a novel diuretic ('urearetic') action. Previously, two compounds in the triazolothienopyrimidine scaffold (1a and 1c) were reported as UT-B inhibitors. Compound 1c incorporates a 1,1-difluoroethyl group, which affords improved microsomal stability when compared to the corresponding ethyl-substituted compound 1a. Here, a small focused library (4a-4f) was developed around lead inhibitor 1c to investigate the requirement of an amidine-linked thiophene in the inhibitor scaffold. Two compounds (4a and 4b) with nanomolar inhibitory potency (IC50≈40 nM) were synthesized. Computational docking of lead structure 1c and 4a-4f into a homology model of the UT-B cytoplasmic surface suggested binding with the core heterocycle buried deep into the hydrophobic pore region of the protein.

  16. Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen.

    Science.gov (United States)

    Kuntz, Douglas A; Tarling, Chris A; Withers, Stephen G; Rose, David R

    2008-09-23

    The N-glycosylation pathway is a target for pharmaceutical intervention in a number of pathological conditions including cancer. Golgi alpha-mannosidase II (GMII) is the final glycoside hydrolase in the pathway and has been the target for a number of synthetic efforts aimed at providing more selective and effective inhibitors. Drosophila GMII (dGMII) has been extensively studied due to the ease of obtaining high resolution structural data, allowing the observation of substrate distortion upon binding and after formation of a trapped covalent reaction intermediate. However, attempts to find new inhibitor leads by high-throughput screening of large commercial libraries or through in silico docking were unsuccessful. In this paper we provide a kinetic and structural analysis of five inhibitors derived from a small glycosidase-focused library. Surprisingly, four of these were known inhibitors of beta-glucosidases. X-ray crystallographic analysis of the dGMII:inhibitor complexes highlights the ability of the zinc-containing GMII active site to deform compounds, even ones designed as conformationally restricted transition-state mimics of beta-glucosidases, into binding entities that have inhibitory activity. Although these deformed conformations do not appear to be on the expected conformational itinerary of the enzyme, and are thus not transition-state mimics of GMII, they allow positioning of the three vicinal hydroxyls of the bound gluco-inhibitors into similar locations to those found with mannose-containing substrates, underlining the importance of these hydrogen bonds for binding. Further, these studies show the utility of targeting the acid-base catalyst using appropriately positioned positively charged nitrogen atoms, as well as the challenges associated with aglycon substitutions.

  17. Saururus cernuus lignans--potent small molecule inhibitors of hypoxia-inducible factor-1.

    Science.gov (United States)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R; Zhang, Lei; Bruick, Richard K; Mohammed, Kaleem A; Agarwal, Ameeta K; Nagle, Dale G; Zhou, Yu-Dong

    2005-08-05

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1alpha protein accumulation without affecting HIF-1alpha mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors.

  18. Saururus cernuus Lignans - Potent Small Molecule Inhibitors of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang, Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors. PMID:15967416

  19. Factors Influencing Adherence in Cancer Patients Taking Oral Tyrosine Kinase Inhibitors: A Qualitative Study.

    Science.gov (United States)

    Verbrugghe, Mathieu; Duprez, Veerle; Beeckman, Dimitri; Grypdonck, Mieke; Quaghebeur, Marijke; Verschueren, Caroline; Verhaeghe, Sofie; Van Hecke, Ann

    2016-01-01

    Nonadherence in cancer patients taking oral anticancer drugs is common. Reasons for nonadherence are still not really understood as influencing factors are often complex, dynamic, and interrelated. A qualitative study was conducted to gain insight into (non-)adherence behavior in patients taking oral tyrosine kinase inhibitors by exploring (1) processes and factors influencing (non-)adherence and (2) their interrelatedness. Semistructured interviews were held with 30 patients of different ages and with different types of cancer. A grounded theory approach was used. Three foci were found when dealing with oral tyrosine kinase inhibitors: (1) a focus on survival, (2) a focus on quality of life, and (3) a balance between survival and quality of life. The process of adherence was determined by a set of complex and interrelated influencing factors: treatment-related side effects, hope, anxiety, trust, and feedback mechanisms. This qualitative study gives insight into processes and factors influencing (non-)adherence behavior in patients taking oral tyrosine kinase inhibitors. The results of this study can help healthcare professionals understand why patients taking oral tyrosine kinase inhibitors do not always adhere to their therapy. Conditions should be created by which patients get maximum opportunity to establish a balance between survival and quality of life. An open climate and a trust-based relationship should be established in which patients feel comfortable to openly discuss their therapy and the difficulties they experience.

  20. Virtual screening and biological evaluation of inhibitors targeting the XPA-ERCC1 interaction.

    Directory of Open Access Journals (Sweden)

    Khaled H Barakat

    Full Text Available BACKGROUND: Nucleotide excision repair (NER removes many types of DNA lesions including those induced by UV radiation and platinum-based therapy. Resistance to platinum-based therapy correlates with high expression of ERCC1, a major element of the NER machinery. The interaction between ERCC1 and XPA is essential for a successful NER function. Therefore, one way to regulate NER is by inhibiting the activity of ERCC1 and XPA. METHODOLOGY/PRINCIPAL FINDINGS: Here we continued our earlier efforts aimed at the identification and characterization of novel inhibitors of the ERCC1-XPA interaction. We used a refined virtual screening approach combined with a biochemical and biological evaluation of the compounds for their ability to interact with ERCC1 and to sensitize cells to UV radiation. Our findings reveal a new validated ERCC1-XPA inhibitor that significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction. CONCLUSIONS: NER is a major factor in acquiring resistance to platinum-based therapy. Regulating the NER pathway has the potential of improving the efficacy of platinum treatments. One approach that we followed is to inhibit the essential interaction between the two NER elements, ERCC1 and XPA. Here, we performed virtual screening against the ERCC1-XPA interaction and identified novel inhibitors that block the XPA-ERCC1 binding. The identified inhibitors significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction.

  1. Main: PE2FNTRNR1A [PLACE

    Lifescience Database Archive (English)

    Full Text Available PE2FNTRNR1A S000455 29-November-2004 (last modified) kehi pE2F (proximal E2F elemen...of the cell cycle; Important for regulating specific RNR1a (ribonucleotide reductase large subunit) gene exp

  2. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors.

    Science.gov (United States)

    Chauvin, Benoit; Drouot, Sylvain; Barrail-Tran, Aurélie; Taburet, Anne-Marie

    2013-10-01

    The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the

  3. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Katharina Rüben

    Full Text Available DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphorylation of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.

  4. Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors.

    Directory of Open Access Journals (Sweden)

    Shigeki Nanjo

    Full Text Available PURPOSE: Although EGF receptor tyrosine kinase inhibitors (EGFR-TKI have shown dramatic effects against EGFR mutant lung cancer, patients ultimately develop resistance by multiple mechanisms. We therefore assessed the ability of combined treatment with the Met inhibitor crizotinib and new generation EGFR-TKIs to overcome resistance to first-generation EGFR-TKIs. EXPERIMENTAL DESIGN: Lung cancer cell lines made resistant to EGFR-TKIs by the gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression and mice with tumors induced by these cells were treated with crizotinib and a new generation EGFR-TKI. RESULTS: The new generation EGFR-TKI inhibited the growth of lung cancer cells containing the gatekeeper EGFR-T790M mutation, but did not inhibit the growth of cells with Met amplification or HGF overexpression. In contrast, combined therapy with crizotinib plus afatinib or WZ4002 was effective against all three types of cells, inhibiting EGFR and Met phosphorylation and their downstream molecules. Crizotinib combined with afatinib or WZ4002 potently inhibited the growth of mouse tumors induced by these lung cancer cell lines. However, the combination of high dose crizotinib and afatinib, but not WZ4002, triggered severe adverse events. CONCLUSIONS: Our results suggest that the dual blockade of mutant EGFR and Met by crizotinib and a new generation EGFR-TKI may be promising for overcoming resistance to reversible EGFR-TKIs but careful assessment is warranted clinically.

  5. miR-135A regulates preimplantation embryo development through down-regulation of E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (SIAH1A expression.

    Directory of Open Access Journals (Sweden)

    Ronald T K Pang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific miRNAs, miR-135a, in preimplantation embryo development was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Microinjection of miR-135a inhibitor suppressed first cell cleavage in more than 30% of the zygotes. Bioinformatics analysis identified E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (Siah1a as a predicted target of miR-135a. Western blotting and 3'UTR luciferase functional assays demonstrated that miR-135a down-regulated the expression of Siah1 in HeLa cells and in mouse zygotes. Siah1a was expressed in preimplantation embryos and its expression pattern negatively correlated with that of miR-135a. Co-injection of Siah1a-specific antibody with miR-135a inhibitor partially nullified the effect of miR-135a inhibition. Proteasome inhibition by MG-132 revealed that miR-135a regulated proteasomal degradation and potentially controlled the expression of chemokinesin DNA binding protein (Kid. CONCLUSIONS/SIGNIFICANCE: The present study demonstrated for the first time that zygotic specific miRNA modulates the first cell cleavage through regulating expression of Siah1a.

  6. Sifuvirtide, a potent HIV fusion inhibitor peptide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Pang, Wei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Department of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Tam, Siu-Cheung [Department of Physiology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Tien, Po [Department of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Zheng, Yong-Tang, E-mail: zhengyt@mail.kiz.ac.cn [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  7. Kynurenine Aminotransferase Isozyme Inhibitors: A Review

    Directory of Open Access Journals (Sweden)

    Alireza Nematollahi

    2016-06-01

    Full Text Available Kynurenine aminotransferase isozymes (KATs 1–4 are members of the pyridoxal-5’-phosphate (PLP-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN to kynurenic acid (KYNA, a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70% in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies.

  8. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase

    Directory of Open Access Journals (Sweden)

    Paul Smith

    2016-02-01

    Full Text Available Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1 is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s. We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae. Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition.

  9. Homologous inhibitors from potato tubers of serine endopeptidases and metallocarboxypeptidases.

    Science.gov (United States)

    Hass, C M; Venkatakrishnan, R; Ryan, C A

    1976-06-01

    A potent polypeptide inhibitor of chymotrypsin has been purified from Russett Burbank potatoes. The inhibitor has no effect on bovine carboxypeptidases A or B but exhibits homology with a carboxypeptidase inhibitor that is also present in potato tubers. The chymotrypsin inhibitor has a molecular weight of approximately 5400 as estimated by gel filtration, amino acid analysis, and titration with chymotrypsin. The polypeptide chain consists of 49 amino acid residues, of which six are half-cystine, forming three disulfide bonds. Its size is similar to that of the carboxypeptidase inhibitor, which contains 39 amino acid residues and also has three disulfide bridges. In immunological double diffusion assays, the chymotrypsin inhibitor and the carboxypeptidase inhibitor do not crossreact; however, automatic Edman degradation of reduced and alkylated derivatives of the chymotrypsin inhibitor, yielding a partial sequence of 18 amino acid residues at the NH2-terminus, reveals a similarity in sequence to that of the carboxypeptidase inhibitor. Thus, inhibitors directed toward two distinct classes of proteases, the serine endopeptidases and the metallocarboxypeptidases, appear to have evolved from a common ancestor.

  10. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    Science.gov (United States)

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  11. A new urease inhibitor from Viola betonicifolia.

    Science.gov (United States)

    Muhammad, Naveed; Saeed, Muhammad; Khan, Ajmal; Adhikari, Achyut; Wadood, Abdul; Khan, Khalid Mohammed; De Feo, Vincenzo

    2014-10-17

    Urease has attracted much attention, as it is directly involved in the formation of infection stones and contributes to the pathogenesis of urolithiasis, pyelonephritis, ammonia and hepatic encephalopathy, hepatic coma and urinary catheter encrustation. Moreover, urease is the major cause of pathologies induced by H. pylori, such as gastritis and peptic ulcer. In the present work, the new natural compound, 3-methoxydalbergione, was isolated from Viola betonicifolia. A mechanistic study of this compound as a natural urease inhibitor was performed by using enzyme kinetics and docking studies. 3-Methoxydalbergione could be considered as a lead molecule for drugs useful in the urease associated diseases.

  12. Patient compliance with MAO inhibitor therapy.

    Science.gov (United States)

    Walker, J I; Davidson, J; Zung, W W

    1984-07-01

    Exaggerated fears of monoamine oxidase inhibitors (MAOIs) and of their interactions with foods often restrict their use. A review of the literature reveals seven food items most likely to produce a hypertensive crisis in combination with MAOI administration: aged cheeses, smoked or pickled fish, beef or chicken liver, dry fermented sausage, pods of broad beans, brewer's yeast products, and certain alcoholic beverages. Improved understanding of the dietary restrictions, benefits, and mechanism of action of the MAOIs can enhance cooperation with the prescribed treatment program.

  13. Proton Pump Inhibitors in Cardiovascular Disease

    DEFF Research Database (Denmark)

    Würtz, Morten; Grove, Erik L

    2016-01-01

    prescribed.PPIs provide gastroprotection by changing the intragastric milieu, essentially by raising intragastric pH. In recent years, it has been heavily discussed whether PPIs may reduce the cardiovascular protection by aspirin and, even more so, clopidogrel. Pharmacodynamic and pharmacokinetic studies......-treatment.Given the large number of patients treated with antithrombotic drugs and PPIs, even a minor reduction of platelet inhibition potentially carries considerable clinical impact. The present book chapter summarizes the evidence regarding the widespread use of platelet inhibitors and PPIs in combination. Moreover...

  14. Improving cancer immunotherapy with DNA methyltransferase inhibitors.

    Science.gov (United States)

    Saleh, Mohammad H; Wang, Lei; Goldberg, Michael S

    2016-07-01

    Immunotherapy confers durable clinical benefit to melanoma, lung, and kidney cancer patients. Challengingly, most other solid tumors, including ovarian carcinoma, are not particularly responsive to immunotherapy, so combination with a complementary therapy may be beneficial. Recent findings suggest that epigenetic modifying drugs can prime antitumor immunity by increasing expression of tumor-associated antigens, chemokines, and activating ligands by cancer cells as well as cytokines by immune cells. This review, drawing from both preclinical and clinical data, describes some of the mechanisms of action that enable DNA methyltransferase inhibitors to facilitate the establishment of antitumor immunity.

  15. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    Science.gov (United States)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  16. A New Urease Inhibitor from Viola betonicifolia

    Directory of Open Access Journals (Sweden)

    Naveed Muhammad

    2014-10-01

    Full Text Available Urease has attracted much attention, as it is directly involved in the formation of infection stones and contributes to the pathogenesis of urolithiasis, pyelonephritis, ammonia and hepatic encephalopathy, hepatic coma and urinary catheter encrustation. Moreover, urease is the major cause of pathologies induced by H. pylori, such as gastritis and peptic ulcer. In the present work, the new natural compound, 3-methoxydalbergione, was isolated from Viola betonicifolia. A mechanistic study of this compound as a natural urease inhibitor was performed by using enzyme kinetics and docking studies. 3-Methoxydalbergione could be considered as a lead molecule for drugs useful in the urease associated diseases.

  17. PKA regulatory subunit 1A inactivating mutation induces serotonin signaling in primary pigmented nodular adrenal disease.

    Science.gov (United States)

    Bram, Zakariae; Louiset, Estelle; Ragazzon, Bruno; Renouf, Sylvie; Wils, Julien; Duparc, Céline; Boutelet, Isabelle; Rizk-Rabin, Marthe; Libé, Rossella; Young, Jacques; Carson, Dennis; Vantyghem, Marie-Christine; Szarek, Eva; Martinez, Antoine; Stratakis, Constantine A; Bertherat, Jérôme; Lefebvre, Hervé

    2016-09-22

    Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent hypercortisolism. The disease is primarily caused by germline mutations of the protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene, which induces constitutive activation of PKA in adrenocortical cells. Hypercortisolism is thought to result from PKA hyperactivity, but PPNAD tissues exhibit features of neuroendocrine differentiation, which may lead to stimulation of steroidogenesis by abnormally expressed neurotransmitters. We hypothesized that serotonin (5-HT) may participate in the pathophysiology of PPNAD-associated hypercortisolism. We show that PPNAD tissues overexpress the 5-HT synthesizing enzyme tryptophan hydroxylase type 2 (Tph2) and the serotonin receptors types 4, 6, and 7, leading to formation of an illicit stimulatory serotonergic loop whose pharmacological inhibition in vitro decreases cortisol production. In the human PPNAD cell line CAR47, the PKA inhibitor H-89 decreases 5-HT4 and 5-HT7 receptor expression. Moreover, in the human adrenocortical cell line H295R, inhibition of PRKAR1A expression increases the expression of Tph2 and 5-HT4/6/7 receptors, an effect that is blocked by H-89. These findings show that the serotonergic process observed in PPNAD tissues results from PKA activation by PRKAR1A mutations. They also suggest that Tph inhibitors may represent efficient treatments of hypercortisolism in patients with PPNAD.

  18. PKA regulatory subunit 1A inactivating mutation induces serotonin signaling in primary pigmented nodular adrenal disease

    Science.gov (United States)

    Bram, Zakariae; Louiset, Estelle; Renouf, Sylvie; Duparc, Céline; Boutelet, Isabelle; Rizk-Rabin, Marthe; Libé, Rossella; Young, Jacques; Carson, Dennis; Vantyghem, Marie-Christine; Szarek, Eva; Martinez, Antoine; Stratakis, Constantine A.; Bertherat, Jérôme

    2016-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent hypercortisolism. The disease is primarily caused by germline mutations of the protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene, which induces constitutive activation of PKA in adrenocortical cells. Hypercortisolism is thought to result from PKA hyperactivity, but PPNAD tissues exhibit features of neuroendocrine differentiation, which may lead to stimulation of steroidogenesis by abnormally expressed neurotransmitters. We hypothesized that serotonin (5-HT) may participate in the pathophysiology of PPNAD-associated hypercortisolism. We show that PPNAD tissues overexpress the 5-HT synthesizing enzyme tryptophan hydroxylase type 2 (Tph2) and the serotonin receptors types 4, 6, and 7, leading to formation of an illicit stimulatory serotonergic loop whose pharmacological inhibition in vitro decreases cortisol production. In the human PPNAD cell line CAR47, the PKA inhibitor H-89 decreases 5-HT4 and 5-HT7 receptor expression. Moreover, in the human adrenocortical cell line H295R, inhibition of PRKAR1A expression increases the expression of Tph2 and 5-HT4/6/7 receptors, an effect that is blocked by H-89. These findings show that the serotonergic process observed in PPNAD tissues results from PKA activation by PRKAR1A mutations. They also suggest that Tph inhibitors may represent efficient treatments of hypercortisolism in patients with PPNAD. PMID:27699247

  19. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yinglu; Gong, Zhi-Yuan [Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Takakura, Nobuyuki, E-mail: ntakaku@biken.osaka-u.ac.jp [Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Japan Science Technology Agency, CREST, K' s Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-10

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34{sup +} transiently amplifying HSCs but not in CD34{sup −} long-term reconstituting-HSCs which are resting in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34{sup +} HSCs produce long functional PSF1 (PSF1a) but CD34{sup −} HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. - Highlights: • Hematopoetic stem cell dormancy is controlled by histone deacetylation inhibitors. • Dormancy of HSCs is associated with a shorter form of non-functional PSF1. • Histone deacetylase inhibitors suppress PSF1 promoter activity.

  20. Development of effective combined kinetic hydrate inhibitor/corrosion inhibitor (KHI/CI) products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Len. W.; Anderson, Joh.

    2006-03-15

    Low Dosage Hydrate Inhibitors (LDHIs) are gaining worldwide acceptance as a viable alternative to the more conventional methods of hydrate flow assurance control. Use of this LDHI technology in combination with Corrosion Inhibitors (CI) in production systems such as sub sea developments enables operating companies to further significantly reduce capital costs. CI can have a significant impact of the efficacy of Kinetic Hydrate Inhibitors (KHI). This paper will review the experience of developing combined KHI and CI products (KHI/CI) with the aim of producing effective products whilst also incorporating the goal of the use of more environmentally friendly CI. Relevant KHI/CI product case histories will be considered. The development of KHI to be used in the presence of CI will also be considered in different production scenarios. This relates to the typical situation of continuous CI usage with the seasonal application of KHI. Experience is also shown of how the incorporation of Thermodynamic Hydrate Inhibitors (THI) to KHI/CI products, in order to enable the combined product to control hydrates in higher subcooling systems, can also have a role to play in the influence that the CI has on the efficiency of the KHI. (author) (tk)

  1. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  2. Lonafarnib is a potential inhibitor for neovascularization.

    Directory of Open Access Journals (Sweden)

    Linlin Sun

    Full Text Available Atherosclerosis is a common cardiovascular disease that involves the build-up of plaque on the inner walls of the arteries. Intraplaque neovacularization has been shown to be essential in the pathogenesis of atherosclerosis. Previous studies showed that small-molecule compounds targeting farnesyl transferase have the ability to prevent atherosclerosis in apolipoprotein E-deficient mice, but the underlying mechanism remains to be elucidated. In this study, we found that lonafarnib, a specific inhibitor of farnesyl transferase, elicits inhibitory effect on vascular endothelial capillary assembly in vitro in a dose-dependent manner. In addition, we showed that lonafarnib treatment led to a dose-dependent decrease in scratch wound closure in vitro, whereas it had little effect on endothelial cell proliferation. These data indicate that lonafarnib inhibits neovascularization via directly targeting endothelial cells and disturbing their motility. Moreover, we demonstrated that pharmacological inhibition of farnesyl transferase by lonafarnib significantly impaired centrosome reorientation toward the leading edge of endothelial cells. Mechanistically, we found that the catalytic β subunit of farnesyl transferase associated with a cytoskeletal protein important for the establishment and maintenance of cell polarity. Additionally, we showed that lonafarnib remarkably inhibited the expression of the cytoskeletal protein and interrupted its interaction with farnesyl transferase. Our findings thus offer novel mechanistic insight into the protective effect of farnesyl transferase inhibitors on atherosclerosis and provide encouraging evidence for the potential use of this group of agents in inhibiting plaque neovascularization.

  3. Replication and Inhibitors of Enteroviruses and Parechoviruses

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-08-01

    Full Text Available The Enterovirus (EV and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV. They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  4. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  5. Peptidomimetics and metalloprotease inhibitors as anticancer drugs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Peptidomimetics with three types, as the structural or functional mimetics of natural active peptides, can preserve the bioactivity and improve the bioavailability and the specificity towards the targets of the lead peptides. Peptidomimetics of high bioactivity can be designed through various ways including conformation restriction, modification and non-peptide design. Recently the concentration on the de-velopment of cancer chemotherapeutic drugs was transferred from cytotoxic drugs to target-based drugs, and many proteases and peptidases that play key roles in the process of tumor genesis and development was discovered, which means that peptidomimetics as potential cancer chemotherapeu-tic drugs should be paid close attention to. Our laboratory has focused on the development of small-molecule peptidomimetic inhibitors of APN, MMPs and HDACs as target-based anticancer agents. These three zinc-dependent metalloproteinases play very important roles in the process of tumor genesis, invasion, metastasis, angiogenesis and matrix degradation, so small-molecule peptidomimetic inhibitors based on them would be quite potential in the development of chemotherapeutic drugs with high selectivity.

  6. Endocrine dysfunction following immune checkpoint inhibitor therapy.

    Science.gov (United States)

    Konda, Bhavana; Nabhan, Fadi; Shah, Manisha H

    2017-10-01

    Immune checkpoint inhibitors (ICI) represent an important milestone in the modern era of antineoplastic therapy and have ushered optimism amongst oncologists and patients alike. These agents, however, are associated with significant potential toxicities, the importance of which cannot be overstated. The clinical presentation, diagnosis, and management strategies of immune-related endocrinopathies associated with ICI use are described in this case-based review. An increasing number of ICI have shown promise in the management of various malignancies in the recent years. These include cytotoxic T lymphocyte antigen-4 inhibitors, programmed cell death 1 (PD-1) antibodies, and PD-ligand 1 (PD-L1) antibodies. Several endocrinopathies, including hypophysitis, thyroid dysfunction, hyperglycemia, and primary adrenal insufficiency, have been associated with the use of these agents. Toxicities may range from mild transient laboratory abnormalities to potentially life-threatening ones, warranting immediate therapeutic intervention. Combination ICI therapies may be associated with a greater risk of endocrine dysfunction when compared with monotherapy. The clinical presentation and laboratory assessment of these patients often pose a diagnostic challenge as they may be confused by the symptoms related to their underlying malignancy or potential associated acute illnesses. ICI use is associated with serious endocrinopathies that may have a nonspecific initial presentation. A constant eye for these symptoms and a systematic approach to diagnosis are essential for prompt initiation of therapy and prevention of significant complications.

  7. DABIGATRAN ETEXILATE: NEW DIRECT THROMBIN INHIBITORS ANTICOAGULANTS

    Directory of Open Access Journals (Sweden)

    Patel Kinjal B

    2011-04-01

    Full Text Available Thrombin plays a key role in thrombotic events, and therefore thrombin inhibition represents a therapeutic target for numerous thromboembolic diseases. Thrombin is responsible for the conversion of soluble fibrinogen to fibrin; clot stabilization through activation of factor XIII and the formation of cross-linkage among fibrin molecules; and the generation of additional thrombin through activation of factors V, VIII, and XI. Direct thrombin inhibitors are an innovative class of anticoagulants that bind directly to thrombin to inhibit its actions and impede the clotting process. Dabigatran is the first direct thrombin inhibitor, orally available first approval by US Food and Drugs Administration in 2010. Specifically and reversibly inhibits thrombin, so the duration of action is predictable. The anticoagulant effect correlates well with plasma drug concentrations, which implies an effective anticoagulation with low bleeding risk without major problems of interactions with other drugs. The predictable pharmacokinetics and pharmacodynamics characteristics of dabigatran may facilitate dental management of patients who until now have been in treatment with traditional anticoagulants, given that it doesn’t require routine laboratory monitoring in the vast majority of patients treated. They also present a profile of drug interactions very favorable.

  8. CRM1 Inhibitors for Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Cynthia Mathew

    2017-06-01

    Full Text Available Infectious diseases are a major global concern and despite major advancements in medical research, still cause significant morbidity and mortality. Progress in antiviral therapy is particularly hindered by appearance of mutants capable of overcoming the effects of drugs targeting viral components. Alternatively, development of drugs targeting host proteins essential for completion of viral lifecycle holds potential as a viable strategy for antiviral therapy. Nucleocytoplasmic trafficking pathways in particular are involved in several pathological conditions including cancer and viral infections, where hijacking or alteration of function of key transporter proteins, such as Chromosome Region Maintenance1 (CRM1 is observed. Overexpression of CRM1-mediated nuclear export is evident in several solid and hematological malignancies. Interestingly, CRM1-mediated nuclear export of viral components is crucial in various stages of the viral lifecycle and assembly. This review summarizes the role of CRM1 in cancer and selected viruses. Leptomycin B (LMB is the prototypical inhibitor of CRM1 potent against various cancer cell lines overexpressing CRM1 and in limiting viral infections at nanomolar concentrations in vitro. However, the irreversible shutdown of nuclear export results in high cytotoxicity and limited efficacy in vivo. This has prompted search for synthetic and natural CRM1 inhibitors that can potentially be developed as broadly active antivirals, some of which are summarized in this review.

  9. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolininhibitor dissociation constants (Ki ranged from 10 to 170 mmol/L. We showed that no significant change in the inhibition potency of selected flavonoids exists in view of BChE polymorphism. Our results suggested that flavonoids could assist the further development of new BChE-targeted drugs for treating symptoms of neurodegenerative diseases and dementia.

  10. Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2016-07-01

    Full Text Available A new series of benzylaminochalcone derivatives with different substituents on ring B were synthesized and evaluated as inhibitors of acetylcholinesterase. The study is aimed at identification of novel benzylaminochalcones capable of blocking acetylcholinesterase activity for further development of an approach to Alzheimer’s disease treatment. These compounds were produced in moderate to good yields via Claisen-Schmidt condensation and subjected to an in vitro acetylcholinesterase inhibition assay, using Ellman’s method. The in silico docking procedure was also employed to identify molecular interactions between the chalcone compounds and the enzyme. Compounds with ring B bearing pyridin-4-yl, 4-nitrophenyl, 4-chlorophenyl and 3,4-dimethoxyphenyl moieties were discovered to exhibit significant inhibitory activities against acetylcholinesterase, with IC50 values ranging from 23 to 39 µM. The molecular modeling studies are consistent with the hypothesis that benzylaminochalcones could exert their effects as dual-binding-site acetylcholinesterase inhibitors, which might simultaneously enhance cholinergic neurotransmission and inhibit β-amyloid aggregation through binding to both catalytic and peripheral sites of the enzyme. These derivatives could be further developed to provide novel leads for the discovery of new anti-Alzheimer drugs in the future.

  11. Inhibitors and pathways of hepatocytic protein degradation.

    Science.gov (United States)

    Seglen, P O; Gordon, P B; Grinde, B; Solheim, A; Kovács, A L; Poli, A

    1981-01-01

    On the basis of experiments using amino acids and various inhibitors (lysosomotropic amines, leupeptin, chymostatin, vanadate, vinblastine, anoxia, methylaminopurines), five different modes of endogenous protein degradation in isolated rat hepatocytes can be distinguished. The two non-lysosomal (amine-resistant) mechanisms preferentially degrade relatively labile (short-lived) proteins: one of these mechanisms is energy-dependent and chymostatin-sensitive, the other is not. Of the three lysosomal (amine-sensitive) mechanisms, one--quantitatively minor--is amino acid-resistant and preferentially degrades labile proteins. The two amino acid-sensitive mechanisms each seen account for about one-half of the degradation of relatively stable (long-lived) proteins; one of them is suppressed by leucine and apparently corresponds to the formation of electron microscopically visible autophagosomes; the other may represent a different type of autophagy, inhibited by asparagine and glutamine. A new class of inhibitors, the purine derivatives (methylated 6-aminopurines, and 6-mercaptopurines) appear to specifically suppress autophagic/lysosomal protein degradation, and may help to further elucidate the mechanisms of autophagy.

  12. Corrosion inhibitor for aqueous ammonia absorption system

    Science.gov (United States)

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  13. The Place of protease inhibitors in antiretroviral treatment

    Directory of Open Access Journals (Sweden)

    S.B. Tenore

    2009-10-01

    Full Text Available With the introduction of highly active antiretroviral therapy, a number of drugs have been developed. The best choice concerning which antiretroviral analogs to start is always under discussion, especially in the choice between non-nucleoside reverse transcriptase inhibitors-based therapies and ritonavir-boosted protease inhibitors. Both are proven to control viral replication and lead to immunological gain. The choice between a non-nucleoside analog reverse transcriptase inhibitor and a protease inhibitor as a third antiretroviral drug in the therapy should consider factors related to the individual, as well as the inclusion of the best therapy in the patient's daily activities and potential adherence. The protease inhibitor-based therapies showed similar efficacy among the various inhibitors with characteristics concerning the adverse events from each medicine. For the treatment of protease-resistant patients, darunavir and tipranavir showed good efficacy with higher genetic barrier to resistance.

  14. Internet Selling Expansion Inhibitors: A Mixed Method Approach

    Directory of Open Access Journals (Sweden)

    Shahriar Azizi

    2013-01-01

    Full Text Available This research based on providing five questions has tried to identify and prioritize the main and sub inhibitors of internet selling boosting in Iran. A mixed method research (QUAN has been used in this research. In the qualitative phase, individual in-depth interviews have been done with seven e-shop managers. In this phase, 45 detailed inhibitors have been detected. These 45 inhibitors have been categorized in nine sub categories and four main categories. In the quantitative phase a 51-items questionnaires has been designed including six demographical and 45 specialized questions. Findings of the quantitative phase reveal that the main obstacles include legal, cultural, infrastructural and managerial inhibitors. In addition, sub category inhibitors include legal, governmental, telecommunication, society, human resource, transportation, financial and customer related.     Keywords: e-selling, Iran, Inhibitors, Mixed method.

  15. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    Directory of Open Access Journals (Sweden)

    Raimond Gordienko

    Full Text Available The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs possess the ability to modify structure II (sII tetrahydrofuran (THF hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP. The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  16. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3.

    Science.gov (United States)

    Lee, Sooho; Yang, Woo Kyeom; Song, Ji Ho; Ra, Young Min; Jeong, Jin-Hyun; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2013-04-01

    Glycogen synthase kinase 3 (GSK-3) plays a central role in cellular energy metabolism, and dysregulation of GSK-3 activity is implicated in a variety of metabolic disorders, including obesity, type 2 diabetes, and cancer. Hence, GSK-3 has emerged as an attractive target molecule for the treatment of metabolic disorders. Therefore, this research focused on identification and characterization of a novel small-molecule GSK-3 inhibitor. Compound 1a, a structure based on 3-hydroxychromone bearing isothiazolidine-1,1-dione, was identified from chemical library as a highly potent GSK-3 inhibitor. An in vitro kinase assay utilizing a panel of kinases demonstrated that compound 1a strongly inhibits GSK-3β. The potential effects of compound 1a on the inactivation of GSK-3 were confirmed in human liver HepG2 and human embryonic kidney HEK293 cells. Stabilization of glycogen synthase and β-catenin, which are direct targets of GSK-3, by compound 1a was assessed in comparison with two other GSK-3 inhibitors: LiCl and SB-415286. In mouse 3T3-L1 preadipocytes, compound 1a markedly blocked adipocyte differentiation. Consistently, intraperitoneal administration of compound 1a to diet-induced obese mice significantly ameliorated their key symptoms such as body weight gain, increased adiposity, dyslipidemia, and hepatic steatosis due to the marked reduction of whole-body lipid level. In vitro and in vivo effects were accompanied by upregulation of β-catenin stability and downregulation of the expression of several critical genes related to lipid metabolism. From these results, it can be concluded that compound 1a, a novel small-molecule inhibitor of GSK-3, has potential as a new class of therapeutic agent for obesity treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies

    Directory of Open Access Journals (Sweden)

    Maryam Foroozesh

    2012-08-01

    Full Text Available The cytochrome P450 (CYP superfamily of heme enzymes play an important role in the metabolism of a large number of endogenous and exogenous compounds, including most of the drugs currently on the market. Inhibitors of CYP enzymes have important roles in the treatment of several disease conditions such as numerous cancers and fungal infections in addition to their critical role in drug-drug interactions. Structure activity relationships (SAR, and three-dimensional quantitative structure activity relationships (3D-QSAR represent important tools in understanding the interactions of the inhibitors with the active sites of the CYP enzymes. A comprehensive account of the QSAR studies on the major human CYPs 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and a few other CYPs are detailed in this review which will provide us with an insight into the individual/common characteristics of the active sites of these enzymes and the enzyme-inhibitor interactions.

  18. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa.

    Science.gov (United States)

    Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun; Hammock, Bruce D; Madden, Dean R; Morisseau, Christophe

    2016-05-26

    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application.

  19. PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rudolph, Jeanette Heede [GSI-Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Jakob, Burkhard [GSI-Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Fink, Daniela [GSI-Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Tobias, Frank [GSI-Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Blattner, Christine [Karlsruhe Inst. of Technology (KIT) (Germany). Inst. of Toxicology and Genetics; Taucher-Scholz, Gisela [GSI-Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)

    2012-03-26

    The cyclin-dependent kinase inhibitor CDKN1A/p21 confers cell-cycle arrest in response to DNA damage and inhibits DNA replication through its direct interaction with the proliferating cell nuclear antigen (PCNA) and cyclin/cyclin-dependent kinase complexes. Previously, we reported that in response to densely ionizing radiation CDKN1A rapidly is recruited to the sites of particle traversal, and that CDKN1A foci formation in response to heavy ions is independent of its transactivation by TP53. In this paper, we show that exposure of normal human fibroblasts to X-rays or to H2O2 also induces nuclear accumulations of CDKN1A. We find that CDKN1A foci formation in response to radiation damage is dependent on its dephosphorylation and on its direct physical interaction with PCNA. Live cell imaging analyses of ectopically expressed EGFP-CDKN1A and dsRed-PCNA show rapid recruitment of both proteins into foci after radiation damage. Detailed dynamic measurements reveal a slightly delayed recruitment of CDKN1A compared to PCNA, which is best described by bi-exponential curve fitting, taking the preceding binding of PCNA to DNA into account. Finally, we propose a regulatory role for CDKN1A in mediating PCNA function after radiation damage, and provide evidence that this role is distinct from its involvement in nucleotide excision repair and unrelated to double-strand break repair.

  20. Nitrogen heterocycles as potential monoamine oxidase inhibitors: Synthetic aspects

    Directory of Open Access Journals (Sweden)

    Pravin O. Patil

    2014-12-01

    Full Text Available The present review highlights the synthetic methods of monoamine oxidase inhibitors (MAO belonging to a group of nitrogen heterocycles such as pyrazoline, indole, xanthine, oxadiazole, benzimidazole, pyrrole, quinoxaline, thiazole and other related compounds (1990–2012. Moreover, it emphasizes salient findings related to chemical structures and the bioactivities of these heterocycles as MAO inhibitors. The aim of this review is to find out different methods for the synthesis of nitrogen containing heterocycles and their bioactivity related aspects as MAO inhibitors.

  1. Aromatase inhibitors in men: effects and therapeutic options

    Directory of Open Access Journals (Sweden)

    de Jong Frank H

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors effectively delay epiphysial maturation in boys and improve testosterone levels in adult men Therefore, aromatase inhibitors may be used to increase adult height in boys with gonadotropin-independent precocious puberty, idiopathic short stature and constitutional delay of puberty. Long-term efficacy and safety of the use of aromatase inhibitors has not yet been established in males, however, and their routine use is therefore not yet recommended.

  2. Engineering Performance of a New Siloxane-Based Corrosion Inhibitor

    OpenAIRE

    Holmes, Niall; O'Brien, R.; Basheer, P. A.M.

    2013-01-01

    This paper presents an evaluation of a new non-toxic corrosion inhibitor on selected engineering properties of concrete mixes with different cementitious materials following a corrosion and durability study on concrete samples. Corrosion inhibitors consist of powders or solutions which are added to concrete when mixed to prevent or delay corrosion of steel by their reaction with ferrous ions to form a stable and passive ferric oxide film on the steel surface. The new inhibitor functions sligh...

  3. Natural compounds as corrosion inhibitors for highly cycled systems

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A.; Farooqi, I.H.; Saini, P.A. [Corrosion Research Lab., Aligarh (India)

    1999-11-01

    Strict environmental legislations have led to the development of green inhibitors in recent years. In continuation of the authors` research work on development of green inhibitors, they have investigated the aqueous extracts of three plants namely: Azadirachta indica, Punica Granatum and Momordica charantia as corrosion inhibitors for mild steel in 3% NaCl using weight loss and electrochemical methods. All the investigated compounds exhibited excellent corrosion inhibition properties comparable to that of HEDP. Azadirachta showed better scale inhibition effect than HEDP.

  4. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines.

    Science.gov (United States)

    Mohammed, M Z; Vyjayanti, V N; Laughton, C A; Dekker, L V; Fischer, P M; Wilson, D M; Abbotts, R; Shah, S; Patel, P M; Hickson, I D; Madhusudan, S

    2011-02-15

    Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy. An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses. Several specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines. Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.

  5. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-04-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  6. Achievements, challenges and unmet needs for haemophilia patients with inhibitors

    Science.gov (United States)

    DARGAUD, Y.; PAVLOVA, A.; LACROIX-DESMAZES, S.; FISCHER, K.; SOUCIE, M.; CLAEYSSENS, S.; SCOTT, D.W.; d’OIRON, R.; LAVIGNE-LISSALDE, G.; KENET, G.; ETTINGSHAUSEN, C. ESCURIOLA; BOREL-DERLON, A.; LAMBERT, T.; PASTA, G.; NÉGRIER, C.

    2016-01-01

    Summary Over the past 20 years, there have been many advances in haemophilia treatment that have allowed patients to take greater control of their disease. However, the development of factor VIII (FVIII) inhibitors is the greatest complication of the disease and a challenge in the treatment of haemophilia making management of bleeding episodes difficult and surgical procedures very challenging. A meeting to discuss the unmet needs of haemophilia patients with inhibitors was held in Paris on 20 November 2014. Topics discussed were genetic and non-genetic risk factors for the development of inhibitors, immunological aspects of inhibitor development, FVIII products and inhibitor development, generation and functional properties of engineered antigen-specific T regulatory cells, suppression of immune responses to FVIII, prophylaxis in haemophilia patients with inhibitors, epitope mapping of FVIII inhibitors, current controversies in immune tolerance induction therapy, surgery in haemophilia patients with inhibitors and future perspectives for the treatment of haemophilia patients with inhibitors. A summary of the key points discussed is presented in this paper. PMID:26728503

  7. Behaviour of tetramine inhibitors during pickling of hot rolled steels

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, Marie-José, E-mail: marie-jose.cornu@arcelormittal.com [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Koltsov, Alexey, E-mail: alexey.koltsov@arcelormittal.com [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Nicolas, Sabrina, E-mail: sabrina_nicolas@live.fr [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME) – UMR 7564 CNRS – Université de Lorraine, 405 rue de Vandoeuvre, 54602 Villers-lès-Nancy (France); Colom, Lydia, E-mail: Lydia.colom@sfr.fr [ArcelorMittal Maizières Research, Voie Romaine, 57280 Maizières-lès-Metz (France); Dossot, Manuel, E-mail: manuel.dossot@univ-lorraine.fr [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME) – UMR 7564 CNRS – Université de Lorraine, 405 rue de Vandoeuvre, 54602 Villers-lès-Nancy (France)

    2014-02-28

    To avoid the dissolution of steel in industrial pickling process, tetramine inhibitors are added to the pickling bath. This study is devoted to the understanding of the action mechanism of these inhibitors in hydrochloric and sulphuric baths on non-alloyed and alloyed steels. Pickling experiments and characterization with XPS, Raman and infrared spectroscopies have shown that inhibitors work only in acid media and leached out from the steel surfaces during the rinsing operation just after pickling. The effectiveness of inhibitors depends on the acid media and the temperature. Experimental data are consistent with a surface mechanism, i.e., the so-called “outer-sphere” adsorption.

  8. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan

    2010-11-01

    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  9. Solderability preservation through the use of organic inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, N.R.; Hosking, F.M.

    1994-12-01

    Organic inhibitors can be used to prevent corrosion of metals and have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper, but provides a vast improvement relative to oxidized copper.

  10. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-02-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  11. Discovery of a selective irreversible BMX inhibitor for prostate cancer.

    Science.gov (United States)

    Liu, Feiyang; Zhang, Xin; Weisberg, Ellen; Chen, Sen; Hur, Wooyoung; Wu, Hong; Zhao, Zheng; Wang, Wenchao; Mao, Mao; Cai, Changmeng; Simon, Nicholas I; Sanda, Takaomi; Wang, Jinhua; Look, A Thomas; Griffin, James D; Balk, Steven P; Liu, Qingsong; Gray, Nathanael S

    2013-07-19

    BMX is a member of the TEC family of nonreceptor tyrosine kinases. We have used structure-based drug design in conjunction with kinome profiling to develop a potent, selective, and irreversible BMX kinase inhibitor, BMX-IN-1, which covalently modifies Cys496. BMX-IN-1 inhibits the proliferation of Tel-BMX-transformed Ba/F3 cells at two digit nanomolar concentrations but requires single digit micromolar concentrations to inhibit the proliferation of prostate cancer cell lines. Using a combinatorial kinase inhibitor screening strategy, we discovered that the allosteric Akt inhibitor, MK2206, is able to potentiate BMX inhibitor's antiproliferation efficacy against prostate cancer cells.

  12. Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Enjuro Harunari

    2014-01-01

    Full Text Available Hyaluromycin (1, a new member of the rubromycin family of antibiotics, was isolated from the culture extract of a marine-derived Streptomyces sp. as a HAase inhibitor on the basis of HAase activity screening. The structure of 1 was elucidated through the interpretation of NMR data for the compound and its 3″-O-methyl derivative in combination with an incorporation experiment with [1,2-13C2]acetate. The compound’s absolute configuration was determined by the comparison of its circular dichroism (CD spectrum with those of other rubromycins. Hyaluromycin (1 consists of a γ-rubromycin core structure possessing a 2-amino-3-hydroxycyclopent-2-enone (C5N unit as an amide substituent of the carboxyl function; both structural units have been reported only from actinomycetes. Hyaluromycin (1 displayed approximately 25-fold more potent hyaluronidase inhibitory activity against hyaluronidase than did glycyrrhizin, a known inhibitor of plant origin.

  13. Targeting Transcriptional Addictions In Small Cell Lung Cancer With a Covalent CDK7 Inhibitor

    Science.gov (United States)

    Christensen, Camilla L.; Kwiatkowski, Nicholas; Abraham, Brian J.; Carretero, Julian; Al-shahrour, Fatima; Zhang, Tinghu; Chipumuro, Edmond; Herter-Sprie, Grit S.; Akbay, Esra A.; Altabef, Abigail; Zhang, Jianming; Shimamura, Takeshi; Capelletti, Marzia; Reibel, Jakob B.; Cavanaugh, Jillian; Gao, Peng; Liu, Yan; Michaelsen, Signe R.; Poulsen, Hans S.; Aref, Amir R.; Barbie, David A.; Bradner, James E.; George, Rani; Gray, Nathanael S.; Young, Richard A.; Wong, Kwok-Kin

    2014-01-01

    SUMMARY Small cell lung cancer (SCLC) is an aggressive disease with high mortality. The identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library we observe that SCLC is sensitive to transcription-targeting drugs, and in particular to THZ1, a recent identified covalent inhibitor of cyclin-dependent kinase 7 (CDK7). We find that expression of super-enhancer associated transcription factor genes including MYC family proto-oncogenes and neuroendocrine lineage-specific factors are highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy. PMID:25490451

  14. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuangluo; Monzingo, Arthur F.; Robertus, Jon D., E-mail: jrobertus@mail.utexas.edu [Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas, 1 University Station A5300, Austin, TX 78712 (United States)

    2009-01-01

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  15. Intronic SH2D1A mutation with impaired SAP expression and agammaglobulinemia.

    Science.gov (United States)

    Recher, Mike; Fried, Ari J; Massaad, Michel J; Kim, Hye Young; Rizzini, Michela; Frugoni, Francesco; Walter, Jolan E; Mathew, Divij; Eibel, Hermann; Hess, Christoph; Giliani, Silvia; Umetsu, Dale T; Notarangelo, Luigi D; Geha, Raif S

    2013-02-01

    X-linked lymphoproliferative (XLP) disease is a primary immunodeficiency syndrome associated with the inability to control Epstein-Barr virus (EBV), lymphoma, and hypogammaglobulinemia. XLP is caused by mutations in the SH2D1A gene, which encodes the SLAM-associated protein (SAP), or in the BIRC4 gene, which encodes the X-linked inhibitor of apoptosis protein (XIAP). Here we report a patient with recurrent respiratory tract infections and early onset agammaglobulinemia who carried a unique disease-causing intronic loss-of-function mutation in SH2D1A. The intronic mutation affected SH2D1A gene transcription but not mRNA splicing, and led to markedly reduced level of SAP protein. Despite undetectable serum immunoglobulins, the patient's B cells replicated and differentiated into antibody producing cells normally in vitro.

  16. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design.

    Science.gov (United States)

    Sippel, Katherine H; Robbins, Arthur H; Domsic, John; Genis, Caroli; Agbandje-McKenna, Mavis; McKenna, Robert

    2009-10-01

    The crystal structure of human carbonic anhydrase II (CA II) complexed with the inhibitor acetazolamide (AZM) has been determined at 1.1 A resolution and refined to an R(cryst) of 11.2% and an R(free) of 14.7%. As observed in previous CA II-inhibitor complexes, AZM binds directly to the zinc and makes several key interactions with active-site residues. The high-resolution data also showed a glycerol molecule adjacent to the AZM in the active site and two additional AZMs that are adventitiously bound on the surface of the enzyme. The co-binding of AZM and glycerol in the active site demonstrate that given an appropriate ring orientation and substituents, an isozyme-specific CA inhibitor may be developed.

  17. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds.

    Science.gov (United States)

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2009-07-01

    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%.

  18. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  19. Genotypic analysis of HCV 1a by sequencing of the NS3 proteasic region in simeprevir therapy candidates.

    Science.gov (United States)

    Liberti, Alfonso; Raddi, Adriana; Cuomo, Nunzia

    2016-12-01

    Each phase of the HCV replication cycle can represent a therapy target. In fact, SIMEPREVIR (SMV) acts as NS3/4A protease inhibitor (PI); its efficacy is, however, reduced in HCV1a patients characterized by NS3Q80K polymorphism. The aim of this work was to design a genotypic analysis of NS3 protease in order to characterize viral quasispecies in HCV 1a patients before starting the SMV therapy. In all, 38 peripheral blood-EDTA samples were collected from patients infected with HCV 1a (RNA > 10,000 cp/ml). The samples were sequenced in a region of 543 nucleotides, codifying for 181 amino acids of the NS3 protease with ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems). Of the 38 samples, two showed the Q80K mutation associated with resistance to SMV. In 16 samples mutations associated with a possible resistance to protease inhibitor, TELAPREVIR, were observed. Only one sample showed the T54S mutation, which is responsible for resistance to BOCEPREVIR, a protease inhibitor too. The data reported in this paper show a 5% prevalence of the Q80K mutation in HCV 1a patients. So far, some differences in the percentage of the Q80K mutations were observed within the European population, when compared with its US counterpart. The prevalence study described herein, albeit observed on a low number of samples, could challenge the recommendations reported in the technical data sheet of SMV.

  20. Computational studies on the binding mechanism between triazolone inhibitors and Chk1 by molecular docking and molecular dynamics.

    Science.gov (United States)

    Lv, Min; Ma, Shuying; Tian, Yueli; Zhang, Xiaoyun; Lv, Wenjuan; Zhai, Honglin

    2015-01-01

    Chk1, a serine/threonine protein kinase that participates in transducing DNA damage signals, is an attractive target due to its involvement in tumor initiation and progression. As a novel Chk1 inhibitor, the triazolone's bioactivity mechanism is not clear. In this study, we carried out an integrated computational study that combines molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations to identify the key factors necessary for the bioactivities. With the aim of discerning the structural features that affect the inhibitory activity of triazolones, MK-8776, a Chk1 inhibitor that reached the clinical stage, was also used as a reference for simulations. A comparative analysis of the triazolone inhibitors at the molecular level offers valuable insight into the structural and energetic properties. A general feature is that all the studied inhibitors bind in the pocket characterized by residues Leu14, Val22, Ala35, Glu84, Tyr85, Cys86, and Leu136 of Chk1. Moreover, introducing hydrophobic groups into triazolone inhibitors is favorable for binding to Chk1, which is corroborated by residue Leu136 with a relatively large difference in the contribution between MK-8776 and five triazolones to the total binding free energies. A hydrogen bond between the polar hydrogen atoms at R1 and Cys86 can facilitate proper placement of the inhibitor in the binding pocket of Chk1 that favors binding. However, the introduction of hydrophilic groups into the R2 position diminishes binding affinity. The information provided by this research is of benefit for further rational design of novel promising inhibitors of Chk1.

  1. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays

    Science.gov (United States)

    Barnard, Sunelle A.; Loots, Du Toit; Rijken, Dingeman C.

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of

  2. Cyclooxygenase (COX Inhibitors and the Newborn Kidney

    Directory of Open Access Journals (Sweden)

    Wei Qi

    2012-10-01

    Full Text Available This review summarizes our current understanding of the role of cyclo-oxygenase inhibitors (COXI in influencing the structural development as well as the function of the developing kidney. COXI administered either during pregnancy or after birth can influence kidney development including nephronogenesis, and can decrease renal perfusion and ultrafiltration potentially leading to acute kidney injury in the newborn period. To date, which COX isoform (COX-1 or COX-2 plays a more important role in during fetal development and influences kidney function early in life is not known, though evidence points to a predominant role for COX-2. Clinical implications of the use of COXI in pregnancy and in the newborn infant are also evaluated herein, with specific reference to the potential effects of COXI on nephronogenesis as well as newborn kidney function.

  3. Development of Inhibitors of Salicylic Acid Signaling.

    Science.gov (United States)

    Jiang, Kai; Kurimoto, Tetsuya; Seo, Eun-kyung; Miyazaki, Sho; Nakajima, Masatoshi; Nakamura, Hidemitsu; Asami, Tadao

    2015-08-19

    Salicylic acid (SA) plays important roles in the induction of systemic acquired resistance (SAR) in plants. Determining the mechanism of SAR will extend our understanding of plant defenses against pathogens. We recently reported that PAMD is an inhibitor of SA signaling, which suppresses the expression of the pathogenesis-related PR genes and is expected to facilitate the understanding of SA signaling. However, PAMD strongly inhibits plant growth. To minimize the side effects of PAMD, we synthesized a number of PAMD derivatives, and identified compound 4 that strongly suppresses the expression of the PR genes with fewer adverse effects on plant growth than PAMD. We further showed that the adverse effects on plant growth were partially caused the stabilization of DELLA, which is also related to the pathogen responses. These results indicate that compound 4 would facilitate our understanding of SA signaling and its cross talk with other plant hormones.

  4. Renal effects of immune checkpoint inhibitors.

    Science.gov (United States)

    Izzedine, Hassan; Mateus, Christine; Boutros, Céline; Robert, Caroline; Rouvier, Philippe; Amoura, Zahir; Mathian, Alexis

    2016-12-26

    Recent advances in immune checkpoint inhibitor (ICPI) development have led to major improvements in oncology patient outcomes. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are two essential immune checkpoint receptors. Ipilimumab and tremelimumab (anti-CTLA-4-blocking antibodies) and pembrolizumab and nivolumab (antibodies targeting PD-1 receptors) have already been approved by US Food and Drug Administration in several malignancies. Two different forms of ICPI-induced renal damage have been identified, including acute (granulomatous) tubulointerstitial nephritis and immune complex glomerulonephritis. The observed acute renal damage can be reversed upon ICPI drug discontinuation and renal function can recover back to normal following the introduction of systemic corticosteroid treatment. Any delay in treating this complication could result in definitive and irreversible renal injury.

  5. Proton pump inhibitors inhibit pancreatic secretion

    DEFF Research Database (Denmark)

    Wang, Jing; Barbuskaite, Dagne; Tozzi, Marco

    2015-01-01

    +/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar...... of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition...

  6. Insect response to plant defensive protease inhibitors.

    Science.gov (United States)

    Zhu-Salzman, Keyan; Zeng, Rensen

    2015-01-07

    Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.

  7. Efficacy of topical calcineurin inhibitors in vitiligo.

    Science.gov (United States)

    Wong, Russell; Lin, Andrew N

    2013-04-01

    Topical tacrolimus and pimecrolimus are indicated for the treatment of atopic dermatitis, but they have been studied in many off-label uses. We reviewed the English language literature to define their roles in treatment of vitiligo. Double-blind studies show that tacrolimus 0.1% ointment combined with excimer laser is superior to placebo, especially for UV resistant areas, such as bony prominences of the extremities. When used alone, tacrolimus 0.1% ointment is almost as effective as clobetasol propionate 0.05% ointment. Other studies suggest it can also be effective for facial lesions. Double blind studies show that pimecrolimus 1% cream combined with narrow band UVB is superior to placebo, especially for facial lesions. Additional studies would further clarify the role of topical calcineurin inhibitors in vitiligo. © 2013 The International Society of Dermatology.

  8. [Progress in c-di-GMP inhibitors].

    Science.gov (United States)

    Xiang, Xuwen; Liu, Xingyu; Tao, Hui; Cui, Zining; Zhang, Lianhui

    2017-09-25

    The cyclic dinucleotide c-di-GMP is known as an important second messenger in bacteria, which controls various important cellular processes, such as cell differentiation, biofilm formation and virulence factors production. It is extremely vital for the development of new antibacterial agents by virtue of blocking c-di-GMP signal conduction. Current research indicates that there are three potential targets for discovering new antibacterial agents based on c-di-GMP regulated signal pathway, which are c-di-GMP synthases, c-di-GMP degrading enzymes and c-di-GMP receptors. Herein, we review small molecules that have been developed to inhibit c-di-GMP related enzymes and indicate perspectives of c-di-GMP inhibitors.

  9. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  10. The new factor Xa inhibitor: Apixaban

    Directory of Open Access Journals (Sweden)

    Sangeeta Bhanwra

    2014-01-01

    Full Text Available Cardiovascular diseases are still the most important cause of morbidity and mortality worldwide and anti-thrombotic treatment is widely used as a result. The currently used drugs include heparin and its derivatives, vitamin K antagonists, though efficacious, have their own set of limitations like unpredictable pharmacokinetic profile, parenteral route (with heparin and its derivatives only, narrow therapeutic window, and constant laboratory monitoring for their efficacy and safety. This lead to the development of novel factor Xa inhibitors which could be given orally, have predictable dose response relationship and are associated with lesser hemorrhagic complications. They include rivaroxaban, apixaban, and edoxaban among others. Apixaban has currently been approved for use in patients undergoing total knee or hip replacement surgery and to prevent stroke in patients with atrial fibrillation. Many trials are ongoing for apixaban to firmly establish its place in future, among the anti-thrombotic drugs.

  11. The INHIBITOR OF MERISTEM ACTIVITY (IMA) protein

    Science.gov (United States)

    Sicard, Adrien; Hernould, Michel

    2008-01-01

    The INHIBITOR OF MERISTEM ACTIVITY (IMA) gene from tomato regulates the processes of flower and ovule development. 1 IMA encodes a Mini Zinc Finger (MIF) protein that is characterized by a very short sequence containing an unusual zinc-finger domain. IMA acts as a repressor of WUSCHEL expression which controls the meristem organizing centre and the determinacy of the nucellus during ovule development. IMA inhibits cell proliferation during floral termination, controls the number of carpels during floral development and participates in the initiation of ovule primordia by activating D-type gene expression. In addition IMA is involved in a multiple hormonal signalling pathway like its Arabidopsis homolog MIF1.2 We thus propose that IMA, as a representative of this new family of zinc finger proteins, is an important effector in the regulatory pathway controlling meristem activity linking cell division, differentiation and hormonal control of development. PMID:19704478

  12. Chemical Inhibitors of Epigenetic Methyllysine Reader Proteins.

    Science.gov (United States)

    Milosevich, Natalia; Hof, Fraser

    2016-03-22

    Protein methylation is a common post-translational modification with diverse biological functions. Methyllysine reader proteins are increasingly a focus of epigenetics research and play important roles in regulating many cellular processes. These reader proteins are vital players in development, cell cycle regulation, stress responses, oncogenesis, and other disease pathways. The recent emergence of a small number of chemical inhibitors for methyllysine reader proteins supports the viability of these proteins as targets for drug development. This article introduces the biochemistry and biology of methyllysine reader proteins, provides an overview of functions for those families of readers that have been targeted to date (MBT, PHD, tudor, and chromodomains), and reviews the development of synthetic agents that directly block their methyllysine reading functions.

  13. a -Glucosidase Inhibitors from Dendrobium tortile

    Directory of Open Access Journals (Sweden)

    Rachawadee Limpanit

    2016-03-01

    Full Text Available From the whole plant of Dendrobium tortile, a new compound, namely 4-(2-hydroxypropyl-2(5H-furanone, was isolated, together with six known compounds, which included trans-tetracosylferulate (2, cis-docosylferulate (3, p-hydroxybenzaldehyde (4, 3,4-dihydroxy-3,4 ¢ -dimethoxybibenzyl (5, (2S-eriodictyol (6 and dendrofalconerol A (7. The structures of these compounds were determined through analysis of 1-D and 2-D NMR and HR-ESI-MS data. All of the isolates were evaluated for their a -glucosidase inhibitory activity. Compound 7 showed strong a -glucosidase inhibitory activity when compared with the positive control acarbose, whereas compounds 5 and 6 exhibited appreciable effects. An enzyme kinetic study revealed that compound 7 is a non-competitive inhibitor of a -glucosidase. This is the first report of the chemical constituents with biological activity from D. tortile.

  14. Bisarylmaleimides & the Corresponding Indolocarbazoles as Kinase Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Zhu Guoxin; Cathy Ogg; Bharvin Patel; Richard M. Schultz; Charles D. Spencer; Beverly Teicher; Scou A. Watkins; Scott E. Conner; Zhou Xun; Chuan Shih; Li Tiechao; Harold B. Brooks; Eileen Considine; Jack A. Dempsey; Margaret M. Faul

    2004-01-01

    Cyclin dependent kinases (CDKs) have recently raised considerable attention because of their central role in the regulation of cell cycle progression. A high incidence of genetic mutation of CDK substrates and deregulaton of CDK modulators were found in a number of disease states,particularly in cancer. A novel series of unsymmetrical substituted indolocarbazoles were synthesized and their kinase inhibitory capability was evaluated in vitro. 6-Substtuted indolocarbazoles were found to be highly potent and selective D1/CDK4 inhibitors. These indolocarbazoles exhibited ATP competitive D1/CDK4 activity and inhibited tumor cell growth,arrested tumor cell at G1 phase. These molecules demonstrated potent anti-tumor activity and inhibited pRb phosphorylation at S780 in the human lung carcinoma (Calu6) and non-small cell lung carcinoma (NCI-H460) xenograft models. The results indicate that these small molecules have potential as therapeutic agents in cancer chemotherapeutc agents.

  15. Different Pathways Leading to Integrase Inhibitors Resistance

    Science.gov (United States)

    Thierry, Eloïse; Deprez, Eric; Delelis, Olivier

    2017-01-01

    Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information. PMID:28123383

  16. New Acetylcholinesterase Inhibitors for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Mona Mehta

    2012-01-01

    Full Text Available Acetylcholinesterase (AChE remains a highly viable target for the symptomatic improvement in Alzheimer's disease (AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AchE for myasthenia gravis had effectively proven that AchE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEI continue to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs in development and their respective mechanisms of actions. This pharmacological approach continues to be active with many promising compounds.

  17. Randomized controlled trials of COX-2 inhibitors

    DEFF Research Database (Denmark)

    Stefansdottir, Gudrun; De Bruin, Marie L; Knol, Mirjam J

    2011-01-01

    BACKGROUND: Naproxen, ibuprofen and diclofenac are frequently used as comparators in randomized controlled trials (RCTs) on the safety and efficacy of cyclooxygenase (COX)-2 inhibitors. Different comparator doses may influence the results of RCTs. It has been hypothesized that RCTs of COX-2...... 1995 and 2009 in which celecoxib or rofecoxib were compared with naproxen, ibuprofen or diclofenac. All articles labelled as RCTs mentioning rofecoxib or celecoxib and one or more of the comparator drugs in the title and/or abstract were included. We extracted information on doses of both non...... dose trends in the case of rofecoxib. CONCLUSIONS: Although the dose trends over time differed for RCTs comparing rofecoxib and celecoxib with diclofenac, ibuprofen or naproxen, the results of our study do not support the hypothesis that dose trends influenced the decision to continue marketing...

  18. Developing BACE-1 inhibitors for FXS

    Directory of Open Access Journals (Sweden)

    Cara J Westmark

    2013-05-01

    Full Text Available Fragile X syndrome (FXS is a debilitating genetic disorder with no cure and few therapeutic options. Excessive signaling through metabotropic glutamate receptor 5 (mGluR5 in FXS leads to increased translation of numerous synaptic proteins and exaggerated long-term depression (LTD. Two of the overexpressed proteins are amyloid-beta protein precursor (APP and its metabolite amyloid-beta (Aβ, which have been well-studied in Alzheimer’s disease (AD. Here we discus the possibility that pharmaceuticals under study for the modulation of these proteins in AD might be viable therapeutic strategies for FXS. Specifically, a recently identified acetyltransferase (ATase inhibitor that reduces the levels and activity of β-site APP cleaving enzyme (BACE-1 has strong potential to attenuate BACE-1 activity and maintain homeostatic levels APP catabolites in FXS.

  19. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly......, the disulfide bridge was replaced with amide bonds of various lengths. The novel peptides did not retain their inhibitory activity, but formed the basis for another strategy. Second, bicyclic peptides were obtained by creating head-to-tail cyclized peptides that were made bicyclic by the addition of a covalent...... increased. Finally, the effect of multivalent display of upain-2 was investigated. Several dimers of upain-2 were made and the attachment of upain-2 via the Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) onto an alkyne functionalized carbohydrate scaffold was investigated. Besides the synthesis...

  20. Predictive QSAR modeling of phosphodiesterase 4 inhibitors.

    Science.gov (United States)

    Kovalishyn, Vasyl; Tanchuk, Vsevolod; Charochkina, Larisa; Semenuta, Ivan; Prokopenko, Volodymyr

    2012-02-01

    A series of diverse organic compounds, phosphodiesterase type 4 (PDE-4) inhibitors, have been modeled using a QSAR-based approach. 48 QSAR models were compared by following the same procedure with different combinations of descriptors and machine learning methods. QSAR methodologies used random forests and associative neural networks. The predictive ability of the models was tested through leave-one-out cross-validation, giving a Q² = 0.66-0.78 for regression models and total accuracies Ac=0.85-0.91 for classification models. Predictions for the external evaluation sets obtained accuracies in the range of 0.82-0.88 (for active/inactive classifications) and Q² = 0.62-0.76 for regressions. The method showed itself to be a potential tool for estimation of IC₅₀ of new drug-like candidates at early stages of drug development. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Skottrup, Peter; Pedersen, Katrine Egelund; Christensen, Anni

    2002-01-01

    spectrometry and monosaccharide composition analysis and compared to that of natural and recombinant PAI-1 from other sources. These results contribute to a structural basis for previous observations of a different functional importance of the N-linked glycosylation at each of the 2 sequences.......Plasminogen activator inhibitor type-1 (PAI-1) has three potential sites for N-linked glycosylation, including Asn209Tyr210Thr211, Asn265Met266Thr267, and Asn329Glu330Ser331. Using a HEK293 expression system, we have made mutants with Asp or Gln substitutions of the Asn residue in each...... of these sequences. Analyses of these mutants for the content of N-acetyl glucosamine showed that Asn209 and Asn265, but not Asn329, are glycosylated, in agreement with previous suggestions made on the basis of X-ray crystal structure analysis of PAI-1 expressed in CHO cells (Xue et al. (1998) Structure 6, 627...

  2. The Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Skottrup, Peter; Pedersen, Katrine Egelund; Christensen, Anni

    spectrometry and monosaccharide composition analysis and compared to that of natural and recombinant PAI-1 from other sources. These results contribute to a structural basis for previous observations of a different functional importance of the N-linked glycosylation at each of the 2 sequences.......Plasminogen activator inhibitor type-1 (PAI-1) has three potential sites for N-linked glycosylation, including Asn209Tyr210Thr211, Asn265Met266Thr267, and Asn329Glu330Ser331. Using a HEK293 expression system, we have made mutants with Asp or Gln substitutions of the Asn residue in each...... of these sequences. Analyses of these mutants for the content of N-acetyl glucosamine showed that Asn209 and Asn265, but not Asn329, are glycosylated, in agreement with previous suggestions made on the basis of X-ray crystal structure analysis of PAI-1 expressed in CHO cells (Xue et al. (1998) Structure 6, 627...

  3. Inherent formulation issues of kinase inhibitors.

    Science.gov (United States)

    Herbrink, M; Schellens, J H M; Beijnen, J H; Nuijen, B

    2016-10-10

    The small molecular Kinase Inhibitor (smKI) drug class is very promising and rapidly expanding. All of these drugs are administered orally. The clear relationship between structure and function has led to drugs with a general low intrinsic solubility. The majority of the commercial pharmaceutical formulations of the smKIs are physical mixtures that are limited by the low drug solubility of a salt form. This class of drugs is therefore characterized by an impaired and variable bioavailability rendering them costly and their therapies suboptimal. New formulations are sparingly being reported in literature and patents. The presented data suggests that continued research into formulation design can help to develop more efficient and cost-effective smKI formulation. Moreover, it may also be of help in the future design of the formulations of new smKIs.

  4. Adnectin-targeted inhibitors: rationale and results.

    Science.gov (United States)

    Sachdev, Esha; Gong, Jun; Rimel, Bobbie; Mita, Monica

    2015-08-01

    Adnectins are a family of binding proteins derived from the 10th type III domain of human fibronectin (10Fn3), which is part of the immunoglobulin superfamily and normally binds integrin. The 10Fn3 has the potential for broad therapeutic applications given its structural stability, ability to be manipulated, and its abundance in the human body. The most commonly studied adnectin is CT-322, which is an inhibitor of vascular endothelial growth factor receptor-2. A bispecific adnectin, El-Tandem, has also been developed and binds to epidermal growth factor receptor and insulin-like growth factor-1 receptor simultaneously. Pre-clinical studies have shown promising results in relation to reducing tumor growth, decreasing microvessel density, and promoting normalization of tumor architecture. The phase I trial with CT-322 demonstrates relatively low toxicities. However, the phase II study done with CT-322 in recurrent glioblastoma does not reveal as promising results.

  5. Profiling of differentially expressed genes in haemophilia A with inhibitor.

    Science.gov (United States)

    Hwang, S H; Lim, J A; Kim, M J; Kim, H C; Lee, H W; Yoo, K Y; You, C W; Lee, K S; Kim, H S

    2012-05-01

    Inhibitor development is the most significant complication in the therapy of haemophilia A (HA) patients. In spite of many studies, not much is known regarding the mechanism underlying inhibitor development. To understand the mechanism, we analysed profiles of differentially expressed genes (DEGs) between inhibitor and non-inhibitor HA via a microarray technique. Twenty unrelated Korean HAs were studied: 11 were non-inhibitor and nine were HA with inhibitor (≥5 BU mL(-1)). Microarray analysis was conducted using a Human Ref-8 expression Beadchip system (Illumina) and the data were analysed using Beadstudio software. We identified 545 DEGs in inhibitor HA as compared with the non-inhibitor patients; 384 genes were up-regulated and 161 genes were down-regulated. Among them, 75 genes whose expressions were altered by at least two-fold (>+2 or genes differed significantly in the two groups. For validation of the DEGs, semi-quantitative RT-PCR (semi-qRT-PCR) was conducted with the six selected DEGs. The results corresponded to the microarray data, with the exception of one gene. We also examined the expression of the genes associated with the antigen presentation process via real-time PCR. The average levels of IL10, CTLA4 and TNFα slightly reduced, whereas that of IFNγ increased in the inhibitor HA group. We are currently unable to explain whether this phenomenon is a function of the inhibitor-inducing factor or is an epiphenomenon of antibody production. Nevertheless, our results provide a possible explanation for inhibitor development. © 2011 Blackwell Publishing Ltd.

  6. Use of proteasome inhibitors in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Sara M. Schmitt

    2011-10-01

    Full Text Available The importance of the ubiquitin-proteasome pathway to cellular function has brought it to the forefront in the search for new anticancer therapies. The ubiquitin-proteasome pathway has proven promising in targeting various human cancers. The approval of the proteasome inhibitor bortezomib for clinical treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma has validated the ubiquitin-proteasome as a rational target. Bortezomib has shown positive results in clinical use but some toxicity and side effects, as well as resistance, have been observed, indicating that further development of novel, less toxic drugs is necessary. Because less toxic drugs are necessary and drug development can be expensive and time-consuming, using existing drugs that can target the ubiquitin-proteasome pathway in new applications, such as cancer therapy, may be effective in expediting the regulatory process and bringing new drugs to the clinic. Toward this goal, previously approved drugs, such as disulfiram, as well as natural compounds found in common foods, such as green tea polyphenol (--EGCG and the flavonoid apigenin, have been investigated for their possible proteasome inhibitory and cell death inducing abilities. These compounds proved quite promising in preclinical studies and have now moved into clinical trials, with preliminary results that are encouraging. In addition to targeting the catalytic activity of the proteasome pathway, upstream regulators, such as the 19S regulatory cap, as well as E1, E2, and E3, are now being investigated as potential drug targets. This review outlines the development of novel proteasome inhibitors from preclinical to clinical studies, highlighting their abilities to inhibit the tumor proteasome and induce apoptosis in several human cancers.

  7. Ezetimibe: a selective cholesterol absorption inhibitor.

    Science.gov (United States)

    Nutescu, Edith A; Shapiro, Nancy L

    2003-11-01

    Ezetimibe is the first agent of a novel class of selective cholesterol absorption inhibitors recently approved by the Food and Drug Administration for treatment in the United States. Ezetimibe inhibits the absorption of biliary and dietary cholesterol from the small intestine without affecting the absorption of fat-soluble vitamins, triglycerides, or bile acids. Ezetimibe localizes at the brush border of the small intestine and decreases cholesterol uptake into the enterocytes. Preclinical studies demonstrated lipid-lowering properties of ezetimibe as monotherapy and showed a synergistic effect in combination with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). The efficacy and safety of ezetimibe 10 mg/day have been established in phase III clinical trials. In these trials, ezetimibe was investigated as monotherapy, as an add-on to ongoing statin therapy, and as combination therapy with statins in patients with primary hypercholesterolemia. In addition, ezetimibe has been evaluated in patients with homozygous and heterozygous familial hypercholesterolemia and in those with sitosterolemia. When given as monotherapy or in combination with statins or fenofibrate, ezetimibe reduces low-density lipoprotein cholesterol (LDL) by 15-20% while increasing high-density lipoprotein cholesterol by 2.5-5%. Unlike other intestinally acting lipid-lowering agents, ezetimibe does not adversely affect triglyceride levels and, due to its minimal systemic absorption, drug interactions are few. Ezetimibe's side-effect profile resembles that of placebo when given as monotherapy or in combination with statins. In clinical practice, ezetimibe has a role as monotherapy for patients who require modest LDL reductions or cannot tolerate other lipid-lowering agents. In combination therapy with a statin, ezetimibe is used in patients who cannot tolerate high statin doses or in those who need additional LDL reductions despite maximum statin doses.

  8. [Non-nucleoside reverse transcriptase inhibitors].

    Science.gov (United States)

    Joly, V; Yeni, P

    2000-06-01

    The non-nucleoside reverse transcriptase inhibitors (NNRTIs) directly inhibit the HIV-1 reverse transcriptase (RT) by binding in a reversible and non-competitive manner to the enzyme. The currently available NNRTIs are nevirapine, delavirdine, and efavirenz; other compounds are under evaluation. NNRTIs are extensively metabolized in the liver through cytochrome P450, leading to pharmacokinetic interactions with compounds utilizing the same metabolic pathway, particularly PIs, whose plasma levels are altered in the presence of NNRTIs. NNRTIs are drugs with a low genetic barrier, i.e. a single mutation in RT genoma induces a high-level of phenotypic resistance, preventing the use of NNRTIs as monotherapy. In naive patients, several trials have shown the value of NNRTIs in combination with nucleosides and/or protease inhibitors. Small pilot studies have shown that NNRTIs may be useful as second-line therapy. However, due to the rapid emergence of resistant virus to these compounds in case of incomplete viral suppression, NNRTIs should not be added to current failing antiretroviral regimen. The most common side-effect reported with nevirapine and delavirdine is rash. The incidence of rash is rather similar under these two compounds, but severe rash is less frequent with delavirdine. The most common adverse reactions reported with efavirenz are central nervous system complaints such as dizziness. Rash is reported less frequently than with nevirapine or delavirdine, and is usually mild. NNRTIs resistance mutations are located in the amino acid residues aligning the NNRTI-binding "pocket" site. High-level resistance is often associated with a single point mutation which develops within this site (especially codon groups 100 - 108 and 181 - 190). Patients failing on one NNRTI are very likely to possess multiple NNRTI resistance mutations. NNRTIs should always be used as part of a potent antiretroviral therapy to insure suppression of viral replication, thus circumventing

  9. Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.

    Directory of Open Access Journals (Sweden)

    Sabine B Weitensteiner

    Full Text Available Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5 as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50 values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407 also inhibited cell migration (by 27, 51 and 31%, resp., chemotaxis (by 50, 70 and 60% in accumulative distance, resp., and tube formation (by 25, 60 and 30% of total tube length, resp. at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties.

  10. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    Science.gov (United States)

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  11. Conformational study of a putative HLTV-1 retroviral protease inhibitor.

    Science.gov (United States)

    Llido, S; d'Estaintot, B L; Dautant, A; Geoffre, S; Picard, P; Precigoux, G

    1993-05-01

    The crystal structure of prolyl-glutaminyl-valyl-statyl-alanyl-leucine (Pro-Gln-Val-Sta-Ala-Leu, C(32)H(57)N(7)0(9).5H(2)0, M(r) = 683.9 + 90.1), a putative HTLV-1 protease inhibitor based on one of the consensus retroviral protease cleavage sequences, and containing the statine residue [(4S,3S)-4-amino-3-hydroxy-6-methylheptanoic acid], has been determined by X-ray diffraction. The same molecule has been modelled in the active site of the HTLV-1 protease and both conformations have been compared. The peptide crystallizes as a pentahydrate in space group P2(1) with a = 10.874(2), b = 9.501(2), c = 21.062(5) A, beta = 103.68 (1) degrees, Z = 2, V= 2114.3 A(3), D(x) = 1.21 g cm(-3), micro = 8.02 cm(-1), T= 293 K, lambda(Cu Kalpha) = 1.5418 A. The structure has been refined to an R value of 0.070 for 2152 observed reflections. The peptide main chain can be described as extended and adopts the usual zigzag conformation from the prolyl to the statyl residue. The main difference in conformation between the individual observed and modelled molecules is located on the Sta, Ala and Leu residues with the main chain of the modelled molecule rotated by about 180 degrees as compared to the observed conformation in the crystal state.

  12. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, María Soledad [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Fernandez-Alvarez, Ana [Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE (Argentina); Cucarella, Carme [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Casado, Marta, E-mail: mcasado@ibv.csic.es [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain)

    2014-04-25

    Highlights: • SGBS cells mostly expressed SREBP-1a variant. • SREBP-1a knockdown decreased the proliferation of SGBS cells without inducing senescence. • We have identified RBBP8 and CDKN3 genes as potential SREBP-1a targets. - Abstract: Sterol regulatory element binding proteins (SREBP), encoded by the Srebf1 and Srebf2 genes, are important regulators of genes involved in cholesterol and fatty acid metabolism. Whereas SREBP-2 controls the cholesterol synthesis, SREBP-1 proteins (-1a and -1c) function as the central hubs in lipid metabolism. Despite the key function of these transcription factors to promote adipocyte differentiation, the roles of SREBP-1 proteins during the preadipocyte state remain unknown. Here, we evaluate the role of SREBP-1 in preadipocyte proliferation using RNA interference technology. Knockdown of the SREBP-1a gene decreased the proliferation rate in human SGBS preadipocyte cell strain without inducing senescence. Furthermore, our data identified retinoblastoma binding protein 8 and cyclin-dependent kinase inhibitor 3 genes as new potential SREBP-1 targets, in addition to cyclin-dependent kinase inhibitor 1A which had already been described as a gene regulated by SREBP-1a. These data suggested a new role of SREBP-1 in adipogenesis via regulation of preadipocyte proliferation.

  13. 2000 Johnston Site 1A-P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 1A-P was established at Johnston Atoll by Dr. James Maragos, U.S. Fish & Wildlife Service, on June 29, 2000. With a start point (meter 0) at...

  14. 2006 Johnston Site 1A-P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 1A-P was established at Johnston Atoll by Dr. James Maragos, U.S. Fish & Wildlife Service, on June 29, 2000. With a start point (meter 0) at...

  15. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which

  16. Aryl tetrahydropyridine inhibitors of farnesyltransferase: glycine, phenylalanine and histidine derivatives.

    Science.gov (United States)

    Gwaltney, Stephen L; O'Connor, Stephen J; Nelson, Lissa T J; Sullivan, Gerard M; Imade, Hovis; Wang, Weibo; Hasvold, Lisa; Li, Qun; Cohen, Jerome; Gu, Wen-Zhen; Tahir, Stephen K; Bauch, Joy; Marsh, Kennan; Ng, Shi-Chung; Frost, David J; Zhang, Haiying; Muchmore, Steve; Jakob, Clarissa G; Stoll, Vincent; Hutchins, Charles; Rosenberg, Saul H; Sham, Hing L

    2003-04-07

    Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered a series of aryl tetrahydropyridines that incorporate substituted glycine, phenylalanine and histidine residues. The design, synthesis, SAR and biological properties of these compounds will be discussed.

  17. Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors.

    Science.gov (United States)

    Snihirova, D; Lamaka, S V; Taryba, M; Salak, A N; Kallip, S; Zheludkevich, M L; Ferreira, M G S; Montemor, M F

    2010-11-01

    This work contributes to the development of new feedback-active anticorrosion systems. Inhibitor-doped hydroxyapatite microparticles (HAP) are used as reservoirs, storing corrosion inhibitor to be released on demand. Release of the entrapped inhibitor is triggered by redox reactions associated with the corrosion process. HAP were used as reservoirs for several inhibiting species: cerium(III), lanthanum(III), salicylaldoxime, and 8-hydroxyquinoline. These species are effective corrosion inhibitors for a 2024 aluminum alloy (AA2024), used here as a model metallic substrate. Dissolution of the microparticles and release of the inhibitor are triggered by local acidification resulting from the anodic half-reaction during corrosion of AA2024. Calculated values and experimentally measured local acidification over the aluminum anode (down to pH = 3.65) are presented. The anticorrosion properties of inhibitor-doped HAP were assessed using electrochemical impedance spectroscopy. The microparticles impregnated with the corrosion inhibitors were introduced into a hybrid silica-zirconia sol-gel film, acting as a thin protective coating for AA2024, an alloy used for aeronautical applications. The protective properties of the sol-gel films were improved by the addition of HAP, proving their applicability as submicrometer-sized reservoirs of corrosion inhibitors for active anticorrosion coatings.

  18. Rational design of an organometallic glutathione transferase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.; (ISIC)

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  19. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells.

    Science.gov (United States)

    Llobet, David; Eritja, Nuria; Encinas, Mario; Sorolla, Anabel; Yeramian, Andree; Schoenenberger, Joan Antoni; Llombart-Cussac, Antonio; Marti, Rosa M; Matias-Guiu, Xavier; Dolcet, Xavier

    2008-02-01

    We have recently demonstrated that proteasome inhibitors can be effective in inducing apoptotic cell death in endometrial carcinoma cell lines and primary culture explants. Increasing evidence suggests that reactive oxygen species are responsible for proteasome inhibitor-induced cell killing. Antioxidants can thus block apoptosis (cell death) triggered by proteasome inhibition. Here, we have evaluated the effects of different antioxidants (edaravone and tiron) on endometrial carcinoma cells treated with aldehyde proteasome inhibitors (MG-132 or ALLN), the boronic acid-based proteasome inhibitor (bortezomib) and the epoxyketone, epoxomicin. We show that tiron specifically inhibited the cytotoxic effects of bortezomib, whereas edaravone inhibited cell death caused by aldehyde-based proteasome inhibitors. We have, however, found that edaravone completely inhibited accumulation of ubiquitin and proteasome activity decrease caused by MG-132 or ALLN, but not by bortezomib. Conversely, tiron inhibited the ubiquitin accumulation and proteasome activity decrease caused by bortezomib. These results suggest that edaravone and tiron rescue cells of proteasome inhibitors from cell death, by inhibiting blockade of proteasome caused by MG-132 and ALLN or bortezomib, respectively. We also tested other antioxidants, and we found that vitamin C inhibited bortezomib-induced cell death. Similar to tiron, vitamin C inhibited cell death by blocking the ability of bortezomib to inhibit the proteasome. Until now, all the antioxidants that blocked proteasome inhibitor-induced cell death also blocked the proteasome inhibitor mechanism of action.

  20. Corrosion inhibitors for solar-heating and cooling

    Science.gov (United States)

    Humphries, T. S.

    1979-01-01

    Report describes results of tests conducted to evaluate abilities of 12 candidate corrosion inhibitors to protect aluminum, steel, copper, or stainless steel at typical conditions encountered in solar heating and cooling systems. Inhibitors are based on sodium salts including nitrates, borates, silicates, and phosphates.

  1. Urea Transporter Inhibitors: En Route to New Diuretics

    Science.gov (United States)

    Sands, Jeff M.

    2013-01-01

    Summary A selective urea transporter UT-A1 inhibitor would be a novel type of diuretic, likely with less undesirable side-effects than conventional diureticssince it acts on the last portion of the nephron. Esteva-Font et al. (2013) develop suchan inhibitor by using a clever high-throughput screening assay, and document its selectivity. . PMID:24210002

  2. Mammalian target of rapamycin inhibitor-associated stomatitis

    NARCIS (Netherlands)

    Boers-Doets, C.B.; Raber-Durlacher, J.E.; Treister, N.S.; Epstein, J.B.; Arends, A.B.P.; Wiersma, D.R.; Lalla, R.V.; Logan, R.M.; van Erp, N.R.P.; Gelderblom, H.

    2013-01-01

    With the recent introduction of inhibitors of mammalian target of rapamycin (mTOR) in oncology, distinct cutaneous and oral adverse events have been identified. In fact, stomatitis and rash are documented as the most frequent and potentially dose-limiting side effects. Clinically, mTOR inhibitor-ass

  3. Detecting and treating breast cancer resistance to EGFR inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Moonlee, Sun-Young; Bissell, Mina J.; Furuta, Saori; Meier, Roland; Kenny, Paraic A.

    2016-04-05

    The application describes therapeutic compositions and methods for treating cancer. For example, therapeutic compositions and methods related to inhibition of FAM83A (family with sequence similarity 83) are provided. The application also describes methods for diagnosing cancer resistance to EGFR inhibitors. For example, a method of diagnosing cancer resistance to EGFR inhibitors by detecting increased FAM83A levels is described.

  4. A new inhibitor of apoptosis from vaccinia virus and eukaryotes.

    NARCIS (Netherlands)

    Gubser, C.; Bergamaschi, D.; Hollinshead, M.; Lu, X.; Kuppeveld, F.J.M. van; Smith, G.L.

    2007-01-01

    A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein). Stable expression of both viral GAAP (v-GAAP) and human GAA

  5. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which subsequentl

  6. Calpains: attractive targets for the development of synthetic inhibitors.

    Science.gov (United States)

    Pietsch, Markus; Chua, Krystle C H; Abell, Andrew D

    2010-01-01

    The physiological roles of calpains are discussed, as are the associated pathological disorders that result from their over-activation. We also present practical information for establishing functional inhibition assays and an overview of X-ray crystal structures of calpain-inhibitor complexes to aid inhibitor design. These structures reveal the expected extended beta-strand conformation for the inhibitor backbone, a geometry that has been engineered into inhibitors with the introduction of either an N-terminal heterocycle or a macrocycle that links the P(1) and P(3) residues. The structure and function of all the main classes of inhibitors are reviewed, with most examples being classified according to the nature of the C-terminal reactive warhead group that reacts with the active site cysteine of calpains. These inhibitor classes include epoxysuccinate derivatives, aldehydes, aldehyde prodrugs (hemiacetals) and alpha-keto carbonyl compounds. Inhibitors derived from the endogenous inhibitor calpastatin and examples lacking a warhead, are now known and these are also discussed.

  7. Antiplatelet agents and proton pump inhibitors – personalizing treatment

    Directory of Open Access Journals (Sweden)

    Eugene Lin

    2010-06-01

    Full Text Available Eugene Lin, Rajiv Padmanabhan, Majaz MoonisDepartment of Neurology, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, Massachusetts, USAIntroduction: Antiplatelet therapy remains one of the cornerstones in the management of noncardioembolic ischemic stroke. However, a significant percentage of patients have concomitant gastroesophageal reflux or peptic ulcer disease that requires acid-reducing medications, the most powerful and effective being the proton pump inhibitors (PPIs. Antiplatelet efficacy, at least in vivo, and particularly for clopidogrel, has been shown to be reduced with concomitant proton pump inhibitor use. Whether this is clinically relevant is not clear from the limited studies available.Methods: We conducted an extensive review of studies available on Medline related to pharmacodynamic interactions between the antiplatelet medications and proton pump inhibitors as well as clinical studies that addressed this potential interaction.Results: Based on the present pharmacodynamic and clinical studies we did not find a significant interaction that would reduce the efficacy of antiplatelet agents with concomitant user of proton pump inhibitors.Conclusions: Patients on antiplatelet agents after a transient ischemic attack or ischemic stroke can safely use aspirin, and extended release dipyridamole/aspirin with proton pump inhibitors. Patients on clopidogrel may use other acid-reducing drugs besides proton pump inhibitors. In rare cases where proton pump inhibitors and clopidogrel have to be used concurrently, careful close monitoring for recurrent vascular events is required.Keywords: proton pump inhibitors, antiplatelet medications, clopidogrel, ischemic stroke, cardiovascular events

  8. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  9. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors

    Science.gov (United States)

    Cifuentes-Pagano, M. Eugenia; Meijles, Daniel N.; Pagano, Patrick J.

    2016-01-01

    Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow. PMID:26510437

  10. The safety of proton pump inhibitors in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Lauge; Sørensen, Henrik Toft; Thulstrup, Ane Marie

    1999-01-01

    AIM: To assess the safety of proton pump inhibitors during pregnancy. METHODS: Fifty-one pregnant women exposed to proton pump inhibitors around the time of conception or during pregnancy were compared with 13 327 controls without exposure to any prescribed drug in a population-based study based...... on The Pharmaco-Epidemiological Prescription Database of North Jutland and the Danish Hospital Discharge Registry. RESULTS: Three babies with malformations were found among 38 women exposed to proton pump inhibitors from 30 days before conception to the end of the first trimester. No cases of stillbirth were...... birth weight or number of preterm deliveries in pregnancies exposed to proton pump inhibitors. However, further monitoring is warranted in order to establish or rule out a potential association between the use of proton pump inhibitors and increased risk of either cardiac malformations or preterm birth....

  11. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  12. [Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain].

    Science.gov (United States)

    Islamov, R A; Furusov, O V

    2007-01-01

    A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.

  13. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  14. Immunotherapy against endocrine malignancies: immune checkpoint inhibitors lead the way.

    Science.gov (United States)

    Cunha, Lucas Leite; Marcello, Marjory Alana; Rocha-Santos, Vinicius; Ward, Laura Sterian

    2017-09-11

    Immune checkpoint inhibitors are agents that act by inhibiting the mechanisms of immune escape displayed by various cancers. The success of immune checkpoint inhibitors against several tumors has promoted a new treatment strategy in clinical oncology, and this has encouraged physicians to increase the number of patients who receive the immune checkpoint therapy. In the present article, we review the main concepts regarding immune checkpoint mechanisms and how cancer disrupts them to undergo immune escape. In addition, we describe the most essential concepts related to immune checkpoint inhibitors. We critically review the literature on preclinical and clinical studies of the immune checkpoint inhibitors as a treatment option for thyroid cancer, ovarian carcinoma, pancreatic adenocarcinoma, adrenocortical carcinoma and neuroendocrine tumors. We present the challenges and the opportunities of using immune checkpoint inhibitors against these endocrine malignancies, highlighting the breakthroughs and pitfalls that have recently emerged.

  15. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors.

    Science.gov (United States)

    Okuzumi, Tatsuya; Ducker, Gregory S; Zhang, Chao; Aizenstein, Brian; Hoffman, Randy; Shokat, Kevan M

    2010-08-01

    The kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials. Paradoxically it has been observed that active site kinase inhibitors of Akt lead to hyperphosphorylation of Akt itself. To investigate this phenomenon we here describe the application of a chemical genetics strategy that replaces native Akt with a mutant version containing an active site substitution that allows for the binding of an engineered inhibitor. This analog sensitive strategy allows for the selective inhibition of a single kinase. In order to create the inhibitor selective for the analog sensitive kinase, a diversity of synthetic approaches was required, finally resulting in the compound PrINZ, a 7-substituted version of the Abbott Labs Akt inhibitor A-443654.

  16. Isolation and characterization of a proteinase inhibitor from marama beans.

    Science.gov (United States)

    Elfant, M; Bryant, L; Starcher, B

    1985-11-01

    A protease inhibitor was purified from the African marama bean (Tylosema esculenturm). The inhibitor is present in large amounts, representing about 10.5% of the total protein. The molecular weight is slightly larger than soybean trypsin inhibitor and was estimated at 23,000 by SDS-gel electrophoresis or 24,500 by amino acid analysis. The amino acid composition was atypical of most other plant inhibitors with a cysteine content of only one or possibly two residues/mole and a blocked amino terminus. Inhibition studies indicated virtually no inhibition of chymotrypsin activity. Elastase, however, was inhibited to the same extent as trypsin, requiring about 2 moles of inhibitor for complete inhibition of the enzyme.

  17. Molecular Dynamic Screening Sesquiterpenoid Pogostemon Herba as Suggested Cyclooxygenase Inhibitor.

    Science.gov (United States)

    Raharjo, Sentot Joko; Kikuchi, Takeshi

    2016-10-01

    Virtual molecular dynamic sesquiterpenoid Pogostemon Herba (CID56928117, CID94275, CID107152, and CID519743) have screening as cyclooxygenase (COX-1/COX-2) selective inhibitor. Molecular interaction studies sesquiterpenoid compounds with COX-1 and COX-2 were using the molecular docking tools by Hex 8.0 and interactions were further visualized using by Discovery Studio Client 3.5 software tool and Virtual Molecular Dynamic 1.9.1 software. The binding energy calculation of molecular dynamic interaction was calculated by AMBER12 software. The analysis of the sesquiterpenoid compounds showed that CID56928117, CID94275, CID107152, and CID519743 have suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) sesquiterpenoid compounds: CID519743 had suggested as candidate for non-selective inhibitor; CID56928117 and CID94275 had suggested as candidate for a selective COX-1 inhibitor; and CID107152 had suggested as candidate for a selective COX-2 inhibitor.

  18. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Directory of Open Access Journals (Sweden)

    Melissa Dumble

    Full Text Available Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  19. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Science.gov (United States)

    Dumble, Melissa; Crouthamel, Ming-Chih; Zhang, Shu-Yun; Schaber, Michael; Levy, Dana; Robell, Kimberly; Liu, Qi; Figueroa, David J; Minthorn, Elisabeth A; Seefeld, Mark A; Rouse, Meagan B; Rabindran, Sridhar K; Heerding, Dirk A; Kumar, Rakesh

    2014-01-01

    Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  20. Nonnucleoside Reverse-transcriptase Inhibitor- vs Ritonavir-boosted Protease Inhibitor-based Regimens for Initial Treatment of HIV Infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Lundh, Andreas; Tendal, Britta;

    2016-01-01

    BACKGROUND:  Previous studies suggest that nonnucleoside reverse-transcriptase inhibitors (NNRTIs) cause faster virologic suppression, while ritonavir-boosted protease inhibitors (PI/r) recover more CD4 cells. However, individual trials have not been powered to compare clinical outcomes. METHODS:...

  1. Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation

    NARCIS (Netherlands)

    Prickaerts, L.; Sik, A.; Staay, van der F.J.; Vente, de J.; Blokland, A.

    2005-01-01

    Rationale Phosphodiesterase enzyme type 5 (PDE5) inhibitors and acetylcholinesterase (AChE) inhibitors have cognition-enhancing properties. However, it is not known whether these drug classes affect the same memory processes. Objective We investigated the memory-enhancing effects of the PDE5 inhibit

  2. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A.

    Directory of Open Access Journals (Sweden)

    Fayçal Guedj

    Full Text Available Individuals with partial HSA21 trisomies and mice with partial MMU16 trisomies containing an extra copy of the DYRK1A gene present various alterations in brain morphogenesis. They present also learning impairments modeling those encountered in Down syndrome. Previous MRI and histological analyses of a transgenic mice generated using a human YAC construct that contains five genes including DYRK1A reveal that DYRK1A is involved, during development, in the control of brain volume and cell density of specific brain regions. Gene dosage correction induces a rescue of the brain volume alterations. DYRK1A is also involved in the control of synaptic plasticity and memory consolidation. Increased gene dosage results in brain morphogenesis defects, low BDNF levels and mnemonic deficits in these mice. Epigallocatechin gallate (EGCG - a member of a natural polyphenols family, found in great amount in green tea leaves - is a specific and safe DYRK1A inhibitor. We maintained control and transgenic mice overexpressing DYRK1A on two different polyphenol-based diets, from gestation to adulthood. The major features of the transgenic phenotype were rescued in these mice.

  3. Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1

    Directory of Open Access Journals (Sweden)

    Huang Mingdong

    2011-06-01

    Full Text Available Abstract Background Matriptase is a type II transmembrane serine protease that is found on the surfaces of epithelial cells and certain cancer cells. Matriptase has been implicated in the degradation of certain extracellular matrix components as well as the activation of various cellular proteins and proteases, including hepatocyte growth factor and urokinase. Sunflower trypsin inhibitor-1 (SFTI-1, a cyclic peptide inhibitor originally isolated from sunflower seeds, exhibits potent inhibitory activity toward matriptase. Results We have engineered and produced recombinant proteins of the matriptase protease domain, and have determined the crystal structures of the protease:SFTI-1 complex at 2.0 Å as well as the protease:benzamidine complex at 1.2 Å. These structures elaborate the structural basis of substrate selectivity of matriptase, and show that the matriptase S1 substrate specificity pocket is larger enough to allow movement of benzamidine inside the S1 pocket. Our study also reveals that SFTI-1 binds to matriptase in a way similar to its binding to trypsin despite the significantly different isoelectric points of the two proteins (5.6 vs. 8.2. Conclusions This work helps to define the structural basis of substrate specificity of matriptase and the interactions between the inhibitor and protease. The complex structure also provides a structural template for designing new SFTI-1 derivatives with better potency and selectivity against matriptase and other proteases.

  4. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

    Directory of Open Access Journals (Sweden)

    Shikhar Gupta

    2014-01-01

    Full Text Available In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of AChE and BuChE enzyme inhibitors have been developed from xanthostigmine derivatives through HypoGen and validated using test set, Fischer’s randomization technique. The best acetylcholinesterase and butyrylcholinesterase inhibitors pharmacophore hypotheses Hypo1_A and Hypo1_B, with high correlation coefficient of 0.96 and 0.94, respectively, were used as 3D query for screening the Zinc database. The screened hits were then subjected to the ADME/T and molecular docking study to prioritise the compounds. Finally, 18 compounds were identified as potential leads against AChE enzyme, showing good predicted activities and promising ADME/T properties.

  5. Large-scale virtual screening for the identification of new Helicobacter pylori urease inhibitor scaffolds.

    Science.gov (United States)

    Azizian, Homa; Nabati, Farzaneh; Sharifi, Amirhossein; Siavoshi, Farideh; Mahdavi, Mohammad; Amanlou, Massoud

    2012-07-01

    Here, we report a structure-based virtual screening of the ZINC database (containing about five million compounds) by computational docking and the analysis of docking energy calculations followed by in vitro screening against H. pylori urease enzyme. One of the compounds selected showed urease inhibition in the low micromolar range. Barbituric acid and compounds 1a, 1d, 1e, 1f, 1g, 1h were found to be more potent urease inhibitors than the standard inhibitor hydroxyurea, yielding IC(50) values of 41.6, 83.3, 66.6, 50, 58.8, and 60 μM, respectively (IC(50) of hydroxyurea = 100 μM). 5-Benzylidene barbituric acid has enhanced biological activities compared to barbituric acid. Furthermore, the results indicated that among the substituted 5-benzylidene barbiturates, those with para substitution have higher urease inhibitor activities. This may be because the barbituric acid moiety is closer to the bimetallic nickel center in unsubstituted or para-substituted than in ortho- or meta-substituted analogs, so it has greater chelating ability.

  6. Highly Potent Cell-Permeable and Impermeable NanoLuc Luciferase Inhibitors.

    Science.gov (United States)

    Walker, Joel R; Hall, Mary P; Zimprich, Chad A; Robers, Matthew B; Duellman, Sarah J; Machleidt, Thomas; Rodriguez, Jacquelynn; Zhou, Wenhui

    2017-04-21

    Novel engineered NanoLuc (Nluc) luciferase being smaller, brighter, and superior to traditional firefly (Fluc) or Renilla (Rluc) provides a great opportunity for the development of numerous biological, biomedical, clinical, and food and environmental safety applications. This new platform created an urgent need for Nluc inhibitors that could allow selective bioluminescent suppression and multiplexing compatibility with existing luminescence or fluorescence assays. Starting from thienopyrrole carboxylate 1, a hit from a 42 000 PubChem compound library with a low micromolar IC50 against Nluc, we derivatized four different structural fragments to discover a family of potent, single digit nanomolar, cell permeable inhibitors. Further elaboration revealed a channel that allowed access to the external Nluc surface, resulting in a series of highly potent cell impermeable Nluc inhibitors with negatively charged groups likely extending to the protein surface. The permeability was evaluated by comparing EC50 shifts calculated from both live and lysed cells expressing Nluc cytosolically. Luminescence imaging further confirmed that cell permeable compounds inhibit both intracellular and extracellular Nluc, whereas less permeable compounds differentially inhibit extracellular Nluc and Nluc on the cell surface. The compounds displayed little to no toxicity to cells and high luciferase specificity, showing no activity against firefly luciferase or even the closely related NanoBit system. Looking forward, the structural motifs used to gain access to the Nluc surface can also be appended with other functional groups, and therefore interesting opportunities for developing assays based on relief-of-inhibition can be envisioned.

  7. QSAR analysis of nicotinamidic compounds and design of potential Bruton's tyrosine kinase (Btk) inhibitors.

    Science.gov (United States)

    Santos-Garcia, Letícia; Assis, Letícia C; Silva, Daniela R; Ramalho, Teodorico C; da Cunha, Elaine F F

    2016-07-01

    Bruton's tyrosine kinase (Btk) is an important enzyme in B-lymphocyte development and differentiation. Furthermore, Btk expression is considered essential for the proliferation and survival of these cells. Btk inhibition has become an attractive strategy for treating autoimmune diseases, B-cell leukemia, and lymphomas. With the objective of proposing new candidates for Btk inhibitors, we applied receptor-dependent four-dimensional quantitative structure-activity relationship (QSAR) methodology to a series of 96 nicotinamide analogs useful as Btk modulators. The QSAR models were developed using 71 compounds, the training set, and externally validated using 25 compounds, the test set. The conformations obtained by molecular dynamics simulation were overlapped in a virtual three-dimensional cubic box comprised of 2 and 5 Å cells, according to the six trial alignments. The models were generated by combining genetic function approximation and partial least squares regression technique. The analyses suggest that Model 1a yields the best results. The best equation shows [Formula: see text], r(2) = .743, RMSEC = .831, RMSECV = .879. Given the importance of the Tyr551, this residue could become a strategic target for the design of novel Btk inhibitors with improved potency. In addition, the good potency predicted for the proposed M2 compound indicates this compound as a potential Btk inhibitor candidate.

  8. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking.

    Directory of Open Access Journals (Sweden)

    Anna E Daniel

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1, a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact.We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus.Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.

  9. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia.

    Science.gov (United States)

    Wang, Huan; Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming; Huang, Yan

    2015-12-25

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis.

  10. A-ring modification of SCH 900229 and related chromene sulfone γ-secretase inhibitors.

    Science.gov (United States)

    Wu, Wen-Lian; Sasikumar, Thavalakulamgara K; Domalski, Martin S; Qiang, Li; Burnett, Duane A; Clader, John; Greenlee, William J; Chan, Tze-Ming; Lee, Julie; Zhang, Lili

    2013-02-01

    Attempts to block metabolism by incorporating a 9-fluoro substituent at the A-ring of compound 1 (SCH 900229) using electrophilic Selectfluor™ led to an unexpected oxidation of the A-ring to give difluoroquinone analog 1a. Oxidation of other related chromene γ-secretase inhibitors 2-8 resulted in similar difluoroquinone analogs 2a-8a, respectively. These quinone products exhibited comparable in vitro potency in a γ-scretase membrane assay, but were several fold less potent in a cell-based assay in lowering Aβ40-42, compared to their parent compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Aromatase inhibitors in stimulated IVF cycles

    Directory of Open Access Journals (Sweden)

    Tournaye Herman

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors have been introduced as a new treatment modality that could challenge clomiphene citrate as an ovulation induction regiment in patients with PCOS. Although several randomized trials have been conducted regarding their use as ovulation induction agents, only few trials are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears to have the potential to increase clinical pregnancy rates when combined with gonadotropins, whereas at the same time reduces the total gonadotropin dose required for ovarian stimulation. However, given that in all of the trials letrozole has been administered in GnRH antagonist cycles, it is intriguing to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels

  12. Bumped-Kinase Inhibitors for Cryptosporidiosis Therapy.

    Science.gov (United States)

    Hulverson, Matthew A; Vinayak, Sumiti; Choi, Ryan; Schaefer, Deborah A; Castellanos-Gonzalez, Alejandro; Vidadala, Rama S R; Brooks, Carrie F; Herbert, Gillian T; Betzer, Dana P; Whitman, Grant R; Sparks, Hayley N; Arnold, Samuel L M; Rivas, Kasey L; Barrett, Lynn K; White, A Clinton; Maly, Dustin J; Riggs, Michael W; Striepen, Boris; Van Voorhis, Wesley C; Ojo, Kayode K

    2017-04-15

    Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C. parvum in vitro. Furthermore, neonatal and interferon γ knockout mouse models of C. parvum infection identified BKIs with in vivo activity. Additional iterative experiments for optimum dosing and selecting BKIs with minimum levels of hERG activity and frequencies of other safety liabilities included those that investigated mammalian cell cytotoxicity, C. parvum proliferation inhibition in vitro, anti-human Src inhibition, hERG activity, in vivo pharmacokinetic data, and efficacy in other mouse models. Findings of this study suggest that fecal concentrations greater than parasite inhibitory concentrations correlate best with effective therapy in the mouse model of cryptosporidiosis, but a more refined model for efficacy is needed. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Carbonic anhydrase inhibitors developed through 'click tailing'.

    Science.gov (United States)

    Lopez, Marie; Salmon, Adam J; Supuran, Claudiu T; Poulsen, Sally-Ann

    2010-01-01

    In recent years there has been renewed activity in the literature concerning the 1,3-dipolar cycloaddition reaction (1,3-DCR) of organic azides (R-N₃) with alkynes (R'-C≡CH) to form 1,2,3-triazoles, i.e. the Huisgen synthesis. The use of catalytic Cu(I) leads to a dramatic rate enhancement (up to 10(7)-fold) and exclusive synthesis of the 1,4-disubstituted 1,2,3-triazole product. The reaction, now referred to as the copper-catalyzed azide-alkyne cycloaddition (CuAAC), meets the stringent criteria of a click-reaction in that it is modular, wide in scope, high yielding, has no byproducts, operates in water at ambient temperature, product purification is simple and the starting materials are readily available. The 1,3-DCR reaction has rapidly become the premier click chemistry reaction with applications spanning modern chemistry disciplines, including medicinal chemistry. Recently the 'tail' approach initiative for the development of carbonic anhydrase inhibitors (CAIs) has been combined with the synthetic versatility of click chemistry. This has proven a powerful combination leading to the synthesis of CAIs with useful biopharmaceutical properties and activities. This review will discuss complementary and contrasting applications that have utilized 'click tailing' for the development of CAIs. Applications encompass i) medicinal chemistry and drug discovery; ii) radiopharmaceutical development of positron emission topography (PET) chemical probes; and iii) in situ click chemistry.

  14. Antimetastatic Integrin as Inhibitors of Snake Venoms

    Directory of Open Access Journals (Sweden)

    Felix Rosenow

    2008-02-01

    Full Text Available Metastasis comprises several subsequent steps including local invasion and intravasation at the primary site, then their adhesion/arrest within the vessels of host organs followed by their extravasation and infiltration into the target organ stroma. In contrast to previous studies which have used aspartate-glycine-arginine (RGD peptides and antibodies against integrins, we used rare collagen- and laminin-antagonizing integrin inhibitors from snake venoms to analyze the colonization of the liver by tumor cells both by intravital microscopy and in vitro. Adhesion of liver-targeting tumor cells to the sinusoid wall components, laminin-1 and fibronectin, is essential for liver metastasis. This step is inhibited by lebein-1, but not by lebein-2 or rhodocetin. Both lebeins from the Vipera lebetina venom block integrin interactions with laminins in an RGD-independent manner. Rhodocetin is an antagonist of α2β1 integrin, a collagen receptor on many tumor cells. Subsequent to tumor cell arrest, extravasation into the liver stroma and micrometastasis are efficiently delayed by rhodocetin. This underlines the importance of α2β1 integrin interaction with the reticular collagen I-rich fibers in liver stroma. Antagonists of laminin- and collagen-binding integrins could be valuable tools to individually block the direct interactions of tumor cells with distinct matrix components of the Disse space, thereby reducing liver metastasis.

  15. Fucoidans as Potential Inhibitors of HIV-1

    Science.gov (United States)

    Prokofjeva, Maria M.; Imbs, Tatyana I.; Shevchenko, Natalya M.; Spirin, Pavel V.; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N.; Prassolov, Vladimir S.

    2013-01-01

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001–100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001–0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors. PMID:23966033

  16. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase.

    Science.gov (United States)

    Chapman, Anna L P; Mocatta, Tessa J; Shiva, Sruti; Seidel, Antonia; Chen, Brian; Khalilova, Irada; Paumann-Page, Martina E; Jameson, Guy N L; Winterbourn, Christine C; Kettle, Anthony J

    2013-03-01

    Myeloperoxidase is a neutrophil enzyme that promotes oxidative stress in numerous inflammatory pathologies. It uses hydrogen peroxide to catalyze the production of strong oxidants including chlorine bleach and free radicals. A physiological defense against the inappropriate action of this enzyme has yet to be identified. We found that myeloperoxidase oxidized 75% of the ascorbate in plasma from ceruloplasmin knock-out mice, but there was no significant loss in plasma from wild type animals. When myeloperoxidase was added to human plasma it became bound to other proteins and was reversibly inhibited. Ceruloplasmin was the predominant protein associated with myeloperoxidase. When the purified proteins were mixed, they became strongly but reversibly associated. Ceruloplasmin was a potent inhibitor of purified myeloperoxidase, inhibiting production of hypochlorous acid by 50% at 25 nm. Ceruloplasmin rapidly reduced Compound I, the Fe(V) redox intermediate of myeloperoxidase, to Compound II, which has Fe(IV) in its heme prosthetic groups. It also prevented the fast reduction of Compound II by tyrosine. In the presence of chloride and hydrogen peroxide, ceruloplasmin converted myeloperoxidase to Compound II and slowed its conversion back to the ferric enzyme. Collectively, our results indicate that ceruloplasmin inhibits myeloperoxidase by reducing Compound I and then trapping the enzyme as inactive Compound II. We propose that ceruloplasmin should provide a protective shield against inadvertent oxidant production by myeloperoxidase during inflammation.

  17. Multikinase inhibitors use in differentiated thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Jasim S

    2014-12-01

    Full Text Available Sina Jasim,1,* Levent Ozsari,2,* Mouhammed Amir Habra2 1Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA; 2Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA *These authors contributed equally in this work Abstract: Thyroid cancer is the most common endocrine malignancy, and its incidence is increasing. Standard therapy for most patients with localized differentiated thyroid cancer (DTC includes surgery, radioactive iodine, and thyroid hormone replacement. A minority of thyroid cancer patients requires systemic therapy for metastatic disease. Patients with metastatic DTC do not usually benefit from traditional cytotoxic chemotherapy. In this review, we describe newly developed small-molecule tyrosine kinase inhibitors (TKIs that are being actively tested and used in the management of advanced thyroid cancer. The use of TKIs as a form of molecular targeted therapy is evolving based on understanding of the pathways involved in DTC. Disrupting tumor vascular supply by targeting vascular endothelial growth factor receptor signaling is the most commonly used approach to treat advanced/metastatic DTC. Other mechanisms include targeting BRAF, MAPK/ERK kinase, or mammalian target of rapamycin signaling. Although TKIs appear to have superior efficacy compared to cytotoxic chemotherapy, they can cause substantial adverse effects; symptomatic management of adverse effects, dose adjustment, or cessation of therapy may be required. Keywords: differentiated thyroid cancer, progression-free survival, adverse effects, targeted therapy, sorafenib, lenvatinib

  18. Aromatase inhibitors in post-menopausal endometriosis

    Directory of Open Access Journals (Sweden)

    Devroey Paul

    2011-06-01

    Full Text Available Abstract Postmenopausal endometriosis is a rare clinical condition. The diagnosis and treatment of an endometriotic lesion in postmenopausal women is complicated. First line treatment choice should be surgical, given that there is a potential risk of malignancy. Medical treatment may be considered as second line or as an alternate first line treatment whenever surgery is contradicted and aims to alter the hormonal pathway leading to endometriosis progress. Different hormonal regimens have been administered to these patients, with conflicting however results. Aromatase inhibitors (AIs represent one of the most recently used drugs for postmenopausal endometriosis. Clinical data for the use of (AIs in postmenopausal patients is scarce. Up to date only 5 case reports are available regarding the use of these agents in postmenopausal women. Although definite conclusions may be premature, AIs appear to considerably improve patients' symptoms and reduce endometriotic lesions size. Nonetheless the subsequent induced reduction in estrogen production, leads to certain short-term and long-term adverse effects. Despite the limited available data, AIs appear to represent a new promising method which may improve symptoms and treat these patients, either as first line treatment, when surgery is contraindicated or as a second line for recurrences following surgical treatment. However, careful monitoring of patients' risk profile and further research regarding long-term effects and side-effects of these agents is essential prior implementing them in everyday clinical practice.

  19. Progeria, the nucleolus and farnesyltransferase inhibitors.

    Science.gov (United States)

    Mehta, Ishita S; Bridger, Joanna M; Kill, Ian R

    2010-02-01

    HGPS (Hutchinson-Gilford progeria syndrome) is a rare genetic disease affecting children causing them to age and die prematurely. The disease is typically due to a point mutation in the coding sequence for the nuclear intermediate-type filament protein lamin A and gives rise to a dominant-negative splice variant named progerin. Accumulation of progerin within nuclei causes disruption to nuclear structure, causes and premature replicative senescence and increases apoptosis. Now it appears that accumulation of progerin may have more widespread effects than previously thought since the demonstration that the presence and distribution of some nucleolar proteins are also adversely affected in progeria cells. One of the major breakthroughs both in the lamin field and for this syndrome is that many of the cellular defects observed in HGPS patient cells and model systems can be restored after treatment with a class of compounds known as FTIs (farnesyltransferase inhibitors). Indeed, it is demonstrated that FTI-277 is able to completely restore nucleolar antigen localization in treated progeria cells. This is encouraging news for the HGPS patients who are currently undergoing clinical trials with FTI treatment.

  20. Inhibitor of apoptosis proteins and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yunbo Wei; Tingjun Fan; Miaomiao Yu

    2008-01-01

    Apoptosis is a physiological cell death process that plays a critical role in development, homeostasis, and immune defense of multicellular animals. Inhibitor of apoptosis proteins (IAPs) constitute a family of proteins that possess between one and three baculovirus IAP repeats. Some of them also have a really interesting new gene finger domain, and can prevent cell death by binding and inhibiting active caspases, but are regulated by IAP antagonists. Some evidence also indicates that IAP can modulate the cell cycle and signal transduction. The three main factors, IAPs, IAP antagonists, and caspases, are involved in regulating the progress of apoptosis in many species. Many studies and assumptions have been focused on the anfractuous interactions between these three main factors to explore their real functional model in order to develop potential anticancer drugs.In this review, we describe the classification, molecular structures, and properties of IAPs and discuss the mechanisms of apoptosis. We also discuss the promising significance of clinical applications of IAPs in the diagnosis and treatment of malignancy.

  1. Acquired Factor VIII Inhibitors: Three Cases

    Directory of Open Access Journals (Sweden)

    Tay Za Kyaw

    2013-03-01

    Full Text Available Acquired hemophilia A is a rare, but devastating bleeding disorder caused by spontaneous development of autoantibodies directed against coagulation factor VIII. In 40%-50% of patients it is associated with such conditions as the postpartum period, malignancy, use of medications, and autoimmune diseases; however, its cause is unknown in most cases. Acquired hemophilia A should be suspected in patients that present with a coagulation abnormality, and a negative personal and family history of bleeding. Herein we report 3 patients with acquired hemophilia A that had different underlying pathologies, clinical presentations, and therapeutic responses. Factor VIII inhibitor formation in case 1 occurred 6 months after giving birth; underlying disorders were not identified in cases 2 or 3. The bleeding phenotype in these patients’ ranged from no bleeding tendency with isolated prolongation of APTT (activated partial thromboplastin time to severe intramuscular hematoma and hemarthrosis necessitating recombinant activated factor VII infusion and blood components transfusion. Variable responses to immunosuppressive treatment were also observed.

  2. Antiplatelet drug interactions with proton pump inhibitors

    Science.gov (United States)

    Scott, Stuart A; Obeng, Aniwaa Owusu; Hulot, Jean-Sébastien

    2014-01-01

    Introduction Non-aspirin antiplatelet agents (e.g., clopidogrel, prasugrel, ticagrelor) are commonly prescribed for the prevention of recurrent cardiovascular events among patients with acute coronary syndromes (ACS) and/or those undergoing percutaneous coronary intervention (PCI). In addition, combination therapy with proton pump inhibitors (PPIs) is often recommended to attenuate gastrointestinal bleeding risk, particularly during dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Importantly, a pharmacological interaction between clopidogrel and some PPIs has been proposed based on mutual CYP450-dependent metabolism, but available evidence is inconsistent. Areas covered This article provides an overview of the currently approved antiplatelet agents and PPIs, including their metabolic pathways. Additionally, the CYP450 isoenzyme at the center of the drug interaction, CYP2C19, is described in detail, and the available evidence on both the potential pharmacological interaction and influence on clinical outcomes are summarized and evaluated. Expert opinion Although concomitant DAPT and PPI use reduces clopidogrel active metabolite levels and ex vivo-measured platelet inhibition, the influence of the drug interaction on clinical outcomes has been conflicting and largely reported from non-randomized observational studies. Despite this inconsistency, a clinically important interaction cannot be definitively excluded, particularly among patient subgroups with higher overall cardiovascular risk and potentially among CYP2C19 loss-of-function allele carriers. PMID:24205916

  3. Evolution of cyclic peptide protease inhibitors.

    Science.gov (United States)

    Young, Travis S; Young, Douglas D; Ahmad, Insha; Louis, John M; Benkovic, Stephen J; Schultz, Peter G

    2011-07-05

    We report a bacterial system for the evolution of cyclic peptides that makes use of an expanded set of amino acid building blocks. Orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) pairs, together with a split intein system were used to biosynthesize a library of ribosomal peptides containing amino acids with unique structures and reactivities. This peptide library was subsequently used to evolve an inhibitor of HIV protease using a selection based on cellular viability. Two of three cyclic peptides isolated after two rounds of selection contained the keto amino acid p-benzoylphenylalanine (pBzF). The most potent peptide (G12: GIXVSL; X=pBzF) inhibited HIV protease through the formation of a covalent Schiff base adduct of the pBzF residue with the ε-amino group of Lys 14 on the protease. This result suggests that an expanded genetic code can confer an evolutionary advantage in response to selective pressure. Moreover, the combination of natural evolutionary processes with chemically biased building blocks provides another strategy for the generation of biologically active peptides using microbial systems.

  4. Inhibitors of Ras-SOS Interactions.

    Science.gov (United States)

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.

  5. Small molecule phagocytosis inhibitors for immune cytopenias.

    Science.gov (United States)

    Neschadim, Anton; Kotra, Lakshmi P; Branch, Donald R

    2016-08-01

    Immune cytopenias are conditions characterized by low blood cell counts, such as platelets in immune thrombocytopenia (ITP) and red blood cells in autoimmune hemolytic anemia (AIHA). Chronic ITP affects approximately 4 in 100,000 adults annually while AIHA is much less common. Extravascular phagocytosis and massive destruction of autoantibody-opsonized blood cells by macrophages in the spleen and liver are the hallmark of these conditions. Current treatment modalities for ITP and AIHA include the first-line use of corticosteroids; whereas, IVIg shows efficacy in ITP but not AIHA. One main mechanism of action by which IVIg treatment leads to the reduction in platelet destruction rates in ITP is thought to involve Fcγ receptor (FcγR) blockade, ultimately leading to the inhibition of extravascular platelet phagocytosis. IVIg, which is manufactured from the human plasma of thousands of donors, is a limited resource, and alternative treatments, particularly those based on bioavailable small molecules, are needed. In this review, we overview the pathophysiology of ITP, the role of Fcγ receptors, and the mechanisms of action of IVIg in treating ITP, and outline the efforts and progress towards developing novel, first-in-class inhibitors of phagocytosis as synthetic, small molecule substitutes for IVIg in ITP and other conditions where the pathobiology of the disease involves phagocytosis.

  6. Cystatin protease inhibitors and immune functions.

    Science.gov (United States)

    Zavasnik-Bergant, Tina

    2008-05-01

    Cystatins are natural tight-binding reversible inhibitors of cysteine proteases. They are wide spread in all living organisms (mammals, nematodes, arthropods etc.) and are involved in various biological processes where they regulate normal proteolysis and also take part in disease pathology. Many cystatins show changes in expression and/or localization, as well as changes in secretion, following certain stimuli acting on immune cells. In immune cells, cystatins interfere with antigen processing and presentation, phagocytosis, expression of cytokines and nitric oxide and these ways modify the immune response. Further, it has been suggested that cystatin-type molecules secreted from parasites down-modulate the host immune response. Precise understanding of the regulatory roles on proteolytic enzymes of endogenous and exogenous cystatins, such as those from parasites, will provide us with valuable insight into how immune response could be modulated to treat a specific disease. This review covers some specific functions of individual cystatins, with a particular focus on the relevance of cystatins to the immune response.

  7. Phospholipids as inhibitors of amyloid fibril formation

    Directory of Open Access Journals (Sweden)

    K. O. Vus

    2016-11-01

    Full Text Available Amyloid fibrils are the protein aggregates, whose formation is involved in the pathogenesis of Alzheimer’s disease, systemic amyloidosis, etc. Since there is no effective ways to treat these diseases, developing the new anti-amyloid drugs is of great importance. In this study a series of phospholipids have been tested for their ability to inhibit lysozyme and insulin amyloid fibril formation at acidic or neutral pH and elevated temperature.  The lag time, elongation rate and fibrillization extent were estimated using Thioflavin T fluorescence assay. It is found that the oxidized and charged phospholipids, included into the liposomes, were the most effective inhibitors of the protein fibrillization. By comparing the magnitude and direction of the lipid effect in different lipid-protein systems it was concluded that the reduction of the amyloid fibril formation is governed by hydrophobic and specific liposome-protein interactions. It is hypothesized that the presence of the surface formed by the lipid polar heads is critical for reducing the protein fibrillization extent.

  8. α-Glucosidase Inhibitors from Vauquelinia corymbosa

    Directory of Open Access Journals (Sweden)

    Laura Flores-Bocanegra

    2015-08-01

    Full Text Available The α-glucosidase inhibitory activity of an aqueous extract and compounds from the aerial parts of V. corymbosa was demonstrated with yeast and rat small intestinal α-glucosidases. The aqueous extract inhibited yeast α-glucosidase with a half maximal inhibitory concentration (IC50 of 28.6 μg/mL. Bioassay-guided fractionation of the extract led to the isolation of several compounds, including one cyanogenic glycoside [prunasin (1], five flavonoids [(−-epi-catechin (2, hyperoside (3, isoquercetin (4, quercitrin (5 and quercetin-3-O-(6′′-benzoyl-β-galactoside (6] and two simple aromatic compounds [picein (7 and methylarbutin (8]. The most active compound was 6 with IC50 values of 30 μM in the case of yeast α-glucosidase, and 437 μM in the case of the mammalian enzyme. According to the kinetic analyses performed with rat and yeast enzymes, this compound behaved as mixed-type inhibitor; the calculated inhibition constants (Ki were 212 and 50 μM, respectively. Molecular docking analyses with yeast and mammalian α-glucosidases revealed that compound 6 bind differently to these enzymes. Altogether, the results of this work suggest that preparations of V. corymbosa might delay glucose absorption in vivo.

  9. The Azadirachtins: potent insect growth inhibitors

    Directory of Open Access Journals (Sweden)

    Heinz Rembold

    1987-01-01

    Full Text Available In the course of their coevolution with insects, plants have learnt to protect themselves by chemical means. Semiochemical act as antifeedants or deterrents, others by disrupting growth and development. By use of the Epilachna varivestis bioassay we isolated from Azadirachta indica seed a group of triterpenoids which interfee with larval growth and development in ppm range. Main components are the azadirachtins A and B with identical biological activity. Various other azadirachtins were obtained, either as minor seed components or by chemical modification of the naturally occuring compounds. Structure vs. activity relation studies enabled us to postulate a basic structural element that should still be biologically active and with much simpler chemical structure than natural compounds. What underlies the biological activity of these insect growth inhibitors? Their interference with the hormonal regulation of development and reproduction has been studied in Locusta migratoria and Rhodnius prolixus. In addition, tritiated dihydroazadirachtin A was used. With this approach, a precise correlation between administered dose, resulting effects, and retention of the compound was established. The azadirachtins either interrupt, delay, or deviate whole developmental programs. Results from these studies provide another chemical probe for studies in insect endocrinology and physiology.

  10. Metal-based antimicrobial protease inhibitors.

    Science.gov (United States)

    Kellett, A; Prisecaru, A; Slator, C; Molphy, Z; McCann, M

    2013-01-01

    Limitations associated with the production cost, metabolic instability, side-effects, resistance and poor pharmacokinetics of organic protease inhibitors (PIs), which form an essential component of the front line HAART treatment for HIV, have fuelled efforts into finding novel, transition metal-based alternatives. Some of the attractive features of metalbased therapeutics include synthetic simplicity, solubility control, redox capability, expansion of coordination number and topography matching of the complex to the protein's active site. Building asymmetry into the complex, which may offer better discrimination between host and rogue cell, can readily be achieved through coordination of chiral ligands to the metal centre. Although the scope of this review has been limited to metal-based agents that have been reported to bind/inhibit HIV-1 and parasitic proteases, some desirables, such as high activity, low dosage, minimal toxicity, crossinhibition, unique binding modes and selectivity, have already been delivered. The variability of the d-block metals, coupled with the availability of designer organic ligands, augers well for the future development of clinical metallo-drugs for deployment against protease-associated, fatal diseases.

  11. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  12. The dawn of hedgehog inhibitors: Vismodegib

    Directory of Open Access Journals (Sweden)

    Selvarajan Sandhiya

    2013-01-01

    Full Text Available Cancer, one of the leading causes of death worldwide is estimated to increase to approximately 13.1 million by 2030. This has amplified the research in oncology towards the exploration of novel targets. Recently there has been lots of interest regarding the hedgehog (Hh pathway, which plays a significant role in the development of organs and tissues during embryonic and postnatal periods. In a normal person, the Hh signaling pathway is under inhibition and gets activated upon the binding of Hh ligand to a transmembrane receptor called Patched (PTCH1 thus allowing the transmembrane protein, smoothened (SMO to transfer signals through various proteins. One of the newer drugs namely vismodegib involves the inhibition of Hh pathway and has shown promising results in the treatment of advanced basal-cell carcinoma as well as medulloblastoma. It has been granted approval by US Food and Drug Administration′s (US FDA priority review program on January 30, 2012 for the treatment of advanced basal-cell carcinoma. The drug is also being evaluated in malignancies like medulloblastoma, pancreatic cancer, multiple myeloma, chondrosarcoma and prostate cancer. Moreover various Hh inhibitors namely LDE 225, saridegib, BMS 833923, LEQ 506, PF- 04449913 and TAK-441 are also undergoing phase I and II trials for different neoplasms. Hence this review will describe briefly the Hh pathway and the novel drug vismodegib.

  13. Fucoidans as Potential Inhibitors of HIV-1

    Directory of Open Access Journals (Sweden)

    Vladimir S. Prassolov

    2013-08-01

    Full Text Available The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV. It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001–100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001–0.05 µg/mL. High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan, and S. japonica (galactofucan were the most effective inhibitors.

  14. Fucoidans as potential inhibitors of HIV-1.

    Science.gov (United States)

    Prokofjeva, Maria M; Imbs, Tatyana I; Shevchenko, Natalya M; Spirin, Pavel V; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N; Prassolov, Vladimir S

    2013-08-19

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.

  15. Extraction purification and characterization of trypsin inhibitors from Andean seeds

    Directory of Open Access Journals (Sweden)

    Patricio Castillo

    2017-09-01

    Full Text Available This work established the conditions of covalent immobilization of trypsin on a Sepharose matrix, which could be applied for the purification of trypsin inhibitors. The higher values of retention of enzymatic activity and immobilized enzymatic activity were obtained with a Sepharose 6B-CL matrix, at room temperature, a pH value of 10.5, an enzymatic load of 25 mg/mL, and a minimum immobilization time of 12 hours, in order to obtain a stable immobilization. The most active trypsin inhibitors were selected through the comparison of, extracts obtained from the seeds of amaranth (Amaranthus caudatus L., pea (Pisum sativum, lupine or “chocho” (Lupinus mutabilis, bean (Phaseolus vulgaris and “sangorache” (Amaranthus hybridus L.. The inhibitors were partially purified using centrifugal ultrafiltration, heat treatment, and TCA precipitation. The permeated and retained fractions of “sangorache” were selected as the most active trypsin inhibitors, and they were selectively purified using affinity chromatography in a Trypsin - Glyoxyl - Sepharose 6B-CL matrix. The kinetic characterization showed the presence of two inhibitors; the first one corresponded to a competitive inhibitor, while the second one behaved as a mixed inhibitor.

  16. Trypsin-chymotrypsin inhibitors from Vigna mungo seeds.

    Science.gov (United States)

    Cheung, Allen H K; Wong, Jack H; Ng, T B

    2009-01-01

    Three trypsin-chymotrypsin inhibitors were isolated from seeds of the black gram (Vigna mungo) with a procedure that entailed cation exchange chromatography on SP-Sepharose, anion exchange chromatography on Q-Sepharose, ion exchange chromatography by fast protein liquid chromatography (FPLC) on Mono Q and Mono S, and gel filtration by FPLC on Superdex 75. Two of the trypsin-chymotrypsin inhibitors were adsorbed on the first four types of chromatographic media. All three inhibitors have a molecular mass of 16 kDa as judged by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The trypsin inhibitory activity of the inhibitors was attenuated in the presence of the reducing agent dithiothreitol. The remaining inhibitor was unadsorbed on SP-Sepharose but adsorbed on Q-Sepharose, Mono Q and Mono S. The protease inhibitors did not exert any inhibitory effect on hepatoma (Hep G2) and breast cancer (MCF 7) cells or antifungal action toward Botrytis cinerea, Fusarium oxysporum and Mycosphaerella arachidicola. Two of the inhibitors slightly inhibited the activity of HIV-1 reverse transcriptase, with an IC50 in the millimolar range.

  17. A novel method for screening the glutathione transferase inhibitors

    Directory of Open Access Journals (Sweden)

    Węgrzyn Grzegorz

    2009-03-01

    Full Text Available Abstract Background Glutathione transferases (GSTs belong to the family of Phase II detoxification enzymes. GSTs catalyze the conjugation of glutathione to different endogenous and exogenous electrophilic compounds. Over-expression of GSTs was demonstrated in a number of different human cancer cells. It has been found that the resistance to many anticancer chemotherapeutics is directly correlated with the over-expression of GSTs. Therefore, it appears to be important to find new GST inhibitors to prevent the resistance of cells to anticancer drugs. In order to search for glutathione transferase (GST inhibitors, a novel method was designed. Results Our results showed that two fragments of GST, named F1 peptide (GYWKIKGLV and F2 peptide (KWRNKKFELGLEFPNL, can significantly inhibit the GST activity. When these two fragments were compared with several known potent GST inhibitors, the order of inhibition efficiency (measured in reactions with 2,4-dinitrochlorobenzene (CDNB and glutathione as substrates was determined as follows: tannic acid > cibacron blue > F2 peptide > hematin > F1 peptide > ethacrynic acid. Moreover, the F1 peptide appeared to be a noncompetitive inhibitor of the GST-catalyzed reaction, while the F2 peptide was determined as a competitive inhibitor of this reaction. Conclusion It appears that the F2 peptide can be used as a new potent specific GST inhibitor. It is proposed that the novel method, described in this report, might be useful for screening the inhibitors of not only GST but also other enzymes.

  18. Renin inhibitor in hypertension treatment: from pharmacological point of view

    Directory of Open Access Journals (Sweden)

    Johannes Hudyono

    2011-08-01

    Full Text Available The use of drugs that inhibit the renin-angiotensin system is one of the effective way to intervene in the pathogenesis of cardiovascular and renal disorders, especially in hypertension treatment. The idea of blocking the renin system at its origin by renin inhibitor has existed for more than 30 years. Renin inhibitor supresses the covension of angiotensinogen into angiotensin, and further deacreases the generation of the active peptide angiotensin II. The first generation (enalkiren and second generation (remikiren of orally active renin inhibitors were never used clinically because of low bioavailability and weak blood pressure-lowering activity. At present, aliskiren is the first non-peptide orally active renin inhibitor of the third generation to progress to phase III clinical trials and was approved by U.S. Food and Drug Administration (FDA in March 2007. Aliskiren becomes the first renin inhibitor with indications for the treatment of hypertension in Indonesia, a compounds with improved oral bioavailability, specificity and efficacy. This review summarises the development of oral renin inhibitors, pharmacological aspects, with a focus on aliskiren. (Med J Indones 2011; 20:232-7Keywords: aliskiren, hypertension, renin inhibitor, renin-angiotensin

  19. 5-HT(1A) receptors and memory.

    Science.gov (United States)

    Meneses, Alfredo; Perez-Garcia, Georgina

    2007-01-01

    The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.

  20. Screen for CACNA1A and ATP1A2 mutations in sporadic hemiplegic migraine patients

    DEFF Research Database (Denmark)

    Thomsen, L.L.; Oestergaard, E.; Bjornsson, A.;

    2008-01-01

    The aim of this study was to investigate the involvement of the CACNA1A and ATP1A2 gene in a population-based sample of sporadic hemiplegic migraine (SHM). Patients with SHM (n = 105) were identified in a nationwide search in the Danish population. We sequenced all exons and promoter regions...... of the CACNA1A and ATP1A2 genes in 100 patients with SHM to search for possible SHM mutations. Novel DNA variants were discovered in eight SHM patients, four in exons of the CACNA1A gene and four in exons of the ATP1A2 gene. Six of the variants were considered non-pathogenic. The causal role of the two...... remaining DNA variants is unknown until functional studies have been made or independent genetic evidence is discovered. Only very few DNA variants were identified in 100 SHM patients, and regardless of whether the identified variants are causal the CACNA1A and ATP1A2 genes are not major genes in SHM...

  1. Earth and Sky, Unit 1A

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    The assignment known as ‘Earth and sky’ is the final first year course at Unit 1a. The aim of the assignment is to strengthen the student’s abilities to manage a project process individu- ally. The process involves develop- ing the ability to make independent decisions.The point of departure...... for the ‘Earth and sky’ assignment is ex- perience students acquired during their group study tour to Austra- lia. Building in particular on the re- search conducted on the Sydney Opera House and the architectur- al principles of spatial creation that this building represents....

  2. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    Science.gov (United States)

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.

  3. Proteolytic Cleavage of Various Human Serum Proteinase Inhibitors by Candida albicans Aspartic Proteinase

    OpenAIRE

    Tsushima, Hirofumi; MINE, Hiroko

    2008-01-01

    The secreted Candida albicans aspartic proteinase (SAP) is presumed to be one of the putative Candida virulence factors, while serum proteinase inhibitors depend on host defense mechanisms. We examined the interaction between SAP and serum proteinase inhibitors, such as C1-inhibitor, α2 plasmin inhibitor, and antithrombin III. SAP progressively inactivated plasmin inhibitory activity of C1-inhibitor and α2 plasmin inhibitor. It also inactivated thrombin inhibitory activity of antithrombin III...

  4. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Mingchen; Geng, Yiwei [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Xi, Ying [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China); Wei, Sidong [Liver Transplantation Hepatobiliary Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Wang, Liuxing; Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China); Ma, Wang, E-mail: doctormawang@126.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou (China)

    2015-09-04

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assays confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells.

  5. Corrosion inhibitor mechanisms on reinforcing steel in Portland cement pastes

    Science.gov (United States)

    Martin, Farrel James

    2001-07-01

    The mechanisms of corrosion inhibitor interaction with reinforcing steel are investigated in the present work, with particular emphasis on effects associated with corrosion inhibitors admixed into Portland cement paste. The principal objective in reinforcing steel corrosion inhibition for Portland cement concrete is observed to be preservation of the naturally passive steel surface condition established by the alkaline environment. Introduction of chloride ions to the steel surface accelerates damage to the passive film. Excessive damage to the passive film leads to loss of passivity and a destabilization of conditions that facilitate repair of the passive film. Passive film preservation in presence of chloride ions is achieved either through stabilization of the passive film or by modification of the chemical environment near the steel surface. Availability of inhibitors to the steel surface and their tendency to stabilize passive film defects are observed to be of critical importance. Availability of admixed corrosion inhibitors to the passive film is affected by binding of inhibitors during cement paste hydration. It is determined that pore solution concentrations of inorganic admixed inhibitors tend to be lower than the admixed concentration, while pore solution concentrations of organic admixed inhibitors tend to be higher than the admixed concentration. A fundamental difference of inhibitor function is observed between film-forming and defect stabilizing corrosion inhibitors. Experiments are conducted using coupons of reinforcing steel that are exposed to environments simulating chloride-contaminated Portland cement concrete. A study of the steel/cement paste interface is also performed, and compounds forming at this interface are identified using X-Ray diffraction.

  6. A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    A Kolyada; C Lee; A De Biasio; N Beglova

    2011-12-31

    {beta}2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of {beta}2GPI generated by anti-{beta}2GPI antibodies is pathologically important, in contrast to monomeric {beta}2GPI which is abundant in plasma. We created a dimeric inhibitor, A1-A1, to selectively target {beta}2GPI in {beta}2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of {beta}2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of {beta}2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of {beta}2GPI present in human serum, {beta}2GPI purified from human plasma and the individual domain V of {beta}2GPI. We demonstrated that when {beta}2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of {beta}2GPI to cardiolipin, regardless of the source of {beta}2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of {beta}2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-{beta}2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric {beta}2GPI to cardiolipin. Our results suggest that the approach of using a dimeric inhibitor to block {beta}2GPI in the pathological multivalent {beta}2GPI/antibody complexes holds significant promise. The novel inhibitor A1-A1 may be a starting point in the development of an effective therapeutic for antiphospholipid syndrome.

  7. A novel dimeric inhibitor targeting Beta2GPI in Beta2GPI/antibody complexes implicated in antiphospholipid syndrome.

    Directory of Open Access Journals (Sweden)

    Alexey Kolyada

    Full Text Available BACKGROUND: β2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS, an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of β2GPI generated by anti-β2GPI antibodies is pathologically important, in contrast to monomeric β2GPI which is abundant in plasma. PRINCIPAL FINDINGS: We created a dimeric inhibitor, A1-A1, to selectively target β2GPI in β2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1 and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of β2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of β2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of β2GPI present in human serum, β2GPI purified from human plasma and the individual domain V of β2GPI. We demonstrated that when β2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of β2GPI to cardiolipin, regardless of the source of β2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of β2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-β2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric β2GPI to cardiolipin. CONCLUSIONS: Our results suggest that the approach of using a dimeric inhibitor to block β2GPI in the pathological multivalent β2GPI/antibody complexes holds significant promise. The novel inhibitor A1-A1 may be a starting point in the development of an effective therapeutic for antiphospholipid syndrome.

  8. Systematic Review on Role of Mammalian Target of Rapamycin Inhibitors as an Alternative to Calcineurin Inhibitors in Renal Transplant: Challenges and Window to Excel.

    Science.gov (United States)

    Kumar, Jayant; Bridson, Julie M; Sharma, Ajay; Halawa, Ahmed

    2017-06-01

    This review focuses on the current limited evidence of graft function and graft survival in various immunosuppressive regimens involving mammalian target of rapamycin inhibitors with or without calcineurin inhibitors. We evaluated the current literature for describing the role of mammalian target of rapamycin inhibitors as an alternative to calcineurin inhibitors by searching the PubMed, EMBASE, Cochrane, Crossref, and Scopus databases using medical subject heading terms. Our detailed analyses of all relevant literature showed use of mammalian target of rapamycin inhibitor-based de novo regimens, early calcineurin inhibitor withdrawal with subsequent introduction of mammalian target of rapamycin inhibitor-based regimens, and late conversion from a calcineurin inhibitor-based regimen to mammalian target of rapamycin inhibitor-based regimens. Notably, early calcineurin inhibitor withdrawal with subsequent introduction of mammalian target of rapamycin inhibitor-based regimen seemed to be a more practical and realistic approach toward immunosuppressive treatment of renal transplant recipients. However, in view of the high rejection rate observed in these studies, it is advisable not to offer these regimens to patients with moderate to high immunologic risk. The present evidences suggest that treatment with mammalian target of rapamycin inhibitors allows early and substantial calcineurin inhibitor minimization. The mammalian target of rapamycin inhibitors everolimus and sirolimus are preferred due to their complementary mechanisms of action and favorable nephrotoxicity profile, which have opened the way for calcineurin inhibitor reduction/withdrawal in the early posttransplant period.

  9. Role of P-glycoprotein inhibitors in ceramide-based therapeutics for treatment of cancer.

    Science.gov (United States)

    Morad, Samy A F; Davis, Traci S; MacDougall, Matthew R; Tan, Su-Fern; Feith, David J; Desai, Dhimant H; Amin, Shantu G; Kester, Mark; Loughran, Thomas P; Cabot, Myles C

    2017-04-15

    The anticancer properties of ceramide, a sphingolipid with potent tumor-suppressor properties, can be dampened via glycosylation, notably in multidrug resistance wherein ceramide glycosylation is characteristically elevated. Earlier works using the ceramide analog, C6-ceramide, demonstrated that the antiestrogen tamoxifen, a first generation P-glycoprotein (P-gp) inhibitor, blocked C6-ceramide glycosylation and magnified apoptotic responses. The present investigation was undertaken with the goal of discovering non-anti-estrogenic alternatives to tamoxifen that could be employed as adjuvants for improving the efficacy of ceramide-centric therapeutics in treatment of cancer. Herein we demonstrate that the tamoxifen metabolites, desmethyltamoxifen and didesmethyltamoxifen, and specific, high-affinity P-gp inhibitors, tariquidar and zosuquidar, synergistically enhanced C6-ceramide cytotoxicity in multidrug resistant HL-60/VCR acute myelogenous leukemia (AML) cells, whereas the selective estrogen receptor antagonist, fulvestrant, was ineffective. Active C6-ceramide-adjuvant combinations elicited mitochondrial ROS production and cytochrome c release, and induced apoptosis. Cytotoxicity was mitigated by introduction of antioxidant. Effective adjuvants markedly inhibited C6-ceramide glycosylation as well as conversion to sphingomyelin. Active regimens were also effective in KG-1a cells, a leukemia stem cell-like line, and in LoVo human colorectal cancer cells, a solid tumor model. In summary, our work details discovery of the link between P-gp inhibitors and the regulation and potentiation of ceramide metabolism in a pro-apoptotic direction in cancer cells. Given the active properties of these adjuvants in synergizing with C6-ceramide, independent of drug resistance status, stemness, or cancer type, our results suggest that the C6-ceramide-containing regimens could provide alternative, promising therapeutic direction, in addition to finding novel, off-label applications

  10. Antagonism of 5-HT1A receptors uncovers an excitatory effect of SSRIs on 5-HT neuronal activity, an action probably mediated by 5-HT7 receptors

    NARCIS (Netherlands)

    Bosker, Fokko J.; Folgering, Joost H. A.; Gladkevich, Anatoliy V.; Schmidt, Anne; van der Hart, Marieke C. G.; Sprouse, Jeffrey; den Boer, Johan A.; Westerink, Ben H. C.; Cremers, Thomas I. F. H.

    2009-01-01

    Both microdialysis and electrophysiology were used to investigate whether another serotonin (5-HT) receptor subtype next to the 5-HT1A autoreceptor is involved in the acute effects of a selective serotonin reuptake inhibitor on 5-HT neuronal activity. On the basis of a previous study, we decided to

  11. Structure based design of 11β-HSD1 inhibitors.

    Science.gov (United States)

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  12. Inhibitors of snake venoms and development of new therapeutics.

    Science.gov (United States)

    Sánchez, Elda E; Rodríguez-Acosta, Alexis

    2008-01-01

    Natural inhibitors of snake venoms play a significant role in the ability to neutralize the degradation effects induced by venom toxins. It has been known for many years that animal sera and some plant extracts are competent in neutralizing snake venoms. The purpose of this review is to highlight the recent work that has been accomplished with natural inhibitors of snake venoms as well as revisiting the past research including those found in plants. The biomedical value of these natural inhibitors can lead to the development of new therapeutics for an assortment of diseases as well as contributing to efficient antivenoms for the treatment of ophidic accidents.

  13. Measurement of enzyme kinetics and inhibitor constants using enthalpy arrays.

    Science.gov (United States)

    Recht, Michael I; Torres, Frank E; De Bruyker, Dirk; Bell, Alan G; Klumpp, Martin; Bruce, Richard H

    2009-05-15

    Enthalpy arrays enable label-free, solution-based calorimetric detection of molecular interactions in a 96-detector array format. Compared with conventional calorimetry, enthalpy arrays achieve a significant reduction of sample volume and measurement time through the combination of the small size of the detectors and ability to perform measurements in parallel. The current capabilities of the technology for studying enzyme-catalyzed reactions are demonstrated by determining the kinetic parameters for reactions with three model enzymes. In addition, the technology has been used with two classes of enzymes to determine accurate inhibitor constants for competitive inhibitors from measurements at a single inhibitor concentration.

  14. Acalabrutinib (ACP-196: a selective second-generation BTK inhibitor

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2016-03-01

    Full Text Available Abstract More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton’s tyrosine kinase (BTK inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom’s macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292 are being explored. Acalabrutinib (ACP-196 is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib.

  15. Metalloprotein Inhibitors for the Treatment of Human Diseases.

    Science.gov (United States)

    Yang, Yang; Hu, Xue-Qin; Li, Qing-Shan; Zhang, Xing-Xing; Ruan, Ban-Feng; Xu, Jun; Liao, Chenzhong

    2016-01-01

    Metalloproteins have attracted momentous attentions for the treatment of many human diseases, including cancer, HIV, hypertension, etc. This article reviews the progresses that have been made in the field of drug development of metalloprotein inhibitors, putting emphasis on the targets of carbonic anhydrase, histone deacetylase, angiotensin converting enzyme, and HIV-1 integrase. Many other important metalloproteins are also briefly discussed. The binding and coordination modes of different marketed metalloprotein inhibitors are stated, providing insights to design novel metal binding groups and further novel inhibitors for metalloproteins.

  16. Discovery of potent imidazole and cyanophenyl containing farnesyltransferase inhibitors with improved oral bioavailability.

    Science.gov (United States)

    Tong, Yunsong; Lin, Nan-Horng; Wang, Le; Hasvold, Lisa; Wang, Weibo; Leonard, Nicholas; Li, Tongmei; Li, Qun; Cohen, Jerry; Gu, Wen-Zhen; Zhang, Haiying; Stoll, Vincent; Bauch, Joy; Marsh, Kennan; Rosenberg, Saul H; Sham, Hing L

    2003-05-05

    A pyridyl moiety was introduced into a previously developed series of farnesyltransferase inhibitors containing imidazole and cyanophenyl (such as 4), resulting in potent inhibitors with improved pharmacokinetics.

  17. Highly efficient infectious cell culture of three HCV genotype 2b strains and sensitivity to lead protease, NS5A, and polymerase inhibitors

    DEFF Research Database (Denmark)

    Ramirez, Santseharay; Li, Yi-Ping; Brun Jensen, Sanne;

    2014-01-01

    , we succeeded in generating DH8, J8, and DH10 viruses with authentic sequences in the regions targeted by lead direct acting antivirals. NS5B inhibitors Sofosbuvir, Mericitabine, and BI207127 had activity against 1a (strain TN), 2a (strains JFH1 and J6), and the 2b strains, whereas VX-222...... systems can be established by using consensus clones with defined mutations. Lead protease and NS5A inhibitors, as well as polymerase inhibitors Sofosbuvir, Mericitabine, and BI207127, show cross-activity against full-length 1a, 2a, and 2b viruses, but important sensitivity differences exist......Hepatitis C virus (HCV) is a genetically diverse virus with multiple genotypes exhibiting remarkable differences, particularly in drug susceptibility. Drug and vaccine development will benefit from high-titer HCV cultures mimicking the complete viral life cycle, but such systems only exist...

  18. Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin

    Science.gov (United States)

    Verlander, Jill W.; Hong, Seongun; Pech, Vladimir; Bailey, James L.; Agazatian, Diana; Matthews, Sharon W.; Coffman, Thomas M.; Le, Thu; Inagami, Tadashi; Whitehill, Florence M.; Weiner, I. David; Farley, Donna B.; Kim, Young Hee

    2011-01-01

    Pendrin is an anion exchanger expressed in the apical regions of B and non-A, non-B intercalated cells. Since angiotensin II increases pendrin-mediated Cl− absorption in vitro, we asked whether angiotensin II increases pendrin expression in vivo and whether angiotensin-induced hypertension is pendrin dependent. While blood pressure was similar in pendrin null and wild-type mice under basal conditions, following 2 wk of angiotensin II administration blood pressure was 31 mmHg lower in pendrin null than in wild-type mice. Thus pendrin null mice have a blunted pressor response to angiotensin II. Further experiments explored the effect of angiotensin on pendrin expression. Angiotensin II administration shifted pendrin label from the subapical space to the apical plasma membrane, independent of aldosterone. To explore the role of the angiotensin receptors in this response, pendrin abundance and subcellular distribution were examined in wild-type, angiotensin type 1a (Agtr1a) and type 2 receptor (Agtr2) null mice given 7 days of a NaCl-restricted diet (Agtr1 inhibitor (candesartan) or vehicle. Both Agtr1a gene ablation and Agtr1 inhibitors shifted pendrin label from the apical plasma membrane to the subapical space, independent of the Agtr2 or nitric oxide (NO). However, Agtr1 ablation reduced pendrin protein abundance through the Agtr2 and NO. Thus angiotensin II-induced hypertension is pendrin dependent. Angiotensin II acts through the Agtr1a to shift pendrin from the subapical space to the apical plasma membrane. This Agtr1 action may be blunted by the Agtr2, which acts through NO to reduce pendrin protein abundance. PMID:21921024

  19. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    OpenAIRE

    Jieshi Xie; Le Yang; Lei Tian; Weiyang Li; Lin Yang; Liying Li

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver an...

  20. Natural plant enzyme inhibitors. Characterization of an unusual alpha-amylase/trypsin inhibitor from ragi (Eleusine coracana Geartn.).

    Science.gov (United States)

    Shivaraj, B; Pattabiraman, T N

    1981-01-01

    An inhibitor I-1, capable of acting on both alpha-amylase and trypsin, was purified to homogeneity from ragi (finger-millet) grains. The factor was found to be stable to heat treatment at 100 degrees C for 1 h in the presence of NaCl and also was stable over the wide pH range 1-10. Pepsin and Pronase treatment of inhibitor I-1 resulted in gradual loss of both the inhibitory activities. Formation of trypsin-inhibitor I-1 complex, amylase-inhibitor I-1 complex and trypsin-inhibitor I-1-amylase trimer complex was demonstrated by chromatography on a Bio-Gel P-200 column. This indicated that the inhibitor is 'double-headed' in nature. The inhibitor was retained on a trypsin-Sepharose 4B column at pH 7.0. Elution at acidic pH resulted in almost complete recovery of amylase-inhibitory and trypsin-inhibitory activities. alpha-Amylase was retained on a trypsin-Sepharose column to which inhibitor I-1 was bound, but not on trypsin-Sepharose alone. Modification of amino groups of the inhibitor with 2,4,6-trinitrobenzenesulphonic acid resulted in complete loss of amylase-inhibitory activity but only 40% loss in antitryptic activity. Modification of arginine residues by cyclohexane-1,2-dione led to 85% loss of antitryptic activity after 5 h, but no effect on amylase-inhibitory activity. The results show that a single bifunctional protein factor is responsible for both amylase-inhibitory and trypsin-inhibitory activities with two different reactive sites.

  1. Carbocyclic Carbohydrate Mimics as Potential Glycosidase Inhibitors

    DEFF Research Database (Denmark)

    Fanefjord, Mette; Lundt, Inge

    functionalities was introduced by either epoxidation or dihydroxylation of 7. Finally, reduction of the lactone ring led to the sugar mimics 8. The synthesis of several isomers of 8 will be presented. [1] a) Kleban, M. ; Hilgers, P. ; Greul, J.N. ; Kugler, R.D. ; Li, J. ; Picasso, S. ; Vogel, P. ; Jäger, V. Chem...

  2. (1) (1)A' ← X (1)A' Electronic Transition of Protonated Coronene at 15 K.

    Science.gov (United States)

    Rice, C A; Hardy, F-X; Gause, O; Maier, J P

    2014-03-20

    The electronic spectrum of protonated coronene in the gas phase was measured at vibrational and rotational temperatures of ∼15 K in a 22-pole ion trap. The (1) (1)A' ← X (1)A' electronic transition of this larger polycyclic aromatic hydrocarbon cation has an origin band maximum at 14 383.8 ± 0.2 cm(-1) and shows distinct vibrational structure in the (1) (1)A' state. Neither the origin nor the strongest absorptions to the blue coincide with known diffuse interstellar bands, implying that protonated coronene is not a carrier.

  3. Antitumor Activity of Cytotoxic Cyclooxygenase-2 Inhibitors

    Science.gov (United States)

    Uddin, Md. Jashim; Crews, Brenda C.; Xu, Shu; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Banerjee, Surajit; Marnett, Lawrence J.

    2017-01-01

    Targeted delivery of chemotherapeutic agents to tumors has been explored as a means to increase the selectivity and potency of cytotoxicity. Most efforts in this area have exploited the molecular recognition of proteins highly expressed on the surface of cancer cells followed by internalization. A related approach that has received less attention is the targeting of intracellular proteins by ligands conjugated to anti-cancer drugs. An attractive target for this approach is the enzyme cyclooxygenase-2 (COX-2), which is highly expressed in a range of malignant tumors. Herein, we describe the synthesis and evaluation of a series of chemotherapeutic agents targeted to COX-2 by conjugation to indomethacin. Detailed characterization of compound 12, a conjugate of indomethacin with podophyllotoxin, revealed highly potent and selective COX-2 inhibition in vitro and in intact cells. Kinetics and X-ray crystallographic studies demonstrated that compound 12 is a slow, tight-binding inhibitor that likely binds to COX-2’s allosteric site with its indomethacin moiety in a conformation similar to that of indomethacin. Compound 12 exhibited cytotoxicity in cell culture similar to that of podophyllotoxin with no evidence of COX-2-dependent selectivity. However, in vivo, compound 12 accumulated selectively in and more effectively inhibited the growth of a COX-2-expressing xenograft compared to a xenograft that did not express COX-2. Compound 12, which we have named chemocoxib A, provides proof-of-concept for the in vivo targeting of chemotherapeutic agents to COX-2, but suggests that COX-2-dependent selectivity may not be evident in cell culture-based assays. PMID:27588346

  4. Prodrugs of herpes simplex thymidine kinase inhibitors.

    Science.gov (United States)

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  5. Do proton pump inhibitors decrease calcium absorption?

    Science.gov (United States)

    Hansen, Karen E; Jones, Andrea N; Lindstrom, Mary J; Davis, Lisa A; Ziegler, Toni E; Penniston, Kristina L; Alvig, Amy L; Shafer, Martin M

    2010-12-01

    Proton pump inhibitors (PPIs) increase osteoporotic fracture risk presumably via hypochlorhydria and consequent reduced fractional calcium absorption (FCA). Existing studies provide conflicting information regarding the direct effects of PPIs on FCA. We evaluated the effect of PPI therapy on FCA. We recruited women at least 5 years past menopause who were not taking acid suppressants. Participants underwent three 24-hour inpatient FCA studies using the dual stable isotope method. Two FCA studies were performed 1 month apart to establish baseline calcium absorption. The third study occurred after taking omeprazole (40 mg/day) for 30 days. Each participant consumed the same foods during all FCA studies; study meals replicated subjects' dietary habits based on 7-day diet diaries. Twenty-one postmenopausal women ages 58 ± 7 years (mean ± SD) completed all study visits. Seventeen women were white, and 2 each were black and Hispanic. FCA (mean ± SD) was 20% ± 10% at visit 1, 18% ± 10% at visit 2, and 23% ± 10% following 30 ± 3 days of daily omeprazole (p = .07, ANOVA). Multiple linear regression revealed that age, gastric pH, serum omeprazole levels, adherence to omeprazole, and 25-hydroxyvitamin D levels were unrelated to changes in FCA between study visits 2 and 3. The 1,25-dihydroxyvitamin D(3) level at visit 2 was the only variable (p = .049) associated with the change in FCA between visits 2 and 3. PPI-associated hypochlorhydria does not decrease FCA following 30 days of continuous use. Future studies should focus on identifying mechanisms by which PPIs increase the risk of osteoporotic fracture.

  6. XIMELAGATRAN: A NEW DIRECT THROMBIN INHIBITOR

    Directory of Open Access Journals (Sweden)

    Mehta Hiren R

    2011-04-01

    Full Text Available Venous thromboembolism is a serious illness that affects patient morbidity and mortality and presents a significant management challenge to healthcare providers world-wide. Despite major achievements in the significant reduction of thromboembolic complications, the most common therapies currently used for prevention and treatment of venous thromboembolism – heparins and vitamin K antagonists such as warfarin – have several limitations. Warfarin sodium is an effective oral anticoagulant drug. However, warfarin has a narrow therapeutic window with significant risks of hemorrhage at therapeutic concentrations. Dosing is difficult and requires frequent monitoring. New oral anticoagulant agents are required to improve current anticoagulant therapy. Furthermore, while warfarin is effective in venous disease, it does not provide more than 60% risk reduction compared with placebo in venous thrombosis prophylaxis and considerably lower risk reduction in terms of arterial thrombosis. Unlike warfarin and heparin, these direct thrombin inhibitors are able to inhibit fibrin-bound thrombin and so produce more effective inhibition of coagulation. Importantly, some members of this class of drugs have been developed for oral administration. Ximelagatran is an oral pro-drug of melagatran, a synthetic small peptidomimetic with direct thrombin inhibitory actions and anticoagulant activity. As an oral agent, ximelagatran has a number of desirable properties including a rapid onset of action, fixed dosing, stable absorption, apparent low potential for medication interactions, and no requirement for monitoring of drug levels or dose adjustment. It has a short plasma elimination half-life of about 4 hours in cases of unexpected hemorrhage or need for reversal.

  7. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis

    Science.gov (United States)

    Schaaf, Kaitlyn; Smith, Samuel R.; Duverger, Alexandra; Wagner, Frederic; Wolschendorf, Frank; Westfall, Andrew O.; Kutsch, Olaf; Sun, Jim

    2017-01-01

    The ability to suppress host macrophage apoptosis is essential for M. tuberculosis (Mtb) to replicate intracellularly while protecting it from antibiotic treatment. We recently described that Mtb infection upregulated expression of the host phosphatase PPM1A, which impairs the antibacterial response of macrophages. Here we establish PPM1A as a checkpoint target used by Mtb to suppress macrophage apoptosis. Overproduction of PPM1A suppressed apoptosis of Mtb-infected macrophages by a mechanism that involves inactivation of the c-Jun N-terminal kinase (JNK). Targeted depletion of PPM1A by shRNA or inhibition of PPM1A activity by sanguinarine restored JNK activation, resulting in increased apoptosis of Mtb-infected macrophages. We also demonstrate that activation of JNK by subtoxic concentrations of anisomycin induced selective apoptotic killing of Mtb-infected human macrophages, which was completely blocked in the presence of a specific JNK inhibitor. Finally, selective killing of Mtb-infected macrophages and subsequent bacterial release enabled rifampicin to effectively kill Mtb at concentrations that were insufficient to act against intracellular Mtb, providing proof of principle for the efficacy of a “release and kill” strategy. Taken together, these findings suggest that drug-induced selective apoptosis of Mtb-infected macrophages is achievable. PMID:28176854

  8. Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.

    Science.gov (United States)

    Miller, Rowan E; Brough, Rachel; Bajrami, Ilirjana; Williamson, Chris T; McDade, Simon; Campbell, James; Kigozi, Asha; Rafiq, Rumana; Pemberton, Helen; Natrajan, Rachel; Joel, Josephine; Astley, Holly; Mahoney, Claire; Moore, Jonathan D; Torrance, Chris; Gordan, John D; Webber, James T; Levin, Rebecca S; Shokat, Kevan M; Bandyopadhyay, Sourav; Lord, Christopher J; Ashworth, Alan

    2016-07-01

    New targeted approaches to ovarian clear cell carcinomas (OCCC) are needed, given the limited treatment options in this disease and the poor response to standard chemotherapy. Using a series of high-throughput cell-based drug screens in OCCC tumor cell models, we have identified a synthetic lethal (SL) interaction between the kinase inhibitor dasatinib and a key driver in OCCC, ARID1A mutation. Imposing ARID1A deficiency upon a variety of human or mouse cells induced dasatinib sensitivity, both in vitro and in vivo, suggesting that this is a robust synthetic lethal interaction. The sensitivity of ARID1A-deficient cells to dasatinib was associated with G1-S cell-cycle arrest and was dependent upon both p21 and Rb. Using focused siRNA screens and kinase profiling, we showed that ARID1A-mutant OCCC tumor cells are addicted to the dasatinib target YES1. This suggests that dasatinib merits investigation for the treatment of patients with ARID1A-mutant OCCC. Mol Cancer Ther; 15(7); 1472-84. ©2016 AACR.

  9. Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Csoka, Antonei B; Csoka, A; Bahrick, Audrey; Mehtonen, Olli-Pekka

    2008-01-01

    Sexual dysfunctions such as low libido, anorgasmia, genital anesthesia, and erectile dysfunction are very common in patients taking selective serotonin reuptake inhibitors (SSRIs). It has been assumed that these side effects always resolve after discontinuing treatment, but recently, four cases were presented in which sexual function did not return to baseline. Here, we describe three more cases. Case #1: A 29-year-old with apparently permanent erectile dysfunction after taking fluoxetine 20 mg once daily for a 4-month period in 1996. Case #2: A 44-year-old male with persistent loss of libido, genital anesthesia, ejaculatory anhedonia, and erectile dysfunction after taking 20-mg once daily citalopram for 18 months. Case #3: A 28-year-old male with persistent loss of libido, genital anesthesia, and ejaculatory anhedonia since taking several different SSRIs over a 2-year period from 2003-2005. No psychological issues related to sexuality were found in any of the three cases, and all common causes of sexual dysfunction such as decreased testosterone, increased prolactin or diabetes were ruled out. Erectile capacity is temporarily restored for Case #1 with injectable alprostadil, and for Case #2 with oral sildenafil, but their other symptoms remain. Case #3 has had some reversal of symptoms with extended-release methylphenidate, although it is not yet known if these prosexual effects will persist when the drug is discontinued. SSRIs can cause long-term effects on all aspects of the sexual response cycle that may persist after they are discontinued. Mechanistic hypotheses including persistent endocrine and epigenetic gene expression alterations were briefly discussed.

  10. Prospective iterative trial of proteasome inhibitor-based desensitization.

    Science.gov (United States)

    Woodle, E S; Shields, A R; Ejaz, N S; Sadaka, B; Girnita, A; Walsh, R C; Alloway, R R; Brailey, P; Cardi, M A; Abu Jawdeh, B G; Roy-Chaudhury, P; Govil, A; Mogilishetty, G

    2015-01-01

    A prospective iterative trial of proteasome inhibitor (PI)-based therapy for reducing HLA antibody (Ab) levels was conducted in five phases differing in bortezomib dosing density and plasmapheresis timing. Phases included 1 or 2 bortezomib cycles (1.3 mg/m(2) × 6-8 doses), one rituximab dose and plasmapheresis. HLA Abs were measured by solid phase and flow cytometry (FCM) assays. Immunodominant Ab (iAb) was defined as highest HLA Ab level. Forty-four patients received 52 desensitization courses (7 patients enrolled in multiple phases): Phase 1 (n = 20), Phase 2 (n = 12), Phase 3 (n = 10), Phase 4 (n = 5), Phase 5 (n = 5). iAb reductions were observed in 38 of 44 (86%) patients and persisted up to 10 months. In Phase 1, a 51.5% iAb reduction was observed at 28 days with bortezomib alone. iAb reductions increased with higher bortezomib dosing densities and included class I, II, and public antigens (HLA DRβ3, HLA DRβ4 and HLA DRβ5). FCM median channel shifts decreased in 11/11 (100%) patients by a mean of 103 ± 54 mean channel shifts (log scale). Nineteen out of 44 patients (43.2%) were transplanted with low acute rejection rates (18.8%) and de novo DSA formation (12.5%). In conclusion, PI-based desensitization consistently and durably reduces HLA Ab levels providing an alternative to intravenous immune globulin-based desensitization. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications.

    Science.gov (United States)

    Nagai, Ryoji; Murray, David B; Metz, Thomas O; Baynes, John W

    2012-03-01

    This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.

  12. A furanquinone from Paulownia tomentosa stem for a new cathepsin K inhibitor.

    Science.gov (United States)

    Park, Youmie; Kong, Jae Yang; Cho, Heeyeong

    2009-10-01

    In the search for novel inhibitors of cathepsin K, a new furanquinone compound, methyl 5-hydroxy-dinaphtho[1,2-2'3']furan-7,12-dione-6-carboxylate (1a), showed in vitro inhibitory activities for cathepsin K. Compound 1a was isolated originally from Paulownia tomentosa stem and its derivatives were synthesized. Furanquinone compounds (1a, 1b, 1c and 1d) were also found to be capable of inhibiting cathepsin L, which is closely related to cathepsin K. The inhibitory activity of the parent compound 1a (IC50 = 21 microm) for cathepsin K was slightly higher than those of the other three derivatives that have a methoxy (1b), propoxy (1c) or acetoxy (1d) group (IC50 = 33-66 microm) in the 5-position of compound 1a. This implies that the 5-hydroxyl functional group of 1a may have favorable effects on the reduction potential which are related to the cathepsin K inhibitory activities of furanquinone compounds. Therefore, the cathepsin K inhibitory activity of a new furanquinone compound is proposed.

  13. The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Mu, Jingli; Jin, Fei; Wang, Juying; Wang, Ying; Cong, Yi

    2016-06-01

    Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in crude oils, of which, 3-5 ring alkyl-PAH may cause dioxin-like toxicity to early life stages of fish. Retene (7-isopropyl-1-methylphenanthrene), a typical alkyl-phenanthrene compound, can be more toxic than phenanthrene, and the mechanism of retene toxicity is likely related to its rapid biotransformation by cytochrome P450 (CYP) enzymes to metabolites with a wide array of structures and potential toxicities. Here, we investigated how α-naphthoflavone (ANF), a cytochrome P450 1A (CYP1A) inhibitor, affected the embryotoxicity of retene and the role that CYP1A inhibition may play in the interactions. Marine medaka (Oryzias melastigma) embryos were exposed, separately or together, to 200 μg/L retene with 0, 5, 10, 100, and 200 μg/L ANF for 14 days. The results showed that ANF significantly inhibited the induction of CYP1A activity by retene; however, ANF interacted with retene to induce significant developmental toxicity and genotoxicity at 10, 100, and 200 μg/L (p embryotoxicity to marine medaka. Therefore, elevated toxicity of alkyl-phenanthrene under CYP1A inhibitor suggested that the ecotoxicity of PAHs in coastal water may have underestimated the threat of PAHs to fish or ecosystem.

  14. nucleoside DNA methyltransferase 1 inhibitors for treating epi ...

    African Journals Online (AJOL)

    Keywords: Epi-mutation, DNA methyltransferase, Non-nucleoside, DNMT1 inhibitor, Docking .... associated genes [18] and the effect could not be ... compound that may inhibit DNA methylation non- ... potential of which is over estimated [16];.

  15. Compliance, Persistence, and Switching Patterns for ACE Inhibitors and ARBs

    NARCIS (Netherlands)

    Vegter, S.; Nguyen, N.H.; Visser, S.T.; de Jong-van den Berg, LTW; Postma, M.J.; Boersma, C.

    Objectives: To investigate compliance, persistence, and switching patterns for angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs). Study Design: Drug-utilization analysis using a large prescription database. Methods: Prescription data for more than 50,000

  16. Refractory Epistaxis due to Severe Factor V Deficiency with Inhibitor

    Directory of Open Access Journals (Sweden)

    Elizabeth S. John

    2015-01-01

    Full Text Available Factor V deficiency secondary to inhibitors is extremely rare and can be caused by a wide collection of exposures such as bovine thrombin and beta lactamase antibiotics. The management of factor V deficiency with inhibitor is a condition treated based on case reports due to the rarity of this condition. We describe a complicated case of an elderly patient with severe factor V deficiency with high inhibitor titer refractory to FEIBA (anti-inhibitor coagulation complex treated with NovoSeven concurrently with cyclosporine immunosuppression and Rituxan. Given that there are no consensus guidelines on treatment, this case offers important insight into the therapeutic approaches that can be used to treat such patients.

  17. Refined homology model of monoacylglycerol lipase: toward a selective inhibitor

    Science.gov (United States)

    Bowman, Anna L.; Makriyannis, Alexandros

    2009-11-01

    Monoacylglycerol lipase (MGL) is primarily responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid with full agonist activity at both cannabinoid receptors. Increased tissue 2-AG levels consequent to MGL inhibition are considered therapeutic against pain, inflammation, and neurodegenerative disorders. However, the lack of MGL structural information has hindered the development of MGL-selective inhibitors. Here, we detail a fully refined homology model of MGL which preferentially identifies MGL inhibitors over druglike noninhibitors. We include for the first time insight into the active-site geometry and potential hydrogen-bonding interactions along with molecular dynamics simulations describing the opening and closing of the MGL helical-domain lid. Docked poses of both the natural substrate and known inhibitors are detailed. A comparison of the MGL active-site to that of the other principal endocannabinoid metabolizing enzyme, fatty acid amide hydrolase, demonstrates key differences which provide crucial insight toward the design of selective MGL inhibitors as potential drugs.

  18. Optimization of Cyclic Plasmin Inhibitors: From Benzamidines to Benzylamines.

    Science.gov (United States)

    Hinkes, Stefan; Wuttke, André; Saupe, Sebastian M; Ivanova, Teodora; Wagner, Sebastian; Knörlein, Anna; Heine, Andreas; Klebe, Gerhard; Steinmetzer, Torsten

    2016-07-14

    New macrocyclic plasmin inhibitors based on our previously optimized P2-P3 core segment have been developed. In the first series, the P4 residue was modified, whereas the 4-amidinobenzylamide in P1 position was maintained. The originally used P4 benzylsulfonyl residue could be replaced by various sulfonyl- or urethane-like protecting groups. In the second series, the P1 benzamidine was modified and a strong potency and excellent selectivity was retained by incorporation of p-xylenediamine. Several analogues inhibit plasmin in the subnanomolar range, and their potency against related trypsin-like serine proteases including trypsin itself could be further reduced. Selected derivatives have been tested in a plasma fibrinolysis assay and are more effective than the reference inhibitor aprotinin. The crystal structure of one inhibitor was determined in complex with trypsin. The binding mode reveals a sterical clash of the inhibitor's linker segment with the 99-hairpin loop of trypsin, which is absent in plasmin.

  19. Tetrahydrobenzothiophene inhibitors of hepatitis C virus NS5B polymerase.

    Science.gov (United States)

    Laporte, M G; Lessen, T A; Leister, L; Cebzanov, D; Amparo, E; Faust, C; Ortlip, D; Bailey, T R; Nitz, T J; Chunduru, S K; Young, D C; Burns, C J

    2006-01-01

    A novel series of selective HCV NS5B RNA dependent RNA polymerase inhibitors has been disclosed. These compounds contain an appropriately substituted tetrahydrobenzothiophene scaffold. This communication will detail the SAR and activities of this series.

  20. Angioedema Due to use of ACE-Inhibitor

    Directory of Open Access Journals (Sweden)

    Hulya Eyigor

    2014-03-01

    Full Text Available       Angioedema; which may be hereditary or non-hereditary, is defined as a sudden, severe, often in awkward, temporary swelling of skin, subcutaneous and mucous membranes of the face, tongue, lip, larynx, and gastrointestinal areas. Angiotensin Converting Enzyme (ACE inhibitor drugs are widely used in essential hypertension and congestive heart diseases and effective and safe drugs. Angioedema is quite rare due to the use of ACE inhibitors, the rate changes from 0.1 to 0.7% reported in the literature. The pathophysiology of angioedema induced by ACE inhibitors are not completely understood, this situation has been tought to be associated with an increased activity of bradykinin related vasodilatation, increased vascular permeability and interstitial edema. In this study, a case of 65-year-old male patient presented angioedema induced by lisinopril was presented and a very rare side effect of ACE inhibitor drugs was reviewed with the relevant literature.