Sample records for 1a dihydroorotate dehydrogenase

  1. Interaction of benzoate pyrimidine analogues with class 1A dihydroorotate dehydrogenase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Wolfe, Abigail E; Thymark, Majbritt; Gattis, Samuel G;


    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of dihydroorotate to orotate in the only redox reaction in pyrimidine biosynthesis. The pyrimidine binding sites are very similar in all structurally characterized DHODs, suggesting that the prospects for identifying a class-specific in......Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of dihydroorotate to orotate in the only redox reaction in pyrimidine biosynthesis. The pyrimidine binding sites are very similar in all structurally characterized DHODs, suggesting that the prospects for identifying a class......-specific inhibitor directed against this site are poor. Nonetheless, two compounds that bind specifically to the Class 1A DHOD from Lactococcus lactis, 3,4-dihydroxybenzoate (3,4-diOHB) and 3,5-dihydroxybenzoate (3,5-diOHB), have been identified [Palfey et al. (2001) J. Med. Chem. 44, 2861-2864]. The mechanism...... of inhibitor binding to the Class 1A DHOD from L. lactis has now been studied in detail and is reported here. Titrations showed that 3,4-diOHB binds more tightly at higher pH, whereas the opposite is true for 3,5-diOHB. Isothermal titration calorimetry and absorbance spectroscopy showed that 3,4-diOHB ionizes...

  2. Mechanism of flavin reduction in the class 1A dihydroorotate dehydrogenase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Fagan, Rebecca L; Jensen, Kaj Frank; Björnberg, Olof;


    is concerted or stepwise was addressed for the class 1A enzyme from Lactococcus lactis by determining kinetic isotope effects (KIEs) on flavin reduction in anaerobic stopped-flow experiments. Isotope effects were determined at two pH values. At pH 7.0, KIEs were approximately 2-fold for DHO labeled singly...... mutants was extremely slow compared to that of the wild type; the rate of reduction increased with pH, showing no sign of a plateau. Interestingly, double-deuterium isotope effects on the Cys130Ser mutant also showed a concerted mechanism for flavin reduction....

  3. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. (United States)

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D


    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.

  4. Biochemical characterization of recombinant dihydroorotate dehydrogenase from the opportunistic pathogenic yeast Candida albicans

    DEFF Research Database (Denmark)

    Zameitat, E.; Gojkovic, Zoran; Knecht, Wolfgang


    Candida albicans is the most prevalent yeast pathogen in humans, and recently it has become increasingly resistant to the current antifungal agents. In this study we investigated C. albicans dihydroorotate dehydrogenase (DHODH, EC, which catalyzes the fourth step of de novo pyrimidine...

  5. Novel Diketopiperazine Dihydroorotate Dehydrogenase Inhibitors Purified from Traditional Tibetan Animal Medicine Osteon Myospalacem Baileyi. (United States)

    Jiang, Lei; Wen, Huaixiu; Shao, Yun; Yu, Ruitao; Liu, Zenggen; Wang, Shuo; Wang, Qilan; Zhao, Xiaohui; Zhang, Peng; Tao, Yanduo; Mei, Lijuan


    Traditional Tibetan medicine provides an abundant source of knowledge on human ailments and their treatment. As such, it is necessary to explore their active single compounds used to treat these ailments to discover lead compounds with good pharmacologic properties. In this present work, animal medicine, Osteon Myospalacem Baileyi extracts have been separated using a two-dimensional preparative chromatographic method to obtain single compounds with high purity as part of the following pharmacological research. Five high-purity cyclic dipeptides from chromatography work were studied for their dihydroorotate dehydrogenase inhibitory activity on recombinant human dihydroorotate dehydrogenase enzyme and compound Fr. 1-4 was found to contain satisfying inhibition activity. The molecular modeling study suggests that the active compound Fr. 1-4 may have a teriflunomide-like binding mode. Then, the energy decomposition study suggests that the hydrogen bond between Fr. 1-4 and Arg136 can improve the binding mode to indirectly increase the van der Waals binding energy. All the results above together come to the conclusion that the 2, 5-diketopiperazine structure group can interact with the polar residues well in the active pocket using electrostatic power. If some proper hydrophobic groups can be added to the sides of the 2, 5-diketopiperazine group, it is believed that better 2, 5-diketopiperazine dihydroorotate dehydrogenase inhibitors will be found in the future.

  6. Expression, purification and crystallization of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with orotate

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro; Shimizu, Hironari [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nara, Takeshi; Aoki, Takashi [Department of Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Harada, Shigeharu [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Kita, Kiyoshi, E-mail: [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)


    The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Å resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.

  7. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening. (United States)

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción


    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth.

  8. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function

    DEFF Research Database (Denmark)

    Rowland, Paul; Bjørnberg, Olof; Nielsen, Finn S.


    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of (S)-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. A description is given of the crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A (DHODA......) complexed with the product of the enzyme reaction orotate. The structure of the complex to 2.0 A resolution has been compared with the structure of the native enzyme. The active site of DHODA is known to contain a water filled cavity buried beneath a highly conserved and flexible loop. In the complex...

  9. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Sheila G. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Grupo de Biofisica e Fisica Aplicada a Medicina, Instituto de Fisica, Universidade Federal de Goias, Campus Samambaia, C.P. 131, 74001-970, Goiania, GO (Brazil); Cristina Nonato, M. [Laboratorio de Cristalografia de Proteinas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/N, 14040-903, Ribeirao Preto, SP (Brazil); Costa-Filho, Antonio J., E-mail: [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Av. Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)


    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  10. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. (United States)

    Knecht, W; Bergjohann, U; Gonski, S; Kirschbaum, B; Löffler, M


    Human mitochondrial dihydroorotate dehydrogenase (the fourth enzyme of pyrimidine de novo synthesis) has been overproduced by means of a recombinant baculovirus that contained the human cDNA fragment for this protein. After virus infection and protein expression in Trichoplusia ni cells (BTI-Tn-5B1-4), the subcellular distribution of the recombinant dihydroorotate dehydrogenase was determined by two distinct enzyme-activity assays and by Western blot analysis with anti-(dihydroorotate dehydrogenase) Ig. The targeting of the recombinant protein to the mitochondria of the insect cells was verified. The activity of the recombinant enzyme in the mitochondria of infected cells was about 740-fold above the level of dihydroorotate dehydrogenase in human liver mitochondria. In a three-step procedure, dihydroorotate dehydrogenase was purified to a specific activity of greater than 50 U/mg. Size-exclusion chromatography showed a molecular mass of 42 kDa and confirmed the existence of the fully active enzyme as a monomeric species. Fluorimetric cofactor analysis revealed the presence of FMN in recombinant dihydroorotate dehydrogenase. By kinetics analysis, Km values for dihydroorotate and ubiquinone-50 were found to be 4 microM and 9.9 microM, respectively, while Km values for dihydroorotate and decylubiquinone were 9.4 microM and 13.7 microM, respectively. The applied expression system will allow preparation of large quantities of the enzyme for structure and function studies. Purified recombinant human dihytdroorotate dehydrogenase was tested for its sensitivity to a reported inhibitor A77 1726 (2-hydroxyethyliden-cyanoacetic acid 4-trifluoromethyl anilide), which is the active metabolite of the isoxazole derivative leflunomide [5-methyl-N-(4-trifluoromethyl-phenyl)-4-isoxazole carboximide]. An IC50 value of 1 microM was determined for A77 1726. Detailed kinetics experiments revealed uncompetitive inhibition with respect to dihydroorotate (Kiu = 0.94 microM) and non

  11. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund (Leiden-MC); (Puerto Rico); (STPHI); (Harvard); (GSK); (Genzyme); (UTSMC)


    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  12. Structural Plasticity of Malaria Dihydroorotate Dehydrogenase Allows Selective Binding of Diverse Chemical Scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaoyi; Gujjar, Ramesh; El Mazouni, Farah; Kaminsky, Werner; Malmquist, Nicholas A.; Goldsmith, Elizabeth J.; Rathod, Pradipsinh K.; Phillips, Margaret A.; (UWASH); (UTSMC)


    Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes and to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.

  13. Insights into the mechanism of oxidation of dihydroorotate to orotate catalysed by human class 2 dihydroorotate dehydrogenase: a QM/MM free energy study. (United States)

    Alves, Cláudio Nahum; Silva, José Rogério A; Roitberg, Adrian E


    The dihydroorotate dehydrogenase (DHOD) enzyme catalyzes the unique redox reaction in the de novo pyrimidine biosynthesis pathway. In this reaction, the oxidation of dihydroorotate (DHO) to orotate (OA) and reduction of the flavin mononucleotide (FMN) cofactor is catalysed by DHOD. The class 2 DHOD, to which the human enzyme belongs, was experimentally shown to follow a stepwise mechanism but the data did not allow the determination of the order of bond-breaking in a stepwise oxidation of DHO. The goal of this study is to understand the reaction mechanism at the molecular level of class 2 DHOD, which may aid in the design of inhibitors that selectively impact the activity of only certain members of the enzyme family. In this paper, the catalytic mechanism of oxidation of DHO to OA in human DHOD was studied using a hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) approach and Molecular Dynamics (MD) simulations. The free energy barriers calculated reveal that the mechanism in human DHOD occurs via a stepwise reaction pathway. In the first step, a proton is abstracted from the C5 of DHO to the deprotonated Ser215 side chain. Whereas, in the second step, the transfer of the hydride or hydride equivalent from the C6 of DHO to the N5 of FMN, where free energy barrier calculated by the DFT/MM level is 10.84 kcal mol(-1). Finally, a residual decomposition analysis was carried out in order to elucidate the influence of the catalytic region residues during DHO oxidation.

  14. Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches (United States)

    Surekha, Kanagarajan; Nachiappan, Mutharasappan; Prabhu, Dhamodharan; Choubey, Sanjay Kumar; Biswal, Jayashree; Jeyakanthan, Jeyaraman


    Dihydroorotate dehydrogenase (DHODH) plays a major role in the rate limiting step of de novo pyrimidine biosynthesis pathway and it is pronounced as a novel target for drug development of cancer. The currently available drugs against DHODH are ineffective and bear various side effects. Three-dimensional structure of the targeted protein was constructed using molecular modeling approach followed by 100 ns molecular dynamics simulations. In this study, High Throughput Virtual Screening (HTVS) was performed using various compound libraries to identify pharmacologically potential molecules. The top four identified lead molecules includes NCI_47074, HitFinder_7630, Binding_66981 and Specs_108872 with high docking score of -9.45, -8.29, -8.04 and -8.03 kcal/mol and the corresponding binding free energy were -16.25, -56.37, -26.93 and -48.04 kcal/mol respectively. Arg122, Arg185, Glu255 and Gly257 are the key residues found to be interacting with the ligands. Molecular dynamics simulations of DHODH-inhibitors complexes were performed to assess the stability of various conformations from complex structures of TtDHODH. Furthermore, stereoelectronic features of the ligands were explored to facilitate charge transfer during the protein-ligand interactions using Density Functional Theoretical approach. Based on in silico analysis, the ligand NCI_47074 ((2Z)-3-({6-[(2Z)-3-carboxylatoprop-2-enamido]pyridin-2-yl}carbamoyl)prop-2-enoate) was found to be the most potent lead molecule which was validated using energetic and electronic parameters and it could serve as a template for designing effective anticancerous drug molecule.

  15. Thermodynamic Basis of Electron Transfer in Dihydroorotate Dehydrogenase B from Lactococcus lactis:  Analysis by Potentiometry, EPR Spectroscopy, and ENDOR Spectroscopy

    DEFF Research Database (Denmark)

    Mohnsen, Al-Walid A.; Rigby, Stephen E. J.; Jensen, Kaj Frank


    Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD+. The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have...... similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible...

  16. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    Directory of Open Access Journals (Sweden)

    Hong-Guang Du


    Full Text Available The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH. This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA, a simple three-dimensional quantitative structure-activity relationship (3D-QSAR method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664 and non cross-validated r2 (0.687, show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme.

  17. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy. (United States)

    Mohsen, Al-Walid A; Rigby, Stephen E J; Jensen, Kaj Frank; Munro, Andrew W; Scrutton, Nigel S


    Dihydroorotate dehydrogenase B (DHODB) is a complex iron-sulfur flavoprotein that catalyzes the conversion of dihydroorotate to orotate and the reduction of NAD(+). The enzyme is a dimer of heterodimers containing an FMN, an FAD, and a 2Fe-2S center. UV-visible, EPR, and ENDOR spectroscopies have been used to determine the reduction potentials of the flavins and the 2Fe-2S center and to characterize radicals and their interactions. Reductive titration using dithionite indicates a five-electron capacity for DHODB. The midpoint reduction potential of the 2Fe-2S center (-212 +/- 3 mV) was determined from analysis of absorption data at 540 nm, where absorption contributions from the two flavins are small. The midpoint reduction potentials of the oxidized/semiquinone (E(1)) and semiquinone/hydroquinone (E(2)) couples for the FMN (E(1) = -301 +/- 6 mV; E(2) = -252 +/- 8 mV) and FAD (E(1) = -312 +/- 6 mV; E(2) = -297 +/- 5 mV) were determined from analysis of spectral changes at 630 nm. Corresponding values for the midpoint reduction potentials for FMN (E(1) = -298 +/- 4 mV; E(2) = -259 +/- 5 mV) in the isolated catalytic subunit (subunit D, which lacks the 2Fe-2S center and FAD) are consistent with the values determined for the FMN couples in DHODB. During reductive titration of DHODB, small amounts of the neutral blue semiquinone are observed at approximately 630 nm, consistent with the measured midpoint reduction potentials of the flavins. An ENDOR spectrum of substrate-reduced DHODB identifies hyperfine couplings to proton nuclei similar to those recorded for the blue semiquinone of free flavins in aqueous solution, thus confirming the presence of this species in DHODB. Spectral features observed during EPR spectroscopy of dithionite-reduced DHODB are consistent with the midpoint reduction potentials determined using UV-visible spectroscopy and further identify an unusual EPR signal with very small rhombic anisotropy and g values of 2.02, 1.99, and 1.96. This unusual

  18. Effects of dihydroorotate dehydrogenase (DHODH) inhibitors on the growth of Theileria equi and Babesia caballi in vitro. (United States)

    Kamyingkird, Ketsarin; Cao, Shinuo; Tuvshintulga, Bumduuren; Salama, Akram; Mousa, Ahmed Abdelmoniem; Efstratiou, Artemis; Nishikawa, Yoshifumi; Yokoyama, Naoaki; Igarashi, Ikuo; Xuan, Xuenan


    Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP), which affects equine production in various parts of the world. However, a safe and effective drug is not currently available for treatment of EP. Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine synthesis pathway and has been known as a novel drug target for several apicomplexan protozoan parasites. In this study, we evaluated four DHODH inhibitors; atovaquone (ATV), leflunomide (LFN), brequinar (Breq), and 7-hydroxy-5-[1,2,4] triazolo [1,5,a] pyrimidine (TAZ) on the growth of T. equi and B. caballi in vitro and compared them to diminacene aceturate (Di) as the control drug. The growth of T. equi and B. caballi was significantly hindered by all inhibitors except TAZ. The half maximal inhibitory concentration (IC50) of ATV, LFN, Breq and Di against T. equi was approximately 0.028, 109, 11 and 40 μM, respectively, whereas the IC50 of ATV, LFN, Breq and Di against B. caballi was approximately 0.128, 193, 5.2 and 16.2 μM, respectively. Using bioinformatics and Western blot analysis, we showed that TeDHODH was similar to other Babesia parasite DHODHs, and confirmed that targeting DHODHs could be useful for the development of novel chemotherapeutics for treatment of EP.

  19. Dihydroorotate dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells. (United States)

    Mohamad Fairus, A K; Choudhary, B; Hosahalli, S; Kavitha, N; Shatrah, O


    Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion

  20. Lactococcus lactis Dihydroorotate Dehydrogenase A Mutants Reveal Important Facets of the Enzymatic Function

    DEFF Research Database (Denmark)

    Nørager, Sofie Charlotte; Arent, S; Björnberg, Olof


    and 1B, and class 2. This division corresponds to differences in cellular location and the nature of the electron acceptor. Herein we report a study of Lactococcus lactis DHODA, a representative of the class 1A enzymes. Based on the DHODA structure we selected seven residues that are highly conserved...

  1. Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity (United States)

    Li, Shiliang; Luan, Guoqin; Ren, Xiaoli; Song, Wenlin; Xu, Liuxin; Xu, Minghao; Zhu, Junsheng; Dong, Dong; Diao, Yanyan; Liu, Xiaofeng; Zhu, Lili; Wang, Rui; Zhao, Zhenjiang; Xu, Yufang; Li, Honglin


    Human dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 were the most potent with IC50 values in the double-digit nanomolar range. Moreover, compound 19 displayed significant anti-arthritic effects and favorable pharmacokinetic profiles in vivo. Further X-ray structure and SAR analyses revealed that the potencies of the designed inhibitors were partly attributable to additional water-mediated hydrogen bond networks formed by an unexpected buried water between hDHODH and the 2-(2-methylenehydrazinyl)thiazole scaffold. This work not only elucidates promising scaffolds targeting hDHODH for the treatment of rheumatoid arthritis, but also demonstrates that the water-mediated hydrogen bond interaction is an important factor in molecular design and optimization. PMID:26443076

  2. Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential

    Energy Technology Data Exchange (ETDEWEB)

    Coteron, Jose M.; Marco, Maria; Esquivias, Jorge; Deng, Xiaoyi; White, Karen L.; White, John; Koltun, Maria; El Mazouni, Farah; Kokkonda, Sreekanth; Katneni, Kasiram; Bhamidipati, Ravi; Shackleford, David M.; Angulo-Barturen, Inigo; Ferrer, Santiago B.; Jimenez-Diaz, Maria Belen; Gamo, Francisco-Javier; Goldsmith, Elizabeth J.; Charman, William N.; Bathurst, Ian; Floyd, David; Matthews, David; Burrows, Jeremy N.; Rathod, Pradipsinh K.; Charman, Susan A.; Phillips, Margaret A. (UWASH); (MMV, Switzerland); (GSK); (Monash); (UW); (UTSMC)


    Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.

  3. 3D-QSAR studies of triazolopyrimidine derivatives of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors using a combination of molecular dynamics, docking, and genetic algorithm-based methods. (United States)

    Shah, Priyanka; Kumar, Sumit; Tiwari, Sunita; Siddiqi, Mohammad Imran


    A series of 35 triazolopyrimidine analogues reported as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors were optimized using quantum mechanics methods, and their binding conformations were studied by docking and 3D quantitative structure-activity relationship studies. Genetic algorithm-based criteria was adopted for selection of training and test sets while maintaining structural diversity of training and test sets, which is also very crucial for model development and validation. Both the comparative molecular field analyses ([Formula: see text], [Formula: see text]) and comparative molecular similarity indices analyses ([Formula: see text], [Formula: see text]) show excellent correlation and high predictive power. Furthermore, molecular dynamics simulations were performed to explore the binding mode of the two of the most active compounds of the series, 10 and 14. Harmonization in the two simulation results validate the analysis and therefore applicability of docking parameters based on crystallographic conformation of compound 14 bound to receptor molecule. This work provides useful information about the inhibition mechanism of this class of molecules and will assist in the design of more potent inhibitors of PfDHODH.

  4. A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor (DSM421) with improved drug-like properties for treatment and prevention of malaria (United States)

    Phillips, Margaret A.; White, Karen L.; Kokkonda, Sreekanth; Deng, Xiaoyi; White, John; Mazouni, Farah El; Marsh, Kennan; Tomchick, Diana R.; Manjalanagara, Krishne; Rudra, Kakali Rani; Wirjanata, Grennady; Noviyanti, Rintis; Price, Ric N; Marfurt, Jutta; Shackleford, David M.; Chiu, Francis C.K.; Campbell, Michael; Jimenez-Diaz, Maria Belen; Bazaga, Santiago Ferrer; Angulo-Barturen, Iñigo; Martinez, Maria Santos; Lafuente-Monasterio, Maria; Kaminsky, Werner; Silue, Kigbafori; Zeeman, Anne-Marie; Kocken, Clemens; Leroy, Didier; Blasco, Benjamin; Rossignol, Emilie; Rueckle, Thomas; Matthews, Dave; Burrows, Jeremy N.; Waterson, David; Palmer, Michael J.; Rathod, Pradipsinh K.; Charman, Susan A.


    The emergence of drug resistant malaria parasites continues to hamper efforts to control this lethal disease. Dihydroorotate dehydrogenase has recently been validated as a new target for the treatment of malaria and a selective inhibitor (DSM265) of the Plasmodium enzyme is currently in clinical development. With the goal of identifying a backup compound to DSM265, we explored replacement of the SF5-aniline moiety of DSM265 with a series of CF3-pyridinyls, while maintaining the core triazolopyrimidine scaffold. This effort led to the identification of DSM421, which has improved solubility, lower intrinsic clearance and increased plasma exposure after oral dosing compared to DSM265, while maintaining a long predicted human half-life. Its improved physical and chemical properties will allow it to be formulated more readily than DSM265. DSM421 showed excellent efficacy in the SCID mouse model of P. falciparum malaria that supports the prediction of a low human dose (<200 mg). Importantly DSM421 showed equal activity against both P. falciparum and P. vivax field isolates, while DSM265 was more active on P. falciparum. DSM421 has the potential to be developed as a single dose cure or once-weekly chemopreventative for both P. falciparum and P. vivax malaria leading to its advancement as a preclinical development candidate. PMID:27641613

  5. In vitro resistance selections for Plasmodium falciparum dihydroorotate dehydrogenase inhibitors give mutants with multiple point mutations in the drug-binding site and altered growth. (United States)

    Ross, Leila S; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M P; Rowland, Paul; Wiegand, Roger C; Wirth, Dyann F


    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characterizing resistance pathways for antimalarial agents not yet in clinical use will increase our understanding of the potential for resistance. We identified resistance mechanisms of Plasmodium falciparum (Pf) DHODH inhibitors via in vitro resistance selections. We found 11 point mutations in the PfDHODH target. Target gene amplification and unknown mechanisms also contributed to resistance, albeit to a lesser extent. These mutant parasites were often hypersensitive to other PfDHODH inhibitors, which immediately suggested a novel combination therapy approach to preventing resistance. Indeed, a combination of wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. The effects of point mutations in PfDHODH were corroborated with purified recombinant wild-type and mutant-type PfDHODH proteins, which showed the same trends in drug response as the cognate cell lines. Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate. Co-crystallography of PfDHODH with three inhibitors suggested that hydrophobic interactions are important for drug binding and selectivity.

  6. 二氢乳清酸脱氢酶靶向抗疟药研究进展%Proceedings on Dihydroorotate Dehydrogenase-Targeted Antimalarial Research

    Institute of Scientific and Technical Information of China (English)

    赵彩亮; 兰晶; 贝祝春; 杨恒林


    Malaria remains the one of major global health threats that leads to significant morbidity and mortali⁃ty, especially in Africa. The emerging and development of drug resistance has compromised most of current antima⁃larial drugs used clinically and made the development of new antimalarial drugs urgent. The completion of Plasmo⁃dium falciparum genome and growing knowledge of parasite biology are promoting the discovery of novel antimalari⁃al targets. The pyrimidine biosynthesis pathway illustrates one best sample of successful identification of antimalari⁃al drug targets. This review focused on recent efforts to explore the fourth enzyme in the de novo pyrimidine bio⁃synthesis pathway of P.falciparum, dihydroorotate dehydrogenase(PfDHODH), as a new target for antimalarial drugs discovery. By high throughput screening and other methods, several chemical scaffolds have been identified as po⁃tent inhibitors of PfDHODH, and shown strong selectivity for malarial enzyme over its human counterpart. Some of them have also showed potent activity against P.falciparum in whole cell assay with good correlation between activi⁃ty on the enzyme and parasite. Lead optimization of a triazolopyrimidine-based series has sought out an analog with good metablic stability and efficacy against P.bergei infected mouse model. These data confirmed that the dis⁃covery and development of antimalarial agents targeting PfDHODH has a great promise.%  疟疾是全球危害最严重的传染性疾病之一,尤其是在非洲,发病率与死亡率仍居高不下。抗药性的出现和发展使大多数现有抗疟药在临床上失去了效用,研究和开发新型抗疟药已成为当前疟疾防治研究的迫切需求。随着恶性疟原虫基因组测序的完成和对疟原虫生物学认知的不断深入,寻找抗疟新靶点的研究得以快速发展。嘧啶生物合成途径是经临床确证有效的抗疟靶点的典范。我们简要综述了近年来

  7. E. coli dihydroorotate dehydrogenase reveals structural and functional distinctions between different classes of dihydroorotate dehydrogenases

    DEFF Research Database (Denmark)

    Nørager, Sofie; Jensen, Kaj Frank; Björnberg, Olof


    . The structure of class 2 E. coli DHOD, determined by MAD phasing, showed that the N-terminal extension forms a separate domain. The catalytic serine residue has an environment differing from the equivalent cysteine in class 1 DHODs. Significant differences between the two classes of DHODs were identified...... by comparison of the E. coli DHOD with the other known DHOD structures, and differences with the class 2 human DHOD explain the variation in their inhibitors....

  8. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. (United States)

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B


    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  9. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. (United States)

    Zhao, Di; Mo, Yan; Li, Meng-Tian; Zou, Shao-Wu; Cheng, Zhou-Li; Sun, Yi-Ping; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying


    High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal. Acetylation of ALDH1A1 inhibited both the stem cell population and self-renewal properties in breast cancer. Moreover, NOTCH signaling activated ALDH1A1 through the induction of SIRT2, leading to ALDH1A1 deacetylation and enzymatic activation to promote breast CSCs. In breast cancer xenograft models, replacement of endogenous ALDH1A1 with an acetylation mimetic mutant inhibited tumorigenesis and tumor growth. Together, the results from our study reveal a function and mechanism of ALDH1A1 acetylation in regulating breast CSCs.

  10. Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism?

    Directory of Open Access Journals (Sweden)

    Jennifer M. Petrosino


    Full Text Available In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3 that catalyze conversion of retinaldehyde to retinoic acid. Additionally, we propose a “horizontal transfer of signaling” from estrogen to retinoids through the action of ALDH1A1. Although estrogen does not directly influence expression of Aldh1a1, it has the ability to suppress Aldh1a2 and Aldh1a3, thereby establishing a female-specific mechanism for retinoic acid generation in target tissues. ALDH1A1 regulates adipogenesis, abdominal fat formation, glucose tolerance, and suppression of thermogenesis in adipocytes; in B cells, ALDH1A1 plays a protective role by inducing oncogene suppressors Rara and Pparg. Considering the conflicting responses of Aldh1a1 in a multitude of physiological processes, only tissue-specific regulation of Aldh1a1 can result in therapeutic effects. We have shown through successful implantation of tissue-specific Aldh1a1−/− preadipocytes that thermogenesis can be induced in wild-type adipose tissues to resolve diet-induced visceral obesity in females. We will briefly discuss the emerging role of ALDH1A1 in multiple myeloma, the regulation of reproduction, and immune responses, and conclude by discussing the role of ALDH1A1 in future therapeutic applications.

  11. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis. (United States)

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J


    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  12. Effects of variant UDP-glucuronosyltransferase 1A1 gene,glucose-6-phosphate dehydrogenase deficiency and thalassemia on cholelithiasis

    Institute of Scientific and Technical Information of China (English)

    Yang-Yang Huang; Ching-Shui Huang; Sien-Sing Yang; Min-Shung Lin; May-Jen Huang; Ching-Shan Huang


    AIM: To test the hypothesis that the variant UDPglucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6-phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis.METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups,respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency.RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6TAA/A(TA)7TAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, χ2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P<0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese.

  13. Multiple states of the Tyr318Leu mutant of dihydroorotate dehydrogenase revealed by single molecule kinetics

    DEFF Research Database (Denmark)

    Shi, J.; Palfey, B.A.; Dertouzos, J.


    of single enzyme molecules through the characteristic on-off fluorescence signal, which corresponds to flavin mononucleotide (FMN) interconverting between the oxidized and reduced states during turnover. Our single-molecule data provide evidence of a distinct static heterogeneity in the enzymatic activity...

  14. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F


    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants.

  15. Structure of Dihydroorotate Dehydrogenase B: Electron Transfer between Two Flavin Groups Bridged by an Iron-Sulphur Cluster

    DEFF Research Database (Denmark)

    Rowland, Poul; Nørager, Sofie; Jensen, Kaj Frank;


    , belonging to each of the two subgroups of family 1. The B enzyme (DHODB) is a prototype for DHODs in Gram-positive bacteria that use NAD+ as the second substrate. DHODB is a heterotetramer composed of two different proteins (PyrDB and PyrK) and three different cofactors: FMN, FAD, and a [2Fe-2S] cluster....... RESULTS: Crystal structures have been determined for DHODB and its product complex. The DHODB heterotetramer is composed of two closely interacting PyrDB-PyrK dimers with the [2Fe-2S] cluster in their interface centered between the FMN and FAD groups. Conformational changes are observed between...


    Directory of Open Access Journals (Sweden)

    Asri Febriana


    Full Text Available Madura cattle is one of the Indonesian local cattle breeds derived from crossing between Zebu cattle (Bos indicus and banteng (Bos javanicus. Branched-chain α-ketoacid dehydrogenase (BCKDH is one of the main enzyme complexes in the inner mitochondrial membrane that metabolizes branched chain amino acid (BCAA, ie valine, leucine, and isoleucine. The diversity of the nucleotide sequences of the genes largely determine the efficiency of enzyme encoded. This paper aimed to determine the nucleotide variation contained in section intron 7, exon 8, and intron 8 genes BCKDHA on Madura cattle. This study was conducted on three Madura cattle that used as bull race (karapan, beauty contest (sonok, and beef cattle. The analysis showed that the variation in intron higher than occurred in the exon. Simultaneous indel found at base position 34 and 68 in sonok cattle. In addition, the C266T variant found in beef cattle. These variants do not cause significant changes in amino acids. There was no specific mutation in intron 7, exon 8, and intron 8 were found in Madura cattle designation. This indicated the absence of differentiation Madura cattle designation of selection pressure of BCKDHA gene.

  17. Glucose-6-phosphate dehydrogenase (United States)

    ... Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  18. Glucose-6-phosphate dehydrogenase deficiency (United States)

    ... Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  19. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.


    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  20. Protein: MPA5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA5 Pyrimidine biosynthesis Tb927.5.3830 Dihydroorotate_dehydrogenase Dihydroorota...te dehydrogenase (fumarate) Dihydroorotate oxidase 999953 Trypanosoma brucei brucei (strain 927/4 GUTat10.1) 3657493 Q57U83 2B4G ...

  1. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.


    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  2. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.


    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s



    Komlos, Daniel; Mann, Kara D.; Zhuo, Yue; Ricupero, Christopher L.; Hart, Ronald P.; Liu, Alice Y.-C.; Firestein, Bonnie L.


    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and a frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological de...

  4. Protein: MPA5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA5 Pyrimidine biosynthesis Tc00.1047053511643.20 Dihydroorotate_dehydrogenase Dih...ydroorotate dehydrogenase, putative 353153 Trypanosoma cruzi (strain CL Brener) 3544065 Q4DEJ0 2DJX 2DJL, 2E68, 2DJX, 2E6D, 2E6A, 2E6F 18808149 ...

  5. 21 CFR 862.1670 - Sorbitol dehydrogenase test system. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  6. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.


    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  7. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  8. Isocitrate dehydrogenase mutations in gliomas. (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai


    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  9. Serum lactic dehydrogenase isoenzymes and serum hydroxy butyric dehydrogenase in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kanekar D


    Full Text Available Total serum lactate dehydrogenase activity in cases of myocar-dial infarct is difficult to interpret as abnormal values can occur in diseases of liver, kidney and skeletal muscle. The estimation of its isoenzymes is of better diagnostic help because of its tissue specificity. Serum LDH isoenzymes were studied in patients o f myocardial infarction and results are quantitated by densitometry. As LDH 1 represents serum hydroxybutyric dehydrogenase when 2-oxylbutyrate is used as substrate, serum hydroxybutyric dehydro-genase was also estimated in above patients. Greater specificity in diagnosis is achieved with SHBDH because of its myocardial nature and lower incidence of false positive results.

  10. Yeast surface display of dehydrogenases in microbial fuel-cells. (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital


    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  11. Alcohol dehydrogenase – physiological and diagnostic Importance

    Directory of Open Access Journals (Sweden)

    Magdalena Łaniewska-Dunaj


    Full Text Available Alcohol dehydrogenase (ADH is a polymorphic enzyme, existing in multiple isoenzymes divided into several classes and localized in different organs. ADH plays a significant role in the metabolism of many biologically important substances, catalyzing the oxidation or reduction of a wide spectrum of specific substrates. The best characterized function of ADH is protection against excess of ethanol and some other exogenous xenobiotics and products of lipid peroxidation. The isoenzymes of alcohol dehydrogenase also participate in the metabolism of retinol and serotonin. The total alcohol dehydrogenase activity is significantly higher in cancer tissues than in healthy organs (e.g. liver, stomach, colorectum. The changes in activity of particular ADH isoenzymes in the sera of patients with different cancers (especially of the digestive system seem to be caused by release of these isoenzymes from cancer cells, and may play a potential role as markers of this cancer. The particular isoenzymes of ADH present in the serum may indicate the cancer localization. Alcohol dehydrogenase may also be useful for diagnostics of non-cancerous liver diseases (e.g. viral hepatitis, non-alcoholic cirrhosis.

  12. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen


    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  13. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices. (United States)

    Raissi, Heidar; Mollania, Fariba


    Leflunomide [HWA 486 or RS-34821, 5-methyl-N-(4trifluoromethylphenyl)-4-isoxazole carboximide] is an immunosuppressive agent effective in the treatment of rheumatoid arthritis. Dihydroortate dehydrogenase (DHODH, EC immobilization on the nanotubes was carried out and biochemical characterization of free and immobilized enzyme was determined. In comparison with free enzyme, the immobilized DHODH showed improved stability and reusability for investigation of inhibition pattern of drugs such as leflunomide. The experimental data showed that, DHODH was inhibited by the active metabolite of leflunomide (RS-61980) with a Ki and KI of 0.82 and 0.06 mM, respectively. Results exhibited mixed-type inhibition kinetics towards dihydroorotate as a substrate in the free and immobilized enzyme. Furthermore, the behavior of anticancer drug leflunomide adsorbed on the external surface of zigzag single walled (6,0) carbon and boron nitride nanotubes (SWCNT and SWBNNT) was studied by means of DFT calculations at the B3LYP/6-31G(*) level of theory. The larger adsorption energies and charges transfer showed that the adsorption of leflunomide onto SWBNNT is more stable than that the adsorption of leflunomide onto SWCNT. Frontier molecular orbitals (HOMO and LUMO) suggest that adsorption of leflunomide onto SWBNNT behave as charge transfer compounds with leflunomide as an electron donor and SWBNNT as an electron acceptor. Thus, nanotubes (NTs) have been proposed and actively explored as multipurpose innovative carriers for drug delivery and diagnostic application. The AIM theory has been also applied to analyze the properties of the bond critical points: their electron densities and their laplacians. Also, the natural bond orbital (NBO) calculations were performed to derive natural atomic orbital occupancies, and partial charges of the interacting atoms in the equilibrium tube-molecule distance.

  14. Hybridizability of gamma-irradiated lactic dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.


    The hybridizabilities of the gamma-irradiated chicken heart and pig muscle lactic dehydrogenases were estimated by hybridizing the irradiated enzymes with the unirradiated pig heart lactic dehydrogenase. The disc gel electrophoretic patterns of the inter- and intraspecific hybrids showed that the LDH activity of the pig heart isozyme band increased as a function of dose. This observation was analyzed upon the binomial redistribution pattern of the recombined subunits. The result shows that the hybridizabilities of both the chicken heart and pig muscle isozymes decreased along with the loss of catalytic activity and the release from substrate inhibition. The titration of free SH groups of the irradiated chicken isozyme suggested that the unfolding of the peptide chain destroyed the specific tertiary structure needed for the binding of subunits. (auth)

  15. Purification of arogenate dehydrogenase from Phenylobacterium immobile. (United States)

    Mayer, E; Waldner-Sander, S; Keller, B; Keller, E; Lingens, F


    Phenylobacterium immobile, a bacterium which is able to degrade the herbicide chloridazon, utilizes for L-tyrosine synthesis arogenate as an obligatory intermediate which is converted in the final biosynthetic step by a dehydrogenase to tyrosine. This enzyme, the arogenate dehydrogenase, has been purified for the first time in a 5-step procedure to homogeneity as confirmed by electrophoresis. The Mr of the enzyme that consists of two identical subunits amounts to 69000 as established by gel electrophoresis after cross-linking the enzyme with dimethylsuberimidate. The Km values were 0.09 mM for arogenate and 0.02 mM for NAD+. The enzyme has a high specificity with respect to its substrate arogenate.

  16. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. (United States)

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C


    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases.

  17. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.



    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylma...

  18. Malate dehydrogenase: a model for structure, evolution, and catalysis.



    Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid s...

  19. 21 CFR 862.1500 - Malic dehydrogenase test system. (United States)


    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  20. Placental glucose dehydrogenase polymorphism in Koreans. (United States)

    Kim, Y J; Paik, S G; Park, H Y


    The genetic polymorphism of placental glucose dehydrogenase (GDH) was investigated in 300 Korean placentae using horizontal starch gel electrophoresis. The allele frequencies for GDH1, GDH2 and GDH3 were 0.537, 0.440 and 0.005, respectively, which were similar to those in Japanese. We also observed an anodal allele which was similar to the GDH4 originally reported in Chinese populations at a low frequency of 0.015. An additional new cathodal allele (named GDH6) was observed in the present study with a very low frequency of 0.003.

  1. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;


    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site...

  2. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.A.


    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results


    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska


    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  4. What Is Mitochondrial Disease? (United States)

    ... enzymes for pyrimidine biosynthesis (dihydroorotate dehydrogenase) and heme synthesis (d-amino levulinic acid synthetase) required to make hemoglobin. In the liver, mitochondria are specialized to detoxify ammonia in the urea cycle. Mitochondria are also required ...

  5. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler


    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  6. Stability of immobilized yeast alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ooshima, H.; Genko, Y.; Harano, Y.


    The effects of substrate on stabilities of native (NA) and three kinds of immobilized yeast alcohol dehydrogenase (IMA), namely PGA (the carrier; porous glass), SEA (agarose gel) prepared covalently, and AMA (anion-exchange resin) prepared ionically, were studied. The following results were obtained. 1) The deactivations of NA and IMA free from the substrate or in the presence of ethanol obey the first-order kinetics, whereas, in the presence of butyraldehyde, their deactivation behaviors are explained on the basis of coexistence of two components of YADHs, namely the labile E1 and the comparatively stable E2, with different first-order deactivation constants. (2) A few attempts for stabilization of IMA were carried out from the viewpoint of the effects of crosslinkages among the subunits of YADH for PGA and the multibonding between the carrier and enzyme for SEA. The former is effective for the stabilization, whereas the latter is not. (Refs. 19).

  7. Interactions between heparinoids and alcohol dehydrogenase. (United States)

    Paulíková, H; Valusová, E; Antalík, M


    The interaction between polysulfated polysaecharides (low-molecular-weight heparin LMWH, dextran sulfate DS and pentosan sulfate PS) and yeast alcohol dehydrogenase (YADH) was investigated. The fluorescence and UV spectra of YADH after adding the tested polysaccharides have confirmed the interaction between the enzyme and these compounds. Kinetic studies have shown that LMWH, DS and PS are inhibitors of YADH (mixed type with respect to NAD). The most potent inhibitor is PS (ID50=37.5 ng/ml, Ki=0.6 muM). The inhibition effect depends on the ionic strength (the inhibition decreased by about 50% in the presence of 100 mM Na2SO4) and pH value (the inhibition decreased at pH>7). The results indicate that the inhibition effect of these polyanions is caused by their electrostatic interactions with the NAD-binding region of YADH.

  8. Optimization of adsorptive immobilization of alcohol dehydrogenases. (United States)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C; Daussmann, Thomas; Büchs, Jochen


    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently influence the immobilization efficiency, expressed in terms of residual activity and protein loading. Residual activity of 79% was achieved with ADH from bakers' yeast (YADH) after optimizing the immobilization parameters. A step-wise drying process has been found to be more effective than one-step drying. A hypothesis of deactivation through bubble nucleation during drying of the enzyme/glass bead suspension at low drying pressure (300% residual activity was found after drying. Hyperactivation of the enzyme is probably caused by structural changes in the enzyme molecule during the drying process. ADH from Thermoanaerobacter species (ADH T) is found to be stable under drying conditions (>15 kPa) in contrast to LBADH and YADH.

  9. Untangling the glutamate dehydrogenase allosteric nightmare. (United States)

    Smith, Thomas J; Stanley, Charles A


    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  10. Crystallization and preliminary X-ray diffraction analysis of L-threonine dehydrogenase (TDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. (United States)

    Bowyer, A; Mikolajek, H; Wright, J N; Coker, A; Erskine, P T; Cooper, J B; Bashir, Q; Rashid, N; Jamil, F; Akhtar, M


    The enzyme L-threonine dehydrogenase catalyses the NAD(+)-dependent conversion of L-threonine to 2-amino-3-ketobutyrate, which is the first reaction of a two-step biochemical pathway involved in the metabolism of threonine to glycine. Here, the crystallization and preliminary crystallographic analysis of L-threonine dehydrogenase (Tk-TDH) from the hyperthermophilic organism Thermococcus kodakaraensis KOD1 is reported. This threonine dehydrogenase consists of 350 amino acids, with a molecular weight of 38 kDa, and was prepared using an Escherichia coli expression system. The purified native protein was crystallized using the hanging-drop vapour-diffusion method and crystals grew in the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 124.5, c = 271.1 A. Diffraction data were collected to 2.6 A resolution and preliminary analysis indicates that there are four molecules in the asymmetric unit of the crystal.

  11. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria. (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa


    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii.

  12. Cell wall-associated malate dehydrogenase activity from maize roots. (United States)

    Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Vučinić, Zeljko


    Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn(2+) and Cu(2+) in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn(2+) and Cu(2+) in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.

  13. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ma YM


    Full Text Available Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1 activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR 1.53 (1.14–2.07, P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08, P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00, P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients. Keywords: ALDH1, cancer stem cell, prognosis, KM plotter, hazard ratio

  14. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    Directory of Open Access Journals (Sweden)

    Aldo Franco De Rose


    Full Text Available Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  15. Glutamate dehydrogenase 1 and SIRT4 regulate glial development. (United States)

    Komlos, Daniel; Mann, Kara D; Zhuo, Yue; Ricupero, Christopher L; Hart, Ronald P; Liu, Alice Y-C; Firestein, Bonnie L


    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological defects may be attributed to hypoglycemia, some characteristics cannot be ascribed to low glucose and as hyperammonemia is generally mild and asymptomatic, there exists the possibility that altered GDH1 activity within the brain leads to some clinical changes. GDH1 is allosterically regulated by many factors, and has been shown to be inhibited by the ADP-ribosyltransferase sirtuin 4 (SIRT4), a mitochondrially localized sirtuin. Here we show that SIRT4 is localized to mitochondria within the brain. SIRT4 is highly expressed in glial cells, specifically astrocytes, in the postnatal brain and in radial glia during embryogenesis. Furthermore, SIRT4 protein decreases in expression during development. We show that factors known to allosterically regulate GDH1 alter gliogenesis in CTX8 cells, a novel radial glial cell line. We find that SIRT4 and GDH1 overexpression play antagonistic roles in regulating gliogenesis and that a mutant variant of GDH1 found in HI/HA patients accelerates the development of glia from cultured radial glia cells.

  16. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.



    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  17. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.


    Tang, J C; Forage, R G; Lin, E C


    An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.

  18. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system. (United States)


    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  19. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency (United States)

    ... enzyme is involved in the normal processing of carbohydrates. It also protects red blood cells from the ... of glucose-6-phosphate dehydrogenase or alter its structure, this enzyme can no longer play its protective ...

  20. A novel glutamate dehydrogenase from bovine brain: purification and characterization. (United States)

    Lee, J; Kim, S W; Cho, S W


    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  1. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. (United States)

    Lessmeier, Lennart; Hoefener, Michael; Wendisch, Volker F


    Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking ald and fadH could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, C. glutamicum ΔaldΔfadH did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from C. glutamicum was purified from recombinant Escherichia coli and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed Km values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a Vmax of 7.7 U mg(-1). FadH from C. glutamicum also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (Km = 330 mM, Vmax = 9.6 U mg(-1)), 1-propanol (Km = 150 mM, Vmax = 5 U mg(-1)) and 1-butanol (Km = 50 mM, Vmax = 0.8 U mg(-1)). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of C. glutamicum to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

  2. Lactic dehydrogenase and cancer: an overview. (United States)

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio


    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.

  3. Resurrecting ancestral alcohol dehydrogenases from yeast. (United States)

    Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; De Kee, Danny W; Li, Tang; Aris, John P; Benner, Steven A


    Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.

  4. Liver alcohol dehydrogenase immobilized on polyvinylidene difluoride. (United States)

    Roig, M G; Bello, J F; Moreno de Vega, M A; Cachaza, J M; Kennedy, J F


    A physical method for immobilization of liver alcohol dehydrogenase (ADH) by hydrophobic adsorption onto a supporting membrane of polyvinylidene difluoride (PVDF) was performed. Simultaneously, a physicochemical characterization of the immobilized enzyme regarding its kinetic behaviour was performed. The activity/pH profile observed points to an effect of pH on activity that is completely different from the case of ADH in solution. The disturbance in the typical bell-shaped profile owing to the fact that the enzyme was immobilized is explained on the basis of a potent limitation to the diffusion of the protons in the support. The findings of the present work also reveal the existence of an effect that limits free external diffusion of the substrate towards and/or the product from the support; this effect seems to be the determinant of the overall rate of the enzymatic reaction and is thus of great importance in the effective kinetic behaviour (v([S])) of immobilized ADH, whose kinetic behaviour is complex (non-Michaelian), as may be seen from the lack of linearity observed in the corresponding double reciprocal and Eadie-Hofstee plots. By non-linear regression numerical analysis of the v([S]) data and application of the F-test for model discrimination, the minimum rate equation necessary to describe the intrinsic kinetic behaviour of PVDF-immobilized ADH proved to be one of the polynomial quotient type of degree 2:2 (in substrate concentration).



    Kopec-Harding, Kamilla Rosa


    There is currently experimental evidence of hydrogen tunnelling in over 20 different enzymes include yeast alcohol dehydrogenase (YADH), morphinone reductase (MR) and methylamine dehydrogenase (MADH). Various models have been used to describe hydrogen tunnelling in enzymes including the static barrier model, the vibrationally enhanced ground state tunnelling model (VEGST) and the environmentally coupled tunnelling model (ECT). Despite some differences in these models, there is a general cons...

  6. Dehydrogenase isoenzyme polymorphism in genus Prunus, subgenus Cerasus

    Directory of Open Access Journals (Sweden)

    Čolić Slavica


    Full Text Available Dehydrogenase polymorphism was studied in 36 sour cherry (Prunus cerasus L., sweet cherry (Prunus avuim L., mahaleb (Prunus mahaleb L., ground cherry (Prunus fruticosa Pall., duke cherry (Prunus gondounii Redh., Japanese flowering cherry (Prunus serrulata Lindl. and four iterspecific hybrids (standard cherry rootstocks ‘Gisela 5’, ‘Gisela 6’, ‘Max Ma’ and ‘Colt’. Inner bark of one-year-old shoots, in dormant stage, was used for enzyme extraction. Vertical PAGE was used for isoenzyme analysis: alcohol dehydrogenase (ADH, formate dehydrogenase (FDH, glutamate dehydrogenase (GDH, isocitrate dehydrogenaze (IDH, malate dehydrogenase (MDH, phosphogluconate dehydrogenase (PGD, and shikimate dehydrogenase (SDH. All studied systems were polymorphic at 10 loci: Adh -1 (3 genotypes and Adh-2 (5 genotypes, Fdh-1 (2 genotypes, Gdh-1 (3 genotypes, Idh-1 (4 genotypes i Idh -2 (5 genotypes, Mdh-1 (3 genotypes, Pgd-1 (4 genotypes, Sdh-1 (1 genotype i Sdh-2 (3 genotypes. Cluster analysis was used to construct dendrogram on which four groups of similar genotypes were separated. Obtained results indicate that studied enzyme systems can be used for determination of genus Prunus, subgenus Cerasus. Among studied enzyme systems ADH, IDH and SDH were the most polymorphic and most useful to identify genetic variability. Polymorphism of FDH and GDH in genus Prunus, subgenus Cerasus was described first time in this work. First results for dehydrogenase variability of Oblačinska indicate that polymorphism of loci Idh-2 and Sdh-2 can be useful for discrimination of different clones.

  7. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.


    Keung, W M; Vallee, B L


    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  8. Properties and subunit structure of pig heart pyruvate dehydrogenase. (United States)

    Hamada, M; Hiraoka, T; Koike, K; Ogasahara, K; Kanzaki, T


    Pyruvate dehydrogenase [EC] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.

  9. Interaction of carbohydrates with alcohol dehydrogenase: Effect on enzyme activity. (United States)

    Jadhav, Swati B; Bankar, Sandip B; Granström, Tom; Ojamo, Heikki; Singhal, Rekha S; Survase, Shrikant A


    Alcohol dehydrogenase was covalently conjugated with three different oxidized carbohydrates i.e., glucose, starch and pectin. All the carbohydrates inhibited the enzyme. The inhibition was studied with respect to the inhibition rate constant, involvement of thiol groups in the binding, and structural changes in the enzyme. The enzyme activity decreased to half of its original activity at the concentration of 2 mg/mL of pectin, 4 mg/mL of glucose and 10 mg/mL of starch within 10 min at pH 7. This study showed oxidized pectin to be a potent inhibitor of alcohol dehydrogenase followed by glucose and starch. Along with the aldehyde-amino group interaction, thiol groups were also involved in the binding between alcohol dehydrogenase and carbohydrates. The structural changes occurring on binding of alcohol dehydrogenase with oxidized carbohydrates was also confirmed by fluorescence spectrophotometry. Oxidized carbohydrates could thus be used as potential inhibitors of alcohol dehydrogenase.

  10. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)


    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  11. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci. (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut


    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  12. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee


    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  13. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer. (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej


    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  14. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)


    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  15. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans. (United States)

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H


    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  16. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao


    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  17. Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure.



    The citric acid cycle enzyme malate dehydrogenase was purified to homogeneity from the nonsulfur purple bacteria Rhodobacter capsulatus, Rhodospirillum rubrum, Rhodomicrobium vannielii, and Rhodocyclus purpureus. Malate dehydrogenase was purified from each species by either a single- or a two-step protocol: triazine dye affinity chromatography was the key step in purification of malate dehydrogenase in all cases. Purification of malate dehydrogenase resulted in a 130- to 240-fold increase in ...

  18. Mutations associated with succinate dehydrogenase D-related malignant paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Bertherat, J.; Lenders, J.W.M.; Duet, M.; Eisenhofer, G.; Stratakis, C.A.; Niccoli-Sire, P.; Tran, B.H.; Burnichon, N.; Gimenez-Roqueplo, A.P.


    OBJECTIVE: Hereditary paraganglioma (PGL) syndromes result from germline mutations in genes encoding subunits B, C and D of the mitochondrial enzyme succinate dehydrogenase (SDHB, SDHC and SDHD). SDHB-related PGLs are known in particular for their high malignant potential. Recently, however, maligna

  19. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.


    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...

  20. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.;


    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  1. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin


    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  2. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.


    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnologica

  3. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Travis Hartman


    Full Text Available In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2; we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.

  4. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.


    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  5. 21 CFR 862.1440 - Lactate dehydrogenase test system. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  6. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase. (United States)

    Aoshima, Miho; Igarashi, Yasuo


    Isocitrate dehydrogenase (ICDH) from Hydrogenobacter thermophilus catalyzes the reduction of oxalosuccinate, which corresponds to the second step of the reductive carboxylation of 2-oxoglutarate in the reductive tricarboxylic acid cycle. In this study, the oxidation reaction catalyzed by H. thermophilus ICDH was kinetically analyzed. As a result, a rapid equilibrium random-order mechanism was suggested. The affinities of both substrates (isocitrate and NAD+) toward the enzyme were extremely low compared to other known ICDHs. The binding activities of isocitrate and NAD+ were not independent; rather, the binding of one substrate considerably promoted the binding of the other. A product inhibition assay demonstrated that NADH is a potent inhibitor, although 2-oxoglutarate did not exhibit an inhibitory effect. Further chromatographic analysis demonstrated that oxalosuccinate, rather than 2-oxoglutarate, is the reaction product. Thus, it was shown that H. thermophilus ICDH is a nondecarboxylating ICDH that catalyzes the conversion between isocitrate and oxalosuccinate by oxidation and reduction. This nondecarboxylating ICDH is distinct from well-known decarboxylating ICDHs and should be categorized as a new enzyme. Oxalosuccinate-reducing enzyme may be the ancestral form of ICDH, which evolved to the extant isocitrate oxidative decarboxylating enzyme by acquiring higher substrate affinities.

  7. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel


    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  8. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates. (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W


    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.

  9. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma. (United States)

    Hua, Yibo; Liang, Chao; Zhu, Jundong; Miao, Chenkui; Yu, Yajie; Xu, Aimin; Zhang, Jianzhong; Li, Pu; Li, Shuang; Bao, Meiling; Yang, Jie; Qin, Chao; Wang, Zengjun


    Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.

  10. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund


    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including


    Directory of Open Access Journals (Sweden)



    Full Text Available : BACKGROUND: Breast cancer a multifactorial disease and one of the most dreaded of human diseases that claims the lives of thousands of women all over the globe every year. This may probably due to the fact that it remains undiagnosed at an early stage perhaps due to lack of awareness amongst the females and the fact that most cancers do not produce any symptoms until the tumour are too large to be removed surgically. Hence there is need to detect cancer at an early stage. AIM: Estimation of diagnostic importance and prognostication of serum Lactate dehydrogenase in cases on breast cancer. SETTINGS AND DESIGN: An observational study was conducted in Acharya Vinoba Bhave Rural Hospital, Sawangi (Meghe, Wardha which included 44 confirmed cases of carcinoma breast and 44 normal healthy females admitted in AVBRH in a span of 2 years. METHODS AND MATERIAL: Determination of serum LDH was done using TC matrix analyser. The values of LDH were obtained on presentation, 21 days after intervention, 2 months after intervention and 6 months after intervention. The values of LDH on presentation in both the groups were compared. The decline in the values of LDH were observed with the due course of treatment. Chisquare test and Student’s Unpaired and paired t test were used for statistical analysis. RESULT: The mean Lactate dehydrogenase on presentation was in study group and control group was 564.38±219.41 IU/L and 404.18±101.32 IU/L respectively (p<0.05. The levels of Lactate dehydrogenase decreased with due course of treatment. The levels of LDH were proportionate to the stage of disease. CONCLUSION: The results of the study concludes cost effective usefulness of serum Lactate dehydrogenase in early detection of breast cancer and to assess its prognostic importance which can be done in smaller laboratories. The traditional model of DS-

  12. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  13. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)


    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  14. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying


    Hirokazu Shiga; Hiromi Joreau; Tze Loon Neoh; Takeshi Furuta; Hidefumi Yoshii


    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably...

  15. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes


    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico


    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency...

  16. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase. (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S


    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.

  17. Recent advances in biotechnological applications of alcohol dehydrogenases. (United States)

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang


    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  18. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius. (United States)

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto


    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  19. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes. (United States)

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul


    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  20. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. (United States)

    Keung, W M; Vallee, B L


    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  1. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  2. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli



    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  3. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Li

    Full Text Available Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017 and TP53 mutation (p < 0.001, but not 1p/19q loss (p = 0.834, occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041 and frontal lobe location (p = 0.010 were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response

  4. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas. (United States)

    Li, Ming-Yang; Wang, Yin-Yan; Cai, Jin-Quan; Zhang, Chuan-Bao; Wang, Kuan-Yu; Cheng, Wen; Liu, Yan-Wei; Zhang, Wei; Jiang, Tao


    Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA

  5. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles. (United States)

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J; Tittiger, Claus


    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition.

  6. Soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes: isolated isoforms and kinetics properties

    Directory of Open Access Journals (Sweden)

    Maria Regina de Aquino-Silva


    Full Text Available Kinetic properties and thermal stabilities of Geophagus brasiliensis skeletal muscle unfractionated malate dehydrogenase (MDH, EC and its isolated isoforms were analyzed to examine a possible sMDH-B* locus duplication in a fixation process influenced by genetic drift. Two optimal pHs were detected: 7.5 for AB1 unfractionated muscle phenotype and its B1 isoform, and 8.0 for AB1B2 unfractionated muscle phenotype, A and B2 isoforms. While G. brasiliensis A isoform could be characterized as thermostable, the duplicated B isoform cannot be assumed as thermolabile. Km values for isolated B2 isoforms were 1.6 times lower than for B1. A duplication event in progress best explains the electrophoretic six-band pattern detected in G. brasiliensis, which would be caused by genetic drift.

  7. Dihydrooxonate is a substrate of Dihydroorrotate Dehydrogenase (DHOD) providing evidence for involvement of crsteine and serine residues in base catalysis

    DEFF Research Database (Denmark)

    Björnberg, Olof; Jordan, Douglas B.; Palfey, Bruce Allan;


    . The first half-reaction was rate limiting according to pre-steady-state and steady-state kinetics with different electron acceptors. Cysteine and serine have been implicated as active site base residues, which promote substrate oxidation in family 1 and family 2 DHODs, respectively. Mutants of DHODA (C130A...... pKa of the 5-position in the substrate. Oxonate, the oxidation product of dihydrooxonate, was a competitive inhibitor versus dihydroorotate, and DHODA was the most sensitive of the three enzymes. DHODA was reinvestigated with respect to product inhibition by orotate. The results suggest a classical...... one-site ping-pong mechanism with fumarate as electron acceptor, while the kinetics with ferricyanide is highly dependent on the detailed reaction conditions....

  8. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. (United States)

    Parmentier, S; Arnaut, F; Soetaert, W; Vandamme, E J


    D-Mannitol and D-sorbitol were produced enzymatically from D-fructose using NAD-dependent polyol dehydrogenases. For the production of D-mannitol the Leuconostoc mesenteroides mannitol dehydrogenase could be used. Gluconobacter oxydans cell extract contained however both mannitol and sorbitol dehydrogenase. When this cell extract was used, the reduction of D-fructose resulted in a mixture of D-sorbitol and D-mannitol. To determine the optimal bioconversion conditions the polyol dehydrogenases were characterized towards pH- and temperature-optimum and -stability. As a compromise between enzyme activity and stability, the bioconversion reactions were performed at pH 6.5 and 25 degrees C. Since the polyol dehydrogenases are NADH-dependent, an efficient coenzyme regeneration was needed. Regeneration of NADH was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.

  9. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase. (United States)

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki


    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  10. [Dihydropirymidine dehydrogenase (DPD)--a toxicity marker for 5-fluorouracil?]. (United States)

    Jedrzychowska, Adriana; Dołegowska, Barbara


    In proceedings relating to patients suffering from cancer, an important step is predicting response and toxicity to treatment. Depending on the type of cancer, physicians use the generally accepted schema of treatment, for example pharmacotherapy. 5-fluorouracil (5-FU) is the most widely used anticancer drug in chemotherapy for colon, breast, and head and neck cancer. Patients with dihydropyrimidine dehydrogenase (DPD) deficiency, which is responsible for the metabolism of 5-FU, may experience severe side effects during treatment, and even death. In many publications the need for determining the activity of DPD is discussed, which would protect the patient from the numerous side effects of treatment. However, in practice these assays are not done routinely, despite the high demand. In most cases, a genetic test is used to detect changes in the gene encoding DPD (such as in the USA), but because of the large number of mutations the genetic test cannot be used as a screening test. Dihydropyrimidine dehydrogenase activity has been shown to have high variability among the general population, with an estimated proportion of at least 3-5% of individuals showing low or deficient DPD activity. In this publication we presents data about average dihydropirymidine dehydrogenase activity in various populations of the world (e.g. Japan, Ghana, Great Britain) including gender differences and collected information about the possibility of determination of DPD activity in different countries. Detection of reduced DPD activity in patients with planned chemotherapy will allow a lower dosage of 5-FU or alternative treatment without exposing them to adverse reactions.

  11. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima


    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  12. Arteriovenous malformation within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Grace Lai


    Full Text Available Background: The co-occurrence of intracranial arteriovenous malformations (AVMs and cerebral neoplasms is exceedingly rare but may harbor implications pertaining to the molecular medicine of brain cancer pathogenesis. Case Description: Here, we present a case of de novo AVM within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma (WHO Grade III and review the potential contribution of this mutation to aberrant angiogenesis as an interesting case study in molecular medicine. Conclusion: The co-occurrence of an IDH1 mutated neoplasm and AVM supports the hypothesis that IDH1 mutations may contribute to aberrant angiogenesis and vascular malformation.

  13. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim


    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  14. Structural determinants of stereospecificity in yeast alcohol dehydrogenase.


    Weinhold, E G; Glasfeld, A; Ellington, A D; Benner, S A


    Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-m...

  15. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis. (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico


    The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described.

  16. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien


    Cellular toxicity and/or cell death entail complex mechanisms that require detailed evaluation for proper characterization. A detailed mechanistic assessment of cytotoxicity is essential for design and construction of more effective polycations for nucleic acid delivery. A single toxicity assay...... cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...

  17. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)


    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  18. Selective inhibition of 6-phosphogluconate dehydrogenase from Trypanosoma brucei (United States)

    Bertelli, Massimo; El-Bastawissy, Eman; Knaggs, Michael H.; Barrett, Michael P.; Hanau, Stefania; Gilbert, Ian H.


    A number of triphenylmethane derivatives have been screened against 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Some of these compounds show good inhibition of the enzymes and also selectivity towards the parasite enzyme. Modelling was undertaken to dock the compounds into the active sites of both enzymes. Using a combination of DOCK 3.5 and FLEXIDOCK a correlation was obtained between docking score and both activity for the enzymes and selectivity. Visualisation of the docked structures of the inhibitors in the active sites of the enzymes yielded a possible explanation of the selectivity for the parasite enzyme.

  19. Essential histidine residue in 3-ketosteroid-Δ1-dehydrogenase


    Matsushita, Hiroyuki; Itagaki, Eiji; 板垣, 英治


    The variation with pH of kinetic parameters was examined for 3-ketosteroid-Δ1-dehydrogenase from Nocardia corallina. The V(max)/K(m) profile for 4-androstenedione indicates that activity is lost upon protonation of a cationic acid-type group with a pK value of 7.7. The enzyme was inactivated by diethylpyrocarbonate at pH 7.4 and the inactivation was substantially prevented by androstadienedione. Analyses of reactivation with neutral hydroxylamine, pH variation, and spectral changes of the ina...

  20. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. (United States)

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T


    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  1. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes. (United States)

    Chou, K H; Splittstoesser, W E


    Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH(4) (+) or alpha-ketoglutarate. The soluble enzyme was more sensitive to NH(4) (+) inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.

  2. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Directory of Open Access Journals (Sweden)

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  3. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin


    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  4. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Directory of Open Access Journals (Sweden)

    Ferisman Tindaon


    Full Text Available The objective of this research was to determine the effects of nitrification inhibitors (NIs such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA,in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT. The toxicity and dose response curve of three NIs were quantified under laboratory conditions using a loamy clay, a sandy loam and a sandy soil. The quantitative determination of DHA was carried out spectrophotometrically. In all experiments, the influence of 5-1000 times the base concentration were examined. To evaluate the rate of inhibition with the increasing NI concentrations, dose reponse curves were presented and no observable effect level =NOEL, as well as effective dose ED10 and ED 50(10% and 50% inhibition were calculated. The NOEL for common microbial activity such as DHA was about 30–70 times higher than base concentration in all investigated soils. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils if it compare to DMPP and DCD. The NOEL,ED10 and ED50 values higher in clay than in loamy or sandy soil. The NIs were generally most effective in sandy soils. The three NIs considered at the present state of knowledge as environmentally safe in use.

  5. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Álvaro D. Fernández-Fernández


    Full Text Available NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2 and nitric oxide (NO. NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH. Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS, while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

  6. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.


    Glutamate dehydrogenases (EC–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  7. Structural analysis of fungus-derived FAD glucose dehydrogenase. (United States)

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji


    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management.

  8. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.


    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati......BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...... populations.SUBJECTS/METHODS: A nested case-control study (1269 cases matched to 2107controls by sex, age, study centre and date of blood collection) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) to evaluate the impact of rs1229984 (ADH1B), rs1573496 (ADH7...

  9. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients. (United States)

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej


    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  10. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.


    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  11. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli. (United States)

    Ogawa, Tadashi; Murakami, Keiko; Mori, Hirotada; Ishii, Nobuyoshi; Tomita, Masaru; Yoshin, Masataka


    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  12. Role of Phosphoenolpyruvate in the NADP-Isocitrate Dehydrogenase and Isocitrate Lyase Reaction in Escherichia coli▿



    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki′ of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  13. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations

    NARCIS (Netherlands)

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W


    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regener

  14. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins. (United States)

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath


    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  15. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.


    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  16. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.


    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase product

  17. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie


    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...... ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major...

  18. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich


    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  19. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. (United States)

    Sullivan, James P; Spinola, Monica; Dodge, Michael; Raso, Maria G; Behrens, Carmen; Gao, Boning; Schuster, Katja; Shao, Chunli; Larsen, Jill E; Sullivan, Laura A; Honorio, Sofia; Xie, Yang; Scaglioni, Pier P; DiMaio, J Michael; Gazdar, Adi F; Shay, Jerry W; Wistuba, Ignacio I; Minna, John D


    Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.

  20. The reaction of choline dehydrogenase with some electron acceptors. (United States)

    Barrett, M C; Dawson, A P


    1. The choline dehydrogenase (EC WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  1. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alexa Thibodeau


    Full Text Available Pyruvate dehydrogenase (PDH complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.

  2. Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst. (United States)

    An, Hongjie; Jin, Bo; Dai, Sheng


    Immobilization of the enzymes on nano-structured materials is a promising approach to enhance enzyme stabilization, activation and reusability. This study aimed to develop polystyrene fiber-enzyme assembles to catalyze model formaldehyde to methanol dehydrogenation reaction, which is an essential step for bioconversion of CO2 to a renewable bioenergy. We fabricated and modified electrospun polystyrene fibers, which showed high capability to immobilize dehydrogenase for the fiber-enzyme assembles. Results from evaluation of biochemical activities of the fiber-enzyme assemble showed that nitriation with the nitric/sulfuric acid ratio (v/v, 10:1) and silanization treatment delivered desirable enzyme activity and long-term storage stability, showing great promising toward future large-scale applications.

  3. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures. (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger


    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  4. Glucose-6 phosphate dehydrogenase deficiency and psychotic illness

    Directory of Open Access Journals (Sweden)

    Vijender Singh


    Full Text Available Mr. T, a 28-year-old unmarried male, a diagnosed case of Glucose-6 Phosphate Dehydrogenase (G6PD deficiency since childhood, presented with 13 years of psychotic illness and disturbed biological functions. He showed poor response to antipsychotics and mood stabilizers and had three prior admissions to Psychiatry. There was a family history of psychotic illness. The General Physical Examination and Systemic Examination were unremarkable. Mental Status Examination revealed increased psychomotor activity, pressure of speech, euphoric affect, prolixity, delusion of persecution, delusion of grandiosity, delusion of control, thought withdrawal and thought insertion, and second and third person auditory hallucinations, with impaired judgment and insight. A diagnosis of schizophrenia paranoid type, with a differential diagnosis of schizoaffective disorder manic subtype, was made. This case is being reported for its rarity and atypicality of clinical presentation, as well as a course of psychotic illness in the G6PD Deficiency state,with its implications on management.

  5. IMP Dehydrogenase: Structural Schizophrenia and an Unusual Base

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom,L.; Gan, L.


    Textbooks describe enzymes as relatively rigid templates for the transition state of a chemical reaction, and indeed an enzyme such as chymotrypsin, which catalyzes a relatively simple hydrolysis reaction, is reasonably well described by this model. Inosine monophosphate dehydrogenase (IMPDH) undergoes a remarkable array of conformational transitions in the course of a complicated catalytic cycle, offering a dramatic counterexample to this view. IMPDH displays several other unusual mechanistic features, including an Arg residue that may act as a general base catalyst and a dynamic monovalent cation site. Further, IMPDH appears to be involved in 'moon-lighting' functions that may require additional conformational states. How the balance between conformational states is maintained and how the various conformational states interconvert is only beginning to be understood.

  6. Microbial metabolic activity in soil as measured by dehydrogenase determinations (United States)

    Casida, L. E., Jr.


    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  7. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    Directory of Open Access Journals (Sweden)

    Hirokazu Shiga


    Full Text Available The retention of the enzyme activity of alcohol dehydrogenase (ADH has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11 was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  8. Encapsulation of alcohol dehydrogenase in mannitol by spray drying. (United States)

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi


    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  9. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup;


    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...... oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH...

  10. Kinetics of myoglobin redox form stabilization by malate dehydrogenase. (United States)

    Mohan, Anand; Muthukrishnan, S; Hunt, Melvin C; Barstow, Thomas J; Houser, Terry A


    This study reports the reduction of metmyoglobin (MMb) via oxidation of malate to oxaloacetate and the regeneration of reduced nicotinamide adenine dinucleotide (NADH) via malate dehydrogenase (MDH). Two experiments were conducted to evaluate a malate-MDH-NADH system as a possible mechanism for MMb reduction. In experiment 1, kinetics of MDH and MMb reduction were determined, and the results showed that increasing concentrations of oxidized nicotinamide adenine dinucleotide (NAD(+)) and l-malate also increased (p malate and NAD(+) added. Reduction of MMb in the muscle extracts via MDH was NAD(+), malate, and extract concentration dependent (p malate can replenish NADH via MDH activity in post-mortem muscle, ultimately resulting in a more functional meat color.

  11. In vitro interaction between psychotropic drugs and alcohol dehydrogenase activity. (United States)

    Roig, M G; Bello, F; Burguillo, F J; Cachaza, J M; Kennedy, J F


    A series of CNS-stimulating and -depressant drugs have been studied for their in vitro interaction with horse liver alcohol dehydrogenase (ADH) activity. The depressant drugs studied included barbital, phenobarbital, thiopental, nitrazepam, chlorpromazine, sulpiride, clomethiazole, Li2CO3, diazepam, phenytoin, ethosuximide, morphine, and codeine. The stimulant drugs were theophylline, caffeine, amphetamine, imipramine, chlorimipramine, amitriptyline, and tranylcypromine. The results were as follows. First, ADH activity was inhibited by the action of chlorpromazine, tranylcypromine, imipramine, chlorimipramine, amitriptyline, sulpiride, amphetamine, codeine, ethosuximide, morphine, clomethiazole, nitrazepam, Li2CO3, theophylline, and phenobarbital, in descending order of inhibitory effect. Second, inhibition followed by activation of ADH activity was observed for imipramine and chlorimipramine. Third, activation of ADH activity was observed for phenytoin. Finally, the following drugs were not seen to exert any effect on ADH activity: barbital, thiopental, diazepam, and caffeine.

  12. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Keiki Nagaharu


    Full Text Available Over the past decades, 5-Fluorouracil (5-FU has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.

  13. Mechanistic enzymology of CO dehydrogenase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, S.W.


    The final steps in acetyl-CoA biosynthesis by anaerobic bacteria are performed by carbon monoxide dehydrogenase (CODH), a nickel/iron-sulfur protein. An important achievement was to establish conditions under which acetyl-CoA synthesis by purified enzymes equals the in vivo rate of acetate synthesis. Under these optimized conditions we established that the rate limiting step in the synthesis of acetyl-CoA from methyl-H[sub 4]folate, CO and CoA is likely to be the methylation of CODH by the methylated corrinoid/iron-sulfur protein. We then focused on stopped flow studies of this rate limiting transmethylation reaction and established its mechanism. We have studied the carbonylation of CODH by infrared and resonance Raman spectroscopy and determined that the [Ni-Fe[sup 3-4]S[sub 4

  14. Crystallographic analysis of FAD-dependent glucose dehydrogenase. (United States)

    Komori, Hirofumi; Inaka, Koji; Furubayashi, Naoki; Honda, Michinari; Higuchi, Yoshiki


    An FAD-dependent glucose dehydrogenase (GDH) from Aspergillus terreus was purified and crystallized at 293 K using the sitting-drop vapour-diffusion method. A data set was collected to a resolution of 1.6 Å from a single crystal at 100 K using a rotating-anode X-ray source. The crystal belonged to space group P21, with unit-cell parameters a = 56.56, b = 135.74, c = 74.13 Å, β = 90.37°. The asymmetric unit contained two molecules of GDH. The Matthews coefficient was calculated to be 2.2 Å(3) Da(-1) and the solvent content was estimated to be 44%.

  15. Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency. (United States)

    Kaplan, M; Rubaltelli, F F; Hammerman, C; Vilei, M T; Leiter, C; Abramov, A; Muraca, M


    We used a system capable of measuring conjugated bilirubin and its monoconjugated and diconjugated fractions in serum to assess bilirubin conjugation in 29 glucose-6-phosphate dehydrogenase (G6PD)-deficient, term, male newborn infants and 35 control subjects; all had serum bilirubin levels > or = 256 mumol/L (15 mg/dI). The median value for diconjugated bilirubin was lower in the G6PD-deficient neonates than in control subjects (0.06 (range 0.00 to 1.84) vs 0.21 (range 0.00 to 1.02) mumol/L, p = 0.006). Diglucuronide was undetectable in 11 (38.9%) of the G6PD-deficient infants versus 3 (8.6%) of the control subjects (p = 0.015). These findings imply a partial defect of bilirubin conjugation not previously demonstrated in G6PD-deficient newborn infants.

  16. Lactate dehydrogenase (LDH isoenzymes patterns in ocular tumours

    Directory of Open Access Journals (Sweden)

    Singh Rajendra


    Full Text Available Estimation of lactate dehydrogenase (LDH isoenzymes in the serum and aqueous humor was carried out in 15 cases of benign ocular tumour, 15 cases of malignant tumor and 15 normal cases. Cases of both sexes aged between 1 year and 75 years were included. LDH, isoenzymes specially LDH4 and LDH5 are higher and LDH1 and LDH2 lower in sera of patients with malignant tumor specially retinoblastoma as compared to benign tumor cases and control cases. LDH isoenzymes in aqueous humor are significantly higher and show a characteristic pattern in retinoblastoma cases, the concentration was presumably too low in the control, malignant tumor other than retinoblastoma and benign tumor cases as its fractionation was not possible.

  17. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia


    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  18. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra


    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  19. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2. (United States)

    Zocher, Kathleen; Fritz-Wolf, Karin; Kehr, Sebastian; Fischer, Marina; Rahlfs, Stefan; Becker, Katja


    Glutamate dehydrogenases (GDHs) play key roles in cellular redox, amino acid, and energy metabolism, thus representing potential targets for pharmacological interventions. Here we studied the functional network provided by the three known glutamate dehydrogenases of the malaria parasite Plasmodium falciparum. The recombinant production of the previously described PfGDH1 as hexahistidyl-tagged proteins was optimized. Additionally, PfGDH2 was cloned, recombinantly produced, and characterized. Like PfGDH1, PfGDH2 is an NADP(H)-dependent enzyme with a specific activity comparable to PfGDH1 but with slightly higher K(m) values for its substrates. The three-dimensional structure of hexameric PfGDH2 was solved to 3.1 Å resolution. The overall structure shows high similarity with PfGDH1 but with significant differences occurring at the subunit interface. As in mammalian GDH1, in PfGDH2 the subunit-subunit interactions are mainly assisted by hydrogen bonds and hydrophobic interactions, whereas in PfGDH1 these contacts are mediated by networks of salt bridges and hydrogen bonds. In accordance with this, the known bovine GDH inhibitors hexachlorophene, GW5074, and bithionol were more effective on PfGDH2 than on PfGDH1. Subcellular localization was determined for all three plasmodial GDHs by fusion with the green fluorescent protein. Based on our data, PfGDH1 and PfGDH3 are cytosolic proteins whereas PfGDH2 clearly localizes to the apicoplast, a plastid-like organelle specific for apicomplexan parasites. This study provides new insights into the structure and function of GDH isoenzymes of P. falciparum, which represent potential targets for the development of novel antimalarial drugs.

  20. Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase. (United States)

    Doyle, S A; Fung, S Y; Koshland, D E


    Despite the structural similarities between isocitrate and isopropylmalate, isocitrate dehydrogenase (IDH) exhibits a strong preference for its natural substrate. Using a combination of rational and random mutagenesis, we have engineered IDH to use isopropylmalate as a substrate. Rationally designed mutations were based on comparison of IDH to a similar enzyme, isopropylmalate dehydrogenase (IPMDH). A chimeric enzyme that replaced an active site loop-helix motif with IPMDH sequences exhibited no activity toward isopropylmalate, and site-directed mutants that replaced IDH residues with their IPMDH equivalents only showed small improvements in k(cat). Random mutants targeted the IDH active site at positions 113 (substituted with glutamate), 115, and 116 (both randomized) and were screened for activity toward isopropylmalate. Six mutants were identified that exhibited up to an 8-fold improvement in k(cat) and increased the apparent binding affinity by as much as a factor of 80. In addition to the S113E mutation, five other mutants contained substitutions at positions 115 and/or 116. Most small hydrophobic substitutions at position 116 improved activity, possibly by generating space to accommodate the isopropyl group of isopropylmalate; however, substitution with serine yielded the most improvement in k(cat). Only two substitutions were identified at position 115, which suggests a more specific role for the wild-type asparagine residue in the utilization of isopropylmalate. Since interactions between neighboring residues in this region greatly influenced the effects of each other in unexpected ways, structural solutions were best identified in combinations, as allowed by random mutagenesis.

  1. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    V.M.T. Trindade


    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at:

  2. Lactate dehydrogenase concentration in nasal wash fluid indicates severity of rhinovirus-induced wheezy bronchitis in preschool children. (United States)

    Cangiano, Giulia; Proietti, Elena; Kronig, Marie Noelle; Kieninger, Elisabeth; Sadeghi, Christine D; Gorgievski, Meri; Barbani, Maria Teresa; Midulla, Fabio; Tapparel, Caroline; Kaiser, Laurent; Alves, Marco P; Regamey, Nicolas


    The clinical course of rhinovirus (RV)-associated wheezing illnesses is difficult to predict. We measured lactate dehydrogenase concentrations, RV load, antiviral and proinflammatory cytokines in nasal washes obtained from 126 preschool children with RV wheezy bronchitis. lactate dehydrogenase values were inversely associated with subsequent need for oxygen therapy. lactate dehydrogenase may be a useful biomarker predicting disease severity in RV wheezy bronchitis.

  3. Polymorphisms of alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 and esophageal cancer risk in Southeast Chinese males

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua Ding; Su-Ping Li; Hai-Xia Cao; Jian-Zhong Wu; Chang-Ming Gao; Ping Su; Yan-Ting Liu; Jian-Nong Zhou; Jun Chang; Gen-Hong Yao


    AIM: To evaluate the impact of alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) polymorphisms on esophageal cancer susceptibility in Southeast Chinese males. METHODS: Two hundred and twenty-one esophageal cancer patients and 191 healthy controls from Taixing city in Jiangsu Province were enrolled in this study. ADH2 and ALDH2 genotypes were examined by polymerase chain reaction and denaturing highperformance liquid chromatography. Unconditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence interval (CI). RESULTS: The ADH G allele carriers were more susceptible to esophageal cancer, but no association was found between ADH2 genotypes and risk of esophageal cancer when disregarding alcohol drinking status. Regardless of ADH2 genotype, ALDH2G/A or A/A carriers had significantly increased risk of developing esophageal cancer, with homozygous individuals showing higher esophageal cancer risk than those who were heterozygous. A significant interaction between ALDH2 and drinking was detected regarding esophageal cancer risk; the OR was 3.05 (95% CI: 1.49-6.25). Compared with non-drinkers carrying both ALDH2 G/G and ADH2 A/A, drinkers carrying both ALDH2 A allele and ADH2 G allele showed a significantly higher risk of developing esophageal cancer (OR = 8.36, 95% CI: 2.98-23.46).CONCLUSION: Both ADH2 G allele and ALDH2 A allele significantly increase the risk of esophageal cancer development in Southeast Chinese males. ALDH2 A allele significantly increases the risk of esophageal cancer development especially in alcohol drinkers. Alcohol drinkers carrying both ADH2 G allele and ALDH2 A allele have a higher risk of developing esophageal cancer.

  4. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M


    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  5. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae. (United States)

    Liu, Long; Zhuge, Xin; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian


    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA.

  6. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja


    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  7. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    DEFF Research Database (Denmark)

    Møller, I.M.


    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...... and internal rotenone-insensitive NADH dehydrogenase activity are also light dependent. These findings suggest that NDA has a role in photorespiration and might be identical to the previously unidentified internal rotenone-insensitive NADH dehydrogenase....

  8. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1

    Directory of Open Access Journals (Sweden)

    Zhou Cong-Zhao


    Full Text Available Abstract Background As the third enzyme of the pentose phosphate pathway, 6-phosphogluconate dehydrogenase (6PGDH is the main generator of cellular NADPH. Both thioredoxin reductase and glutathione reductase require NADPH as the electron donor to reduce oxidized thioredoxin or glutathione (GSSG. Since thioredoxin and GSH are important antioxidants, it is not surprising that 6PGDH plays a critical role in protecting cells from oxidative stress. Furthermore the activity of 6PGDH is associated with several human disorders including cancer and Alzheimer's disease. The 3D structural investigation would be very valuable in designing small molecules that target this enzyme for potential therapeutic applications. Results The crystal structure of 6-phosphogluconate dehydrogenase (6PGDH/Gnd1 from Saccharomyces cerevisiae has been determined at 2.37 Å resolution by molecular replacement. The overall structure of Gnd1 is a homodimer with three domains for each monomer, a Rossmann fold NADP+ binding domain, an all-α helical domain contributing the majority to hydrophobic interaction between the two subunits and a small C-terminal domain penetrating the other subunit. In addition, two citrate molecules occupied the 6PG binding pocket of each monomer. The intact Gnd1 had a Km of 50 ± 9 μM for 6-phosphogluconate and of 35 ± 6 μM for NADP+ at pH 7.5. But the truncated mutants without the C-terminal 35, 39 or 53 residues of Gnd1 completely lost their 6PGDH activity, despite remaining the homodimer in solution. Conclusion The overall tertiary structure of Gnd1 is similar to those of 6PGDH from other species. The substrate and coenzyme binding sites are well conserved, either from the primary sequence alignment, or from the 3D structural superposition. Enzymatic activity assays suggest a sequential mechanism of catalysis, which is in agreement with previous studies. The C-terminal domain of Gnd1 functions as a hook to further tighten the dimer, but it is not

  9. Alcohol dehydrogenase (ADH activity in soybean (Glycine max [L.] Merr. under flooding stress

    Directory of Open Access Journals (Sweden)

    Govinda Rizal and Shanta Karki


    Full Text Available Sowing time of soybean (Glycine max [L.] Merr. often coincides with the early onset of rainy season. Germinating seedsencounter a transient to prolonged period of water-logging that causes anoxia (absence of oxygen and hypoxia (insufficientoxygen resulting in poor germination. This reduces crop stability and yield. One of the factors responsible for flood tolerance isactivity of alcohol dehydrogenase (ADH during flood. The effect of ADH activity during flooding and difference in floodtolerance level were investigated using two soybean cultivars, Peking and Tamahomare, and their F9 recombinant inbred lines(RILs. Tamahomare showed higher ADH activity than Peking. There was a great variation in ADH activity among the RILs.QTL analysis detected five QTLs for ADH activity (qAas1-5 on five linkage groups, LG_A2, D1a, F, K and L. The QTL qAas4was close to a QTL for shoot damage and conductivity of germinating seeds after flooding treatment.

  10. 11 beta-hydroxysteroid dehydrogenase type 1 promotes differentiation of 3T3-L1 preadipocyte

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Yan SUN; Ting ZHU; Yu XIE; Jing YU; Wen-lan SUN; Guo-xian DING; Gang HU


    Aim: To investigate the relationship between 11 beta-hydroxysteroid dehydroge-nase type 1 (1 lbeta-HSD1), a potential link between obesity and type 2 diabetes,and preadipocyte differentiation. Methods: Mouse 11beta-HSD1 siRNA plasmids were transfected into 3T3-L1 preadipocytes (a cell line derived from mouse Swiss3T3 cells that were isolated from mouse embryo), for examination of the effect of targeted 11 beta-HSD1 inhibition on differentiation of 3T3-L1 cells. Dif-ferentiation was stimulated with 3-isobutyl-1-methyxanthine, insulin, and dexamethasone. The transcription level of the genes was detected by real-time PCR. Results: Lipid accumulation was significantly inhibited in cells transfected with mouse 11beta-HSD1 siRNA compared with non-transfected 3T3-L1 cells.Fewer lipid droplets were detected in the transfected cells both prior to stimulation and after stimulation with differentiation-inducing reagents. The expression of adipocyte differentiation-associated markers such as lipoprotein lipase and fatty acid synthetase were downregulated in the transfected cells. Similarly, the expres-sion of preadipocyte factor-1, an inhibitor of adipocyte differentiation, was downregulated upon stimulation of differentiation and had no changes in the transfected cells. Conclusion: 11 beta-HSD1 can promote preadipocyte differentiation. Based on this, we propose that 11 beta-HSD1 may be an important candidate mediator of obesity and obesity-induced insulin resistance.

  11. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation

    NARCIS (Netherlands)

    M. Timmerman (Michelle); R.B. Wilkening; T.R. Regnault


    textabstractGlucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and th

  12. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex (United States)


    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  13. Heterozygosity of the sheep: Polymorphism of 'malic enzyme', isocitrate dehydrogenase (NADP+), catalase and esterase. (United States)

    Baker, C M; Manwell, C


    In contrast to other reports, it is found that the sheep has approximately as much enzyme variation as man. Most of the genetically interpretable enzyme variation in heart, liver, kidney and muscle from 52 sheep (Merinos or Merino crosses) is in the NADP-dependent dehydrogenases [two 'malic enzymes' and the supernatant isocitrate dehydrogenase (NADP+)] and in the esterases. Ten different loci for NAD-dependent dehydrogenases are electrophoretically monomorphic, as are five different NADH diaphorases from heart muscle and 15 different major proteins from skeletal muscle. It is highly statistically significant that NADP-dependent dehydrogenases and esterases are polymorphic but representatives of several other major classes of enzymes are not. The physiological significance of this polymorphism may be related to the role of these enzymes in growth and detoxication, sheep having been selected by man for faster growth, of wool or of carcass, and for grazing a wide variety of plants.

  14. Glucose-6-Phosphate Dehydrogenase deficiency presented with convulsion: a rare case

    Directory of Open Access Journals (Sweden)

    Alparslan Merdin


    Full Text Available Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  15. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.


    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white...... men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence......, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1...

  16. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren


    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may...... be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking...... and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men...

  17. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Felicia Stefania Falvella


    Full Text Available Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD, a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T, fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C, conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.

  18. The role of glutamate dehydrogenase in mammalian ammonia metabolism. (United States)

    Spanaki, Cleanthe; Plaitakis, Andreas


    Glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia. High levels of GDH activity is found in mammalian liver, kidney, brain, and pancreas. In the liver, GDH reaction appears to be close-to-equilibrium, providing the appropriate ratio of ammonia and amino acids for urea synthesis in periportal hepatocytes. In addition, GDH produces glutamate for glutamine synthesis in a small rim of pericentral hepatocytes. Hence, hepatic GDH can be either a source for ammonia or an ammonia scavenger. In the kidney, GDH function produces ammonia from glutamate to control acidosis. In the human, the presence of two differentially regulated isoforms (hGDH1 and hGDH2) suggests a complex role for GDH in ammonia homeostasis. Whereas hGDH1 is sensitive to GTP inhibition, hGDH2 has dissociated its function from GTP control. Furthermore, hGDH2 shows a lower optimal pH than hGDH1. The hGDH2 enzyme is selectively expressed in human astrocytes and Sertoli cells, probably facilitating metabolic recycling processes essential for their supportive role. Here, we report that hGDH2 is also expressed in the epithelial cells lining the convoluted tubules of the renal cortex. As hGDH2 functions more efficiently under acidotic conditions without the operation of the GTP energy switch, its presence in the kidney may increase the efficacy of the organ to maintain acid base equilibrium.

  19. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail:


    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  20. Regulation of L-threonine dehydrogenase in somatic cell reprogramming. (United States)

    Han, Chuanchun; Gu, Hao; Wang, Jiaxu; Lu, Weiguang; Mei, Yide; Wu, Mian


    Increasing evidence suggests that metabolic remodeling plays an important role in the regulation of somatic cell reprogramming. Threonine catabolism mediated by L-threonine dehydrogenase (TDH) has been recognized as a specific metabolic trait of mouse embryonic stem cells. However, it remains unknown whether TDH-mediated threonine catabolism could regulate reprogramming. Here, we report TDH as a novel regulator of somatic cell reprogramming. Knockdown of TDH inhibits, whereas induction of TDH enhances reprogramming efficiency. Moreover, microRNA-9 post-transcriptionally regulates the expression of TDH and thereby inhibits reprogramming efficiency. Furthermore, protein arginine methyltransferase (PRMT5) interacts with TDH and mediates its post-translational arginine methylation. PRMT5 appears to regulate TDH enzyme activity through both methyltransferase-dependent and -independent mechanisms. Functionally, TDH-facilitated reprogramming efficiency is further enhanced by PRMT5. These results suggest that TDH-mediated threonine catabolism controls somatic cell reprogramming and indicate the importance of post-transcriptional and post-translational regulation of TDH.

  1. Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae. (United States)

    DeLuna, Alexander; Quezada, Héctor; Gómez-Puyou, Armando; González, Alicia


    The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.

  2. Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae. (United States)

    Bogonez, E; Satrústegui, J; Machado, A


    The activity of glutamate dehydrogenase (NADP+) (EC; NADP-GDH) of Saccharomyces cerevisiae is decreased under conditions in which intracellular ammonia concentrations increases. A high internal ammonia concentration can be obtained (a) by increasing the ammonium sulphate concentration in the culture medium, and (b) by growing the yeast either in acetate + ammonia media, where the pH of the medium rises during growth, or in heavily buffered glucose + ammonia media at pH 7.5. Under these conditions cellular oxoglutarate concentrations do not vary and changes in NADP-GDH activity appear to provide a constant rate of oxoglutarate utilization. The following results suggest that the decrease in NADP-GDH activity in ammonia-accumulating yeast cells is brought about by repression of synthesis: (i) after a shift to high ammonium sulphate concentrations, the number of units of activity per cell decreased as the inverse of cell doubling; and (ii) the rate of degradation of labelled NADP-GDH was essentially the same in ammonia-accumulating yeast cells and in controls, whereas the synthesis constant was much lower in the ammonia-accumulating cells than in the controls.

  3. Leucaena sp. recombinant cinnamyl alcohol dehydrogenase: purification and physicochemical characterization. (United States)

    Patel, Parth; Gupta, Neha; Gaikwad, Sushama; Agrawal, Dinesh C; Khan, Bashir M


    Cinnamyl alcohol dehydrogenase is a broad substrate specificity enzyme catalyzing the final step in monolignol biosynthesis, leading to lignin formation in plants. Here, we report characterization of a recombinant CAD homologue (LlCAD2) isolated from Leucaena leucocephala. LlCAD2 is 80 kDa homo-dimer associated with non-covalent interactions, having substrate preference toward sinapaldehyde with Kcat/Km of 11.6×10(6) (M(-1) s(-1)), and a possible involvement of histidine at the active site. The enzyme remains stable up to 40 °C, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 0.002 and 5h, respectively. LlCAD2 showed optimal activity at pH 6.5 and 9 for reduction and oxidation reactions, respectively, and was stable between pH 7 and 9, with the deactivation rate constant (Kd(*)) and half-life (t1/2) of 7.5×10(-4) and 15 h, respectively. It is a Zn-metalloenzyme with 4 Zn(2+) per dimer, however, was inhibited in presence of externally supplemented Zn(2+) ions. The enzyme was resistant to osmolytes, reducing agents and non-ionic detergents.

  4. Site Saturation Mutagenesis Applications on Candida methylica Formate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Gülşah P. Özgün


    Full Text Available In NADH regeneration, Candida methylica formate dehydrogenase (cmFDH is a highly significant enzyme in pharmaceutical industry. In this work, site saturation mutagenesis (SSM which is a combination of both rational design and directed evolution approaches is applied to alter the coenzyme specificity of NAD+-dependent cmFDH from NAD+ to NADP+ and increase its thermostability. For this aim, two separate libraries are constructed for screening a change in coenzyme specificity and an increase in thermostability. To alter the coenzyme specificity, in the coenzyme binding domain, positions at 195, 196, and 197 are subjected to two rounds of SSM and screening which enabled the identification of two double mutants D195S/Q197T and D195S/Y196L. These mutants increase the overall catalytic efficiency of NAD+ to 5.6×104-fold and 5×104-fold value, respectively. To increase the thermostability of cmFDH, the conserved residue at position 1 in the catalytic domain of cmFDH is subjected to SSM. The thermodynamic and kinetic results suggest that 8 mutations on the first residue can be tolerated. Among all mutants, M1L has the best residual activity after incubation at 60°C with 17%. These studies emphasize that SSM is an efficient method for creating “smarter libraries” for improving the properties of cmFDH.




    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  6. Phosphoglycerate Dehydrogenase: Potential Therapeutic Target and Putative Metabolic Oncogene

    Directory of Open Access Journals (Sweden)

    Cheryl K. Zogg


    Full Text Available Exemplified by cancer cells’ preference for glycolysis, for example, the Warburg effect, altered metabolism in tumorigenesis has emerged as an important aspect of cancer in the past 10–20 years. Whether due to changes in regulatory tumor suppressors/oncogenes or by acting as metabolic oncogenes themselves, enzymes involved in the complex network of metabolic pathways are being studied to understand their role and assess their utility as therapeutic targets. Conversion of glycolytic intermediate 3-phosphoglycerate into phosphohydroxypyruvate by the enzyme phosphoglycerate dehydrogenase (PHGDH—a rate-limiting step in the conversion of 3-phosphoglycerate to serine—represents one such mechanism. Forgotten since classic animal studies in the 1980s, the role of PHGDH as a potential therapeutic target and putative metabolic oncogene has recently reemerged following publication of two prominent papers near-simultaneously in 2011. Since that time, numerous studies and a host of metabolic explanations have been put forward in an attempt to understand the results observed. In this paper, I review the historic progression of our understanding of the role of PHGDH in cancer from the early work by Snell through its reemergence and rise to prominence, culminating in an assessment of subsequent work and what it means for the future of PHGDH.

  7. Structural determinants of stereospecificity in yeast alcohol dehydrogenase. (United States)

    Weinhold, E G; Glasfeld, A; Ellington, A D; Benner, S A


    Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-methylnicotinamide adenine dinucleotide, a cofactor analog not accepted by native YADH. The stereospecificity of the mutant is lower still with analogs of NADH where the carboxamide group of the nicotinamide ring is replaced by groups with weaker hydrogen bonding potential. For example, with thio-NADH, the mutant enzyme makes 1 stereochemical "mistake" every 450 turnovers. Finally, the double mutant T157S/L182A, in which Thr-157 is replaced by Ser and Leu-182 is replaced by Ala, also shows decreased stereochemical fidelity. These results suggest that Si transfer in the mutant enzymes arises from NADH bound in a syn conformation in the active site and that this binding is not obstructed in native YADH by side chains essential for catalysis.


    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.


    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  9. Isocitrate dehydrogenase 1 and 2 mutations in gliomas. (United States)

    Megova, Magdalena; Drabek, Jiri; Koudelakova, Vladimira; Trojanec, Radek; Kalita, Ondrej; Hajduch, Marian


    Over the past few years, new biomarkers have allowed a deeper insight into gliomagenesis and facilitated the identification of possible targets for glioma therapy. Isocitrate dehydrogenase (IDH) 1 and IDH2 mutations have been shown to be promising biomarkers for monitoring disease prognosis and predicting the response to treatment. This review summarizes recent findings in this field. Web of Science, Science Direct, and PubMed online databases were used to search for publications investigating the role of IDH in glioma. References were identified by searching for the keywords "IDH1 or IDH2 and glioma and diagnostic or predictive or prognostic" in papers published from January, 2008, to April, 2014. Only papers in English were reviewed. Publications available only as an abstract were not included. IDH1/2 mutations are tightly associated with grade II and III gliomas and secondary glioblastomas, with better prognosis and production of a recently described oncometabolite, 2-hydroxyglutarate (2HG). Although the contradictory positive effect of IDH mutation on prognosis and negative role of 2HG in tumor transformation remain unresolved, the future direction of personalized treatment strategies targeted to glioma development is likely to focus on IDH1/2 mutations.

  10. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica. (United States)

    Kabran, Philomène; Rossignol, Tristan; Gaillardin, Claude; Nicaud, Jean-Marc; Neuvéglise, Cécile


    Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.

  11. Multiple soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva Maria Regina de


    Full Text Available A recent locus duplication hypothesis for sMDH-B* was proposed to explain the complex electrophoretic pattern of six bands detected for the soluble form of malate dehydrogenase (MDH, EC in 84% of the Geophagus brasiliensis (Cichlidae, Perciformes analyzed (AB1B2 individuals. Klebe's serial dilutions were carried out in skeletal muscle extracts. B1 and B2 subunits had the same visual end-points, reflecting a nondivergent pattern for these B-duplicated genes. Since there is no evidence of polyploidy in the Cichlidae family, MDH-B* loci must have evolved from regional gene duplication. Tissue specificities, thermostability and kinetic tests resulted in similar responses from both B-isoforms, in both sMDH phenotypes, suggesting that these more recently duplicated loci underwent the same regulatory gene action. Similar results obtained with the two sMDH phenotypes did not show any indication of a six-banded specimen adaptive advantage in subtropical regions.

  12. Characterization of malate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum. (United States)

    Yennaco, Lynda J; Hu, Yajing; Holden, James F


    Native and recombinant malate dehydrogenase (MDH) was characterized from the hyperthermophilic, facultatively autotrophic archaeon Pyrobaculum islandicum. The enzyme is a homotetramer with a subunit mass of 33 kDa. The activity kinetics of the native and recombinant proteins are the same. The apparent K ( m ) values of the recombinant protein for oxaloacetate (OAA) and NADH (at 80 degrees C and pH 8.0) were 15 and 86 microM, respectively, with specific activity as high as 470 U mg(-1). Activity decreased more than 90% when NADPH was used. The catalytic efficiency of OAA reduction by P. islandicum MDH using NADH was significantly higher than that reported for any other archaeal MDH. Unlike other archaeal MDHs, specific activity of the P. islandicum MDH back-reaction also decreased more than 90% when malate and NAD(+) were used as substrates and was not detected with NADP(+). A phylogenetic tree of 31 archaeal MDHs shows that they fall into 5 distinct groups separated largely along taxonomic lines suggesting minimal lateral mdh transfer between Archaea.

  13. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. (United States)

    Lee, Seung-Min; Dho, So Hee; Ju, Sung-Kyu; Maeng, Jin-Soo; Kim, Jeong-Yoon; Kwon, Ki-Sun


    Carbohydrate metabolism changes during cellular senescence. Cytosolic malate dehydrogenase (MDH1) catalyzes the reversible reduction of oxaloacetate to malate at the expense of reduced nicotinamide adenine dinucleotide (NADH). Here, we show that MDH1 plays a critical role in the cellular senescence of human fibroblasts. We observed that the activity of MDH1 was reduced in old human dermal fibroblasts (HDFs) [population doublings (PD) 56], suggesting a link between decreased MDH1 protein levels and aging. Knockdown of MDH1 in young HDFs (PD 20) and the IMR90 human fibroblast cell line resulted in the appearance of significant cellular senescence features, including senescence-associated β-galactosidase staining, flattened and enlarged morphology, increased population doubling time, and elevated p16(INK4A) and p21(CIP1) protein levels. Cytosolic NAD/NADH ratios were decreased in old HDFs to the same extent as in MDH1 knockdown HDFs, suggesting that cytosolic NAD depletion is related to cellular senescence. We found that AMP-activated protein kinase, a sensor of cellular energy, was activated in MDH1 knockdown cells. We also found that sirtuin 1 (SIRT1) deacetylase, a controller of cellular senescence, was decreased in MDH1 knockdown cells. These results indicate that the decrease in MDH1 and subsequent reduction in NAD/NADH ratio, which causes SIRT1 inhibition, is a likely carbohydrate metabolism-controlled cellular senescence mechanism.

  14. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum. (United States)

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui


    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51 kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2 kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30°C, and interestingly, it could utilize NAD(+) and NADP(+) as coenzymes with similar efficiency and showed no obvious difference toward NAD(+) and NADP(+). In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum.

  15. Metabolism of the novel IMP dehydrogenase inhibitor benzamide riboside. (United States)

    Jäger, Walter; Salamon, Alexandra; Szekeres, Thomas


    Benzamide riboside (BR) is a novel anticancer agent exhibiting pronounced activity against several human tumor cell lines via the inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH) that catalyzes the formation of xanthine 5'-monophosphate from inosine 5'-monophosphate and nicotinamide adenine dinucleotide, thereby restricting the biosynthesis of guanylates. Phosphorylation of BR to its 5'-monophosphate derivative appears to be ubiquitous in most cells catalyzed by the enzymes, adenosine kinase, nicotinamide nucleoside kinase and 5' nucleotidase. BR 5'-monophosphate is then converted to the active metabolite benzamide adenine dinucleotide (BAD) by NMN adenylyltransferase, the rate-limiting enzyme in the biosynthesis of NAD. As BAD is more potent in the inhibition of IMPDH than BR and BR 5'-monophosphate, cytotoxicity of BR is closely connected with intercellular metabolism to BAD. However, intracellular BAD level is also affected by BADase activity, a phosphodiesterase which hydrolyzes BAD to BR-5'-monophosphate and AMP. A recent study demonstrates enzymatic deamination of BR to non-cytotoxic benzene carboxylic acid (BR-COOH) as the main hepatic BR biotransformation product in rat liver. As the IMPDH inhibitors tiazofurin and ribavirin exhibit predominant accumulation and biotransformation in liver, hepatic metabolism may be an important factor also for BR activation and inactivation and should be considered in human liver during cancer therapy when BR is used as a single drug or in combination with other anticancer agents.

  16. Human choline dehydrogenase: medical promises and biochemical challenges. (United States)

    Salvi, Francesca; Gadda, Giovanni


    Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.

  17. The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. (United States)

    Gómez-Manzo, Saúl; Contreras-Zentella, Martha; González-Valdez, Alejandra; Sosa-Torres, Martha; Arreguín-Espinoza, Roberto; Escamilla-Marván, Edgardo


    The oxidation of ethanol to acetic acid is the most characteristic process in acetic acid bacteria. Gluconacetobacter diazotrophicus is rather unique among the acetic acid bacteria as it carries out nitrogen fixation and is a true endophyte, originally isolated from sugar cane. Aside its peculiar life style, Ga. diazotrophicus, possesses a constitutive membrane-bound oxidase system for ethanol. The Alcohol dehydrogenase complex (ADH) of Ga. diazotrophicus was purified to homogeneity from the membrane fraction. It-exhibited two subunits with molecular masses of 71.4 kDa and 43.5 kDa. A positive peroxidase reaction confirmed the presence of cytochrome c in both subunits. Pyrroloquinoline quinone (PQQ) of ADH was identified by UV-visible light and fluorescence spectroscopy. The enzyme was purified in its full reduced state; potassium ferricyanide induced its oxidation. Ethanol or acetaldehyde restored the full reduced state. The enzyme showed an isoelectric point (pI) of 6.1 and its optimal pH was 6.0. Both ethanol and acetaldehyde were oxidized at almost the same rate, thus suggesting that the ADH complex of Ga. diazotrophicus could be kinetically competent to catalyze, at least in vitro, the double oxidation of ethanol to acetic acid.

  18. Serum alcohol dehydrogenase levels in patients with mental disorders. (United States)

    Kravos, Matej; Malesic, Ivan; Levanic, Suzana


    Alcohol dehydrogenase (ADH) was assessed in 81 patients admitted to hospital for treatment for alcohol dependence with or without liver cirrhosis, 20 patients with bipolar disorder treated with lithium carbonate and 41 patients with various mental disorders treated with psychopharmacologic agents. Testing the hypothesis of the arithmetic mean showed that in alcohol dependents the arithmetic mean of ADH activity (12.19 nkat/l+/-5.61) differs significantly from that in healthy subjects (4.45 nkat/l+/-2.31) and in the group with ethanol poisoning (6.24 nkat/l+/-3.65) there is none. In the group with bipolar disorder, treated with lithium (7.39 nkat/l+/-3.11) and, in the group of patients treated with psychiatric drugs because of various mental disorders (7.79 nkat/l+/-8.51), the differences are statistically significant. In our opinion, assessing ADH activity in the sera of alcohol dependents could be an additional marker advantageous to the diagnostics, course and monitoring of therapy in such patients. In the groups of patients with mental disorders treated with psychotropic drugs, the increased ADH activity was found to be a more sensitive marker for the detection of drug hepatotoxicity.

  19. Effect of 15-hydroxyprostaglandin dehydrogenase inhibitor on wound healing. (United States)

    Seo, Seung Yong; Han, Song-Iy; Bae, Chun Sik; Cho, Hoon; Lim, Sung Chul


    PGE2 is an important mediator of wound healing. It is degraded and inactivated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Various growth factors, type IV collagen, TIMP-2 and PGE2 are important mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring. If we make the condition downregulating growth factors and upregulating PGE2, the wound will have a positive effect which results in little scar formation after healing. TD88 is a 15-PGDH inhibitor based on thiazolinedione structure. We evaluated the effect of TD88 on wound healing. In 10 guinea pigs (4 control and 6 experimental groups), we made four 1cm diameter-sized circular skin defects on each back. TD88 and vehicle were applicated on the wound twice a day for 4 days in the experimental and control groups, respectively. Tissue samples were harvested for qPCR and histomorphometric analyses on the 2nd and 4th day after treatment. Histomorphometric analysis showed significant reepithelization in the experimental group. qPCR analysis showed significant decrease of PDGF, CTGF and TIMP-2, but significant increase of type IV collagen in the experimental group. Taken together TD88 could be a good effector on wound healing, especially in the aspects of prevention of scarring.

  20. The structure and allosteric regulation of glutamate dehydrogenase. (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J


    Glutamate dehydrogenase (GDH) has been extensively studied for more than 50 years. Of particular interest is the fact that, while considered by most to be a 'housekeeping' enzyme, the animal form of GDH is heavily regulated by a wide array of allosteric effectors and exhibits extensive inter-subunit communication. While the chemical mechanism for GDH has remained unchanged through epochs of evolution, it was not clear how or why animals needed to evolve such a finely tuned form of this enzyme. As reviewed here, recent studies have begun to elucidate these issues. Allosteric regulation first appears in the Ciliates and may have arisen to accommodate evolutionary changes in organelle function. The occurrence of allosteric regulation appears to be coincident with the formation of an 'antenna' like feature rising off the tops of the subunits that may be necessary to facilitate regulation. In animals, this regulation further evolved as GDH became integrated into a number of other regulatory pathways. In particular, mutations in GDH that abrogate GTP inhibition result in dangerously high serum levels of insulin and ammonium. Therefore, allosteric regulation of GDH plays an important role in insulin homeostasis. Finally, several compounds have been identified that block GDH-mediated insulin secretion that may be to not only find use in treating these insulin disorders but to kill tumors that require glutamine metabolism for cellular energy.

  1. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J


    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  2. The structure and allosteric regulation of mammalian glutamate dehydrogenase. (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J


    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  3. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites. (United States)

    Bartholomae, Maike; Meyer, Frederik M; Commichau, Fabian M; Burkovski, Andreas; Hillen, Wolfgang; Seidel, Gerald


    In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC with isocitrate dehydrogenase (Icd) (EC was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.

  4. Inhibiting sperm pyruvate dehydrogenase complex and its E3 subunit, dihydrolipoamide dehydrogenase affects fertilization in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Archana B Siva

    Full Text Available BACKGROUND/AIMS: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc and its E3 subunit, dihydrolipoamide dehydrogenase (DLD in hamster in vitro fertilization (IVF via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. METHODOLOGY AND PRINCIPAL FINDINGS: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid. Oocytes fertilized with MICA-treated (MT [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. CONCLUSIONS: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In

  5. [Palmitoyl-CoA-dehydrogenase from rabbit adrenals, liver and myocardium]. (United States)

    Doroshkevich, N A; Mandrik, K A; Vinogradov, V V


    Partially purified preparations of palmitoyl-CoA dehydrogenase from rabbit adrenal glands, liver and heart tissues exhibited similar kinetic parameters. Km value constituted 6.58, 5.26 and 6.67 microM for the enzyme from adrenal glands, liver and heart tissues, respectively. At the same time, palmitoyl-CoA dehydrogenase possessed lower catalytic capacity in adrenal glands due to the decreased amount of the enzyme as compared with that of liver or heart tissues.

  6. Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti in alfalfa nodules.


    Gardiol, A E; Truchet, G L; Dazzo, F. B.


    Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti ba...

  7. The metabolism of fatty alcohols in lipid nanoparticles by alcohol dehydrogenase. (United States)

    Dong, X; Mumper, R J


    Fatty alcohols are commonly used in lipid-based drug delivery systems including parenteral emulsions and solid lipid nanoparticles (NPs). The purpose of these studies was to determine whether horse liver alcohol dehydrogenase (HLADH), a NAD-dependent enzyme, could metabolize the fatty alcohols within the NPs and thus serve as a mechanism to degrade these NPs in the body. Solid nanoparticles (endogenous alcohol dehydrogenase enzyme systems.

  8. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell


    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  9. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation. (United States)

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru


    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  10. Immunohistochemical analysis of aldehyde dehydrogenase isoforms and their association with estrogen-receptor status and disease progression in breast cancer

    Directory of Open Access Journals (Sweden)

    Opdenaker LM


    Full Text Available Lynn M Opdenaker,1,2 Kimberly M Arnold,1,3 Ryan T Pohlig,3,4 Jayasree S Padmanabhan,1 Daniel C Flynn,1,3 Jennifer Sims-Mourtada1–3 1Center for Translational Cancer Research, Helen F Graham Cancer Center, Christiana Care Health Services, Inc., Newark, Delaware, USA; 2Department of Biological Sciences, 3Department of Medical Laboratory Sciences, 4Biostatistics Core Facility, University of Delaware, Newark, Delaware, USA Abstract: In many types of tumors, especially breast tumors, aldehyde dehydrogenase (ALDH activity has been used to identify cancer stem-like cells within the tumor. The presence and quantity of these cells are believed to predict the response of tumors to chemotherapy. Therefore, identification and eradication of these cells would be necessary to cure the patient. However, there are 19 different ALDH isoforms that could contribute to the enzyme activity. ALDH1A1 and ALDH1A3 are among the isoforms mostly responsible for the increased ALDH activity observed in these stem-like cells, although the main isoforms vary in different tissues and tumor types. In the study reported here, we attempted to determine if ALDH1A1 or ALDH1A3, specifically, correlate with tumor stage, grade, and hormone-receptor status in breast-cancer patients. While there was no significant correlation between ALDH1A1 and any of the parameters tested, we were able to identify a positive correlation between ALDH1A3 and tumor stage in triple-negative cancers. In addition, ALDH1A3 was negatively correlated with estrogen-receptor status. Our data suggest that ALDH1A3 could be utilized as a marker to identify stem-like cells within triple-negative tumors. Keywords: breast tumor, ALDH, ALDH1A1, ALDH1A3, stem-like cells, triple-negative cancer

  11. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Directory of Open Access Journals (Sweden)

    Sharma Pushpa


    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  12. Glucose-6-phosphate-dehydrogenase deficiency and its correlation with other risk factors in jaundiced newborns in Southern Brazil

    Institute of Scientific and Technical Information of China (English)

    Clarissa Gutirrez Carvalho; Simone Martins Castro; Ana Paula Santin; Carina Zaleski; Felipe Gutirrez Carvalho; Roberto Giugliani


    Objective:To evaluate the correlation between glucose-6-phosphate-dehydrogenase (G6PD) deficiency and neonatal jaundice.Methods: Prospective, observational case-control study was conducted on490 newborns admitted to Hospital de Clínicas de Porto Alegre for phototherapy, who all experienced35 or more weeks of gestation, from March to December2007. Enzymatic screening ofG6PD activity was performed, followed byPCR.Results:There was prevalence of4.6% and a boy-girl ratio of3:1 in jaundiced newborns. No jaundiced neonate withABO incompatibility presented G6PD deficiency, and no Mediterranean mutation was found. A higher proportion of deficiency was observed in Afro-descendants. There was no association withUGT1A1 variants. Conclusions:G6PD deficiency is not related to severe hyperbilirubinemia and considering the high miscegenation in this area of Brazil, other gene interactions should be investigated.

  13. L-lactate metabolism can occur in normal and cancer prostate cells via the novel mitochondrial L-lactate dehydrogenase. (United States)

    De Bari, Lidia; Chieppa, Gabriella; Marra, Ersilia; Passarella, Salvatore


    Both normal (PTN1A) and cancer (PC3) prostate cells produce high levels of L-lactate because of a low energy supply via the citric cycle and oxidative phosphorylation. Since some mammalian mitochondria possess a mitochondrial L-lactate dehydrogenase (mLDH), we investigated whether prostate cells can take up L-lactate and metabolize it in the mitochondria. We report here that externally added L-lactate can enter both normal and cancer cells and mitochondria, as shown by both the oxygen consumption and by the increase in fluorescence of NAD(P)H which occur as a result of L-lactate addition. In both cell types L-lactate enters mitochondria in a carrier-mediated manner, as shown by the inhibition of swelling measurements due to the non-penetrant thiol reagent mersalyl. An L-lactate dehydrogenase exists in mitochondria of both cell types located in the inner compartment, as shown by kinetic investigation and by immunological analysis. The mLDHs proved to differ from the cytosolic enzymes (which themselves differ from one another) as functionally investigated with respect to kinetic features and pH profile. Normal and cancer cells were found to differ from one another with respect to mLDH protein level and activity, being the enzyme more highly expressed and of higher activity in PC3 cells. Moreover, the kinetic features and pH profiles of the PC3 mLDH also differ from those of the PNT1A enzyme, this suggesting the occurrence of separate isoenzymes.

  14. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Directory of Open Access Journals (Sweden)

    Stephen eTechtmann


    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  15. Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases. (United States)

    Kim, Byoungjin; Sullivan, Ryan P; Zhao, Huimin


    L-Arabinitol 4-dehydrogenase (LAD) catalyzes the conversion of L-arabinitol to L-xylulose with concomitant NAD(+) reduction in fungal L-arabinose catabolism. It is an important enzyme in the development of recombinant organisms that convert L: -arabinose to fuels and chemicals. Here, we report the cloning, characterization, and engineering of four fungal LADs from Penicillium chrysogenum, Pichia guilliermondii, Aspergillus niger, and Trichoderma longibrachiatum, respectively. The LAD from P. guilliermondii was inactive, while the other three LADs were NAD(+)-dependent and showed high catalytic activities, with P. chrysogenum LAD being the most active. T. longibrachiatum LAD was the most thermally stable and showed the maximum activity in the temperature range of 55-65 degrees C with the other LADs showed the maximum activity in the temperature range of 40-50 degrees C. These LADs were active from pH 7 to 11 with an optimal pH of 9.4. Site-directed mutagenesis was used to alter the cofactor specificity of these LADs. In a T. longibrachiatum LAD mutant, the cofactor preference toward NADP(+) was increased by 2.5 x 10(4)-fold, whereas the cofactor preference toward NADP(+) of the P. chrysogenum and A. niger LAD mutants was also drastically improved, albeit at the expense of significantly reduced catalytic efficiencies. The wild-type LADs and their mutants with altered cofactor specificity could be used to investigate the functionality of the fungal L-arabinose pathways in the development of recombinant organisms for efficient microbial L-arabinose utilization.

  16. Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation. (United States)

    Gerardo Valadez, J; Grover, Vandana K; Carter, Melissa D; Calcutt, M Wade; Abiria, Sunday A; Lundberg, Christopher J; Williams, Thomas V; Cooper, Michael K


    The Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions. To evaluate this possibility and to better define the molecular and histopathological glioma subtypes that are Hh-responsive, IDH genes were sequenced in adult glioma specimens assayed for an operant Hh pathway. The proportions of grades II-IV specimens with IDH mutations correlated with the proportions that expressed elevated levels of the Hh gene target PTCH1. Indices of an operational Hh pathway were measured in all primary cultures and xenografts derived from IDH-mutant glioma specimens, including IDH-mutant glioblastomas. In contrast, the Hh pathway was not operational in glioblastomas that lacked IDH mutation or history of antecedent lower-grade disease. IDH mutation is not required for an operant pathway however, as significant Hh pathway modulation was also measured in grade III gliomas with wild-type IDH sequences. These results indicate that the Hh pathway is operational in grades II and III gliomas and glioblastomas with molecular or histopathological evidence for evolvement from lower-grade gliomas. Lastly, these findings suggest that gliomas sharing this molecularly defined route of progression arise in Hh-responsive cell types.

  17. Short-chain dehydrogenases/reductases in cyanobacteria. (United States)

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund


    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria.

  18. Screening and Characterization of Proline Dehydrogenase Flavoenzyme Producing Pseudomonas Entomophila

    Directory of Open Access Journals (Sweden)

    H Shahbaz- Mohammadi


    Full Text Available Background and Objectives: Proline dehydrogenase (ProDH; plays an important role in specific determination of plasma proline level in biosensor and diagnostic kits. The goal of this research was to isolate and characterize ProDH enzyme from Iranian soil microorganisms.Materials and Methods: Screening of L-proline degradative enzymes from soil samples was carried out employing enrichment culture techniques. The isolate was characterized by biochemical reactions and specific PCR amplification. The target ProDH was purified and the effects of pH and temperature on the activity and stability were also tested.Results: Among the 250 isolates recovered from 40 soil samples, only one strain characterized as Pseudomonas entomophila displayed the highest enzyme activity toward L-proline (350 U/l than others. The enzyme of interest was identified as a ProDH and had Km value of 32 mM for L-proline. ProDH exhibited its best activity at temperature range of 25 to 35°C and its highest activity was achieved at 30°C. It was almost stable at temperatures between 25-30°C for 2 hours. The optimum pH activity of ProDH reaction was 8.5 and its activity was stable in pH range of 8.0-9.0 upto 24 hours. The enzyme was purified with a yield of 8.5% and a purification factor of 37.7. The molecular mass of the purified ProDH was about 40 kDa, and determined to be a monomeric protein."nConclusion: This is the first report concerning the ProDH production by a P. entomophila bacterium isolated from soil sample.

  19. The expression of succinate dehydrogenase in breast phyllodes tumor. (United States)

    Choi, Junjeong; Kim, Do Hee; Jung, WooHee; Koo, Ja Seung


    The purpose of this study is to investigate the expression of succinate dehydrogenase (SDH)A, SDHB, and HIF-1α in phyllodes tumors and the association with clinic-pathologic factors. Using tissue microarray (TMA) for 206 phyllodes tumor cases, we performed immunohistochemical stains for SDHA, SDHB, and HIF-1α and analyzed their expression in regard to clinicopathologic parameters of each case. The cases were comprised of 156 benign, 34 borderline, and 16 malignant phyllodes tumors. The expression of stromal SDHA and epithelial- and stromal- SDHB increased as the tumor progressed from benign to malignant (P⟨0.001). There were five stromal SDHA-negative cases and 31 stromal SDHB-negative cases. SDHB negativity was associated with a lower histologic grade (P=0.054) and lower stromal atypia (P=0.048). Univariate analysis revealed that a shorter disease free survival (DFS) was associated with stromal SDHB high-positivity (P=0.013) and a shorter overall survival (OS) was associated with high-positivity of stromal SDHA and SDHB (P⟨0.001 and P⟨0.001, respectively). The multivariate Cox analysis with the variables stromal cellularity, stromal atypia, stromal mitosis, stromal overgrowth, tumor margin, stromal SDHA expression, and stromal SDHB expression revealed that stromal overgrowth was associated with a shorter DFS (hazard ratio: 24.78, 95% CI: 3.126-196.5, P=0.002) and a shorter OS (hazard ratio: 176.7, 95% CI: 8.466-3691, P=0.001). In conclusion, Tumor grade is positively correlated with SDHA and SDHB expression in the tumor stroma in phyllodes tumors of the breast. This result may be attributed to the increased metabolic demand in high grade tumors.

  20. Residues that influence coenzyme preference in the aldehyde dehydrogenases. (United States)

    González-Segura, Lilian; Riveros-Rosas, Héctor; Julián-Sánchez, Adriana; Muñoz-Clares, Rosario A


    To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can

  1. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: Assessment of the effects on first-pass metabolism of ethanol. (United States)

    Lee, Yung-Pin; Liao, Jian-Tong; Cheng, Ya-Wen; Wu, Ting-Lun; Lee, Shou-Lun; Liu, Jong-Kang; Yin, Shih-Jiun


    Acetaminophen is one of the most widely used over-the-counter analgesic, antipyretic medications. Use of acetaminophen and alcohol are commonly associated. Previous studies showed that acetaminophen might affect bioavailability of ethanol by inhibiting gastric alcohol dehydrogenase (ADH). However, potential inhibitions by acetaminophen of first-pass metabolism (FPM) of ethanol, catalyzed by the human ADH family and by relevant aldehyde dehydrogenase (ALDH) isozymes, remain undefined. ADH and ALDH both exhibit racially distinct allozymes and tissue-specific distribution of isozymes, and are principal enzymes responsible for ethanol metabolism in humans. In this study, we investigated acetaminophen inhibition of ethanol oxidation with recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and inhibition of acetaldehyde oxidation with recombinant human ALDH1A1 and ALDH2. The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD(+). Acetaminophen acted as a noncompetitive inhibitor for ADH enzymes, with the slope inhibition constants (Kis) ranging from 0.90 mM (ADH2) to 20 mM (ADH1A), and the intercept inhibition constants (Kii) ranging from 1.4 mM (ADH1C allozymes) to 19 mM (ADH1A). Acetaminophen exhibited noncompetitive inhibition for ALDH2 (Kis = 3.0 mM and Kii = 2.2 mM), but competitive inhibition for ALDH1A1 (Kis = 0.96 mM). The metabolic interactions between acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using inhibition equations and the determined kinetic constants. At therapeutic to subtoxic plasma levels of acetaminophen (i.e., 0.2-0.5 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μm) in target tissues, acetaminophen could inhibit ADH1C allozymes (12-26%) and ADH2 (14-28%) in the liver and small intestine, ADH4 (15-31%) in the stomach, and ALDH1A1 (16-33%) and ALDH2 (8.3-19%) in all 3 tissues. The

  2. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês


    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  3. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+). (United States)

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J


    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.

  4. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. (United States)

    Goncalves, Renata L S; Bunik, Victoria I; Brand, Martin D


    In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.

  5. Simultaneous immobilization of dehydrogenases on polyvinylidene difluoride resin after separation by non-denaturing two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Youji [Graduate School of Science and Engineering (Science Section) and Venture Business Laboratory, Ehime University, Bunkyo-cho 2-5, Matsuyama City 790-8577 (Japan)], E-mail:; Kadota, Mariko [Faculty of Science, Ehime University, Matsuyama (Japan)


    We detected mouse liver malate, sorbitol and aldehyde dehydrogenases by negative staining, analysis of malate and sorbitol dehydrogenase activities using each substrate, and electron transfers including nicotinamide adenine dinucleotide (NAD) and nitroblue tetrazolium in non-denaturing two-dimensional electrophoresis (2-DE) gel. Dehydrogenases were also identified by electrospray ionization tandem mass spectrometry (ESI-MS/MS) after 2-DE separation and protein detection by negative staining. Spots of dehydrogenases separated by 2-DE were excised, and simultaneously transferred and immobilized on polyvinylidene difuoride (PVDF) resin by electrophoresis. The dehydrogenase activities remained intact after immobilization. In conclusion, resin-immobilized dehydrogenases can be simultaneously obtained after separation by non-denaturing 2-DE, detection by negative staining and transferring to resins.

  6. Tear Malate Dehydrogenase,Lactate Dehydrogenase and Their Isoenzymes in Normal Chinese Subjects and Patients of Ocular Surface Disorders

    Institute of Scientific and Technical Information of China (English)

    QingGuo; HanchengZhang


    Purose:To determine levels of malate dehydrogenase(MDH),lactate dehydroge-nase(LDH)and their isoenzymes in tears of normal Chinese subjects and patients with ocular surface disorders.Methods:The age range of normal subjects was10-88,with136mal and 128fe-male subjects.123patients suffered from ocular surface disorders.Tears were col-lected from lower fornix on Xinghua filter disc(0.1mm thick,5mm in diameter).The values of tearMDHand LDHwere determined by MONARCH-2000Ana-lyzer(U.S.A)Their isoenzymes were separated by acetate cellulose elec-trophoresis and were determined by Model CDS-200light densitometer.Results:The normal values of tear LDH and MDH were 45.51+23.00-81.35+37.84umol·s-1/Land11.00+5.33-19.50+9.17umol·s-1/Lrespectively,dis-regarding sex or eye distriction(P>0.05).The values of tear LDHandMDH in the group aged10-19were significantly lower than in another groups(P<0.05),95%normal ranges of tearMDHaged below19and above20were3.63-19.90umol·s-1/L.THe MDH isoenzymes comprised MDHs and MDHm,the former accounting for80.0-89.1%.The LDH isoenzymes comprised 5varieties.of which the ratioH/Mof subunit H tosubunit Mwas0.196+0.02.Levels of tear LDH,MDHand their isoenzymes in different diseases were various.Conclusions;Tear LDH/MDHratio reflected sensitively the matabolism of corneae and conjunetival epithelium.The changes in LDH isoenzymes were hel-ful to the differential diagnosis of external eye diseases,and the increase of MDHm reflected sensitively the degree of injury to the corneal epithelium.

  7. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. (United States)

    Li, Changhong; Chen, Pan; Palladino, Andrew; Narayan, Srinivas; Russell, Laurie K; Sayed, Samir; Xiong, Guoxiang; Chen, Jie; Stokes, David; Butt, Yasmeen M; Jones, Patricia M; Collins, Heather W; Cohen, Noam A; Cohen, Akiva S; Nissim, Itzhak; Smith, Thomas J; Strauss, Arnold W; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A


    The mechanism of insulin dysregulation in children with hyperinsulinism associated with inactivating mutations of short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) was examined in mice with a knock-out of the hadh gene (hadh(-/-)). The hadh(-/-) mice had reduced levels of plasma glucose and elevated plasma insulin levels, similar to children with SCHAD deficiency. hadh(-/-) mice were hypersensitive to oral amino acid with decrease of glucose level and elevation of insulin. Hypersensitivity to oral amino acid in hadh(-/-) mice can be explained by abnormal insulin responses to a physiological mixture of amino acids and increased sensitivity to leucine stimulation in isolated perifused islets. Measurement of cytosolic calcium showed normal basal levels and abnormal responses to amino acids in hadh(-/-) islets. Leucine, glutamine, and alanine are responsible for amino acid hypersensitivity in islets. hadh(-/-) islets have lower intracellular glutamate and aspartate levels, and this decrease can be prevented by high glucose. hadh(-/-) islets also have increased [U-(14)C]glutamine oxidation. In contrast, hadh(-/-) mice have similar glucose tolerance and insulin sensitivity compared with controls. Perifused hadh(-/-) islets showed no differences from controls in response to glucose-stimulated insulin secretion, even with addition of either a medium-chain fatty acid (octanoate) or a long-chain fatty acid (palmitate). Pull-down experiments with SCHAD, anti-SCHAD, or anti-GDH antibodies showed protein-protein interactions between SCHAD and GDH. GDH enzyme kinetics of hadh(-/-) islets showed an increase in GDH affinity for its substrate, α-ketoglutarate. These studies indicate that SCHAD deficiency causes hyperinsulinism by activation of GDH via loss of inhibitory regulation of GDH by SCHAD.

  8. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes (United States)

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico


    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable

  9. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes. (United States)

    Tolstrup, Janne Schurmann; Nordestgaard, Børge Grønne; Rasmussen, Søren; Tybjaerg-Hansen, Anne; Grønbaek, Morten


    Alcohol drinking habits and alcoholism are partly genetically determined. Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 white men and women from the general population, we found that men and women with ADH1B slow vs fast alcohol degradation drank more alcohol and had a higher risk of everyday drinking, heavy drinking, excessive drinking and of alcoholism. For example, the weekly alcohol intake was 9.8 drinks (95% confidence interval (CI): 9.1-11) among men with the ADH1B.1/1 genotype compared to 7.5 drinks (95% CI: 6.4-8.7) among men with the ADH1B.1/2 genotype, and the odds ratio (OR) for heavy drinking was 3.1 (95% CI: 1.7-5.7) among men with the ADH1B.1/1 genotype compared to men with the ADH1B.1/2 genotype. Furthermore, individuals with ADH1C slow vs fast alcohol degradation had a higher risk of heavy and excessive drinking. For example, the OR for heavy drinking was 1.4 (95% CI: 1.1-1.8) among men with the ADH1C.1/2 genotype and 1.4 (95% CI: 1.0-1.9) among men with the ADH1B.2/2 genotype, compared with men with the ADH1C.1/1 genotype. Results for ADH1B and ADH1C genotypes among men and women were similar. Finally, because slow ADH1B alcohol degradation is found in more than 90% of the white population compared to less than 10% of East Asians, the population attributable risk of heavy drinking and alcoholism by ADH1B.1/1 genotype was 67 and 62% among the white population compared with 9 and 24% among the East Asian population.

  10. Virtual mutagenesis of isocitrate dehydrogenase 1 involved in glioblastoma multiforme

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-dong; SHI Yan-fang; WANG Hong; WANG Jia-liang; MA Wen-bin; WANG Ren-zhi


    Background Site A132Arg mutations potentially impair the affinity of isocitrate dehydrogenase 1 (IDH1) for its substrate isocitrate (ICT),consequently reducing the production of α-ketoglutarate and leading to tumor growth through the induction of the hypoxia-inducible factor-1 (HIF-1) pathway.However,given that the roles of other active sites in IDH1 substrate binding remain unclear,we aimed to investigate IDH1 mutation pattern and its influence on enzyme function.Methods Fifteen IDH1 catalytic active site candidates were selected for in silico mutagenesis and protein homology modeling.Binding free energy of the IDH1/ICT complexes with single-site mutations was compared with that of the wild type.The affinity of 10 IDH1 catalytic active sites for the ICT substrate was further calculated.Results The IDH1 active site included seven residues from chain A (A77Thr,A94Ser,A100Arg,A132Arg,A1O9Arg,A275Asp,and A279Asp) and three residues from chain B (B214Thr,B212Lys,and B252Asp) that constituted the substrate ICT-binding site.These residues were located within 0.5 nm of ICT,indicating a potential interaction with the substrate.IDH1 changes of binding free energy (△E) suggested that the A132Arg residue from chain A contributes three hydrogen bonds to the ICT α-carboxyl and β-carboxyl groups,while the other nine residues involved in ICT binding form only one or two hydrogen bonds.Amino acid substitutes at A132Arg,A109Arg,and B212Lys sites,had the greatest effect on enzyme affinity for its substrate.Conclusions Mutations at sites A132Arg,A109Arg,and B212Lys reduced IDH1 affinity for ICT,indicating these active sites may play a central role in substrate binding.Mutations at sites A77Thr,A94Ser,and A275Asp increased the affinity of IDH1 for ICT,which may enhance IDN1 catalytic activity.Mutant IDH1 proteins with higher catalytic activity than the wild-type IDH1 could potentially be used as a novel gene therapy for glioblastoma multiforme.

  11. Relationship Between Polymorphism of Methylenetetrahydrofolate Dehydrogenase and Congenital Heart Defect

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the relationship between G1958A gene polymorphism of methylenetetrahydrofolate dehydrogenase (MTHFD) and occurrence of congenital heart disease (CHD) in North China. Methods One hundred and ninety-two CHD patients and their parents were included in this study as case group in Liaoning Province by birth defect registration cards, and 124 healthy subjects (age and gender matched) and their parents were simultaneously selected from the same geographic area as control. Their gene polymorphism of MTHFD G1958A locus was examined with PCR-RFLP, and serum folic acid and homocysteine (Hcy) levels were tested with radio-immunoassay and fluorescence polarization immunoassay (FPIA). Results There existed gene polymorphism at MTHFD G1958A locus in healthy subjects living in North China. The percentages of GG, GA, and AA genotype were 57.98%, 35.57%, and 6.45% respectively, and the A allele frequency was 24.23%, which was significantly different from Western population. No difference was observed when comparing genotype distribution and allele frequency between the case and control groups, so was the result from the comparison between genders. The A allele frequency of arterial septal defect patients' mothers (10.87%) was significantly lower than that of controls (28.15%) (P=0.014), with OR=0.31 (95% CI: 0.09-0.84), and no difference in the other subgroups. The percentage of at least one parent carrying A allele in arterial septal defect subgroup (43.48%) was significantly lower than that in controls (69.64%) (P=0.017), with OR=0.34 (95% CI: 0.12-0.92). The analysis of genetic transmission indicated that there was no transmission disequillibrium in CHD nuclear families. Their serum folic acid level was significantly higher than that of controls (P=0.000), and Hcy level of the former was higher than that of the latter with no statistical significance (P>0.05). Serum Hcy and folic acid levels of mothers with gene mutation were lower than those of mothers

  12. Glucose-6-phosphate dehydrogenase mutations and haplotypes in Mexican Mestizos. (United States)

    Arámbula, E; Aguilar L, J C; Vaca, G


    In a screening for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in 1985 unrelated male subjects from the general population (Groups A and B) belonging to four states of the Pacific coast, 21 G-6-PD-deficient subjects were detected. Screening for mutations at the G-6-PD gene by PCR-restriction enzyme in these 21 G-6-PD-deficient subjects as well as in 14 G-6-PD-deficient patients with hemolytic anemia belonging to several states of Mexico showed two common G-6-PD variants: G-6-PD A-(202A/376G) (19 cases) and G-6-PD A-(376G/968C) (9 cases). In 7 individuals the mutations responsible for the enzyme deficiency remain to be determined. Furthermore, four silent polymorphic sites at the G-6-PD gene (PvuII, PstI, 1311, and NlaIII) were investigated in the 28 individuals with G-6-PD A- variants and in 137 G-6-PD normal subjects. As expected, only 10 different haplotypes were observed. To date, in our project aiming to determine the molecular basis of G-6-PD deficiency in Mexico, 60 unrelated G-6-PD-deficient Mexican males-25 in previous studies and 35 in the present work-have been studied. More than 75% of these individuals are from states of the Pacific coast (Sinaloa, Nayarit, Jalisco, Michoacán, Guerrero, Oaxaca, and Chiapas). The results show that although G-6-PD deficiency is heterogeneous at the DNA level in Mexico, only three polymorphic variants have been observed: G-6-PD A-(202A/376G) (36 cases), G-6-PD A-(376G/968C) (13 cases), and G-6-PD Seattle(844C) (2 cases). G-6-PD A- variants are relatively distributed homogeneously and both variants explain 82% of the overall prevalence of G-6-PD deficiency. The variant G-6-PD A-(202A/376G) represents 73% of the G-6-PD A- alleles. Our data also show that the variant G-6-PD A-(376G/968C)-which has been observed in Mexico in the context of two different haplotypes-is more common than previously supposed. The three polymorphic variants that we observed in Mexico are on the same haplotypes as found in subjects from

  13. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase. (United States)

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J


    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.

  14. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  15. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome. (United States)

    Basner, Alexander; Antranikian, Garabed


    Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  16. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Directory of Open Access Journals (Sweden)

    Alexander Basner

    Full Text Available Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P, the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  17. Isolation and characterization of an inducible NAD-dependent butyraldehyde dehydrogenase from clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, W.; Duerre, P. [Universitaet Ulm (Germany)


    A NAD-dependent butyraldehyde dehydrogenase (BAD) has been purified from C. acetobutylicum DSM 792 and DSM 173 1. This key enzyme of butanol production, catalyzing the conversion of butyryl-CoA to butyraldehyde, was induced shortly before the onset of butanol production and proved to be oxygen-sensitive. A one step purification procedure on reactive green 19 allowed to purify the enzyme to homogeneity. The purified protein was found to be extremely unstable and could only partially be stabilized by addition of mercaptoethanol and storage below -20{degrees}C. The enzyme subunit had a molecular mass of 39.5 kDa. In the reverse reaction (butyryl-CoA-forming) the apparent pH optimum was 9.75 and Vmax was significantly higher with butyraldehyde and propionaldehyde than with acetaldehyde. BAD could also use NADP+, but NAD+ was the preferred coenzyme for the reverse reaction. The N-terminal amino acid sequence of the C. acetobutylicurn DSM 792 protein showed high homology to glyceraldehyde-3-phosphate dehydrogenases (GAP), especially to the protein of C. pasteurianum. Genomic libraries of C. acetobutylicum DSM 792 were screened by hybridization using PCR-generated heterologous probes encoding the gap gene of C. pasteurianum. Sequence analysis of the positive clones revealed high homology, but no identity to the N-terminal amino acid sequence of the butyraldehyde dehydrogenase. Thus, BAD from C. acetobutylicum is distinctly different from other reported aldehyde dehydrogenases with butyraldehyde dehydrogenase activity.

  18. Analysis of isocitrate dehydrogenase-1/2 gene mutations in gliomas

    Institute of Scientific and Technical Information of China (English)

    YU Lei; QI Song-tao; LI Zhi-yong


    Objective To highlight recent researches which may show promise for histomolecular classification and new treatments for gliomas.Data sources All articles cited in this review were mainly searched from PubMed, which were published in English from 1996 to 2010.Study selection Original articles and critical reviews selected were relevant to the isocitrate dehydrogenase-1/2 mutation in gliomas and other tumors.Results Extraordinary high rates of somatic mutations in isocitrate dehydrogenase-1/2 occur in the majority of World Health Organization grade Ⅱ and grade Ⅲ gliomas as well as grade Ⅳ secondary glioblastomas. Isocitrate dehydrogenase-1/2 mutations are associated with younger age at diagnosis and a better prognosis in patients with mutated tumors. The functional role of isocitrate dehydrogenase-1/2 mutations in the pathogenesis of gliomas is still unclear.Conclusion Isocitrate dehydrogenase-1/2 mutations define a specific subtype of gliomas and may have great significance in the diagnosis, prognosis, and treatment of patients with these tumors.

  19. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). (United States)

    Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M


    Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation.

  20. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. (United States)

    Berzin, Vel; Tyurin, Michael; Kiriukhin, Michael


    Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H₂ in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.

  1. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode


    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  2. Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium. (United States)

    Morero, R D; Viñals, A L; Bloj, B; Farías, R N


    Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive. On the other hand, lysozyme, L-lactic dehydrogenase, and muscle and yeast glyceraldehyde-3-phosphate dehydrogenase were capable of inducing vesicle fusion. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, the most extensively studied protein, proved to be very effective: 0.1 microM was enough to induce complete intermixing of bilayer phospholipid vesicles. Under conditions used in this work, fusion was accompanied by leakage of internal contents. The fusing capability of glyceraldehyde-3-phosphate dehydrogenase was not affected by 5 mM ethylenediaminetetraacetic acid. The Ca2+ concentration in the medium, as determined by atomic absorption spectroscopy, was 5 ppm. Heat-denatured enzyme was incapable of inducing fusion. We conclude that glyceraldehyde-3-phosphate dehydrogenase is a soluble protein inherently endowed with the capability of fusing phospholipid vesicles.

  3. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde. (United States)

    Scharschmidt, M; Fisher, M A; Cleland, W W


    Primary intrinsic deuterium and 13C isotope effects have been determined for liver (LADH) and yeast (YADH) alcohol dehydrogenases with benzyl alcohol as substrate and for yeast aldehyde dehydrogenase (ALDH) with benzaldehyde as substrate. These values have also been determined for LADH as a function of changing nucleotide substrate. As the redox potential of the nucleotide changes from -0.320 V with NAD to -0.258 V with acetylpyridine-NAD, the product of primary and secondary deuterium isotope effects rises from 4 toward 6.5, while the primary 13C isotope effect drops from 1.025 to 1.012, suggesting a trend from a late transition state with NAD to one that is more symmetrical. The values of Dk (again the product of primary and secondary isotope effects) and 13k for YADH with NAD are 7 and 1.023, suggesting for this very slow reaction a more stretched, and thus symmetrical, transition state. With ALDH and NAD, the primary 13C isotope effect on the hydride transfer step lies in the range 1.3-1.6%, and the alpha-secondary deuterium isotope effect on the same step is at least 1.22, but 13C isotope effects on formation of the thiohemiacetal intermediate and on the addition of water to the thio ester intermediate are less than 1%. On the basis of the relatively large 13C isotope effects, we conclude that carbon motion is involved in the hydride transfer steps of dehydrogenase reactions.

  4. Leflunomide induces NAD(P)H quinone dehydrogenase 1 enzyme via the aryl hydrocarbon receptor in neonatal mice. (United States)

    Shrestha, Amrit Kumar; Patel, Ananddeep; Menon, Renuka T; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy


    Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.

  5. CcpA-independent glucose regulation of lactate dehydrogenase 1 in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Adrianne K Crooke

    Full Text Available Lactate Dehydrogenase 1 (Ldh1 is a key enzyme involved in Staphylococcus aureus NO·-resistance. Full ldh1-induction requires the presence of glucose, and mutants lacking the Carbon-Catabolite Protein (CcpA exhibit decreased ldh1 transcription and diminished Ldh1 activity. The redox-regulator Rex represses ldh1 directly by binding to Rex-sites within the ldh1 promoter (P(ldh1. In the absence of Rex, neither glucose nor CcpA affect ldh1 expression implying that glucose/CcpA-mediated activation requires Rex activity. Rex-mediated repression of ldh1 depends on cellular redox status and is maximal when NADH levels are low. However, compared to WT cells, the ΔccpA mutant exhibited impaired redox balance with relatively high NADH levels, yet ldh1 was still poorly expressed. Furthermore, CcpA did not drastically alter Rex transcript levels, nor did glucose or CcpA affect the expression of other Rex-regulated genes indicating that the glucose/CcpA effect is specific for P(ldh1. A putative catabolite response element (CRE is located ∼30 bp upstream of the promoter-distal Rex-binding site in P(ldh1. However, CcpA had no affinity for P(ldh1 in vitro and a genomic mutation of CRE upstream of P(ldh1 in S. aureus had no affect on Ldh1 expression in vivo. In contrast to WT, ΔccpA S. aureus preferentially consumes non-glycolytic carbon sources. However when grown in defined medium with glucose as the primary carbon source, ΔccpA mutants express high levels of Ldh1 compared to growth in media devoid of glucose. Thus, the actual consumption of glucose stimulates Ldh1 expression rather than direct CcpA interaction at P(ldh1.

  6. Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Ikeda

    Full Text Available Hypoglycemic encephalopathy (HE is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE, a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl-2,6-dichlorobenzamide (Alda-1, a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg or vehicle (dimethyl sulfoxide; DMSO was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020. Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

  7. Association between common alcohol dehydrogenase gene (ADH) variants and schizophrenia and autism. (United States)

    Zuo, Lingjun; Wang, Kesheng; Zhang, Xiang-Yang; Pan, Xinghua; Wang, Guilin; Tan, Yunlong; Zhong, Chunlong; Krystal, John H; State, Matthew; Zhang, Heping; Luo, Xingguang


    Humans express at least seven alcohol dehydrogenase (ADH) isoforms that are encoded by ADH gene cluster (ADH7-ADH1C-ADH1B-ADH1A-ADH6-ADH4-ADH5) at chromosome 4. ADHs are key catabolic enzymes for retinol and ethanol. The functional ADH variants (mostly rare) have been implicated in alcoholism risk. In addition to catalyzing the oxidation of retinol and ethanol, ADHs may be involved in the metabolic pathways of several neurotransmitters that are implicated in the neurobiology of neuropsychiatric disorders. In the present study, we comprehensively examined the associations between common ADH variants [minor allele frequency (MAF) >0.05] and 11 neuropsychiatric and neurological disorders. A total of 50,063 subjects in 25 independent cohorts were analyzed. The entire ADH gene cluster was imputed across these 25 cohorts using the same reference panels. Association analyses were conducted, adjusting for multiple comparisons. We found 28 and 15 single nucleotide polymorphisms (SNPs), respectively, that were significantly associated with schizophrenia in African-Americans and autism in European-Americans after correction by false discovery rate (FDR) (q disorders after region-wide correction by SNPSpD (8.9 × 10(-5) ≤ p ≤ 0.0003 and 2.4 × 10(-5) ≤ p ≤ 0.0003, respectively). No variants were significantly associated with the other nine neuropsychiatric disorders, including alcohol dependence. We concluded that common ADH variants conferred risk for both schizophrenia in African-Americans and autism in European-Americans.

  8. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. (United States)

    Ma, Qing-Hu


    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignols. In the present study, a cDNA encoding a CAD was isolated from wheat, designated as TaCAD1. A genome-wide data mining in the wheat EST database revealed another 10 CAD-like homologues, namely TaCAD2 to TaCAD11. A phylogenetic analysis showed that TaCAD1 belonged to the bona fide CAD group involved in lignin synthesis. Two other putative CADs from the wheat genome (TaCAD2 and TaCAD4) also belonged to this group and were very close to TaCAD1, but lacked C-terminal domain, suggesting that they are pseudogenes. DNA gel blot analysis for the wheat genome showed two to three copies of CAD related to TaCAD1, but RNA gel blot analysis revealed only single band for TaCAD1, which was highly expressed in stem, with quite low expression in leaf and undetectable expression in root. The predicted three-dimension structure of TaCAD1 resembled that of AtCAD5, but two amino acid substitutions were identified in the substrate binding region. Recombinant TaCAD1 protein used coniferyl aldehyde as the most favoured substrate, also showed high efficiencies toward sinapyl and p-coumaryl aldehydes. TaCAD1 was an enzyme being pH-dependent and temperature-sensitive, and showing a typical random catalysing mechanism. At the milky stage of wheat, TaCAD1 mRNA abundance, protein level and enzyme activity in stem tissues were higher in a lodging-resistant cultivar (H4546) than in lodging-sensitive cultivar (C6001). These properties were correlated to the lignin contents and lodging indices of the two cultivars. These data suggest that TaCAD1 is the predominant CAD in wheat stem for lignin biosynthesis and is critical for lodging resistance.

  9. Analysis of Agaricus meleagris pyranose dehydrogenase N-glycosylation sites and performance of partially non-glycosylated enzymes. (United States)

    Gonaus, Christoph; Maresch, Daniel; Schropp, Katharina; Ó Conghaile, Peter; Leech, Dónal; Gorton, Lo; Peterbauer, Clemens K


    Pyranose Dehydrogenase 1 from the basidiomycete Agaricus meleagris (AmPDH1) is an oxidoreductase capable of oxidizing a broad variety of sugars. Due to this and its ability of dioxidation of substrates and no side production of hydrogen peroxide, it is studied for use in enzymatic bio-fuel cells. In-vitro deglycosylated AmPDH1 as well as knock-out mutants of the N-glycosylation sites N(75) and N(175), near the active site entrance, were previously shown to improve achievable current densities of graphite electrodes modified with AmPDH1 and an osmium redox polymer acting as a redox mediator, up to 10-fold. For a better understanding of the role of N-glycosylation of AmPDH1, a systematic set of N-glycosylation site mutants was investigated in this work, regarding expression efficiency, enzyme activity and stability. Furthermore, the site specific extend of N-glycosylation was compared between native and recombinant wild type AmPDH1. Knocking out the site N(252) prevented the attachment of significantly extended N-glycan structures as detected on polyacrylamide gel electrophoresis, but did not significantly alter enzyme performance on modified electrodes. This suggests that not the molecule size but other factors like accessibility of the active site improved performance of deglycosylated AmPDH1/osmium redox polymer modified electrodes. A fourth N-glycosylation site of AmPDH1 could be confirmed by mass spectrometry at N(319), which appeared to be conserved in related fungal pyranose dehydrogenases but not in other members of the glucose-methanol-choline oxidoreductase structural family. This site was shown to be the only one that is essential for functional recombinant expression of the enzyme.

  10. Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families. (United States)

    Abouzeid, Hana; Favez, Tatiana; Schmid, Angélique; Agosti, Céline; Youssef, Mohammed; Marzouk, Iman; El Shakankiry, Nihal; Bayoumi, Nader; Munier, Francis L; Schorderet, Daniel F


    Anophthalmia or microphthalmia (A/M), characterized by absent or small eye, can be unilateral or bilateral and represent developmental anomalies due to the mutations in several genes. Recently, mutations in aldehyde dehydrogenase family 1, member A3 (ALDH1A3) also known as retinaldehyde dehydrogenase 3, have been reported to cause A/M. Here, we screened a cohort of 75 patients with A/M and showed that mutations in ALDH1A3 occurred in six families. Based on this series, we estimate that mutations in ALDH1A3 represent a major cause of A/M in consanguineous families, and may be responsible for approximately 10% of the cases. Screening of this gene should be performed in a first line of investigation, together with SOX2.

  11. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis. (United States)

    Ngo, Ho-Phuong-Thuy; Hong, Seung-Hye; Hong, Myoung-Ki; Pham, Tan-Viet; Oh, Deok-Kun; Kang, Lin-Woo


    Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.

  12. Crystallization and initial X-ray diffraction analysis of human pyruvate dehydrogenase (United States)

    Ciszak, E.; Korotchkina, L. G.; Hong, Y. S.; Joachimiak, A.; Patel, M. S.


    Human pyruvate dehydrogenase (E1) is a component enzyme of the pyruvate dehydrogenase complex. The enzyme catalyzes the irreversible decarboxylation of pyruvic acid and the rate-limiting reductive acetylation of the lipoyl moiety linked to the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex. E1 is an alpha(2)beta(2) tetramer ( approximately 154 kDa). Crystals of this recombinant enzyme have been grown in polyethylene glycol 3350 using a vapor-diffusion method at 295 K. The crystals are characterized as orthorhombic, space group P2(1)2(1)2(1), with unit-cell parameters a = 64.2, b = 126.9, c = 190.2 A. Crystals diffracted to a minimum d spacing of 2.5 A. The asymmetric unit contains one alpha(2)beta(2) tetrameric E1 assembly; self-rotation function analysis showed a pseudo-twofold symmetry relating the two alphabeta dimers.

  13. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal. (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun


    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal.

  14. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W;


    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...

  15. Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation. (United States)

    Dallet, S; Legoy, M D


    A comparison between the pressure effects on the catalysis of Thermoanaerobium brockii alcohol dehydrogenase (TBADH: a thermostable tetrameric enzyme) and yeast alcohol dehydrogenase (YADH: a mesostable tetrameric enzyme) revealed a different behaviour. YADH activity is continuously inhibited by an increase of pressure, whereas YADH affinity seems less sensitive to pressure. TBADH activity is enhanced by pressure up to 100 MPa. TBADH affinity for alcoholic substrates increases if pressure increases, was TBADH affinity for NADP decreases when pressure increases. Hypothesis has been raised concerning the dissociation of oligomeric enzymes under high hydrostatic pressure ( YADH at all pressures and TBADH for pressures above 100 MPa is not correlated to subunit dissociation. Hence we suggest that enzymes under pressure encounter a molecular rearrangement which can either have a positive or a negative effect on activity. Finally, we have observed that the catalytic behaviour of alcohol dehydrogenases under pressure is connected to their thermostability.

  16. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria. (United States)

    Murakami, Keiko; Yoshino, Masataka


    Effect of aluminum on the NADPH supply and glutathione regeneration in mitochondria was analyzed. Reduced glutathione acted as a principal scavenger of reactive oxygen species in mitochondria. Aluminum inhibited the regeneration of glutathione from the oxidized form, and the effect was due to the inhibition of NADP-isocitrate dehydrogenase the only enzyme supplying NADPH in mitochondria. In cytosol, aluminum inhibited the glutathione regeneration dependent on NADPH supply by malic enzyme and NADP-isocitrate dehydrogenase, but did not affect the glucose 6-phosphate dehydrogenase dependent glutathione formation. Aluminum can cause oxidative damage on cellular biological processes by inhibiting glutathione regeneration through the inhibition of NADPH supply in mitochondria, but only a little inhibitory effect on the glutathione generation in cytosol.

  17. Relayed 13C magnetization transfer: Detection of malate dehydrogenase reaction in vivo (United States)

    Yang, Jehoon; Shen, Jun


    Malate dehydrogenase catalyzes rapid interconversion between dilute metabolites oxaloacetate and malate. Both oxaloacetate and malate are below the detection threshold of in vivo MRS. Oxaloacetate is also in rapid exchange with aspartate catalyzed by aspartate aminotransferase, the latter metabolite is observable in vivo using 13C MRS. We hypothesized that the rapid turnover of oxaloacetate can effectively relay perturbation of magnetization between malate and aspartate. Here, we report indirect observation of the malate dehydrogenase reaction by saturating malate C2 resonance at 71.2 ppm and detecting a reduced aspartate C2 signal at 53.2 ppm due to relayed magnetization transfer via oxaloacetate C2 at 201.3 ppm. Using this strategy the rate of the cerebral malate dehydrogenase reaction was determined to be 9 ± 2 μmol/g wet weight/min (means ± SD, n = 5) at 11.7 Tesla in anesthetized adult rats infused with [1,6- 13C 2]glucose.

  18. Purification and properties of thiosulfate dehydrogenase from Acidithiobacillus thiooxidans JCM7814. (United States)

    Nakamura, K; Nakamura, M; Yoshikawa, H; Amano, Y


    A key enzyme of the thiosulfate oxidation pathway in Acidithiobacillus thiooxidans JCM7814 was investigated. As a result of assaying the enzymatic activities of thiosulfate dehydrogenase, rhodanese, and thiosulfate reductase at 5.5 of intracellular pH, the activity of thiosulfate dehydrogenase was measured as the key enzyme. The thiosulfate dehydrogenase of A. thiooxidans JCM7814 was purified using three chromatographies. The purified sample was electrophoretically homogeneous. The molecular mass of the enzyme was 27.9 kDa and it was a monomer. This enzyme had cytochrome c. The optimum pH and temperature of this enzyme were 3.5 and 35 degrees C. The enzyme was stable in the pH range from 5 to 7, and it was stable up to 45 degrees C. The isoelectric point of the enzyme was 8.9. This enzyme reacted with thiosulfate as a substrate. The Km was 0.81 mM.

  19. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme. (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa


    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)(+)-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD(+) Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD(+)/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme.

  20. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M


    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  1. Homology modelling and docking analysis of L-lactate dehydrogenase from Streptococcus thermopilus

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir R.


    Full Text Available The aim of this research was to create a three-dimensional model of L-lactate dehydrogenase from the main yoghurt starter culture - Streptococcus thermopilus, to analyse its structural features and investigate substrate binding in the active site. NCBI BlastP was used against the Protein Data Bank database in order to identify the template for construction of homology models. Multiple sequence alignment was performed using the program MUSCULE within the UGENE 1.11.3 program. Homology models were constructed using the program Modeller v. 9.17. The obtained 3D model was verified by Ramachandran plots. Molecular docking simulations were performed using the program Surflex-Dock. The highest sequence similarity was observed with L-lactate dehydrogenase from Lactobacillus casei subsp. casei, with 69% identity. Therefore, its structure (PDB ID: 2ZQY:A was selected as a modelling template for homology modelling. Active residues are by sequence similarity predicted: S. thermophilus - HIS181 and S. aureus - HIS179. Binding energy of pyruvate to L-lactate dehydrogenase of S. thermopilus was - 7.874 kcal/mol. Pyruvate in L-lactate dehydrogenase of S. thermopilus makes H bonds with catalytic HIS181 (1.9 Å, as well as with THR235 (3.6 Å. Although our results indicate similar position of substrates between L-lactate dehydrogenase of S. thermopilus and S. aureus, differences in substrate distances and binding energy values could influence the reaction rate. Based on these results, the L-lactate dehydrogenase model proposed here could be used as a guide for further research, such as transition states of the reaction through molecular dynamics. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  2. Triiodothyronine (T3)-associated upregulation and downregulation of nuclear T3 binding in the human fibroblast cell (MRC-5)--stimulation of malic enzyme, glucose-6-phosphate-dehydrogenase, and 6-phosphogluconate-dehydrogenase by insulin, but not by T3

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J


    The specific nuclear binding of triiodothyronine (T3) (NBT3) and the activity of malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PD), and 6-phosphogluconate-dehydrogenase (6PGD) were studied in the human fibroblast cell (MRC-5). The overall apparent binding affinity (Ka) was 2.7 x 10(9) L...

  3. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations

    Directory of Open Access Journals (Sweden)

    Peng Giia-Sheun


    Full Text Available Abstract Alcoholism is a complex behavioural disorder. Molecular genetics studies have identified numerous candidate genes associated with alcoholism. It is crucial to verify the disease susceptibility genes by correlating the pinpointed allelic variations to the causal phenotypes. Alcohol dehydrogenase (ADH and aldehyde dehydrogenase (ALDH are the principal enzymes responsible for ethanol metabolism in humans. Both ADH and ALDH exhibit functional polymorphisms among racial populations; these polymorphisms have been shown to be the important genetic determinants in ethanol metabolism and alcoholism. Here, we briefly review recent advances in genomic studies of human ADH/ALDH families and alcoholism, with an emphasis on the pharmacogenetic consequences of venous blood acetaldehyde in the different ALDH2 genotypes following the intake of various doses of ethanol. This paper illustrates a paradigmatic example of phenotypic verifications in a protective disease gene for substance abuse.

  4. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes. (United States)

    Baggetto, L G; Lehninger, A L


    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  5. [Isoformes of Malate Dehydrogenase from Rhodovulum Steppense A-20s Grown Chemotrophically under Aerobic Condtions]. (United States)

    Eprintsev, A T; Falaleeva, M I; Lyashchenko, M S; Gataullinaa, M O; Kompantseva, E I


    Three malate dehydrogenase isoforms (65-, 60-, and 71-fold purifications) with specific activities of 4.23, 3.88, and 4.56 U/mg protein were obtained in an electrophoretically homogenous state from Rhodovulum steppense bacteria strain A-20s chemotropically grown under aerobic conditions. The physicochemical and kinetic properties of malate dehydrogenase isoforms were determined. The molecular weight and the Michaelis constants were determined; the effect of hydrogen ions on the forward and reverse MDH reaction was studied. The results of the study demonstrated that the enzyme consists of subunits; the molecular weight of subunits was determined by SDS-PAGE.

  6. [Physicochemical, catalytic, and regulatory properties of malate dehydrogenase from Rhodovulum steppense bacteria, strain A-20s]. (United States)

    Eprintsev, A T; Falaleeva, M I; Parfenova, I V; Liashchenko, M S; Kompantseva, E I; Tret'iakova, A Iu


    The physicochemical, regulatory, and kinetic properties of malate dehydrogenase (EC from haloalkaliphilic purple nonsulfur Rhodovulum steppense bacteria, strain A-20s, were studied. The malate dehydrogenase (MDH) preparation with a specific activity of 0.775 ± 0.113 U/mg protein was obtained in an electrophoretically homogeneous state using multistep purification. Using homogenous preparations, the molecular weight and the Michaelis constant of the enzyme were determined; the effects of metal ions, the temperature effect, and the thermal stability of the MDH were studied. The dimer structure of the enzyme was demonstrated by DS-Na-electrophoresis.

  7. NAD(+)-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. (United States)

    Kwak, Min-Kyu; Ku, MyungHee; Kang, Sa-Ouk


    We purified a fraction that showed NAD(+)-linked methylglyoxal dehydrogenase activity, directly catalyzing methylglyoxal oxidation to pyruvate, which was significantly increased in glutathione-depleted Candida albicans. It also showed NADH-linked methylglyoxal-reducing activity. The fraction was identified as a NAD(+)-linked alcohol dehydrogenase (ADH1) through mass spectrometric analyses. In ADH1-disruptants of both the wild type and glutathione-depleted cells, the intracellular methylglyoxal concentration increased significantly; defects in growth, differentiation, and virulence were observed; and G2-phase arrest was induced.

  8. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil


    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  9. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase

    Institute of Scientific and Technical Information of China (English)



    题目:微生物苹果酸脱氢酶的功能、动力学特征、晶体结构以及调控概苹果酸脱氢酶(MDH)广泛存在于动物、植物以及微生物体内,是生物体进行糖代谢的关键酶之一。在辅酶I(NAD+)或辅酶II(NADP+)的作用下,能够催化草酰乙酸和苹果酸之间相互转化。虽然目前真核微生物中MDH已被广泛研究,但是对原核生物中的这种酶却鲜有报道。因此,有必要对MDH的相关研究信息进行综述,以期更好地了解这种酶的功能。本文综述了细菌相关研究的各种数据信息,进一步挖掘MDH的分子多样性,包括分子量、低聚态、辅因子与底物的结合力,以及酶反应方向的差异等。通过对不同细菌来源的MDH的晶体结构的分析,可鉴别底物与辅因子结合的部位以及形成二聚体的重要残基。对这些结构信息的了解将有利于指导研究人员对酶的结构进行修饰从而提高其催化能力,比如增加酶的活性、辅助因子的结合能力、底物特异性和热稳定性等。另外,本文通过分析比较MDH 系统发生树的重建,将其蛋白超家族分成两个主分支,同时在古生菌、细菌和真核微生物等不同细胞的MDH之间建立联系。%Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as wel as differ-ences in the direction

  10. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer. (United States)

    Laniewska-Dunaj, Magdalena; Jelski, Wojciech; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej


    The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.

  11. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of patients with brain tumor (United States)

    Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej


    Introduction Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) exist in the brain. Alcohol dehydrogenase and ALDH are also present in brain tumor cells. Moreover, the activity of class I isoenzymes was significantly higher in cancer than healthy brain cells. The activity of these enzymes in tumor tissue is reflected in the serum and could thus be helpful for diagnostics of brain neoplasms. The aim of this study was to investigate the potential role of ADH and ALDH as markers for brain tumors. Material and methods Serum samples were taken for routine biochemical investigation from 115 patients suffering from brain tumors (65 glioblastomas, 50 meningiomas). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. Results There was a significant increase in the activity of ADH I isoenzyme and ADH total in the sera of brain tumor patients compared to the controls. The diagnostic sensitivity for ADH I was 78%, specificity 85%, and positive and negative predictive values were 86% and 76% respectively. The sensitivity and specificity of ADH I increased with the stage of the carcinoma. Area under receiver-operating characteristic curve for ADH I was 0.71. Conclusions The results suggest a potential role for ADH I as a marker for brain tumor. PMID:28261287

  12. Analysis of Quaternary Structure of a [LDH-like] Malate Dehydrogenase of Plasmodium falciparum with Oligomeric Mutants (United States)

    L-Malate dehydrogenase (PfMDH) from Plasmodium falciparum, the causative agent for the most severe form of malaria, has shown remarkable similarities to L-lactate dehydrogenase (PfLDH). PfMDH is more closely related to [LDH-like] MDHs characterized in archea and other prokaryotes. Initial sequence a...

  13. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket (United States)

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  14. A rapid procedure for the in situ assay of periplasmic, PQQ-dependent methanol dehydrogenase in intact single bacterial colonies. (United States)

    Vemuluri, Venkata Ramana; Shaw, Shreya; Autenrieth, Caroline; Ghosh, Robin


    Mechanistic details of methanol oxidation catalyzed by the periplasmically-located pyrroloquinoline quinone-dependent methanol dehydrogenase of methylotrophs can be elucidated using site-directed mutants. Here, we present an in situ colony assay of methanol dehydrogenase, which allows robotic screening of large populations of intact small colonies, and regrowth of colonies for subsequent analysis.

  15. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.


    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  16. Functional and structural characterization of a synthetic peptide representing the N-terminal domain of prokaryotic pyruvate dehydrogenase

    NARCIS (Netherlands)

    Hengeveld, A.F.; Mierlo, van C.P.M.; Hooven, van den H.W.; Visser, A.J.W.G.; Kok, de A.


    A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies es

  17. Disruption of the 11-cis-Retinol Dehydrogenase Gene Leads to Accumulation of cis-Retinols and cis-Retinyl Esters


    Driessen, Carola A. G. G.; Winkens, Huub J.; Hoffmann, Kirstin; Kuhlmann, Leonoor D.; Janssen, Bert P. M.; van Vugt, Anke H M; Van Hooser, J. Preston; Wieringa, B. E.; Deutman, August F; Palczewski, Krzysztof; Ruether, Klaus; Janssen, Jacques J. M.


    To elucidate the possible role of 11-cis-retinol dehydrogenase in the visual cycle and/or 9-cis-retinoic acid biosynthesis, we generated mice carrying a targeted disruption of the 11-cis-retinol dehydrogenase gene. Homozygous 11-cis-retinol dehydrogenase mutants developed normally, including their retinas. There was no appreciable loss of photoreceptors. Recently, mutations in the 11-cis-retinol dehydrogenase gene in humans have been associated with fundus albipunctatus. In 11-cis-retinol deh...

  18. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol. (United States)

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun


    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.

  19. Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus

    NARCIS (Netherlands)

    Machielsen, M.P.; Oost, van der J.


    The gene encoding a threonine dehydrogenase (TDH) has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The Pf-TDH protein has been functionally produced in Escherichia coli and purified to homogeneity. The enzyme has a tetrameric conformation with a molecular mass of ¿ 155 kDa.

  20. 5FU and oxaliplatin-containing chemotherapy in two dihydropyrimidine dehydrogenase-deficient patients

    NARCIS (Netherlands)

    Reerink, O; Mulder, NH; Szabo, BG; Hospers, GAP


    Patients with a germline mutation leading to a deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme are at risk from developing severe toxicity on the administration of 5FU-containing chemotherapy. We report on the implications of this inborn genetic error in two patients who received 5FU


    NARCIS (Netherlands)



    The conformational stability of holo-lipoamide and apo-lipoamide dehydrogenase from Azotobacter vinelandii was studied by thermoinactivation, unfolding and limited proteolysis. The oxidized holoenzyme is thermostable, showing a melting temperature, t(m) = 80-degrees-C. The thermal stability of the h

  2. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency

    DEFF Research Database (Denmark)

    ØRngreen, Mette C; Nørgaard, Mette; Sacchetti, Massimo


    Fuel utilization in two adult patients with the myopathic form of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and five healthy subjects was investigated with stable isotopes during exercise at 50% of VO2max. The findings indicate that residual VLCAD activity in the patients...

  3. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex (United States)

    Strumilo, Slawomir


    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…


    NARCIS (Netherlands)



    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus ver

  5. Alcohol consumption and type 2 diabetes - Influence of genetic variation in alcohol dehydrogenase

    NARCIS (Netherlands)

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.


    OBJECTIVE-We sought to investigate whether a polymorphism I in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS-In nested case-control studies of 640 women with incident diabetes and 1,000 control subjects

  6. Alcohol consumption and type 2 diabetes: Influence of genetic variation in alcohol dehydrogenase

    NARCIS (Netherlands)

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.


    OBJECTIVE - We sought to investigate whether a polymorphism in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS - In nested case-control studies of 640 women with incident diabetes and 1,000 control subjec

  7. Separation and Purification of Betaine Aldehyde Dehydrogenase from Wild Suaeda liaotungensis

    Institute of Scientific and Technical Information of China (English)


    High active betaine aldehyde dehydrogenase (BADH, EC is found in wild Suaeda liaotungensis. The enzyme is purified 206-fold with recovery of 1.5%. It have a specific activity of 2363 nmol/min*mg protein and the molecular mass of each subunit is 64.5 kDa as determined by SDS-PAGE.

  8. Purification, characterization, and cloning of a bifunctional molybdoenzyme with hydratase and alcohol dehydrogenase activity

    NARCIS (Netherlands)

    Jin, J.; Straathof, A.J.J.; Pinkse, M.W.H.; Hanefeld, U.


    A bifunctional hydratase/alcohol dehydrogenase was isolated from the cyclohexanol degrading bacterium Alicycliphilus denitrificans DSMZ 14773. The enzyme catalyzes the addition of water to α,β-unsaturated carbonyl compounds and the subsequent alcohol oxidation. The purified enzyme showed three subun

  9. Binding of inhibiting adducts of ketones and NAD(+) to alcohol dehydrogenase from Drosophila melanogaster

    NARCIS (Netherlands)

    Smilda, T; Jekel, PA; Bruining, MAM; Beintema, JJ


    Drosophila alcohol dehydrogenase (DADH) can be converted with NAD(+) and ketone into more negatively charged isoforms. Completely modified ADH isoforms are inactive, but activity is regained after native polyacrylamide gel electrophoresis depending on the ketone used. When unmodified ADH is incubate

  10. Novel approaches for using dehydrogenases and ene-reductases for organic synthesis

    NARCIS (Netherlands)

    Gargiulo, S.


    Oxidation of alcohols is a reaction of major interest for organic chemistry. However, the most common chemical routes developed so far involve the use of toxic or hazardous reagents or catalysts that often lack good chemoselectivity. In this respect, alcohol dehydrogenases (ADHs) represent a very va

  11. Statistical Measure of a Gene Evolution The Case of Glyceraldehyde-3-Phosphate Dehydrogenase Gene

    CERN Document Server

    Chattopadhyay, S; Chakrabarti, J; Chattopadhyay, Sujay; Sahoo, Satyabrata; Chakrabarti, Jayprokas


    The enzyme Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) catalyses the decomposition of glucose. The gene that produces the GAPDH is therefore present in a wide class of organisms. We show that for this gene the average value of the fluctuations in nucleotide distribution in the codons, normalized to strand bias, provides a reasonable measure of how the gene has evolved in time.

  12. Relevance of expanded neonatal screening of medium-chain acyl co-a dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Couce, M L; Castiñeiras, D E; Moure, J D;


    Neonatal screening of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is of major importance due to the significant morbidity and mortality in undiagnosed patients. MCADD screening has been performed routinely in Galicia since July 2000, and until now 199,943 newborns have been screened. W...

  13. A population-based study of high-grade gliomas and mutated isocitrate dehydrogenase 1

    DEFF Research Database (Denmark)

    Dahlrot, Rikke H; Kristensen, Bjarne W; Hjelmborg, Jacob;


    High-grade gliomas have a dismal prognosis, and prognostic factors are needed to optimize treatment algorithms. In this study we identified clinical prognostic factors as well as the prognostic value of isocitrate dehydrogenase 1 (IDH1) status in a population-based group of patients with high...

  14. Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. (United States)

    Wang, Ao; Cao, Zheng-Yu; Wang, Peng; Liu, Ai-Min; Pan, Wei; Wang, Jie; Zhu, Guo-Ping


    A monomeric NADP-dependent isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680 (SaIDH) was heteroexpressed in Escherichia coli, and the His-tagged enzyme was further purified to homogeneity. The molecular weight of SaIDH was about 80 kDa which is typical for monomeric isocitrate dehydrogenases. Structure-based sequence alignment reveals that the deduced amino acid sequence of SaIDH shows high sequence identity with known momomeric isocitrate dehydrogenase, and the coenzyme, substrate and metal ion binding sites are completely conserved. The optimal pH and temperature of SaIDH were found to be pH 9.4 and 45°C, respectively. Heat-inactivation studies showed that heating for 20 min at 50°C caused a 50% loss in enzymatic activity. In addition, SaIDH was absolutely specific for NADP+ as electron acceptor. Apparent Km values were 4.98 μM for NADP+ and 6,620 μM for NAD+, respectively, using Mn2+ as divalent cation. The enzyme performed a 33,000-fold greater specificity (kcat/Km) for NADP+ than NAD+. Moreover, SaIDH activity was entirely dependent on the presence of Mn2+ or Mg2+, but was strongly inhibited by Ca2+ and Zn2+. Taken together, our findings implicate the recombinant SaIDH is a divalent cation-dependent monomeric isocitrate dehydrogenase which presents a remarkably high cofactor preference for NADP+.

  15. Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum

    NARCIS (Netherlands)

    Wrenger, Carsten; Mueller, Ingrid B.; Butzloff, Sabine; Jordanova, Rositsa; Lunev, Sergey; Groves, Matthew R.


    The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to

  16. The intracellular localization of malate dehydrogenase isoenzymes in Pisum arvense roots

    Directory of Open Access Journals (Sweden)

    Genowefa Kubik-Dorosz


    Full Text Available Mitochondria and plastids were isolated from Pisum arvense root cells by sucrose density gradient centrifugation. The individual subcellular fractions so obtained were subjected to isoelectric focusing on cellulose acetate strips. Mitochondria and plastids each contained one NAD -malate dehydrogenase, while three isoenzymes were associated with the supernatant.

  17. Angiotensin administration stimulates renal 11 beta-hydroxysteroid dehydrogenase activity in healthy men

    NARCIS (Netherlands)

    Kerstens, MN; van der Kleij, FGH; Boonstra, AH; Sluiter, WJ; van der Molen, JC; Navis, G; Dullaart, RPF


    Background. We examined whether acute administration of angiotensin modulates the activity of 11beta-hydroxysteroid dehydrogenase (11betaHSD), the intracellular enzyme catalyzing the interconversion between the hormonally active cortisol and inactive cortisone. Methods. Twenty-one male healthy subje

  18. Prevalence of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency in Estonia

    DEFF Research Database (Denmark)

    Joost, K; Ounap, K; Zordania, R;


    The aim of our study was to evaluate the prevalence of long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) in the general Estonian population and among patients with symptoms suggestive of fatty acid oxidation (FAO) defects. We collected DNA from a cohort of 1,040 anonymous newborn blo...... prevalence of LCHADD in Estonia would be 1: 91,700....

  19. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Directory of Open Access Journals (Sweden)

    Shane C. Quinonez


    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  20. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Scholte, H R; Van Coster, R N; de Jonge, P C;


    A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase...

  1. Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina

    DEFF Research Database (Denmark)

    Tiwari, Manish; Lee, Jung-Kul


    in order to provide better insight into the possible catalytic events in these domains. The 3D structure of NAD(+)-dependent LAD1 was developed based on the crystal structure of human sorbitol dehydrogenase as a template. A series of molecular mechanics and dynamics operations were performed to find...

  2. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation. (United States)

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip


    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  3. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects (United States)

    Silverstein, Todd P.


    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  4. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, Birgitte; Vendelbo, Mikkel H; Nielsen, Thomas S


    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  5. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart (United States)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  6. Modification of Rhizopus lactate dehydrogenase for improved resistance to fructose 1,6-bisphosphate (United States)

    Rhizopus oryzae is frequently used for fermentative production of lactic acid. We determined that one of the key enzymes, lactate dehydrogenase (LDH), involved in synthesis of lactic acid by R. oryzae was significantly inhibited by fructose 1,6-bisphosphate (FBP) at physiological concentrations. Thi...

  7. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha

    NARCIS (Netherlands)

    Klei, I.J. van der; Faber, K.N.; Keizer-Gunnink, I.; Gietl, C.; Harder, W.; Veenhuis, M.


    We have studied the fate of the watermelon (Citrullus vulgaris Schrad.) glyoxysomal enzyme, malate dehydrogenase (gMDH), after synthesis in the methylotrophic yeast, Hansenula polymorpha. The gene encoding the precursor form of gMDH (pre-gMDH) was cloned in an H. polymorpha expression vector downstr

  8. Electron transfer between a quinohemoprotein alcohol dehydrogenase and an electrode via a redox polymer network

    NARCIS (Netherlands)

    Stigter, E.C.A.; Jong, G.A.H. de; Jongejan, J.A.; Duine, J.A.; Lugt, J.P. van der; Somers, W.A.C.


    A quinohemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni was immobilized on an electrode in a redox polymer network consisting of a polyvinylpyridine partially N-complexed with osmiumbis-(bipyridine)chloride. The enzyme effectively transfers electrons to the electrode via the po

  9. Optimization, Application, and Interpretation of Lactate Dehydrogenase Measurements in Microwell Determination of Cell Number and Toxicity

    NARCIS (Netherlands)

    Wolterbeek, H.T.; Van der Meer, A.J.G.M.


    The lactate dehydrogenase (LDH) assay was addressed for its sensitivity, disturbances by foaming, and cell number and size. Cells were from a U-251 MG grade IV human glioblastoma brain tumor cell line used in 100-µl well volumes. Cells were counted by microscopy and Coulter counting; assays were LDH

  10. Component co-expression and purification of recombinant human pyruvate dehydrogenase complex from baculovirus infected SF9 cells. (United States)

    Jiang, Yong; Wang, Juan; Zhang, Guofeng; Oza, Khyati; Myers, Linda; Holbert, Marc A; Sweitzer, Sharon


    The mammalian pyruvate dehydrogenase complex (PDC) is a multi-component mitochondrial enzyme that plays a key role in the conversion of pyruvate to acetyl-CoA connecting glycolysis to the citric acid cycle. Recent studies indicate that targeting the regulation of PDC enzymatic activity might offer therapeutic opportunities by inhibiting cancer cell metabolism. To facilitate drug discovery in this area, a well defined PDC sample is needed. Here, we report a new method of producing functional, recombinant, high quality human PDC complex. All five components were co-expressed in the cytoplasm of baculovirus-infected SF9 cells by deletion of the mitochondrial localization signal sequences of all the components and E1a was FLAG-tagged to facilitate purification. The protein FLAG tagged E1a complex was purified using FLAG-M2 affinity resin, followed by Superdex 200 sizing chromatography. The E2 and E3BP components were then Lipoylated using an enzyme based in vitro process. The resulting PDC is over 90% pure and homogenous. This non-phosphorylated, lipoylated human PDC was demonstrated to produce a robust detection window when used to develop an enzyme coupled assay of PDHK.

  11. Expression of aldehyde dehydrogenase family 1 member A1 and high mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time. (United States)

    Qian, Xu; Coordes, Annekatrin; Kaufmann, Andreas M; Albers, Andreas E


    Despite the development of novel multimodal treatment combinations in advanced oropharyngeal squamous cell carcinoma (OSCC), outcomes remain poor. The identification of specifically validated biomarkers is required to understand the underlying molecular mechanisms, to evaluate treatment efficiency and to develop novel therapeutic targets. The present study, therefore, examined the presence of aldehyde dehydrogenase family 1 member A1 (ALDH1A1) and high mobility group box 1 (HMGB1) expression in primary OSCC and analyzed the impact on survival time. In 59 patients with OSCC, the expression of ALDH1A1, p16 and HMGB1, and their clinicopathological data were analyzed. HMGB1 positivity was significantly increased in patients with T1-2 stage disease compared with T3-4 stage disease (P<0.001), whereas ALDH1A1 positivity was not. ALDH1A1(+) tumors showed significantly lower differentiation than ALDH1A1(-) tumors (P=0.018). Multivariate analysis showed that ALDH1A1 positivity (P=0.041) and nodal status (N2-3) (P=0.036) predicted a poor prognosis. In this patient cohort, ALDH1A1 and nodal status were identified as independent predictors of a shorter overall survival time. The study results, therefore, provide evidence of the prognostic value of ALDH1A1 as a marker for cancer stem cells and nodal status in OSCC patients.

  12. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. (United States)

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel


    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans.

  13. Mutational Analyses of Glucose Dehydrogenase and Glucose-6-Phosphate Dehydrogenase Genes in Pseudomonas fluorescens Reveal Their Effects on Growth and Alginate Production. (United States)

    Maleki, Susan; Mærk, Mali; Valla, Svein; Ertesvåg, Helga


    The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell.

  14. The separate roles of PQQ and apo-enzyme syntheses in the regulation of glucose dehydrogenase activity in Klebsiella pneumoniae NCTC 418. (United States)

    Hommes, R W; Herman, P T; Postma, P W; Tempest, D W; Neijssel, O M


    No holoenzyme pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and only very low apoenzyme levels could be detected in cells of Klebsiella pneumoniae, growing anaerobically, or carrying out a fumarate or nitrate respiration. Low glucose dehydrogenase activity in some aerobic glucose-excess cultures of K. pneumoniae (ammonia or sulphate limitation) was increased significantly by addition of PQQ, whereas in cells already possessing a high glucose dehydrogenase activity (phosphate or potassium limitation) extra PQQ had almost no effect. These observations indicate that the glucose dehydrogenase activity in K. pneumoniae is modulated by both PQQ synthesis and synthesis of the glucose dehydrogenase apo-enzyme.

  15. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. (United States)

    Wallström, Sabá V; Florez-Sarasa, Igor; Araújo, Wagner L; Escobar, Matthew A; Geisler, Daniela A; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R; Ribas-Carbó, Miquel; Rasmusson, Allan G


    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.

  16. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.


    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  17. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency]. (United States)

    Voloshchuk, O N; Kopylchuk, G P


    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  18. Lactic dehydrogenase isozyme patterns and alpha-hydroxybutyrate dehydrogenase activities in serum from newborns, patients with ovarian cancer or myocardial infarction. (United States)

    Kikuchi, Y; Kita, T; Furuya, K; Kato, K


    Lactic dehydrogenase (LDH) and alpha-hydroxybutyrate dehydrogenase (HBD) and LDH isozyme patterns were studied in serum from newborns and patients with ovarian cancer or myocardial infarction. LDH and HBD activities from newborns and patients with ovarian cancer or myocardial infarction were significantly increased, compared with those from patients with benign ovarian tumor. These increases were accompanied with a decrease of LDH-H and an increase of LDH-M in serum from newborns and patients with ovarian cancer, while an increase of LDH-H in serum from patients with myocardial infarction was dominant. However, the raised HBD activities in serum from patients with benign ovarian tumor did not affect the LDH isozyme patterns. From analysis of linear regression, a negative correlation between LDH-1 or -2 and HBD activity in serum from patients with ovarian cancer was observed while there was a positive correlation between LDH-4 and HBD activity. Similar patterns in serum from newborns were observed. On the other hand, a positive correlation between LDH-1 and HBD activity and a negative correlation between LDH-4 and HBD activity were found in serum from patients with myocardial infarction.

  19. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae. (United States)

    Kim, Jin-Woo; Chin, Young-Wook; Park, Yong-Cheol; Seo, Jin-Ho


    Bioethanol is currently used as an alternative fuel for gasoline worldwide. For economic production of bioethanol by Saccharomyces cerevisiae, formation of a main by-product, glycerol, should be prevented or minimized in order to reduce a separation cost of ethanol from fermentation broth. In this study, S. cerevisiae was engineered to investigate the effects of the sole and double disruption of NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1) and NADPH-requiring glutamate dehydrogenase 1 (GDH1) on the production of glycerol and ethanol from glucose. Even though sole deletion of GPD1 or GDH1 reduced glycerol production, double deletion of GPD1 and GDH1 resulted in the lowest glycerol concentration of 2.31 g/L, which was 46.4% lower than the wild-type strain. Interestingly, the recombinant S. cerevisiae ∆GPD1∆GDH1 strain showed a slight improvement in ethanol yield (0.414 g/g) compared with the wild-type strain (0.406 g/g). Genetic engineering of the glycerol and glutamate metabolic pathways modified NAD(P)H-requiring metabolic pathways and exerted a positive effect on glycerol reduction without affecting ethanol production.

  20. Plants Possess a Cyclic Mitochondrial Metabolic Pathway similar to the Mammalian Metabolic Repair Mechanism Involving Malate Dehydrogenase and l-2-Hydroxyglutarate Dehydrogenase. (United States)

    Hüdig, Meike; Maier, Alexander; Scherrers, Isabell; Seidel, Laura; Jansen, Erwin E W; Mettler-Altmann, Tabea; Engqvist, Martin K M; Maurino, Veronica G


    Enzymatic side reactions can give rise to the formation of wasteful and toxic products that are removed by metabolite repair pathways. In this work, we identify and characterize a mitochondrial metabolic repair mechanism in Arabidopsis thaliana involving malate dehydrogenase (mMDH) and l-2-hydroxyglutarate dehydrogenase (l-2HGDH). We analyze the kinetic properties of both A. thaliana mMDH isoforms, and show that they produce l-2-hydroxyglutarate (l-2HG) from 2-ketoglutarate (2-KG) at low rates in side reactions. We identify A. thaliana l-2HGDH as a mitochondrial FAD-containing oxidase that converts l-2HG back to 2-KG. Using loss-of-function mutants, we show that the electrons produced in the l-2HGDH reaction are transferred to the mitochondrial electron transport chain through the electron transfer protein (ETF). Thus, plants possess the biochemical components of an l-2HG metabolic repair system identical to that found in mammals. While deficiencies in the metabolism of l-2HG result in fatal disorders in mammals, accumulation of l-2HG in plants does not adversely affect their development under a range of tested conditions. However, orthologs of l-2HGDH are found in all examined genomes of viridiplantae, indicating that the repair reaction we identified makes an essential contribution to plant fitness in as yet unidentified conditions in the wild.

  1. Asp295 Stabilizes the Active-Site Loop Structure of Pyruvate Dehydrogenase, Facilitating Phosphorylation of Ser292 by Pyruvate Dehydrogenase-Kinase

    Directory of Open Access Journals (Sweden)

    Tripty A. Hirani


    Full Text Available We have developed an in vitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thaliana α2β2-heterotetrameric pyruvate dehydrogenase (E1 plus A. thaliana E1-kinase (AtPDK. Upon addition of MgATP, Ser292, which is located within the active-site loop structure of E1α, is phosphorylated. In addition to Ser292, Asp295 and Gly297 are highly conserved in the E1α active-site loop sequences. Mutation of Asp295 to Ala, Asn, or Leu greatly reduced phosphorylation of Ser292, while mutation of Gly297 had relatively little effect. Quantitative two-hybrid analysis was used to show that mutation of Asp295 did not substantially affect binding of AtPDK to E1α. When using pyruvate as a variable substrate, the Asp295 mutant proteins had modest changes in kcat, Km, and kcat/Km values. Therefore, we propose that Asp295 plays an important role in stabilizing the active-site loop structure, facilitating transfer of the γ-phosphate from ATP to the Ser residue at regulatory site one of E1α.

  2. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Directory of Open Access Journals (Sweden)

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  3. The effect of heparin and pentosan polysulfate on the thermal stability of yeast alcohol dehydrogenase. (United States)

    Paulíková, H; Molnárová, M; Podhradský, D


    Heparin and pentosan polysulfate as organic polyanions inhibit yeast alcohol dehydrogenase (YADH). The aim of this study was to determine the effect of heparin and pentosan polysulfate on the thermostability of alcohol dehydrogenase. Spectral and kinetic analyses showed that these compounds increase the thermal stability of the enzyme and eliminate entirely thermal aggregation. The thermostabilizing effect of unfractionated heparin and pentosan polysulfate was accelerated in the presence of NAD+. The addition of NAD+ (11 microM) to the incubation medium decreased the inhibition of the YADH activity in the presence of pentosan polysulfate (1.32 microM). Moreover, 38% of the residual activity of YADH was found after a 5-min incubation at 70 degrees C. These findings indicate that heparinoids not only modulate the enzyme activity but also can prevent the protein's thermal denaturation.

  4. Crystallization and preliminary X-ray characterization of d-3-hydroxybutyrate dehydrogenase from Pseudomonas fragi

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yoshitaka; Ito, Kiyoshi; Ichihara, Emi; Ogawa, Kyohei; Egawa, Takashi; Xu, Yue; Yoshimoto, Tadashi, E-mail: [Biotechnology Department, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan)


    d-3-Hydroxybutyrate dehydrogenase (EC from P. flagi has been crystallized by the hanging-drop method. A recombinant form of d-3-hydroxybutyrate dehydrogenase (EC from Pseudomonas fragi has been crystallized by the hanging-drop method using PEG 3000 as a precipitating agent. The crystals belong to the orthorhombic group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 64.3, b = 99.0, c = 110.2 Å. The crystals are most likely to contain two tetrameric subunits in the asymmetric unit, with a V{sub M} value of 3.29 Å{sup 3} Da{sup −1}. Diffraction data were collected to a 2.0 Å resolution using synchrotron radiation at the BL6A station of the Photon Factory.

  5. Proline dehydrogenase is a positive regulator of cell death in different kingdoms. (United States)

    Cecchini, Nicolás M; Monteoliva, Mariela I; Alvarez, María E


    Proline dehydrogenase (ProDH) catalyzes the flavin-dependent oxidation of Pro into Δ1-pyrroline-5-carboxylate (P5C). This is the first of the two enzymatic reactions that convert proline (Pro) into glutamic acid (Glu). The P5C thus produced is non-enzymatically transformed into glutamate semialdehyde (GSA), which acts as a substrate of P5C dehydrogenase (P5CDH) to generate Glu. Activation of ProDH can generate different effects depending on the behaviour of other enzymes of this metabolism. Under different conditions it can generate toxic levels of P5C, alter the cellular redox homeostasis and even produce reactive oxygen species (ROS). Recent studies indicate that in Arabidopsis, the enzyme potentiates the oxidative burst and cell death associated to the Hypersensitive Responses (HR). Interestingly, activation of ProDH can also produce harmful effects in other organisms, suggesting that the enzyme may play a conserved role in the control of cell death.

  6. Expression, Purification, Crystallization And Preliminary X-Ray Studies of Histamine Dehydrogenase From Nocardioides Simplex

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.M.; Hirakawa, H.; Mure, M.; Scott, E.E.; Limburg, J.


    Histamine dehydrogenase (HADH) from Nocardioides simplex catalyzes the oxidative deamination of histamine to produce imidazole acetaldehyde and an ammonium ion. HADH is functionally related to trimethylamine dehydrogenase (TMADH), but HADH has strict substrate specificity towards histamine. HADH is a homodimer, with each 76 kDa subunit containing two redox cofactors: a [4Fe-4S] cluster and an unusual covalently bound flavin mononucleotide, 6-S-cysteinyl-FMN. In order to understand the substrate specificity of HADH, it was sought to determine its structure by X-ray crystallography. This enzyme has been expressed recombinantly in Escherichia coli and successfully crystallized in two forms. Diffraction data were collected to 2.7 {angstrom} resolution at the SSRL synchrotron with 99.7% completeness. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 101.14, b = 107.03, c = 153.35 {angstrom}.

  7. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. (United States)

    Moye, W S; Amuro, N; Rao, J K; Zalkin, H


    The yeast GDH1 gene encodes NADP-dependent glutamate dehydrogenase. This gene was isolated by complementation of an Escherichia coli glutamate auxotroph. NADP-dependent glutamate dehydrogenase was overproduced 6-10-fold in Saccharomyces cerevisiae bearing GDH1 on a multicopy plasmid. The nucleotide sequence of the 1362-base pair coding region and 5' and 3' flanking sequences were determined. Transcription start sites were located by S1 nuclease mapping. Regulation of GDH1 was not maintained when the gene was present on a multicopy plasmid. Protein secondary structure predictions identified a region with potential to form the dinucleotide-binding domain. The amino acid sequences of the yeast and Neurospora crassa enzymes are 63% conserved. Unlike the N. crassa gene, yeast GDH1 has no introns.

  8. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation (United States)

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan


    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis.

  9. Uric acid substantially enhances the free radical-induced inactivation of alcohol dehydrogenase. (United States)

    Kittridge, K J; Willson, R L


    Lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase ( YADH ) are inactivated when attacked by hydroxy free radicals (OH). Organic molecules with a high rate constant of reaction with OH such as ascorbate or urate can compete with the enzymes for these strongly oxidising radicals. However, although 10(-3)M ascorbate can substantially protect both LDH and YADH from OH attack, in the presence of 10(-3)M urate only LDH is protected. In the case of YADH an even greater degree of inactivation than with OH occurs. The extent of inactivation is considerably reduced when oxygen is absent, in agreement with a urate peroxy radical perhaps being partly responsible for the increased inactivation of the enzyme.

  10. Peroxisomal NADP-isocitrate dehydrogenase is required for Arabidopsis stomatal movement. (United States)

    Leterrier, Marina; Barroso, Juan B; Valderrama, Raquel; Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Chaki, Mounira; Luque, Francisco; Viñegla, Benjamin; Palma, José M; Corpas, Francisco J


    Peroxisomes are subcellular organelles characterized by a simple morphological structure but have a complex biochemical machinery involved in signaling processes through molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential component in cell redox homeostasis, and its regeneration is critical for reductive biosynthesis and detoxification pathways. Plants have several NADPH-generating dehydrogenases, with NADP-isocitrate dehydrogenase (NADP-ICDH) being one of these enzymes. Arabidopsis contains three genes that encode for cytosolic, mitochondrial/chloroplastic, and peroxisomal NADP-ICDH isozymes although the specific function of each of these remains largely unknown. Using two T-DNA insertion lines of the peroxisomal NADP-ICDH designated as picdh-1 and picdh-2, the data show that the peroxisomal NADP-ICDH is involved in stomatal movements, suggesting that peroxisomes are a new element in the signaling network of guard cells.

  11. [Mechanism of malate dehydrogenase isoform formation in Sphaerotilus natans D-507 under different cultivation conditions]. (United States)

    Eprintsev, A T; Falaleeva, M I; Arabtseva, M A; Lavrinenko, I A; Parfenova, I V; Grechkina, M V; Abud, F S


    Electrophoretically homogenous preparations of malate dehydrogenase (MDH) isoforms of the bacteria Sphaerotilus natans D-507 with specific activity 7.46 U/mg and 5.74 U/mg with respect to protein concentration have been obtained. The dimeric isoform of the enzyme was shown to function under organotrophic growth conditions, whereas the tetrameric isoform was induced under mixotrophic cultivation conditions. PCR-analysis revealed a single gene encoding the malate dehydrogenase molecule. The topography of the MDH isoform surface was studied by atomic-force microscopy, and a 3D-structure of the enzyme was obtained. Spectraphotometric analysis data allowed us to suggest that stabilization of the tetrameric form of MDH is due to additional bounds implicated in the quaternary structure formation.

  12. Activity of the mitochondrial pyruvate dehydrogenase complex in plants is stimulated in the presence of malate. (United States)

    Igamberdiev, Abir U; Lernmark, Ulrikа; Gardeström, Per


    The effect of malate on the steady-state activity of the pea (Pisum sativum L.) and barley (Hordeum vulgare L.) leaf pyruvate dehydrogenase complex (PDC) has been studied in isolated mitochondria. The addition of malate was found to be stimulatory for the mitochondrial PDC, however there was no stimulation of chloroplast PDC. The stimulation was saturated below 1mM malate and was apparently related to а partially activated complex, which activity increased in the presence of malate by about twofold. Malate also reversed the reduction of PDC activity in the presence of glycine. Based on the obtained kinetic data, we suggest that the effect of malate is rather not a direct activation of PDC but involves the establishment of NAD-malate dehydrogenase equilibrium, decreasing concentration of NADH and relieving its inhibitory effect of PDC.

  13. A α-glycerophosphate dehydrogenase is present in Trypanosoma cruzi glycosomes

    Directory of Open Access Journals (Sweden)

    JL Concepcion


    Full Text Available α-glycerophosphate dehydrogenase (α-GPDH-EC. has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.

  14. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. (United States)

    Yao, Yu-Xin; Li, Ming; Zhai, Heng; You, Chun-Xiang; Hao, Yu-Jin


    Cytosolic NAD-dependent malate dehydrogenase (cyMDH) is an enzyme crucial for malate synthesis in the cytosol. The apple MdcyMDH gene (GenBank Accession No. DQ221207) encoding the cyMDH enzyme in apple was cloned and functionally characterized. The protein was subcellularly localized to the cytoplasm and plasma membrane. Based on kinetic parameters, it mainly catalyzes the reaction from oxalacetic acid (OAA) to malate in vitro. The expression level of MdcyMDH was positively correlated with malate dehydrogenase (MDH) activity throughout fruit development, but not with malate content, especially in the ripening apple fruit. MdcyMDH overexpression contributed to malate accumulation in the apple callus and tomato. Taken together, our results support the involvement of MdcyMDH directly in malate synthesis and indirectly in malate accumulation through the regulation of genes/enzymes associated with malate degradation and transportation, gluconeogenesis and the tricarboxylic acid cycle.

  15. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans. (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji


    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  16. Alpha-hydroxybutyrate dehydrogenase activity in sex-linked muscular dystrophy. (United States)

    Johnston, H A; Wilkinson, J H; Withycombe, W A; Raymond, S


    In two families with severe sex-linked muscular dystrophy, high levels of alpha-hydroxybutyrate dehydrogenase (HBD), lactate dehydrogenase (LD), aspartate transaminase (AspT), aldolase, and creatine phosphokinase (CPK) were found in the sera of three young affected males. In both families the mother had a raised level of HBD activity. Four sisters of the three affected boys had raised serum enzyme levels, and they are regarded as presumptive carriers of the disease. Biopsy specimens of dystrophic muscle had LD and HBD contents which were significantly lower than those of control specimens, while the HBD/LD ratios were markedly greater. Muscle from two unaffected members of the same family also exhibited high ratios, indicating the presence of the electrophoretically fast LD isoenzymes, and this was confirmed by acrylamide-gel electrophoresis.

  17. Interaction of thiamin diphosphate with phosphorylated and dephosphorylated mammalian pyruvate dehydrogenase complex. (United States)

    Liu, Xiaoqing; Bisswanger, Hans


    Kinetic and binding studies were carried out on substrate and cofactor interaction with the pyruvate dehydrogenase complex from bovine heart. Fluoropyruvate and pyruvamide, previously described as irreversible and allosteric inhibitors, respectively, are strong competitive inhibitors with respect to pyruvate. Binding of thiamin diphosphate was used to study differences between the active dephosphorylated and inactive phosphorylated enzyme states by spectroscopic methods. The change in both the intrinsic tryptophan fluorescence and the fluorescence of the 6-bromoacetyl-2-dimethylaminonaphthalene-labelled enzyme complex produced on addition of the cofactor showed similar binding behaviour for both enzyme forms, with slightly higher affinity for the phosphorylated form. Changes in the CD spectrum, especially the negative Cotton effect at 330 nm as a function of cofactor concentration, both in the absence and presence of pyruvate, also revealed no drastic differences between the two enzyme forms. Thus, inactivation of the enzyme activity of the pyruvate dehydrogenase complex is not caused by impeding the binding of substrate or cofactor.

  18. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil


    ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...... and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. RESULTS: We found homozygosity for A > G...... changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. CONCLUSION: This mutation was also found in two...

  19. Disruption of the NADPH-dependent glutamate dehydrogenase affects the morphology of two industrial strains of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Thykær, Jette; Kildegaard, Kanchana Rueksomtawin; Noorman, H.


    New morphological aspects of Penicillium chrysogenum were found during physiological characterisation of two NADPH-dependent glutamate dehydrogenase mutant strains. A morphological characterisation of the previously constructed strains, together with the two beta-lactam producing industrial recip...

  20. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Andersen, H.W.; Pedersen, M.B.; Hammer, Karin;


    a homolactic pattern of fermentation. Only after lactate dehydrogenase activity was reduced ninefold compared to the wild-type was the growth rate significantly affected, and the ldh mutants started to produce mixed-acid products (formate, acetate, and ethanol in addition to lactate). Flux control coefficients...... were determined and it was found that lactate dehydrogenase exerted virtually no control on the glycolytic flux at the wild-type enzyme level and also not on the flux catalyzed by the enzyme itself, i.e. on the lactate production. As expected, the flux towards the mixed-acid products was strongly...... enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control (C- LDH(F1)J=-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate...

  1. Class 2 aldehyde dehydrogenase. Characterization of the hamster enzyme, sensitive to daidzin and conserved within the family of multiple forms. (United States)

    Hjelmqvist, L; Lundgren, R; Norin, A; Jörnvall, H; Vallee, B; Klyosov, A; Keung, W M


    Mitochondrial (class 2) hamster aldehyde dehydrogenase has been purified and characterized. Its primary structure has been determined and correlated with the tertiary structure recently established for this class from another species. The protein is found to represent a constant class within a complex family of multiple forms. Variable segments that occur in different species correlate with non-functional segments, in the same manner as in the case of the constant class of alcohol dehydrogenases (class III type) of another protein family, but distinct from the pattern of the corresponding variable enzymes. Hence, in both these protein families, overall variability and segment architectures behave similarly, with at least one 'constant' form in each case, class III in the case of alcohol dehydrogenases, and at least class 2 in the case of aldehyde dehydrogenases.

  2. Marked and variable inhibition by chemical fixation of cytochrome oxidase and succinate dehydrogenase in single motoneurons (United States)

    Chalmers, G. R.; Edgerton, V. R.


    The effect of tissue fixation on succinate dehydrogenase and cytochrome oxidase activity in single motoneurons of the rat was demonstrated using a computer image processing system. Inhibition of enzyme activity by chemical fixation was variable, with some motoneurons being affected more than others. It was concluded that quantification of enzymatic activity in chemically fixed tissue provides an imprecise estimate of enzyme activities found in fresh-frozen tissues.

  3. Purification of methanol dehydrogenase from mouth methylotrophic bacteria of tropical region


    Waturangi, D.; Marko, N.; M. T. Suhartono2)


    Aims: Purification of methanol dehydrogenase (MDH) from methylotrophic bacteria was conducted to obtain pure enzyme for further research and industrial applications due to the enzyme’s unique activity that catalyzes oxidation of methanol as an important carbon source in methylotrophic bacteria.Methodology and Results: The enzyme was screened from methylotrophic bacteria isolated from human mouth. Purification of this enzyme was conducted using ammonium sulphate precipitation followed by catio...

  4. New studies of the alcohol dehydrogenase cline in D. melanogaster from Mexico. (United States)

    Pipkin, S B; Franklin-Springer, E; Law, S; Lubega, S


    An altitudinal cline of frequencies of alcohol dehydrogenase alleles occurs in D. melanogaster populations of southeastern Mexico. A similar cline of two aldehyde oxidase alleles is present, but frequencies of esterase-6 alleles are not distributed clinically. Collections were made from small dispersed populations. Some gene flow occurred throughout the lowlands according to the distribution of two moderately endemic autosomal inversions and five previously described inversions. The clines are believed dependent on a limited gene flow between temperature races of D. melanogaster.

  5. 5FU and oxaliplatin-containing chemotherapy in two dihydropyrimidine dehydrogenase-deficient patients. (United States)

    Reerink, O; Mulder, N H; Szabo, B G; Hospers, G A P


    Patients with a germline mutation leading to a deficiency of the dihydropyrimidine dehydrogenase (DPD) enzyme are at risk from developing severe toxicity on the administration of 5FU-containing chemotherapy. We report on the implications of this inborn genetic error in two patients who received 5FU and oxaliplatin. A possible co-medication effect of oxaliplatin is considered, as are the consequences of screening for DPD deficiency.

  6. Isolation and Biochemical Characterization of a Glucose Dehydrogenase from a Hay Infusion Metagenome


    Alexander Basner; Garabed Antranikian


    Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate ex...

  7. Alcohol drinking habits, alcohol dehydrogenase genotypes and risk of acute coronary syndrome

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Hansen, J.L.; Gronbaek, M.


    Aims: The risk of myocardial infarction is lower among light-to-moderate drinkers compared with abstainers. Results from some previous studies, but not all, suggest that this association is modified by variations in genes coding for alcohol dehydrogenase (ADH). We aimed to test this hypothesis, i...... for the association between alcohol drinking habits and the risk of developing acute coronary syndrome, if any, is very limited....

  8. [Alanine dehydrogenase of the cyanobacterium Plectonema boryanum in the early period of cyanophage LPP-3 development]. (United States)

    Perepelitsa, S I; Koltukova, N V; Mendzhul, M I


    It has been studied how reproduction of LPP-3 in Plectonema boryanum cells influences the alanine dehydrogenase activity. It has been found that immediately after the virus adsorption the enzyme activity falls by 50% and the anabolic reaction is blocked. Physicochemical properties of the enzyme vary as well. An infected cell has one isoenzyme-octamer with pl 9.1-9.2, pH-optimum by action 9-10, molecular weight about 27 kDa.

  9. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. (United States)

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J; Ströher, Elke; Smith, Steven M; Gardeström, Per; Millar, A Harvey


    Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms

  10. Differential pulse voltammetric studies on the effects of Al(Ⅲ) on the lactate dehydrogenase activity

    Institute of Scientific and Technical Information of China (English)


    In this paper, differential pulse voltammetry (DPV) was applied to study the effects of aluminum Al(Ⅲ) on the lactate dehydrogenase (LDH) activity. Michaelis-Menten constant (KNADHm) and maximum velocity (vmax) in the enzyme promoting catalytic reaction of "pyruvate(Pyr) + NADH + H+ LDH(=) lactate + NAD+" under different conditions by monitoring DPV reduction current of NAD+ were reported.(C) 2007 Shu Ping Bi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  11. Stability and activity of alcohol dehydrogenases in W/O-microemulsions: enantioselective reduction including cofactor regeneration. (United States)

    Orlich, B; Berger, H; Lade, M; Schomäcker, R


    Microemulsions provide an interesting alternative to classical methods for the conversion of less water-soluble substrates by alcohol dehydrogenase, but until now stability and activity were too low for economically useful processes. The activity and stability of the enzymes are dependent on the microemulsion composition, mostly the water and the surfactant concentration. Therefore, it is necessary to know the exact phase behavior of a given microemulsion reaction system and the corresponding enzyme behavior therein. Because of their economic and ecologic suitability polyethoxylated fatty alcohols were investigated concerning their phase behavior and their compatibility with enzymes in ternary mixtures. The phase behavior of Marlipal O13-60 (C13EO6 in industrial quality)/cyclohexane/water and its effect on the activity and stability of alcohol dehydrogenase from Yeast (YADH) and horse liver (HLADH) and the carbonyl reductase from Candida parapsilosis (CPCR) is presented in this study. Beside the macroscopic phase behavior of the reaction system, the viscosity of the system indicates structural changes of aggregates in the microemulsion. The changes of the enzyme activities with the composition are discussed on the basis of transitions from reverse micelles to swollen reverse micelles and finally, the transition to the phase separation. The formate dehydrogenase from Candida boidinii was used for the NADH-regeneration during reduction reactions. While the formate dehydrogenase did not show any kinetic effect on the microemulsion composition, the other enzymes show significant changes of activity and stability varying the water or surfactant concentration of the microemulsion. Under certain conditions, stability could be maintained with HLADH for several weeks. Successful experiments with semi-batch processes including cofactor regeneration and product separation were performed.

  12. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail:; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail:


    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  13. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    Directory of Open Access Journals (Sweden)

    Michelle M Giffin

    Full Text Available Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation.

  14. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    Directory of Open Access Journals (Sweden)

    Becker DF


    Full Text Available Sathish Kumar Natarajan, Donald F BeckerDepartment of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NEAbstract: Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF, proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of

  15. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit



    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to...

  16. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy


    Park, Sungwoo; Choi, Seon-Guk; Yoo, Seung-Min; Son, Jin H.; Jung, Yong-Keun


    CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, we report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both...

  17. Bilateral recurrent auricular pseudocyst: Importance of fine-needle aspiration cytology and lactate dehydrogenase estimation

    Directory of Open Access Journals (Sweden)

    Kalyan Khan


    Full Text Available Auricular pseudocyst or Idiopathic cystic chondromalacia is a rare, benign condition characterized by a focal noninflammatory cystic swelling on the pinna, occurring usually in young male patients. Bilaterality and recurrence have been reported rarely. We report a case of bilateral, recurrent auricular pseudocyst in a young male patient, where fine needle aspiration cytology coupled with fluid lactate dehydrogenase level estimation was diagnostic. Repeated surgery was avoided and conservative treatment was proved to be effective.

  18. Triazole inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase


    Maurya, Sushil K.; Gollapalli, Deviprasad R.; Kirubakaran, Sivapriya; Zhang, Minjia; Johnson, Corey R.; Benjamin, Nicole N.; Hedstrom, Lizbeth; Gregory D Cuny


    Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Since C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole ...

  19. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior (United States)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.


    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data

  20. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters


    Keung, Wing Ming; Klyosov, Anatole A; Vallee, Bert L.


    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation betwe...

  1. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress


    Huang, Jinxian; Xu, Lipeng; Huang, Qiuju; Luo, Jiani; Liu, Peiqing; Chen, Shaorui; Yuan, Xi; Lu, Yao; Wang, Ping; Zhou, Sigui


    This study was designed to investigate the expression of short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time-dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hyp...

  2. Oxidative stress and bovine liver diseases: Role of glutathione peroxidase and glucose6‐phosphate dehydrogenase


    Abd Ellah, Mahmoud Rushdi; OKADA, Keiji; Yasuda, Jun


    This article summarizes the different types of free radicals, antioxidants and the effect of oxidative stress on the activities of glutathione peroxidase and glucose6‐phosphate dehydrogenase in bovine liver diseases. A growing body of evidence suggests that the formation of reactive oxygen species is a common occurrence associated with most if not all disease processes. The overall importance of reactive oxygen species to the progression and severity of various disease state...

  3. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A


    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  4. In Situ lactate dehydrogenase activiy-a novel renal cortical imaging biomarker of tubular injury?

    DEFF Research Database (Denmark)

    Nielsen, Per Mose; Laustsen, Christoffer; Bertelsen, Lotte Bonde;

    , apoptosis and inflammation. Lactate dehydrogenase (LDH) activity has previously been suggested as a renal tubular injury marker, but has a major limitation in the sense that it can only be measured in terminal kidneys. By the use of a hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) approach...... to monitor metabolic changes, we here investigate LDH activity and renal metabolism after IRI. This procedure gives a novel non-invasive method for investigation renal tissue injury in concern with IRI....


    Lifescience Database Archive (English)

    Full Text Available PYRIMIDINEBOXOSRAMY1A S000259 19-August-2004 (last modified) kehi Pyrimidine box fo...und in rice (O.s.) alpha-amylase (RAmy1A) gene; Gibberellin-respons cis-element of GARE and pyrimidine box a...ically to this site; See S000265; alpha-amylase; sugar repression; GARE; pyrimidine box; feed-back metabolic


    Lifescience Database Archive (English)

    Full Text Available PYRIMIDINEBOXOSRAMY1A Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J Functional disse...ction of a sugar-repressed alpha-amylase gene (Ramy1A) promoter in rice embryos FEBS Lett 423:81-85 (1998) PubMed: 9506846; ...

  7. Effects of some drugs on human erythrocyte glucose 6-phosphate dehydrogenase: an in vitro study. (United States)

    Akkemik, Ebru; Budak, Harun; Ciftci, Mehmet


    Inhibitory effects of some drugs on glucose 6-phosphate dehydrogenase from the erythrocytes of human have been investigated. For this purpose, at the beginning, erythrocyte glucose 6-phosphate dehydrogenase was purified 2256 times in a yield of 44.22% by using ammonium sulphate precipitation and 2', 5'-ADP Sepharose 4B affinity gel. Temperature of +4°C was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. This method was utilized for all kinetic studies. Ketotifen, dacarbazine, thiocolchicoside, meloxicam, methotrexate, furosemide, olanzapine, methylprednizolone acetate, paricalcitol, ritodrine hydrochloride, and gadobenate-dimeglumine were used as drugs. All the drugs indicated the inhibitory effects on the enzyme. Ki constants for glucose 6-phosphate dehydrogenase were found by means of Lineweaver-Burk graphs. While methylprednizolone acetate showed competitive inhibition, the others displayed non-competitive inhibition. In addition, IC(50) values of the drugs were determined by plotting Activity% vs [I].

  8. Mycofactocin-associated mycobacterial dehydrogenases with non-exchangeable NAD cofactors (United States)

    Haft, Daniel H.; Pierce, Phillip G.; Mayclin, Stephen J.; Sullivan, Amy; Gardberg, Anna S.; Abendroth, Jan; Begley, Darren W.; Phan, Isabelle Q.; Staker, Bart L.; Myler, Peter J.; Marathias, Vasilios M.; Lorimer, Donald D.; Edwards, Thomas E.


    During human infection, Mycobacterium tuberculosis (Mtb) survives the normally bacteriocidal phagosome of macrophages. Mtb and related species may be able to combat this harsh acidic environment which contains reactive oxygen species due to the mycobacterial genomes encoding a large number of dehydrogenases. Typically, dehydrogenase cofactor binding sites are open to solvent, which allows NAD/NADH exchange to support multiple turnover. Interestingly, mycobacterial short chain dehydrogenases/reductases (SDRs) within family TIGR03971 contain an insertion at the NAD binding site. Here we present crystal structures of 9 mycobacterial SDRs in which the insertion buries the NAD cofactor except for a small portion of the nicotinamide ring. Line broadening and STD-NMR experiments did not show NAD or NADH exchange on the NMR timescale. STD-NMR demonstrated binding of the potential substrate carveol, the potential product carvone, the inhibitor tricyclazol, and an external redox partner 2,6-dichloroindophenol (DCIP). Therefore, these SDRs appear to contain a non-exchangeable NAD cofactor and may rely on an external redox partner, rather than cofactor exchange, for multiple turnover. Incidentally, these genes always appear in conjunction with the mftA gene, which encodes the short peptide MftA, and with other genes proposed to convert MftA into the external redox partner mycofactocin. PMID:28120876

  9. Surviving environmental stress: the role of betaine aldehyde dehydrogenase in marine crustaceans

    Directory of Open Access Journals (Sweden)

    NA Stephens-Camacho


    Full Text Available Betaine aldehyde dehydrogenase (BADH belongs to the aldehyde dehydrogenases (ALDH family, an ancestral group of enzymes responsible for aldehyde detoxification in several organisms. The BADH enzyme catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB an important osmoptrotector and osmoregulator accumulated in response to cellular osmotic stress. The BADH enzymes have been extensively described in terrestrial organisms, but information in marine crustaceans remains scarce. Research on crustacean stress-adaptive capacity to environmental stressors relates GB accumulation in response to salinity variations. Although GB de novo synthesis is confirmed on crustaceans, its metabolic pathways and regulation mechanism are unexplored. In this work, the state of the knowledge of betaine aldehyde dehydrogenase enzymes in marine crustaceans is summarized, as a mechanism to overcome the deleterious effects of changes in temperature, salinity and dissolved oxygen concentration in seawater. The purpose of this review is to provide a more comprehensive overview to set the basis for exploring novel functions and properties of BADHs on the response of crustaceans to environmental stress.

  10. Comparative enzymology-new insights from studies of an "old" enzyme, lactate dehydrogenase. (United States)

    Storey, Kenneth B


    Comparative enzymology explores the molecular mechanisms that alter the properties of enzymes to best fit and adapt them to the biotic demands and abiotic stresses that affect the cellular environment in which these protein catalysts function. For many years, comparative enzymology was primarily concerned with analyzing enzyme functional properties (e.g. substrate affinities, allosteric effectors, responses to temperature or pH, stabilizers, denaturants, etc.) in order to determine how enzyme properties were optimized to function under changing conditions. More recently it became apparent that posttranslational modifications of enzymes play a huge role in metabolic regulation. At first, such modifications appeared to target just crucial regulatory enzymes but recent work is showing that many dehydrogenases are also targets of posttranslational modification leading to substantial changes in enzyme properties. The present article focuses in particular on lactate dehydrogenase (LDH) showing that stress-induced changes in enzyme properties can be linked with reversible posttranslational modifications; e.g. changes in the phosphorylation state of LDH occur in response to dehydration stress in frogs and anoxia exposure of turtles and snails. Furthermore, these studies show that LDH is also a target of other posttranslational modifications including acetylation, methylation and ubiquitination that change in response to anoxia or dehydration stress. Selected new methods for exploring posttranslational modifications of dehydrogenases are discussed and new challenges for the future of comparative enzymology are presented that will help to achieve a deeper understanding of biochemical adaptation through enzyme regulation.

  11. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. (United States)

    O'Brien, Marisa; Chalker, Julia; Slade, Liam; Gardiner, Danielle; Mailloux, Ryan J


    Pyruvate dehydrogenase (Pdh) is a vital source of reactive oxygen species (ROS) in several different tissues. Pdh has also been suggested to serve as a mitochondrial redox sensor. Here, we report that O2(•-)/ H2O2 emission from pyruvate dehydrogenase (Pdh) is altered by S-glutathionylation. Glutathione disulfide (GSSG) amplified O2(•-)/ H2O2 production by purified Pdh during reverse electron transfer (RET) from NADH. Thiol oxidoreductase glutaredoxin-2 (Grx2) reversed these effects confirming that Pdh is a target for S-glutathionylation. S-glutathionylation had the opposite effect during forward electron transfer (FET) from pyruvate to NAD(+) lowering O2(•-)/ H2O2 production. Immunoblotting for protein glutathione mixed disulfides (PSSG) following diamide treatment confirmed that purified Pdh can be S-glutathionylated. Similar observations were made with mouse liver mitochondria. S-glutathionylation catalysts diamide and disulfiram significantly reduced pyruvate or 2-oxoglutarate driven O2(•-)/ H2O2 production in liver mitochondria, results that were confirmed using various Pdh, 2-oxoglutarate dehydrogenase (Ogdh), and respiratory chain inhibitors. Immunoprecipitation of Pdh and Ogdh confirmed that either protein can be S-glutathionylated by diamide and disulfiram. Collectively, our results demonstrate that the S -glutathionylation of Pdh alters the amount of ROS formed by the enzyme complex. We also confirmed that Ogdh is controlled in a similar manner. Taken together, our results indicate that the redox sensing and ROS forming properties of Pdh and Ogdh are linked to S-glutathionylation.

  12. Detection of enzymes dehydrogenases and proteases inBrugia malayi filarial parasites. (United States)

    Bhandary, Y P; Krithika, K N; Kulkarni, Sandeep; Reddy, M V R; Harinath, B C


    Lymphatic filariasis caused mainly by infection fromW. bancrofti andB. malayi remains a major cause of clinical morbidity in tropical and subtropical countries. Analysis ofB. malayi mf, infective larval and adult worm lysates for the activity of enzymes led to the demonstration of activities of three key enzymes of carbohydrate metabolism viz., Malate dehydrogenase (MDH), Malic enzyme (ME) and Glucose-6-phosphate dehydrogenase (G6PDH) in all the three stages of the parasite. The specific activity of all the three dehydrogenases was significantly high in mf lysate compared to their activity in lysates of the other two stages (PFlouride (PMSF). In sodium do-decyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), using gelatin copolymerized gel, the microfilarial lysate showed 3 protease molecules of 40 kDa, 180 kDa and 200 kDa and the L(3) larval lysate had 6 protease molecules of 18, 25, 37, 49, 70 and 200 kDa size.

  13. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus. (United States)

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F


    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  14. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius. (United States)

    Extance, Jonathan; Crennell, Susan J; Eley, Kirstin; Cripps, Roger; Hough, David W; Danson, Michael J


    Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

  15. α -Ketoglutarate accumulation is not dependent on isocitrate dehydrogenase activity during tellurite detoxification in Escherichia coli. (United States)

    Reinoso, Claudia A; Appanna, Vasu D; Vásquez, Claudio C


    Tellurite is toxic to most microorganisms because of its ability to generate oxidative stress. However, the way in which tellurite interferes with cellular processes is not fully understood to date. In this line, it was previously shown that tellurite-exposed cells displayed reduced activity of the α-ketoglutarate dehydrogenase complex (α-KGDH), which resulted in α-ketoglutarate (α-KG) accumulation. In this work, we assessed if α-KG accumulation in tellurite-exposed E. coli could also result from increased isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) activities, both enzymes involved in α-KG synthesis. Unexpectedly both activities were found to decrease in the presence of the toxicant, an observation that seems to result from the decreased transcription of icdA and gdhA genes (encoding ICDH and GDH, resp.). Accordingly, isocitrate levels were found to increase in tellurite-exposed E. coli. In the presence of the toxicant, cells lacking icdA or gdhA exhibited decreased reactive oxygen species (ROS) levels and higher tellurite sensitivity as compared to the wild type strain. Finally, a novel branch activity of ICDH as tellurite reductase is presented.

  16. Duplication of Locus Coding of Malate Dehydrogenase in Populus tomentosa Carr.

    Institute of Scientific and Technical Information of China (English)


    Horizontal starch-gel electrophoresis was used to study crude enzyme extraction from young leaves of 234 clones of Populus tomentosa Carr. selected from nine provenances in North China. Ten enzyme systems were resolved. One hundred and fifty-six clones showing unusual allozyme band patterns at locus Mdh-1 were found. Three allozyme bands at locus Mdh-1 were 9:6:1 in concentration. Further studies on the electrophoretic patterns of ground mixed pollen extraction of 30 male clones selected at random from the 156 clones were conducted and it was found that allozyme bands at locus Mdh-1 were composed of two dark-stained bands and a weak band. Only one group of the malate dehydrogenase (MDH) zymogram composed of two bands was obtained from the electrophoretic segregation of pollen leachate of the same clones. A comparison of the electrophoretic patterns one another suggested that the locus Mdh-1 coding malate dehydrogenase in diploid species of P. tomentosa was duplicated. The duplicate gene locus possessed three same alleles and was located in mitochondria. The locus duplication of alleles coding malate dehydrogenase in P. tomentosa was discovered and reported for the first time.

  17. Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway. (United States)

    Vorobieva, Anastassia A; Khan, Mohammad Shahneawz; Soumillion, Patrice


    The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.

  18. Pcal_1699, an extremely thermostable malate dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis. (United States)

    Gharib, Ghazaleh; Rashid, Naeem; Bashir, Qamar; Gardner, Qura-Tul Ann Afza; Akhtar, Muhammad; Imanaka, Tadayuki


    Two malate dehydrogenase homologs, Pcal_0564 and Pcal_1699, have been found in the genome of Pyrobaculum calidifontis. The gene encoding Pcal_1699 consisted of 927 nucleotides corresponding to a polypeptide of 309 amino acids. To examine the properties of Pcal_1699, the structural gene was cloned, expressed in Escherichia coli and the purified gene product was characterized. Pcal_1699 was NADH specific enzyme exhibiting a high malate dehydrogenase activity (886 U/mg) at optimal pH (10) and temperature (90 °C). Unfolding studies suggested that urea could not induce complete unfolding and inactivation of Pcal_1699 even at a final concentration of 8 M; however, in the presence of 4 M guanidine hydrochloride enzyme structure was unfolded with complete loss of enzyme activity. Thermostability experiments revealed that Pcal_1699 is the most thermostable malate dehydrogenase, reported to date, retaining more than 90 % residual activity even after heating for 6 h in boiling water.

  19. NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Bezsudnova


    Full Text Available We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60–85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution, three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å, and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å. The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.

  20. Enzyme inhibition assay for pyruvate dehydrogenase complex: Clinical utility for the diagnosis of primary biliary cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Katsuhisa Omagri; Hiroaki Hazama; Shigeru Kohno


    Primary biliary cirrhosis (PBC) is usually diagnosed by the presence of characteristic histopathological features of the liver and/or antimitochondrial antibodies (AMA) in the serum traditionally detected by immunofluorescence.Recently, new and more accurate serological assays for the detection of AMA, such as enzyme-linked immunosorbent assay (ELISA), immunoblotting, and enzyme inhibition assay, have been developed. Of these,the enzyme inhibition assay for the detection of antipyruvate dehydrogenase complex (PDC) antibodies offers certain advantages such as objectivity, rapidity,simplicity, and low cost. Since this assay has almost 100% specificity, it may have particular applicability in screening the at-risk segment of the population in developing countries. Moreover, this assay could be also used for monitoring the disease course in PBC. Almost all sera of PBC-suspected patients can be confirmed for PBC or non-PBC by the combination results of immunoblotting and enzyme inhibition assay without histopathological examination. For the development of a "complete" or "gold standard" diagnostic assay for PBC, similar assays of the enzyme inhibition for anti2-oxoglutarate dehydrogenase complex (OGDC) and anti-branched chain oxo-acid dehydrogenase complex (BCOADC) antibodies will be needed in future.

  1. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. (United States)

    Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella


    This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD.

  2. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. (United States)

    Ainscow, E K; Zhao, C; Rutter, G A


    Islet beta-cells express low levels of lactate dehydrogenase and have high glycerol phosphate dehydrogenase activity. To determine whether this configuration favors oxidative glucose metabolism via mitochondria in the beta-cell and is important for beta-cell metabolic signal transduction, we have determined the effects on glucose metabolism and insulin secretion of acute overexpression of the skeletal muscle isoform of lactate dehydrogenase (LDH)-A. Monitored in single MIN6 beta-cells, LDH hyperexpression (achieved by intranuclear cDNA microinjection or adenoviral infection) diminished the response to glucose of both phases of increases in mitochondrial NAD(P)H, as well as increases in mitochondrial membrane potential, cytosolic free ATP, and cystolic free Ca2+. These effects were observed at all glucose concentrations, but were most pronounced at submaximal glucose levels. Correspondingly, adenoviral vector-mediated LDH-A overexpression reduced insulin secretion stimulated by 11 mmol/l glucose and the subsequent response to stimulation with 30 mmol/l glucose, but it was without significant effect when the concentration of glucose was raised acutely from 3 to 30 mmol/l. Thus, overexpression of LDH activity interferes with normal glucose metabolism and insulin secretion in the islet beta-cell type, and it may therefore be directly responsible for insulin secretory defects in some forms of type 2 diabetes. The results also reinforce the view that glucose-derived pyruvate metabolism in the mitochondrion is critical for glucose-stimulated insulin secretion in the beta-cell.

  3. A New Biochemical Way for Conversion of CO2 to Methanol via Dehydrogenases Encapsulated in SiO2 Matrix

    Institute of Scientific and Technical Information of China (English)


    CO2 is converted to methanol through an enzymatic approach using formate dehydro- genase (FateDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH) co- encapsulated in silica gel prepared by modified sol-gel process as catalysts, TEOS as precursor, NADH as an electron donor. The highest yield of methanol was up to 92.1% under 37℃, pH7.0 and 0.3Mpa.

  4. Human placental glucose dehydrogenase: IEF polymorphism in two Italian populations and enzyme activity in the six common phenotypes. (United States)

    Scacchi, R; Corbo, R M; Calzolari, E; Laconi, G; Palmarino, R; Lucarelli, P


    Glucose dehydrogenase (hexose-6-phosphate dehydrogenase) has been assayed qualitatively and quantitatively in more than 600 human placentae collected in two Italian populations. The gene frequencies for GDH1, GDH2 and GDH3 were, respectively, 0.66, 0.21 and 0.12 in Continental Italy and 0.65, 0.23 and 0.12 in Sardinia. Among the six common phenotypes there was no difference in catalytic activity.

  5. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511. (United States)

    Domínguez-Martín, María Agustina; López-Lozano, Antonio; Diez, Jesús; Gómez-Baena, Guadalupe; Rangel-Zúñiga, Oriol Alberto; García-Fernández, José Manuel


    The enzyme isocitrate dehydrogenase (ICDH; EC catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  6. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Directory of Open Access Journals (Sweden)

    María Agustina Domínguez-Martín

    Full Text Available The enzyme isocitrate dehydrogenase (ICDH; EC catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  7. Enantioselective Synthesis of Vicinal (R,R)-Diols by Saccharomyces cerevisiae Butanediol Dehydrogenase. (United States)

    Calam, Eduard; González-Roca, Eva; Fernández, M Rosario; Dequin, Sylvie; Parés, Xavier; Virgili, Albert; Biosca, Josep A


    Butanediol dehydrogenase (Bdh1p) from Saccharomyces cerevisiae belongs to the superfamily of the medium-chain dehydrogenases and reductases and converts reversibly R-acetoin and S-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol, respectively. It is specific for NAD(H) as a coenzyme, and it is the main enzyme involved in the last metabolic step leading to (2R,3R)-2,3-butanediol in yeast. In this study, we have used the activity of Bdh1p in different forms-purified enzyme, yeast extracts, permeabilized yeast cells, and as a fusion protein (with yeast formate dehydrogenase, Fdh1p)-to transform several vicinal diketones to the corresponding diols. We have also developed a new variant of the delitto perfetto methodology to place BDH1 under the control of the GAL1 promoter, resulting in a yeast strain that overexpresses butanediol dehydrogenase and formate dehydrogenase activities in the presence of galactose and regenerates NADH in the presence of formate. While the use of purified Bdh1p allows the synthesis of enantiopure (2R,3R)-2,3-butanediol, (2R,3R)-2,3-pentanediol, (2R,3R)-2,3-hexanediol, and (3R,4R)-3,4-hexanediol, the use of the engineered strain (as an extract or as permeabilized cells) yields mixtures of the diols. The production of pure diol stereoisomers has also been achieved by means of a chimeric fusion protein combining Fdh1p and Bdh1p. Finally, we have determined the selectivity of Bdh1p toward the oxidation/reduction of the hydroxyl/ketone groups from (2R,3R)-2,3-pentanediol/2,3-pentanedione and (2R,3R)-2,3-hexanediol/2,3-hexanedione. In conclusion, Bdh1p is an enzyme with biotechnological interest that can be used to synthesize chiral building blocks. A scheme of the favored pathway with the corresponding intermediates is proposed for the Bdh1p reaction.

  8. Enantioselective Synthesis of Vicinal (R,R)-Diols by Saccharomyces cerevisiae Butanediol Dehydrogenase (United States)

    Calam, Eduard; González-Roca, Eva; Fernández, M. Rosario; Dequin, Sylvie; Parés, Xavier; Virgili, Albert


    Butanediol dehydrogenase (Bdh1p) from Saccharomyces cerevisiae belongs to the superfamily of the medium-chain dehydrogenases and reductases and converts reversibly R-acetoin and S-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol, respectively. It is specific for NAD(H) as a coenzyme, and it is the main enzyme involved in the last metabolic step leading to (2R,3R)-2,3-butanediol in yeast. In this study, we have used the activity of Bdh1p in different forms—purified enzyme, yeast extracts, permeabilized yeast cells, and as a fusion protein (with yeast formate dehydrogenase, Fdh1p)—to transform several vicinal diketones to the corresponding diols. We have also developed a new variant of the delitto perfetto methodology to place BDH1 under the control of the GAL1 promoter, resulting in a yeast strain that overexpresses butanediol dehydrogenase and formate dehydrogenase activities in the presence of galactose and regenerates NADH in the presence of formate. While the use of purified Bdh1p allows the synthesis of enantiopure (2R,3R)-2,3-butanediol, (2R,3R)-2,3-pentanediol, (2R,3R)-2,3-hexanediol, and (3R,4R)-3,4-hexanediol, the use of the engineered strain (as an extract or as permeabilized cells) yields mixtures of the diols. The production of pure diol stereoisomers has also been achieved by means of a chimeric fusion protein combining Fdh1p and Bdh1p. Finally, we have determined the selectivity of Bdh1p toward the oxidation/reduction of the hydroxyl/ketone groups from (2R,3R)-2,3-pentanediol/2,3-pentanedione and (2R,3R)-2,3-hexanediol/2,3-hexanedione. In conclusion, Bdh1p is an enzyme with biotechnological interest that can be used to synthesize chiral building blocks. A scheme of the favored pathway with the corresponding intermediates is proposed for the Bdh1p reaction. PMID:26729717

  9. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains. (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert


    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  10. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz


    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  11. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert


    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter


    Lifescience Database Archive (English)

    Full Text Available WBOXGACAD1A S000448 19-August-2004 (last modified) kehi W-box found in the promoter region of the CAD...GAC), S000142 (TTGACC); W-box; TGAC; CAD; WRKY; Gossypium arboreum (cotton) AGTCAAAATTGACC ...

  13. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. (United States)

    Sukpipat, Wiphat; Komeda, Hidenobu; Prasertsan, Poonsuk; Asano, Yasuhisa


    Meyerozyma caribbica strain 5XY2, which was isolated from an alcohol fermentation starter in Thailand, was found to catabolize l-arabinose as well as d-glucose and d-xylose. The highest production amounts of ethanol from d-glucose, xylitol from d-xylose, and l-arabitol from l-arabinose were 0.45 g/g d-glucose, 0.60 g/g d-xylose, and 0.61 g/g l-arabinose with 21.7 g/L ethanol, 20.2 g/L xylitol, and 30.3 g/l l-arabitol, respectively. The enzyme with l-arabitol dehydrogenase (LAD) activity was purified from the strain and found to exhibit broad specificity to polyols, such as xylitol, d-sorbitol, ribitol, and l-arabitol. Xylitol was the preferred substrate with Km=16.1 mM and kcat/Km=67.0 min(-1)mM(-1), while l-arabitol was also a substrate for the enzyme with Km=31.1 mM and kcat/Km=6.5 min(-1) mM(-1). Therefore, this enzyme from M. caribbica was named xylitol dehydrogenase (McXDH). McXDH had an optimum temperature and pH at 40°C and 9.5, respectively. The McXDH gene included a coding sequence of 1086 bp encoding a putative 362 amino acid protein of 39 kDa with an apparent homopentamer structure. Native McXDH and recombinant McXDH exhibited relative activities toward l-arabitol of approximately 20% that toward xylitol, suggesting the applicability of this enzyme with the functions of XDH and LAD to the development of pentose-fermenting Saccharomyces cerevisiae.

  14. Structure of NADP+-dependent glutamate dehydrogenase from Escherichia coli - reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Michael A.; Oliveira, Tânia F.; Engel, Paul C.; Khan, Amir R. [Trinity; (FCT/UNL); (UC-Dublin)


    Glutamate dehydrogenases catalyse the oxidative deamination of L-glutamate to α-ketoglutarate, using NAD+ and/or NADP+ as a cofactor. Subunits of homo-hexameric bacterial enzymes comprise a substrate-binding domain I followed by a nucleotide-binding domain II. The reaction occurs in a catalytic cleft between the two domains. Although conserved residues in the nucleotide-binding domains of various dehydrogenases have been linked to cofactor preferences, the structural basis for specificity in the GDH family remains poorly understood. Here, the refined crystal structure of Escherichia coli GDH in the absence of reactants is described at 2.5-Å resolution. Modelling of NADP+ in domain II reveals the potential contribution of positively charged residues from a neighbouring α-helical hairpin to phosphate recognition. In addition, a serine that follows the P7 aspartate is presumed to form a hydrogen bond with the 2'-phosphate. Mutagenesis and kinetic analysis confirms the importance of these residues in NADP+ recognition. Surprisingly, one of the positively charged residues is conserved in all sequences of NAD+-dependent enzymes, but the conformations adopted by the corresponding regions in proteins whose structure has been solved preclude their contribution to the coordination of the 2'-ribose phosphate of NADP+. These studies clarify the sequence–structure relationships in bacterial GDHs, revealing that identical residues may specify different coenzyme preferences, depending on the structural context. Primary sequence alone is therefore not a reliable guide for predicting coenzyme specificity. We also consider how it is possible for a single sequence to accommodate both coenzymes in the dual-specificity GDHs of animals.

  15. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia


    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  16. Soil dehydrogenase in a land degradation-rehabilitation gradient: observations from a savanna site with a wet/dry seasonal cycle


    Doi, Ryoichi; Ranamukhaarachchi, Senaratne Leelananda


    Soil dehydrogenase activity is a good indicator of overall microbial activity in soil, and it can serve as a good indicator of soil condition. However, seasonal changes in soil moisture content may have an effect on soil dehydrogenase activity, making an accurate assessment of soil condition difficult. In this study, we attempted to determine the significance of soil dehydrogenase activity for assessing soil condition, and we attempted to find a way to account for the influence of soil moistu...

  17. The human L-threonine 3-dehydrogenase gene is an expressed pseudogene

    Directory of Open Access Journals (Sweden)

    Edgar Alasdair J


    Full Text Available Abstract Background L-threonine is an indispensable amino acid. One of the major L-threonine degradation pathways is the conversion of L-threonine via 2-amino-3-ketobutyrate to glycine. L-threonine dehydrogenase (EC is the first enzyme in the pathway and catalyses the reaction: L-threonine + NAD+ = 2-amino-3-ketobutyrate + NADH. The murine and porcine L-threonine dehydrogenase genes (TDH have been identified previously, but the human gene has not been identified. Results The human TDH gene is located at 8p23-22 and has 8 exons spanning 10 kb that would have been expected to encode a 369 residue ORF. However, 2 cDNA TDH transcripts encode truncated proteins of 157 and 230 residues. These truncated proteins are the result of 3 mutations within the gene. There is a SNP, A to G, present in the genomic DNA sequence of some individuals which results in the loss of the acceptor splice site preceding exon 4. The acceptor splice site preceding exon 6 was lost in all 23 individuals genotyped and there is an in-frame stop codon in exon 6 (CGA to TGA resulting in arginine-214 being replaced by a stop codon. These truncated proteins would be non-functional since they have lost part of the NAD+ binding motif and the COOH terminal domain that is thought to be involved in binding L-threonine. TDH mRNA was present in all tissues examined. Conclusions The human L-threonine 3-dehydrogenase gene is an expressed pseudogene having lost the splice acceptor site preceding exon 6 and codon arginine-214 (CGA is mutated to a stop codon (TGA.

  18. Retinol dehydrogenase, RDH1l, is essential for the heart development and cardiac performance in zebrafish

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; ZHANG Li-feng; GUI Yong-hao; SONG Hou-yan


    Background Retinoic acid (RA) is a potent signaling molecule that plays pleiotropic roles in patterning,morphogenesis,and organogenesis during embryonic development.The synthesis from retinol (vitamin A) to retinoic acid requires two sequential oxidative steps.The first step involves the oxidation of retinol to retinal through the action of retinol dehydrogenases.Retinol dehydrogenases1l (RDH1l) is a novel zebrafish retinol dehydrogenase.Herein we investigated the role of zebrafish RDH1l in heart development and cardiac performance in detail.Methods RDH1l specific morpholino was used to reduce the function of RDH1l in zebrafish.The gene expressions were observed by using whole mount in situ hybridization.Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf).The cardiac performance was analyzed by measuring ventricular shortening fraction (VSF).Results The knock-down of RDH1l led to abnormal neural crest cells migration and reduced numbers of neural crest cells in RDH1l morphant embryos.The reduced numbers of cardiac neural crest cells also can be seen in RDH1l morphant embryos.Furthermore,the morpholino-mediated knock-down of RDH1l resulted in the abnormal heart loop.The left-right determining genes expression pattern was altered in RDH1l morphant embryos.The impaired cardiac performance was observed in RDH1l morphant embryos.Taken together,these data demonstrate that RDH1l is essential for the heart development and cardiac performance in zebrafish.Conclusions RDH1l plays a important role in the neural crest cells development,and then ultimately affects the heart loop and cardiac performance.These results show for the first time that an enzyme involved in the retinol to retinaldehyde conversion participate in the heart development and cardiac performance in zebrafish.

  19. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity. (United States)

    Lerchner, Alexandra; Jarasch, Alexander; Skerra, Arne


    The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM  = 54.1 µM(-1)  Min(-1) (KM  = 32 ± 3 µM; kcat  = 1,730 ± 39 Min(-1) ), almost the same as the wild-type enzyme for NADH (kcat /KM  = 59.9 µM(-1)  Min(-1) ; KM  = 14 ± 2 µM; kcat  = 838 ± 21 Min(-1) ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM  = 3 µM(-1)  Min(-1) ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP(+) and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP(+) and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

  20. Cloning, characterization and functional expression of Taenia solium 17 beta-hydroxysteroid dehydrogenase. (United States)

    Aceves-Ramos, A; de la Torre, P; Hinojosa, L; Ponce, A; García-Villegas, R; Laclette, J P; Bobes, R J; Romano, M C


    The 17β-hydroxysteroid dehydrogenases (17β-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17β-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17β-HSD although significant similarities were also found with other invertebrate and vertebrate 17β-HSD sequences. The T. solium Tsol-17βHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17β-HSD induced expression of Tsol17β-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17β-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species.

  1. NADP-dependent mannitol dehydrogenase, a major allergen of Cladosporium herbarum. (United States)

    Simon-Nobbe, Birgit; Denk, Ursula; Schneider, Peter Bernhard; Radauer, Christian; Teige, Markus; Crameri, Reto; Hawranek, Thomas; Lang, Roland; Richter, Klaus; Schmid-Grendelmeier, Peter; Nobbe, Stephan; Hartl, Arnulf; Breitenbach, Michael


    Cladosporium herbarum is an important allergenic fungal species that has been reported to cause allergic diseases in nearly all climatic zones. 5-30% of the allergic population displays IgE antibodies against molds. Sensitization to Cladosporium has often been associated with severe asthma and less frequently with chronic urticaria and atopic eczema. However, no dominant major allergen of this species has been found so far. We present cloning, production, and characterization of NADP-dependent mannitol dehydrogenase of C. herbarum (Cla h 8) and show that this protein is a major allergen that is recognized by IgE antibodies of approximately 57% of all Cladosporium allergic patients. This is the highest percentage of patients reacting with any Cladosporium allergen characterized so far. Cla h 8 was purified to homogeneity by standard chromatographic methods, and both N-terminal and internal amino acid sequences of protein fragments were determined. Enzymatic analysis of the purified natural protein revealed that this allergen represents a NADP-dependent mannitol dehydrogenase that interconverts mannitol and d-fructose. It is a soluble, non-glycosylated cytoplasmic protein. Two-dimensional protein analysis indicated that mannitol dehydrogenase is present as a single isoform. The cDNA encoding Cla h 8 was cloned from a lambda-ZAP library constructed from hyphae and spores. The recombinant non-fusion protein was expressed in Escherichia coli and purified to homogeneity. Its immunological and biochemical identity with the natural protein was shown by enzyme activity tests, CD spectroscopy, IgE immunoblots with sera of patients, and by skin prick testing of Cladosporium allergic patients. This protein therefore is a new major allergen of C. herbarum.

  2. Acute and chronic effects of diazinon on the activities of three dehydrogenases in the digestive system of a freshwater teleost fish Channa punctatus. (United States)

    Sastry, K V; Malik, P V


    The effect of acute exposure to LC50 for 96 h (3.1 mg/l) and chronic exposure to a sublethal concentration (0.31 mg/l) of diazinon has been studied in the liver, stomach, intestine and pyloric ceca of a freshwater teleost fish, Channa punctatus. In acute exposure succinate dehydrogenase (SDH) activity was elevated in intestine and pyloric ceca. No alteration was noted in lactate dehydrogenase activity but pyruvate dehydrogenase was inhibited in pyloric ceca. Chronic exposure resulted in inhibition of the activities of the three dehydrogenases in all the four parts at both intervals.

  3. 20 alpha-hydroxysteroid dehydrogenase expression in a murine virus-induced myeloproliferative syndrome. (United States)

    Marcovistz, R; Le Bousse-Kerdiles, M C; Maillere, B; Smadja-Joffe, F; Poirrier, V; Jasmin, C


    The myeloproliferative sarcoma virus (MPSV) infection in DBA/2 mice leads to important quantitative and qualitative changes in their hemopoiesis. These findings suggest a disturbance in the production and action of a certain hemopoietic factor similar to IL3. Here, we show that the level of the 20 alpha-hydroxysteroid dehydrogenase (20 alpha-SDH) expression, which can be induced by IL3, is dramatically increased in spleen and thymus of MPSV-infected mice. Our results suggest that quantification of 20 alpha-SDH activity can be used to indicate abnormal production of a growth factor similar to IL3 in hemopoietic system diseases.

  4. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir;


    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (Rdh...... and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early...

  5. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.


    FitzGerald, R.J.; Adams, B. O.; Sandham, H. J.; Abhyankar, S


    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation ...

  6. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency (United States)

    Touma, E; Rashed, M; Vianey-Saban, C; Sakr, A; Divry, P; Gregersen, N; Andresen, B


    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased long chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence.


  7. Evidence of redox imbalance in a patient with succinic semialdehyde dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Anna-Kaisa Niemi


    Full Text Available The pathophysiology of succinic semialdehyde dehydrogenase (SSADH deficiency is not completely understood. Oxidative stress, mitochondrial pathology, and low reduced glutathione levels have been demonstrated in mice, but no studies have been reported in humans. We report on a patient with SSADH deficiency in whom we found low levels of blood reduced glutathione (GSH, and elevations of dicarboxylic acids in urine, suggestive of possible redox imbalance and/or mitochondrial dysfunction. Thus, targeting the oxidative stress axis may be a potential therapeutic approach if our findings are confirmed in other patients.

  8. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein. (United States)

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Kim, Suk


    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis.

  9. Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Jørgensen, Stine Ringholm; Biensø, Rasmus Sjørup


    To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), 6 healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an OGTT and a one-legged knee...... after bed rest than before, indicating glucose intolerance. There were no differences in lactate release/uptake across the exercising muscle before and after bed rest, but glucose uptake after 40min of exercise was larger (P=0.05) before bed rest than after. Muscle glycogen content tended to be higher...

  10. Identification of disulfide bond formation between MitoNEET and glutamate dehydrogenase 1. (United States)

    Roberts, Morgan E; Crail, Jacquelyn P; Laffoon, Megan M; Fernandez, William G; Menze, Michael A; Konkle, Mary E


    MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.

  11. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.


    Melo-Oliveira, R; I.C. Oliveira; Coruzzi, G M


    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH...

  12. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. (United States)

    Jin, Lingtao; Li, Dan; Alesi, Gina N; Fan, Jun; Kang, Hee-Bum; Lu, Zhou; Boggon, Titus J; Jin, Peng; Yi, Hong; Wright, Elizabeth R; Duong, Duc; Seyfried, Nicholas T; Egnatchik, Robert; DeBerardinis, Ralph J; Magliocca, Kelly R; He, Chuan; Arellano, Martha L; Khoury, Hanna J; Shin, Dong M; Khuri, Fadlo R; Kang, Sumin


    How mitochondrial glutaminolysis contributes to redox homeostasis in cancer cells remains unclear. Here we report that the mitochondrial enzyme glutamate dehydrogenase 1 (GDH1) is commonly upregulated in human cancers. GDH1 is important for redox homeostasis in cancer cells by controlling the intracellular levels of its product alpha-ketoglutarate and subsequent metabolite fumarate. Mechanistically, fumarate binds to and activates a reactive oxygen species scavenging enzyme glutathione peroxidase 1. Targeting GDH1 by shRNA or a small molecule inhibitor R162 resulted in imbalanced redox homeostasis, leading to attenuated cancer cell proliferation and tumor growth.

  13. 13C–Metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae


    Tang, Yijin; Sieg, Alex; Trotter, Pamela J.


    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ~ 4 hours. NADP-dependent GDH a...

  14. [Effective method of isolating M4-lactate dehydrogenase from rat liver]. (United States)

    Gorbach, Z V; Maglysh, S S; Konovalenko, O V


    Lactate dehydrogenase M4-isoform in the homogeneous state was isolated from the rat liver by successive application of sulphate-ammonium fractionation, phosphocellulose ion-exchange chromatography with high-affinity elution of 1 mM NADH and subsequent hydroxyl apatite fractionation. The method permits obtaining the preparation amounts of the enzymic protein with yield 37.5%, specific activity 386.8 units per 1 mg of protein. It is established that 1 mM NAD+, 10 mM pyruvate and 100 mM lactate are also effective as agents of the selective enzyme elution.

  15. Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase. (United States)

    Beaufay, François; De Bolle, Xavier; Hallez, Régis


    Prior to initiate energy-consuming processes, such as DNA replication or cell division, cells need to evaluate their metabolic status. We have recently identified and characterized a new connection between metabolism and cell division in the α-proteobacterium Caulobacter crescentus. We showed that an NAD-dependent glutamate dehydrogenase (GdhZ) coordinates growth with cell division according to its enzymatic activity. Here we report the conserved role of GdhZ in controlling cell division in another α-proteobacterium, the facultative intracellular pathogen Brucella abortus. We also discuss the importance of amino acids as a main carbon source for α-proteobacteria.

  16. Glucose-6-Phosphate Dehydrogenase Deficiency and Adrenal Hemorrhage in a Filipino Neonate with Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Akira Ohishi


    Full Text Available We report on a Filipino neonate with early onset and prolonged hyperbilirubinemia who was delivered by a vacuum extraction due to a prolonged labor. Subsequent studies revealed adrenal hemorrhage and glucose-6-phosphate dehydrogenase (G6PD deficiency. It is likely that asphyxia and resultant hypoxia underlie the occurrence of adrenal hemorrhage and the clinical manifestation of G6PD deficiency and that the presence of the two events explains the early onset and prolonged hyperbilirubinemia of this neonate. Our results represent the importance of examining possible underlying factors for the development of severe, early onset, or prolonged hyperbilirubinemia.

  17. The protective effects of osmolytes on yeast alcohol dehydrogenase conformational stability and aggregation. (United States)

    Han, Hong-Yan; Yao, Zhi-Gang; Gong, Cheng-Liang; Xu, Wei-An


    The protective effects of four osmolytes (trehalose, dimethysulfoxide, glycine and proline) on the conformational stability and aggregation of guanidine-denatured yeast alcohol dehydrogenase (YADH) have been investigated in this paper. The results show that the four osmolytes protect YADH against unfolding and inactivation by reducing ki (inactivation rate constants), increasing DeltaDeltaGi (transition free energy changes at 25 degrees C), increasing Cm (value for the midpoint of denaturation) and decreasing its ANS-binding fluorescence intensity. Furthermore, these osmolytes can prevent YADH aggregation in a concentration-dependent manner during YADH refolding.

  18. CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor. (United States)

    Noji, Tomoyasu; Jin, Tetsuro; Nango, Mamoru; Kamiya, Nobuo; Amao, Yutaka


    In this study, we demonstrated the conversion of CO2 to formic acid under ambient conditions in a photoreduction nanoporous reactor using a photosensitizer, methyl viologen (MV(2+)), and formate dehydrogenase (FDH). The overall efficiency of this reactor was 14 times higher than that of the equivalent solution. The accumulation rate of formic acid in the nanopores of 50 nm is 83 times faster than that in the equivalent solution. Thus, this CO2 photoreduction nanoporous glass reactor will be useful as an artificial photosynthesis system that converts CO2 to fuel.

  19. In vitro effect of some anthelmintics on lactate dehydrogenase activity of Cotylophoron cotylophorum (Digenea: paramphistomidae). (United States)

    Veerakumari, L; Munuswamy, N


    Effects of praziquantel (PZQ), levamisole (LEV), mebendazole (MBZ), fenbendazole (FBZ) and albendazole (ABZ) on the lactate dehydrogenase (LDH) activity of Cotylophoron cotylophorum were studied in vitro. Maximum levels of inhibition of LDH catalysing both oxidation and reduction reactions were observed in PZQ- and LEV-treated worms. Similarly, benzimidazoles - MBZ, FBZ and ABZ - have also significantly inhibited the activity of LDH catalysing the oxidation of lactate; whereas the activity of LDH catalysing the reduction of pyruvate was accelerated. This affects the mitochondrial energy generating process which ultimately proves fatal to the parasite. Therefore, the mode of action of benzimidazoles is primarily on the activation of LDH catalysing the conversion of pyruvate to lactate.

  20. Molecular Recognition Analyzed by Docking Simulations: The Aspartate Receptor and Isocitrate Dehydrogenase from Escherichia coli (United States)

    Stoddard, Barry L.; Koshland, Daniel E., Jr.


    Protein docking protocols are used for the prediction of both small molecule binding to DNA and protein macromolecules and of complexes between macromolecules. These protocols are becoming increasingly automated and powerful tools for computer-aided drug design. We review the basic methodologies and strategies used for analyzing molecular recognition by computer docking algorithms and discuss recent experiments in which (i) substrate and substrate analogues are docked to the active site of isocitrate dehydrogenase and (ii) maltose binding protein is docked to the extracellular domain of the receptor, which signals maltose chemotaxis.

  1. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila.


    Abbanat, D R; Ferry, J G


    The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs...

  2. The Structural Basis of Cryptosporidium-Specific IMP Dehydrogenase Inhibitor Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    MacPherson, Iain S.; Kirubakaran, Sivapriya; Gorla, Suresh Kumar; Riera, Thomas V.; D’Aquino, J. Alejandro; Zhang, Minjia; Cuny, Gregory D.; Hedstrom, Lizbeth (BWH); (Brandeis)


    Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5{prime}-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 10{sup 3} selectivity for the parasite enzyme over human IMPDH2.

  3. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects. (United States)

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L


    All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in total, with 21-28 replacements between any pair of the alpha/beta/gamma chains. These values, compared with those from species differences between the corresponding human and horse enzymes, suggest that isozyme developments in the class I enzyme resulted from separate gene duplications after the divergence of the human and equine evolutionary lines. All subunits exhibit some unique properties, with slightly closer similarity between the human gamma and horse enzyme subunits and somewhat greater deviations towards the human alpha subunit. Differences are large also in segments close to the active site zinc ligands and other functionally important positions. Species differences are distributed roughly equally between the two types of domain in the subunit, whereas isozyme differences are considerably more common in the catalytic than in the coenzyme-binding domain. These facts illustrate a functional divergence among the isozymes but otherwise similar changes during evolution. Polymorphic forms of beta and gamma subunits are characterized by single replacements at one and two positions, respectively, explaining known deviating properties. Class II and class III subunits are considerably more divergent. Their homology with class I isozymes exhibits only 60-65% positional identity. Hence, they reflect further steps towards the development of new enzymes, with variations well above the horse/human species levels, in contrast to the class I forms. Again, functionally important residues are affected, and patterns resembling those previously established for the divergently related

  4. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae

    Directory of Open Access Journals (Sweden)

    Yang Wang


    Full Text Available Testis-specific lactate dehydrogenase (LDH-C4 is one of the lactate dehydrogenase (LDH isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4, Lactate Dehydrogenase B4 (LDH-B4, and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and native polyacrylamide gel electrophoresis (PAGE. The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L, LDH-B4 (Ki = 23.800 mmol/L, and LDH-C4 (Ki = 65.500 mmol/L. These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4.

  5. Association between common alcohol dehydrogenase gene (ADH) variants and schizophrenia and autism


    Zuo, Lingjun; Wang,Kesheng; Zhang, Xiang-Yang; Pan, Xinghua; Wang, Guilin; Tan, Yunlong; ZHONG, CHUNLONG; Krystal, John H.; State, Matthew; Zhang, Heping; Luo, Xingguang


    Humans express at least seven alcohol dehydrogenase (ADH) isoforms that are encoded by ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5) at chromosome 4. ADHs are key catabolic enzymes for retinol and ethanol. The functional ADH variants (mostly rare) have been implicated in alcoholism risk. In addition to catalyzing the oxidation of retinol and ethanol, ADHs may be involved in the metabolic pathways of several neurotransmitters that are implicated in the neurobiology of neuropsychiatr...

  6. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide. (United States)

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev


    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  7. Isolation of an aldehyde dehydrogenase involved in the oxidation of fluoroacetaldehyde to fluoroacetate in Streptomyces cattleya. (United States)

    Murphy, C D; Moss, S J; O'Hagan, D


    Streptomyces cattleya is unusual in that it produces fluoroacetate and 4-fluorothreonine as secondary metabolites. We now report the isolation of an NAD(+)-dependent fluoroacetaldehyde dehydrogenase from S. cattleya that mediates the oxidation of fluoroacetaldehyde to fluoroacetate. This is the first enzyme to be identified that is directly involved in fluorometabolite biosynthesis. Production of the enzyme begins in late exponential growth and continues into the stationary phase. Measurement of kinetic parameters shows that the enzyme has a high affinity for fluoroacetaldehyde and glycoaldehyde, but not acetaldehyde.

  8. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C


    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  9. Ubiquitous distribution and different subcellular localization of sorbitol dehydrogenase in fruit and leaf of apple



    NAD+-dependent sorbitol dehydrogenase (NAD-SDH, EC, a key enzyme in sorbitol metabolism, plays an important role in regulating sink strength and determining the quality of apple fruit. Understanding the tissue and subcellular localization of NAD-SDH is helpful for understanding sorbitol metabolism in the apple. In this study, two NAD-SDH cDNA sequences were isolated from apple fruits (Malus domestica Borkh cv. Starkrimson) and named MdSDH5 and MdSDH6. Immunohistochemical analysis re...

  10. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma

    DEFF Research Database (Denmark)

    Kelderman, Sander; Heemskerk, Bianca; van Tinteren, Harm;


    OS was 7.5 months, and OS at 1 year was 37.8 % and at 2 years was 22.9 %. In a multivariate model, baseline serum lactate dehydrogenase (LDH) was demonstrated to be the strongest predictive factor for OS. These findings were validated in an independent cohort of 64 patients from the UK. In both...... the NL and UK cohorts, long-term benefit of ipilimumab treatment was unlikely for patients with baseline serum LDH greater than twice the upper limit of normal. In the absence of prospective data, clinicians treating melanoma may wish to consider the data presented here to guide patient selection...

  11. Enzymic analysis of NADPH metabolism in beta-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase. (United States)

    Harris, Diana M; Diderich, Jasper A; van der Krogt, Zita A; Luttik, Marijke A H; Raamsdonk, Léonie M; Bovenberg, Roel A L; van Gulik, Walter M; van Dijken, Johannes P; Pronk, Jack T


    Based on assumed reaction network structures, NADPH availability has been proposed to be a key constraint in beta-lactam production by Penicillium chrysogenum. In this study, NADPH metabolism was investigated in glucose-limited chemostat cultures of an industrial P. chrysogenum strain. Enzyme assays confirmed the NADP(+)-specificity of the dehydrogenases of the pentose-phosphate pathway and the presence of NADP(+)-dependent isocitrate dehydrogenase. Pyruvate decarboxylase/NADP(+)-linked acetaldehyde dehydrogenase and NADP(+)-linked glyceraldehyde-3-phosphate dehydrogenase were not detected. Although the NADPH requirement of penicillin-G-producing chemostat cultures was calculated to be 1.4-1.6-fold higher than that of non-producing cultures, in vitro measured activities of the major NADPH-providing enzymes were the same. Isolated mitochondria showed high rates of antimycin A-sensitive respiration of NADPH, thus indicating the presence of a mitochondrial NADPH dehydrogenase that oxidises cytosolic NADPH. The presence of this enzyme in P. chrysogenum might have important implications for stoichiometric modelling of central carbon metabolism and beta-lactam production and may provide an interesting target for metabolic engineering.

  12. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity. (United States)

    Lamb, A L; Newcomer, M E


    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  13. [Molecular evidences of non-ADH pathway in alcohol metabolism and Class III alcohol dehydrogenase (ADH3)]. (United States)

    Haseba, Takeshi


    Class I alcohol dehydrogenase (ADH1), a key enzyme of alcohol metabolism, contributes around 70% to the systemic alcohol metabolism and also to the acceleration of the metabolism due to chronic alcohol consumption by increasing its liver content, if the liver damage or disease is not apparent. However, the contribution of ADH1 to alcohol metabolism decreases in case of acute alcohol poisoning or chronic alcohol consumption inducing liver damage or disease. On the contrary, non-ADH pathway, which is independent of ADH1, increases the contribution to alcohol metabolism in these cases, by complementing the reduced role of ADH1. The molecular substantiality of non-ADH pathway has been still unknown in spite of the long and hot controversy between two candidates of microsomal ethanol oxidizing system (MEOS) and catalase. This research history suggests the existence of other candidates. Among ADH isozymes, Class III (ADH3) has the highest Km for ethanol and the highest resistance to pyrazole reagents of specific ADH inhibitors. This ADH3 was demonstrated to increase the contribution to alcohol metabolism in vivo dose-dependently, therefore, is a potent candidate of non-ADH pathway. Moreover, ADH3 is considered to increase the contribution to alcohol metabolism in case of alcoholic liver diseases, because the enzyme content increases in damaged tissues with increased hydrophobicity or the activity of the liver correlates with the accumulated alcohol consumptions of patients with alcoholic liver diseases. Such adaptation of ADH3 to alcohol metabolism in these pathological conditions makes patients possible to keep drinking a lot in spite of decrease of ADH1 activity and develops alcoholism seriously.

  14. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G


    157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells......-chain acyl-CoA dehydrogenase (SCAD) gene of a patient with SCAD deficiency, suggesting that the conserved arginine is crucial for formation of active enzyme in the straight-chain acyl-CoA dehydrogenases....

  15. Alcohol Dehydrogenase-1B (rs1229984 and Aldehyde Dehydrogenase-2 (rs671 Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men.

    Directory of Open Access Journals (Sweden)

    Akira Yokoyama

    Full Text Available Elevated serum triglyceride (TG and high-density-lipoprotein cholesterol (HDL-C levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics.The population consisted of 1806 Japanese alcoholic men (≥40 years who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission.High serum levels of TG (≥150 mg/dl, HDL-C (>80 mg/dl, and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval for a high TG level (2.22 [1.67-2.94] and 1.39 [0.99-1.96], respectively, and decreased the OR for a high HDL-C level (0.37 [0.28-0.49] and 0.51 [0.37-0.69], respectively. The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45-0.80]. The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl and HDL-C (≥100 mg/dl.The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast-metabolizing ADH1B was associated with lower serum LDL

  16. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Taowei Yang

    Full Text Available BACKGROUND: Previously, a safe strain, Bacillus amyloliquefaciens B10-127 was identified as an excellent candidate for industrial-scale microbial fermentation of 2,3-butanediol (2,3-BD. However, B. amyloliquefaciens fermentation yields large quantities of acetoin, lactate and succinate as by-products, and the 2,3-BD yield remains prohibitively low for commercial production. METHODOLOGY/PRINCIPAL FINDINGS: In the 2,3-butanediol metabolic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH catalyzes the conversion of 3-phosphate glyceraldehyde to 1,3-bisphosphoglycerate, with concomitant reduction of NAD(+ to NADH. In the same pathway, 2,3-BD dehydrogenase (BDH catalyzes the conversion of acetoin to 2,3-BD with concomitant oxidation of NADH to NAD(+. In this study, to improve 2,3-BD production, we first over-produced NAD(+-dependent GAPDH and NADH-dependent BDH in B. amyloliquefaciens. Excess GAPDH reduced the fermentation time, increased the 2,3-BD yield by 12.7%, and decreased the acetoin titer by 44.3%. However, the process also enhanced lactate and succinate production. Excess BDH increased the 2,3-BD yield by 16.6% while decreasing acetoin, lactate and succinate production, but prolonged the fermentation time. When BDH and GAPDH were co-overproduced in B. amyloliquefaciens, the fermentation time was reduced. Furthermore, in the NADH-dependent pathways, the molar yield of 2,3-BD was increased by 22.7%, while those of acetoin, lactate and succinate were reduced by 80.8%, 33.3% and 39.5%, relative to the parent strain. In fed-batch fermentations, the 2,3-BD concentration was maximized at 132.9 g/l after 45 h, with a productivity of 2.95 g/l·h. CONCLUSIONS/SIGNIFICANCE: Co-overexpression of bdh and gapA genes proved an effective method for enhancing 2,3-BD production and inhibiting the accumulation of unwanted by-products (acetoin, lactate and succinate. To our knowledge, we have attained the highest 2,3-BD fermentation yield thus far

  17. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    DEFF Research Database (Denmark)

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.;


    (P)H dehydrogenases, was introduced into Nicotiana sylvestris. Transgenic lines with high transcript and protein levels for St-NDB1 had up to threefold increased activity of external NADPH dehydrogenase in isolated mitochondria as compared to the wild type (WT). In two lines, the external NADPH dehydrogenase activity...... for NADPH and dependent on calcium for activity. Transgenic lines overexpressing St-ndb1 had specifically increased protein levels for alternative oxidase and uncoupling protein, as compared to the WT and one co-suppressing line. This indicates cross-talk in the expressional control, or metabolic conditions...... influencing it, for the different categories of energy-dissipating proteins that bypass oxidative phosphorylation. The potential effects of external NADPH oxidation on other cellular processes are discussed....

  18. Peculiarities of the inhibition of the pyruvate dehydrogenase complex by thiamine thiazolone diphosphate in vitro and in intact mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, G.M.; Strumilo, S.A.; Gorenshtein, B.I.; Ostrovskii, Yu.M.


    Thiamine thiazolone diphosphate (TTPP) possesses the ability to penetrate through the mitochondrial membrane and inhibit the pyruvate dehydrogenase complex in intact mitochondria, TTPP inhibits the activity of the complex of animal origin according to a mixed type (K/sub i/ 5 x 10/sup -8/ M) and yeast pyruvate decarboxylase according to a competitive type (K/sub i/ 5 x 10/sup -6/ M) with respect to thiamine diphosphate (TPP). Decarboxylation of pyruvate in intact and lysed rat liver and brain mitochondria is inhibited in the presence of TTPP significantly more weakly than the total activity of the pyruvate dehydrogenase complex, determined according to the formation of acetyl-CoA. It is suggested that TTPP, as an analog of the transition state, acts only in dehydrogenase reactions but not at the stage of simple decarboxylation of pyruvate.

  19. Purification of methanol dehydrogenase from mouth methylotrophic bacteria of tropical region

    Directory of Open Access Journals (Sweden)

    Waturangi, D.


    Full Text Available Aims: Purification of methanol dehydrogenase (MDH from methylotrophic bacteria was conducted to obtain pure enzyme for further research and industrial applications due to the enzyme’s unique activity that catalyzes oxidation of methanol as an important carbon source in methylotrophic bacteria.Methodology and Results: The enzyme was screened from methylotrophic bacteria isolated from human mouth. Purification of this enzyme was conducted using ammonium sulphate precipitation followed by cation exchange chromatography. Two types of media were used to produce the enzymes: luria broth and standard mineral salts media (MSM. MSM produced MDH with higher specific activity than LB. Specific activity was also increased along with the purification steps. Application of ammonium sulphate increased the purity of enzyme and was more effective for the enzyme produced in LB. Using sepharose increased the enzyme activity 10 -57 folds.Conclusion, significant and impact of this study: With this, ammonium sulphate precipitation coupled with single cation exchange chromatographic system has been proved to provide sufficient purified of methanol dehydrogenase from methylotrophic bacteria origin of human mouth with high specific activity for further application.

  20. Identification and characterization of thermostable glucose dehydrogenases from thermophilic filamentous fungi. (United States)

    Ozawa, Kazumichi; Iwasa, Hisanori; Sasaki, Noriko; Kinoshita, Nao; Hiratsuka, Atsunori; Yokoyama, Kenji


    FAD-dependent glucose dehydrogenase (FAD-GDH), which contains FAD as a cofactor, catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, and plays an important role in biosensors measuring blood glucose levels. In order to obtain a novel FAD-GDH gene homolog, we performed degenerate PCR screening of genomic DNAs from 17 species of thermophilic filamentous fungi. Two FAD-GDH gene homologs were identified and cloned from Talaromyces emersonii NBRC 31232 and Thermoascus crustaceus NBRC 9129. We then prepared the recombinant enzymes produced by Escherichia coli and Pichia pastoris. Absorption spectra and enzymatic assays revealed that the resulting enzymes contained oxidized FAD as a cofactor and exhibited glucose dehydrogenase activity. The transition midpoint temperatures (T m) were 66.4 and 62.5 °C for glycosylated FAD-GDHs of T. emersonii and T. crustaceus prepared by using P. pastoris as a host, respectively. Therefore, both FAD-GDHs exhibited high thermostability. In conclusion, we propose that these thermostable FAD-GDHs could be ideal enzymes for use as thermotolerant glucose sensors with high accuracy.

  1. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. (United States)

    Hartong, Dyonne T; Dange, Mayura; McGee, Terri L; Berson, Eliot L; Dryja, Thaddeus P; Colman, Roberta F


    Here we describe two families with retinitis pigmentosa, a hereditary neurodegeneration of rod and cone photoreceptors in the retina. Affected family members were homozygous for loss-of-function mutations in IDH3B, encoding the beta-subunit of NAD-specific isocitrate dehydrogenase (NAD-IDH, or IDH3), which is believed to catalyze the oxidation of isocitrate to alpha-ketoglutarate in the citric acid cycle. Cells from affected individuals had a substantial reduction of NAD-IDH activity, with about a 300-fold increase in the K(m) for NAD. NADP-specific isocitrate dehydrogenase (NADP-IDH, or IDH2), an enzyme that catalyzes the same reaction, was normal in affected individuals, and they had no health problems associated with the enzyme deficiency except for retinitis pigmentosa. These findings support the hypothesis that mitochondrial NADP-IDH, rather than NAD-IDH, serves as the main catalyst for this reaction in the citric acid cycle outside the retina, and that the retina has a particular requirement for NAD-IDH.

  2. Effect of dehydrogenase, phosphatase and urease activity in cotton soil after applying thiamethoxam as seed treatment. (United States)

    Jyot, Gagan; Mandal, Kousik; Singh, Balwinder


    Soil enzymes are indicators of microbial activities in soil and are often considered as an indicator of soil health and fertility. They are very sensitive to the agricultural practices, pH of the soil, nutrients, inhibitors and weather conditions. To understand the effect of an insecticide, thiamethoxam, on different soil enzyme activities, the experiments were conducted at cotton experimental fields of Punjab Agricultural University, Ludhiana. The results here were presented to understand the impact of thiamethoxam on soil enzyme activities. Thiamethoxam was applied as seed treatment to control the pest. Soil from three localities, i.e. soil in which seed was treated with recommended dose at 2.1 g a.i. kg(-1), soil in which seed was treated with four times recommended dose at 8.4 g a.i. kg(-1) and from the control field, were tested for different enzyme activities. Phosphatase and dehydrogenase activities were high in control soil in comparison to control soil while no effect of this insecticide on urease activity. Thiamethoxam had inhibitory effects on dehydrogenase and phosphatase activities. Therefore, it can be attributed that agricultural practices, weather conditions and use of thiamethoxam might be responsible for the different level of enzyme activities in soil.

  3. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. (United States)

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu


    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  4. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. (United States)

    DeLuna, A; Avendano, A; Riego, L; Gonzalez, A


    In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenases (NADP-GDHs) encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. The GDH2-encoded NAD(+)-dependent glutamate dehydrogenase degrades glutamate producing ammonium and alpha-ketoglutarate. Until very recently, it was considered that only one biosynthetic NADP-GDH was present in S. cerevisiae. This fact hindered understanding the physiological role of each isoenzyme and the mechanisms involved in alpha-ketoglutarate channeling for glutamate biosynthesis. In this study, we purified and characterized the GDH1- and GDH3-encoded NADP-GDHs; they showed different allosteric properties and rates of alpha-ketoglutarate utilization. Analysis of the relative levels of these proteins revealed that the expression of GDH1 and GDH3 is differentially regulated and depends on the nature of the carbon source. Moreover, the physiological study of mutants lacking or overexpressing GDH1 or GDH3 suggested that these genes play nonredundant physiological roles. Our results indicate that the coordinated regulation of GDH1-, GDH3-, and GDH2-encoded enzymes results in glutamate biosynthesis and balanced utilization of alpha-ketoglutarate under fermentative and respiratory conditions. The possible relevance of the duplicated NADP-GDH pathway in the adaptation to facultative metabolism is discussed.

  5. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Directory of Open Access Journals (Sweden)

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  6. Purification and characterization of NADP(+)-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Peptostreptococcus productus marburg. (United States)

    Wohlfarth, G; Geerligs, G; Diekert, G


    The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophically grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 microM, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40 degrees C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric alpha 2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to greater than 95% in the soluble (supernatant) fraction. Sodium (10 microM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P. productus. PMID:1899860

  7. Aldehyde dehydrogenases in Arabidopsis thaliana: Biochemical requirements, metabolic pathways and functional analysis

    Directory of Open Access Journals (Sweden)

    Naim eStiti


    Full Text Available Aldehyde dehydrogenases (ALDHs are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  8. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis. (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea


    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  9. An ultraviolet resonance Raman study of dehydrogenase enzymes and their interactions with coenzymes and substrates. (United States)

    Austin, J C; Wharton, C W; Hester, R E


    Ultraviolet resonance Raman (UVRR) spectra, with 260-nm excitation, are reported for oxidized and reduced nicotinamide adenine dinucleotides (NAD+ and NADH, respectively). Corresponding spectra are reported for these coenzymes when bound to the enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and liver and yeast alcohol dehydrogenases (LADH and YADH). The observed differences between the coenzyme spectra are interpreted in terms of conformation, hydrogen bonding, and general environment polarity differences between bound and free coenzymes and between coenzymes bound to different enzymes. The possibility of adenine protonation is discussed. UVRR spectra with 220-nm excitation also are reported for holo- and apo-GAPDH (GAPDH-NAD+ and GAPDH alone, respectively). In contrast with the 260-nm spectra, these show only bands due to vibrations of aromatic amino acid residues of the protein. The binding of coenzyme to GAPDH has no significant effect on the aromatic amino acid bands observed. This result is discussed in the light of the known structural change of GAPDH on binding coenzyme. Finally, UVRR spectra with 240-nm excitation are reported for GAPDH and an enzyme-substrate intermediate of GAPDH. Perturbations are reported for tyrosine and tryptophan bands on forming the acyl enzyme.

  10. Myocardial steatosis and necrosis in atria and ventricles of rats given pyruvate dehydrogenase kinase inhibitors. (United States)

    Jones, Huw Bowen; Reens, Jaimini; Johnson, Elizabeth; Brocklehurst, Simon; Slater, Ian


    Pharmaceutical therapies for non-insulin-dependent diabetes mellitus (NIDDM) include plasma glucose lowering by enhancing glucose utilization. The mitochondrial pyruvate dehydrogenase (PDH) complex is important in controlling the balance between glucose and fatty acid substrate oxidation. Administration of pyruvate dehydrogenase kinase inhibitors (PDHKIs) to rats effectively lowers plasma glucose but results in myocardial steatosis that in some instances is associated primarily with atrial and to a lesser degree with ventricular pathology. Induction of myocardial steatosis is not dose-dependent, varies from minimal to moderate severity, and is either of multifocal or diffuse distribution. Ventricular histopathology was restricted to few myocardial degenerative fibers, while that in the atrium/atria was of either acute or chronic appearance with the former showing myocardial degeneration/necrosis, acute myocarditis, edema, endothelial activation (rounding up), endocarditis, and thrombosis associated with moderate myocardial steatosis and the latter with myocardial loss, replacement fibrosis, and no apparent or minimal association with steatosis. The evidence from these evaluations indicate that excessive intramyocardial accumulation of lipid may be either primarily adverse or represents an indicator of other adversely affected cellular processes.

  11. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers. (United States)

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H


    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution.

  12. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity. (United States)

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo


    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  13. Potential Mitochondrial Isocitrate Dehydrogenase R140Q Mutant Inhibitor from Traditional Chinese Medicine against Cancers

    Directory of Open Access Journals (Sweden)

    Wen-Yuan Lee


    Full Text Available A recent research of cancer has indicated that the mutant of isocitrate dehydrogenase 1 and 2 (IDH1 and 2 genes will induce various cancers, including chondrosarcoma, cholangiocarcinomas, and acute myelogenous leukemia due to the effect of point mutations in the active-site arginine residues of isocitrate dehydrogenase (IDH, such as IDH1/R132, IDH2/R140, and IDH2/R172. As the inhibition for those tumor-associated mutant IDH proteins may induce differentiation of those cancer cells, these tumor-associated mutant IDH proteins can be treated as a drug target proteins for a differentiation therapy against cancers. In this study, we aim to identify the potent TCM compounds from the TCM Database@Taiwan as lead compounds of IDH2 R140Q mutant inhibitor. Comparing to the IDH2 R140Q mutant protein inhibitor, AGI-6780, the top two TCM compounds, precatorine and abrine, have higher binding affinities with target protein in docking simulation. After MD simulation, the top two TCM compounds remain as the same docking poses under dynamic conditions. In addition, precatorine is extracted from Abrus precatorius L., which represents the cytotoxic and proapoptotic effects for breast cancer and several tumor lines. Hence, we propose the TCM compounds, precatorine and abrine, as potential candidates as lead compounds for further study in drug development process with the IDH2 R140Q mutant protein against cancer.

  14. Molecular cloning, purification, and biochemical characterization of recombinant isocitrate dehydrogenase from Streptomyces coelicolor M-145. (United States)

    Takahashi-Iñiguez, Tóshiko; Cruz-Rabadán, Saul; Burciaga-Cifuentes, Luis Miguel; Flores, María Elena


    Isocitrate dehydrogenase is a key enzyme in carbon metabolism. In this study we demonstrated that SCO7000 of Streptomyces coelicolor M-145 codes for the isocitrate dehydrogenase. Recombinant enzyme expressed in Escherichia coli had a specific activity of 25.3 μmoles/mg/min using NADP(+) and Mn(2+) as a cofactor, 40-times higher than that obtained in cell-free extract. Pure IDH showed a single band with an apparent Mr of 84 KDa in SDS-PAGE, which was also recognized as His-tag protein in the Western blot. Unexpectedly, in ND-PAGE conditions showed a predominant band of ~168 KDa that corresponded to the dimeric form of ScIDH. Also, zymogram assay and analytical gel filtration reveal that dimer was the active form. Kinetic parameters were 1.38, 0.11, and 0.109 mM for isocitrate, NADP, and Mn(2+), respectively. ATP, ADP, AMP, and their mixtures were the main ScIDH activity inhibitors. Zn(2+), Mg(2+), Ca(2+), and Cu(+) had inhibitory effect on enzyme activity.

  15. Potential mitochondrial isocitrate dehydrogenase R140Q mutant inhibitor from traditional Chinese medicine against cancers. (United States)

    Lee, Wen-Yuan; Chen, Kuan-Chung; Chen, Hsin-Yi; Chen, Calvin Yu-Chian


    A recent research of cancer has indicated that the mutant of isocitrate dehydrogenase 1 and 2 (IDH1 and 2) genes will induce various cancers, including chondrosarcoma, cholangiocarcinomas, and acute myelogenous leukemia due to the effect of point mutations in the active-site arginine residues of isocitrate dehydrogenase (IDH), such as IDH1/R132, IDH2/R140, and IDH2/R172. As the inhibition for those tumor-associated mutant IDH proteins may induce differentiation of those cancer cells, these tumor-associated mutant IDH proteins can be treated as a drug target proteins for a differentiation therapy against cancers. In this study, we aim to identify the potent TCM compounds from the TCM Database@Taiwan as lead compounds of IDH2 R140Q mutant inhibitor. Comparing to the IDH2 R140Q mutant protein inhibitor, AGI-6780, the top two TCM compounds, precatorine and abrine, have higher binding affinities with target protein in docking simulation. After MD simulation, the top two TCM compounds remain as the same docking poses under dynamic conditions. In addition, precatorine is extracted from Abrus precatorius L., which represents the cytotoxic and proapoptotic effects for breast cancer and several tumor lines. Hence, we propose the TCM compounds, precatorine and abrine, as potential candidates as lead compounds for further study in drug development process with the IDH2 R140Q mutant protein against cancer.

  16. Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain. (United States)

    Kumar, S M; Pampa, K J; Manjula, M; Abdoh, M M M; Kunishima, Naoki; Lokanath, N K


    NADP(+) dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP(+) was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH's. And, small domain and clasp domain showing significant differences when compared to other IDH's of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH's. Also, helices/beta sheets are absent in the small domain, when compared to other IDH's of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit-subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  17. A new anaplerotic respiratory pathway involving lysine biosynthesis in isocitrate dehydrogenase-deficient Arabidopsis mutants. (United States)

    Boex-Fontvieille, Edouard R A; Gauthier, Paul P G; Gilard, Françoise; Hodges, Michael; Tcherkez, Guillaume G B


    The cornerstone of carbon (C) and nitrogen (N) metabolic interactions - respiration - is presently not well understood in plant cells: the source of the key intermediate 2-oxoglutarate (2OG), to which reduced N is combined to yield glutamate and glutamine, remains somewhat unclear. We took advantage of combined mutations of NAD- and NADP-dependent isocitrate dehydrogenase activity and investigated the associated metabolic effects in Arabidopsis leaves (the major site of N assimilation in this genus), using metabolomics and (13)C-labelling techniques. We show that a substantial reduction in leaf isocitrate dehydrogenase activity did not lead to changes in the respiration efflux rate but respiratory metabolism was reorchestrated: 2OG production was supplemented by a metabolic bypass involving both lysine synthesis and degradation. Although the recycling of lysine has long been considered important in sustaining respiration, we show here that lysine neosynthesis itself participates in an alternative respiratory pathway. Lys metabolism thus contributes to explaining the metabolic flexibility of plant leaves and the effect (or the lack thereof) of respiratory mutations.

  18. Crystallization and preliminary X-ray crystallographic analysis of yeast NAD{sup +}-specific isocitrate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gang [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); Taylor, Alexander B. [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); McAlister-Henn, Lee [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); Hart, P. John, E-mail: [Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States); X-ray Crystallography Core Laboratory, University of Texas Health Science Center, San Antonio, TX 78229-3900 (United States)


    Yeast NAD{sup +}-isocitrate dehydrogenase has been purified and crystallized using sodium citrate, a competitive inhibitor of the enzyme, as a precipitant. Preliminary X-ray analyses indicate the molecular boundaries of the molecule and large continuous solvent channels in the crystal. NAD{sup +}-specific isocitrate dehydrogenase (IDH; EC is a complex allosterically regulated enzyme in the tricarboxylic acid cycle. Yeast IDH is believed to be an octamer containing four catalytic IDH2 and four regulatory IDH1 subunits. Crystals of yeast IDH have been obtained and optimized using sodium citrate, a competitive inhibitor of the enzyme, as the precipitating agent. The crystals belong to space group R3, with unit-cell parameters a = 302.0, c = 112.1 Å. Diffraction data were collected to 2.9 Å from a native crystal and to 4.0 Å using multiwavelength anomalous diffraction (MAD) methods from an osmium derivative. Initial electron-density maps reveal large solvent channels and the molecular boundaries of the allosteric IDH multimer.

  19. Characterization of the immunogenicity and pathogenicity of malate dehydrogenase in Brucella abortus. (United States)

    Han, Xiangan; Tong, Yongliang; Tian, Mingxing; Sun, Xiaoqing; Wang, Shaohui; Ding, Chan; Yu, Shengqing


    Brucella abortus is a gram-negative, facultative intracellular pathogen that causes brucellosis, a chronic zoonotic disease resulting in abortion in pregnant cattle and undulant fever in humans. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, plays important metabolic roles in aerobic energy producing pathways and in malate shuttle. In this study, the MDH-encoding gene for malate dehydrogenase mdh of B. abortus S2308 was cloned, sequenced and expressed. Western blot analysis demonstrated that MDH is an immunogenic membrane-associated protein. In addition, recombinant MDH showed sero-reactivity with 30 individual bovine B. abortus-positive sera by enzyme-linked immunosorbent assay, indicates that MDH may be used as a candidate marker for sero-diagnosis of brucellosis. Furthermore, MDH exhibits fibronectin and plasminogen-binding ability in immunoblotting assay. Inhibition assays on HeLa cells demonstrated that rabbit anti-serum against MDH significantly reduced both bacterial adherence and invasion abilities (p < 0.05), suggesting that MDH play a role in B. abortus colonization. Our results indicated that MDH is not only an immunogenic protein, but is also related to bacterial pathogenesis and may act as a new virulent factor, which will benefit for further understanding the MDH's roles in B. abortus metabolism, pathogenesis and immunity.

  20. [Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111]. (United States)

    Liang, Liya; Ma, Jiangfeng; Liu, Rongming; Wang, Guangming; Xu, Bing; Zhang, Min; Jiang, Min


    Escherichia coli NZN111 is a double mutant with lactate dehydrogenase (ldhA) and pyruvate formate-lyase (pflB) inactivated. Under anaerobic conditions, disequilibrium of coenzyme NADH and NAD+ causes Escherichia coli NZN111 losing the glucose utilizing capability. In this study, we constructed a recombinant strain E. coli NZN111/pTrc99a-mdh and overexpressed the mdh gene with 0.3 mmol/L of IPTG under anaerobic fermentation condition in sealed bottles. The specific malate dehydrogenase (MDH) activity in the recombinant strain was 14.8-fold higher than that in E. coli NZN111. The NADH/ NAD+ ratio decreased from 0.64 to 0.26 and the concentration of NAD+ and NADH increased 1.5-fold and 0.2-fold respectively. Under anaerobic conditions, the recombinant strain possessed the capability of growth and glucose absorption. We took dual-phase fermentation for succinate production. After the dry cell weight (DCW) reached 6.4 g/L under aerobic conditions, the cell culture was changed to anaerobic conditions. After 15 h, 14.75 g/L glucose was consumed and succinic acid reached 15.18 g/L. The yield of succinic acid was 1.03 g/g Glu and the productivity of succinic acid was 1.012 g/(L x h).

  1. Analysis of lactate and malate dehydrogenase enzyme profiles of selected major carps of wetland of Calcutta. (United States)

    Manna, Madhumita; Chakraborty, Priyanka


    The East Calcutta Wetland (ECW), a Ramsar site in India, acts as the only sink for both city sewages as well as effluents from the surrounding small-scale industries and is alarmingly polluted with heavy metals. The three best edible major carp species rohu (Labeo rohita,), catla (Catla catla,) and mrigala (Cirrhinus mrigala) were undertaken to monitor lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) by cellulose acetate electrophoresis (CAE) to assess the effects of pollutants, if any. Crude tissue extracts were prepared from brain, eye, heart, skeletal muscle and kidney tissue respectively from each type of fish. No differences were not found in MDH of catla from both sites for all tissues analyzed in this study. Rohu also showed similar mobility for all tissues except for heart tissue which was distinctly different in fishes from ECW site than that of its counterpart from non ECW site. On the other hand, MDH of two tissues of mrigala, eye and muscle respectively showed different migration patterns. LDH profiles for all tissues of three fish species from both the sites were consistently similar, only the expression levels of muscle LDH of mrigala and kidney LDH of rohu varied little.

  2. Immobilization of malate dehydrogenase on carbon nanotubes for development of malate biosensor. (United States)

    Ruhal, A; Rana, J S; Kumar, S; Kumar, A


    An amperometric malic acid biosensor was developed by immobilizing malate dehydrogenase on multi-walled carbon nanotubes (MWCNT) coated on screen printed carbon electrode. The screen printed carbon electrode is made up of three electrodes viz., carbon as working, platinum as counter and silver as reference electrode. Detection of L-malic acid concentration provides important information about the ripening and shelf life of the fruits. The NADP specific malate dehydrogenase was immobilized on carboxylated multiwalled carbon nanotubes using cross linker EDC [1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide] on screen printed carbon electrode. An amperometric current was measured by differential pulse voltammetry (DPV) which increases with increasing concentrations of malic acid at fixed concentration of NADP. Enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The detection limit of malic acid by the sensor was 60 - 120 μM and sensitivity of the sensor was 60 μM with a response time of 60s. The usual detection methods of malic acid are nonspecific, time consuming and less sensitive. However, an amperometric malic acid nanosensor is quick, specific and more sensitive for detection of malic acid in test samples.

  3. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng


    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  4. Production and characterization of L-fucose dehydrogenase from newly isolated Acinetobacter sp. strain SA-134. (United States)

    Ohshiro, Takashi; Morita, Noriyuki


    Microorganisms producing L-fucose dehydrogenase were screened from soil samples, and one of the isolated bacterial strains SA-134 was identified as Acinetobacter sp. by 16S rDNA gene analysis. The strain grew well utilizing L-fucose as a sole source of carbon, but all other monosaccharides tested such as D-glucose and D-arabinose did not support the growth of the strain in the absence of L-fucose. D-Arabinose inhibited the growth even in the culture medium containing L-fucose. Although the strain grew on some organic acids and amino acids such as citric acid and L-alanine as sole sources of carbon, the enzyme was produced only in the presence of L-fucose. The fucose dehydrogenase was purified to apparently homogeneity from the strain, and the native enzyme was a monomer of 25 kD. L-Fucose and D-arabinose were good substrates for the enzyme, but L-galactose was a poor substrate. The enzyme acted on both NAD(+) and NADP(+) in the similar manner.

  5. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae. (United States)

    Matus-Ortega, M G; Cárdenas-Monroy, C A; Flores-Herrera, O; Mendoza-Hernández, G; Miranda, M; González-Pedrajo, B; Vázquez-Meza, H; Pardo, J P


    Mitochondria of Saccharomyces cerevisiae lack the respiratory complex I, but contain three rotenone-insensitive NADH dehydrogenases distributed on both the external (Nde1 and Nde2) and internal (Ndi1) surfaces of the inner mitochondrial membrane. These enzymes catalyse the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. Due to the high resolution of the Blue Native PAGE (BN-PAGE) technique combined with digitonin solubilization, several bands with NADH dehydrogenase activity were observed on the gel. The use of specific S. cerevisiae single and double mutants of the external alternative elements (ΔNDE1, ΔNDE2, ΔNDE1/ΔNDE2) showed that the high and low molecular weight complexes contained the Ndi1. Some of the Ndi1 associations took place with complexes III and IV, suggesting the formation of respirasome-like structures. Complex II interacted with other proteins to form a high molecular weight supercomplex with a molecular mass around 600 kDa. We also found that the majority of the Ndi1 was in a dimeric form, which is in agreement with the recently reported three-dimensional structure of the protein.

  6. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway.

    Directory of Open Access Journals (Sweden)

    Nicholas A Stover

    Full Text Available Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD and 6-phosphogluconolactonase (6PGL, have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms.

  7. A novel malate dehydrogenase from Ceratonia siliqua L. seeds with potential biotechnological applications. (United States)

    Muccio, Clelia; Guida, Vincenzo; Di Petrillo, Amalia; Severino, Valeria; Di Maro, Antimo


    A novel malate dehydrogenase (MDH; EC, hereafter MDHCs, from Ceratonia siliqua seeds, commonly known as Carob tree, was purified by using ammonium sulphate precipitation, ion exchange chromatography on SteamLine SP and gel-filtration. The molecular mass of the native protein, obtained by analytical gel-filtration, was about 65 kDa, whereas, by using SDS-PAGE analysis, with and without reducing agent, was 34 kDa. The specific activity of purified MDHCs (0.25 mg/100 g seeds) was estimated to be 188 U/mg. The optimum activity of the enzyme is at pH 8.5, showing a decrease in the presence of Ca(2+), Mg(2+) and NaCl. The N-terminal sequence of the first 20 amino acids of MDHCs revealed 95 % identity with malate dehydrogenase from Medicago sativa L. Finally, the enzymatic activity of MDHCs was preserved even after absorption onto a PVDF membrane. To our knowledge, this is the first contribution to the characterization of an enzyme from Carob tree sources.

  8. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress. (United States)

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan


    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE.

  9. Modification of galactitol dehydrogenase from Rhodobacter sphaeroides D for immobilization on polycrystalline gold surfaces. (United States)

    Kornberger, P; Gajdzik, J; Natter, H; Wenz, G; Giffhorn, F; Kohring, G W; Hempelmann, R


    Galactitol dehydrogenase (GatDH) from Rhodobacter sphaeroides is a multifunctional enzyme that catalyzes in the presence of oxidized beta-nicotinamide adenine dinucleotide (NAD(+)) the interconversion of various multivalent aliphatic alcohols to the corresponding ketones. The recombinant GatDH was provided with an N-terminal His(6)-tag to which distally up to three cysteine residues were attached. This protein construct maintained nearly full enzymatic activity, and it could be covalently immobilized via thiol bonds onto the surface of a gold electrode. Binding of GatDH onto the gold electrode was verified by SPR measurements, and residual enzyme activity was measured by cyclic voltammetry using 1,2-hexanediol as substrate, the cofactor NAD(+) and the redox mediator CTFM (4-carboxy-2,5,7-trinitrofluorenyliden-malonnitrile) in solute form. The results demonstrate the possibility of a directed functional immobilization of proteins on gold surfaces, which represents a proof-of-concept for the development of reactors for electrochemical synthon preparation using dehydrogenases.

  10. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    DEFF Research Database (Denmark)

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens;


    unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. METHODS: MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS......) and dihydropyrimidine dehydrogenase (DPD) expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. RESULTS: MSI was found in 43 (13.8%) tumors...... ratio (HR) = 0.3; 95% CI: 0.2-0.7; P = 0.0007) and death (HR = 0.4; 95% CI: 0.2-0.9; P = 0.02) independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001) was found, while there was no significant association with DPD intensity (P = 0.1). CONCLUSION...

  11. XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. (United States)

    Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Dixon, Joanna L; Chen, Yin; Murrell, J Colin


    The xoxF gene, encoding a pyrroloquinoline quinone-dependent methanol dehydrogenase, is found in all known proteobacterial methylotrophs. In several newly discovered methylotrophs, XoxF is the active methanol dehydrogenase, catalysing the oxidation of methanol to formaldehyde. Apart from that, its potential role in methylotrophy and carbon cycling is unknown. So far, the diversity of xoxF in the environment has received little attention. We designed PCR primer sets targeting clades of the xoxF gene, and used 454 pyrosequencing of PCR amplicons obtained from the DNA of four coastal marine environments for a unique assessment of the diversity of xoxF in these habitats. Phylogenetic analysis of the data obtained revealed a high diversity of xoxF genes from two of the investigated clades, and substantial differences in sequence composition between environments. Sequences were classified as being related to a wide range of both methylotrophs and non-methylotrophs from Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. The most prominent sequences detected were related to the family Rhodobacteraceae, the genus Methylotenera and the OM43 clade of Methylophilales, and are thus related to organisms that employ XoxF for methanol oxidation. Furthermore, our analyses revealed a high degree of so far undescribed sequences, suggesting a high number of unknown bacterial species in these habitats.

  12. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies (United States)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem


    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  13. Refolding of a thermostable glyceraldehyde dehydrogenase for application in synthetic cascade biomanufacturing.

    Directory of Open Access Journals (Sweden)

    Fabian Steffler

    Full Text Available The production of chemicals from renewable resources is gaining importance in the light of limited fossil resources. One promising alternative to widespread fermentation based methods used here is Synthetic Cascade Biomanufacturing, the application of minimized biocatalytic reaction cascades in cell free processes. One recent example is the development of the phosphorylation independent conversion of glucose to ethanol and isobutanol using only 6 and 8 enzymes, respectively. A key enzyme for this pathway is aldehyde dehydrogenase from Thermoplasma acidophilum, which catalyzes the highly substrate specific oxidation of d-glyceraldehyde to d-glycerate. In this work the enzyme was recombinantly expressed in Escherichia coli. Using matrix-assisted refolding of inclusion bodies the yield of enzyme production was enhanced 43-fold and thus for the first time the enzyme was provided in substantial amounts. Characterization of structural stability verified correct refolding of the protein. The stability of the enzyme was determined by guanidinium chloride as well as isobutanol induced denaturation to be ca. -8 kJ/mol both at 25°C and 40°C. The aldehyde dehydrogenase is active at high temperatures and in the presence of small amounts of organic solvents. In contrast to previous publications, the enzyme was found to accept NAD(+ as cofactor making it suitable for application in the artificial glycolysis.

  14. Biochemical and structural characterization of the apicoplast dihydrolipoamide dehydrogenase of Plasmodium falciparum. (United States)

    Laine, Larissa M; Biddau, Marco; Byron, Olwyn; Müller, Sylke


    PDC (pyruvate dehydrogenase complex) is a multi-enzyme complex comprising an E1 (pyruvate decarboxylase), an E2 (dihydrolipomide acetyltransferase) and an E3 (dihydrolipoamide dehydrogenase). PDC catalyses the decarboxylation of pyruvate and forms acetyl-CoA and NADH. In the human malaria parasite Plasmodium falciparum, the single PDC is located exclusively in the apicoplast. Plasmodium PDC is essential for parasite survival in the mosquito vector and for late liver stage development in the human host, suggesting its suitability as a target for intervention strategies against malaria. Here, PfaE3 (P. falciparum apicoplast E3) was recombinantly expressed and characterized. Biochemical parameters were comparable with those determined for E3 from other organisms. A homology model for PfaE3 reveals an extra anti-parallel β-strand at the position where human E3BP (E3-binding protein) interacts with E3; a parasite-specific feature that may be exploitable for drug discovery against PDC. To assess the biological role of Pfae3, it was deleted from P. falciparum and although the mutants are viable, they displayed a highly synchronous growth phenotype during intra-erythrocytic development. The mutants also showed changes in the expression of some mitochondrial and antioxidant proteins suggesting that deletion of Pfae3 impacts on the parasite's metabolic function with downstream effects on the parasite's redox homoeostasis and cell cycle.

  15. Cloning and functions analysis of a pyruvate dehydrogenase kinase in Brassica napus. (United States)

    Li, Rong-Jun; Hu, Zhi-Yong; Zhang, Hua-Shan; Zhan, Gao-Miao; Wang, Han-Zhong; Hua, Wei


    Pyruvate dehydrogenase kinase (PDK) is a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), which plays a key role in intermediary metabolism. In this study, a 1,490-bp PDK in Brassica napus (BnPDK1) was isolated and cloned from Brassica cDNA library. BnPDK1 has an 1,104 open reading frame encoding 367 amino acids. Genomic DNA gel blot analysis result indicated that BnPDK1 is a multi-copy gene. RNA gel blot analysis and RNA in situ hybridization were used to determine the expression of BnPDK1 in different organs. BnPDK1 gene was ubiquitously expressed in almost all the tissues tested, having the highest expression in the stamen and the young silique. Over-expression of BnPDK1 in transgenic Arabidopsis lines would repress the PDC activity, and resulted in the decrease of seed oil content and leaf photosynthesis. These results implied that BnPDK1 was involved in the regulation of fatty acid biosynthesis in developing seeds.

  16. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production. (United States)

    Dave, Khyati K; Punekar, Narayan S


    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.

  17. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations. (United States)

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W


    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH.The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers.To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.

  18. Free-Energy Landscape and Proton Transfer Pathways in Oxidative Deamination by Methylamine Dehydrogenase. (United States)

    Zelleke, Theodros; Marx, Dominik


    The rate-determining step in the reductive half-reaction of the bacterial enzyme methylamine dehydrogenase, which is proton abstraction from the native substrate methylamine, is investigated using accelerated QM/MM molecular dynamics simulations at room temperature. Generation of the multidimensional thermal free-energy landscape without restriction of the degrees of freedom beyond a multidimensional reaction subspace maps two rather similar pathways for the underlying proton transfer to one of two aspartate carboxyl oxygen atoms, termed OD1 and OD2, which hydrogen bond with Thr122 and Trp108, respectively. Despite significant large-amplitude motion perpendicular to the one-dimensional proton transfer coordinate, due to fluctuations of the donor-acceptor distance of about 3 Å, it is found that the one-dimensional proton transfer free-energy profiles are essentially identical to the minimum free-energy pathways on the multidimensional free-energy landscapes for both proton transfer channels. Proton transfer to one of the acceptor oxygen atoms-the OD2 site-is slightly favored in methylamine dehydrogenase by approximately 2 kcal mol(-1) , both kinetically and thermodynamically. Mechanistic analyses reveal that the hydrogen bond between Thr122β and OD1 is always present in the transition state independently of the proton transfer channel. Population analysis confirms that the electronic charge gained upon oxidation of the substrate is delocalized within the ring systems of the tryptophan tryptophylquinone cofactor.

  19. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    Directory of Open Access Journals (Sweden)

    Kanavin Oivind J


    Full Text Available Abstract Background 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD is caused by a defect in the degradation pathway of the amino acid L-isoleucine. Methods We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. Results We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. Conclusion This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.

  20. Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86. (United States)

    Shrivastava, Rahul; Basu, Aditya; Phale, Prashant S


    Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD(+) dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD(+), while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K (m) value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K (m) and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.