WorldWideScience

Sample records for 192ir brachytherapy source

  1. In vivo dosimetry thermoluminescence dosimeters during brachytherapy with a 370 GBq {sup 192}Ir source

    Energy Technology Data Exchange (ETDEWEB)

    Cuepers, S.; Piessens, M.; Verbeke, L.; Roelstraete, A. [Onze-Lieve-Vrouw Hospitaal, Aalst (Belgium). Dept. of Radiotherapy and Oncology

    1995-12-01

    When using LiF thermoluminescence dosimeters in brachytherapy, we have to take into account the properties of a high dose rate {sup 192}Ir source (energy spectrum ranging form 9 to 885 keV, steep dose gradient in the vicinity of the source) and these of the dosimeters themselves (supralinearity, reproducibility, size). All these characteristics combine into a set of correction factors which have been determined during in phantom measurements. These results have then been used to measure the dose delivered to organs at risk (e.g. rectum, bladder, etc.) during high dose rate brachytherapy with a 370 GBq {sup 192}Ir source for patients with gynaecological tumors.

  2. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    Science.gov (United States)

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  3. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    Science.gov (United States)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  4. Comparison of the hypothetical 57Co brachytherapy source with the 192Ir source

    Science.gov (United States)

    Toossi, Mohammad Taghi Bahreyni; Rostami, Atefeh; Khosroabadi, Mohsen; Khademi, Sara; Knaup, Courtney

    2016-01-01

    Aim of the study The 57Co radioisotope has recently been proposed as a hypothetical brachytherapy source due to its high specific activity, appropriate half-life (272 days) and medium energy photons (114.17 keV on average). In this study, Task Group No. 43 dosimetric parameters were calculated and reported for a hypothetical 57Co source. Material and methods A hypothetical 57Co source was simulated in MCNPX, consisting of an active cylinder with 3.5 mm length and 0.6 mm radius encapsulated in a stainless steel capsule. Three photon energies were utilized (136 keV [10.68%], 122 keV [85.60%], 14 keV [9.16%]) for the 57Co source. Air kerma strength, dose rate constant, radial dose function, anisotropy function, and isodose curves for the source were calculated and compared to the corresponding data for a 192Ir source. Results The results are presented as tables and figures. Air kerma strength per 1 mCi activity for the 57Co source was 0.46 cGyh–1 cm 2 mCi–1. The dose rate constant for the 57Co source was determined to be 1.215 cGyh–1U–1. The radial dose function for the 57Co source has an increasing trend due to multiple scattering of low energy photons. The anisotropy function for the 57Co source at various distances from the source is more isotropic than the 192Ir source. Conclusions The 57Co source has advantages over 192Ir due to its lower energy photons, longer half-life, higher dose rate constant and more isotropic anisotropic function. However, the 192Ir source has a higher initial air kerma strength and more uniform radial dose function. These properties make 57Co a suitable source for use in brachytherapy applications. PMID:27688731

  5. Comparison of 60Co and 192Ir sources in HDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Grzegorz Zwierzchowski

    2011-12-01

    Full Text Available This paper compares the isotopes 60Co and 192Ir as radiation sources for high-dose-rate (HDR afterloadingbrachytherapy. The smaller size of 192Ir sources made it the preferred radionuclide for temporary brachytherapy treatments.Recently also 60Co sources have been made available with identical geometrical dimensions. This paper comparesthe characteristics of both nuclides in different fields of brachytherapy based on scientific literature. In an additionalpart of this paper reports from medical physicists of several radiation therapy institutes are discussed. The purposeof this work is to investigate the advantages or disadvantages of both radionuclides for HDR brachytherapy due to theirphysical differences. The motivation is to provide useful information to support decision-making procedures in theselection of equipment for brachytherapy treatment rooms. The results of this work show that no advantages or disadvantagesexist for 60Co sources compared to 192Ir sources with regard to clinical aspects. Nevertheless, there are potentiallogistical advantages of 60Co sources due to its longer half-life (5.3 years vs. 74 days, making it an interesting alternativeespecially in developing countries.

  6. A Monte Carlo study on dose distribution evaluation of Flexisource 192Ir brachytherapy source

    Science.gov (United States)

    Alizadeh, Majid; Ghorbani, Mahdi; Haghparast, Abbas; Zare, Naser; Ahmadi Moghaddas, Toktam

    2015-01-01

    Aim The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source. Background Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM). Materials and methods MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS). Results The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source. Conclusion Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties. PMID:25949224

  7. Dosimetry audit on the accuracy of 192Ir brachytherapy source strength determinations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, Aasa

    2007-11-15

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in 192Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an 192Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the +-3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The 192Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI

  8. Dosimetry revisited for the HDR {sup 192}Ir brachytherapy source model mHDR-v2

    Energy Technology Data Exchange (ETDEWEB)

    Granero, Domingo; Vijande, Javier; Ballester, Facundo; Rivard, Mark J. [Radiation Physics Department, ERESA, Hospital General Universitario, E-46014 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, E-46100 Burjassot (Spain) and IFIC, CSIC-University of Valencia, E-46100 Burjassot (Spain); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2011-01-15

    Purpose: Recently, the manufacturer of the HDR {sup 192}Ir mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from {sup 192}Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r{>=}0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r{>=}0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r{>=}0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate.

  9. Film dosimetry calibration method for pulsed-dose-rate brachytherapy with an 192Ir source.

    Science.gov (United States)

    Schwob, Nathan; Orion, Itzhak

    2007-05-01

    192Ir sources have been widely used in clinical brachytherapy. An important challenge is to perform dosimetric measurements close to the source despite the steep dose gradient. The common, inexpensive silver halide film is a classic two-dimensional integrator dosimeter and would be an attractive solution for these dose measurements. The main disadvantage of film dosimetry is the film response to the low-energy photon. Since the photon energy spectrum is known to vary with depth, the sensitometric curves are expected to be dependent on depth. The purpose of this study is to suggest a correction method for silver halide film dosimetry that overcomes the response changes at different depths. Sensitometric curves have been obtained at different depths with verification film near a 1 Ci 192Ir pulsed-dose-rate source. The depth dependence of the film response was observed and a correction function was established. The suitability of the method was tested through measurement of the radial dose profile and radial dose function. The results were compared to Monte Carlo-simulated values according to the TG43 formalism. Monte Carlo simulations were performed separately for the beta and gamma source emissions, using the EGS4 code system, including the low-energy photon and electron transport optimization procedures. The beta source emission simulation showed that the beta dose contribution could be neglected and therefore the film-depth dependence could not be attributed to this part of the source radioactivity. The gamma source emission simulations included photon-spectra collection at several depths. The results showed a depth-dependent softening of the photon spectrum that can explain the film-energy dependence.

  10. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    Science.gov (United States)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  11. Estimation of distance error by fuzzy set theory required for strength determination of HDR (192)Ir brachytherapy sources.

    Science.gov (United States)

    Kumar, Sudhir; Datta, D; Sharma, S D; Chourasiya, G; Babu, D A R; Sharma, D N

    2014-04-01

    Verification of the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of institutional quality assurance program. Either reference air-kerma rate (RAKR) or air-kerma strength (AKS) is the recommended quantity to specify the strength of gamma-emitting brachytherapy sources. The use of Farmer-type cylindrical ionization chamber of sensitive volume 0.6 cm(3) is one of the recommended methods for measuring RAKR of HDR (192)Ir brachytherapy sources. While using the cylindrical chamber method, it is required to determine the positioning error of the ionization chamber with respect to the source which is called the distance error. An attempt has been made to apply the fuzzy set theory to estimate the subjective uncertainty associated with the distance error. A simplified approach of applying this fuzzy set theory has been proposed in the quantification of uncertainty associated with the distance error. In order to express the uncertainty in the framework of fuzzy sets, the uncertainty index was estimated and was found to be within 2.5%, which further indicates that the possibility of error in measuring such distance may be of this order. It is observed that the relative distance li estimated by analytical method and fuzzy set theoretic approach are consistent with each other. The crisp values of li estimated using analytical method lie within the bounds computed using fuzzy set theory. This indicates that li values estimated using analytical methods are within 2.5% uncertainty. This value of uncertainty in distance measurement should be incorporated in the uncertainty budget, while estimating the expanded uncertainty in HDR (192)Ir source strength measurement.

  12. On source models for (192)Ir HDR brachytherapy dosimetry using model based algorithms.

    Science.gov (United States)

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-07

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic (192)Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the (192)Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis.

  13. Investigation of Dosimetric Parameters of $^{192}$Ir MicroSelectron v2 HDR Brachytherapy Source Using EGSnrc Monte Carlo Code

    CERN Document Server

    Naeem, Hamza; Zheng, Huaqing; Cao, Ruifen; Pei, Xi; Hu, Liqin; Wu, Yican

    2016-01-01

    The $^{192}$Ir sources are widely used for high dose rate (HDR) brachytherapy treatments. The aim of this study is to simulate $^{192}$Ir MicroSelectron v2 HDR brachytherapy source and calculate the air kerma strength, dose rate constant, radial dose function and anisotropy function established in the updated AAPM Task Group 43 protocol. The EGSnrc Monte Carlo (MC) code package is used to calculate these dosimetric parameters, including dose contribution from secondary electron source and also contribution of bremsstrahlung photons to air kerma strength. The Air kerma strength, dose rate constant and radial dose function while anisotropy functions for the distance greater than 0.5 cm away from the source center are in good agreement with previous published studies. Obtained value from MC simulation for air kerma strength is $9.762\\times 10^{-8} \\textrm{UBq}^{-1}$and dose rate constant is $1.108\\pm 0.13\\%\\textrm{cGyh}^{-1} \\textrm{U}^{-1}$.

  14. Comparison of treatment planning on dosimetric differences between 192Ir sources for high-dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Dept. of Radiology, Mokpo Science University, Mokpo (Korea, Republic of); Shin, Seong Soo; Ahn, Woo Sang; KIm, Dae Yong; Choi, Won Sik [Dept. of Radiation Oncology, Gangenung Asan Hospital, University of Ulsan College of Medicine, Gangenung (Korea, Republic of); Kwon, Kyung Tae [Dept. of Radiologic Technology, Dongam Health University, Suwon (Korea, Republic of); Lim, Cheong Hwan [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of); Lee, Sang Ho [Dept. of Radiological Science, Seonam University, Namwon (Korea, Republic of)

    2016-06-15

    To evaluate whether the difference in geometrical characteristics between high-dose-rate (HDR) 192Ir sources would influence the dose distributions of intracavitary brachytherapy. Two types of microSelectron HDR 192Ir sources (classic and new models) were selected in this study. Two-dimensional (2D) treatment plans for classic and new sources were generated by using PLATO treatment planning system. We compared the point A, point B, and bladder and rectum reference points based on ICRU 38 recommendation. The radial dose function of the new source agrees with that of the classic source except difference of up to 2.6% at the nearest radial distance. The differences of anisotropy functions agree within 2% for r=1, 3, and 5 cm and 20°<θ<165°. The largest discrepancies of anisotropy functions reached up to 27% for θ<20° at r=0.25 cm and were up to 13%, 10%, and 7% at r=1, 3, and 5 cm for θ>170°, respectively. There were no significant differences in doses of point A, point B, and bladder point for the treatment plans between the new and classic sources. For the ICRU rectum point, the percent dose difference was on average 0.65% and up to 1.0%. The dose discrepancies between two treatment plans are mainly affected due to the geometrical difference of the source and the sealed capsule.

  15. Determination of the chemical yield on the Fricke dosimetry for {sup 192}Ir sources used in brachytherapy; Determinacao do rendimento quimico na dosimetria Fricke para fontes de {sup 192}Ir usadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    David, M.G.; Albuquerque, M.A.G.; Almeida, C.E. de, E-mail: marianogd08@gmail.com [Universidade do Estado do Rio de Janeiro (LCR/UERJ), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Salata, C. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Rosado, P.H. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    With the aim of developing a primary standard for the absorbed dose to water, for the {sup 192}Ir sources used in high dose rate brachytherapy, this work focuses on the determination of the chemical yield, G(Fe{sup +3}), using Fricke dosimetry, for the energy of those sources . The G(Fe{sup +3}) were determined the for three qualities of x-ray beams (150, 250 and 300 kV ) and for {sup 60}Co energy. The G(Fe{sup +3}) value for the average energy of {sup 192}Ir was obtained by linear fit, the found value was 1,555 ± 0,015 μmol/J. (author)

  16. Comparative dosimetry of GammaMed Plus high-dose rate 192 Ir brachytherapy source

    Directory of Open Access Journals (Sweden)

    Patel N

    2010-01-01

    Full Text Available The comparative dosimetry of GammaMed (GM Plus high-dose rate brachytherapy source was performed by an experiment using 0.1-cc thimble ionization chamber and simulation-based study using EGSnrc code. In-water dose measurements were performed with 0.1-cc chamber to derive the radial dose function (r = 0.8 to 20.0 cm and anisotropy function (r = 5.0 cm with polar angle from 10° to 170°. The nonuniformity correction factor for 0.1-cc chamber was applied for in-water measurements at shorter distances from the source. The EGSnrc code was used to derive the dose rate constant (L, radial dose function g L (r and anisotropy function F(r, q of GM Plus source. The dosimetric data derived using EGSnrc code in our study were in very good agreement relative to published data for GM Plus source. The radial dose function up to 12 cm derived from measured dose using 0.1-cc chamber was in agreement within ±3% of data derived by the simulation study.

  17. Gafchromic film dosimetry of a new HDR  192Ir brachytherapy source

    National Research Council Canada - National Science Library

    Ayoobian, Navid; Asl, Akbar Sarabi; Poorbaygi, Hosein; Javanshir, Mohammad Reza

    2016-01-01

    High‐dose‐rate (HDR) brachytherapy is a popular modality for treating cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck as well as soft‐tissue sarcomas...

  18. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an {sup 192}Ir brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, P. Avilés, E-mail: paz.aviles@ciemat.es; Aubineau-Lanièce, I.; Lourenço, V.; Vermesse, D.; Cutarella, D. [CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette (France)

    2014-01-15

    Purpose: The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an{sup 192}Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate {sup 192}Ir brachytherapy source. Methods: Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an{sup 192}Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an {sup 192}Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the {sup 192}Ir source. Results: The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard{sup 137}Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the {sup 192}Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a

  19. A simplified analytical approach to estimate the parameters required for strength determination of HDR 192Ir brachytherapy sources using a Farmer-type ionization chamber.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Mayya, Y S

    2012-01-01

    Measuring the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR (192)Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR (192)Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and M(s). The seven distance method was followed to record the ionization chamber readings for parameterization of f and M(s). Analytically calculated values of M(s) were used to determine the room scatter correction factor (K(sc)). The Monte Carlo simulations were also carried out to calculate f and K(sc) to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of K(sc) were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations.

  20. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, A; Nicolucci, P [University of Sao Paulo, Ribeirao Preto, SP (Brazil)

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with the source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.

  1. A simplified analytical approach to estimate the parameters required for strength determination of HDR {sup 192}Ir brachytherapy sources using a Farmer-type ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sudhir [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India); Srinivasan, P. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, S.D., E-mail: sdsharma_barc@rediffmail.com [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India); Mayya, Y.S. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India)

    2012-01-15

    Measuring the strength of high dose rate (HDR) {sup 192}Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR {sup 192}Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR {sup 192}Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and M{sub s}. The seven distance method was followed to record the ionization chamber readings for parameterization of f and M{sub s}. Analytically calculated values of M{sub s} were used to determine the room scatter correction factor (K{sub sc}). The Monte Carlo simulations were also carried out to calculate f and K{sub sc} to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of K{sub sc} were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations. - Highlights: Black-Right-Pointing-Pointer RAKR measurement of a brachytherapy source by 7 distance method requires the evaluation of 'f'. Black-Right-Pointing-Pointer A simplified analytical approach based on least square method to evaluate 'f' and 'M{sub s}' was developed. Black-Right-Pointing-Pointer Parameter 'f' calculated by proposed analytical

  2. Determination of air kerma standard of high dose rate {sup 192}Ir brachytherapy source; Determinacao da taxa de kerma no ar de referencia para {sup 192}Ir de alta taxa de dose para braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Pires, E.J.; Alves, C.F.E.; Leite, S.P.; Magalhaes, L.A.G.; David, M.G.; Almeida, C.E. de, E-mail: cfealves@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Di Prinzio, R. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper presents the methodology developed by the Laboratorio de Ciencias Radiologicas and presently in use for determining of the air kerma standard of {sup 192}Ir high dose rate sources to calibrate well-type chambers. Uncertainty analysis involving the measurements procedure are presented. (author)

  3. Determination of absorbed dose in water at the reference point d(r0, theta0) for an 192Ir HDR brachytherapy source using a Fricke system.

    Science.gov (United States)

    Austerlitz, C; Mota, H C; Sempau, J; Benhabib, S M; Campos, D; Allison, R; DeAlmeida, C E; Zhu, D; Sibata, C H

    2008-12-01

    A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a 192Ir high dose rate (HDR) source at 1 cm from its center in water, D(r0, theta0). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the 192Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r0, theta0). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an 192Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the 192Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r0, theta0) by 2.0%. Applying the corresponding correction factor, the D(r0, theta0) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43% (k=1). The Fricke device provides a promising method towards calibration of brachytherapy radiation sources in terms of D(r0

  4. Comparison of 3D dose distributions for HDR {sup 192}Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Senkesen, Oznur [Department of Radiation Oncology, Acibadem Kozyatagi Hospital, Istanbul (Turkey); Tezcanli, Evrim, E-mail: tezcanlievrim@gmail.com [Department of Radiation Oncology, Acibadem University, Istanbul (Turkey); Buyuksarac, Bora [Institute of Biomedical Engineering, Bogazici University Istanbul (Turkey); Ozbay, Ismail [Istanbul University, Institute of Oncology, Istanbul (Turkey)

    2014-10-01

    Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high–dose rate (HDR) iridium-192 ({sup 192}Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of {sup 192}Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with {sup 192}Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3 mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1

  5. A generic high-dose rate (192)Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism.

    Science.gov (United States)

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Zourari, Kyveli; Papagiannis, Panagiotis; Rivard, Mark J; Siebert, Frank-André; Sloboda, Ron S; Smith, Ryan L; Thomson, Rowan M; Verhaegen, Frank; Vijande, Javier; Ma, Yunzhi; Beaulieu, Luc

    2015-06-01

    In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) (192)Ir source and a virtual water phantom were designed, which can be imported into a TPS. A hypothetical, generic HDR (192)Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic (192)Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra(®) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS™ ]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR (192)Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then

  6. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo, E-mail: Facundo.Ballester@uv.es [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Carlsson Tedgren, Åsa [Department of Medical and Health Sciences (IMH), Radiation Physics, Faculty of Health Sciences, Linköping University, Linköping SE-581 85, Sweden and Department of Medical Physics, Karolinska University Hospital, Stockholm SE-171 76 (Sweden); Granero, Domingo [Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia E-46014 (Spain); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Institute of Technology, Melbourne, Victoria 3000 (Australia); Mourtada, Firas [Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware 19713 (United States); Fonseca, Gabriel Paiva [Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Zourari, Kyveli; Papagiannis, Panagiotis [Medical Physics Laboratory, Medical School, University of Athens, 75 MikrasAsias, Athens 115 27 (Greece); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105 (Germany); Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  7. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    Science.gov (United States)

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-07

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  8. Water equivalent phantom materials for 192Ir brachytherapy

    Science.gov (United States)

    Schoenfeld, Andreas A.; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-01

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with 192Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading 192Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by

  9. The non-uniformity correction factor for the cylindrical ionization chambers in dosimetry of an HDR 192Ir brachytherapy source

    Directory of Open Access Journals (Sweden)

    Majumdar Bishnu

    2006-01-01

    Full Text Available The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory.

  10. Application of a pelvic phantom in brachytherapy dosimetry for high-dose-rate (HDR) 192Ir source based on Monte Carlo simulations

    Science.gov (United States)

    Ahn, Woo Sang; Choi, Wonsik; Shin, Seong Soo; Jung, Jinhong

    2014-08-01

    In this study, we evaluate how the radial dose function is influenced by the source position as well as the phantom size and shape. A pelvic water phantom similar to the pelvic shape of a human body was designed by averaging dimensions obtained from computed tomography (CT) images of patients treated with brachytherapy for cervical cancer. Furthermore, for the study of the effects of source position on the dose distribution, the position of the source in the water phantom was determined by using the center of mass of the gross target volume (GTV) in the CT images. To obtain the dosimetric parameter of a high-dose-rate (HDR) 192Ir source, we performed Monte Carlo simulations by using the Monte Carlo n-particle extended code (MCNPX). The radial dose functions obtained using the pelvic water phantom were compared with those of spherical phantom with different sizes, including the Monte Carlo (MC) results of Williamson and Li. Differences between the radial dose functions from this study and the data in the literature increased with the radial distances. The largest differences appeared for spherical phantom with the smallest size. In contrast to the published MC results, the radial dose function of the pelvic water phantom significantly decreased with radial distance in the vertical direction because full scattering was not possible. When the source was located in posterior position 2 cm from the center in the pelvic water phantom, the differences between the radial dose functions rapidly decreased with the radial distance in the lower vertical direction. If the International Commission on Radiation Units and Measurements bladder and rectum points are considered, doses to these reference points could be underestimated by up to 1%-2% at a distance of 3 to 6 cm. Our simulation results provide a valid clinical reference data and can used to improve the accuracy of the doses delivered during brachytherapy applied to patients with cervical cancer.

  11. Comparison of air kerma standards of LNE-LNHB and NPL for 192Ir HDR brachytherapy sources: EUROMET project no 814.

    Science.gov (United States)

    Douysset, Guilhem; Sander, Thorsten; Gouriou, Jean; Nutbrown, Rebecca

    2008-03-21

    An indirect comparison has been made in the air kerma standards for high dose rate (HDR) 192Ir brachytherapy sources at the Laboratoire National Henri Becquerel (LNHB) and the National Physical Laboratory (NPL). The measurements were carried out at both laboratories between November and December 2004. The comparison was based on measurements using well-type transfer ionization chambers and two different source types, Nucletron microSelectron HDR Classic and version 2. The results show the reported calibration coefficients to agree within 0.47% to 0.63%, which is within the overall standard uncertainty of 0.65% reported by both laboratories at the time of this comparison. Following this comparison, some of the NPL primary standard correction factors were re-evaluated resulting in a change of +0.17% in the overall correction factor. The new factor was implemented in May 2006. Applying the revised chamber factor to the measurements reported in this comparison report will reduce the difference between the two standards by 0.17%.

  12. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source.

    Science.gov (United States)

    Gifford, Kent A; Price, Michael J; Horton, John L; Wareing, Todd A; Mourtada, Firas

    2008-06-01

    The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.

  13. Dosimetry audits in Brazil for {sup 192}Ir high dose rate brachytherapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L.A.R. da; Paiva, E. de.; Goncalves, M.G.; Velasco, A.F.; Di Prinzio, R.; Dovales, A.C.M.; Freire, B.L.V.; Brito, R.R.A.; Giannoni, R.A.; Castelo, L.H.R. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Marechal, M.H.H. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Instalacoes Radiativas (CORAD)

    2005-03-15

    In Brazil, among 200 radiotherapy centres, 30 have high dose rate (HDR) {sup 192}Ir brachytherapy systems. In August 2001, the Brazilian National Nuclear Energy Commission (CNEN) started a biennial audit program to those centres having HDR systems. This program consists of visiting each centre in order to investigate the radiation protection aspects of the centres and also to measure the intensity of the brachytherapy source, in terms of air kerma strength, with a well type chamber specially designed for HDR {sup 192} Ir sources. The audit dosimetry results are compared to measurements carried out by the local institution physicist and to the source intensity value provided by the manufacturer. Two methods have been used by the Brazilian physicists for HDR {sup 192}Ir brachytherapy source dosimetry, namely the employment of a farmer type chamber calibrated according to the interpolation methodology and the use of a well type chamber to provide direct intercomparison. The larger difference obtained was 18.9% and it can be explained in terms of the lack of knowledge of the institution physicist about the interpolation methodology using the farmer type chamber. Another difference of 5.82% was found as being the lack of an updated calibration factor for the clinic well type chamber. On the basis of these results, CNEN is able to establish a maximum deviation value for the dosimetry of HDR system. Additionally, with this program the radiotherapy services have an opportunity to have their HDR {sup 192}Ir sources calibrated and to test the validity of the calibration factors for their own well type chambers, using their calibrated sources. (author)

  14. Calibration of well-type chambers in Brazil using {sup 192}Ir HDR sources

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Carlos Frederico Estrada; Pires, Evandro Jesus; David, Mariano Gazineu; Almeida, Carlos Eduardo de, E-mail: cfealves@gmail.com, E-mail: evjpires@gmail.com, E-mail: marianogd08@gmail.com, E-mail: cea71@yahoo.com.br [Universidade do Estado do Rio de Janeiro (UERJ/LCR), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Di Prinzio, Renato, E-mail: rprinzio@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The results obtained by performing of a traceable calibration service for well-type reentrant ionization chamber for HDR 192Ir sources used in brachytherapy physical procedures at the Laboratorio de Ciencias Radiologicas from Universidade do Estado do Rio de Janeiro -LCR/UERJ are described. (author)

  15. Determination of absorbed dose in water at the reference point D(r{sub 0},{theta}{sub 0}) for an {sup 192}Ir HDR brachytherapy source using a Fricke system

    Energy Technology Data Exchange (ETDEWEB)

    Austerlitz, C.; Mota, H. C.; Sempau, J.; Benhabib, S. M.; Campos, D.; Allison, R.; Almeida, C. E. de; Zhu, D.; Sibata, C. H. [Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States); Laboratorio de Cie circumflex ncias Radiologicas, Universidade do Estado do Rio de Janeiro, 20550 Rio de Janeiro (Brazil); Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States)

    2008-12-15

    A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a {sup 192}Ir high dose rate (HDR) source at 1 cm from its center in water, D(r{sub 0},{theta}{sub 0}). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the {sup 192}Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r{sub 0},{theta}{sub 0}). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an {sup 192}Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the {sup 192}Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r{sub 0},{theta}{sub 0}) by 2.0%. Applying the corresponding correction factor, the D(r{sub 0},{theta}{sub 0}) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43%(k=1). The Fricke device provides a promising

  16. SU-E-T-787: Utility of the Two Candidate 192-Ir and 169-Yb HDR Sources for Use with a Novel Direction Modulated Brachytherapy Tandem Applicator for Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States)

    2015-06-15

    Purpose: A novel tungsten alloy shielded, MRI-compatible, direction modulated brachytherapy (DMBT) concept tandem applicator, which enables unprecedented intensity modulation, was used to evaluate treatment plan quality improvement over a conventional tandem. The utility of the 192-Ir and 169-Yb HDR sources, for use with the DMBT applicator, was evaluated. Methods: The total diameter of the DMBT tandem applicator is 6.0 mm, which consists of 5.4-mm diameter tungsten alloy and 0.3 mm thick plastic sheath. The tandem has 6 symmetric peripheral 1.3-mm diameter grooves for the source to travel. MCNPX v.2.6 was used to simulate the 192-Ir and 169-Yb sources inside the DMBT applicator. First, TG-43 source parameters were evaluated. Second, 3D dose matrix with 1 mm3 resolution were imported into an in-house-coded inverse optimization treatment planning program to obtain optimal plans for 19 clinical cases. All plans were compared with the standard tandem and ring plans. Prescription dose was 15.0 Gy. All plans were normalized to receive the same HRCTV D90. Results: Generally, the DMBT tandem (and ring) plans were better than the conventional tandem and ring plans for 192-Ir and 169-Yb HDR sources. The mean data of D2cc for bladder, rectum, and sigmoid were 11.65±2.30 Gy, 7.47±3.05 Gy, and 9.84±2.48 Gy for Ir-192 DMBT tandem, respectively. These data for Yb-169 were 11.67±2.26 Gy, 7.44±3.02 Gy, and 9.83±2.38 Gy, respectively. The HR-CTV D98 and V100 were 16.37±1.86 Gy and 97.37 ± 1.92 Gy for Ir-192 DMBT, respectively. The corresponding values for Yb-169 were 16.43±1.86 Gy, and 97.51 ± 1.91 Gy. Plans with the 169-Yb source generally produced more favorable results where V100 increased by 13.65% while D2cc across all OARs reduced by 0.54% compared with the 192-Ir plans. Conclusion: For the DMBT tandem applicator, 169-Yb source seems to produce more directional beams resulting in increased intensity modulation capacity, thus resulting in more conformal plans.

  17. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    Science.gov (United States)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.

  18. Determination of the Fricke G value for HDR {sup 192}Ir sources using ionometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L.; Coelho, M.; Almeida, C.E. de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Lab. de Ciencias Radiologicas; Gavazza, S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    High Dose Rate (HDR) brachytherapy using {sup 192}Ir is widely accepted as an important treatment option, and it thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of absolute dose to water is currently not available. The dose to water conversion is calculated via the dose rate constant {Lambda} and several correction factors accounting for the scatter, attenuation, and anisotropy of the dose distribution, among other effects. Two potentially useful procedures have been reported, including one by Sarfehnia et al. [3,4], which used a water-based calorimeter with an uncertainty of 1.9% for k=1, and a second by Austerlitz et al. and de Almeida et al., which used Fricke dosimetry with estimated uncertainties of 3.9% for k=1 and 1.4% for k=1, respectively. Chemical dosimetry using a standard FeSO{sub 4} solution has shown potential to be a reliable standard of absorbed dose for the HDR {sup 192}Ir source. A major uncertainty is associated with the G values reported by Fregene, which had a numerical value of 1.1 %. However, that reference provided very little detail of the experimental procedures for the {sup 192}Ir source. The G value may be obtained by using a calorimeter or ionometric measurements. In the absence of calorimetric data, this paper makes an attempt to measure the G value for the HDR {sup 192}Ir sources using ionometric measurements and recommendations from dosimetry protocols. (author)

  19. Dedicated high dose rate 192Ir brachytherapy radiation fields for in vitro cell exposures at variable source-target cell distances: killing of mammalian cells depends on temporal dose rate fluctuation

    Science.gov (United States)

    Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef

    2017-02-01

    Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min-1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate

  20. Calibration of a {sup 19} {sup 2}Ir source for high dose brachytherapy using various techniques; Calibracion de una fuente de {sup 192} Ir para braquiterapia de alta tasa de dosis mediante diversas tecnicas

    Energy Technology Data Exchange (ETDEWEB)

    Montilla Prieto, Tedicel C., E-mail: tcdicel@gmaiLcam [Instituto de Oncologia Dr. Miguel Perez Carreno, Barbula (Venezuela, Bolivarian Republic of). Departamento de Fisica y Dosimetria; Padron Rivero, Alvaro D., E-mail: alvarodpadronr@yahoo.com.ve [Universidad de Carabobo, Barbula (Venezuela, Bolivarian Republic of). Facultad de Ciencias de la Salud. Departamento de Ciencias Fisiologicas

    2013-10-01

    In this research we studied three experimental procedures for calibration of a source of {sup 192}Ir to high dose rate for clinical brachytherapy use, and thus were compared and analysis of the advantages and disadvantages of each. For this study we quantified the value of the current kerma rate reference in air by three procedures: source calibration using a well chamber, with an cylindrical ionization chamber in air, and a cylindrical ionization chamber on a phantom, and this magnitude was compared with the value provided by the manufacturer of the source and thereby obtaining the deviation corresponding . Thus, it was found that the deviation corresponding to the source calibration making use of a well chamber, remained within tolerance, while the cylindrical ionization chamber in air and on phantom exceeded the standards established in some documents. However, although both the measurement in air and in the phantom are the procedures for the final calibration source, these can be used to verify that the delivered dose are in tolerance.

  1. A CT-based analytical dose calculation method for HDR {sup 192}Ir brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Emily; Verhaegen, Frank [Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht 6229ET (Netherlands)

    2009-09-15

    Purpose: This article presents an analytical dose calculation method for high-dose-rate {sup 192}Ir brachytherapy, taking into account the effects of inhomogeneities and reduced photon backscatter near the skin. The adequacy of the Task Group 43 (TG-43) two-dimensional formalism for treatment planning is also assessed. Methods: The proposed method uses material composition and density data derived from computed tomography images. The primary and scatter dose distributions for each dwell position are calculated first as if the patient is an infinite water phantom. This is done using either TG-43 or a database of Monte Carlo (MC) dose distributions. The latter can be used to account for the effects of shielding in water. Subsequently, corrections for photon attenuation, scatter, and spectral variations along medium- or low-Z inhomogeneities are made according to the radiological paths determined by ray tracing. The scatter dose is then scaled by a correction factor that depends on the distances between the point of interest, the body contour, and the source position. Dose calculations are done for phantoms with tissue and lead inserts, as well as patient plans for head-and-neck, esophagus, and MammoSite balloon breast brachytherapy treatments. Gamma indices are evaluated using a dose-difference criterion of 3% and a distance-to-agreement criterion of 2 mm. PTRAN{sub C}T MC calculations are used as the reference dose distributions. Results: For the phantom with tissue and lead inserts, the percentages of the voxels of interest passing the gamma criteria (P{sub {gamma}{>=}1}) are 100% for the analytical calculation and 91% for TG-43. For the breast patient plan, TG-43 overestimates the target volume receiving the prescribed dose by 4% and the dose to the hottest 0.1 cm{sup 3} of the skin by 9%, whereas the analytical and MC results agree within 0.4%. P{sub {gamma}{>=}1} are 100% and 48% for the analytical and TG-43 calculations, respectively. For the head-and-neck and

  2. A CT-based analytical dose calculation method for HDR 192Ir brachytherapy.

    Science.gov (United States)

    Poon, Emily; Verhaegen, Frank

    2009-09-01

    This article presents an analytical dose calculation method for high-dose-rate 192Ir brachytherapy, taking into account the effects of inhomogeneities and reduced photon backscatter near the skin. The adequacy of the Task Group 43 (TG-43) two-dimensional formalism for treatment planning is also assessed. The proposed method uses material composition and density data derived from computed tomography images. The primary and scatter dose distributions for each dwell position are calculated first as if the patient is an infinite water phantom. This is done using either TG-43 or a database of Monte Carlo (MC) dose distributions. The latter can be used to account for the effects of shielding in water. Subsequently, corrections for photon attenuation, scatter, and spectral variations along medium- or low-Z inhomogeneities are made according to the radiological paths determined by ray tracing. The scatter dose is then scaled by a correction factor that depends on the distances between the point of interest, the body contour, and the source position. Dose calculations are done for phantoms with tissue and lead inserts, as well as patient plans for head-and-neck, esophagus, and MammoSite balloon breast brachytherapy treatments. Gamma indices are evaluated using a dose-difference criterion of 3% and a distance-to-agreement criterion of 2 mm. PTRAN_CT MC calculations are used as the reference dose distributions. For the phantom with tissue and lead inserts, the percentages of the voxels of interest passing the gamma criteria (Pgamma > or = 1) are 100% for the analytical calculation and 91% for TG-43. For the breast patient plan, TG-43 overestimates the target volume receiving the prescribed dose by 4% and the dose to the hottest 0.1 cm3 of the skin by 9%, whereas the analytical and MC results agree within 0.4%. Pgamma > or = 1 are 100% and 48% for the analytical and TG-43 calculations, respectively. For the head-and-neck and esophagus patient plans, Pgamma > or = 1 are > or

  3. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators.

    Science.gov (United States)

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-01

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. PACS number: none.

  4. Evaluation of PC-ISO for customized, 3D Printed, gynecologic 192-Ir HDR brachytherapy applicators.

    Science.gov (United States)

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-08

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. 

  5. Qualification tests for {sup 192}Ir sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Iancso, Georgeta, E-mail: georgetaiancso@yahoo.com; Iliescu, Elena, E-mail: georgetaiancso@yahoo.com; Iancu, Rodica, E-mail: georgetaiancso@yahoo.com [National Institute of R and D for Physics and Nuclear Engineering Horia Hulubei, Magurele (Romania)

    2013-12-16

    This paper describes the results of qualification tests for {sup 192}Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the {sup 192}Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  6. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    Science.gov (United States)

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  7. A feasibility study of Fricke dosimetry as an absorbed dose to water standard for 192Ir HDR sources.

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo deAlmeida

    Full Text Available High dose rate brachytherapy (HDR using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.

  8. A dosimetric comparison of 169Yb and 192Ir for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities.

    Science.gov (United States)

    Lymperopoulou, G; Papagiannis, P; Angelopoulos, A; Karaiskos, P; Georgiou, E; Baltas, D

    2006-12-01

    Monte Carlo simulation dosimetry is used to compare 169Yb to 192Ir for breast high dose rate (HDR) brachytherapy applications using multiple catheter implants. Results for bare point sources show that while 169Yb delivers a greater dose rate per unit air kerma strength at the radial distance range of interest to brachytherapy in homogeneous water phantoms, it suffers a greater dose rate deficit in missing scatter conditions relative to 192Ir. As a result of these two opposing factors, in the scatter conditions defined by the presence of the lung and the finite patient dimensions in breast brachytherapy the dose distributions calculated in a patient equivalent mathematical phantom by Monte Carlo simulations for the same implant of either 169Yb or 1921r commercially available sources are found comparable. Dose volume histogram results support that 169Yb could be at least as effective as 192Ir delivering the same dose to the lung and slightly reduced dose to the breast skin. The current treatment planning systems' approach of employing dosimetry data precalculated in a homogeneous water phantom of given shape and dimensions, however, is shown to notably overestimate the delivered dose distribution for 169Yb. Especially at the skin and the lung, the treatment planning system dose overestimation is on the order of 15%-30%. These findings do not undermine the potential of 169Yb HDR sources for breast brachytherapy relative to the most commonly used 192Ir HDR sources. They imply, however, that there could be a need for the amendment of dose calculation algorithms employed in clinical treatment planning of particular brachytherapy applications, especially for intermediate photon energy sources such as 169Yb.

  9. HDR {sup 192}Ir source speed measurements using a high speed video camera

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Gabriel P. [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Viana, Rodrigo S. S.; Yoriyaz, Hélio [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000 (Brazil); Podesta, Mark [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Rubo, Rodrigo A.; Sales, Camila P. de [Hospital das Clínicas da Universidade de São Paulo—HC/FMUSP, São Paulo 05508-000 (Brazil); Reniers, Brigitte [Department of Radiation Oncology - MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, Frank, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology - MAASTRO, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec H3G 1A4 (Canada)

    2015-01-15

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.

  10. Stem signal suppression in fiber-coupled Al2O3:C dosimetry for 192Ir brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus Erik; Edmund, J.M.

    2011-01-01

    was adapted for on-line in-vivo dosimetry using fiber-coupled carbon doped aluminum oxide (Al2O3:C). The technique involved a two-channel optical filtration of the radioluminescence (RL) emitted from a pre-irradiated Al2O3:C crystal with enhanced sensitivity. The system responded linearly in the absorbed dose......The stem signal, composed of fluorescence and Čerenkov light, becomes a significant source of uncertainty in fiber-coupled afterloaded brachytherapy dosimetry when the source dwells near the fiber cable but far from the detector. A stem suppression technique originally developed for scintillators...... range 0.05–50 Gy, as needed under high dose rate (HDR) conditions. The dosimeter was irradiated in a water phantom using a 37 GBq 192Ir source at source-to-crystal distances ranging from 0.5 cm to 6.7 cm. For irradiation conditions that generated a stem component in the range 4%–15% in the unfiltered...

  11. Characterization of TLD-100 in powders for dosimetric quality control of {sup 192} Ir sources used in brachytherapy of high dose rate; Caracterizacion de TLD-100 en polvo para control de calidad dosimetrico de fuentes de Ir{sup 192} usadas en braquiterapia de alta tasa de dosis

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza C, S.P

    2007-07-01

    The Secondary Standard Dosimetric at the National Institute of Nuclear Research (ININ) calibrated a lot of powdered TLD-100 (LiF:Mg,Ti) in terms of absorbed dose to water D{sub w} for the energy of: {sup 60}Co, {sup 137C}s, X rays of 250 and 50 kVp. Later on, it is carried out an interpolation of the calibration for the energy of the {sup 192}Ir. This calibration is part of a dosimetric quality control program, to solve the problems of traceability for the measurements carried out by the users of {sup 192}Ir sources employed in the treatments of High Dose Rate Brachytherapy (HDR) at the Mexican Republic. The calibrations of the radiation beams are made with the following protocols: IAEA TRS-398 for the {sup 60}Co for D{sub w}, using a secondary standard ionization chamber PTW N30013 calibrated in D{sub w} by the National Research Council (NRC, Canada). AAPM TG-43 for D{sub w} in terms of the strength kerma Sk, calibrating this last one quantity for the {sup 137}Cs radioactive source, with a well chamber HDR 1000 PLUS traceable to the University of Wisconsin (US). AAPM TG-61 for X ray of 250 and 50 kVp for D{sub w} start to Ka using field standard a Farmer chamber PTW 30001 traceable to K for the Central Laboratory of Electric Industries (CLEI, France). The calibration curves (CC) they built for the response of the powder TLD: R{sub TLD} vs D{sub w}: For the energy of {sup 60}Co, {sup 137}Cs, X rays of 250 and 50 kVp. Fitting them with the least square method weighed by means of a polynomial of second grade that corrects the supra linearity of the response. iii. Each one of the curves was validated with a test by lack of fitting and for the Anderson Darling normality test, using the software MINITAB in both cases. iv. The sensibility factor (F{sub s}) for each energy corresponds to the slope of the CC, v. The F{sub s} for the two {sup 192}Ir sources used are interpolated: one for a Micro Selectron source and the other one a Vari Source source. Finally, a couple of

  12. Shielding effect of a customized intraoral mold including lead material in high-dose-rate 192-Ir brachytherapy for oral cavity cancer.

    Science.gov (United States)

    Kudoh, Takaharu; Ikushima, Hitoshi; Honda, Eiichi

    2012-01-01

    A high-dose-rate (HDR) 192-Ir brachytherapy using a customized intraoral mold is effective for superficial oral cavity cancer, and the surrounding normal tissue is kept away from the radioactive source with gauze pads and/or mouth piece for reducing the dose on the normal tissues. In the Tokushima university hospital, the mold has a lead shield which utilizes the space prepared with sufficient border-molding by a specific dental technique using modeling compound. In HDR 192-Ir brachytherapy using a lead shielded customized intraoral mold, there are no reports measuring the absorbed dose. The purpose of the present study is to measure the absorbed dose and discuss the optimum thickness of lead in HDR 192-Ir brachytherapy using a customized intraoral mold with lead shield using a 1 cm thickness mimic mold. The thickness of lead in the mold could be changed by varying the arrangement of 0.1 cm thickness sheet of the acrylic resin plate and lead. The measured doses at the lateral surface of the mold with thermo-luminescence dosimeter were reduced to 1.12, 0.79, 0.57, 0.41, 0.31, 0.24 and 0.19 Gy and the ratios to the prescription dose were reduced to 56, 40, 29, 21, 16, 12 and 10 percent as lead thickness increased from 0 to 0.6 cm in 0.1 cm increments, respectively. A 0.3 cm thickness lead was considered to be required for a 1 cm thickness mold, and it was necessary to thicken the lead as much as possible with the constraint of limited space in the oral cavity, especially at the fornix vestibule.

  13. Effects of Endovascular Brachytherapy with 192Ir Afterloading System on Expression of Type Ⅰ Collagen after Angioplasty

    Institute of Scientific and Technical Information of China (English)

    向定成; 杨传红; 候友贤; 龚志华; 易绍东; 邱建

    2003-01-01

    Objectives To investi-gate the effect and mechanism of endovascularbrachytherapy with 192Ir on expression of type Ⅰ collagen, metalloproteinases - 1 (MMP - 1) and the tissueinhibitor (TIMP- 1 ) after angioplasty. MethodsRestenotic model of domestic microswine was em-ployed and the iliac arteries were randomized to radi-ation group ( n = 12), which were treated with 20 ~ 25Gy of 192Ir, and non - radiation group ( n = 36) afterangioplasty. The target vessels were harvested in theend of 3 months and 6 months after angioplasty. Im-munohistochemistry and in situ hybridization were usedto detect proteins of type Ⅰ collagen, MMP-1 andTIMP- 1, and mRNA expression of type Ⅰ collagen.Results The protein and mRNA of type Ⅰ collagen,the ratios of TIMP-1/MMP-1 were significantlylower iu radiation group than in non- radiation group( P < 0.05 or 0.01 ). The peak of transcription of typeⅠ collagen mRNA was at 6 months and 3 months in non-radiation group and radiation group respectively.Conclusions Endovascular brachytherapy with192Ir might modify the metabolism of extracellular ma-trix after angioplasty by inhibiting the synthesis of typeⅠ collagen and the activities of MMP - 1 and TIMP - 1.

  14. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi [Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976 (Japan); Kakei, Kiyotaka; Yoshiyama, Fumiaki [Department of Radiotherapy, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto 860-8556 (Japan); Kawamura, Shinji [Department of Radiotherapy, Miyazaki University Hospital, 5200 Kihara Ohaza Kiyotake-Machi, Miyazaki 889-1692 (Japan)

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43

  15. Analysis of the Survival Rate with Cervical Cancer Using 137Cs and 192Ir Aftedoading Brachytherapy

    Institute of Scientific and Technical Information of China (English)

    GuixioZhou; GuoxiongChen; DemeiMa; JianpingSun; LinMa

    2004-01-01

    OBJECTIVE To analyze and compare the survival rate for stages Ⅱ and Ⅲ cervical cancer treated by external irradiation plus 137Cs or 192Ir. METHODS The patients with cervical cancer were treated by external irradiation plus 137Cs (group A, 427 patients) or plus 192Ir (group B, 156 patients). There were 170 stage Ⅱ cases and 413 stage Ⅲ cases. The number of cancer types were as follows: squamous cell carcinoma, 524; adenocarcinoma, 34; and adenosquamous cell carcinoma, 25. The two groups received the same external irradiation using 8 or 10 MV of X-ray. After the whole pelvis received 25-35 Gy, the focus was given a total of 45-55 Gy by four divided fields. Intracavitary irradiation was performed with one fraction of 6-7 Gy in reference dose at A point every week and a total dose of 40-60 Gy with 6-8 fractions for group A; every fraction of 5-6 Gy in reference dose of A point and total dose of 30-42 Gy with 5-7 fractions for group B.RESULTS The 5-year survival rate of stage Ⅱ and Ⅲ, and total were 82.9%, 62.2%, and 67.2% for group A respectively and 85.1%, 61.5% and 69.2% for group B respectively. There were significant differences between stage Ⅱ and Ⅲ in each group (P 0.05). The late complications of the therapy were rectitis and urocystitis and with an incidence rate of 7.3% and 6.3% for group A and 9.6% and 9.0% for group B (P> 0.05). CONCLUSION The long-term survival rate and complications of stages Ⅱ and Ⅲ cervical cancer are similar when treated with external irradiation plus 137Cs or plus 192Ir.

  16. A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate (192) Ir brachytherapy.

    Science.gov (United States)

    Ma, Yunzhi; Vijande, Javier; Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Zourari, Kyveli; Papagiannis, Panagiotis; Rivard, Mark J; Siebert, Frank André; Sloboda, Ron S; Smith, Ryan; Chamberland, Marc J P; Thomson, Rowan M; Verhaegen, Frank; Beaulieu, Luc

    2017-07-19

    A joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform model-based dose calculation algorithms (MBDCA) dose calculations and comparisons. Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) (192) Ir shielded applicator has been designed and benchmarked. A generic HDR (192) Ir shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 (192) Ir source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra(®) Brachy with Advanced Collapsed-cone Engine, ACE(™) , and BrachyVision ACUROS(™) ) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported "source centered in water" and "source displaced" test cases, and the new "source centered in applicator" test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. The local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the "source centered in water" and "source

  17. The influence of different 192Ir sources geometries to the energy deposition

    Science.gov (United States)

    Santos, W. S.; Gonalves, P. E.; Belinato, W.; Caldas, L. V. E.; Perini, A. P.; Neves, L. P.

    2016-07-01

    In this paper, various simplifications of the HDR source Varian VariSource Classic model, in which 192Ir as a radionuclide is used, were compared. These simplifications were carried out by Monte Carlo simulations, using the MCNPX 2.7.0 code. The different sources were compared through a distribution of energy deposition in a water phantom. Our results indicated that small simplifications will present no influence on the source response, and the removal of the entire capsule surrounding the radionuclide will present a difference of just 0.53% in the final response.

  18. The influence of different {sup 192}Ir sources geometries to the energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Paulo Eduardo; Perini, Ana Paula; Neves, Lucio Pereira, E-mail: lucio.neves@ufu.br [Universidade Federal de Uberlandia (INFIS/UFU), MG (Brazil). Instituto de Fisica; Santos, William de Souza; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Belinato, Walmir [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Fisica

    2015-07-01

    In this paper, various simplifications of the HDR source Varian VariSource Classic model, in which {sup 192}Ir as a radionuclide is used, were compared. These simplifications were carried out by the simulation of Monte Carlo, using the MCNPX code. The different sources were compared through a distribution of energy deposition in a water phantom. Our results indicated that small simplifications will present no influence on the source response, and the removal of the entire capsule surrounding the radionuclide will present a difference of just 0.51% in the final response. (author)

  19. In vivo dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer--a phantom study.

    Science.gov (United States)

    Anton, Mathias; Wagner, Daniela; Selbach, Hans-Joachim; Hackel, Thomas; Hermann, Robert Michael; Hess, Clemens Friedrich; Vorwerk, Hilke

    2009-05-07

    A phantom study for dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to (192)Ir was determined with a reproducibility of 1.8% relative to (60)Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant Lambda. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of (192)Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  20. In vivo dosimetry in the urethra using alanine/ESR during 192Ir HDR brachytherapy of prostate cancer—a phantom study

    Science.gov (United States)

    Anton, Mathias; Wagner, Daniela; Selbach, Hans-Joachim; Hackel, Thomas; Hermann, Robert Michael; Hess, Clemens Friedrich; Vorwerk, Hilke

    2009-05-01

    A phantom study for dosimetry in the urethra using alanine/ESR during 192Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to 192Ir was determined with a reproducibility of 1.8% relative to 60Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant Λ. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of 192Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  1. In vivo dosimetry in the urethra using alanine/ESR during {sup 192}Ir HDR brachytherapy of prostate cancer-a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Mathias; Selbach, Hans-Joachim; Hackel, Thomas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Wagner, Daniela; Hess, Clemens Friedrich; Vorwerk, Hilke [Department of Radiotherapy and Radiooncology, University Hospital Goettingen, Goettingen (Germany); Hermann, Robert Michael [Zentrum fuer Strahlentherapie und Radioonkologie, Bremen (Germany)], E-mail: mathias.anton@ptb.de

    2009-05-07

    A phantom study for dosimetry in the urethra using alanine/ESR during {sup 192}Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to {sup 192}Ir was determined with a reproducibility of 1.8% relative to {sup 60}Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant {lambda}. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of {sup 192}Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  2. Head and neck (192)Ir HDR-brachytherapy dosimetry using a grid-based Boltzmann solver.

    Science.gov (United States)

    Siebert, Frank-André; Wolf, Sabine; Kóvacs, George

    2013-12-01

    To compare dosimetry for head and neck cancer patients, calculated with TG-43 formalism and a commercially available grid-based Boltzmann solver. This study included 3D-dosimetry of 49 consecutive brachytherapy head and neck cancer patients, computed by a grid-based Boltzmann solver that takes into account tissue inhomogeneities as well as TG-43 formalism. 3D-treatment planning was carried out by using computed tomography. Dosimetric indices D90 and V100 for target volume were about 3% lower (median value) for the grid-based Boltzmann solver relative to TG-43-based computation (p Boltzmann solver to TG-43 (p Boltzmann solver and TG-43 formalism for high-dose-rate head and neck brachytherapy patients to the target volume were found. Distinctions in D90 of CTV were low (2.63 Gy for grid-based Boltzmann solver vs. 2.71 Gy TG-43 in mean). In our clinical practice, prescription doses remain unchanged for high-dose-rate head and neck brachytherapy for the time being.

  3. [Risk factors of late complications after interstitial 192Ir brachytherapy in cancers of the oral cavity].

    Science.gov (United States)

    Peiffert, D

    1997-01-01

    Brachytherapy has confirmed its prevailing role in conservative treatment of oral cavity carcinomas. To describe late toxicity in long-term surviving patients, comparisons with other series are necessary. Study of series of patients implanted for floor of the mouth or mobile tongue shows the need for more detailed data. Dental prophylaxy and lead protection of the mandibule, good indications and techniques of brachytherapy are necessary to avoid late complications. Some treatment factors have proved to be of good prognosis for late complications through multivariate analysis of large series treated with lr 192 wires, using the Paris system, eg, dose rate lower than 0.5 or 0.7 Gy/h, intersource spacing smaller than 1.2 or 1.5 cm, treated surface less than 12 cm2, lineic activity less than 1.5 mCi/cm, less than 1 cm diameter hyperdose, and use of mandibular lead protections. Tumor volume and location to the floor of mouth lead to higher risk of complications. Knowledge of treatment-related factors is important, with the development of new afterloading projectors allowing to control the dose rate and correct small inhomogeneities. High-dose rate exclusive brachytherapy is not recommended. More precise and reproducible classification should be used to report complications in series leading to publications in the future, thus allowing to compare results, reduce complication rates and improve the quality of life.

  4. Clinical application of the Fricke-glucomannan gel dosimeter for high-dose-rate 192Ir brachytherapy

    Science.gov (United States)

    Noda, S.; Suzuki, Y.; Hoshino, Y.; Furukawa, S.; Katoh, H.; Kurotaki, K.; Nakano, T.

    2008-07-01

    This study investigates the efficacy of a new Fricke dosimeter formulation consisting of a standard Fricke gel dosimeter gelled with glucomannan (FrGDG). FrGDG was irradiated using a 192Ir γ-ray source with a remote afterloading system based on computed tomography images. 60Co irradiation was performed for measuring the absorption of FrGDG and water. The distribution maps of T2 values from the irradiated containers were obtained by MR imaging and converted to the absorbed dose to visualize the dose distribution. We found that FrGDG was produced easily and quickly at room temperature. R2 (1/T2) values were reproducible and linearly correlated with the absorbed doses in the range from 0 to 30 Gy for irradiation with 192Ir (the correlation coefficient was 0.99). The mean deviation between the doses obtained from the MR images of the FrGDG and those calculated by the treatment planning system for doses of 37.5, 40, 50, 62.5 and 75 Gy was 4.9%, 4.8%, 3.5%, 2.3% and 2.4%, respectively. In conclusion, MR imaging of FrGDG can visualize the dose distribution successfully, and thus serves as a useful quality assurance tool for complicated three-dimensional radiotherapy treatments.

  5. The mean photon energy anti E{sub F} at the point of measurement determines the detector-specific radiation quality correction factor k{sub Q,M} in {sup 192}Ir brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chofor, Ndimofor; Harder, Dietrich; Selbach, Hans-Joachim; Poppe, Bjoern [University of Oldenburg and Pius-Hospital Oldenburg (Germany). Medical Radiation Physics Group

    2016-11-01

    The application of various radiation detectors for brachytherapy dosimetry has motivated this study of the energy dependence of radiation quality correction factor k{sub Q,M}, the quotient of the detector responses under calibration conditions at a {sup 60}Co unit and under the given non-reference conditions at the point of measurement, M, occurring in photon brachytherapy. The investigated detectors comprise TLD, radiochromic film, ESR, Si diode, plastic scintillator and diamond crystal detectors as well as ionization chambers of various sizes, whose measured response-energy relationships, taken from the literature, served as input data. Brachytherapy photon fields were Monte-Carlo simulated for an ideal isotropic {sup 192}Ir point source, a model spherical {sup 192}Ir source with steel encapsulation and a commercial HDR GammaMed Plus source. The radial source distance was varied within cylindrical water phantoms with outer radii ranging from 10 to 30 cm and heights from 20 to 60 cm. By application of this semiempirical method - originally developed for teletherapy dosimetry - it has been shown that factor k{sub Q,M} is closely correlated with a single variable, the fluence-weighted mean photon energy anti E{sub F} at the point of measurement. The radial profiles of anti E{sub F} obtained with either the commercial {sup 192}Ir source or the two simplified source variants show little variation. The observed correlations between parameters k{sub Q,M} and anti E{sub F} are represented by fitting formulae for all investigated detectors, and further variation of the detector type is foreseen. The herewith established close correlation of radiation quality correction factor k{sub Q,M} with local mean photon energy anti E{sub F} can be regarded as a simple regularity, facilitating the practical application of correction factor k{sub Q,M} for in-phantom dosimetry around {sup 192}Ir brachytherapy sources. anti E{sub F} values can be assessed by Monte Carlo simulation or

  6. 国产血管内192Ir线源的放射剂量测定%Dosimetry of a China-made 192Ir wire source

    Institute of Scientific and Technical Information of China (English)

    何昆仑; 王所亭; 高焱章; 周凯欣; 冯宁远; 邱学军

    2001-01-01

    目的对国产血管内192Ir线源的剂量分布进行评价,为动物实验和临床应用提供依据。方法采用Kodak X-omat V慢感光胶片,从平行和垂直于放射源长轴方向进行测量,径向测量时间为25、45、65和82 s,轴向测定时间为25 s,同时进行标准剂量的标定,通过胶片自动分析测量系统分析剂量分布和吸收剂量。参考AAPM TG No.60报告,采用Monte Carlo方法对放射源的辐射剂量进行理论计算,同时与采用AAPM TG No.43报告计算方法进行比较。结果国产血管内192Ir线源具有良好的剂量分布。AAPM TG No.43报告计算方法比Monte Carlo方法高估32%的辐射剂量。结论国产192Ir线源作为血管内放射源是可行的,采用慢感光胶片测定放射源的剂量分布是一种有效手段。%Objective To evaluate the dose releasing rate and the homogeneity of dose distribution of the Chine-made intravascular 192Ir wire source and to provide experimental data of animal study and clinical use. Methods Dosimetry of the 192Ir wire source was measured by Kodak X-omat V film in differents directions and in different exposure lengths.Dose releasing rate of our 192Ir wire source was calculated according to AAPM TG No.60 and Monte Carlo model,and compared with the results by traditional brachytherapy planning system(AAPM TG No.43) Results 192Ir wire source provided with a well-distributed dose around the source,no striking asymmetry was observed.Thirty two percent of dose rate was overestimated by traditional brachytherapy planning system(AAPM TG No.43)comparing with Monte Carlo method. Conclusions The China-made 192Ir wire source is reliable for intravascular radiation.It is an alternative method to measure the dose distribution with Kodak X-omat V film.The dose rate of 192Ir wire source can be estimated by traditional brachytherapy planning system (AAPM TG No.43) and Monte Carlo method.This study may provide a fundation for practicing

  7. Interstitial brachytherapy with 192-IR in treatment of recurrent malignant primary brain tumors. Braquiterapia intersticial con iridio-192 en el tratamiento de recidivas de tumores cerebrales tras cirugia y radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Cardenes, R.; Martinez, R.; Victoria, C.; Nuez, L.; Clavo, B.; Sancedo, G. (Clinica Puerta de Hierro. Madrid (Spain))

    1994-01-01

    Seven patients with recurrent malignant primary brain tumors after surgery and radiation therapy were treated at the Clinica Puerta de Hierro (Madrid) by interstitial brachytherapy with 192-Ir sources. Implantations were performed using computerized tomography and dose prescription were determined following the Paris system rules for interstitial implants. The means dose deliberated was 50 to 65 Gy to the reference isodoses. At the last follow-up all patients except for one are alive and without evidence of progression of the disease. (Author) 35 refs.

  8. Measurement of the absorbed dose distribution near an 192Ir intravascular brachytherapy seed using a high-spatial-resolution gel dosimetry system

    Science.gov (United States)

    Massillon-JL, G.; Minniti, R.; Mitch, M. G.; Soares, C. G.

    2012-06-01

    The absorbed dose distribution at sub-millimeter distances from the Best single 192Ir intravascular brachytherapy seed was measured using a high-spatial-resolution gel dosimetry system. Two gel phantoms from the same batch were used; one for the seed irradiation and one for calibration. Since the response of this gel is energy independent for photons between 20 and 1250 keV, the gel was calibrated using a narrowly collimated 60Co gamma-ray beam (cross-sectional area ˜1 cm2). A small format laser computed tomography scanner was used to acquire the data. The measurements were carried out with a spatial resolution of 100 µm in all dimensions. The seed was calibrated at NIST in terms of air-kerma strength. The absorbed dose rate as well as the radial dose function, gL(r), was measured for radial distances between 0.6 and 12.6 mm from the seed center. The dose rate constant was measured, yielding a value of Λ = (1.122 ± 0.032) cGy h-1 U-1, which agrees with published data within the measurement uncertainty. For distances between 0.6 and 1.5 mm, gL(r) decreases from a maximum value of 1.06 down to 1.00; between 1.5 and 6.7 mm, an enhancement is clearly observed with a maximum value around 1.24 and beyond 6.7 mm, gL(r) has an approximately constant value around 1.0, which suggests that this seed can be considered as a point source only at distances larger than 6.7 mm. This latter observation agrees with data for the same seed reported previously using Gafchromic film MD-55-2. Additionally, published Monte Carlo (MC) calculations have predicted the observed behavior of the radial dose function resulting from the absorbed dose contributions of beta particles and electrons emitted by the 192Ir seed. Nonetheless, in the enhancement region, MC underestimates the dose by approximately 20%. This work suggests that beta particles and electrons emitted from the seed make a significant contribution to the total absorbed dose delivered at distances near the seed center (less

  9. Proposal of a postal system for Ir-192 sources calibration used in high dose rate brachytherapy with LiF:Mn:Ti thermoluminescent dosemeters; Proposta de um sistema postal para a calibracao de fontes de {sup 192} Ir, utilizadas em braquiterapia de alta taxa de dose, com dosimetros termoluminescentes de LiF: Mn: Ti

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, W.S.; Borges, J.C.; Almeida, C.E.V. [Instituto de Radioprotecao e Dosimetria. CNEN Caixa Postal 37750, 22780-160, Rio de Janeiro (Brazil)

    1998-12-31

    A proposal in order to improve the brachytherapy quality control and to allow postal intercomparison of Ir-192 sources used in high dose rate brachytherapy has been presented. The LiF: Mn: Ti (TLD 100) detector has been selected for such purpose. The experimental array and the TLDs irradiation and calibration techniques, at the treatment units, have been specified in the light of more recent methodology of Ir-192 calibration sources. (Author)

  10. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peppa, V; Pappas, E; Pantelis, E; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens, Athens (Greece); Major, T; Polgar, C [National Institute of Oncology, Budapest (Hungary)

    2015-06-15

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research

  11. Long-term follow-up after accidental gamma irradiation from a {sup 192}Ir source in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, A.S.; Begum, A.; Begum, R. [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2006-07-01

    A industrial radiographer was accidentally over -exposed to high dose of ionizing radiation from an {sup 192}Ir source pellet during radiograph y of weld-joints in gas pipe-lines on June 10, 1985 in Bangladesh. The source, housed in a portable exposure assembly, had an activity of about 1850 GBq. A guide -tube was used to control the transfer of the source from safe storage position to the exposure position and vice versa. For radiography, the ti p of the guide tube was to be fixed to the weld -joint while the source was cranked to the exposure position. Following the elapse of the preset exposure time the source had to be cranked back to the safe stor age position. This procedure was to be repeated for each radiographic exposure. Symptoms of high radiation exposure occurred immediately after the accident and skin erythema developed leading to progressive tissue deteriorations. Biological effects such as mild vomiting, malaise, nausea and diarrhea occurred within a short period after the accident. Skin erythema, swelling and tenderness of the palmar surfaces and the tips of the thumbs, index fingers and middle fingers of the both hands accompanied by severe pain and inflammation developed within 7 days of the mishap. The inflammatory changes characterized by redness and bullae spread over the affected fingers with severe pain and agony within a few days. The finger -tips developed abscesses with enormous pus formation and the affected finger nails fell off. He also developed toothache. At this stage a medical practitioner made some surgical dressings and prescribed antibiotics. During the first six months the most serious health disorder was local necroses of the skin and the deep layers of the palmar side of the affected fingers with sharply delineated injuries. The clinical findings were consistent with those reported elsewhere under similar accident conditions. The consequences of this over-exposure are being followed up to assess the long-term effects of

  12. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  13. Intercomparison of calibration procedures of high dose rate {sup 192} Ir sources in Brazil and a proposal of a new methodology; Intercomparacao de procedimientos de calibracao de fontes de {sup 192} Ir de alta taxa de dose no Brasil e proposta de uma nova metodologia

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M.H.; Almeida, C.E. de [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes IRD/CNEN. Caixa Postal 37750 CEP 22780-160 Rio de Janeiro (Brazil)

    1998-12-31

    The objective of this paper is to report the results of an intercomparison of the calibration procedures for {sup 192} Ir sources presently in use in Brazil and to proposal a calibration procedure to derive the N{sub k} for a Farmer type ionization chamber for {sup 192} Ir energy by interpolating from a {sup 60} Co gamma-rays and 250 kV x-rays calibration factors. the intercomparison results were all within {+-} 3.0 % except one case where 4.6 % was observed and latter identified as a problem with N-k value for X-rays. The method proposed by the present work make possible the improvement of the metrological coherence among the calibration laboratories and their users once the N{sub k} values could then provided by any of the members of SSDL network. (Author)

  14. 192Ir intraluminal brachytherapy for the prevention of urethral re-stricture%192Ir腔内放疗预防男性尿道内切开术后再狭窄临床分析

    Institute of Scientific and Technical Information of China (English)

    马缠过; 郭辉; 杜春; 杨克强

    2008-01-01

    目的 探讨和评价尿道内切开或(和)瘢痕电切术后,192Ir腔内放疗预防男性尿道再狭窄的安全性和临床疗效.方法 2年余内共治疗48例,其中年龄18~81岁,狭窄长度为0.5~5.5cm,90%狭窄长度在3.0 cm以内.外伤性狭窄23例、前列腺增生术后狭窄19例、不明原因狭窄6例.经尿道造影或内窥镜检查确诊.26例首次治疗,22例再次治疗(首次治疗属非放疗疗法).放疗处方剂量为14~18 Gy.结果 48例平均随访10个月,有效率98%.治疗后无复发,无明显副作用.47例排尿均通畅,最大尿流率13.9~36.4(19.2±10.3)ml/s;1例出现轻度尿失禁,可能与多次扩张损伤尿道括约肌有关.结论 尿道内切开或(和)瘢痕电切术后腔内放疗有助于预防尿道再狭窄,明显优于现有其他治疗方法,且副作用小、简便易行.%Objective To evaluate the safety and efficacy of 192Ir intraluminal brachytherapy for the prevention of urethral re-stricture after transurethral incision or transurethral resection of scar. Methods From Mar. 2004 to Jun. 2006,48 patients aging 18-81 years were treated by 192Ir intraluminal brachytherapy. The length of stricture(0.5-5.5 era) was≤3.0 cm in 90% of the patients. The stricture was caused by trauma in 23 patients and prostate hyperplasia operation in 19 patients. The cause of remaining 6 patients was unclear. All patients were diagnosed by urethra photograph or endoscopy. Radiotherapy was the initial treatment in 26 patients and the second time treatment in 22. The irradiation dose was from 14 Gy to 18 Gy.Results The median follow up was 10 months,and the total response rate was 98%. Only one patient recurred and received transurethral incision again. The uresis was fluency in 47 patients and the maximum flow rate was 13.9-36.4(19.2±10.3) ml/s. No secondary urethral bleeding or urethral cancer was observed.Conclusions Being a safe and feasible treatment, ,192Ir intraluminal brachytherapy following transurethral

  15. Evaluation of 101Rh as a brachytherapy source

    Science.gov (United States)

    Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2015-01-01

    Purpose Recently a number of hypothetical sources have been proposed and evaluated for use in brachytherapy. In the present study, a hypothetical 101Rh source with mean photon energy of 121.5 keV and half-life of 3.3 years, has been evaluated as an alternative to the existing high-dose-rate (HDR) sources. Dosimetric characteristics of this source model have been determined following the recommendation of the Task Group 43 (TG-43) of the American Association of the Physicist in Medicine (AAPM), and the results are compared with the published data for 57Co source and Flexisource 192Ir sources with similar geometries. Material and methods MCNPX Monte Carlo code was used for simulation of the 101Rh hypothetical HDR source design. Geometric design of this hypothetical source was considered to be similar to that of Flexisource 192Ir source. Task group No. 43 dosimetric parameters, including air kerma strength per mCi, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated for the 101Rh source through simulations. Results Air kerma strength per activity and dose rate constant for the hypothetical 101Rh source were 1.09 ± 0.01 U/mCi and 1.18 ± 0.08 cGy/(h.U), respectively. At distances beyond 1.0 cm in phantom, radial dose function for the hypothetical 101Rh source is higher than that of 192Ir. It has also similar 2D anisotropy functions to the Flexisource 192Ir source. Conclusions 101Rh is proposed as an alternative to the existing HDR sources for use in brachytherapy. This source provides medium energy photons, relatively long half-life, higher dose rate constant and radial dose function, and similar 2D anisotropy function to the Flexisource 192Ir HDR source design. The longer half-life of the source reduces the frequency of the source exchange for the clinical environment. PMID:26034499

  16. Source geometry factors for HDR ¹⁹²Ir brachytherapy secondary standard well-type ionization chamber calibrations.

    Science.gov (United States)

    Shipley, D R; Sander, T; Nutbrown, R F

    2015-03-21

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) (192)Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated (192)Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR (192)Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, k(sg), is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR (192)Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR (192)Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR (192)Ir Flexisource k(sg) was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  17. Therapeutic analysis of high-dose-rate {sup 192}Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B. [Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois 60611 (United States); Qi, Yujin [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2016-01-15

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to (13

  18. Therapeutic analysis of high-dose-rate (192)Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions.

    Science.gov (United States)

    Zhang, Hualin; Donnelly, Eric D; Strauss, Jonathan B; Qi, Yujin

    2016-01-01

    To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0)(4) to (13.4)(4) for the radiosensitive normal

  19. Therapeutic analysis of high-dose-rate 192Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    Science.gov (United States)

    Zhang, Hualin; Donnelly, Eric D.; Strauss, Jonathan B.; Qi, Yujin

    2016-01-01

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model was used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0)4 to (13.4)4 for the

  20. An innovative method for {sup 192}Ir HDR calibration by farmer chamber, V-film, and solid phantom

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liyun; Ding, Hueisch-Jy [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China); Ho, Sheng-Yow, E-mail: shengho@seed.net.tw [Department of Radiation Oncology, Sinlau Christian Hospital, Tainan, Taiwan (China)

    2011-08-01

    A simple, practical and economical technique was proposed to calibrate an {sup 192}Ir HDR brachytherapy source in terms of air kerma strength. This technique makes use of the 0.6 cm{sup 3} Farmer type ion chamber, radiographic film and polystyrene phantom. These tools are commonly used for dosimetry quality assurance of the clinical linear accelerator. In this study, the Exradin A19, PTW N30004 and TM30001 Farmer type ion chambers were used for the calibration of the {sup 192}Ir HDR source. To perform the calibration, a 25.4x30.5 cm{sup 2} radiographic film was taped on a piece of polystyrene plate, and a straight applicator probe of a HDR brachytherapy unit and the Farmer type ion chamber were affixed to the film envelope. The film was irradiated by the {sup 192}Ir source, followed by an exposure in the simulator X-ray beam. The film set with the film removed was then placed on a 5 cm thick polystyrene phantom for calibration measurement. Based on the electrometer reading from the Farmer type ion chamber irradiated by {sup 192}Ir and the measured source-to-chamber distance by means of the images on the developed film, we can calculate the air kerma strength of the {sup 192}Ir using the new technique. Our calibration results were compared to the data provided by the manufacturer and that of five different well type ion chambers, namely, Sun Nuclear cooperation (SNC) 1008, Nucletron SDS 077.091, SDS 077.094, PTW TN33004 and Standard Imaging (SI) HDR-1000 Plus. The differences were all within 1.6%. Relative to the '7-distance measurement technique' by Stump et al., 2002, our method is more efficient if our empirical formula was used. In summary, our method is simpler and cost-effective to calibrate an {sup 192}Ir HDR brachytherapy source for those hospitals without a calibration jig or a well type ion chamber.

  1. Study of encapsulated {sup 170}Tm sources for their potential use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Venselaar, Jack L. M.; Rivard, Mark J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, E-46100 Burjassot (Spain) and IFIC, CSIC, University of Valencia, E-46100 Burjassot (Spain); Department of Radiation Oncology, ERESA, Hospital General Universitario, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, E-46009 Valencia (Spain); Department of Medical Physics, Instituut Verbeeten, Tilburg 5000LA (Netherlands); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2010-04-15

    Purpose: High dose-rate (HDR) brachytherapy is currently performed with {sup 192}Ir sources, and {sup 60}Co has returned recently into clinical use as a source for this kind of cancer treatment. Both radionuclides have mean photon energies high enough to require specific shielded treatment rooms. In recent years, {sup 169}Yb has been explored as an alternative for HDR-brachytherapy implants. Although it has mean photon energy lower than {sup 192}Ir, it still requires extensive shielding to deliver treatment. An alternative radionuclide for brachytherapy is {sup 170}Tm (Z=69) because it has three physical properties adequate for clinical practice: (a) 128.6 day half-life, (b) high specific activity, and (c) mean photon energy of 66.39 keV. The main drawback of this radionuclide is the low photon yield (six photons per 100 electrons emitted). The purpose of this work is to study the dosimetric characteristics of this radionuclide for potential use in HDR-brachytherapy. Methods: The authors have assumed a theoretical {sup 170}Tm cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR {sup 192}Ir brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron {sup 170}Tm spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of {sup 170}Tm encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a {sup 170}Tm source were compared to those for {sup 192}Ir and {sup 169}Yb for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the

  2. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Melhus, Christopher S.; Rivard, Mark J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain) and IFIC, CSIC-University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Department of Radiation Physics, ERESA, Hospital General Universitario, Avenida Tres Cruces, 2, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2009-09-15

    Purpose: The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides ({sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Methods: Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source {beta}{sup -}, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the {sup 192}Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Results: Electronic equilibrium within 1% is reached for {sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for {sup 60}Co and {sup 192}Ir, respectively. Electron emissions become important (i.e., >0.5%) within 3.3 mm of {sup 60}Co and 1.7 mm of {sup 192}Ir sources, yet are negligible over all distances for {sup 137}Cs and {sup 169}Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Conclusions: Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  3. High dose rate brachytherapy source measurement intercomparison.

    Science.gov (United States)

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  4. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    Science.gov (United States)

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  5. Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Department of Radiation Oncology, ERESA, Hospital General Universitario, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, E-46009 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, E-46100 Burjassot, Spain and IFIC, CSIC-University of Valencia, E-46100 Burjassot (Spain)

    2010-02-15

    Purpose: For a given radionuclide, there are several photon spectrum choices available to dosimetry investigators for simulating the radiation emissions from brachytherapy sources. This study examines the dosimetric influence of selecting the spectra for {sup 192}Ir, {sup 125}I, and {sup 103}Pd on the final estimations of kerma and dose. Methods: For {sup 192}Ir, {sup 125}I, and {sup 103}Pd, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of {sup 192}Ir, {sup 125}I, and {sup 103}Pd spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for {sup 192}Ir, {sup 125}I, and {sup 103}Pd, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.

  6. Calibration of TLD-100 powder for energies of {sup 60} Co, {sup 137} Cs, {sup 192} Ir and RX of 250, 50 kV{sub p} in absorbed dose in water with dosimetric quality control purposes for brachytherapy of high dose rate; Calibracion de polvo TLD-100 para energias de {sup 60} Co, {sup 137} Cs, {sup 192} Ir y RX de 250, 50 kVp en dosis absorbida en agua con fines de control de calidad dosimetrico para braquiterapia de alta tasa de dosis

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza C, S.P. [Programa de Maestria en Fisica Medica, Universidad Autonoma del Estado de Mexico, Paseo Tollocan S/N, esquina con Jesus Carranza, Colonia Moderna de la Cruz, 50180 Toluca, Edo. de Mexico (Mexico); Alvarez R, J.T. [Laboratorio Secundario de Calibracion Dosimetrica LSCD, Departamento de Metrologia, ININ, Carretera Federal Mexico Toluca S/N, La Marquesa, 52750 Ocoyoacac, Edo. de Mexico (Mexico)

    2006-07-01

    To help solve the traceability and quality control dosimetric problems for the users of {sup 192} Ir sources in the Mexican Republic, the Secondary Standard Dosimetric Laboratory at ININ to calibrated a batch of powder TLD- 100 (LiF: Mg,Ti) in terms of absorbed dose to water D{sub w} for the following radiation sources: {sup 60} Co, {sup 137C}s and RX 250 and 50 k Vp. Later on, the calibration is interpolated to obtain the {sup 192} Ir. The calibration radiation field is carried out with the following protocols: For the {sup 60} Co, IAEA TRS 398 protocol employing a secondary standard Farmer chamber PTW N30013, calibrated on D{sub w} at the NRC (Canada). For {sup 137} Cs the AAPM TG 43 protocol is used, in terms of air kerma strength S{sub k} determined by the air kerma K{sub a}, measured with a secondary standard chamber type thimble NE2611 traceable to the NIST (USA). For Rays X 250 and 50 k Vp, the protocol AAPM TG 61 using a tertiary standard Farmer chamber PTW 30001, with traceability to the LCIE (France) on air kerma K{sub a}. The calibration curves are built for the TLD response R{sub TLD} vs D{sub w}, they are fitted by means of a least squares fit technique with a second degree polynomial that corrects the supra linearity response. The curves are validated by the lack of fit test, and the Anderson Darling normality test. Later on, the sensibility factors are interpolated for the sources of {sup 192} Ir: Micro Selectron and Vari Source. Two capsules are sent to two hospitals to verify a nominal D{sub w} = 2 Gy, in the first one an underestimate of the D{sub w} is obtained, and in other one an overestimation is presented. Finally, the expanded uncertainty associated to D{sub w} and the F{sub s} are calculated. (Author)

  7. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  8. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation.

    Science.gov (United States)

    Russell, Kellie R; Tedgren, Asa K Carlsson; Ahnesjö, Anders

    2005-09-01

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical 192Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the collapsed

  9. SU-F-BRA-05: Utility of the Combined Use of Two Types of HDR Sources with the Direction Modulation Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States); Scanderbeg, D [UCSD Medical Center, La Jolla, CA (United States)

    2015-06-15

    Purpose: To maximize the dose to HRCTV while minimizing dose to the OARs, the combination of two HDR brachytherapy sources, 192-Ir and 169-Yb, used in combination with the recently-proposed novel direction modulated brachytherapy (DMBT) tandem applicator were examined. Methods: The DMBT tandem, made from nonmagnetic tungsten-alloy rod, with diameter of 5.4mm, has 6 symmetric peripheral holes of 1.3mm diameter. The 0.3mm thick bio-compatible plastic tubing wraps the tandem. MCNPX v.2.6 was used to simulate the mHDR 192-Ir V2 and 4140 HDR 169-Yb sources inside the DMBT applicator. Thought was by combining the higher energy 192-Ir (380keV) and lower energy 169-Yb (92.7keV) sources could create unprecedented level of dose conformality when combined with the high-degree intensity modulation capable DMBT tandem applicator. 3D dose matrices, with 1 mm3 resolution, were imported into an in-house-coded inverse optimization planning system to evaluate plan quality of 19 clinical patient cases. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: Generally, the use of dual sources produced better plans than using either of the sources alone, with significantly better performance in some patients. The mean D2cc for bladder, rectum, and sigmoid were 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for 192-Ir-only, respectively. For 169 -Yb-only, they were 11.67±2.26Gy, 7.44±3.02Gy, and 9.83±2.38Gy, respectively. The corresponding data for the dual sources were 11.51±2.24Gy, 7.30±3.00Gy, and 9.68 ±2.39Gy, respectively. The HRCTV D98 and V100 were 16.37±1.86Gy and 97.37±1.92Gy for Ir-192-only, respectively. For 169-Yb-only, they were 16.43±1.86Gy, and 97.51±1.91Gy, respectively. For the dual source, they were 16.42±1.87Gy and 97.47±1.93Gy, respectively. Conclusion: The plan quality improves, in some cases quite significantly, for when dual 192-Ir and 169-Yb sources are used in combination with highly intensity modulation capable

  10. A fourth-generation iridium-192 source-based CT scanner for brachytherapy

    Science.gov (United States)

    Berndt, Anita Glenda

    This thesis describes and characterizes the sub-systems (source, detectors, data acquisition system and collimator) of a prototype fourth generation computed tomography scanner consisting of a ring of 96 8-channel photodiode scintillator (CdW04) detectors. The 192Ir brachytherapy source and transport mechanism of a commercial high-dose-rate treatment unit provides the photons for measuring projections of the scanned object. It is envisioned that the tomographic images generated with this scanner will be used to plan high-dose-rate brachytherapy treatments. Prototype detectors responded linearly to an incident gamma-ray fluence over a wide dynamic range (2.6 decades). The noise analysis of the prototype detectors indicated that the detector noise is dominated by quantum noise for incident gamma-ray intensities expected when imaging patients up to about 45 cm in diameter. A pair of lead rings collimates both the source and the detectors to provide a maximum scan field of view 50 cm in diameter. The full-widths at half-maximum of the radiation sensitivity and image (slice) sensitivity profiles in the longitudinal direction are 2.7 cm and 0.4 cm respectively. High contrast resolution, image noise and radiation dose were investigated using a combination of measurements and computer simulations. Computer simulations were performed to assess the effect of varying detector number, source size and number of source positions. The high contrast resolution was examined by modeling wire phantoms, and images of uniform Plexiglas disks were used to quantify the scanner noise. The fullwidth at half-maximum of the point spread function was found to be 0.21 cm using source and detector dimensions of 0.36 cm and 0.275 cm respectively (768 detectors, 864 source positions). This configuration resulted in a standard deviation of 23 Hounsfield units at the center of a 25 cm diameter Plexiglas phantom for a 7.5 Ci 192Ir source. The multiple-scan average dose for a 100 second scan (1.0 cm

  11. 南京"5.7"192Ir源放射事故患者的营养治疗%Nutrition treatment scheme for a patient exposed to Nanjing "5.7" 192Ir source accident

    Institute of Scientific and Technical Information of China (English)

    陈学英; 刘玉龙; 王优优; 蔡梅芝; 黄威威; 洪秀秀; 赵斯迪

    2016-01-01

    目的 通过对南京“5.7”192Ir源放射事故患者全程救治中的营养治疗,探讨放射损伤患者的营养治疗方案.方法 在不同救治阶段,对患者进行膳食调查和监测相关营养指标包括体重、体质量指数(BMI)、血常规、血生化指标等,并使用代谢车测定患者静息能量消耗值,为患者制订不同的营养治疗方案.结果 患者入院时(受照后第5天)体重42.5 kg,受照后第172天(首次植皮术后)下降至最低为36 kg,此后逐渐回升,出院时(受照后第383天)体重基本恢复.血红蛋白入院时正常为135 g/L,受照后第172天降至最低为54 g/L,出院时恢复正常;淋巴细胞入院时偏低为0.5×109/L,受照后第58天恢复正常,受照后第172天降至最低为0.4 × 109/L,出院时恢复正常.血清白蛋白入院时正常为41.2 g/L,受照后第172天降到最低为25.3 g/L,出院时恢复正常;血清前白蛋白入院时正常为0.22 g/L,受照第248天降至最低为0.04 g/L,出院时基本恢复正常为0.17 g/L.肝功能指标入院时正常,胆红素指标略偏高,进行“全合一”肠外营养后约2.5个月后,肝功能指标和胆红素指标均逐渐升高,经调整营养治疗方案及保肝利胆等治疗后逐渐恢复正常.受照后第294、308和342天使用代谢车测得患者的静息能量消耗值,据此确定患者当日热能需要量.结论 合理营养治疗可以有效改善放射损伤患者的全身营养状况及临床疗效,是放射损伤临床救治的关键手段之一.%Objective To provide nutritional supportive scheme for patients with radiation injury through the treatment of the one exposed to Nanjing 192Ir source accident.Methods The reasonable nutrition treatment scheme was made on the basis of dietary survey and nutritional index monitoring during clinical stages of the patient,including body weight,body mass index(BMI),biochemical indexes,electrolyte,etc.,as well as metabolic cart determination of resting energy

  12. Investigations into the Optimization of Multi-Source Strength Brachytherapy Treatment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Henderson; S. Yoo; B.R. Thomadsen

    2002-09-30

    The goal of this project is to investigate the use of multi-strength and multi-specie radioactive sources in permanent prostate implant brachytherapy. In order to fulfill the requirement for an optimal dose distribution, the prescribed dose should be delivered to the target in a nearly uniform dose distribution while simultaneously sparing sensitive structures. The treatment plan should use a small number of needles and sources while satisfying the treatment requirements. The hypothesis for the use of multi-strength and/or multi-specie sources is that a better treatment plan using fewer sources and needles could be obtained than by treatment plans using single-strength sources could reduce the overall number of sources used for treatment. We employ a recently developed greedy algorithm based on the adjoint concept as the optimization search engine. The algorithm utilizes and ''adjoint ratio'', which provides a means of ranking source positions, as the pseudo-objective function. It ha s been shown that the greedy algorithm can solve the optimization problem efficiently and arrives at a clinically acceptable solution in less than 10 seconds. Our study was inclusive, that is there was no combination of sources that clearly stood out from the others and could therefore be considered the preferred set of sources for treatment planning. Source strengths of 0.2 mCi (low), 0.4 mCi (medium), and 0.6 mCi (high) of {sup 125}I in four different combinations were used for the multi-strength source study. The combination of high- and medium-strength sources achieved a more uniform target dose distribution due to few source implants whereas the combination of low-and medium-strength sources achieved better sparing of sensitive tissues including that of the single-strength 0.4 mCi base case. {sup 125}I at 0.4 mCi and {sup 192}Ir at 0.12 mCi and 0.25 mCi source strengths were used for the multi-specie source study. This study also proved inconclusive , Treatment

  13. Balloon-based adjuvant radiotherapy in breast cancer: comparison between {sup 99m}Tc and HDR {sup 192}Ir

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Tarcisio Passos Ribeiro de; Lima, Carla Flavia de; Cuperschmid, Ethel Mizrahy, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-03-15

    Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with {sup 99m}Tc and balloon brachytherapy with high-dose-rate (HDR) {sup 192}Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and methods: simulations of implants with {sup 99m}Tc-filled and HDR {sup 192}Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: the {sup 99m}Tc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h{sup -1}.mCi{sup -1} and 0.190 cGyh{sup -1} at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh{sup -1}.mCi{sup -1}, respectively, for the HDR {sup 192}Ir balloon. An exposure time of 24 hours was required for the {sup 99m}Tc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR {sup 192}Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: temporary {sup 99m}Tc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR {sup 192}Ir balloon implantation, which is the current standard in clinical practice. (author)

  14. Balloon-based adjuvant radiotherapy in breast cancer: comparison between 99mTc and HDR 192Ir*

    Science.gov (United States)

    de Campos, Tarcísio Passos Ribeiro; de Lima, Carla Flavia; Cuperschmid, Ethel Mizrahy

    2016-01-01

    Objective To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR) 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice. PMID:27141131

  15. Balloon-based adjuvant radiotherapy in breast cancer: comparison between (99m)Tc and HDR (192)Ir.

    Science.gov (United States)

    de Campos, Tarcísio Passos Ribeiro; de Lima, Carla Flavia; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with (99m)Tc and balloon brachytherapy with high-dose-rate (HDR) (192)Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Simulations of implants with (99m)Tc-filled and HDR (192)Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. The (99m)Tc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h(-1).mCi(-1) and 0.190 cGyh(-1).mCi(-1) at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh(-1).mCi(-1), respectively, for the HDR (192)Ir balloon. An exposure time of 24 hours was required for the (99m)Tc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR (192)Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Temporary (99m)Tc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR (192)Ir balloon implantation, which is the current standard in clinical practice.

  16. Experimental determination of the energy response of alanine pellets in the high dose rate 192Ir spectrum

    Science.gov (United States)

    Schaeken, B.; Cuypers, R.; Goossens, J.; Van den Weyngaert, D.; Verellen, D.

    2011-10-01

    An experimental determination of the energy correction factor for alanine/paraffin pellets in the 192Ir spectrum at varying distances from the source is presented. Alanine dosimeters were irradiated in water under full scatter conditions with a high dose rate (HDR) 192Ir source (Flexisource), using a dedicated holder. Up to six line sources (catheters) fit in a regular pattern at fixed radial distances from the holder axis, the alanine detector being placed at the centre of the holder. The HDR source was stepping every 0.5 cm within a trocar needle within ± 3.0 cm around the medial plane through the detector in order to achieve dose homogeneity within the detector volume. The energy correction factor of alanine/paraffin pellets in 192Ir relative to 60Co was experimentally determined as the inverse ratio of the dose to water measured in water around the 192Ir source to the dose to water calculated in water using the TG-43 formalism. The pellets were read out with a Bruker EMXmicro spectrometer (X-band). The amplitude of the central line in the alanine absorption spectrum from pellets irradiated within the 192Ir spectrum was directly compared with the amplitude from 60Co-irradiated pellets. The energy correction factors of Harwell pellets irradiated in the 192Ir spectrum are 1.029 ± 0.02, 1.027 ± 0.02 and 1.045 ± 0.02 at a mean weighted source-detector distance of 2.0, 2.9 and 5.3 cm, respectively. The experimentally obtained values for the energy response are 1.3% lower compared to the theoretical values for radial distances smaller than 3 cm.

  17. Application of the Cavity theory in the calibration of the powder TLD-100 for energies of {sup 60} Co, {sup 137} Cs, {sup 192} Ir and RX 50, 250 k Vp; Aplicacion de la Teoria de la Cavidad en la calibracion de polvo TLD-100 para energias de {sup 60} Co, {sup 137} Cs, {sup 192} Ir y RX 50, 250 kVp

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza C, S.P. [UAEM, Programa de Maestria en Fisica Medica, 50180, Toluca, Estado de Mexico (Mexico); Alvarez R, J.T. [ININ, 52750, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: sandraplc_04@yahoo.com.mx

    2006-07-01

    A powder lot TLD-100 (LiF:Mg,Ti) in absorbed dose terms in water D{sub w} for the following radiation sources: {sup 60} Co, {sup 137} Cs and RX 50 and 250 k Vp is calibrated; to continuation is made a lineal interpolation of the TLD response in function of the effective energy of the sources to calibrate a source of {sup 192} Ir. The calibration of those fields in D{sub w} are carried out with aid of the Bragg-Gray cavity theory, the one which finds implicit in the following protocols: IAEA-TRS 398 for the {sup 60} Co and the AAPM TG61 for X Rays of 50 and 250 k Vp. Additionally the AAPM protocol TG43 to determine the D{sub w} in function of the kerma intensity S{sub k} in the case of the {sup 137} Cs is used. The calibration curves for the response of the TLD-100 R{sub TLD} vs D{sub w}, corresponding to each one of the sources already mentioned are constructed. The R{sub TLD} vs D{sub w} by least heavy square by means of a second order polynomial that corrects the supralineality of the response is adjusted. The curves are validated by lack of LOF adjustment and by the Anderson Darling normality test. Later the factors of sensitivity (F{sub s}) for the sources of {sup 192} Ir: Micro Selectron and Vari Source are interpolated, used respectively in the A and B hospitals for treatments of brachytherapy of high dose rate (HDR), the expanded uncertainties associated to the D{sub w} and F{sub s} are also determined. Finally, an acrylic phantom and a couple of capsules are already sent to the hospitals mentioned, to verify a nominal D{sub w} of 2 Gy, in a case an underestimate in 5.5% in the imparted D{sub w} and in other an overestimation in a range of -1.5 to -8.0% was obtained. The obtained results in this work establish the bases for the development of a national dosimetric quality control program for brachytherapy of HDR with sources of {sup 192} Ir. (Author)

  18. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the VSL and the BIPM

    DEFF Research Database (Denmark)

    Alvarez, J.T.; De Pooter, J.A.; Andersen, Claus E.

    2014-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate brachytherapy sources of the Dutch Metrology Institute (VSL), The Netherlands, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the VSL in November 2009. The comparison resu...

  19. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    Energy Technology Data Exchange (ETDEWEB)

    Grams, M; Wilson, Z; Sio, T; Beltran, C; Tryggestad, E; Gupta, S; Blackwell, C; McCollough, K; Sarkaria, J; Furutani, K [Mayo Clinic, Rochester, MN (United States)

    2014-06-01

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons from a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.

  20. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record...

  1. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in...

  2. Experimental determination of the radial dose distribution in high gradient regions around {sup 192}Ir wires: Comparison of electron paramagnetic resonance imaging, films, and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kolbun, N.; Leveque, Ph.; Abboud, F.; Bol, A.; Vynckier, S.; Gallez, B. [Biomedical Magnetic Resonance Unit, Louvain Drug Research Institute, Universite catholique de Louvain, Avenue Mounier 73.40, B-1200 Brussels (Belgium); Molecular Imaging and Experimental Radiotherapy Unit, Institute of Experimental and Clinical Research, Universite catholique de Louvain, Avenue Hippocrate 55, B-1200 Brussels (Belgium); Biomedical Magnetic Resonance Unit, Louvain Drug Research Institute, Universite catholique de Louvain, Avenue Mounier 73.40, B-1200 Brussels (Belgium)

    2010-10-15

    Purpose: The experimental determination of doses at proximal distances from radioactive sources is difficult because of the steepness of the dose gradient. The goal of this study was to determine the relative radial dose distribution for a low dose rate {sup 192}Ir wire source using electron paramagnetic resonance imaging (EPRI) and to compare the results to those obtained using Gafchromic EBT film dosimetry and Monte Carlo (MC) simulations. Methods: Lithium formate and ammonium formate were chosen as the EPR dosimetric materials and were used to form cylindrical phantoms. The dose distribution of the stable radiation-induced free radicals in the lithium formate and ammonium formate phantoms was assessed by EPRI. EBT films were also inserted inside in ammonium formate phantoms for comparison. MC simulation was performed using the MCNP4C2 software code. Results: The radical signal in irradiated ammonium formate is contained in a single narrow EPR line, with an EPR peak-to-peak linewidth narrower than that of lithium formate ({approx}0.64 and 1.4 mT, respectively). The spatial resolution of EPR images was enhanced by a factor of 2.3 using ammonium formate compared to lithium formate because its linewidth is about 0.75 mT narrower than that of lithium formate. The EPRI results were consistent to within 1% with those of Gafchromic EBT films and MC simulations at distances from 1.0 to 2.9 mm. The radial dose values obtained by EPRI were about 4% lower at distances from 2.9 to 4.0 mm than those determined by MC simulation and EBT film dosimetry. Conclusions: Ammonium formate is a suitable material under certain conditions for use in brachytherapy dosimetry using EPRI. In this study, the authors demonstrated that the EPRI technique allows the estimation of the relative radial dose distribution at short distances for a {sup 192}Ir wire source.

  3. Dosimetry for the brachytherapy; Dosimetrie fuer die Brachytherapie

    Energy Technology Data Exchange (ETDEWEB)

    Ankerhold, Ulrike [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich ' Dosimetrie fuer Strahlentherapie und Roentgendiagnostik' ; Schneider, Thorsten [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Brachytherapie'

    2013-06-15

    The authors describe the calibration of high-dose-rate {sup 192}Ir sources for the use in brachytherapy by means of the air-kerma power, which is determined in the PTB by means of an ionization chamber. For this a primary normal for the representation of the water energy dose was constructed. Furthermore the representation of the reference air-kerma rate for low-dose-rate sources in the PTB by means of a large-volume parallel-plate extrapolation chamber is described. (HSI)

  4. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness.

    Science.gov (United States)

    Bensaleh, S; Bezak, E

    2010-03-01

    The MammoSite breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman-Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the (192)Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of < or = 2 mm and a maximum source deviation of < or = 1 mm.

  5. RESULTS OF 192IR CONTACT RADIATION THERAPY FOR CERVIX UTERI CANCER

    Directory of Open Access Journals (Sweden)

    O. A. Kravets

    2009-01-01

    Full Text Available The paper presents the results of treatment for locally advanced cervix uteri cancer, by applying a 192Ir radioactive source for contact radiation. Three- and five-year overall and relapse-free survival rates have been obtained for stages: 82.5 and 82.5%; 78.4 and 78.4% for Stage IIb; 57 and 52.3%; 41.6 and 41.6 for IIIb; 53.3 and 47.3%; 42.4 and 37.7% for IVb, respectively.

  6. Disintegration rate measurement of a 192Ir solution.

    Science.gov (United States)

    Fonseca, K A; Koskinas, M F; Dias, M S

    2001-01-01

    The disintegration rate of 192Ir has been measured using the 4pibeta-gamma coincidence technique. This radionuclide decays by electron capture (EC) and beta-emission. Since the EC contribution is low (4.5%), it has been corrected using decay scheme data taken from the literature. This measurement has been performed in collaboration with the Laboratório Nacional de Metrologia das Radiações Ionizantes (IRDDM), in Rio de Janeiro. The results, which were obtained independently and employed different techniques, are compared with the Systéme International Reference (SIR) maintained at the Bureau International des Poids et Mesures.

  7. The wall correction factor for a spherical ionization chamber used in brachytherapy source calibration

    Energy Technology Data Exchange (ETDEWEB)

    Piermattei, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Azario, L [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Fidanzio, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Viola, P [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Dell' Omo, C [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Iadanza, L [Centro di Riferimento Oncologico della Basilicata-Rionero in Vulture, Pz (Italy); Fusco, V [Centro di Riferimento Oncologico della Basilicata-Rionero in Vulture, Pz (Italy); Lagares, J I [Universidad de Sevilla, Facultad de Medicina, Dpto Fisiologia Medica y Biofisica, Sevilla (Spain); Capote, R [Universidad de Sevilla, Facultad de Medicina, Dpto Fisiologia Medica y Biofisica, Sevilla (Spain)

    2003-12-21

    The effect of wall chamber attenuation and scattering is one of the most important corrections that must be determined when the linear interpolation method between two calibration factors of an ionization chamber is used. For spherical ionization chambers the corresponding correction factors A{sub w} have to be determined by a non-linear trend of the response as a function of the wall thickness. The Monte Carlo and experimental data here reported show that the A{sub w} factors obtained for an Exradin A4 chamber, used in the brachytherapy source calibration, in terms of reference air kerma rate, are up to 1.2% greater than the values obtained by the linear extrapolation method for the studied beam qualities. Using the A{sub w} factors derived from Monte Carlo calculations, the accuracy of the calibration factor N{sub K,Ir} for the Exradin A4, obtained by the interpolation between two calibration factors, improves about 0.6%. The discrepancy between the new calculated factor and that obtained using the complete calibration curve of the ion-chamber and the {sup 192}Ir spectrum is only 0.1%.

  8. Dosimetry in HDR brachytherapy with Fricke-gel layers and Fricke-gel catheters

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G; Carrara, M; Negri, A; Invernizzi, M; Tenconi, C; Scotti, A; Pirola, L; Borroni, M; Tomatis, S; Fallai, C, E-mail: grazia.gambarini@mi.infn.i

    2010-11-01

    Fricke-gel layer dosimeters (FGLD) and Fricke gel dosimetric catheters (FGDC) have been designed and tested with the aim of enquiring their suitability for HDR {sup 192}Ir brachytherapy source control and for in-vivo dose verification during treatment. Anisotropy function measurements have been carried out with FGLDs in which a thin plastic tube has been placed in for the {sup 192}Ir source insertion. FGDCs are constituted by plastic tubes (3 mm of external diameter and 13 cm of length) filled with the dosimeter-gel. Absorbed dose images and profiles were attained by means of optical analysis. Dedicated software has been developed both for achieving anisotropy function values and for obtaining reliable results in visible light absorbance measurements across the thin cylindrical dosimeters. Preparation and analysis procedures have been optimised. The results confirm that the proposed methods are very promising for HDR brachytherapy dosimetry.

  9. Feasibility of radiochromic gels for 3D dosimetry of brachytherapy sources

    Science.gov (United States)

    Šolc, Jaroslav; Sochor, Vladimír

    2012-10-01

    Two radiochromic gel dosimeters, Fricke-xylenol orange (FXO) gel and Turnbull Blue (TB) gel, were studied in the scope of the iMERA+ project ‘Increasing cancer treatment efficacy using 3D brachytherapy’ for their feasibility for the determination of relative 3D dose distribution of brachytherapy (BT) sources. Initially, the dose, dose rate and energy dependence of the gels were investigated. Subsequently, the gels were irradiated by a point low-dose-rate source IsoSeed I25.S16 (125I) and a high-dose-rate source GammaMed+ (192Ir) and scanned using optical computed tomography. Optical transmission images of irradiated gels were processed to obtain detailed 3D optical density maps inside the gels with voxel dimensions of 0.25 × 0.25 × 0.25 mm3. The radial dose function between 1.5 mm and 35 mm from the source and the anisotropy function at 10 mm radius were determined and compared with Monte Carlo calculations and TG-43 data, showing agreement mostly within the measurement uncertainty. Results revealed that the TB gel is feasible for measurements of the relative 3D dose distributions very close to the point BT source because it conserves sharp dose gradients as this gel does not suffer diffusion of dye created upon irradiation. On the other hand, FXO gel underestimates doses closer than 5 mm from the source due to diffusion effects, but it has a significantly higher sensitivity which enables convenient measurement of relative doses up to 35 mm from the source. Further development, especially on gel composition and corrections to optical CT images, is desirable.

  10. Calibration coefficient of reference brachytherapy ionization chamber using analytical and Monte Carlo methods.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D

    2010-06-01

    A cylindrical graphite ionization chamber of sensitive volume 1002.4 cm(3) was designed and fabricated at Bhabha Atomic Research Centre (BARC) for use as a reference dosimeter to measure the strength of high dose rate (HDR) (192)Ir brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin general cavity theory and by the Monte Carlo method. In the analytical method, calibration coefficients were calculated for each spectral line of an HDR (192)Ir source and the weighted mean was taken as N(K). In the Monte Carlo method, the geometry of the measurement setup and physics related input data of the HDR (192)Ir source and the surrounding material were simulated using the Monte Carlo N-particle code. The total photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficients. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber and N(K) was determined. The Monte Carlo calculated N(K) agreed within 1.77 % of that obtained using the analytical method. The experimentally determined RAKR of HDR (192)Ir sources, using this reference ionization chamber by applying the analytically estimated N(K), was found to be in agreement with the vendor quoted RAKR within 1.43%.

  11. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Granero, Domingo, E-mail: dgranero@eresa.com [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, Javier [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  12. Performance assessment of the BEBIG MultiSource high dose rate brachytherapy treatment unit.

    Science.gov (United States)

    Palmer, Antony; Mzenda, Bongile

    2009-12-21

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource High Dose Rate (HDR) brachytherapy treatment unit with an (192)Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high

  13. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    Science.gov (United States)

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in  125I and  103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as  125I and  103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for  103Pd and 10 cm for  125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for  192Ir and less than 1.2% for  137Cs between the three codes. PACS number(s): 87.56.bg.

  14. Evaluation of interpolation methods for TG-43 dosimetric parameters based on comparison with Monte Carlo data for high-energy brachytherapy sources

    Directory of Open Access Journals (Sweden)

    Mark Rivard

    2010-04-01

    Full Text Available Purpose: The aim of this work was to determine dose distributions for high-energy brachytherapy sources at spatial locations not included in the radial dose function gL(r and 2D anisotropy function F(r,θ table entries for radial distancer and polar angle θ. The objectives of this study are as follows: 1 to evaluate interpolation methods in order to accurately derive gL(r and F(r,θ from the reported data; 2 to determine the minimum number of entries in gL(r and F(r,θ that allow reproduction of dose distributions with sufficient accuracy.Material and methods: Four high-energy photon-emitting brachytherapy sources were studied: 60Co model Co0.A86, 137Cs model CSM-3, 192Ir model Ir2.A85-2, and 169Yb hypothetical model. The mesh used for r was: 0.25, 0.5, 0.75, 1, 1.5, 2–8 (integer steps and 10 cm. Four different angular steps were evaluated for F(r,θ: 1°, 2°, 5° and 10°. Linear-linear and logarithmic-linear interpolation was evaluated for gL(r. Linear-linear interpolation was used to obtain F(r,θ with resolution of 0.05 cm and 1°. Results were compared with values obtained from the Monte Carlo (MC calculations for thefour sources with the same grid.Results: Linear interpolation of gL(r provided differences ≤ 0.5% compared to MC for all four sources. Bilinear interpolation of F(r,θ using 1° and 2° angular steps resulted in agreement ≤ 0.5% with MC for 60Co, 192Ir, and 169Yb, while 137Cs agreement was ≤ 1.5% for θ < 15°.Conclusions: The radial mesh studied was adequate for interpolating gL(r for high-energy brachytherapy sources, and was similar to commonly found examples in the published literature. For F(r,θ close to the source longitudinalaxis, polar angle step sizes of 1°-2° were sufficient to provide 2% accuracy for all sources.

  15. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy.

    Science.gov (United States)

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-06-01

    In surface and interstitial high-dose-rate brachytherapy with either (60)Co, (192)Ir, or (169)Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for (60)Co and 1 mm for both (192)Ir and (169)Yb. Transmission data for (60)Co and (192)Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898-4906) for brachytherapy facility shielding; for (169)Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified.

  16. Brachytherapy

    Science.gov (United States)

    ... days. A patient receiving LDR brachytherapy will stay overnight at the hospital. This is so the delivery device can remain in place throughout the treatment period. Pulsed dose-rate (PDR) brachytherapy is delivered in a similar way, ...

  17. Dosimetry of IRIDIUM-192 and CESIUM-137 Seed Sources.

    Science.gov (United States)

    Thomason, Cynthia

    The use of ^{192}Ir in brachytherapy implants both alone and in conjunction with other modalities for the treatment of various types of cancer has greatly increased in recent years. This increased usage has led to a greater need for detailed information concerning the dose distribution surrounding commerically available ^{192} Ir seed sources. This is especially truce since improvements in computer technology along with their increased availability and utilization have enabled more precise calculation of dose distributions. The radiation does distribution in water was measured using LiF thermoluminescent dosimeters for an ^{192}Ir seed source with platinum encapsulation, for an ^{192}Ir seed source with stainless steel encapsulation and for a ^{137}Cs seed source intended as a substitute for ^{192 }Ir. The Electron-Gamma-Shower (EGS) computer code, which is a package for doing Monte Carlo simulation of the transport of photons and electrons in any medium or geometry specified by the user, also was used to study the dose distribution around these seed sources. In addition, the exposure rate constant, exposure rate at 1 meter, transmission through the source capsule, f-factor, and energy distribution exiting the source capsule were evaluated by Monte Carlo simulation of these three sources. Good agreement was seen between the measured data and the Monte Carlo generated data. In addition to producing valuable dosimetric data, this study has demonstrated that Monte Carlo modeling of ^{192} Ir and ^{137}Cs seed sources using the EGS Monte Carlo code can provide an accurate means of evaluating these data.

  18. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Science.gov (United States)

    Chávez-Aguilera, N.; Torres-García, E.; Mitsoura, E.

    2011-03-01

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ( 137Cs) and HDR ( 192Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of 137Cs and 192Ir. The absorbed dose was computed within each voxel of 2×2×3 mm 3. Four materials were considered in the VP—air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of 192Ir is more irregular than that of 137Cs but spatially better defined.

  19. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Aguilera, N. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Departamento de Fisica Medica, Instituto Estatal de Cancerologia ' Dr. Arturo Beltran Ortega' , Acapulco, Guerrero (Mexico); Torres-Garcia, E., E-mail: etorresg@uaemex.m [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Mitsoura, E. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico)

    2011-03-15

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ({sup 137}Cs) and HDR ({sup 192}Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of {sup 137}Cs and {sup 192}Ir. The absorbed dose was computed within each voxel of 2x2x3 mm{sup 3}. Four materials were considered in the VP-air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of {sup 192}Ir is more irregular than that of {sup 137}Cs but spatially better defined.

  20. Biological dosimetry for the victim accidentally exposed to 192Ir radiation source at "5.7" accident in Nanjing%南京“5.7”192Ir源放射事故患者的生物剂量估算

    Institute of Scientific and Technical Information of China (English)

    戴宏; 刘玉龙; 王优优; 冯骏超; 赵骅; 刘青杰; 郭凯琳

    2016-01-01

    Objective To use three different methods in attempt to estimate the biological dose of the patient partially exposed to 192Ir source at " 5.7" accident in Nanjing,so as to provide dosimetric information for clinical remedy of exposed patients in the emergency of a nuclear accident.Methods Peripheral blood samples were collected on days 5 after exposure.The biological dose was estimated by the yields of dicentrics plus rings (" dic + r"),cytokinesis-block micronuclei (CBMN) assay and nucleoplasmic bridge plus FHC (NPB + FHC).The homogeneity of radiation exposure was examined by Poisson distribution of dicentrics.Results By using three different methods,the whole body equivalent dose was "dic + r" estimated to be 1.51 Gy (95% CI 1.40-1.61),1.47 Gy (95% CI 1.36-1.60) by CBMN and 1.30 Gy (95% CI 1.00-1.60) by NPB + FHC,respectively.A non-poisson distribution was also detected,suggesting partial body radiation exposure.Conclusions The estimated whole body equivalent dose ot a non-uniform radiation exposure was consistent with clinical diagnosis,suggesting that the yields of " dic + r",CBMN,as well as NPB + FHC,are efficient approaches to the estimation of biological doses.%目的 用3种方法估算南京“5.7”192Ir源放射事故患者的生物剂量,为核与辐射事故受照者的临床救治提供剂量资料.方法 受照后第5天采集患者外周血,分别进行外周血淋巴细胞染色体“双着丝粒+环”(“dic+r”)畸变分析、胞质分裂阻滞微核(CBMN)分析、核质桥(NPB+FHC)分析,并估算生物剂量.用双着丝粒畸变在细胞间的泊松分布情况检验照射的均匀性.结果 3种方法估算的该患者受到的一次全身等效剂量分别为“dic+r”畸变分析1.51 Gy (95% CI1.40~1.61),CBMN分析1.47 Gy(95% CI 1.36~1.60),NPB+ FHC分析1.30 Gy(95% CI1.00~1.60).泊松分布检验结果显示,该患者“dic+r”畸变偏离泊松分布,受到了不均匀照射.结论 外周血淋巴细胞染色体“dic

  1. Dynamic analysis on three indexes of biological dose estimation of the victim exposed to 192Ir radiation source at "5.7" accident in Nanjing%南京“5.7”192Ir放射事故患者三种生物剂量估算指标的衰变规律探讨

    Institute of Scientific and Technical Information of China (English)

    戴宏; 刘玉龙; 王优优; 冯骏超; 赵骅; 刘青杰; 郭凯琳

    2016-01-01

    目的 观察南京“5.7”192Ir放射事故患者受照后不同采血时间对生物剂量估算的影响,探讨3种生物剂量估算指标在体内的自然衰减规律.方法 事故后5、40和280 d,采集患者的外周血,分别进行外周血淋巴细胞染色体“双着丝粒+环”(“dic+r”)畸变分析、胞质分裂阻滞微核(CBMN)分析、核质桥+融合+马蹄形+环(NPB +FHC)分析.观察受照后不同时间染色体“dic+r”畸变、微核、NPB+FHC衰变情况及对生物剂量估算结果的影响.结果 与事故后5d的估算剂量相比,在40和280 d,染色体“dic+r”畸变分析估算的剂量分别下降34%和49%,CBMN的估算结果分别下降48%和79%,NPB+FHC的估算结果分别下降48%和75%.结论 本例事故患者受照后3种生物剂量估算指标在体内呈进行性下降,染色体“dic+r”/细胞的半衰期为40 d,3个指标在40 d时剂量估算结果与5d时比较,相对偏差>20%.%Objective To explore the natural attenuation pattern of three biological dose estimation indexes in vivo by investigating the effect on biological dosimetry of peripheral blood sampling at different time points from the victim partially exposed to 192Ir radiation source at " 5.7" accident in Nanjing.Methods Peripheral blood of the patient was collected on days 5,40 and 280 after exposure,respectively.The yields of dicentrics plus rings chromosomes ("dic + r"),cytokinesis-block micronuclei (CBMN) and nucleoplasmic bridge + fusion + horse shoe + circular(NPB + FHC) were analyzed.The dynamic reduction and dose estimation were both observed using the biomarkers mentioned above after exposure.Results Compared to the estimates on days 5 after exposure,the dose values estimated on days 40 and 280 decreased by 34% and 49% for " dic + r" method,48% and 79% for the CBMN assay,and 48% and 75% for NPN + FHC method,respectively.Conclusions Three biological dose estimation indexes show a progressive decrease in vivo

  2. Reply to the comment on ‘Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation’

    Science.gov (United States)

    Villegas, F.; Ahnesjö, A.

    2016-07-01

    A discrepancy between the Monte Carlo derived relative standard deviation σ z\\text{rel} (microdosimetric spread) and experimental data was reported by Villegas et al (2013 Phys. Med. Biol. 58 6149-62) suggesting wall effects as a plausible explanation. The comment by Lindborg et al (2015 Phys. Med. Biol. 60 8621-4) concludes that this is not a likely explanation. A thorough investigation of the Monte Carlo (MC) transport code used for track simulation revealed a critical bug. The corrected MC version yielded σ z\\text{rel} values that are now within experimental uncertainty. Other microdosimetric findings are hereby communicated.

  3. Dynamic rotating-shield brachytherapy.

    Science.gov (United States)

    Liu, Yunlong; Flynn, Ryan T; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-01

    To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process. A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and (192)Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α∕β = 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively. For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes∕fraction (min∕fx) assuming a 10 Ci(192)Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min∕fx more delivery time, and S-RSBT required 6.7 min∕fx more. If an additional 20 min∕fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively. For cervical cancer patients, D-RSBT can boost HR-CTV D90

  4. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.

    Science.gov (United States)

    Cho, Sang Hyun; Jones, Bernard L; Krishnan, Sunil

    2009-08-21

    The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. E(avg) 40%) could be achievable using (125)I, 50 kVp and (169)Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g(-1), macroscopic dose enhancement was 116, 92 and 108% for (125)I, 50 kVp and (169)Yb, respectively. For a tumor loaded with 7 mg Au g(-1), it was 68, 57 and 44% at 1 cm from the center of the source for (125)I, 50 kVp and (169)Yb, respectively. The estimated MDEF values for (169)Yb were remarkably larger than those for (192)Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor region due to the presence of gold nanoparticles during low-energy gamma-/x-ray irradiation. The radiation sources considered in this study are currently available and tumor gold concentration levels considered in this investigation are deemed achievable. Therefore, the current results strongly suggest that GNRT can be successfully implemented via brachytherapy with low energy gamma-/x-ray sources, especially with a high dose rate (169)Yb source.

  5. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group.

    Science.gov (United States)

    Butler, Wayne M; Bice, William S; DeWerd, Larry A; Hevezi, James M; Huq, M Saiful; Ibbott, Geoffrey S; Palta, Jatinder R; Rivard, Mark J; Seuntjens, Jan P; Thomadsen, Bruce R

    2008-09-01

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations.

  6. Fabrication of cesium-137 brachytherapy sources using vitrification technology.

    Science.gov (United States)

    Dash, Ashutosh; Varma, R N; Ram, Ramu; Saxena, S K; Mathakar, A R; Avhad, B G; Sastry, K V S; Sangurdekar, P R; Venkatesh, Meera

    2009-08-01

    137Cs source in solid matrix encapsulated in stainless-steel at MBq (mCi) levels are widely used as brachytherapy sources for the treatment of carcinoma of cervix uteri. This article describes the large-scale preparation of such sources. The process of fabrication includes vitrification of 137Cs-sodium borosilicate glass, its transformation into spheres of 5-6 mm diameter, casting of glass spheres into a cylinder of 1.5 mm (varphi) x 80 mm (l) in a platinum mould, cutting of the moulds into 5-mm-long pieces, silver coating on the sources, and finally, encapsulation in stainless steel capsules. Development of safety precautions used to trap 137Cs escaping during borosilicate glass preparation is also described. The leach rates of the radioactive sources prepared by the above technology were within permissible limits, and the sources could be used for encapsulation in stainless steel capsules and supplied for brachytherapy applications. This development was aimed at promoting the potential utility of 137Cs-brachytherapy sources in the country and reducing the user's reliance on imported sources. Since its development, more than 1000 such sources have been made by using 4.66 TBq(126 Ci) of 137Cs.

  7. Correction factors for source strength determination in HDR brachytherapy using the in-phantom method

    Energy Technology Data Exchange (ETDEWEB)

    Ubrich, Frank; Engenhart-Cabillic, Rita [University Hospital Giessen-Marburg, Marburg (Germany). Dept. of Radiotherapy and Radiation Oncology; Wulff, Joerg [University of Applied Sciences (THM) Giessen (Germany). Inst. of Medical Physics and Radiation Protection (IMPS); Zink, Klemens [University Hospital Giessen-Marburg, Marburg (Germany). Dept. of Radiotherapy and Radiation Oncology; University of Applied Sciences (THM) Giessen (Germany). Inst. of Medical Physics and Radiation Protection (IMPS)

    2014-09-01

    For the purpose of clinical source strength determination for HDR brachytherapy sources, the German society for Medical Physics (DGMP) recommends in their report 13 the usage of a solid state phantom (Krieger-phantom) with a thimble ionization chamber. In this work, the calibration chain for the determination of the reference air-kerma rate K{sub a,100} and reference dose rate to water D{sub w,1} by ionization chamber measurement in the Krieger-phantom was modeled via Monte Carlo simulations. These calculations were used to determine global correction factors k{sub tot}, which allows a user to directly convert the reading of an ionization chamber calibrated in terms of absorbed dose to water, into the desired quantity K{sub a,100} or D{sub w,1}. The factor k{sub tot} was determined for four available {sup 192}Ir sources and one {sup 60}Co source with three different thimble ionization chambers. Finally, ionization chamber measurements on three μSelectron V2 HDR sources within the Krieger-phantom were performed and K{sub a,100} was determined according to three different methods: (1) using a calibration factor in terms of absorbed dose to water wth the global correction factor (k{sub tot}){sub K{sub a{sub ,{sub 1{sub 0{sub 0}}}}}} according DGMP 13 (2) using a global correction factor calculated via Monte Carlo (3) using a direct reference air-kerma rate calibration factor determined by the national metrology institute PTB. The comparison of Monte Carlo based (k{sub tot}){sub K{sub a{sub ,{sub 1{sub 0{sub 0}}}}}} with those from DGMP 13 showed that the DGMP data were systematically smaller by about 2-2.5%. The experimentally determined (k{sub tot}){sub K{sub a{sub ,{sub 1{sub 0{sub 0}}}}}}, based on the direct K{sub a,100} calibration were also systematically smaller by about 1.5%. Despite of these systematical deviations, the agreement of the different methods was in almost all cases within the 1σ level of confidence of the interval of their respective

  8. Size Effects of Gold and Iron Nanoparticles on Radiation Dose Enhancement in Brachytherapy and Teletherapy: A Monte Carlo Study

    Directory of Open Access Journals (Sweden)

    Ahad Ollah Ezzati

    2014-08-01

    Full Text Available Introduction In this study, we aimed to calculate dose enhancement factor (DEF for gold (Au and iron (Fe nanoparticles (NPs in brachytherapy and teletherapy, using Monte Carlo (MC method. Materials and Methods In this study, a new algorithm was introduced to calculate dose enhancement by AuNPs and FeNPs for Iridium-192 (Ir-192 brachytherapy and Cobalt-60 (Co-60 teletherapy sources, using the MC method. In this algorithm, the semi-random distribution of NPs was used instead of the regular distribution. Diameters were assumed to be 15, 30, and 100 nm in brachytherapy and 15 and 30 nm in teletherapy. Monte Carlo MCNP4C code was used for simulations, and NP density values were 0.107 mg/ml and 0.112 mg/ml in brachytherapy and teletherapy, respectively. Results AuNPs significantly enhanced the radiation dose in brachytherapy (approximately 60%, and 100 nm diameter NPs showed the most uniform dose distribution. AuNPs had an insignificant effect on teletherapy radiation field, with a dose enhancement ratio of 3% (about the calculation uncertainty or less. In addition, FeNPs had an insignificant effect on both brachytherapy and teletherapy radiation fields. FeNPs dose enhancement was 3% in brachytherapy and 6% (about the calculation uncertainty or less in teletherapy. Conclusion It can be concluded that AuNPs can significantly increase the absorbed dose in brachytherapy; however, FeNPs do not have a noticeable effect on the absorbed dose

  9. A method for verification of treatment delivery in HDR prostate brachytherapy using a flat panel detector for both imaging and source tracking

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ryan L., E-mail: ryan.smith@wbrc.org.au; Millar, Jeremy L.; Franich, Rick D. [Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, VIC 3004, Australia and School of Science, RMIT University, Melbourne, VIC 3000 (Australia); Haworth, Annette [School of Science, RMIT University, Melbourne, VIC 3000, Australia and Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Panettieri, Vanessa [Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, VIC 3004 (Australia)

    2016-05-15

    Purpose: Verification of high dose rate (HDR) brachytherapy treatment delivery is an important step, but is generally difficult to achieve. A technique is required to monitor the treatment as it is delivered, allowing comparison with the treatment plan and error detection. In this work, we demonstrate a method for monitoring the treatment as it is delivered and directly comparing the delivered treatment with the treatment plan in the clinical workspace. This treatment verification system is based on a flat panel detector (FPD) used for both pre-treatment imaging and source tracking. Methods: A phantom study was conducted to establish the resolution and precision of the system. A pretreatment radiograph of a phantom containing brachytherapy catheters is acquired and registration between the measurement and treatment planning system (TPS) is performed using implanted fiducial markers. The measured catheter paths immediately prior to treatment were then compared with the plan. During treatment delivery, the position of the {sup 192}Ir source is determined at each dwell position by measuring the exit radiation with the FPD and directly compared to the planned source dwell positions. Results: The registration between the two corresponding sets of fiducial markers in the TPS and radiograph yielded a registration error (residual) of 1.0 mm. The measured catheter paths agreed with the planned catheter paths on average to within 0.5 mm. The source positions measured with the FPD matched the planned source positions for all dwells on average within 0.6 mm (s.d. 0.3, min. 0.1, max. 1.4 mm). Conclusions: We have demonstrated a method for directly comparing the treatment plan with the delivered treatment that can be easily implemented in the clinical workspace. Pretreatment imaging was performed, enabling visualization of the implant before treatment delivery and identification of possible catheter displacement. Treatment delivery verification was performed by measuring the

  10. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, Cristian [Radioprotection Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2013-03-15

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes from an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials

  11. The calorimetric measurement of low energy brachytherapy sources

    Science.gov (United States)

    Aus, Robert John

    Historically, the dose rate to tissue from 125I and 103Pd sources was based on a source's apparent activity in free space. The American Association of Physicists in Medicine Task Group 43 (TG43) established a protocol that clarified this formalism for the dose rate determination that was universally accepted in the Medical Physics community. The TG43 protocol is based on air kerma strength and a different set of conversion factors for determining the dose rate. However, there are still many uncertainties associated with this methodology. These uncertainties are predominantly the result of the unknown effects of variations in the source encapsulation and internal source structure on the dose distribution surrounding a source. Currently, there is no method of nondestructively determining the contained radioactivity of brachytherapy sources. Without the knowledge of the contained activity, the effects of source construction variations cannot be evaluated accurately. The goal of this work was to develop a calorimeter that measures the total power generated by a source. This information could then be used to nondestructively determine the contained radioactivity activity of a source. The power generated by three different, well characterized source designs of 125I brachytherapy seeds was measured with the calorimeter. A theoretical model of the calorimeter was also developed to demonstrate that the calorimeter operated as expected. The measured and theoretical temperature results for the three different source models were consistent within the uncertainty of the measurements. The consistency between the calorimetric measurements and the theoretical expected results demonstrates proof of principle of the calorimeter. The information determined from the model can also be useful for future calorimetric research by identifying required calorimeter design features, potential design improvements and potential difficulties.

  12. Verification of Oncentra brachytherapy planning using independent calculation

    Science.gov (United States)

    Safian, N. A. M.; Abdullah, N. H.; Abdullah, R.; Chiang, C. S.

    2016-03-01

    This study was done to investigate the verification technique of treatment plan quality assurance for brachytherapy. It is aimed to verify the point doses in 192Ir high dose rate (HDR) brachytherapy between Oncentra Masterplan brachytherapy treatment planning system and independent calculation software at a region of rectum, bladder and prescription points for both pair ovoids and full catheter set ups. The Oncentra TPS output text files were automatically loaded into the verification programme that has been developed based on spreadsheets. The output consists of source coordinates, desired calculation point coordinates and the dwell time of a patient plan. The source strength and reference dates were entered into the programme and then dose point calculations were independently performed. The programme shows its results in a comparison of its calculated point doses with the corresponding Oncentra TPS outcome. From the total of 40 clinical cases that consisted of two fractions for 20 patients, the results that were given in term of percentage difference, it shows an agreement between TPS and independent calculation are in the range of 2%. This programme only takes a few minutes to be used is preferably recommended to be implemented as the verification technique in clinical brachytherapy dosimetry.

  13. Evaluation of the response of polymeric gel modified MAGIC-f using a clinical brachytherapy source and Monte Carlo simulation with package PENELOPE; Avaliacao da resposta do gel polimerico MAGIC-f modificado utilizando uma fonte clinica de braquiterapia e simulacao Monte Carlo com o pacote PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Ana Luiza; Nicolucci, Patricia [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia Ciencias e Letras. Dept. de Fisica; Borges, Leandro F. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Setor de Radioterapia

    2016-07-01

    In this work a comparison of experimental and simulated relative doses of a clinical brachytherapy source was performed. A 5 x 5 x 7 cm{sup 3} phantom with a modified MAGIC-f gel was irradiated using a clinical {sup 192}Ir source and read using Magnetic Resonance Imaging. The Monte Carlo simulation package PENELOPE was used to simulate the dose distributions of the same radiation source. The dose distributions were obtained in two planes perpendicular to the source: one passing through the source's center and the other at 0.5 cm away from the source's center. The higher differences found between experimental and computational distributions were 12.5% at a point 0.62 cm from the source for the central plane and 8.6% at 1.3 cm from the source to the plane 0.5 cm away from the source's center. Considering the high dose gradient of these dose distributions, the results obtained show that the modified MAGIC-f gel is promising for brachytherapy dosimetry. (author)

  14. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.; Followill, David [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Alvarez, Paola; Lawyer, Ann [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2013-11-15

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance

  15. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Hyun; Jones, Bernard L [Nuclear/Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Unit 97, Houston, TX 77030 (United States)], E-mail: scho@gatech.edu

    2009-08-21

    The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. E{sub avg} < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: {sup 125}I, 50 kVp and {sup 169}Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using {sup 125}I, 50 kVp and {sup 169}Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g{sup -1}, macroscopic dose enhancement was 116, 92 and 108% for {sup 125}I, 50 kVp and {sup 169}Yb, respectively. For a tumor loaded with 7 mg Au g{sup -1}, it was 68, 57 and 44% at 1 cm from the center of the source for {sup 125}I, 50 kVp and {sup 169}Yb, respectively. The estimated MDEF values for {sup 169}Yb were remarkably larger than those for {sup 192}Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of

  16. Investigation of the gold nanoparticles effects on the prostate dose distribution in brachytherapy: gel dosimetry and Monte Carlo method

    Science.gov (United States)

    Hashemi, Bijan; Rahmani, Faezeh; Ebadi, Ahmad

    2016-01-01

    Purpose In this work, gold nanoparticles (GNPs) were embedded in the MAGIC-f polymer gel irradiated with the 192Ir brachytherapy sources. Material and methods At the first plexiglas phantom was made as the human pelvis. The GNPs were synthesized with 15 nm in diameter and 0.1 mM (0.0197 mg/ml) in concentration by using a chemical reduction method. Then, the MAGIC-f gel was synthesized. The fabricated gel was poured into the tubes located at the prostate (with and without the GNPs) locations of the phantom. The phantom was irradiated with 192Ir brachytherapy sources for prostate cancer. After 24 hours, the irradiated gels was read by using Siemens 1.5 Tesla MRI scanner. Following the brachytherapy practices, the absolute doses at the reference points and isodose curves were extracted and compared by experimental measurements and Monte Carlo (MC) simulations. Results The mean absorbed doses in the presence of the GNPs in prostate were 14% higher than the corresponding values without the GNPs in the brachytherapy. The gamma index analysis (between gel and MC) using 7%/7 mm was also applied to the data and a high pass rate achieved (91.7% and 86.4% for analysis with/without GNPs, respectively). Conclusions The real three-dimensional analysis shows the comparison of the dose-volume histograms measured for planning volumes and the expected one from the MC calculation. The results indicate that the polymer gel dosimetry method, which developed and used in this study, could be recommended as a reliable method for investigating the dose enhancement factor of GNPs in brachytherapy. PMID:27895684

  17. Radiation Protection in Brachytherapy. Report of the SEFM Task Group on Brachytherapy; Proteccion radiologica en Braquiterapia. Informe del grupo de trabajo de Braquiterapia de la SEFM

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Calatayud, J.; Corredoira Silva, E.; Crispin Contreras, V.; Eudaldo Puell, T.; Frutos Baraja, J. de; Pino Sorroche, F.; Pujades Claumarchirant, M. C.; Richart Sancho, J.

    2015-07-01

    This document presents the report of the Brachytherapy Task Group of the Spanish Society of Medical Physics. It is dedicated to the radiation protection aspects involved in brachytherapy. The aim of this work is to include the more relevant aspects related to radiation protection issues that appear in clinical practice, and for the current equipment in Spain. Basically this report focuses on the typical contents associated with high dose rate brachytherapy with {sup 1}92Ir and {sup 6}0Co sources, and permanent seed implants with {sup 1}25I, {sup 1}03Pd and {sup 1}31Cs, which are the most current and widespread modalities. Ophthalmic brachytherapy (COMS with {sup 1}25I, {sup 1}06Ru, {sup 9}0Sr) is also included due to its availability in a significant number of spanish hospitals. The purpose of this report is to assist to the medical physicist community in establishing a radiation protection program for brachytherapy procedures, trying to solve some ambiguities in the application of legal requirements and recommendations in clinical practice. (Author)

  18. Brachytherapy optimal planning with application to intravascular radiation therapy

    DEFF Research Database (Denmark)

    Sadegh, Payman; Mourtada, Firas A.; Taylor, Russell H.;

    1999-01-01

    . Dose rate calculations are based on the sosimetry formulation of the American Association of Physicists in Medicine, Task Group 43. We apply the technique to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data and 192Ir seeds. The planning includes...

  19. ACR appropriateness criteria: Permanent source brachytherapy for prostate cancer.

    Science.gov (United States)

    Davis, Brian J; Taira, Al V; Nguyen, Paul L; Assimos, Dean G; D'Amico, Anthony V; Gottschalk, Alexander R; Gustafson, Gary S; Keole, Sameer R; Liauw, Stanley L; Lloyd, Shane; McLaughlin, Patrick W; Movsas, Benjamin; Prestidge, Bradley R; Showalter, Timothy N; Vapiwala, Neha

    To provide updated American College of Radiology (ACR) appropriateness criteria for transrectal ultrasound-guided transperineal interstitial permanent source brachytherapy. The ACR appropriateness criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 3 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. Permanent prostate brachytherapy (PPB) is a treatment option for appropriately selected patients with localized prostate cancer with low to very high risk disease. PPB monotherapy remains an appropriate and effective curative treatment for low-risk prostate cancer patients demonstrating excellent long-term cancer control and acceptable morbidity. PPB monotherapy can be considered for select intermediate-risk patients with multiparametric MRI useful in evaluation of such patients. High-risk patients treated with PPB should receive supplemental external beam radiotherapy (EBRT) along with androgen deprivation. Similarly, patients with involved pelvic lymph nodes may also be considered for such combined treatment but reported long-term outcomes are limited. Computed tomography-based postimplant dosimetry completed within 60 days of PPB is essential for quality assurance. PPB may be considered for treatment of local recurrence after EBRT but is associated with an increased risk of toxicity. Updated appropriateness criteria for patient evaluation, selection, treatment, and postimplant dosimetry are given. These criteria are intended to be advisory only with the final responsibility for patient care residing with the treating

  20. Monte Carlo studies on water and LiF cavity properties for dose-reporting quantities when using x-ray and brachytherapy sources

    Science.gov (United States)

    Soares Lopes Branco, Isabela; Guimarães Antunes, Paula Cristina; Paiva Fonseca, Gabriel; Yoriyaz, Hélio

    2016-12-01

    Model-based dose calculation algorithms (MBDCAs) are the current tools to estimate dose in brachytherapy, which takes into account heterogeneous medium, therefore, departing from water-based formalism (TG-43). One aspect associated to MBCDA is the choice of dose specification medium since it offers two possibilities to report dose: (a) dose to medium in medium, D m,m; and (b) dose to water in medium, D w,m. The discussion about the preferable quantity to be reported is underway. The dose conversion factors, DCF, between dose to water in medium, D w,m, and dose to medium in medium, D m,m, is based on cavity theory and can be obtained using different approaches. When experimental dose verification is desired using, for example, thermoluminescent LiF dosimeters, as in in vivo dose measurements, a third quantity is obtained, which is the dose to LiF in medium, D LiF,m. In this case, DCF to convert from D LiF,m to D w,m or D m,m is necessary. The objective of this study is to estimate DCFs using different approaches, present in the literature, quantifying the differences between them. Also, dose in water and LiF cavities in different tissue media and respective conversion factors to be able to convert LiF-based dose measured values into dose in water or tissue were obtained. Simple cylindrical phantoms composed by different tissue equivalent materials (bone, lung, water and adipose) are modelled. The phantoms contain a radiation source and a cavity with 0.002 69 cm3 in size, which is a typical volume of a disc type LiF dosimeter. Three x-rays qualities with average energies ranging from 47 to 250 keV, and three brachytherapy sources, 60Co, 192Ir and 137Cs, are considered. Different cavity theory approaches for DCF calculations and different cavity/medium combinations have been considered in this study. DCF values for water/bone and LiF/bone cases have strong dependence with energy increasing as the photon energy increases. DCF values also increase with energy for

  1. A Monte Carlo dosimetry study using Henschke applicator for cervical brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pei-Chieh [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Department of Radiation Oncology, Cathay General Hospital, 280 Renai Rd. Sec.4, Taipei 106, Taiwan (China); Chao, Tsi-Chian [Department of Medical Imaging and Radiological Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Lee, Chung-Chi [Department of Medical Imaging and Radiological Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, Ching-Jung [Department of Radiation Oncology, Cathay General Hospital, 280 Renai Rd. Sec.4, Taipei 106, Taiwan (China); Tung, Chuan-Jong, E-mail: cjtung@mail.cgu.edu.t [Department of Medical Imaging and Radiological Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)

    2010-07-21

    In recent years the Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system did not properly evaluate the dose perturbation caused by the Henschke applicator. Since the European Society for Therapeutic Radiology and Oncology advised that the effect of source shielding should be incorporated into the brachytherapy planning system, it required calculation and comparison of the dose distribution around the applicator. This study used the Monte Carlo MCNP code to simulate the dose distribution in a water phantom that contained the Henschke applicator with one tandem and two ovoids. Three dwell positions of a high dose rate {sup 192}Ir source were simulated by including and excluding the applicator. The mesh tally option of the MCNP was applied to facilitate the calculation of a large number of tallies in the phantom. The voxel size effect and the charge particle equilibrium were studied by comparing the results calculated with different tally options. The calculated results showed that the brachytherapy planning system overestimated the rectal dose and that the shielding material in the applicator contributed more than 40% to the rectal dose.

  2. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Purwaningsih, Anik [Center for development of nuclear informatics, National Nuclear Energy Agency, PUSPIPTEK, Serpong, Banten 15310 (Indonesia)

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  3. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    Science.gov (United States)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  4. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  5. Source localisation and dose verification for a novel brachytherapy unit

    Science.gov (United States)

    Metaxas, Marinos G.

    A recent development in the field of radiotherapy has been the introduction of the PRS Intrabeam system (Carl Zeiss Surgical GmbH, Oberkochen, Germany). This is essentially a portable, miniaturised, electron-driven photon generator that allows high intensity, soft-energy x-rays (50 kVp) to be delivered directly to the tumour site in a single fraction. The system has been used for the interstitial radiation treatment of both brain and breast tumours. At present, a standardised in-vivo dose verification technique is not available for the PRS treatments. The isotropical distribution of photons about the tip of the PRS probe inserted in the tissue can effectively be viewed as a point source of radiation buried in the body. This work has looked into ways of localising the PRS source utilising its own radiation field. Moreover, the response of monoenergetic sources, mimicking realistic brachytherapy sources, has also been investigated. The purpose of this project was to attempt to localise the source as well as derive important dosimetric information from the resulting image. A detection system comprised of a well-collimated Germanium detector (HPGe) has been devised in a rotate-translate Emission Computed Tomography (ECT) modality. The superior energy resolving ability of the detection system allowed for energy selective reconstruction to be carried out in the case of the monoenergetic source (241Am). Results showed that the monoenergetic source can be localised to within 1 mm and the continuous PRS x-ray source to within 3mm. For the PRS dose map derivation, Monte Carlo studies have been employed in order to extract information on the dosimetric aspect of the resulting image. The final goal of this work was therefore to formulate a direct mathematical relation (Transform Map) between the image created by the escaping photons and the dose map as predicted by the theoretical model. The formation therefore of the in-vivo PRS image could allow for a real-time monitoring

  6. 南京“5.7”192Ir源放射事故患者的神经行为及心理健康改变%Nervous behavior and mental health changes in a case exposed to 192Ir source at "5.7" accident in Nanjing

    Institute of Scientific and Technical Information of China (English)

    陈炜博; 刘玉龙; 卞华慧; 王优优; 李元; 郑旭; 包明月; 郭凯琳

    2016-01-01

    Objective To explore the changes in nervous behavior and mental health caused by radiation damage,and to provide clinical data and experience for the similar cases,based on the treatment process of the patient exposed to Iridium-192 source accident in Nanjing,Methods The changes in the mental status of the patient was observed closely in a manner of " one to one",or " several to one",gave psychological intervention and drug treatment.The psychological evaluation for the patient was carried out by using Cattell 16 personality factors test (16PF),self-rating depression scale (SDS) and self-rating anxiety scale(SAS).The cognitive function assessment was carried out by using mini-mental state scale (MMSE) and Montreal cognitive assessment (MoCA) Beijing version.Results The patient showed tension,fear,upset,etc.,in hospital,and psychological evaluation results showed that he had the emotions such as anxiety,depression and worry.The mental health was improved after a positive psychological counseling and treatment by using sertraline and olanzapine.Cognitive function assessment results showed that he had moderate-severe cognitive dysfunction for a time,which gradually returned to normal with the improvement of general condition.Conclusions Attention should be paid to the synchronization of physical therapy and psychological treatment in the process of clinical treatment of patients with radiation injury.Improvement to psychological problems is possible using reasonable intervention and treatment,and the cause of neurobehavioral changes still need further research.%目的 结合南京“5.7”192Ir源放射事故患者的救治过程,探讨辐射损伤导致的神经行为及心理健康改变.方法 采用“一对一”、“多对一”的方法密切观察并记录患者精神状态变化,给予心理干预及药物治疗;采用卡特尔16种个性因素测验(16PF)、抑郁自评量表(SDS)、焦虑自评量表(SAS)对患者进行心理测评;采用简短精神状

  7. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    Science.gov (United States)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  8. A Scintillating Fiber Dosimeter for Radiology and Brachytherapy with photodiode readout

    CERN Document Server

    Rêgo, Florbela; Abreu, Maria da Conceição

    2011-01-01

    Purpose: For more than a decade that plastic optical fiber based dosimeters have been developed for medical applications. The feasibility of dosimeters using optical fibers that are almost Cherenkov light free has been demonstrated in some prototypes, particularly suitable for photon high-energy beams. In the energy range up to a few hundred keV, where the production of Cherenkov light by secondary electrons is negligible or small, the largest source of background are the fluorescence mechanisms. Methods: In recent years our group has developed an optical fiber dosimeter with photodiode readout named DosFib, which has small energy dependence in the range below 100 keV relevant for radiology. Photodiodes are robust photodetectors, presenting good stability over time and enough sensitivity to allow the use of an electrometer as a measuring device without extra electronics. Results: In-vitro tests using a High Dose Rate 192Ir source have demonstrated its suitability for brachytherapy applications using this impo...

  9. Stepping source prostate brachytherapy: From target definition to dose delivery

    NARCIS (Netherlands)

    Dinkla, A.M.

    2015-01-01

    Brachytherapy is an effective way to treat tumours locally and conformally, and is widely used in the treatment of prostate cancer. Prior to the treatment, a CT or MRI scan is acquired. The use of MRI led to a mean increase of 3% in dose coverage of the target volume (chapter 2). Although this seems

  10. Monte Carlo Simulation of Dosimetric Parameters for HYBRID PdI Source in Brachytherapy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A novel brachytherapy source model, ADVANTAGE HYBRID PdI, has been designed by CIAE For treatment of cancer. In this project, the purpose of this study is to obtain the dosimetric parameters of HYBRID PdI source. The Monte Carlo simulation

  11. Sci-Sat AM(2): Brachy-01: A novel HDR Ir-192 brachytherapy water calorimeter standard.

    Science.gov (United States)

    Sarfehnia, A; Seuntjens, J

    2008-07-01

    Parameters influencing the accuracy of absorbed dose measurements for HDR 192Ir brachytherapy using water calorimetry were investigated with the goal to develop a novel primary absorbed dose to water standard. To provide greater stability, flexibility, and accuracy in the source-detector distance dsrc-det positioning and measurement, a new spring-loaded catheter holder composed of two concentric cylindrical sleeves with multiple orthogonal adjusting screws was developed. The absorbed dose from Nucletron microSelectron-HDR 192Ir brachytherapy sources with air kerma strengths ranging between 21000-38000 U was studied. dsrc-det is optimized so as to balance signal-to-noise ratio (decreasing with increasing dsrc-det ) and temperature drift effects resulting from source self-heating. The irradiation times were adjusted to yield a minimum 1 Gy of dose at the measurement point. Successful measurements at dsrc-det ranging between 25-50 mm were performed. COMSOL MULTIPHYSICS™ software was used to determine the heat loss correction due to conduction defined as the ratio between temperature rise at a point under ideal conditions to realistic conditions (i.e., no conduction). An agreement of better than 6.5% was observed between TG-43 calculated and calorimetrically measured absorbed dose rates. The effects of convection where calculated to be negligible as the glass vessel provides a convective barrier significantly decoupling the water velocity in the interior and exterior of the vessel (water velocities were 1-2 orders of magnitude different). Our work paves the way to successful primary absorbed dose determination for radioactive sources using calorimetric techniques. © 2008 American Association of Physicists in Medicine.

  12. High dose-rate brachytherapy source position quality assurance using radiochromic film.

    Science.gov (United States)

    Evans, M D C; Devic, S; Podgorsak, E B

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance.

  13. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    OpenAIRE

    Chin-Hui Wu; Yi-Jen Liao; An-Cheng Shiau; Hsin-Yu Lin; Yen-Wan Hsueh Liu; Shih-Ming Hsu

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical can...

  14. Differential dose contributions on total dose distribution of (125)I brachytherapy source.

    Science.gov (United States)

    Camgöz, B; Yeğin, G; Kumru, M N

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 (125)I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically.

  15. TU-AB-201-08: Rotating Shield High Dose Rate Brachytherapy with 153Gd and 75Se Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, M; Seuntjens, J; Enger, S [McGill University, Montreal, Quebec (Canada); Flynn, R [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2015-06-15

    Purpose: To introduce rotating shield brachytherapy (RSBT) for different cancer sites with {sup 153}Gd and {sup 75}Se isotopes. RSBT is a form of intensity modulated brachytherapy, using shielded rotating catheters to provide a better dose distribution in the tumour while protecting healthy tissue. Methods: BrachySource, a Geant4-based Monte Carlo dose planning system was developed for investigation of RSBT with {sup 153}Gd and {sup 75}Se for different cancer sites. Dose distributions from {sup 153}Gd, {sup 75}Se and {sup 192}Ir isotopes were calculated in a 40 cm radius water phantom by using the microSelectron-v2 source model. The source was placed inside a cylindrical platinum shield with 1.3 mm diameter. An emission window coinciding with the active core of the source was created by removing half (180°) of the wall of the shield. Relative dose rate distributions of the three isotopes were simulated. As a proof of concept, a breast cancer patient originally treated with Mammosite was re-simulated with unshielded {sup 192}Ir and shielded {sup 153}Gd. Results: The source with the lowest energy, {sup 153}Gd, decreased the dose on the shielded side by 91%, followed by {sup 75}Se and {sup 192}Ir with 36% and 16% reduction at 1 cm from the source. The breast cancer patient simulation showed the ability of shielded {sup 153}Gd to spare the chest wall by a 90% dose reduction when only one emission window angle is considered. In this case, fully covering the PTV would require more delivery angles and the chest wall dose reduction would be less, however, the simulation demonstrates the potential of shielded {sup 153}Gd to selectively isolate organs at risk. Conclusion: Introducing {sup 153}Gd and {sup 75}Se sources combined with RSBT will allow escalation of dose in the target volume while maintaining low doses in radiation sensitive healthy tissue. Tailoring treatments to each individual patient by treating all parts of the tumour without over-irradiation of normal

  16. SU-E-T-786: Utility of Gold Wires to Optimize Intensity Modulation Capacity of a Novel Directional Modulated Brachytherapy Tandem Applicator for Image Guided Cervical Cancer Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [University of California, San Diego, La Jolla, CA (United States); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Scanderbeg, D [University of California, San Diego, La Jolla, CA (United States); UCSD Medical Center, La Jolla, CA (United States); Liu, Z [University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To evaluate the impact of using gold wires to differentially fill various channels on plan quality compared with conventional T&R applicator, inside a novel directional modulated brachytherapy (DMBT) tandem applicator for cervical cancer brachytherapy. Materials and Methods: The novel DMBT tandem applicator has a 5.4-mm diameter MR-compatible tungsten alloy enclosed in a 0.3-mm thick plastic tubing that wraps around the tandem. To modulate the radiation intensity, 6 symmetric peripheral holes of 1.3-mm diameter are grooved along the tungsten alloy rod. These grooved holes are differentially filled with gold wires to generate various degrees of directional beams. For example, three different fill patterns of 1) all void, 2) all filled except the hole containing the 192-Ir source, and 3) two adjacent holes to the 192-Ir source filled were Monte Carlo simulated. The resulting 3D dose distributions were imported into an in-house-coded inverse optimization planning system to generate HDR brachytherapy clinical plans for 19 patient cases. All plans generated were normalized to the same D90 as the clinical plans and D2cc doses of OARs were evaluated. Prescription ranged between 15 and 17.5Gy. Results: In general, the plans in case 1) resulted in the highest D2cc doses for the OARs with 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for bladder, rectum, and sigmoid, respectively, although the differences were small. For the case 2), D2cc doses were 11.61±2.29Gy, 7.41±3.07Gy, and 9.75±2.45Gy, respectively. And, for the case 3), D2cc doses were 11.60±2.28Gy, 7.41±3.05Gy, and 9.74±2.45Gy, respectively. Difference between 1) and 2) cases were small with the average D2cc difference of <0.64%. Difference between 1) and 3) cases were even smaller with the average D2cc difference of <0.1%. Conclusions: There is a minimal clinical benefit by differentially filling grooved holes in the novel DMBT tandem applicator for image guided cervical cancer brachytherapy.

  17. Establishment of Ge-doped optical fibres as thermoluminescence dosimeters for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Issa, Fatma, E-mail: f.issa@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Department of Radiotherapy, Tripoli Medical Centre (TMC), Tripoli (Libya); Abdul Rahman, A.T. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA Malaysia, Campus of Negeri Sembilan, 72000 Kuala Pilah (Malaysia); Hugtenburg, Richard P. [Department of Medical Physics and Clinical Engineering, Abertawe Bro Morgannwg UHB and School of Medicine, Swansea University, Swansea, SA2 8PP (United Kingdom); Bradley, David A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Department of Radiological Sciences, King Saud University, P.O. Box 10219, Riyadh 11432 (Saudi Arabia); Nisbet, Andrew [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Department of Medical Physics, Royal Surrey County Hospital NHS Foundation Trust, Guildford, GU2 7XX (United Kingdom)

    2012-07-15

    This study aims to establish the sensitive, {approx}120 {mu}m high spatial resolution, high dynamic range Ge-doped optical fibres as thermoluminescence (TL) dosimeters for brachytherapy dose distribution. This requires investigation to accommodate sensitivity of detection, both for the possibility of short range dose deposition from beta components as well as gamma/x-mediated dose. In-air measurements are made at distances close to radionuclide sources, evaluating the fall off in dose along the transverse axis of {sup 133}Ba and {sup 60}Co radioactive sources, at distances from 2 mm up to 20 mm from their midpoints. Measurements have been compared with Monte Carlo code DOSRZnrc simulations for photon-mediated dose only, agreement being obtained to within 3% and 1% for the {sup 133}Ba and {sup 60}Co sources, respectively. As such, in both cases it is determined that as intended, beta dose has been filtered out by source encapsulation. - Highlights: Black-Right-Pointing-Pointer We seek to establish Ge-doped optical fibres as TLDs for brachytherapy. Black-Right-Pointing-Pointer Dose was evaluated along the central axis of {sup 133}Ba and {sup 60}Co, at 2 mm-20 mm. Black-Right-Pointing-Pointer We verify values using DOSRZnrc Monte Carlo code simulations. Black-Right-Pointing-Pointer Good agreement is between dose measurements and calculation to within 3% and 1%. Black-Right-Pointing-Pointer Methodology is to be used in obtaining doses around {sup 125}I and {sup 192}Ir sources.

  18. Current state of the art brachytherapy treatment planning dosimetry algorithms.

    Science.gov (United States)

    Papagiannis, P; Pantelis, E; Karaiskos, P

    2014-09-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for (192)Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice.

  19. An orthodontic device for retaining implanted radioactive sources during brachytherapy for cancer of the oral cavity

    Energy Technology Data Exchange (ETDEWEB)

    Masuko, Noriko; Katsura, Kouji [Niigata Univ. (Japan). School of Dentistry; Sugita, Tadashi; Sakai, Kunio; Sato, Katsurou; Kawana, Masahiro; Nonomura, Naobumi

    2000-03-01

    An orthodontic retainer was devised to keeping implanted radioactive sources in position and improve the quality of life during brachytherapy for cancer of the oral cavity. The retainer was used in 3 patients with oral cancer, one with cancer of the hard palate, one with cancer of the soft palate, and one with cancer of the floor of mouth, during brachytherapy using {sup 198}Au grains and {sup 137}Cs needles. These patients could speak freely. One with cancer of the hard palate could drink water and ingest semi-liquid food during treatment instead of nasal tube feeding. The plaster dental model obtained while making the retainer proved to be useful for training radiation oncologists. (author)

  20. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA.

    Science.gov (United States)

    Zwierzchowski, Grzegorz; Bielęda, Grzegorz; Skowronek, Janusz; Mazur, Magdalena

    2016-08-01

    Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm), accurate tissues segmentation, and the structure's elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS) verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Calibration data was collected by separately irradiating 14 sheets of Gafchromic(®) EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR (192)Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft(®) package. Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm). Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  1. Development of an open source software module for enhanced visualization during MR-guided interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Chen, Xiaojun; Egger, Jan

    2014-01-01

    In 2010, gynecologic malignancies were the 4th leading cause of death in U.S. women and for patients with extensive primary or recurrent disease, treatment with interstitial brachytherapy may be an option. However, brachytherapy requires precise insertion of hollow catheters with introducers into the tumor in order to eradicate the cancer. In this study, a software solution to assist interstitial gynecologic brachytherapy has been investigated and the software has been realized as an own module under (3D) Slicer, which is a free open source software platform for (translational) biomedical research. The developed research module allows on-time processing of intra-operative magnetic resonance imaging (iMRI) data over a direct DICOM connection to a MR scanner. Afterwards follows a multi-stage registration of CAD models of the medical brachytherapy devices (template, obturator) to the patient's MR images, enabling the virtual placement of interstitial needles to assist the physician during the intervention.

  2. A case of percutaneous high dose rate brachytherapy for superior pulmonary sulcus tumor

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, Tamaki; Imamura, Masahiro; Murata, Takashi [Kansai Medical Univ., Moriguchi, Osaka (Japan)] [and others

    1996-07-01

    A 64-year-old man with advanced superior pulmonary sulcus tumor suffered severe unrelieved pain even after chemotherapy, external irradiation and hyperthermia. So we planned to introduce a percutaneous high dose rate brachytherapy using the microselectron HDR {sup 192}Ir. With the estimation using the Pain Score, satisfying pain relief was attainable with a combination of the percutaneous high dose rate brachytherapy and conventional treatment. So the percutaneous high dose rate brachytherapy had the possibility to contribute to the alleviation of the pain. (author)

  3. CT-guided brachytherapy. A novel percutaneous technique for interstitial ablation of liver malignancies; CT-gesteuerte Brachytherapie. Eine neue perkutane Technik zur interstitiellen Ablation von Lebermetastasen

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J.; Wust, P.; Stohlmann, A.; Beck, A.; Cho, C.H.; Pech, M.; Wieners, G.; Spors, B.; Werk, M.; Rosner, C.; Haenninen, E.L.; Felix, R. [Klinik fuer Strahlenheilkunde, Charite Virchow-Klinikum, Humboldt-Univ. zu Berlin (Germany)

    2004-05-01

    Purpose: to assess safety and efficacy of CT-guided brachytherapy of liver malignancies. Patients and methods: 21 patients with 21 liver malignancies (19 metastases, two primary liver tumors) were treated with interstitial CT-guided brachytherapy applying a {sup 192}Ir source. In all patients, the use of image-guided thermal tumor ablation such as by radiofrequency or laser-induced thermotherapy (LITT) was impeded either by tumor size {>=} 5 cm in seven, adjacent portal or hepatic vein in ten, or adjacent bile duct bifurcation in four patients. Dosimetry was performed using three-dimensional CT data sets acquired after CT-guided positioning of the brachytherapy catheters. Results: the mean tumor diameter was 4.6 cm (2.5-11 cm). The mean minimal tumor dose inside the tumor margin amounted to 17 Gy (12-20 Gy). The proportion of the liver parenchyma exposed to > 5 gy was 18% (5-39%) of total liver parenchyma minus tumor volume. Nausea and vomiting were observed in six patients after brachytherapy (28%). One patient demonstrated obstructive jaundice due to tumor edema after irradiation of a metastasis adjacent to the bile duct bifurcation. We commonly encountered asymptomatic increases of liver enzymes. Local control rates after 6 and 12 months were 87% and 70%, respectively. Conclusion: CT-guided brachytherapy is safe and effective. This technique displays broader indications compared to image-guided thermal ablation by radiofrequency or LITT with respect to tumor size or localization. (orig.) [German] Ziel: Analyse der Sicherheit und Effektivitaet CT-gesteuerter Brachytherapie zur Ablation von Lebermalignomen. Patienten und Methodik: 21 Patienten mit 21 Lebermalignomen (19 Metastasen, zwei primaere Lebermalignome) wurden mit perkutaner, CT-gesteuerter interstitieller Brachytherapie mit {sup 192}Ir behandelt. Alle Patienten wiesen Umstaende auf, die eine bildgefuehrte thermische Ablation mit Radiofrequenz oder laserinduzierter Thermotherapie (LITT) einschraenkten

  4. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  5. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy

    Science.gov (United States)

    Campos, Luciana Tourinho; de Almeida, Carlos Eduardo Veloso

    2015-01-01

    Introduction The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®); it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86), which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21), which is also from BEBIG. Objective and Methods The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the

  6. Low dose rate caesium-137 implant time of intracavitary brachytherapy source of a selected oncology center in Ghana

    OpenAIRE

    John Owusu Banahene; Emmanuel Ofori Darko; Baffour Awuah

    2015-01-01

    Background: The treatment time taken for a radioactive source is found to be very important in intracavitary brachytherapy treatment. The duration of the treatment time depends on the prescribed dose requested to a reference point and the calculated dose rate to the same point. The duration of the treatment time of source is found to depend on the tumour stage. In this work, the treatment time of implant has been calculated for a Caesium-137 low dose rate brachytherapy source at an oncology f...

  7. SU-C-16A-03: Direction Modulated Brachytherapy for HDR Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Han, D; Webster, M; Scanderbeg, D; Yashar, C; Choi, D; Song, B; Song, W [University of California, San Diego, La Jolla, CA (United States); Devic, S [McGill University, Montreal, QC (Canada); Ravi, A [Sunnybrook Odette Cancer Centre, Toronto (Canada)

    2014-06-15

    Purpose: To investigate a new Directional Modulated Brachytherapy (DMBT) intra-uterine tandem using various 192-Ir after-loaders. Methods: Dose distributions from the 192-Ir sources were modulated using a 6.3mm diameter tungsten shield (18.0g/cm3). The source moved along 6 longitudinal grooves, each 1.3mm in diameter, evenly spaced along periphery of the shield, The tungsten rod was enclosqed by 0.5mm thick Delrin (1.41g/cc). Monte Carlo N particle (MCNPX) was used to calculate dose distributions. 51million particles were calculated on 504 cores of a supercomputer. Fifteen different patients originally treated with a traditional tandem-and-ovoid applicator, with 5 fractions each, (15 patients X 5 fxs = 75 plans) were re-planned with the DMBT applicator combined with traditional ovoids, on an in-house developed HDR brachytherapy planning platform, which used intensity modulated planning capabilities using a constrained gradient optimization algorithm. For all plans the prescription dose was 6 Gy and they were normalized to match the clinical treated V100. Results: Generally, the DMBT plan quality was a remarkable improvement from conventional T and O plans because of the anisotropic dose distribution of DMBT. The largest difference was to the bladder which had a 0.59±0.87 Gy (8.5±28.7%) reduction in dose. This was because of the the horseshoe shape (U-shape) of the bladder. The dose reduction to rectum and sigmoid were 0.48±0.55 Gy (21.1±27.2%) and 0.10±0.38 Gy (40.6±214.9%), respectively. The D90 to the HRCTV was 6.55±0.96 Gy (conventional T and O) and 6.59±1.06 Gy (DMBT). Conclusion: For image guided adaptive brachytherapy, greater flexibility of radiation intensity is essential and DMBT can be the solution.

  8. Novel tools for stepping source brachytherapy treatment planning: Enhanced geometrical optimization and interactive inverse planning

    Energy Technology Data Exchange (ETDEWEB)

    Dinkla, Anna M., E-mail: a.m.dinkla@amc.uva.nl; Laarse, Rob van der; Koedooder, Kees; Petra Kok, H.; Wieringen, Niek van; Pieters, Bradley R.; Bel, Arjan [Department of Radiation Oncology, Academic Medical Center Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ (Netherlands)

    2015-01-15

    Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error. Methods: A new approach for stepping source prostate brachytherapy treatment planning was developed as a quick and user-friendly alternative. This approach consists of the combined use of two novel tools: Enhanced geometrical optimization (EGO) and interactive inverse planning (IIP). EGO is an extended version of the common geometrical optimization method and is applied to create a dose distribution as homogeneous as possible. With the second tool, IIP, this dose distribution is tailored to a specific patient anatomy by interactively changing the highest and lowest dose on the contours. Results: The combined use of EGO–IIP was evaluated on 24 prostate cancer patients, by having an inexperienced user create treatment plans, compliant to clinical dose objectives. This user was able to create dose plans of 24 patients in an average time of 4.4 min/patient. An experienced treatment planner without extensive training in EGO–IIP also created 24 plans. The resulting dose-volume histogram parameters were comparable to the clinical plans and showed high conformance to clinical standards. Conclusions: Even for an inexperienced user, treatment planning with EGO–IIP for stepping source prostate brachytherapy is feasible as an alternative to current optimization algorithms, offering speed, simplicity for the user, and local control of the dose levels.

  9. Assessment of the risks associated with Iodine-125 handling production sources for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane C.B.; Rostelato, Maria Elisa C.; Vicente, Roberto; Zeituni, Carlos A.; Tiezzi, Rodrigo; Costa, Osvaldo L.; Souza, Carla D.; Peleias Junior, Fernando S.; Rodrigues, Bruna T.; Souza, Anderson S.; Batista, Talita Q.; Melo, Emerson R.; Camargo, Anderson R., E-mail: dcsouza@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam Junior, Dib, E-mail: dib.karam@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2015-07-01

    In Brazil, prostate cancer is the second most frequent disease, with an estimated 68,800 new cases in 2013. This type of cancer can be treated with brachytherapy, which uses sealed sources of Iodine-125 implanted permanently in the prostate. These sources are currently imported at a high cost, making public treatment in large scale impractical. To reduce costs and to meet domestic demand, the laboratory for production of brachytherapy sources at the Nuclear and Energy Research Institute (IPEN) is currently nationalizing the production of this radioisotope. Iodine is quite volatile making the handling of its radioactive isotopes potentially dangerous. The aim of this paper is to evaluate the risks to which workers are exposed during the production and handling of the sources. The research method consisted initially of a literature review on the toxicity of iodine, intake limits, related physical risks, handling of accidents, generation of radioactive wastes, etc. The results allowed for establishing safety and radioprotection policies in order to ensure efficient and safe production in all stages and the implementation of good laboratory practices. (author)

  10. Dosimetry studies on prototype 241Am sources for brachytherapy.

    Science.gov (United States)

    Nath, R; Gray, L

    1987-06-01

    Sealed sources of 241Am emit primarily 60 keV photons which, because of multiple Compton scattering, produce dose distributions in water that are comparable to those from 226Ra or 137Cs. However, americium gamma rays can be shielded by thin layers of high atomic number materials since the half value layer thickness is only 1/8th of a mm of lead for americium gamma rays as compared to a value of 12 mm for 226Ra gamma rays. This may allow effective in vivo shielding of critical organs, for example; the bladder can be partially shielded by hypaque solution, and the rectum and sigmoid colon by barium sulfate. In addition, the exposure to medical personnel involved in intracavitary application and patient care may be reduced substantially by the use of relatively thin lead aprons and light weight, portable shields. To investigate the feasibility of 241Am sources for intracavitary irradiation, dosimetry studies on prototype 241Am sources have been performed and a computer model for the determination of dose distributions around encapsulated cylindrical sources of 241Am has been developed and tested. Results of dosimetry measurements using ionization chambers, lithium fluoride thermoluminescent dosimeters, a scanning scintillation probe, and film dosimetry, confirm theoretical predictions that these sources can deliver dose rates adequate for intracavitary irradiation. Further dosimetry measurements in simulated clinical situations using lead foils and test tubes filled with hypaque or barium sulfate, confirm the predicted effectiveness of in vivo shielding which can be readily achieved with 241Am sources.

  11. TG-43 U1 based dosimetric characterization of model 67-6520 Cs-137 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Meigooni, Ali S.; Wright, Clarissa; Koona, Rafiq A.; Awan, Shahid B.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo [Department of Radiation Medicine, North Shore University Hospital, 300 Community Drive, Manhasset, New York 11030 and Department of Radiation Medicine, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084 (United States); Department of Radiation Medicine, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084 (United States); Department of Radiation Physics, ERESA, Hospital General Universitario, Avenida Tres Cruces, 2, E-46014 Valencia (Spain); Department of Oncology, Physics Section, ' ' La Fe' ' University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Atomic, Molecular and Nuclear Physics, University of Valencia, C/ Dr. Moliner 50, E-46100 Burjassot, Spain and Instituto de Fisica Corpuscular (IFIC), C/ Dr. Moliner 50, E-46100 Burjassot (Spain)

    2009-10-15

    Purpose: Brachytherapy treatment has been a cornerstone for management of various cancer sites, particularly for the treatment of gynecological malignancies. In low dose rate brachytherapy treatments, {sup 137}Cs sources have been used for several decades. A new {sup 137}Cs source design has been introduced (model 67-6520, source B3-561) by Isotope Products Laboratories (IPL) for clinical application. The goal of the present work is to implement the TG-43 U1 protocol in the characterization of the aforementioned {sup 137}Cs source. Methods: The dosimetric characteristics of the IPL {sup 137}Cs source are measured using LiF thermoluminescent dosimeters in a Solid Water phantom material and calculated using Monte Carlo simulations with the GEANT4 code in Solid Water and liquid water. The dose rate constant, radial dose function, and two-dimensional anisotropy function of this source model were obtained following the TG-43 U1 recommendations. In addition, the primary and scatter dose separation (PSS) formalism that could be used in convolution/superposition methods to calculate dose distributions around brachytherapy sources in heterogeneous media was studied. Results: The measured and calculated dose rate constants of the IPL {sup 137}Cs source in Solid Water were found to be 0.930({+-}7.3%) and 0.928({+-}2.6%) cGy h{sup -1} U{sup -1}, respectively. The agreement between these two methods was within our experimental uncertainties. The Monte Carlo calculated value in liquid water of the dose rate constant was {Lambda}=0.948({+-}2.6%) cGy h{sup -1} U{sup -1}. Similarly, the agreement between measured and calculated radial dose functions and the anisotropy functions was found to be within {+-}5%. In addition, the tabulated data that are required to characterize the source using the PSS formalism were derived. Conclusions: In this article the complete dosimetry of the newly designed {sup 137}Cs IPL source following the AAPM TG-43 U1 dosimetric protocol and the PSS

  12. Design and dosimetric characteristics of a new endocavitary contact radiotherapy system using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Susan; Garcia-Ramirez, Jose; Lu Wei; Myerson, Robert J.; Parikh, Parag [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

    2012-11-15

    Purpose: To present design aspects and acceptance tests performed for clinical implementation of electronic brachytherapy treatment of early stage rectal adenocarcinoma. A dosimetric comparison is made between the historically used Philips RT-50 unit and the newly developed Axxent{sup Registered-Sign} Model S700 electronic brachytherapy source manufactured by Xoft (iCad, Inc.). Methods: Two proctoscope cones were manufactured by ElectroSurgical Instruments (ESI). Two custom surface applicators were manufactured by Xoft and were designed to fit and interlock with the proctoscope cones from ESI. Dose rates, half value layers (HVL), and percentage depth dose (PDD) measurements were made with the Xoft system and compared to historical RT-50 data. A description of the patient treatment approach and exposure rates during the procedure is also provided. Results: The electronic brachytherapy system has a lower surface dose rate than the RT-50. The dose rate to water on the surface from the Xoft system is approximately 2.1 Gy/min while the RT-50 is 10-12 Gy/min. However, treatment times with Xoft are still reasonable. The HVLs and PDDs between the two systems were comparable resulting in similar doses to the target and to regions beyond the target. The exposure rate levels around a patient treatment were acceptable. The standard uncertainty in the dose rate to water on the surface is approximately {+-}5.2%. Conclusions: The Philips RT-50 unit is an out-of-date radiotherapy machine that is no longer manufactured with limited replacement parts. The use of a custom-designed proctoscope and Xoft surface applicators allows delivery of a well-established treatment with the ease of a modern radiotherapy device. While the dose rate is lower with the use of Xoft, the treatment times are still reasonable. Additionally, personnel may stand farther away from the Xoft radiation source, thus potentially reducing radiation exposure to the operator and other personnel.

  13. SU-E-T-547: Rotating Shield Brachytherapy (RSBT) for Cervical Cancer.

    Science.gov (United States)

    Yang, W; Kim, Y; Liu, Y; Wu, X; Flynn, R

    2012-06-01

    To assess rotating shield brachytherapy (RSBT) delivered with the electronic brachytherapy (eBT) source comparing to intracavitary (IC) and intracavitary plus supplemental interstitial brachytherapy (IC+IS BT) delivered with conventional isotope radiation source. IC, IC+IS and RSBT plan was simulated for 5 patients with advanced cervical cancer (>40cc). One BT plan for each patient (fraction 1) guided by magnetic resonance imaging (MRI) was used in our treatment planning system (TPS). A bio- and MRI-compatible polycarbonate (Makrolon Rx3158) intrauterine applicator was simulated for IC and RSBT, and the vienna applicator was simulated for IC+IS BT. 192Ir was used as the radiation source of IC and IC+IS BT; Xoft AxxentTM eBT source was used for RSBT. A 0.5 mm thick tungsten shield was used for RS-BT with different azimuthal and zenith angles. The total dose for each plan was escalated as the external beam radiation therapy (EBRT) plus BT times fraction number (5 in our case). RSBT and IC+IS BT had higher dose conformity in terms of D90 than IC BT for all the patients. The advantage of RSBT over IC+IS BT was dependent on the shield emission angle, tumor shape and tandem applicator location. The delivery time of RSBT was increased as finer emission angle was selected. RSBT is a less-invasive potential alternative to conventional IC and IC+IS BT for treating bulky (>40cc) cervical cancer. RSBT can provide better treatment outcome with clinically acceptable increased delivery time if proper emission angle is selected based on the tumor shape and tandem applicator location. supported in part by NSF grants CCF-0830402 and CCF-0844765; and the NIH grant K25-CA123112, and American Cancer Society seed grant (IRG-77-004-31). © 2012 American Association of Physicists in Medicine.

  14. The collapsed cone algorithm for (192)Ir dosimetry using phantom-size adaptive multiple-scatter point kernels.

    Science.gov (United States)

    Tedgren, Åsa Carlsson; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-07

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient

  15. The collapsed cone algorithm for 192Ir dosimetry using phantom-size adaptive multiple-scatter point kernels

    Science.gov (United States)

    Carlsson Tedgren, Åsa; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-01

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient

  16. Experimental dosimetry of a {sup 32}P catheter-based endovascular brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Piermattei, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Fidanzio, A [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Perrone, F [Azienda Ospedaliera Pisana, UO Fisica Sanitaria, Pisa (Italy); Azario, L [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Grimaldi, L [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Viola, P [Istituto di Fisica, Universita Cattolica S Cuore, Rome (Italy); Capote, R [Dpto Fisiologia Medica y Biofisica, Facultad de Medicina, Universidad de Sevilla, Avda Sanchez Pizjuan 4, E41009 Sevilla (Spain)

    2003-08-07

    The experimental dosimetry in a water phantom of a {sup 32}P linear source, 20 mm in length, used for the brachytherapy of coronary vessels is reported. The source content activity, A, was determined by means of a calibrated well ion-chamber and the value was compared with the contained activity reported in the manufacturer's certification. In this field of brachytherapy dosimetry, radiochromic film supplies a high enough spatial resolution. A highly sensitive radiochromic film, that presents only one active layer, was used in this work for the source dosimetry in a water phantom. The radiochromic film was characterized by electron beams produced by a clinical linac. A Monte Carlo calculation of beta spectra in water at different distances along the source transverse bisector axis allowed to take into account the low dependence of film response from the electron beam energy. The adopted experimental set-up, with the source in its catheter positioned on the film plane inside the water phantom, supplies accurate dosimetric information. The measured dose rate to water per unit of source activity at reference distance, D-dot (r{sub 0}, {theta}{sub 0})/A, in units of cGy s{sup -1} GBq{sup -1}, was in agreement with the value reported in the manufacturer's certification within the experimental uncertainty. The radial dose function, g(r), is in good agreement with the literature data. The anisotropy function F(r, {theta}) is also reported. The analysis of the dose profile obtained at 2 mm from the source longitudinal axis shows that the uniformity is within 10% along 75% of the 20 mm treatment length. The adopted experimental set-up seems to be adequate for the quality control procedure of the dose homogeneity distribution in the water medium.

  17. Calculated neutron air kerma strength conversion factors for a generically encapsulated Cf-252 brachytherapy source

    CERN Document Server

    Rivard, M J; D'Errico, F; Tsai, J S; Ulin, K; Engler, M J

    2002-01-01

    The sup 2 sup 5 sup 2 Cf neutron air kerma strength conversion factor (S sub K sub N /m sub C sub f) is a parameter needed to convert the radionuclide mass (mu g) provided by Oak Ridge National Laboratory into neutron air kerma strength required by modern clinical brachytherapy dosimetry formalisms indicated by Task Group No. 43 of the American Association of Physicists in Medicine (AAPM). The impact of currently used or proposed encapsulating materials for sup 2 sup 5 sup 2 Cf brachytherapy sources (Pt/Ir-10%, 316L stainless steel, nitinol, and Zircaloy-2) on S sub K sub N /m sub C sub f was calculated and results were fit to linear equations. Only for substantial encapsulation thicknesses, did S sub K sub N /m sub C sub f decrease, while the impact of source encapsulation composition is increasingly negligible as Z increases. These findings are explained on the basis of the non-relativistic kinematics governing the majority of sup 2 sup 5 sup 2 Cf neutron interactions. Neutron kerma and energy spectra resul...

  18. Calculated neutron air kerma strength conversion factors for a generically encapsulated Cf-252 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, M.J. E-mail: mrivard@lifespan.org; Sganga, J.K.; D' Errico, F.; Tsai, J-S.; Ulin, K.; Engler, M.J

    2002-01-01

    The {sup 252}Cf neutron air kerma strength conversion factor (S{sub KN}/m{sub Cf}) is a parameter needed to convert the radionuclide mass ({mu}g) provided by Oak Ridge National Laboratory into neutron air kerma strength required by modern clinical brachytherapy dosimetry formalisms indicated by Task Group No. 43 of the American Association of Physicists in Medicine (AAPM). The impact of currently used or proposed encapsulating materials for {sup 252}Cf brachytherapy sources (Pt/Ir-10%, 316L stainless steel, nitinol, and Zircaloy-2) on S{sub KN}/m{sub Cf} was calculated and results were fit to linear equations. Only for substantial encapsulation thicknesses, did S{sub KN}/m{sub Cf} decrease, while the impact of source encapsulation composition is increasingly negligible as Z increases. These findings are explained on the basis of the non-relativistic kinematics governing the majority of {sup 252}Cf neutron interactions. Neutron kerma and energy spectra results calculated herein using MCNP were compared with results of Colvett et al. and Rivard et al.

  19. Study on the method to scale 192ir radioactivity%192Ir源两种刻度方法的比较

    Institute of Scientific and Technical Information of China (English)

    王晓红; 徐利明; 张沪生

    2000-01-01

    purpose: To calibrate the accurate value of 192Ir radioactivity again. materials and methods: To measure the dose rate of radioactivity in water and at air by ion chamber. results: To scale the activity of 192Ir radioactivity by air Kerma is agreement to the scaling method according to the JJG 773-92. conclusion: The investigation demonstrates that the accurate value of 192Ir radioactivity can be calibrated by the method of air Kerma.%目的:通过对192Ir源的再次刻度,校准源活度的精确值。材料与方法:用电离室法,分别测量源在水介质中和自由空气中的照射量率。结果:两种方法在刻度192Ir源活性上得到的结果是一致的。结论:利用空气比释动能法可以对192Ir源进行精确刻度。

  20. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    Science.gov (United States)

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like (106) Ru/(106) Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a (90) Sr/(90) Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of (106) Ru/(106) Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for (106) Ru/(106) Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow

  1. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images.

    Science.gov (United States)

    Mashouf, S; Lechtman, E; Lai, P; Keller, B M; Karotki, A; Beachey, D J; Pignol, J P

    2014-09-21

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 [Formula: see text] formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  2. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  3. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Corde, S.; Jackson, M. [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)

    2013-11-15

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm

  4. Investigations into the Optimization of Multi-Source Strength Brachytherapy Treatment Procedures

    CERN Document Server

    Henderson, D L; Yoo, S

    2002-01-01

    The goal of this project is to investigate the use of multi-strength and multi-specie radioactive sources in permanent prostate implant brachytherapy. In order to fulfill the requirement for an optimal dose distribution, the prescribed dose should be delivered to the target in a nearly uniform dose distribution while simultaneously sparing sensitive structures. The treatment plan should use a small number of needles and sources while satisfying the treatment requirements. The hypothesis for the use of multi-strength and/or multi-specie sources is that a better treatment plan using fewer sources and needles could be obtained than by treatment plans using single-strength sources could reduce the overall number of sources used for treatment. We employ a recently developed greedy algorithm based on the adjoint concept as the optimization search engine. The algorithm utilizes and ''adjoint ratio'', which provides a means of ranking source positions, as the pseudo-objective function. It ha s been shown that the gre...

  5. An open-source genetic algorithm for determining optimal seed distributions for low-dose-rate prostate brachytherapy.

    Science.gov (United States)

    McGeachy, P; Madamesila, J; Beauchamp, A; Khan, R

    2015-01-01

    An open source optimizer that generates seed distributions for low-dose-rate prostate brachytherapy was designed, tested, and validated. The optimizer was a simple genetic algorithm (SGA) that, given a set of prostate and urethra contours, determines the optimal seed distribution in terms of coverage of the prostate with the prescribed dose while avoiding hotspots within the urethra. The algorithm was validated in a retrospective study on 45 previously contoured low-dose-rate prostate brachytherapy patients. Dosimetric indices were evaluated to ensure solutions adhered to clinical standards. The SGA performance was further benchmarked by comparing solutions obtained from a commercial optimizer (inverse planning simulated annealing [IPSA]) with the same cohort of 45 patients. Clinically acceptable target coverage by the prescribed dose (V100) was obtained for both SGA and IPSA, with a mean ± standard deviation of 98 ± 2% and 99.5 ± 0.5%, respectively. For the prostate D90, SGA and IPSA yielded 177 ± 8 Gy and 186 ± 7 Gy, respectively, which were both clinically acceptable. Both algorithms yielded reasonable dose to the rectum, with V100 open source SGA was validated that provides a research tool for the brachytherapy community. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. RADIOLOGICAL CRITERIA FOR PATIENT RELEASE FROM CLINIC AFTER RADIONUCLIDE THERAPY OF BRACHYTHERAPY WITH SEALED SOURCE IMPLANTATION

    Directory of Open Access Journals (Sweden)

    M. I. M.I. Balonov

    2009-01-01

    Full Text Available Dose criteria for limitation of exposure incurred by persons helping the patients or living with patients discharged from hospitals following radionuclide therapy or brachytherapy with implanted sealed radionuclide sources have been proposed for national Russian regulation. By means of a conservative dosimetry model, the values of operational radiological criteria for patient discharge from hospital are substantiated, i.e. whole body activity for radionuclides 125I,131I,153Sm and 188Re as well as dose rate near patient body. Observance of suggested criteria included in the new Russian Standards for Radiation Safety (RSS-99/2009 will ensure radiation safety of people in near environment (family, close friends et ah.

  7. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source.

    Science.gov (United States)

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S Hamed; Shavar, Arzhang

    2008-04-01

    This article presents a brachytherapy source having 103Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model 103Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA-103Pd source in water was found to be 0.678 cGy h(-1) U(-1) with an approximate uncertainty of +/-0.1%. The anisotropy function, F(r, theta), and the radial dose function, g(r), of the IRA- 103Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms.

  8. Comparison between methods for fixing radioactive iodine in silver substrate for manufacturing brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Peleias Junior, Fernando S.; Zeituni, Carlos A.; Rostelato, Maria Elisa C.M., E-mail: fernandopeleias@gmail.com, E-mail: czeituni@ipen.br, E-mail: elisaros@ipen.br; and others

    2013-07-01

    Cancer is a term used generically to represent a group of more than 100 illnesses, including malignant tumors from different locations. According to World Health Organization (WHO), is a leading cause of death worldwide, accounted for 7.6 million deaths. Prostate cancer is the sixth most common type in the world, representing about 10% of all cases of cancer and its treatment may be by surgery, radiotherapy or even vigilant observation. A method of radiotherapy which has been extensively used in the early and intermediate stages of the illness is brachytherapy, where radioactive seeds are placed inside or next to the area requiring treatment, which reduces the probability of unnecessary damage to surrounding healthy tissues. Currently, the radioactive isotope Iodine-125, adsorbed on silver substrate, is one of the most used in prostate brachytherapy. The present study compares several deposition methods of radioactive Iodine on silver substrate, in order to choose the most suitable one to be implemented at the laboratory of radioactive sources production of IPEN. The methodology used was chosen based on the available infrastructure and experience of the researchers of the institute. Therefore, Iodine-131 was used for testing (same chemical behavior of Iodine -125). Three methods were selected: method 1 (test based on electrodeposition method, developed by David Kubiatowicz) which presented efficiency of 65.16% ; method 2 (chemical reaction based on the method developed by David Kubiatowicz -HCl) which presented efficiency of 70.80%; method 3 (chemical reaction based on the method developed by Dr. Maria Elisa Rostelato) which presented efficiency of 55.80% . Based on the results, the second method is the suggested one to be implemented at the laboratory of radioactive sources production of IPEN. (author)

  9. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  10. Dosimetric comparison between three dimensional treatment planning system, Monte Carlo simulation and gel dosimetry in nasopharynx phantom for high dose rate brachytherapy

    Directory of Open Access Journals (Sweden)

    Zeynab Fazli

    2013-01-01

    Full Text Available Purpose: For the treatment of nasopharnx carcinoma (NPC using brachytherapy methods and high-energy photon sources are common techniques. In the common three dimensional (3D treatments planning, all of the computed tomography images are assumed homogeneous. This study presents the results of Monte Carlo calculations for non-homogeneous nasopharynx phantom, MAGICA normoxic gel dosimetry and 3D treatment planning system (TPS. Materials and Methods: The head phantom was designed with Plexiglas cylinder, head bone, and nasopharynx brachytherapy silicon applicator. For the simulations, version 5 of the Monte Carlo N-particle transport code (MCNP5 was used. 3D treatment planning was performed in Flexiplan software. A normoxic radiosensitive polymer gel was fabricated under normal atmospheric conditions and poured into test tubes (for calibration curve and the head phantom. In addition, the head phantom was irradiated with Flexitron afterloader brachytherapy machine with 192 Ir source. To obtain calibration curves, 11 dosimeters were irradiated with dose range of 0-2000 cGy. Evaluations of dosimeters were performed on 1.5T scanner. Results: Two-dimensional iso-dose in coronal plan at distances of z = +0.3, –0.3 cm was calculated. There was a good accordance between 3D TPS and MCNP5 simulation and differences in various distances were between 2.4% and 6.1%. There was a predictable accordance between MAGICA gel dosimetry and MCNP5 simulation and differences in various distances were between 5.7% and 7.4%. Moreover, there was an acceptable accordance between MAGICA gel dosimetry and MCNP5 data and differences in various distances were between 5.2% and 9.4%. Conclusion: The sources of differences in this comparison are divided to calculations variation and practical errors that was added in experimental dosimetry. The result of quality assurance of nasopharynx high dose rate brachytherapy is consistent with international standards.

  11. Dosimetric comparison between three dimensional treatment planning system, Monte Carlo simulation and gel dosimetry in nasopharynx phantom for high dose rate brachytherapy.

    Science.gov (United States)

    Fazli, Zeynab; Sadeghi, Mahdi; Zahmatkesh, M H; Mahdavi, Seied Rabei; Tenreiro, Claudio

    2013-01-01

    For the treatment of nasopharnx carcinoma (NPC) using brachytherapy methods and high-energy photon sources are common techniques. In the common three dimensional (3D) treatments planning, all of the computed tomography images are assumed homogeneous. This study presents the results of Monte Carlo calculations for non-homogeneous nasopharynx phantom, MAGICA normoxic gel dosimetry and 3D treatment planning system (TPS). The head phantom was designed with Plexiglas cylinder, head bone, and nasopharynx brachytherapy silicon applicator. For the simulations, version 5 of the Monte Carlo N-particle transport code (MCNP5) was used. 3D treatment planning was performed in Flexiplan software. A normoxic radiosensitive polymer gel was fabricated under normal atmospheric conditions and poured into test tubes (for calibration curve) and the head phantom. In addition, the head phantom was irradiated with Flexitron afterloader brachytherapy machine with (192)Ir source. To obtain calibration curves, 11 dosimeters were irradiated with dose range of 0-2000 cGy. Evaluations of dosimeters were performed on 1.5T scanner. Two-dimensional iso-dose in coronal plan at distances of z = +0.3, -0.3 cm was calculated. There was a good accordance between 3D TPS and MCNP5 simulation and differences in various distances were between 2.4% and 6.1%. There was a predictable accordance between MAGICA gel dosimetry and MCNP5 simulation and differences in various distances were between 5.7% and 7.4%. Moreover, there was an acceptable accordance between MAGICA gel dosimetry and MCNP5 data and differences in various distances were between 5.2% and 9.4%. The sources of differences in this comparison are divided to calculations variation and practical errors that was added in experimental dosimetry. The result of quality assurance of nasopharynx high dose rate brachytherapy is consistent with international standards.

  12. A Comparison of the Dosimetric Parameters of Cs-137 Brachytherapy Source in Different Tissues with Water Using Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2012-03-01

    Full Text Available Introduction After the publication of Task Group number 43 dose calculation formalism by the American Association of Physicists in Medicine (AAPM, this method has been known as the most common dose calculation method in brachytherapy treatment planning. In this formalism, the water phantom is introduced as the reference dosimetry phantom, while the attenuation coefficient of the sources in the water phantom is different from that of different tissues. The purpose of this study is to investigate the effects of the phantom materials on the TG-43 dosimetery parameters of the Cs-137 brachytherapy source using MCNP4C Monte Carlo code. Materials and Methods In this research, the Cs-137 (Model Selectron brachytherapy source was simulated in different phantoms (bone, soft tissue, muscle, fat, and the inhomogeneous phantoms of water/bone of volume 27000 cm3 using MCNP4C Monte Carlo code. *F8 tally was used to obtain the dose in a fine cubical lattice. Then the TG-43 dosimetry parameters of the brachytherapy source were obtained in water phantom and compared with those of different phantoms. Results The percentage difference between the radial dose function g(r of bone and the g(r of water phantom, at a distance of 10 cm from the source center is 20%, while such differences are 1.7%, 1.6% and 1.1% for soft tissue, muscle, and fat, respectively. The largest difference of the dose rate constant of phantoms with those of water is 4.52% for the bone phantom, while the differences for soft tissue, muscle, and fat are 1.18%, 1.27%, and 0.18%, respectively. The 2D anisotropy function of the Cs-137 source for different tissues is identical to that of water. Conclusion The results of the simulations have shown that dose calculation in water phantom would introduce errors in the dose calculation around brachytherapy sources. Therefore, it is suggested that the correction factors of different tissues be applied after dose calculation in water phantoms, in order to

  13. Dosimetric parameters of palladium-103 brachytherapy source with Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    WANG JianHua; LIU Wei; XU XunJiang; GU JiaHui; CAI Jun; HUA ZhengDong; XU JiaQiang

    2008-01-01

    Before clinical application of a new source, the dosimetric parameters of the source should be accu-rately determined. This work is dedicated to the Monte Carlo method to calculate dosimetric parameters as recommended by the American Association of Physicists in Medicine (AAPM) TG-43 guidelines for model ADVANTAGETM palladium-103 source and, through comparison with data from another published report for the same source, presents a suggested dataset for clinical applications. From these calcula-tions, tables are presented for the radial dose function and the anisotropy function of palladium-103 brachytherapy source. The dose rate constants are found to be 0.671 (cGyh-1U-1) in liquid water and 0.673 (cGyh-1U-1) in Solid WaterTM. And the anisotropy constants in liquid water and Solid WaterTM are found to be 0.864 and 0.865 respectively. Comparison with the previous study shows that our results of dosimetric parameters are in good agreement with those measured and calculated by Meigooni et al. (2006) both in Water and Solid WaterTM.

  14. Study of Different Tissue Density Effects on the Dose Distribution of a 103Pd Brachytherapy Source Model MED3633

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2010-09-01

    Full Text Available Introduction: Clinical application of encapsulated radioactive brachytherapy sources has a major role in cancer treatment. In the present research, the effects of different tissue densities on the dose distribution of a 103Pd brachytherapy source in a spherical phantom of 50 cm radius have been studied. Material and Methods: As is well known, absorbed dose in tissue depends to its density, but this difference is not clear in measurements. Therefore, we applied the MCNP code to evaluate the effect of density on the dose distribution. 103Pd brachytherapy sources are used to treat prostate, breast and other cancers. Results: Absorbed dose has been calculated and presented around a source placed in the center of the phantom for different tissue densities. Also, we derived anisotropy and radial dose functions and compared our Monte Carlo results with experimental results of Rivard and Li et al. for F(1, θ and g(r in 1.040 g/cm3 tissue. Conclusion: The results of this study show that relative dose variations around the source center are very considerable at different densities, because of the presence of a photoabsorber (Au-Cu alloy in the source core. Dose variation exceeds 80% at the point (Z = 2.4 mm, Y = 0 mm. Computed values of anisotropy and radial dose functions are in good agreement with the experimental results of Rivard and Li et al.

  15. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  16. Determination of dosimetric parameters for shielded 153Gd source in prostate cancer brachytherapy

    Science.gov (United States)

    Ghorbani, Mahdi; Ghatei, Najmeh; Mehrpouyan, Mohammad; Meigooni, Ali S.; Shahraini, Ramin

    2017-01-01

    Abstract Background Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. Materials and methods A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. Results The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. Conclusions Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS). PMID:28265239

  17. Methodology study for fixation of radioactive iodine in polymeric substrate for brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruna T.; Rostelato, Maria Elisa C.M.; Souza, Carla D.; Tiezzi, Rodrigo; Souza, Daiane B. de; Benega, Marcos A.G.; Souza, Anderson S. de; Peleias Junior, Fernando S.; Zeituni, Calos A.; Fernandes, Vagner; Melo, Emerson Ronaldo de; Camargo, Anderson Rogerio de, E-mail: bteigarodrigues@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Cancer is now the second leading cause of death by disease in several countries, including Brazil. Prostate cancer is the most common among men. Brachytherapy is a modality of radiotherapy in which radioactive seeds are placed inside or in contact with the organ to be treated. The most widely used radioisotope in prostate brachytherapy is Iodine-125 which is presented fixated on a silver substrate that is subsequently placed inside a titanium capsule. A large dose of radiation is released only in the targeted tumor protecting healthy surrounding tissues. The technique requires the application of 80 - 120 seeds per patient. The implants of seeds have low impact and non-surgical procedures. Most patients can return to normal life within three days with little or no pain. This work proposes an alternative to the seeds that have already been developed, in order to reduce the cost by obtaining a better efficiency on fixing the radioactive iodine onto the epoxy resin. Methods have been developed to perform the fixation of Iodine-125 onto polymeric substrates. The parameters analyzed were the immersion time, type of static or dynamic reaction, concentration of the adsorption solution, the specific activity of the radioactive source, the need for carrier and chemical form of the radioactive Iodine. These experiments defined the most effective method to fixate the Iodine onto the polymeric material (epoxy resin), the Iodine activity in the polymeric substrate, the activity of the distribution of variation in a plot of polymeric cores and the efficiency of the epoxy resin to seal the seed. (author)

  18. Effectiveness Evaluation of Skin Covers against Intravascular Brachytherapy Sources Using VARSKIN3 Code

    Directory of Open Access Journals (Sweden)

    Baghani HR

    2013-12-01

    Full Text Available Background and Objective: The most common intravascular brachytherapy sources include 32P, 188Re, 106Rh and 90Sr/90Y. In this research, skin absorbed dose for different covering materials in dealing with these sources were evaluated and the best covering material for skin protection and reduction of absorbed dose by radiation staff was recognized and recommended. Method: Four materials including polyethylene, cotton and two different kinds of plastic were proposed as skin covers and skin absorbed dose at different depths for each kind of the materials was calculated separately using the VARSKIN3 code. Results: The results suggested that for all sources, skin absorbed dose was minimized when using polyethylene. Considering this material as skin cover, maximum and minimum doses at skin surface were related to 90Sr/90Y and 106Rh, respectively. Conclusion: polyethylene was found the most effective cover in reducing skin dose and protecting the skin. Furthermore, proper agreement between the results of VARSKIN3 and other experimental measurements indicated that VRASKIN3 is a powerful tool for skin dose calculations when working with beta emitter sources. Therefore, it can be utilized in dealing with the issue of radiation protection.

  19. Long term response stability of a well-type ionization chamber used in calibration of high dose rate brachytherapy sources

    Directory of Open Access Journals (Sweden)

    Vandana S

    2010-01-01

    Full Text Available Well-type ionization chamber is often used to measure strength of brachytherapy sources. This study aims to check long term response stability of High Dose Rate (HDR -1000 Plus well-type ionization chamber in terms of reference air kerma rate (RAKR of a reference 137 Cs brachytherapy source and recommend an optimum frequency of recalibration. An HDR-1000 Plus well-type ionization chamber, a reference 137 Cs brachytherapy source (CDCSJ5, and a MAX-4000 electrometer were used in this study. The HDR-1000 Plus well-type chamber was calibrated in terms of reference air kerma rate by the Standards Laboratory of the International Atomic Energy Agency (IAEA, Vienna. The response of the chamber was verified at regular intervals over a period of eight years using the reference 137 Cs source. All required correction factors were applied in the calculation of the RAKR of the 137 Cs source. This study reveals that the response of the HDR-1000 Plus well-type chamber was well within ±0.5% for about three years after calibration/recalibration. However, it shows deviations larger than ±0.5% after three years of calibration/recalibration and the maximum variation in response of the chamber during an eight year period was 1.71%. The optimum frequency of recalibration of a high dose rate well-type chamber should be three years.

  20. Long term response stability of a well-type ionization chamber used in calibration of high dose rate brachytherapy sources.

    Science.gov (United States)

    Vandana, S; Sharma, S D

    2010-04-01

    Well-type ionization chamber is often used to measure strength of brachytherapy sources. This study aims to check long term response stability of High Dose Rate (HDR)-1000 Plus well-type ionization chamber in terms of reference air kerma rate (RAKR) of a reference (137)Cs brachytherapy source and recommend an optimum frequency of recalibration. An HDR-1000 Plus well-type ionization chamber, a reference (137)Cs brachytherapy source (CDCSJ5), and a MAX-4000 electrometer were used in this study. The HDR-1000 Plus well-type chamber was calibrated in terms of reference air kerma rate by the Standards Laboratory of the International Atomic Energy Agency (IAEA), Vienna. The response of the chamber was verified at regular intervals over a period of eight years using the reference (137)Cs source. All required correction factors were applied in the calculation of the RAKR of the (137)Cs source. This study reveals that the response of the HDR-1000 Plus well-type chamber was well within +/-0.5% for about three years after calibration/recalibration. However, it shows deviations larger than +/-0.5% after three years of calibration/recalibration and the maximum variation in response of the chamber during an eight year period was 1.71%. The optimum frequency of recalibration of a high dose rate well-type chamber should be three years.

  1. [A Quality Assurance (QA) System with a Web Camera for High-dose-rate Brachytherapy].

    Science.gov (United States)

    Hirose, Asako; Ueda, Yoshihiro; Oohira, Shingo; Isono, Masaru; Tsujii, Katsutomo; Inui, Shouki; Masaoka, Akira; Taniguchi, Makoto; Miyazaki, Masayoshi; Teshima, Teruki

    2016-03-01

    The quality assurance (QA) system that simultaneously quantifies the position and duration of an (192)Ir source (dwell position and time) was developed and the performance of this system was evaluated in high-dose-rate brachytherapy. This QA system has two functions to verify and quantify dwell position and time by using a web camera. The web camera records 30 images per second in a range from 1,425 mm to 1,505 mm. A user verifies the source position from the web camera at real time. The source position and duration were quantified with the movie using in-house software which was applied with a template-matching technique. This QA system allowed verification of the absolute position in real time and quantification of dwell position and time simultaneously. It was evident from the verification of the system that the mean of step size errors was 0.31±0.1 mm and that of dwell time errors 0.1±0.0 s. Absolute position errors can be determined with an accuracy of 1.0 mm at all dwell points in three step sizes and dwell time errors with an accuracy of 0.1% in more than 10.0 s of the planned time. This system is to provide quick verification and quantification of the dwell position and time with high accuracy at various dwell positions without depending on the step size.

  2. Effect of Uniform and Non-uniform High-z Nanoparticles Distribution in Tumor Volume on Dose Enhancement Factor During 192Ir Brachytherapy

    Directory of Open Access Journals (Sweden)

    M Zabihzadeh

    2013-12-01

    Conclusion: increase of atomic number and concentrations of NPs enhance the absorbed dose due to increased possibility of photoelectric phenomena. Non-uniform distribution of NPs underestimated dose compared to uniform distribution; therefore, considering accurate NPs distribution inside the tumor volume is crucial to calculation of dose enhancement. Targeted labeling of NPs for the maximum absorption by tumor and for the minimal penetration into peripheral tissues has potential to increase radiation therapeutic ratio.

  3. Monte Carlo characterization of the Gamma-Med Hdr plus Ir-192 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, E.; Sosa, M. A.; Gil V, A. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Av. Insurgentes 2354, 37150 Leon, Guanajuato (Mexico); Monzon, E., E-mail: eric_1985@fisica.ugto.mx [IMSS, Unidad Medica de Alta Especialidad No. 1, Av. Adolfo Lopez Mateos 1813, 37340 Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The MCNP4C Monte Carlo code was used to simulate the dosimetry around the Gamma-Med Hdr Plus iridium-192 brachytherapy source in both air/vacuum and water environments. Dosimetry data in water was calculated and are presented into an away-along table. All dosimetric quantities recommended by the AAPM Task Group 43 report have been also calculated. These quantities are air kerma strength, dose rate constant, radial dose function and anisotropy function. The obtained data are compared to this source reference data, finding results in good agreement with them. In this study, recommendations of the AAPM TG-43U1 report have been followed and comply with the most recent AAPM and ESTRO physics committee recommendations about Monte Carlo techniques. The data in the present study complement published data and can be used as input in the Tps or as benchmark data to verify the results of the treatment planning systems as well as a means of comparison with other datasets from this source. (Author)

  4. Dosimetric evaluation of newly developed well-type ionization chamber for use in the calibration of brachytherapy sources

    Directory of Open Access Journals (Sweden)

    Sathiyan Saminathan

    2016-01-01

    Full Text Available The well-type ionization chamber has been designed for convenient use in brachytherapy source strength calibration. The chamber has a volume of 240 cm 3 , weight of 2.5 kg, and is open to atmospheric conditions. The well-type ionization chamber dosimetric characteristics such as leakage current, stability, scattering effect, ion collection efficiency, and nominal response with energy were studied. The evaluated dosimetric characteristics of well-type ionization chamber were compared with two other commercially available well-type ionization chambers. The study shows that the newly developed well-type ionization chamber is reliable for air-kerma strength calibration. The results obtained confirm that this chamber can be used for the calibrations of high-dose rate brachytherapy sources.

  5. Dosimetric evaluation of newly developed well-type ionization chamber for use in the calibration of brachytherapy sources.

    Science.gov (United States)

    Saminathan, Sathiyan; Godson, Henry Finlay; Ponmalar, Retna; Manickam, Ravikumar; Mazarello, James

    2016-01-01

    The well-type ionization chamber has been designed for convenient use in brachytherapy source strength calibration. The chamber has a volume of 240 cm(3), weight of 2.5 kg, and is open to atmospheric conditions. The well-type ionization chamber dosimetric characteristics such as leakage current, stability, scattering effect, ion collection efficiency, and nominal response with energy were studied. The evaluated dosimetric characteristics of well-type ionization chamber were compared with two other commercially available well-type ionization chambers. The study shows that the newly developed well-type ionization chamber is reliable for air-kerma strength calibration. The results obtained confirm that this chamber can be used for the calibrations of high-dose rate brachytherapy sources.

  6. SU-F-BRA-12: End-User Oriented Tools and Procedures for Testing Brachytherapy TPSs Employing MBDCAs

    Energy Technology Data Exchange (ETDEWEB)

    Peppa, V; Pappas, E; Lahanas, V; Pantelis, E; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens (Greece)

    2015-06-15

    Purpose: To develop user-oriented tools for commissioning and dosimetry testing of {sup 192}Ir brachytherapy treatment planning systems (TPSs) employing model based dose calculation algorithms (MBDCAs). Methods: A software tool (BrachyGuide) has been developed for the automatic generation of MCNP6 input files from any CT based plan exported in DICOM RT format from Elekta and Varian TPSs. BrachyGuide also facilitates the evaluation of imported Monte Carlo (MC) and TPS dose distributions in terms of % dose differences and gamma index (CT overlaid colormaps or relative frequency plots) as well as DVHs and related indices. For users not equipped to perform MC, a set of computational models was prepared in DICOM format, accompanied by treatment plans and corresponding MCNP6 generated reference data. BrachyGuide can then be used to compare institutional and reference data as per TG186. The model set includes a water sphere with the MBDCA WG {sup 192}Ir source placed centrically and in two eccentric positions, a water sphere with cubic bone and lung inhomogeneities and a five source dwells plan, and a patient equivalent model with an Accelerated Partial Breast Irradiation (APBI) plan. Results: The tools developed were used for the dosimetry testing of the Acuros and ACE MBDCAs implemented in BrachyVision v.13 and Oncentra Brachy v.4.5, respectively. Findings were consistent with previous results in the literature. Besides points close to the source dwells, Acuros was found to agree within type A uncertainties with the reference MC results. Differences greater than MC type A uncertainty were observed for ACE at distances >5cm from the source dwells and in bone. Conclusion: The tools developed are efficient for brachytherapy MBDCA planning commissioning and testing. Since they are appropriate for distribution over the web, they will be put at the AAPM WG MBDCA’s disposal. Research co-financed by the ESF and Greek funds. NSRF operational Program: Education and Lifelong

  7. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel

    Science.gov (United States)

    Fonseca, Gabriel P.; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R.; Lutgens, Ludy; Vanneste, Ben G. L.; Voncken, Robert; Van Limbergen, Evert J.; Reniers, Brigitte; Verhaegen, Frank

    2017-07-01

    Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of  ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.

  8. Low dose rate caesium-137 implant time of intracavitary brachytherapy source of a selected oncology center in Ghana

    Directory of Open Access Journals (Sweden)

    John Owusu Banahene

    2015-01-01

    Full Text Available Background: The treatment time taken for a radioactive source is found to be very important in intracavitary brachytherapy treatment. The duration of the treatment time depends on the prescribed dose requested to a reference point and the calculated dose rate to the same point. The duration of the treatment time of source is found to depend on the tumour stage. In this work, the treatment time of implant has been calculated for a Caesium-137 low dose rate brachytherapy source at an oncology facility in Ghana. Objective: The objective was to determine how the treatment time of tumours depends on the dose rate to the reference point prescribed by the Oncologists and the dose rate determined by the dosimetrists at the facility. Materials and Method: Depending upon the stage of the cancer, the Oncologist determines the type of treatment modality, source configuration for the cancer patient and positions of both tandem and ovoids in the cervix. Depending also on the tumour stage, two orthogonal radiographic X-ray films are taken using a simulator machine. The treatment machine used in the study is AMRA-Curietron. The maximum activity of the source was 259GBq. It has five channels which is a manual remote afterloader. In clinical practice, the treatment time t is very short(only some few days for such low dose rate brachytherapy source like Cs-137 which lasts only for some few days in comparison with the half life of the Cs-137 source. The mathematical equation for the calculation of treatment time is written as t=D/D. Hence t is the treatment time of the radioactive source of patients undergoing intracavitary brachytherapy treatment, D is prescribed dose to a reference point and D is the dose rate to the same reference point. Results: The calculated treatment time of the Cs-137 brachytherapy source for different source arrangements or channels used in clinical practice at the brachytherapy Centre have been determined. Also provided, are the

  9. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and National Dosimetry Centre (CND), Valencia 46009 (Spain); Niatsetski, Y. [Elekta Brachytherapy, Veenendaal 3905 TH (Netherlands); Laarse, R. van der [Quality Radiation Therapy BV, Zeist 3707 HB (Netherlands); Granero, D. [Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ballester, F. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Perez-Calatayud, J. [Radiation Oncology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain and Department of Radiotherapy, Clínica Benidorm, Benidorm 03501 (Spain); Vijande, J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and Instituto de Física Corpuscular (UV-CSIC), Burjassot 46100 (Spain)

    2016-04-15

    Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a {sup 192}Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a {sup 192}Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth–dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable

  10. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions.

    Science.gov (United States)

    Candela-Juan, C; Niatsetski, Y; van der Laarse, R; Granero, D; Ballester, F; Perez-Calatayud, J; Vijande, J

    2016-04-01

    The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a (192)Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. The penelope2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a (192)Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth-dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of

  11. Improved source path localisation in ring applicators and the clinical impact for gynecological brachytherapy.

    Science.gov (United States)

    Humer, Irene; Kirisits, Christian; Berger, Daniel; Trnková, Petra; Pötter, Richard; Nesvacil, Nicole

    2015-06-01

    The path of subsequent dwell positions of an afterloader source being moved through a ring applicator for cervix cancer brachytherapy deviates from an ideal circle and the position of marker wires. This can lead to deviations of several millimetres between real and assumed dwell positions for treatment planning with simplified source path models. The aim of this study was to test video- and autoradiography-based methods for source path determination, and to study the influence of dwell position accuracy on dose-volume histogram (DVH)-parameters. Videos of the exact motion of the source wire through three different (r = 26, 30, 34 mm) computed tomography/magnetic resonance (CT/MR) compatible plastic ring applicators were recorded. Observed dwell positions covering the whole length of each applicators channel were used to adjust the circular source path model. The agreement of the true source positions derived from video analysis with those of the corrected circular source path was verified using autoradiography. The impact of an accurate source path definition on dose planning was analysed by simulating clinically relevant uncertainties in 10 clinical treatment plans. Depending on the ring size, source path diameters had to be increased by 0.5-1.0 mm in order to achieve acceptable maximum differences between observed and corrected dwell positions (1.3-2.0 mm). Autoradiography analysis showed a positional accuracy within ± 3 mm (extended standard deviation k = 2). For shifts of ± 2.5 mm for even all dwell positions, the systematic and random variation of the D2cm(3) for bladder, rectum, and sigmoid was within 3%, while the impact on DVH uncertainties was much smaller for clinical target volume (CTV)HR and gross tumour volume (GTV). It is strongly advised to verify the real source path for ring applicators during acceptance testing in order to assure accurate source path definition and dose planning. Autoradiography can be used for source path verification with

  12. Theoretical and experimental determination of dosimetric characteristics for ADVANTAGE{sup TM} Pd-103 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Meigooni, Ali S. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States)]. E-mail: alimeig@uky.edu; Dini, Sharifeh A. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States); Awan, Shahid B. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States); Dou, Kai [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States); Koona, Rafiq A. [Department of Radiation Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536 (United States)

    2006-08-15

    ADVANTAGE{sup TM} Pd-103 brachytherapy source has been recently introduced by IsoAid{sup TM} for prostate permanent implants. Dosimetric characteristics (Dose rate constant, radial dose function, 2D-, and 1D-anisotropy functions) of this source model have been determined using both theoretical and experimental methods, following the updated TG-43U1 protocol. Derivation of the dose rate constant was based on recent NIST WAFAC calibration performed in accordance with the 1999 Standards. Measurements were performed in Solid Water{sup TM} using LiF TLD chips and the theoretical calculations were performed in Solid Water{sup TM} and liquid water phantom materials using PTRAN Monte Carlo code. The results of the Monte Carlo simulation have shown a dose rate constant of 0.69 cGy h{sup -1} U{sup -1} in liquid water and 0.67 cGy h{sup -1} U{sup -1} in Solid Water{sup TM} medium. The measured dose rate constant in Solid Water{sup TM} was found to be 0.68{+-}8% cGy h{sup -1} U{sup -1}, which is in a good agreement (within {+-}5%) to the Monte Carlo simulated data. The 2D- and 1D-anisotropy functions of the ADVANTAGE{sup TM} Pd-103 source were calculated for radial distances ranging from 0.5 to 5.0 cm. Radial dose function was determined for radial distances ranging from 0.2 to 8.0 cm using line source approximation. All these calculations are based on L {sub eff} equal to 3.61 cm, calculated following TG-43U1 recommendations. The tabulated data for 2D-anisotropy function, 1D-anisotropy function, dose rate constant and radial dose function have been produced for clinical application of this source model.

  13. Dosimetry parameters calculation of two commercial iodine brachytherapy sources using SMARTEPANTS with EPDL97 library

    Directory of Open Access Journals (Sweden)

    Navid Ayoobian

    2012-01-01

    Conclusion: The good agreement between the results of this study and previous reports and high computational speed suggest that SMARTEPANTS could be extended to a real-time treatment planning system for 125 I brachytherapy treatments.

  14. Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: recommendations of the AAPM Therapy Physics Committee Task Group No. 149.

    Science.gov (United States)

    Chiu-Tsao, Sou-Tung; Schaart, Dennis R; Soares, Christopher G; Nath, Ravinder

    2007-11-01

    Since the publication of AAPM Task Group 60 report in 1999, a considerable amount of dosimetry data for the three coronary brachytherapy systems in use in the United States has been reported. A subgroup, Task Group 149, of the AAPM working group on Special Brachytherapy Modalities (Bruce Thomadsen, Chair) was charged to develop recommendations for dose calculation formalisms and the related consensus dosimetry parameters. The recommendations of this group are presented here. For the Cordis 192Ir and Novoste 90Sr/90Y systems, the original TG-43 formalism in spherical coordinates should be used along with the consensus values of the dose rate constant, geometry function, radial dose function, and anisotropy function for the single seeds. Contributions from the single seeds should be added linearly for the calculation of dose distributions from a source train. For the Guidant 32P wire system, the modified TG-43 formalism in cylindrical coordinates along with the recommended data for the 20 and 27 mm wires should be used. Data tables for the 6, 10, 14, 18, and 22 seed trains of the Cordis system, 30, 40, and 60 mm seed trains of the Novoste system, and the 20 and 27 mm wires of the Guidant system are presented along with our rationale and methodology for selecting the consensus data. Briefly, all available datasets were compared with each other and the consensus dataset was either an average of available data or the one obtained from the most densely populated study; in most cases this was a Monte Carlo calculation.

  15. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    Science.gov (United States)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  16. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    Directory of Open Access Journals (Sweden)

    Grzegorz Zwierzchowski

    2016-08-01

    Full Text Available Purpose: Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm, accurate tissues segmentation, and the structure’s elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods : Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results : Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm. Conclusions : Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  17. SU-F-BRA-11: An Experimental Commissioning Test of Brachytherapy MBDCA Dosimetry, Based On a Commercial Radiochromic Gel/optical CT System

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, E; Karaiskos, P; Zourari, K; Peppa, V; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens (Greece)

    2015-06-15

    Purpose: To implement a 3D dose verification procedure of Model-Based Dose Calculation Algorithms (MBDCAs) for {sup 192}Ir HDR brachytherapy, based on a novel Ferrous Xylenol-orange gel (FXG) and optical CT read-out. Methods: The TruView gel was employed for absolute dosimetry in conjunction with cone-beam optical CT read-out with the VISTA scanner (both from Modus Medical Inc, London, ON, Canada). A multi-catheter skin flap was attached to a cylindrical PETE jar (d=9.6cm, h=16cm) filled with FXG, which served as both the dosimeter and the water equivalent phantom of bounded dimensions. X- ray CT image series of the jar with flap attached was imported to Oncentra Brachy v.4.5. A treatment plan consisting of 8 catheters and 56 dwell positions was generated, and Oncentra-ACE MBDCA as well as TG43 dose results were exported for further evaluation. The irradiation was carried out with a microSelecton v2 source. The FXG dose-response, measured via an electron irradiation of a second dosimeter from the same batch, was linear (R2>0.999) at least up to 12Gy. A MCNP6 input file was prepared from the DICOM-RT plan data using BrachyGuide to facilitate Monte Carlo (MC) simulation dosimetry in the actual experimental geometry. Agreement between experimental (reference) and calculated dose distributions was evaluated using the 3D gamma index (GI) method with criteria (5%-2mm applied locally) determined from uncertainty analysis. Results: The TG-43 GI failed, as expected, in the majority of voxels away from the flap (pass rate 59% for D>0.8Gy, corresponding to 10% of prescribed dose). ACE performed significantly better (corresponding pass rate 92%). The GI evaluation for the MC data (corresponding pass rate 97%) failed mainly at low dose points of increased uncertainty. Conclusion: FXG gel/optical CT is an efficient method for level-2 commissioning of brachytherapy MBDCAs. Target dosimetry is not affected from uncertainty introduced by TG43 assumptions in 192Ir skin brachytherapy

  18. Helmet mold-based surface brachytherapy for homogeneous scalp treatment: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Liebmann, A.; Pohlmann, S.; Heinicke, F.; Hildebrandt, G. [Univ. Hospital Leipzig AoeR (Germany). Dept. of Radiotherapy and Radiooncology

    2007-04-15

    Background/Case Report: External-beam radiotherapy of complex-shaped areas is sometimes difficult to realize. In a patient with chronic lymphatic leukemia (CLL) infiltrates of the skin of the whole scalp, conventional external-beam radiotherapy with electrons or photons was not able to treat the target sufficiently. Thus, the authors developed a brachytherapy moulage technique using a customized helmet (polyethylene) with flexible interstitial plastic applicators and irradiated the target very homogeneously with a microselectron {sup 192}Ir HDR (high-dose-rate) source (2.0 Gy daily fractionated; 36.0 Gy total dose related to the reference points in 3 mm focus depth). Technical difficulties, CT-supported three-dimensional conformal treatment planning, and verification with TLD probe measurements are described. The treatment was well tolerated and resulted in complete local remission of the CLL infiltrates within a follow-up of 30 months. Conclusion: The presented treatment of lymphoma infiltrates at the scalp by HDR moulage techniques is exceptional but safe and practicable to achieve local tumor control.

  19. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario San Cecilio, E-18012 Granada (Spain); Perez-Calatayud, Jose [Servicio de Radioterapia, Unidad de Radiofísica, Hospital Universitario y Politécnico La Fe, E-46026 Valencia (Spain); Simancas, Fernando; Lallena, Antonio M. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Gazdic-Santic, Maja [Department of Medical Physics and Radiation Safety, Clinical Centre of Sarajevo University, 71000 Sarajevo (Bosnia and Herzegovina)

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  20. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P., E-mail: somessar@ipen.b, E-mail: afeher@ipen.b, E-mail: sprenger@ipen.b, E-mail: elisaros@ipen.b, E-mail: olcosta@ipen.b, E-mail: wapcalvo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  1. Overview on the dosimetric uncertainty analysis for photon-emitting brachytherapy sources, in the light of the AAPM Task Group No 138 and GEC-ESTRO report

    Science.gov (United States)

    DeWerd, Larry A.; Venselaar, Jack L. M.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Stump, Kurt E.; Thomadsen, Bruce R.; Rivard, Mark J.

    2012-10-01

    In 2011, the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) published a report pertaining to uncertainties in brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization's Guide to the Expression of Uncertainty in Measurement and Technical Note 1297 by the National Institute of Standards and Technology are taken as reference standards for uncertainty formalism. Uncertainties involved in measurements or Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is given with uncertainties in each of the brachytherapy dosimetry parameters of the AAPM TG-43 dose-calculation formalism. For low-energy and high-energy brachytherapy sources of low dose-rate and high dose-rate, a combined dosimetric uncertainty AAPM and GEC-ESTRO for their members, and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for conventional brachytherapy sources used in routine clinical treatments.

  2. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    White, Shane A.; Landry, Guillaume; Reniers, Brigitte, E-mail: brigitte.reniers@maastro.nl [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN (Netherlands); Fonseca, Gabriel Paiva [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN, The Netherlands and Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP, São Paulo CP 11049, 05422-970 (Brazil); Holt, Randy; Rusch, Thomas [Xoft, A Subsidiary of iCAD, Sunnyvale, California 94085-4115 (United States); Beaulieu, Luc [Centre Hospitalier Universitaire de Québec Université Laval, Radio-Oncologie et Centre de Recherche en Cancérologie de l’Université Laval, Québec, Québec G1R 2J6 Canada (Canada); Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht 6201 BN, The Netherlands and Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2014-06-15

    Purpose: The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. Methods: A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (D{sub w,m}) and dose to medium (D{sub m,m}), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. Results: All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D{sub 90} to PTV was reduced by between ∼4% and ∼40%, depending on the

  3. Investigation of Anisotropy Caused by Cylinder Applicator on Dose Distribution around Cs-137 Brachytherapy Source using MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2011-06-01

    Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources.  Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively.  By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.

  4. Dosimetric characterization of the M-15 high-dose-rate Iridium-192 brachytherapy source using the AAPM and ESTRO formalism.

    Science.gov (United States)

    Ho Than, Minh-Tri; Munro Iii, John J; Medich, David C

    2015-05-08

    The Source Production & Equipment Co. (SPEC) model M-15 is a new Iridium-192 brachytherapy source model intended for use as a temporary high-dose-rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M-15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M-15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium-192 photons were uniformly generated inside the iridium core of the model M-15 with photon and secondary electron transport replicated using photoatomic cross-sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4 × 109 sources photon history for each simulation and the in-air photon spectrum filtered to remove low-energy photons belowδ = 10 keV. Dosimetric data, including D·(r,θ), gL(r), F(r,θ), φan(r), and φ-an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M-15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M-15 Iridium-192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D·(r0,θ0) ≡ D· (1cm

  5. Dosimetric analysis of Co-60 source based high dose rate (HDR) brachytherapy: A case series of ten patients with carcinoma of the uterine cervix.

    Science.gov (United States)

    Gurjar, Om Prakash; Batra, Manika; Bagdare, Priyusha; Kaushik, Sandeep; Tyagi, Atul; Naik, Ayush; Bhandari, Virendra; Gupta, Krishna Lal

    2016-01-01

    To analyse the dosimetric parameters of Co-60 based high dose rate (HDR) brachytherapy plans for patients of carcinoma uterine cervix. Co-60 high dose rate (HDR) brachytherapy unit has been introduced in past few years and is gaining importance owing to its long half life, economical benefits and comparable clinical outcome compared to Ir-192 HDR brachytherapy. A study was conducted on ten patients with locally advanced carcinoma of the uterine cervix (Ca Cx). Computed tomography (CT) images were taken after three channel applicator insertions. The planning for 7 Gray per fraction (7 Gy/#) was done for Co-60 HDR brachytherapy unit following the American Brachytherapy Society (ABS) guidelines. All the patients were treated with 3# with one week interval between fractions. The mean dose to high risk clinical target volumes (HRCTV) for D90 (dose to 90% volume) was found to be 102.05% (Standard Deviation (SD): 3.07). The mean D2cc (dose to 2 cubic centimeter volume) of the bladder, rectum and sigmoid were found to be 15.9 Gy (SD: 0.58), 11.5 Gy (SD: 0.91) and 4.1 Gy (SD: 1.52), respectively. The target coverage and doses to organs at risk (OARs) were achieved as per the ABS guidelines. Hence, it can be concluded that the Co-60 HDR brachytherapy unit is a good choice especially for the centers with a small number of brachytherapy procedures as no frequent source replacement is required like in an Ir-192 HDR unit.

  6. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  7. Evaluation of the visibility of a new thinner ¹²⁵I radioactive source for permanent prostate brachytherapy.

    Science.gov (United States)

    Roberts, Gemma; Al-Qaisieh, Bashar; Bownes, Peter

    2012-01-01

    The ¹²⁵I source currently used for prostate brachytherapy at St. James's Institute of Oncology is a standard size seed (≈4.5mm in length and 0.8mm in diameter). A new, thinner seed is under evaluation. This is designed to be implanted using narrower needles, potentially reducing edema and improving the dose distribution. This study investigated the visibility of the thinner source on multimodality images and compared it with that of standard size seeds. Images of dummy seeds of both thinner and standard size models were taken using ultrasound, fluoroscopy, computed tomography (CT), and magnetic resonance (MR) imaging. The ultrasound, fluoroscopy, and CT images were acquired with the seeds inserted into phantoms positioned in a water tank. The MR images were acquired using phantoms containing single seeds. The images were analyzed visually and quantitatively. The resolution of closely spaced seeds on CT images was investigated. The visibility of both seeds was similar on ultrasound, fluoroscopy, and MR images. On CT images, the thinner seeds give reduced artifacts and better resolution. The use of the thinner seed would have minimal effect on ultrasound and fluoroscopy imaging during treatment. However on CT images, the use of the thinner seeds may improve seed identification for post-treatment dosimetry. Further study is required into the suitability of MR images alone for post-treatment dosimetry. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Influences of spherical phantom heterogeneities on dosimetric charactristics of miniature electronic brachytherapy X-ray sources: Monte Carlo study.

    Science.gov (United States)

    Karimi Jashni, Hojatollah; Safigholi, Habib; Meigooni, Ali S

    2014-10-23

    Dose calculations in current brachytherapy treatment planning systems (TPS) are commonly based on TG-43U1 formalism. These TPS are obtained by superposition principle of single-source dosimetric parameters in liquid water, neglecting the effects of tissue heterogeneity. In this work, the sensitivity of the TG-43U1 based radial dose function (g(r)) of Miniature Electronic Brachytherapy X-ray Sources (MEBXS) to bone-heterogeneity was examined. To quantify the heterogeneity effects for g(r), a series of Monte Carlo (MC) based radiation transport simulations at the center of homogeneous and heterogeneous spherical phantoms were performed using the MCNP5 code. The ratio of the g(r) in the heterogeneius phantom to the uniform soft tisuue phantom as a function of the bone thickness was determined. These results indicated that for 40keV beam, the maximum ratios for thicknesses of 1cm and 2cm were 3.36 and 3.27, respectively. These values changed to 4.28 and 4.06, for 60keV beam, respectively. Introduction of 0.5cm or 1cm red marrow, into the interior of the cortical bone changed the maximum variations to, 3.54, and 3.57 for 40keV, and 4.28, and 4.25, for 60keV, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.

    Science.gov (United States)

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-12-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by (192)Ir and (60)Co will reduce the lead thickness by a factor of five for (192)Ir and ten for (60)Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers.The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness.

  10. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study

    Science.gov (United States)

    White, Shane A.; Reniers, Brigitte; de Jong, Evelyn E. C.; Rusch, Thomas; Verhaegen, Frank

    2016-01-01

    Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB  ≈  1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with

  11. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources.

    Science.gov (United States)

    Sliski, Alan; Soares, Christopher; Mitch, Michael G

    2006-01-01

    A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a (103)Pd source of air-kerma strength 3.4 U (1 U = 1 microGy m(2) h(-1)), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration.

  12. Treatment of extensive carcinoma of the cervix with the transperineal parametrial butterfly. [Dosimetry efficiency and complications of afterloaded /sup 192/Ir implants

    Energy Technology Data Exchange (ETDEWEB)

    Feder, B.H.; Nisar Syed, A.M.; Neblett, D.

    1978-01-01

    In advanced carcinoma of the cervix the associated obliteration of the fornices or contracture of the vagina may interfere with accurate placement of conventional intracavitary applicators. Poorly placed applicators fail to irradiate the pelvis homogeneously. Waterman (and others) solved this dilemma by transvaginal radium implants many years ago; however, despite good survival figures, this technique has not gained popularity, presumably because of excessive exposure to personnel. In this paper, we describe a technique which largely eliminates the exposure problem and at the same time improves the homogeneity of pelvic endoradiotherapy. We locate what is in essence a pair of paravaginal interstitial colpostats in both parametria in combination with the usual intrauterine tandem. This helps to distribute the dose laterally, with relative sparing of bladder and rectum. The technique employs a template to guide the insertion into the parametria of a group of 18 gauge hollow steel needles transperineally. Afterloading with /sup 192/Ir is accomplished when the patient has returned to her room (after orthogonal radiography and computer dosimetry). Doses to point B compare very favorably to those at point A.

  13. Chemonuclear studies for identification for new production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt; Kernchemische Studien zur Entwicklung neuerer Produktionsverfahren fuer die therapierelevanten Radionuklide {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, K.

    2005-12-15

    New production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt and {sup 195m}Pt were investigated. Cross section data were measured using the stacked-foil technique and compared with theoretical calculations. A production method for the platinum nuclides was developed. The {sup 141}Pr(p, 2n){sup 140}Nd and {sup nat}Ce({sup 3}He, xn){sup 140}Nd reactions were investigated for production of {sup 140}Nd. Cross section data of nuclear reactions leading to the side products {sup 141}Nd, {sup 139}Nd and {sup 139}Ce could also be achieved. The experimental data were compared with theoretical calculations using the code ALICE-IPPE. A comparison of the calculated thick target yields showed that the {sup 141}Pr(p, 2n){sup 140}Nd reaction gives a higher yield. The {sup 192}Os(p, n){sup 192}Ir reaction was examined in the context of the production of {sup 192}Ir. Cross section data were determined and compared with theoretical calculations using the codes ALICE-IPPE and EMPIRE II. The yield of this reaction was compared with the yield of the reactor production of this nuclide. The reactor production seems to be more suitable because of a higher purity and yield. Cross section data were measured for the {sup 192}Os({alpha}, n){sup 195m}Pt, {sup 192}Os({alpha}, 3n){sup 193m}Pt and {sup 192}Os({sup 3}He, 4n){sup 191}Pt reactions. The activity of {sup 193m}Pt and {sup 195m}Pt was determined by X-ray spectroscopy after a chemical separation procedure. The ALICE-IPPE code was found to be inappropriate to reproduce the experimental values. The calculated yields were compared with the yields of other reactions, especially the reactor production of {sup 195m}Pt. The yield of the {sup 192}Os({alpha}, n){sup 195m}Pt reaction is lower compared to the yield of the reactor production, but offers lower target costs and higher specific activity. A production method for {sup 193m}Pt and {sup 195m}Pt was developed. Batch yields of 0.9 MBq

  14. Chemonuclear studies for identification for new production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt; Kernchemische Studien zur Entwicklung neuerer Produktionsverfahren fuer die therapierelevanten Radionuklide {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, K.

    2005-12-15

    New production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt and {sup 195m}Pt were investigated. Cross section data were measured using the stacked-foil technique and compared with theoretical calculations. A production method for the platinum nuclides was developed. The {sup 141}Pr(p, 2n){sup 140}Nd and {sup nat}Ce({sup 3}He, xn){sup 140}Nd reactions were investigated for production of {sup 140}Nd. Cross section data of nuclear reactions leading to the side products {sup 141}Nd, {sup 139}Nd and {sup 139}Ce could also be achieved. The experimental data were compared with theoretical calculations using the code ALICE-IPPE. A comparison of the calculated thick target yields showed that the {sup 141}Pr(p, 2n){sup 140}Nd reaction gives a higher yield. The {sup 192}Os(p, n){sup 192}Ir reaction was examined in the context of the production of {sup 192}Ir. Cross section data were determined and compared with theoretical calculations using the codes ALICE-IPPE and EMPIRE II. The yield of this reaction was compared with the yield of the reactor production of this nuclide. The reactor production seems to be more suitable because of a higher purity and yield. Cross section data were measured for the {sup 192}Os({alpha}, n){sup 195m}Pt, {sup 192}Os({alpha}, 3n){sup 193m}Pt and {sup 192}Os({sup 3}He, 4n){sup 191}Pt reactions. The activity of {sup 193m}Pt and {sup 195m}Pt was determined by X-ray spectroscopy after a chemical separation procedure. The ALICE-IPPE code was found to be inappropriate to reproduce the experimental values. The calculated yields were compared with the yields of other reactions, especially the reactor production of {sup 195m}Pt. The yield of the {sup 192}Os({alpha}, n){sup 195m}Pt reaction is lower compared to the yield of the reactor production, but offers lower target costs and higher specific activity. A production method for {sup 193m}Pt and {sup 195m}Pt was developed. Batch yields of 0.9 MBq

  15. Neutron dosimetry for low dose rate Cf-252 AT sources and adherence to recent clinical dosimetry protocol for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Radiation Oncology; Martin, R.C. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-01

    In 1995, the American Association of Physicists in Medicine Task Group 43 (AAPM TG-43) published a protocol obsoleting all mixed-field radiation dosimetry for Cf-252. Recommendations for a new brachytherapy dosimetry formalism made by this Task Group favor quantification of source strength in terms of air kerma rather than apparent Curies or other radiation units. Additionally, representation of this dosimetry data in terms of radial dose functions, anisotropy functions, geometric factors, and dose rate constants are in an angular and radial (spherical) coordinate system as recommended, rather than the along-away dosimetry data (Cartesian coordinate system) currently available. This paper presents the initial results of calculated neutron dosimetry in a water phantom for a Cf-252 applicator tube (AT) type medical source soon available from Oak Ridge National Laboratory (ORNL).

  16. Evaluation of wall correction factor of INER's air-kerma primary standard chamber and dose variation by source displacement for HDR ¹⁹²Ir brachytherapy.

    Science.gov (United States)

    Lee, J H; Wang, J N; Huang, T T; Su, S H; Chang, B J; Su, C H; Hsu, S M

    2013-01-01

    The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR) ¹⁹²Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the ¹⁹²Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR ¹⁹²Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR ¹⁹²Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.

  17. A dosimetry method for low dose rate brachytherapy by EGS5 combined with regression to reflect source strength shortage

    Science.gov (United States)

    Tanaka, Kenichi; Tateoka, Kunihiko; Asanuma, Osamu; Kamo, Ken-ichi; Sato, Kaori; Takeda, Hiromitsu; Takagi, Masaru; Hareyama, Masato; Takada, Jun

    2014-01-01

    The post-implantation dosimetry for brachytherapy using Monte Carlo calculation by EGS5 code combined with the source strength regression was investigated with respect to its validity. In this method, the source strength for the EGS5 calculation was adjusted with the regression, so that the calculation would reproduce the dose monitored with the glass rod dosimeters (GRDs) on a water phantom. The experiments were performed, simulating the case where one of two 125I sources of Oncoseed 6711 was lacking strength by 4–48%. As a result, the calculation without regression was in agreement with the GRD measurement within 26–62%. In this case, the shortage in strength of a source was neglected. By the regression, in order to reflect the strength shortage, the agreement was improved up to 17–24%. This agreement was also comparable with accuracy of the dose calculation for single source geometry reported previously. These results suggest the validity of the dosimetry method proposed in this study. PMID:24449715

  18. Investigation of the Effects of Tissue Inhomogeneities on the Dosimetric Parameters of a Cs-137 Brachytherapy Source using the MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Mehdi Zehtabian

    2010-09-01

    Full Text Available Introduction: Brachytherapy is the use of small encapsulated radioactive sources in close vicinity of tumors. Various methods are used to obtain the dose distribution around brachytherapy sources. TG-43 is a dosimetry protocol proposed by the AAPM for determining dose distributions around brachytherapy sources. The goal of this study is to update this protocol for presence of bone and air inhomogenities.  Material and Methods: To update the dose rate constant parameter of the TG-43 formalism, the MCNP4C simulations were performed in phantoms composed of water-bone and water-air combinations. The values of dose at different distances from the source in both homogeneous and inhomogeneous phantoms were estimated in spherical tally cells of 0.5 mm radius using the F6 tally. Results: The percentages of dose reductions in presence of air and bone inhomogenities for the Cs-137 source were found to be 4% and 10%, respectively. Therefore, the updated dose rate constant (Λ will also decrease by the same percentages.   Discussion and Conclusion: It can be easily concluded that such dose variations are more noticeable when using lower energy sources such as Pd-103 or I-125.

  19. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  20. Comparison and Evaluation of the Effects of Rib and Lung Inhomogeneities on Lung Dose in Breast Brachytherapy using a Treatment Planning System and the MCNPX Code

    Directory of Open Access Journals (Sweden)

    Hossein Salehi Yazdi

    2010-09-01

    Full Text Available Introduction: This study investigates to what extent the computed dose received by lung tissue in a commercially available treatment planning system (TPS for 192Ir high-dose-rate breast brachytherapy is accurate in view of tissue inhomogeneities and presence of ribs. Materials and Methods: A CT scan of the breast was used to construct a patient-equivalent phantom in the clinical treatment planning system. An implant involving 13 plastic catheters and 383 programmed source dwell positions were simulated using the MCNPX code. Results: The results were compared with the corresponding commercial TPS in the form of isodoses and cumulative dose–volume histogram in breast, lung and ribs. The comparison of Monte Carlo results and TPS calculation showed that the isodoses greater than 62% in the breast that were located rather close to the implant or away from the breast curvature surface and lung boundary were in good agreement. TPS calculations, however, overestimated dose in the lung for lower isodose contours and points that were lying near the breast-air boundary and relatively away from the implant. Discussion and Conclusions: Taking into account the ribs and entering the actual data for breast, rib and lung, revealed an average overestimation of dose in lung in the TPS calculation.

  1. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications.

  2. SU-E-T-171: Characterization of the New Xoft Axxent Electronic Brachytherapy Source Using PRESAGE Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, A; Followill, D; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States); Adamovics, J [John Adamovics, Skillman, NJ (United States)

    2015-06-15

    Purpose: To characterize the Xoft Axxent electronic brachytherapy source using PRESAGE™ dosimeters to obtain independent confirmation of TG-43U1 dosimetry values from previous studies and ascertain its reproducibility in HDR brachytherapy. Methods: PRESAGE™ dosimeters are solid, polyurethane-based dosimeters doped with radiochromic leucodyes that produce a linear optical-density response when exposed to radiation. Eight 1-kg dosimeters were scanned prior to irradiation on an optical-CT scanner to eliminate background signal and any optical imperfections from each dosimeter. To quantify potential imaging artifacts due to oversaturated responses in the immediate range of the source, half of the eight dosimeters were cast with a smaller channel diameter of 5.4 mm, and the other half were cast with a larger channel diameter of 15mm. During irradiation, the catheters were placed in the center of each channel. Catheters fit the 5.4mm diameters channels whereas polyurethane plugs were inserted into the larger channels to create a sturdy, immobile catheter which allowed uniform dose distributions. Two dosimeters of each 5.4mm and 15mm were irradiated at either 1517.3 cGy or 2017.5 cGy. Post-irradiation scans were performed within 48 hours of irradiation. A 3D reconstruction based on subtraction of these two images and the relative dose measurements were made using in-house software. Results: Comparing measured radial dose rates with previous results revealed smaller percent errors when PRESAGE™ irradiations were at lower maximum dose. The dosimeters showed small deviations in radial dose function, g{sub p} (r), from previous studies. Among the dosimeters irradiated at 1517.3 cGy, the g{sub p}(r) compared to previous studies fluctuated from 0.0043 to 0.3922. This suggests small fluctuations can drastically change radial dose calculations. Conclusion: The subtraction of pre-irradiation and post-irradiation scans of PRESAGE™ dosimeters using an optical-CT scanner

  3. CT-guided high-dose-rate brachytherapy of unresectable hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Collettini, Federico; Schreiber, Nadja; Schnapauff, Dirk; Denecke, Timm; Hamm, Bernd; Gebauer, Bernhard [ChariteUniversitaetsmedizin Berlin, Department of Diagnostic and Interventional Radiology, Berlin (Germany); Wust, Peter [ChariteUniversitaetsmedizin Berlin, Department of Radiation Oncology, Berlin (Germany); Schott, Eckart [Universitaetsmedizin Berlin, Department of Gastroenterology, Berlin (Germany)

    2015-05-01

    The purpose of the present study was to evaluate the clinical outcome of CT-guided high-dose-rate brachytherapy (CT-HDRBT) in patients with unresectable hepatocellular carcinoma (HCC). Over a 6-year period, 98 patients with 212 unresectable HCC underwent CT-HDRBT applying a {sup 192}Ir source at our institution. Magnetic resonance imaging (MRI) follow-up was performed 6 weeks after the intervention and then every 3 months. The primary endpoint was local tumor control (LTC); secondary endpoints included progression-free survival (PFS) and overall survival (OS). Patients were available for MRI evaluation for a mean follow-up of 23.1 months (range 4-64 months; median 20 months). Mean tumor diameter was 5 cm (range 1.8-12 cm). Eighteen of 212 (8.5 %) tumors showed local progression after a mean LTC of 21.1 months. In all, 67 patients (68.4 %) experienced distant tumor progression. The mean PFS was 15.2 months. Forty-six patients died during the follow-up period. Median OS was 29.2 months. Actuarial 1-, 2-, and 3-year OS rates were 80, 62, and 46 %, respectively. CT-HDRBT is an effective therapy to attain local tumor control in patients with unresectable HCC. Prospective randomized studies comparing CT-HDRBT with the standard treatments like Radiofrequency ablation (RFA) and chemoembolization (TACE) are mandatory. (orig.) [German] Zweck der vorliegenden Arbeit war die Analyse der klinischen Effektivitaet der CT-gesteuerten Hochdosis-Brachytherapie (CT-HDRBT) bei Patienten mit inoperablem hepatozellulaeren Karzinom (HCC). Ueber einen Zeitraum von 6 Jahren, wurden an unserer Klinik 98 Patienten mit 212 inoperablen HCC mittels CT-HDRBT mit {sup 192}Ir behandelt. MRT-Verlaufskontrollen erfolgten 6 Wochen nach der Intervention und dann alle 3 Monate. Primaerer Endpunkt der Studie war die lokale Tumorkontrolle (LTC); sekundaere Endpunkte waren das progressionsfreie Ueberleben (PFS) und Gesamtueberleben (OS). Die mittlere Nachbeobachtungszeit betrug 23,1 Monate (Spanne 4

  4. Three-dimensional ultrasound system for guided breast brachytherapy.

    Science.gov (United States)

    De Jean, Paul; Beaulieu, Luc; Fenster, Aaron

    2009-11-01

    Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through 192Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 degrees, the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.

  5. A Customized Finger Brachytherapy Carrier

    OpenAIRE

    Wadhwa, Supneet Singh; Duggal, Nidhi

    2013-01-01

    In recent years, radiation therapy has been used with increasing frequency in the management of neoplasms of the head and neck region. Brachytherapy is a method of radiation treatment in which sealed radioactive sources are used to deliver the dose a short distance by interstitial (direct insertion into tissue), intracavitary (placement within a cavity) or surface application (molds). Mold brachytherapy is radiation delivered via a custom-fabricated carriers, designed to provide a more consta...

  6. Quantification of iodine in porous hydroxyapatite matrices for application as radioactive sources in brachytherapy

    Directory of Open Access Journals (Sweden)

    Kássio André Lacerda

    2007-07-01

    Full Text Available In this study, non-radioactive iodine was incorporated in two types of biodegradable hydroxyapatite-based porous matrices (HA and HACL through impregnation process from sodium iodine aqueous solutions with varying concentrations (0.5 and 1.0 mol/L . The results revealed that both systems presented a high capacity of incorporating iodine into their matrices. The quantity of incorporated iodine was measured through Neutron Activation Analysis (NAA. The porous ceramic matrices based on hydroxyapatite demonstrated a great potential for uses in low dose rate (LDR brachytherapy.Materiais cerâmicos porosos à base de compostos de fosfatos de cálcio (CFC vêm sendo estudados e desenvolvidos para várias aplicações biomédicas tais como implantes, sistemas para liberação de drogas e fontes radioativas para braquiterapia. Dois tipos de matrizes porosas biodegradáveis de hidroxiapatita (HA e HACL foram avaliadas em termos da capacidade de incorporação de iodo em suas estruturas. Resultados revelaram que as matrizes porosas a base de hidroxiapatita apresentaram alta capacidade de incorporar iodo em sua estrutura. A quantidade de iodo foi mensurada através da técnica de Análise por Ativação Nêutronica (AAN. As matrizes cerâmicas porosas à base de hidroxiapatita demostraram ter grande potencial para aplicação em braquiterapia de baixa taxa de dose (LDR - Low Dose Rate.

  7. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Demanes, J; Kamrava, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour the target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.

  8. Well-Type Ionization Chamber for 192Ir Source Calibration%用于校准192Ir医用源的阱型电离室

    Institute of Scientific and Technical Information of China (English)

    郭文; 罗素明; 魏可新; 李景云

    2007-01-01

    研制了一种用于校准医用192Ir源的阱型电离室.该电离室的灵敏体积约为271 cm3,在极化电压为300 V时,电离室的离子收集效率约为99.96%,总位置灵敏度变化小于0.3%.该阱型电离室对192Ir的响应因子为0.230 nA/GBq,其相对合成不确定度为1.5%,与IAEA校准过的阱型电离室比对,在不确定度范围内一致.

  9. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor

  10. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor vol

  11. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J. L., E-mail: jlreed2@wisc.edu; Micka, J. A.; Culberson, W. S.; DeWerd, L. A. [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States); Rasmussen, B. E. [Department of Radiation Oncology, UP Health System Marquette, 580 West College Avenue, Marquette, Michigan 49855 (United States); Davis, S. D. [Department of Medical Physics, McGill University Health Centre, Montreal General Hospital (L5-112), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada)

    2014-12-15

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  12. Scintillating fiber optic dosimeters for breast and prostate brachytherapy

    Science.gov (United States)

    Moutinho, L. M.; Castro, I. F.; Freitas, H.; Melo, J.; Silva, P.; Gonçalves, A.; Peralta, L.; Rachinhas, P. J.; Simões, P. C. P. S.; Pinto, S.; Pereira, A.; Santos, J. A. M.; Costa, M.; Veloso, J. F. C. A.

    2017-02-01

    Brachytherapy is a radiotherapy modality where the radioactive material is placed close to the tumor, being a common treatment for skin, breast, gynecological and prostate cancers. These treatments can be of low-dose-rate, using isotopes with mean energy of 30 keV, or high-dose-rate, using isotopes such as 192Ir with a mean energy of 380 keV. Currently these treatments are performed in most cases without in-vivo dosimetry for quality control and quality assurance. We developed a dosimeter using small diameter probes that can be inserted into the patient's body using standard brachytherapy needles. By performing real-time dosimetry in breast and prostate brachytherapy it will be possible to perform real-time dose correction when deviations from the treatment plan are observed. The dosimeter presented in this work was evaluated in-vitro. The studies consisted in the characterization of the dosimeter with 500 μm diameter sensitive probes (with a BCF-12 scintillating optical fiber) using an inhouse made gelatin breast phantom with a volume of 566 cm3. A breast brachytherapy treatment was simulated considering a tumor volume of 27 cm3 and a prescribed absolute dose of 5 Gy. The dose distribution was determined by the Inverse Planning Simulated Annealing (IPSA) optimization algorithm (ELEKTA). The dwell times estimated from the experimental measurements are in agreement with the prescribed dwell times, with relative error below 3%. The measured signal-to-noise ratio (SNR) including the stem-effect contribution is below 3%.

  13. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy.

    Science.gov (United States)

    Tedgren, Åsa Carlsson; Carlsson, Gudrun Alm

    2013-04-21

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from (125)I, (169)Yb and (192)Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  14. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    Science.gov (United States)

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-12-11

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses.

  15. Characteristics and locations of sources

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J.; Poellaenen, R.; Toivonen, H. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Ten artificial radiation sources were placed in the terrain in order to test the capability of airborne measuring teams to detect them. One of the sources was a line source, others were point sources (three of them collimated). The radionuclides used in the sources were {sup 60}Co, {sup 137}Cs, {sup 99m}Tc and {sup 192}Ir. The source activities ranged from about 26 MBq (one of the cobalt sources) to 0.56 TBq (iridium). (au).

  16. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, Justin K. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Klopp, Ann H. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gonzalez, Graciela M.N. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kisling, Kelly D. [Department of Radiation Physics-Patient Care, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Price, Michael J. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, and Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana (United States); Berner, Paula A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eifel, Patricia J. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mourtada, Firas, E-mail: fmourtad@christianacare.org [Department of Radiation Physics-Patient Care, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Experimental Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Helen F. Graham Cancer Center, Newark, Delaware (United States)

    2012-07-01

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received {sup 192}Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm{sup 3} muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm{sup 3} bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o'clock, and {sub D2cm3} to the bladder, rectum, and sigmoid. Results: Points A and B, D{sub 2} cm{sup 3} bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D{sub 2cm3} rectum (n = 3), D{sub 2cm3} sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden

  17. Absorbed dose distribution of brachytherapy sources through Fricke xylenol gel dosimetry; Distribuicao da dose absorvida de fontes braquiterapicas atraves da dosimetria bidimensional Fricke xylenol gel

    Energy Technology Data Exchange (ETDEWEB)

    Mangueira, T.F.; Almeida, A. de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Departamento de Fisica e Matematica; Costa, J.J.L., E-mail: lucas@ifg.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias (IFG), Inhumas, GO (Brazil); Caldas, Linda V.E.; Oliveira, L.N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Moreira, M.V. [Instituto Ribeiraopretano de Combate ao Cancer (IRPCC), Ribeirao Preto, SP (Brazil)

    2013-07-15

    brachytherapy techniques used throughout the world is derived, or has as a principle the method Paterson-Parker (PP), which ensures the homogeneity of 10% of the treatment plan (target volume), the distance 'h' from the plane formed the source distribution brachytherapy irradiation. Thus, the method ensures that the maximum dose does not exceed 10% of the dose set to satisfy the criteria for uniformity. In this study, we evaluated the method PP measures in dose distribution, having as the Fricke Xylenol Gel dosimeter (FXG), which was irradiated with an orderly distribution of sources of treatment. The distribution was made with eight sources of {sup 137}Cs, distributed in the rules of the PP method, with h = 5.75 mm. The phantom was a distribution of 5 x 5 cm{sup 2} standard spectrophotometer cuvettes (each 1.25 x 1.25 x 3.5 cm{sup 3} optical path length) FXG filled with a total volume of 5 x 5 x 3.5 cm{sup 3}. The phantom was irradiated in a time of 3.3 h resulting in an absorbed dose of 10 Gy in the treatment plan. Then, the FXG was read in a monospectrophotometer and their results were processed in a routine MATLAB Registered-Sign thereby obtaining the dose distribution. The homogeneity was calculated at 7.8% in the treatment plan, which is in accordance with the protocols of IAEA-TECDOC-602. (author)

  18. Calculating Error Percentage in Using Water Phantom Instead of Soft Tissue Concerning 103Pd Brachytherapy Source Distribution via Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    OL Ahmadi

    2015-12-01

    Full Text Available Introduction: 103Pd is a low energy source, which is used in brachytherapy. According to the standards of American Association of Physicists in Medicine, dosimetric parameters determination of brachytherapy sources before the clinical application was considered significantly important. Therfore, the present study aimed to compare the dosimetric parameters of the target source using the water phantom and soft tissue. Methods: According to the TG-43U1 protocol, the dosimetric parameters were compared around the 103Pd source in regard with water phantom with the density of 0.998 gr/cm3 and the soft tissue with the density of 1.04 gr/cm3 on the longitudinal and transverse axes using the MCNP4C code and the relative differences were compared between the both conditions. Results: The simulation results indicated that the dosimetric parameters depended on the radial dose function and the anisotropy function in the application of the water phantom instead of soft tissue up to a distance of 1.5 cm,  between which a good consistency was observed. With increasing the distance, the difference increased, so as within 6 cm from the source, this difference increased to 4%. Conclusions: The results of  the soft tissue phantom compared with those of the water phantom indicated 4% relative difference at a distance of 6 cm from the source. Therefore, the results of the water phantom with a maximum error of 4% can be used in practical applications instead of soft tissue. Moreover, the amount of differences obtained in each distance regarding using the soft tissue phantom could be corrected.

  19. Brachytherapy for the prevention of neointimal hyperplasia in the canine inferior vena cava after stent placement

    Energy Technology Data Exchange (ETDEWEB)

    Isota, Masayuki; Kaminou, Toshio; Sakai, Yukimasa; Nakamura, Kenji; Yamada, Ryusaku [Osaka City Univ. (Japan). Medical School

    2002-06-01

    The aim of this study was to evaluate the efficacy of brachytherapy for preventing neointimal hyperplasia in the inferior vena cava (IVC) after stent placement. Sixteen beagles underwent Z-stent placement in the IVC and the aorta. For 8 of 16 beagles, irradiation (15 Gy) was delivered endoluminally to the stented segments of each vessel immediately after stent placement using the {sup 192}Ir. All animals were sacrificed after 6 weeks for morphometric and histopathologic examination. Morphometrically, neointimal thickness in the IVC of the radiation group was significantly decreased compared with the control group as well as that in the aorta (p<0.05). Histopathologic findings showed the neointima in the IVC of the control group contained markedly organization of thrombus and neovascularization though that in the IVC of the radiation group consisted mainly of smooth muscle cells without organization of thrombus and neovascularization. From these data intravenous irradiation may prevent clinical restenosis after stent placement. (author)

  20. A novel approach for the adsorption of iodine-125 on silver wire as matrix for brachytherapy source for the treatment of eye and prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, C.; Majali, M.A. E-mail: mythili@magnum.barc.ernet.in; Balakrishnan, S.A

    2002-09-01

    The adsorption of iodine-125 on silver wire bits coated with palladium to be sealed in titanium capsules as brachytherapy sources was studied. A method was optimized to obtain quantitative adsorption of {sup 125}I on the palladium treated silver wires. A comparative evaluation of palladium coated and uncoated (bare) silver wires on the adsorption of {sup 125}I was made. While, the adsorption of bare silver wires showed low, inconsistent uptake ({approx}60%) of {sup 125}I with high leachability ({approx}4%), the Pd coated silver wires showed quantitative and consistent uptake of {sup 125}I ({approx}90%) and exhibited low leachability (0.01%). {sup 125}I adsorbed on Pd coated silver wires could be used as a matrix for the preparation of interstitial sources in eye and prostate cancer therapy.

  1. Brachytherapy applications and techniques

    CERN Document Server

    Devlin, Phillip M

    2015-01-01

    Written by the foremost experts in the field, this volume is a comprehensive text and practical reference on contemporary brachytherapy. The book provides detailed, site-specific information on applications and techniques of brachytherapy in the head and neck, central nervous system, breast, thorax, gastrointestinal tract, and genitourinary tract, as well as on gynecologic brachytherapy, low dose rate and high dose rate sarcoma brachytherapy, vascular brachytherapy, and pediatric applications. The book thoroughly describes and compares the four major techniques used in brachytherapy-intraca

  2. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Cho, Kwan Ho; Moon, Sung Ho; Choi, Sung Weon; Park, Joo Yong; Yun, Tak; Lee, Sang Hyun; Lim, Young Kyung; Jeong, Chi Young [National Cancer Center, Goyang (Korea, Republic of)

    2014-12-15

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  3. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Syam [Malabar Cancer Centre, Kannur, Kerala (India); Sitha [University of Calicut, Calicut, Kerala (India)

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  4. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under

  5. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under ultra

  6. Influence of radioactive sources discretization in the Monte Carlo computational simulations of brachytherapy procedures: a case study on the procedures for treatment of prostate cancer; Influencia da discretizacao das fontes radioativas nas simulacoes computacionais Monte Carlo de procedimentos de braquiterapia: um estudo de caso sobre os procedimentos para tratamento do cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Antonio Konrado de Santana; Vieira, Jose Wilson [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Costa, Kleber Souza Silva [Faculdade Integrada de Pernambuco (FACIPE), Recife, PE (Brazil); Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-07-01

    Radiotherapy computational simulation procedures using Monte Carlo (MC) methods have shown to be increasingly important to the improvement of cancer fighting strategies. One of the biases in this practice is the discretization of the radioactive source in brachytherapy simulations, which often do not match with a real situation. This study had the aim to identify and to measure the influence of radioactive sources discretization in brachytherapy MC simulations when compared to those that do not present discretization, using prostate brachytherapy with Iodine-125 radionuclide as model. Simulations were carried out with 108 events with both types of sources to compare them using EGSnrc code associated to MASH phantom in orthostatic and supine positions with some anatomic adaptations. Significant alterations were found, especially regarding bladder, rectum and the prostate itself. It can be concluded that there is a need to discretized sources in brachytherapy simulations to ensure its representativeness. (author)

  7. Combined transperineal radiofrequency (RF) interstitial hyperthermia and brachytherapy for localized prostate cancer (PC)

    Energy Technology Data Exchange (ETDEWEB)

    Urakami, Shinji; Gonda, Nobuko; Kikuno, Nobuyuki [Shimane Medical Univ., Izumo (Japan)] (and others)

    2001-05-01

    Hyperthermia has been used effectively as a radiation sensitizer. Interstitial hyperthermoradiotherapy has been therefore utilized as a minimal invasive therapy in attempts to improve local tumor control for various cancers, but not for urological cancer. The purpose of this study was to investigate the safety and feasibility of transperineal hyperthermoradiotherapy for localized PC. Based on our basic study of hyperthermoradiotherapy, we devised the procedure of combined transperineal RF interstitial hyperthermia and brachytherapy for localized prostate cancer. Two patients with localized PC underwent transperineal RF interstitial hyperthermia combined with brachytherapy operation the 192-Ir remote after-loading system (RALS). Under transrectal ultrasound guidance, a total number of 12-18 stainless steel needles for 192-Ir RALS were implanted into the prostatic gland and seminal vesicles (SV) in an optimized pattern. Eight of the needles were used as electrodes for hyperthermia, and were electrically insultated using the vinyl catheter along the length of the subdermal fatty tissue to protect from overheating. Three other needles were utilized for continuous temperature mapping in the prostate. Rectal temperature was also monitored. Total radiation doses of 70 Gy to the prostate and SV were planned as a combination of brachytherapy (24 Gy/4 fraction) and external irradiation using a four-field box technique (46 Gy/23 fraction). Hyperthermic treatment (goal of 42 to 43 deg C for 60 minutes) was performed twice following the 1st and 4th brachytherapy at an interval of more than 48 hours for the recovery of cancer cells from thermotolerance. Both patients reached the treatment goal of all intraprostatic temperatures >43.0 deg C, which was considered favorable for hyperthermia, and the rectal temperatures of both patients remained <38 deg C during hyperthermia. In serial PSA measurements of both patients, serum PSA was less than 1.0 ng/ml within 3 months and has since

  8. SU-F-BRA-09: New Efficient Method for Xoft Axxent Electronic Brachytherapy Source Calibration by Pre-Characterizing Surface Applicators

    Energy Technology Data Exchange (ETDEWEB)

    Pai, S [iCAD Inc., Los Gatos, CA (United States)

    2015-06-15

    Purpose: The objective is to improve the efficiency and efficacy of Xoft™ Axxent™ electronic brachytherapy (EBT) calibration of the source & surface applicator using AAPM TG-61 formalism. Methods: Current method of Xoft EBT source calibration involves determination of absolute dose rate of the source in each of the four conical surface applicators using in-air chamber measurements & TG61 formalism. We propose a simplified TG-61 calibration methodology involving initial characterization of surface cone applicators. This is accomplished by calibrating dose rates for all 4 surface applicator sets (for 10 sources) which establishes the “applicator output ratios” with respect to the selected reference applicator (20 mm applicator). After the initial time, Xoft™ Axxent™ source TG61 Calibration is carried out only in the reference applicator. Using the established applicator output ratios, dose rates for other applicators will be calculated. Results: 200 sources & 8 surface applicator sets were calibrated cumulatively using a Standard Imaging A20 ion-chamber in accordance with manufacturer-recommended protocols. Dose rates of 10, 20, 35 & 50mm applicators were normalized to the reference (20mm) applicator. The data in Figure 1 indicates that the normalized dose rate variation for each applicator for all 200 sources is better than ±3%. The average output ratios are 1.11, 1.02 and 0.49 for the 10 mm,35 mm and 50 mm applicators, respectively, which are in good agreement with the manufacturer’s published output ratios of 1.13, 1.02 and 0.49. Conclusion: Our measurements successfully demonstrate the accuracy of a new calibration method using a single surface applicator for Xoft EBT sources and deriving the dose rates of other applicators. The accuracy of the calibration is improved as this method minimizes the source position variation inside the applicator during individual source calibrations. The new method significantly reduces the calibration time to less

  9. The role of brachytherapy in radiation and isotopes centre of Khartoum (RICK)

    CERN Document Server

    Ali, A M

    2000-01-01

    As there are many efforts devoted in order to manage the cancer, here the researcher handle one of these efforts that play a major part in treating the cancer internationally, it is a brachytherapy system. Brachytherapy was carried out mostly with radium sources, but recently some artificial sources are incorporated in this mode of treatment such as Cs-137, Ir-192, Au-198, P-32, Sr-90 and I-125. The research cover history of brachytherapy and radioactive sources used in, techniques of implementation, radiation protection and methods of brachytherapy dose calculation, as well as brachytherapy in radiation and isotopes centre in Khartoum.

  10. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, Jessica R. [Department of Radiation Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903 (United States); Davis, Stephen D. [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec H3G 1A4 (Canada); Rivard, Mark J., E-mail: mark.j.rivard@gmail.com [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose

  11. SU-C-16A-01: In Vivo Source Position Verification in High Dose Rate (HDR) Prostate Brachytherapy Using a Flat Panel Imager: Initial Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Franich, R; Smith, R; Millar, J [RMIT University, Melbourne, Victoria (Australia); The Alfred Hospital, Melbourne, Victoria (Australia); Haworth, A [RMIT University, Melbourne, Victoria (Australia); Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Taylor, M [RMIT University, Melbourne, Victoria (Australia); Australian Federal Police, Canberra, ACT (Australia); McDermott, L [RMIT University, Melbourne, Victoria (Australia)

    2014-06-15

    Purpose: We report our initial clinical experience with a novel position-sensitive source-tracking system based on a flat panel imager. The system has been trialled with 4 prostate HDR brachytherapy patients (8 treatment fractions) in this initial study. Methods: The flat panel imaging system was mounted under a customised carbon fibre couch top assembly (Figure 1). Three gold fiducial markers were implanted into the prostate of each patient at the time of catheter placement. X-ray dwell position markers were inserted into three catheters and a radiograph acquired to locate the implant relative to the imaging device. During treatment, as the HDR source dwells were delivered, images were acquired and processed to determine the position of the source in the patient. Source positions measured by the imaging device were compared to the treatment plan for verification of treatment delivery. Results: Measured dwell positions provided verification of relative dwell spacing within and between catheters, in the coronal plane. Measurements were typically within 2.0mm (0.2mm – 3.3mm, s.d. 0.8mm) of the planned positions over 60 dwells (Figure 2). Discrimination between larger dwell intervals and catheter differentiation were clear. This confirms important delivery attributes such as correct transfer tube connection, source step size, relative catheter positions and therefore overall correct plan selection and delivery. The fiducial markers, visible on the radiograph, provided verification of treatment delivery to the correct anatomical location. The absolute position of the dwells was determined by comparing the measured dwell positions with the x-ray markers from the radiograph, validating the programmed treatment indexer length. The total impact on procedure time was less than 5 minutes. Conclusion: The novel, noninvasive HDR brachytherapy treatment verification system was used clinically with minor impact on workflow. The system allows verification of correct treatment

  12. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  13. Synthesis and characterization of hydroxyapatite porous matrixes for application as radiation sources in brachytherapy; Sintese e caracterizacao de matrizes porosas de hidroxiapatita para aplicacao como fontes radioativas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Kassio Andre; Lameiras, Fernando Soares; Silva, Viviane Viana [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: kassiolacerda@yahoo.com.br

    2006-04-15

    Porous ceramic materials based on calcium phosphate compounds (CPC) have been studied aiming at different biomedical applications such as implants, drug delivery systems and radioactive sources for brachytherapy. Two kinds of hydroxyapatite (HAp) powders and their ceramic bodies were characterized by a combination of different techniques (X-rays diffraction and fluorescence, infrared spectrophotometry, BET method, thermal analysis, and scanning electron microscopy) to evaluate their physico-chemical and microstructural characteristics in terms of chemical composition, segregated phases, microstructure, porosity, and chemical and thermal stability. The results revealed that these systems presented potential for use as porous biodegradable radioactive sources able to be loaded with a wide range of radionuclides for cancer treatment by the brachytherapy technique. (author)

  14. In vivo dosimetry HDR brachytherapy prostate with source CO-60: Results of measures in a point urethra; Dosimetria in vivo en braquiterapia HDR de prostate con fuente de CO-60: Resultados de medidas en un punto de uretra

    Energy Technology Data Exchange (ETDEWEB)

    Latorre, D.; Fernandez, J.; Rivero, G.; Crelgo, D.; Gonzalez, J. M.; Sanchez, P.; Villace, A.; Sanchez, E.; Arroyo, M. A.; Garcia, E.; Trabanco, E.

    2015-07-01

    In this study we present and analyze the results of the in vivo dosimetry made a point of urethra with a group of 30 patients treated with brachytherapy prostate high rate with Co-60 source. Taking into account the uncertainties, the results and integration, globally evaluate this system DIV. This DIV system, due to its ease of calibration and use, and provides a relatively simple integration way to avoid serious errors in administering treatment. (Author)

  15. Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang Liyun; Ho, Sheng-Yow; Chui, Chen-Shou; Du, Yi-Chun; Chen Tainsong [Institute of Biochemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China) and Department of Radiation Oncology, Sinlau Christian Hospital, Tainan 701, Taiwan (China); Department of Radiation Oncology, Sinlau Christian Hospital, Tainan 701, Taiwan (China); Department of Medical Physics, Sun Yat-Sen Cancer Center, Taipei 112, Taiwan (China); Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2009-09-15

    A method was presented that employs standard linac QA tools to verify the accuracy of film reconstruction algorithms used in the brachytherapy planning system. Verification of reconstruction techniques is important as suggested in the ESTRO booklet 8: ''The institution should verify the full process of any reconstruction technique employed clinically.'' Error modeling was also performed to analyze seed-position errors. The ''isocentric beam checker'' device was used in this work. It has a two-dimensional array of steel balls embedded on its surface. The checker was placed on the simulator couch with its center ball coincident with the simulator isocenter, and one axis of its cross marks parallel to the axis of gantry rotation. The gantry of the simulator was rotated to make the checker behave like a three-dimensional array of balls. Three algorithms used in the ABACUS treatment planning system: orthogonal film, 2-films-with-variable-angle, and 3-films-with-variable-angle were tested. After exposing and digitizing the films, the position of each steel ball on the checker was reconstructed and compared to its true position, which can be accurately calculated. The results showed that the error is dependent on the object-isocenter distance, but not the magnification of the object. The averaged errors were less than 1 mm within the tolerance level defined by Roueet al. [''The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy,'' Radiother. Oncol. 78, 78-83 (2006)]. However, according to the error modeling, the theoretical error would be greater than 2 mm if the objects were located more than 20 cm away from the isocenter with a 0.5 deg. reading error of the gantry and collimator angles. Thus, in addition to carefully performing the QA of the gantry and collimator angle indicators, it is suggested that the patient, together with the applicators or seeds inside, should be placed close to

  16. Irradiate Experiment of 192Ir in CARR

    Institute of Scientific and Technical Information of China (English)

    JIANG; Jun

    2013-01-01

    There is no possibility of occurrence on ebullition of subcooled nucleate in external surface that we designed,meantime temperature of internal component reach the designed is achieved in motion of the atomic reactor in steady-state,which is the critical requirements of China Advanced Research Reactor

  17. Characteristics of miniature electronic brachytherapy x-ray sources based on TG-43U1 formalism using Monte Carlo simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, Habib; Faghihi, Reza; Jashni, Somaye Karimi; Meigooni, Ali S. [Faculty of Engineering, Science and Research Branch, Islamic Azad University, Fars, 73481-13111, Persepolis (Iran, Islamic Republic of); Department of Nuclear Engineering and Radiation Research Center, Shiraz University, 71936-16548, Shiraz (Iran, Islamic Republic of); Shiraz University of Medical Sciences, 71348-14336, Shiraz (Iran, Islamic Republic of); Department of Radiation therapy, Comprehensive Cancer Center of Nevada, 3730 South Eastern Avenue, Las Vegas, Nevada 89169 (United States)

    2012-04-15

    Purpose: The goal of this study is to determine a method for Monte Carlo (MC) characterization of the miniature electronic brachytherapy x-ray sources (MEBXS) and to set dosimetric parameters according to TG-43U1 formalism. TG-43U1 parameters were used to get optimal designs of MEBXS. Parameters that affect the dose distribution such as anode shapes, target thickness, target angles, and electron beam source characteristics were evaluated. Optimized MEBXS designs were obtained and used to determine radial dose functions and 2D anisotropy functions in the electron energy range of 25-80 keV. Methods: Tungsten anode material was considered in two different geometries, hemispherical and conical-hemisphere. These configurations were analyzed by the 4C MC code with several different optimization techniques. The first optimization compared target thickness layers versus electron energy. These optimized thicknesses were compared with published results by Ihsan et al.[Nucl. Instrum. Methods Phys. Res. B 264, 371-377 (2007)]. The second optimization evaluated electron source characteristics by changing the cathode shapes and electron energies. Electron sources studied included; (1) point sources, (2) uniform cylinders, and (3) nonuniform cylindrical shell geometries. The third optimization was used to assess the apex angle of the conical-hemisphere target. The goal of these optimizations was to produce 2D-dose anisotropy functions closer to unity. An overall optimized MEBXS was developed from this analysis. The results obtained from this model were compared to known characteristics of HDR {sup 125}I, LDR {sup 103}Pd, and Xoft Axxent electronic brachytherapy source (XAEBS) [Med. Phys. 33, 4020-4032 (2006)]. Results: The optimized anode thicknesses as a function of electron energy is fitted by the linear equation Y ({mu}m) = 0.0459X (keV)-0.7342. The optimized electron source geometry is obtained for a disk-shaped parallel beam (uniform cylinder) with 0.9 mm radius. The TG-43

  18. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...... in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications....

  19. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system

    Energy Technology Data Exchange (ETDEWEB)

    Austerlitz, C. [Clinica Diana Campos, Recife, PE 52020-030 (Brazil); Campos, C. A. T. [Pontifícia Universidade Católica do Rio de Janeiro, RJ 22451-900 (Brazil)

    2013-11-15

    Purpose: To develop a calibration phantom for {sup 192}Ir high dose rate (HDR) brachytherapy units that renders possible the direct measurement of absorbed dose to water and verification of treatment planning system.Methods: A phantom, herein designated BrachyPhantom, consists of a Solid Water™ 8-cm high cylinder with a diameter of 14 cm cavity in its axis that allows the positioning of an A1SL ionization chamber with its reference measuring point at the midheight of the cylinder's axis. Inside the BrachyPhantom, at a 3-cm radial distance from the chamber's reference measuring point, there is a circular channel connected to a cylindrical-guide cavity that allows the insertion of a 6-French flexible plastic catheter from the BrachyPhantom surface. The PENELOPE Monte Carlo code was used to calculate a factor, P{sub sw}{sup lw}, to correct the reading of the ionization chamber to a full scatter condition in liquid water. The verification of dose calculation of a HDR brachytherapy treatment planning system was performed by inserting a catheter with a dummy source in the phantom channel and scanning it with a CT. The CT scan was then transferred to the HDR computer program in which a multiple treatment plan was programmed to deliver a total dose of 150 cGy to the ionization chamber. The instrument reading was then converted to absorbed dose to water using the N{sub gas} formalism and the P{sub sw}{sup lw} factor. Likewise, the absorbed dose to water was calculated using the source strength, S{sub k}, values provided by 15 institutions visited in this work.Results: A value of 1.020 (0.09%, k= 2) was found for P{sub sw}{sup lw}. The expanded uncertainty in the absorbed dose assessed with the BrachyPhantom was found to be 2.12% (k= 1). To an associated S{sub k} of 27.8 cGy m{sup 2} h{sup −1}, the total irradiation time to deliver 150 cGy to the ionization chamber point of reference was 161.0 s. The deviation between the absorbed doses to water assessed with

  20. CT-guided high-dose-rate brachytherapy in the interdisciplinary treatment of patients with liver metastases of pancreatic cancer.

    Science.gov (United States)

    Wieners, Gero; Schippers, Alexander Christian; Collettini, Federico; Schnapauff, Dirk; Hamm, Bernd; Wust, Peter; Riess, Hanno; Gebauer, Bernhard

    2015-10-01

    CT-guided high-dose-rate brachytherapy (CT-HDRBT) is an interventional radiologic technique for local ablation of primary and secondary malignomas applying a radiation source through a brachycatheter percutaneously into the targeted lesion. The aim of this study was to assess local tumor control, safety and efficacy of CT-HDRBT in the treatment of liver metastases of pancreatic cancer. Twenty consecutive patients with 49 unresectable liver metastases of pancreatic cancer were included in this retrospective trial and treated with CT-HDRBT, applied as a single fraction high-dose irradiation (15-20 Gy) using a 192Ir-source. Primary endpoint was local tumor control and secondary endpoints were complications, progression-free survival and overall survival. The mean tumor diameter was 29 mm (range 10-73). The mean irradiation time was 20 minutes (range 7-42). The mean coverage of the clinical target volume was 98% (range 88%-100%). The mean D100 was 18.1 Gy and the median D100 was 19.78 Gy. Three major complications occurred with post-interventional abscesses, three of which were seen in 15 patients with biliodigestive anastomosis (20%) and overall 15%. The mean follow-up time was 13.7 months (range 1.4-55.0). The median progression-free survival was 4.9 months (range 1.4-42.9, mean 9.4). Local recurrence occurred in 5 (10%) of 49 metastases treated. The median overall survival after CT-HDRBT was 8.6 months (range 1.5-55.3). Eleven patients received chemotherapy after ablation with a median progression-free survival of 4.9 months (mean 12.9). Nine patients did not receive chemotherapy after intervention with a median progression-free survival of 3.2 months (mean 5.0). The rate of local tumor control was 91% in both groups after 12 months. CT-HDRBT was safe and effective for the treatment of liver metastases of pancreatic cancer.

  1. Study of the Dose Distribution of 192Ir、 125I Seed in Different Tissue in Brachytherapy%不同人体组织中192Ir、125I粒子源的剂量分布研究

    Institute of Scientific and Technical Information of China (English)

    汤晓斌; 陈飞达; 谢芹; 刘云鹏; 耿长冉; 陈达

    2011-01-01

    目的:计算分析近距离放疗中不同粒子源、不同插植部位的剂量分布.方法:利用蒙特卡罗粒子输运工具包Geant4,计算近距离放疗中192Ir、125I两种粒子源在不同介质中剂量分布的差异,并根据美国医学物理学会43号工作组报告推荐的近距离放疗剂量计算公式(AAPM TG-43)对其重要参数进行修正.结果:计算得到192Ir源、125I源在三种不同组织等效材料中的径向剂量函数、各项异性函数.结论:(1)径向剂量函数决定于介质对光子的线能量衰减系数.衰减系数越大,径向剂量函数下降越快,反之越平缓;125I粒子源的径向剂量函数随距源距离增大而衰减的趋势远大于192Ir粒子源.(2)随着距源距离增大,骨、水等效组织中各向异性函数曲线趋于平坦,肺等效组织则没有变化.%Objective: The dose distribution is one of the most essential questions in brachytherapy. The dose varies largely between different seed and different phantom materials so accurate simulation is needed. Methods: In this paper, a Monte Carlo simulation program toolkits-Geant4 has been used to calculate the dose distribution in different phantom materials around two kinds of brachytherapy source: 192Ir and 125I, respectively. Results: The radial dose function and anisotropy function has been calculated and analyzed detailedly based on the formula recommended by the American Association of Physics in Medicine Report of the Working Group 43(AAPM TG-43). Conclusions: (1) The radial dose function depends on p, en of photon in materials and the radial dose function of I25I fall down much more sharply than 192Ir. (2) The curves of the anisotropy function in water and bone phantom materials become more plain than in lung phantom while the radial distance increases. This phenomenon reflects a law that more attenuation and scatter in materials, the curve of anisotropy function is more plain.

  2. Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo S., E-mail: emoura@wisc.edu [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 and Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000 (Brazil); Micka, John A.; Hammer, Cliff G.; Culberson, Wesley S.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States); Rostelato, Maria Elisa C. M.; Zeituni, Carlos A. [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000 (Brazil)

    2015-04-15

    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. To compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The

  3. High dose rate brachytherapy using custom made superficial mould applicators and Leipzig applicators for non melanoma localized skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, A. Cassio A.; Miziara, Daniela; Lima, Flavia Pedroso de; Miziara, Miguel

    2014-07-01

    Purpose: advances in technology and the commercial production of Leipzig applicators allowed High Dose Rate after-load brachytherapy (HDR-BT) to address a number of the challenges associated with the delivery of superficial radiation to treat localized non melanoma skin cancer (NMSK). We reviewed our uni-institutional experience on the treatment of NMSK with HDR-BT. Methods: data were collected retrospectively from patients attending the Radiation Oncology Department at AV Carvalho Insitute, Sao Paulo, Brazil. HDR-BT was done using the stepping source HDR 192Ir Microselectron (Nucletron BV). The planning target volume consisted of the macroscopic lesion plus a 5mm to 10mm margin.The depth of treatment was 0.5 cm in smaller (< 2.0 cm) tumors and 10 to 15 mm for lesions bigger than that. Results: Thirteen patients were treated with HDR-BT from June, 2007 to June 2013. The median age and follow up time were 72 (38-90) years old and 36 (range, 7-73) months, respectively. There a predominance of males (61.5%) and of patients referred for adjuvant treatment due positive surgical margins or because they have had only a excision biopsy without safety margins (61.5%). Six (46.2%) patients presented with squamous cell carcinoma and 7 (53.8%) patients presented with basal cell carcinoma. The median tumor size was 20 (range, 5-42) mm. Patients were treated with a median total dose of 40 Gy (range, 20 -60), given in 10 (range, 2-15) fractions, given daily or twice a week. All patients responded very well to treatment and only one patient has failed locally so far, after 38 months of the end of the irradiation. The crude and actuarial 3-year local control rates were 100% and 80%, respectively. Moist desquamation, grade 2 RTOG, was observed in 4 (30.8%) patients. Severe late complication, radiation-induced dyspigmentation, occurred in 2 patients and 1 of the patients also showed telangiectasia in the irradiated area. The cosmetic result was considered good in 84% (11/13) patients

  4. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    Energy Technology Data Exchange (ETDEWEB)

    Zehtabian, M; Zaker, N; Sina, S [Shiraz University, Shiraz, Fars (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 which is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.

  5. MO-D-BRD-00: Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  6. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte;

    2006-01-01

    BACKGROUND AND PURPOSE: Brachytherapy dose distributions can be optimised       by modulation of source dwell times. In this study dose optimisation in       single planar interstitial implants was evaluated in order to quantify the       potential benefit in patients. MATERIAL AND METHODS: In 14...

  7. Interstitial brachytherapy for eyelid carcinoma. Outcome analysis in 60 patients

    Energy Technology Data Exchange (ETDEWEB)

    Krengli, M.; Deantonio, L. [University Hospital ' ' Maggiore della Carita' ' , Division of Radiotherapy, Novara (Italy); University of ' ' Piemonte Orientale' ' , Department of Translational Medicine, Novara (Italy); Masini, L.; Filomeno, A.; Gambaro, G. [University Hospital ' ' Maggiore della Carita' ' , Division of Radiotherapy, Novara (Italy); Comoli, A.M. [University Hospital Maggiore della Carita, Ophthalmology, Novara (Italy); Negri, E. [University Hospital Maggiore della Carita, Medical Physics, Novara (Italy)

    2014-03-15

    Eyelid cancer is a therapeutic challenge due to the cosmetic and functional implications of this anatomical region and the objectives of therapy are tumor control, functional and cosmetic outcome. The present study was performed to analyze local control, toxicity, functional and cosmetic results in patients with eyelid carcinoma treated by interstitial brachytherapy. In this study 60 patients with eyelid carcinoma were treated by interstitial brachytherapy using iridium ({sup 192}Ir) wires with a linear activity of 1.2-1.7 mCi/cm. The prescription dose was 51-70 Gy (mean 65 Gy, median 66 Gy). Of the 60 patients 51 (85.0 %) had received no prior treatment, 4 (6.7 %) had received previous surgery with positive or close margins and 5 (8.3 %) had suffered local recurrence after surgery. Of the tumors 52 (86.7 %) were basal cell carcinoma, 7 (11.7 %) squamous cell carcinoma and 1 (1.7 %) Merkel cell carcinoma. Clinical stage of the 51 previously untreated tumors was 38 T1N0, 12 T2N0 and 1 T3N0. Mean follow-up was 92 months (range 6-253 months). Local control was maintained in 96.7 % of patients. Late effects higher than grade 2 were observed in 3.0 % of cases. Functional and cosmetic outcomes were optimal in 68.4 % of patients. Interstitial brachytherapy for carcinoma of the eyelid can achieve local control, cosmetic and functional results comparable to those of surgery. (orig.) [German] Das Karzinom des Augenlids stellt aufgrund der funktionellen und kosmetischen Beeintraechtigungen dieser anatomischen Region eine therapeutische Herausforderung dar. Ziele der Therapie sind sowohl die Tumorkontrolle als auch ein gutes funktionelles und kosmetisches Ergebnis. Lokale Kontrolle, Toxizitaet sowie funktionelle und kosmetische Ergebnisse bei Patienten mit Karzinom des Augenlids, die mit interstitieller Brachytherapie behandelt wurden, sollten analysiert werden. Sechzig Patienten mit Karzinom des Augenlids wurden mit interstitieller Brachytherapie mit Iridium-192-Draehten

  8. Divergence of Cs-137 sources fluence used in brachytherapy; Divergencia da fluencia de fontes de Cs-137 usadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, E.A.; Almeida, C.E. de [Laboratorio de Ciencias Radiologicas- LCR-DBB (UERJ). R. Sao Francisco Xavier, 524- Pav. HLC, sala 136 terreo- CEP 20.550- 013. Rio de Janeiro (Brazil)

    1998-12-31

    In this work the experimental determination of correction factor for fluence divergence (kln) of linear Cs-137 sources CDCS J4, with Farmer ionization chamber model 2571 in a central and perpendicular plan to source axis, for distances range from 1 to 7 cm., has been presented. The experimental results were compared to calculating by Kondo and Randolph (1960) isotropic theory and Bielajew (1990) anisotropic theory. (Author)

  9. Brachytherapy volume visualization

    Science.gov (United States)

    Persons, Timothy M.; Webber, Richard L.; Hemler, Paul F.; Bettermann, Wolfram; Bourland, J. Daniel

    2000-04-01

    Conventional localization schemes for brachytherapy seed implants using biplane or stereoscopic projection radio- graphs can suffer form scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking and dosimetric inaccuracies. This paper proposes an alternative method for improving the visualization and thus, localization, of radiotherapy implants by synthesizing, form as few as two radiographic projections, a 3D image free of divergence artifacts. The result produces more accurate seed localization leading to improved dosimetric accuracy. Two alternative approaches are compared. The first uses orthogonal merging. The second employs the technique of tuned-aperture computed tomography (TACT), whereby 3D reconstruction is performed by shifting and adding of well-sampled projections relative to a fiducial reference system. Phantom results using nonlinear visualization methods demonstrate the applicability of localizing individual seeds for both approaches. Geometric errors are eliminated by a calibration scheme derived from the fiducial pattern that is imaged concurrently with the subject. Both merging and TACT approaches enhance seed localization by improving visualization of the seed distribution over biplanar radiographs. Unlike current methods, both alternatives demonstrate continuos one-to-one source tracking in 3D, although elimination of scaling artifacts requires more than two projections when using the merging method.

  10. Patient release criteria for low dose rate brachytherapy implants.

    Science.gov (United States)

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes.

  11. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  12. Shielding hospital rooms for brachytherapy patients: design, regulatory and cost/benefit factors.

    Science.gov (United States)

    Gitterman, M; Webster, E W

    1984-03-01

    The current regulations of the U.S. Nuclear Regulatory Commission (NRC) normally require limitation of radiation exposure in any part of unrestricted occupied areas to 2 mrem in any one hour and to 100 mrem in 7 days. To meet these limits when patients are treated therapeutically with radioactive materials, it is advisable to designate specific rooms in a hospital and often necessary to incorporate substantial costly shielding into one or more walls and the room door. Plans have been formulated for shielding existing hospital rooms housing brachytherapy patients receiving 192Ir and 137Cs therapy in order to meet the above NRC requirements for adjacent corridors and rooms. Typical shielding thicknesses required are 4-6 in. of concrete for certain walls and 1/4 in. of lead in the doors. Shielding costs are approx. $6000 per room for one shielded wall and a shielded door. Applying recent estimates of the cancer risk from low-level gamma radiation, the cost of shielding per cancer fatality averted has been estimated to range from $1.8 million to $10.9 million. Cost/benefit comparisons with many other life-saving activities suggest that these costs and the application of the 2 mrem/hr limit which necessitated them are not justified.

  13. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding.

    Science.gov (United States)

    Papagiannis, P; Baltas, D; Granero, D; Pérez-Calatayud, J; Gimeno, J; Ballester, F; Venselaar, J L M

    2008-11-01

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for 60Co, 137CS, 198Au, 192Ir 169Yb, 170Tm, 131Cs, 125I, and 103pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  14. Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding

    Energy Technology Data Exchange (ETDEWEB)

    Papagiannis, P.; Baltas, D.; Granero, D.; Perez-Calatayud, J.; Gimeno, J.; Ballester, F.; Venselaar, J. L. M. [Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, 11527, Athens (Greece); Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach (Germany); Radiotherapy Department, La Fe University Hospital, E46009 Valencia (Spain); FIVO, Fundacion Instituto Valenciano, de Oncologia, E46009 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia and IFIC-CSIC, E46100 Burjassot (Spain); Department of Medical Physics, Dr. B. Verbeeten Instituut, P.O. Box 90120, 5000 LA, Tilburg (Netherlands)

    2008-11-15

    To address the limited availability of radiation shielding data for brachytherapy as well as some disparity in existing data, Monte Carlo simulation was used to generate radiation transmission data for {sup 60}Co, {sup 137}Cs, {sup 198}Au, {sup 192}Ir, {sup 169}Yb, {sup 170}Tm, {sup 131}Cs, {sup 125}I, and {sup 103}Pd photons through concrete, stainless steel, lead, as well as lead glass and baryte concrete. Results accounting for the oblique incidence of radiation to the barrier, spectral variation with barrier thickness, and broad beam conditions in a realistic geometry are compared to corresponding data in the literature in terms of the half value layer (HVL) and tenth value layer (TVL) indices. It is also shown that radiation shielding calculations using HVL or TVL values could overestimate or underestimate the barrier thickness required to achieve a certain reduction in radiation transmission. This questions the use of HVL or TVL indices instead of the actual transmission data. Therefore, a three-parameter model is fitted to results of this work to facilitate accurate and simple radiation shielding calculations.

  15. Verification and analysis of the positioning of a source of brachytherapy high dose within an applicator gynecological interstitial fletcher Utrecht TC/RM; Verificacion y analysis del posicionamiento de una fuente de braquiterapia de alta tasa de dosis dentro de un aplicador ginecologico fletcher intersticial UTRECHT TC/RM

    Energy Technology Data Exchange (ETDEWEB)

    Panedo Cobos, J. M.; Garcia castejon, M. A.; Huertas Martinez, C.; Gomez-Tejedor Alonso, S.; Rincon Perez, M.; Luna Tirado, J.; Perez Casas, A. M.

    2013-07-01

    Applicators are guides that circulate and are located within the patient brachytherapy sources. Applicators can suffer mechanical deformations due to processes of sterilization or shock, which may result in that the source do not place within these very precise and coincides with the planned. In these cases the planned treatment deviate actually managed. The object of this study is to verify that the position of the source into the dispenser coincides with the planned position, with a procedure that is described. (Author)

  16. [Edge effect and late thrombosis -- inevitable complications of vascular brachytherapy?].

    Science.gov (United States)

    Schiele, T M; Staber, L; Kantlehner, R; Pöllinger, B; Dühmke, E; Theisen, K; Klauss, V

    2002-11-01

    Restenosis is the limiting entity after percutaneous coronary angioplasty. Vascular brachytherapy for the treatment of in-stent restenosis has been shown to reduce the repeat restenosis rate and the incidence of major adverse events in several randomized trials. Besides the beneficial effects, brachytherapy yielded some unwanted side effects. The development of new stenoses at the edges of the target lesion treated with radiation is termed edge effect. It occurs after afterloading brachytherapy as well as after implantation of radioactive stents. It is characterized by extensive intimal hyperplasia and negative remodeling. As contributing factors the axial dose fall-off, inherent to all radioactive sources, and the application of vessel wall trauma by angioplasty have been identified. The combination of both factors, by insufficient overlap of the radiation length over the injured vessel segment, has been referred to as geographic miss. It has been shown to be associated with a very high incidence of the edge effect. Avoidance of geographic miss is strongly recommended in vascular brachytherapy procedures. Late thrombosis after vascular brachytherapy is of multifactorial origin. It comprises platelet recruitment, fibrin deposition, disturbed vasomotion, non-healing dissection and stent malapposition predisposing to turbulent blood flow. The strongest predictors for late thrombosis are premature discontinuation of antiplatelet therapy and implantation of new stents during the brachytherapy procedure. With a consequent and prolonged antiplatelet therapy, the incidence of late thrombosis has been reduced to placebo levels. Edge effect and late thrombosis represent unwanted side effects of vascular brachytherapy. By means of a thorough treatment planning and prolonged antiplatelet therapy their incidences can be largely reduced. With regard to the very favorable net effect, they do not constitute relevant limitations of vascular brachytherapy.

  17. Development of a multi-electrode extrapolation chamber as a prototype of a primary standard for the realization of the unit of the absorbed dose to water for beta brachytherapy sources

    CERN Document Server

    Bambynek, M

    2002-01-01

    The prototype of a primary standard has been developed, built and tested, which enables the realization of the unit of the absorbed dose to water for beta brachytherapy sources. In the course of the development of the prototype, the recommendations of the American Association of Physicists in Medicine (AAPM) Task Group 60 (TG60) and the Deutsche Gesellschaft fuer Medizinische Physik (DGMP) Arbeitskreis 18 (AK18) were taken into account. The prototype is based on a new multi-electrode extrapolation chamber (MEC) which meets, in particular, the requirements on high spatial resolution and small uncertainty. The central part of the MEC is a segmented collecting electrode which was manufactured in the clean room center of PTB by means of electron beam lithography on a wafer. A precise displacement device consisting of three piezoelectric macrotranslators has been incorporated to move the wafer collecting electrode against the entrance window. For adjustment of the wafer collecting electrode parallel to the entranc...

  18. Imaging method for monitoring delivery of high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  19. Physics and basic parameters of brachytherapy.

    Science.gov (United States)

    Lee, E J; Weinhous, M S

    1997-06-01

    Brachytherapy (short-distance therapy) is the therapeutic process whereby radioactive sources are placed into very close proximity to target tissue. Radioactive materials were so used beginning shortly after the discovery of radium by Marie and Pierre Curie in 1898. For the purposes of brachytherapy, radioactive materials are those that emit "rays" that can cause ionization (and hence DNA damage and the destruction of target cells). The potentially useful rays include beta, gamma, and other possibilities such as neutrons. Beta rays, properly beta particles, are simply high energy electrons. Gamma rays are high energy photons (part of the electromagnetic spectrum like visible light, but with much higher energy). These particles are produced during the radioactive decay of certain isotopes. The physics of those events and the parameters that apply to the therapeutic use of the isotopes are the primary topics of this report.

  20. Dosimetric analysis and preliminary clinical result of image-guided brachytherapy with or without hybrid technique for cervical cancer using VariSource titanium ring applicator with "Siriraj Ring Cap".

    Science.gov (United States)

    Dankulchai, Pittaya; Lohasammakul, Suphalerk; Petsuksiri, Janjira; Nakkrasae, Pitchayut; Tuntipumiamorn, Lalida; Kakanaporn, Chumpot; Chansilpa, Yaowalak

    2017-08-11

    Titanium ring cap applicator (VariSource) was applied in treating cervical cancer patients by using image-guided brachytherapy (IGBT). However, its sizes appeared to be relatively large for most of our patients. Thus, we have developed a specific applicator "Siriraj Ring Cap," which is slightly smaller and more suitable for our patients. This study was to evaluate effectiveness of this equipment. Locally advanced cervical cancer patients were treated with external beam radiation therapy with or without concomitant chemotherapy. Siriraj Ring Cap was applied in all of the patients for at least one fraction. Dosimetric analysis was performed in each fraction of IGBT. Clinical outcomes of these patients were evaluated. Twenty-nine patients with 117 dosimetric planning were evaluated between January and December of 2014. Siriraj Ring Cap was fit to all patients in this study. By using this applicator, radiation doses to the targets (D90 high-risk clinical target volume and D90 intermediate-risk clinical target volume) were higher in each fraction. There were no statistically differences of radiation doses to the bladder, rectum, sigmoid colon, and small bowel. Within 2-year followup, 3 patients (10.3%) developed locoregional recurrence. Two-year disease-free survival and overall survival were 75.9% and 89.7%, respectively. According to RTOG/EORTC complication criteria, Grade 1, 2, and 3 gastrointestinal complications were developed in 2 (6.9%), 4 (13.8%), and 1 (3.4%) patients, respectively. For genitourinary complications, 3 patients (10.3%) and 1 patient (3.4%) had Grades 1 and 2, respectively. Siriraj Ring Cap is feasible for IGBT in cervical cancer patients with narrow vagina. Dosimetry and clinical outcomes were satisfactory by using our specific applicator. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Preparation and determination of kerma for Iridium 192 sources of low dose rate for brachytherapy; Preparacion y determinacion del kerma de fuentes de iridio-192 de baja tasa de dosis para braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Tendilla, J.I.; Tovar M, V.; Mitsoura, E.; Aguilar H, F.; Alanis M, J. [Instituto Nacional de Investigaciones Nucleares, C.P. 52045-1, Salazar, Esrado de Mexico, D.F. (Mexico)

    2000-07-01

    The practice of Brachytherapy with Iridium-192 sources of low dose rate (0.4 - 0.8 Gy/h) is a technique used in the treatment of diverse illnesses. in this work the preparation, quality control and calibration are presented in terms of kerma in air of Iridium-192 using as target these recycled Iridium-Platinum wires. The targets were obtained as decayed sources of different radio therapeutical centers in the country and they were characterized by Scanning electron microscopy in order to determine their chemical composition. Subsequently it was developed an experimental design to establish the effect of neutron flux, geometrical array and irradiation time over the activity and percentage of the sources homogeneity. The homogeneity was determined by auto radiography and by Gamma spectroscopy. Once the optimal irradiation conditions were established, it is determined the apparent activity and kerma in air using a well type ionization chamber with traceability to a primary laboratory. Iridium-192 sources were obtained with an average homogeneity 96 %, apparent activity 282.129 {+-} 0.531 M Bq and kerma in air 0.03200 {+-} 0.00006 m Gy m/h A. (Author)

  2. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer.

    Science.gov (United States)

    Murali, V; Kurup, P G G; Mahadev, P; Mahalakshmi, S

    2010-04-01

    Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  3. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Murali V

    2010-01-01

    Full Text Available Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT and intensity modulated radiotherapy (IMRT are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR, namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  4. Importance of the neutrons kerma coefficient in the planning of Brachytherapy treatments with Cf-252 sources; Importancia del coeficiente de kerma de neutrones en la planeacion de tratamientos de Braquiterapia con fuentes de Cf-252

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Balcazar G, M. [ININ, 52045 Ocoyocac, Estado de Mexico (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, 09000 Mexico D.F. (Mexico); Francois L, J.L. [UNAM, 04500 Mexico D.F. (Mexico)]. e-mail: lpg@nuclear.inin.mx

    2006-07-01

    The Cf-252 is a fast neutrons emitting radioisotope by spontaneous fission that can be used as sealed source in medicine applications, industry and research. Commercially its offer sources of different sizes, compact and with a fast neutrons emission of the order of 10{sup 6} n/s-{mu}g and an energy spectra that presents respectively maxim and average energy in 2.1 MeV and 0.7 MeV. In medicine new applications are being developed for the treatment of patient with hypoxic and voluminous tumors, where the therapy with photons has not given positive results, as well as for the protocols of therapy treatment by boron neutron capture, where very small sources of Cf-252 will be used with the interstitial brachytherapy technique of high and low dose rate. In this work an analysis of how the small differences that exist in the elementary composition of 4 wicked tumors, 4 ICRU healthy tissues and 3 substitute materials of ICRU tissue used in dosimetry are presented, its generate changes in the neutrons kerma coefficient in function of the energy and consequently in the absorbed dose in the interval of 11 eV to 29 MeV. These differences can produce maximum variations of the neutron kerma coefficients ratio for E{sub n} > 1 keV of the one: 15% tumor/ICRU guest healthy tissue, 12% ICRU tumor/muscle, 12% ICRU healthy tissues ICRU/ICRU muscle, 22% substitutes tissue/tumor and 22% ICRU substitutes tissue/muscle. Also, it was found that the average value of the neutrons kerma coefficient for the 4 wicked tumors is from 6% to 7% smaller that the average value for the soft tissue in the interval energy of interest for therapy with fast neutrons with E{sub n} > 1 MeV. These results have a special importance during the planning process of brachytherapy treatments with sources of {sup 252}Cf, to optimize and to individualize the patients treatments. (Author)

  5. Avaliação da biodegradação de matrizes porosas à base de hidroxiapatita para aplicação como fontes radioativas em braquiterapia Evaluation of the biodegradation of porous hydroxyapatite matrices for application as radioactive sources in brachytherapy

    Directory of Open Access Journals (Sweden)

    Kássio André Lacerda

    2009-01-01

    Full Text Available Porous ceramic materials based on calcium phosphate compounds (CPC have been studied aiming at different biomedical applications such as implants, drug delivery systems and radioactive sources for brachytherapy. Two kinds of hydroxyapatite (HAp powders and their ceramic bodies were characterized by a combination of different techniques (XRF, BET method, SEM, ICP/AES and neutron activation analysis - NAA to evaluate their physico-chemical and microstructural characteristics in terms of chemical composition, segregated phases, microstructure, porosity, chemical and thermal stability, biodegradation and incorporation of substances in their structures. The results revealed that these systems presented potential for use as porous biodegradable radioactive sources able to be loaded with a wide range of radionuclides for cancer treatment by the brachytherapy technique.

  6. Rotating-shield brachytherapy for cervical cancer

    Science.gov (United States)

    Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.

    2013-06-01

    In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.

  7. Determination of the dose around an ovoid for treatments in intracavitary brachytherapy Hdr; Determinacion de la dosis alrededor de un ovoide para tratamientos en braquiterapia intracavitaria HDR

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Velasco V, R. A. E. [Hospital Central Militar, Periferico y Ejercito Nacional s/n, Lomas de Sotelo, 11200 Mexico D. F. (Mexico); Serrano F, A. K. [Hospital Juarez de Mexico, Av. Instituto Politecnico Nacional No. 5190, Col. Magdalena de las Salinas, 03220 Mexico D. F. (Mexico); Azorin N, J., E-mail: trivera@ipn.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-09-15

    On this work the results of the dosimetric measurements are presented around an ovoid of 2 cm diameter. The measurements were carried out using a water mannequin, an ovoid, a radiation gamma source of {sup 192}Ir and thermoluminescent dosemeters. The dosimetry was realized in the direction of the rectum and bladder. To know the effect of the shielding of the devices type Manchester in the dose, the thermoluminescent dosemeters were irradiated to a radiation gamma source of {sup 192}Ir contained in the Gamma med Plus equipment. The planning was realized normalizing the calculation to 2.5 cm from the applicator center on the transverse plane (2.5, 0, 0). The results show that the dose distribution for an ovoid without shielding is more uniform in the transversal plane to the source axis. The results were compared with the calculated results by means of the planning system BrachyVision. While the absorbed dose distribution around an ovoid with shielding is completely anisotropic. This anisotropic is due to the shielding. (Author)

  8. Long term effect of cervix carcinoma treated by HDR 192 Ir afterloding intracavitory radiotherapy combined with external irradiation.%高剂量率192Ir后装腔内加外照射治疗宫颈癌的远期疗效分析

    Institute of Scientific and Technical Information of China (English)

    王青; 侯晓玲; 赵淑红

    2001-01-01

    Objective To analyze retrosrectively long- term effect of cervix carcinona treated by HDR 192Ir afterloading intracavitory radiotherapy combined with external irradiation. Methods From Mar 1993 to Dec 1994, 128 cases of cervix cancer(age from 29 years to 80 years) were treated with combination of external irradiation and HDR 192Ir afterloading intracavitory radiotherapy. 47 cases were stage Ⅱ and 81 were stage Ⅲ. The dose of external radiotherapy was 40 Gy or 50 Gy and afterloading irradiation was given in 6 or 7 fractions of 8 Gy. Results The overall local tumor control was 94.5%, the 1,3,5 year survival rates were 91.61%, 81.89%and 67.36%. The 1,3,5 year survival rates of stage Ⅱ and stage Ⅲ cases were 95.28% and 89. 47%, 87.19% and 79.50%, 72.76% and 64.95% (P>0.05). The rate of severe complications was 7.03% (9/128). Conclusion HDR 192Ir afterloading intracavitory radiotherapy combined with external irradiation for cervix carcinoma is effective and less side effects.%目的分析高剂量率192Ir后装腔内加外照射治疗宫颈癌的远期疗效及并发症。方法对128例Ⅱ、Ⅲ期放疗后宫颈癌进行了回顾分析。其中Ⅱ期47例,Ⅲ期81例。全盆腔外照射Dr20Gy/10次,全盆中间挡铅4cmDr20Gy~30Gy/10次~15次;后装A点剂量48Gy~56Gy/6次~7次。结果 1、3、5年生存率分别为91.61%、81.8%和67.36%;Ⅱ、Ⅲ期1、3、5年生存率无统计学差异(P>0.05);远期严重并发症的发生率7.03%(9/128)。结论高剂量率192Ir后装腔内加外照射治疗宫颈癌疗效肯定,并发症少。盆腔局部复发仍是放疗失败的主要原因。

  9. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois [Ecole polytechnique de Montreal, Departement de genie informatique et genie logiciel, 2500 chemin de Polytechnique, Montreal, QC, H3T 1J4 (Canada); Departement de radio-oncologie, Centre hospitalier universitaire de Quebec (CHUQ), 11 Cote du Palais, Quebec, QC, G1R 2J6 (Canada); Departement de physique, Universite de Montreal, Montreal, QC (Canada) and Departement de radio-oncologie and Centre de recherche du CHUM, Centre hospitalier de l' Universite de Montreal (CHUM), Montreal, QC, H2L 4M1 (Canada)

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  10. Uncertainty analysis in MCNP5 calculations for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gerardy, I., E-mail: gerardy@isib.be [Institut Superieur Industriel de Bruxelles, 150, Rue Royale, B-1000 Brussels (Belgium); Rodenas, J.; Gallardo, S. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia (Spain)

    2011-08-15

    The Monte Carlo (MC) method can be applied to simulate brachytherapy treatment planning. The MCNP5 code gives, together with results, a statistical uncertainty associated with them. However, the latter is not the only existing uncertainty related to the simulation and other uncertainties must be taken into account. A complete analysis of all sources of uncertainty having some influence on results of the simulation of brachytherapy treatment is presented in this paper. This analysis has been based on the recommendations of the American Association for Physicist in Medicine (AAPM) and of the International Standard Organisation (ISO).

  11. Irradiation and dosimetry of Nitinol stent for renal artery brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Arbabi, Azim [Science and Research Campus, Islamic Azad University, P.O. Box 14515-775, Tehran (Iran, Islamic Republic of); Shahid Beheshti Medical University, P.O. Box 14335-1419, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Science and Research Campus, Islamic Azad University, P.O. Box 14515-775, Tehran (Iran, Islamic Republic of); Nuclear Medicine Research Group, Agricultural, Medical and Industrial Research School, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)], E-mail: msadeghi@nrcam.org; Joharifard, Mahdi [Science and Research Campus, Islamic Azad University, P.O. Box 14515-775, Tehran (Iran, Islamic Republic of)

    2009-01-15

    This study was conducted to assess the suitability of {sup 48}V radioactive stent for use in renal artery brachytherapy. A nickel-titanium alloy Nitinol stent was irradiated over the proton energy range of up to 8.5 MeV, to obtain {sup 48}V. The depth dose distribution analysis of the activated stent was done with TLD-700GR in a Perspex phantom. We investigated a unique mixed gamma/beta brachytherapy source of {sup 48}V. For a 10 mm outer-diameter {sup 48}V stent, the average measured dose rate to vessel was 37 mGy/h. The dosimetry results of the {sup 48}V stent suggest that the stent is suitable for use in renal artery brachytherapy.

  12. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  13. Assessment of effective dose to staff in brachytherapy.

    Science.gov (United States)

    Faulkner, K; James, H V; Chapple, C L; Rawlings, D J

    1996-11-01

    The aim of this paper is to investigate the problem of monitoring effective dose to hospital staff who are involved in the treatment of tumors using sealed sources placed inside the body (brachytherapy). In addition, the use of an unsealed source to treat the thyroid was also considered. Radiation distributions produced by both sealed sources commonly used in brachytherapy (192I, 137Cs, 226Ra) and an unsealed source used in the treatment of the thyroid (131I) were used to irradiate a Rando phantom. The brachytherapy treatments of esophageal and gynecological carcinoma were simulated. The Rando phantom was loaded with lithium fluoride thermoluminescent dosimeters at positions corresponding to a number of radiosensitive organs. Film badges and electronic personal dosimeters were attached to the Rando phantom at various anatomical sites. The Rando phantom was positioned adjacent to the patient at an angle of 90 degrees to the longitudinal axis of the patient. Irradiations were performed with and without a portable lead screen used on the radiotherapy wards. Effective dose was estimated for each simulated radiotherapy treatment and compared with the personal monitor readings. The data were used as a basis for the provision of advice on the wearing of the film badge dosimeters and the design of portable lead screens. The data also permitted a comparison between the two types of dosimeter when used for personal monitoring in brachytherapy.

  14. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J.; Melhus, Christopher S.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Radiation Oncology Department, Physics Section, ' ' La Fe' ' University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot, Spain and IFIC (University of Valencia-CSIC), C/Dr. Moliner 50, E-46100 Burjassot (Spain)

    2009-06-15

    Certain brachytherapy dose distributions, such as those for LDR prostate implants, are readily modeled by treatment planning systems (TPS) that use the superposition principle of individual seed dose distributions to calculate the total dose distribution. However, dose distributions for brachytherapy treatments using high-Z shields or having significant material heterogeneities are not currently well modeled using conventional TPS. The purpose of this study is to establish a new treatment planning technique (Tufts technique) that could be applied in some clinical situations where the conventional approach is not acceptable and dose distributions present cylindrical symmetry. Dose distributions from complex brachytherapy source configurations determined with Monte Carlo methods were used as input data. These source distributions included the 2 and 3 cm diameter Valencia skin applicators from Nucletron, 4-8 cm diameter AccuBoost peripheral breast brachytherapy applicators from Advanced Radiation Therapy, and a 16 mm COMS-based eye plaque using {sup 103}Pd, {sup 125}I, and {sup 131}Cs seeds. Radial dose functions and 2D anisotropy functions were obtained by positioning the coordinate system origin along the dose distribution cylindrical axis of symmetry. Origin:tissue distance and active length were chosen to minimize TPS interpolation errors. Dosimetry parameters were entered into the PINNACLE TPS, and dose distributions were subsequently calculated and compared to the original Monte Carlo-derived dose distributions. The new planning technique was able to reproduce brachytherapy dose distributions for all three applicator types, producing dosimetric agreement typically within 2% when compared with Monte Carlo-derived dose distributions. Agreement between Monte Carlo-derived and planned dose distributions improved as the spatial resolution of the fitted dosimetry parameters improved. For agreement within 5% throughout the clinical volume, spatial resolution of

  15. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  16. Use of Monte Carlo Methods in brachytherapy; Uso del metodo de Monte Carlo en braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Granero Cabanero, D.

    2015-07-01

    The Monte Carlo method has become a fundamental tool for brachytherapy dosimetry mainly because no difficulties associated with experimental dosimetry. In brachytherapy the main handicap of experimental dosimetry is the high dose gradient near the present sources making small uncertainties in the positioning of the detectors lead to large uncertainties in the dose. This presentation will review mainly the procedure for calculating dose distributions around a fountain using the Monte Carlo method showing the difficulties inherent in these calculations. In addition we will briefly review other applications of the method of Monte Carlo in brachytherapy dosimetry, as its use in advanced calculation algorithms, calculating barriers or obtaining dose applicators around. (Author)

  17. A multicenter study to quantify systematic variations and associated uncertainties in source positioning with commonly used HDR afterloaders and ring applicators for the treatment of cervical carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Awunor, O., E-mail: onuora.awunor@stees.nhs.uk [The Medical Physics Department, The James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, England (United Kingdom); Berger, D. [Department of Radiotherapy, General Hospital of Vienna, Vienna A-1090 (Austria); Kirisits, C. [Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna A-1090 (Austria)

    2015-08-15

    Purpose: The reconstruction of radiation source position in the treatment planning system is a key part of the applicator reconstruction process in high dose rate (HDR) brachytherapy treatment of cervical carcinomas. The steep dose gradients, of as much as 12%/mm, associated with typical cervix treatments emphasize the importance of accurate and precise determination of source positions. However, a variety of methodologies with a range in associated measurement uncertainties, of up to ±2.5 mm, are currently employed by various centers to do this. In addition, a recent pilot study by Awunor et al. [“Direct reconstruction and associated uncertainties of {sup 192}Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients,” Phys. Med. Biol. 58, 3207–3225 (2013)] reported source positional differences of up to 2.6 mm between ring sets of the same type and geometry. This suggests a need for a comprehensive study to assess and quantify systematic source position variations between commonly used ring applicators and HDR afterloaders across multiple centers. Methods: Eighty-six rings from 20 European brachytherapy centers were audited in the form of a postal audit with each center collecting the data independently. The data were collected by setting up the rings using a bespoke jig and irradiating gafchromic films at predetermined dwell positions using four afterloader types, MicroSelectron, Flexitron, GammaMed, and MultiSource, from three manufacturers, Nucletron, Varian, and Eckert & Ziegler BEBIG. Five different ring types in six sizes (Ø25–Ø35 mm) and two angles (45° and 60°) were used. Coordinates of irradiated positions relative to the ring center were determined and collated, and source position differences quantified by ring type, size, and angle. Results: The mean expanded measurement uncertainty (k = 2) along the direction of source travel was ±1.4 mm. The standard deviation

  18. Developing a Verification and Training Phantom for Gynecological Brachytherapy System

    Directory of Open Access Journals (Sweden)

    Mahbobeh Nazarnejad

    2012-03-01

    Full Text Available Introduction Dosimetric accuracy is a major issue in the quality assurance (QA program for treatment planning systems (TPS. An important contribution to this process has been a proper dosimetry method to guarantee the accuracy of delivered dose to the tumor. In brachytherapy (BT of gynecological (Gyn cancer it is usual to insert a combination of tandem and ovoid applicators with a complicated geometry which makes their dosimetry verification difficult and important. Therefore, evaluation and verification of dose distribution is necessary for accurate dose delivery to the patients. Materials and Methods The solid phantom was made from Perspex slabs as a tool for intracavitary brachytherapy dosimetric QA. Film dosimetry (EDR2 was done for a combination of ovoid and tandem applicators introduced by Flexitron brachytherapy system. Treatment planning was also done with Flexiplan 3D-TPS to irradiate films sandwiched between phantom slabs. Isodose curves obtained from treatment planning system and the films were compared with each other in 2D and 3D manners. Results The brachytherapy solid phantom was constructed with slabs. It was possible to insert tandems and ovoids loaded with radioactive source of Ir-192 subsequently. Relative error was 3-8.6% and average relative error was 5.08% in comparison with the films and TPS isodose curves. Conclusion Our results showed that the difference between TPS and the measurements is well within the acceptable boundaries and below the action level according to AAPM TG.45. Our findings showed that this phantom after minor corrections can be used as a method of choice for inter-comparison analysis of TPS and to fill the existing gap for accurate QA program in intracavitary brachytherapy. The constructed phantom also showed that it can be a valuable tool for verification of accurate dose delivery to the patients as well as training for brachytherapy residents and physics students.

  19. SU-E-J-270: Study of PET Response to HDR Brachytherapy of Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, R; Le, Y; Armour, E; Efron, J; Azad, N; Wahl, R; Gearhart, S; Herman, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-01

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatment dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.

  20. Preparation of (103)Pd brachytherapy seeds by electroless plating of (103)Pd onto carbon bars.

    Science.gov (United States)

    Li, Zhong-Yong; Gao, Hui-Bo; Deng, Xue-Song; Zhou, Leng; Zhang, Wen-Hui; Han, Lian-Ge; Jin, Xiao-Hai; Cui, Hai-Ping

    2015-09-01

    A method for preparing (103)Pd brachytherapy seeds is reported. The key of the method was to deposit (103)Pd onto carbon bars by electroless plating so as to prepare source cores. After each carbon bar with (103)Pd was sealed in a titanium capsule, the (103)Pd seeds were fabricated. This paper provides valuable experiences and data for the preparation of (103)Pd brachytherapy seeds.

  1. Radiological protection on interstitial brachytherapy and dose determination and exposure rate of an Ir-192 source through the MCNP-4B; Proteccion radiologica en braquiterapia intersticial y determinacion de la dosis y tasa de exposicion de una fuente de Ir-192 mediante el MCNP-4B

    Energy Technology Data Exchange (ETDEWEB)

    Morales L, M.E. [INEN, Av. Angamos Este 2520- Surquillo, Lima (Peru)

    2006-07-01

    The present work was carried out in the Neurological Sciences Institute having as objective to determine the dose and the rate of exhibition of the sources of Iridium 192, Iodine 125 and Palladium 103; which are used to carry out implant in the Interstitial Brachytherapy according to the TG43. For it we carry out a theoretical calculation, its are defined in the enter file: the geometry, materials of the problem and the radiation source, etc; in the MCNP-4B Monte Carlo code, considering a punctual source and for the dose determination we simulate thermoluminescent dosemeters (TLD): at 5 cm, 50 cm, 100 cm and 200 cm of the source. Our purpose is to analyze the radioprotection measures that should take into account in this Institute in which are carried out brain biopsies using a Micro mar stereotactic mark, and in a near future with the collaboration of a doctor and a cuban physique seeks to be carried out the Interstitial Brachytherapy technique with sources of Ir-192 for patient with tumors like glioblastoma, astrocytoma, etc. (Author)

  2. Direction-Modulated Brachytherapy for High-Dose-Rate Treatment of Cervical Cancer. I: Theoretical Design

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Yup [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California (United States); Webster, Matthew J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Department of Physics, University of California San Diego, La Jolla, California (United States); Scanderbeg, Daniel J.; Yashar, Catheryn; Choi, Dongju; Song, Bongyong [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Devic, Slobodan [Medical Physics Unit, McGill University, Montréal, Québec (Canada); Department of Radiation Oncology, Jewish General Hospital, Montréal, Québec (Canada); Ravi, Ananth [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Song, William Y., E-mail: wyjsong@gmail.com [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2014-07-01

    Purpose: To demonstrate that utilization of the direction-modulated brachytherapy (DMBT) concept can significantly improve treatment plan quality in the setting of high-dose-rate (HDR) brachytherapy for cervical cancer. Methods and Materials: The new, MRI-compatible, tandem design has 6 peripheral holes of 1.3-mm diameter, grooved along a nonmagnetic tungsten-alloy rod (ρ = 18.0 g/cm{sup 3}), enclosed in Delrin tubing (polyoxymethylene, ρ = 1.41 g/cm{sup 3}), with a total thickness of 6.4 mm. The Monte Carlo N-Particle code was used to calculate the anisotropic {sup 192}Ir dose distributions. An in-house-developed inverse planning platform, geared with simulated annealing and constrained-gradient optimization algorithms, was used to replan 15 patient cases (total 75 plans) treated with a conventional tandem and ovoids (T and O) applicator. Prescription dose was 6 Gy. For replanning, we replaced the conventional tandem with that of the new DMBT tandem for optimization but left the ovoids in place and kept the dwell positions as originally planned. All DMBT plans were normalized to match the high-risk clinical target volume V100 coverage of the T and O plans. Results: In general there were marked improvements in plan quality for the DMBT plans. On average, D2cc for the bladder, rectum, and sigmoid were reduced by 0.59 ± 0.87 Gy (8.5% ± 28.7%), 0.48 ± 0.55 Gy (21.1% ± 27.2%), and 0.10 ± 0.38 Gy (40.6% ± 214.9%) among the 75 plans, with best single-plan reductions of 3.20 Gy (40.8%), 2.38 Gy (40.07%), and 1.26 Gy (27.5%), respectively. The high-risk clinical target volume D90 was similar, with 6.55 ± 0.96 Gy and 6.59 ± 1.06 Gy for T and O and DMBT, respectively. Conclusions: Application of the DMBT concept to cervical cancer allowed for improved organ at risk sparing while achieving similar target coverage on a sizeable patient population, as intended, by maximally utilizing the anatomic information contained in 3-dimensional

  3. Treatment planning for multicatheter interstitial brachytherapy of breast cancer - from Paris system to anatomy-based inverse planning

    National Research Council Canada - National Science Library

    Tibor Major; Csaba Polgár

    2017-01-01

    .... The catheter reconstruction is also easier and faster on CT images compared to X-ray films. In high dose rate brachytherapy, using a stepping source, a number of forward dose optimization methods...

  4. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  5. Improving photoacoustic imaging contrast of brachytherapy seeds

    Science.gov (United States)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  6. Brachytherapy in Gynecologic Cancers: Why Is It Underused?

    Science.gov (United States)

    Han, Kathy; Viswanathan, Akila N

    2016-04-01

    Despite its established efficacy, brachytherapy is underused in the management of cervical and vaginal cancers in some parts of the world. Possible reasons for the underutilization of brachytherapy include the adoption of less invasive techniques, such as intensity-modulated radiotherapy; reimbursement policies favoring these techniques over brachytherapy; poor physician or patient access to brachytherapy; inadequate maintenance of brachytherapy skills among practicing radiation oncologists; transitioning to high-dose-rate (HDR) brachytherapy with increased time requirements; and insufficient training of radiation oncology residents.

  7. Air density dependence of the response of the PTW SourceCheck 4pi ionization chamber for (125)I brachytherapy seeds.

    Science.gov (United States)

    Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M

    2017-06-01

    To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring (125)I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Brachytherapy for prostate cancer: Comparative characteristics of procedures

    Directory of Open Access Journals (Sweden)

    S. V. Kanaev

    2015-01-01

    Full Text Available The introduction of interstitial radiation sources is the «youngest» of the radical method of treatment of patients with prostate cancer (PC. The high level of efficiency comparable to prostatectomy at a significantly lower rate of complications causes rapid growth of clinical use of brachytherapy (BT. Depending on the radiation source and the mode of administration into the prostate gland are two types BT – high-dose rate (temporary (HDR-BT and low-dose rate (permanent (LDR-BT brachytherapy. At the heart of these two methods are based on a single principle of direct effect of the quantum gamma radiation on the area of interest. However, the differences between the characteristics of isotopes used and technical aspects of the techniques cause the difference in performance and complication rates for expression HDR-BT and LDR-BT.

  9. In vivo dosimetry in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus Erik;

    2013-01-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and th...

  10. SU-E-T-462: Impact of the Radiochromic Film Energy Response On Dose Measurements of Low Energy Electronic Brachytherapy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Liang, L; Bekerat, H; Tomic, N; DeBlois, F; Devic, S [Jewish General Hospital, Medical Physics Unit, McGill University, Montreal, QC (Canada); Morcos, M [Vantage Oncology, Corona, CA (United States); Popovic, M; Watson, P; Seuntjens, J [Montreal General Hospital, Medical Physics Unit, McGill University, Montreal, QC (Canada)

    2015-06-15

    Purpose: We investigated the effect of the EBT3 GafChromicTM film model absorbed dose energy response when used for percent depth dose (PDD) measurements in low-energy photon beams. Methods: We measured PDDs in water from a Xoft 50 kVp source using EBT3 film, and compared them to PDD measurements acquired with a PTW-TN34013 parallel-plate ionization chamber. For the x-ray source, we simulated spectra using the EGSnrc (BEAMnrc) Monte Carlo code, and calculated Half Value Layer (HVL) at different distances from the source in water. Pieces of EBT3 film were irradiated in air and calibration curves were created in terms of air-kerma in air ((Kair)air) for different beam qualities. Pieces of EBT3 film were positioned at distances of 2–6 cm from the Xoft source in a water phantom using a custom-made holder, and irradiated at the same time. As scatter is incorporated in the measured film signal in water, measured (Kair)wat was subsequently converted into absorbed dose to water by the ratio of mass energy absorption coefficients following the AAPM TG-61 dosimetry protocol. Results: Our results show that film calibration curves obtained at beam qualities near the effective energy of the Xoft 50 kVp source in water lead to variation in absorbed dose energy dependence of the response of around 3%. However, if the calibration curve was established at MV beam quality, the error in absorbed dose could be as large as 15%. We observed agreement within 1% between PDD measurements using EBT3 film model (using a calibration curve obtained at 80 kVp, HVL=2.18 mm Al, Eeff=29.5 keV) and the parallel-plate ionization chamber. Conclusion: Accurate dose measurements using radiochromic films at low photon energies require that the radiochromic film dosimetry system be calibrated at corresponding low energies, as large absorbed dose errors are expected for calibrations performed at MV beam qualities.

  11. Brachytherapy in the Management of Uveal Melanomas

    Directory of Open Access Journals (Sweden)

    Samuray Tuncer

    2014-09-01

    Full Text Available Uveal melanoma is the most common intraocular tumor in adults. Clinical studies have shown similar patient survival rates after treatment of medium-sized melanomas when comparing plaque brachytherapy with radioactive iodine-125 versus enucleation. This finding further emphasizes the importance of this globe-sparing treatment. Brachytherapy is a special local radiotherapy technique that aims to deliver high-dose radiation directly to the tumor by sparing the periocular structures. Brachytherapy is still the most widely used treatment for uveal melanoma. Iodine-125 and ruthenium-106 are the most common radioisotopes used in brachytherapy. After brachytherapy, sight-threatening complications occur unavoidably in many patients. Brachytherapy is mostly associated with long-term complications. Radiation retinopathy and cataract formation are the most common treatment-related complications. Brachytherapy provides local tumor control (ocular salvage in about 90% of patients. Adjunctive transpupillary thermotherapy (sandwich therapy improves the control rate of local tumors to 97%. About 10% of patients treated with brachytherapy subsequently require enucleation because of local tumor recurrence or neovascular glaucoma at 5 years of follow-up. Metastatic disease occurs in 10% of patients with medium-sized melanoma at 5-year follow-up. This rate increases to 55% at 10-year follow-up in patients with large melanomas (thickness >8 mm. Thus, it is very important to inform the patients under the light of these data prior to brachytherapy. (Turk J Ophthalmol 2014; 44: Supplement 43-8

  12. On the question of 3D seed reconstruction in prostate brachytherapy: the determination of x-ray source and film locations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Mutian [Radiation Safety Office, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032 (United States); Zaider, Marco [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Worman, Michael [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Cohen, Gilad [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States)

    2004-10-07

    Inaccuracy in seed placement during permanent prostate implants may lead to significant dosimetric deviations from the intended plan. In two recent publications (Todor et al 2002 Phys. Med. Biol. 47 2031-48, Todor et al 2003 Phys. Med. Biol. 48 1153-71), methodology was described for identifying intraoperatively the positions of seeds already implanted, thus allowing re-optimization of the treatment plan and correcting for such seed misplacement. Seed reconstruction is performed using fluoroscopic images and an important (and non-trivial) component of this approach is the ability to accurately determine the position of the gantry relative to the treatment volume. We describe the methodology for acquiring this information, based on the known geometry of six markers attached to the ultrasound probe. This method does not require the C-arm unit to be isocentric and films can be taken with the gantry set at any arbitrary position. This is significant because the patient positioning on the operating table (in the lithotomy position) restricts the range of angles at which films can be taken to a quite narrow (typically {+-}10{sup 0}) interval and, as a general rule, the closer the angles the larger the uncertainty in the seed location reconstruction along the direction from the x-ray source to the film. (note)

  13. Paddle-based rotating-shield brachytherapy

    Science.gov (United States)

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Dadkhah, Hossein; Bhatia, Sudershan K.; Buatti, John M.; Xu, Weiyu; Wu, Xiaodong

    2015-01-01

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm3 (D2cm3) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy3, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D90 increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy10, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D90, compared to D-RSBT, were 16.6, 12.9, 7.2, 3.7, and 1.7 Gy10

  14. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  15. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  16. Study of dose calculation on breast brachytherapy using prism TPS

    Energy Technology Data Exchange (ETDEWEB)

    Fendriani, Yoza; Haryanto, Freddy [Nuclear Physics and Biophysics Research Division, FMIPA Institut Teknologi Bandung, Physics Buildings, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  17. Afterloading: The Technique That Rescued Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aronowitz, Jesse N., E-mail: jesse.aronowitz@umassmemorial.org

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  18. Toxicity associated with bowel or bladder puncture during gynecologic interstitial brachytherapy.

    Science.gov (United States)

    Shah, Anand P; Strauss, Jonathan B; Gielda, Benjamin T; Zusag, Thomas W

    2010-05-01

    Interstitial brachytherapy for gynecologic malignancies is associated with significant toxicity. Some reports have correlated this toxicity with needle puncture of the visceral organs. This study examined our experience with interstitial brachytherapy and investigated the relationship between the visceral puncture and toxicity. The outcomes of 36 patients treated with interstitial brachytherapy for gynecologic malignancies at a single institution between 2002 and 2007 were reviewed. Computed tomography was used to guide needle placement based solely on tumor coverage. No attempts were made to avoid visceral puncture; however, the source dwell times were minimized in these areas. At a median follow-up of 21 months, the crude locoregional control rate was 78%. Bowel puncture was noted in 26 patients and bladder puncture in 19. The mean operating time was 50 min, and 86% of patients were discharged in source loading carries a low risk of morbidity.

  19. Prostate brachytherapy seed migration to the heart seen on cardiovascular computed tomographic angiography

    Directory of Open Access Journals (Sweden)

    Shilpa Sachdeva, MD

    2017-03-01

    Full Text Available Brachytherapy consists of placing radioactive sources into or adjacent to tumors, to deliver conformal radiation treatment. The technique is used for treatment of primary malignancies and for salvage in recurrent disease. Permanent prostate brachytherapy seeds are small metal implants containing radioactive sources of I-125, Pd-103, or Cs-131 encased in a titanium shell. They can embolize through the venous system to the lungs or heart and subsequently be detected by cardiovascular computed tomography. Cardiovascular imagers should be aware of the appearance of migrated seeds, as their presence in the chest is generally benign, so that unnecessary worry and testing are avoided. We report a case of a patient who underwent brachytherapy for prostate cancer and developed a therapeutic seeds embolus to the right ventricle.

  20. A Multi-Institutional Study of Feasibility, Implementation, and Early Clinical Results With Noninvasive Breast Brachytherapy for Tumor Bed Boost

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Subarna, E-mail: shamid@tuftsmedicalcenter.org [Department of Radiation Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (United States); Department of Radiation Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI (United States); Rocchio, Kathy [Department of Radiation Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI (United States); Arthur, Douglas; Vera, Robyn [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States); Sha, Sandra; Jolly, Michele [Central Florida Cancer Institute, Davenport, FL (United States); Cavanaugh, Sean; Wooten, Eric [Atlanta Oncology Associates, Hawkinsville, GA (United States); Benda, Rashmi; Greenfield, Brad [Department of Radiation Oncology, Boca Raton Community Hospital, Boca Raton, FL (United States); Prestidge, Bradley [Texas Cancer Clinic, San Antonio, TX (United States); Ackerman, Scot [First Coast Oncology, Jacksonville, FL (United States); Kuske, Robert; Quiet, Coral; Snyder, Margaret [Arizona Breast Cancer Specialists, Phoenix, AZ (United States); Wazer, David E. [Department of Radiation Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA (United States); Department of Radiation Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI (United States)

    2012-08-01

    Purpose: To evaluate the feasibility, implementation, and early results of noninvasive breast brachytherapy (NIBB) for tumor bed boost with whole breast radiation therapy (WBRT). Methods and Materials: NIBB is a commercially available (AccuBoost, Billerica, MA) mammography-based, brachytherapy system in which the treatment applicators are centered on the planning target volume (PTV) to direct {sup 192}Ir emissions along orthogonal axes. A privacy-encrypted online data registry collected information from 8 independent academic and community-based institutions. Data were from 146 consecutive women with early-stage breast cancer after lumpectomy and WBRT receiving boost with NIBB between July 2007 and March 2010. Toxicity and cosmesis were graded according to the Common Toxicity Criteria (v. 3.0) and the Harvard scale. Median follow-up was 6 months (1-39 months). Results: Grade 1-2 skin toxicity was observed in 64%, 48%, and 21% during the acute (1-3 weeks), intermediate (4-26 weeks), and late-intermediate (>26 weeks) periods. There was no Grade 4 toxicity. At 6 months, for the entire cohort, cosmesis was excellent/good in 62%/38%. The subset receiving NIBB before WBRT had cosmetic scores of 32% and 63%, whereas during WBRT, 58% and 37% were rated as excellent and good, respectively. Breast compression was scored as 'uncomfortable' in 12%, 29%, and 59% when NIBB was delivered before, during, or after WBRT. For each patient, the fraction-to-fraction variability in PTV was low. Skin flash was associated with a higher proportion of excellent cosmesis (58% vs. 42%) relative to having the applicator all within breast tissue. Conclusions: These data indicate that NIBB is feasible and can be consistently implemented in a broad array of practice settings. Preliminary evaluation suggests that NIBB is associated with acceptably mild normal tissue toxicity and favorable early cosmesis. The application of NIBB before WBRT may be associated with better patient tolerance

  1. Interstitial rotating shield brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Enger, Shirin A. [Medical Physics Unit, McGill University, 1650 Cedar Ave, Montreal, Quebec H3G 1A4 (Canada)

    2014-05-15

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29

  2. Technical Note: Contrast solution density and cross section errors in inhomogeneity-corrected dose calculation for breast balloon brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Leonard H.; Zhang Miao; Howell, Roger W.; Yue, Ning J.; Khan, Atif J. [Department of Radiation Oncology, University of Medicine and Dentistry of New Jersey: Robert Wood Johnson Medical School and Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States); Department of Radiology, University of Medicine and Dentistry of New Jersey: New Jersey Medical School, Newark, New Jersey 07103 (United States); Department of Radiation Oncology, University of Medicine and Dentistry of New Jersey: Robert Wood Johnson Medical School and Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States)

    2013-01-15

    Purpose: Recent recommendations by the American Association of Physicists in Medicine Task Group 186 emphasize the importance of understanding material properties and their effect on inhomogeneity-corrected dose calculation for brachytherapy. Radiographic contrast is normally injected into breast brachytherapy balloons. In this study, the authors independently estimate properties of contrast solution that were expected to be incorrectly specified in a commercial brachytherapy dose calculation algorithm. Methods: The mass density and atomic weight fractions of a clinical formulation of radiographic contrast solution were determined using manufacturers' data. The mass density was verified through measurement and compared with the density obtained by the treatment planning system's CT calibration. The atomic weight fractions were used to determine the photon interaction cross section of the contrast solution for a commercial high-dose-rate (HDR) brachytherapy source and compared with that of muscle. Results: The density of contrast solution was 10% less than that obtained from the CT calibration. The cross section of the contrast solution for the HDR source was 1.2% greater than that of muscle. Both errors could be addressed by overriding the density of the contrast solution in the treatment planning system. Conclusions: The authors estimate the error in mass density and cross section parameters used by a commercial brachytherapy dose calculation algorithm for radiographic contrast used in a clinical breast brachytherapy practice. This approach is adaptable to other clinics seeking to evaluate dose calculation errors and determine appropriate density override values if desired.

  3. Long-Term Results of an RTOG Phase II Trial (00-19) of External-Beam Radiation Therapy Combined With Permanent Source Brachytherapy for Intermediate-Risk Clinically Localized Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Colleen A., E-mail: clawton@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Yan, Yan [Radiation Therapy Oncology Group Statistical Center, Philadelphia, PA (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University School of Medicine, Durham, NC (United States); Gillin, Michael [Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Firat, Selim [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Baikadi, Madhava [Department of Radiation Oncology, Northeast Radiation Oncology Center, Scranton, PA (United States); Crook, Juanita [Department of Radiation Oncology, University of British Columbia, Kelowna, BC (Canada); Kuettel, Michael [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Morton, Gerald [Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Center, Toronto, ON (Canada); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2012-04-01

    Purpose: External-beam radiation therapy combined with low-doserate permanent brachytherapy are commonly used to treat men with localized prostate cancer. This Phase II trial was performed to document late gastrointestinal or genitourinary toxicity as well as biochemical control for this treatment in a multi-institutional cooperative group setting. This report defines the long-term results of this trial. Methods and Materials: All eligible patients received external-beam radiation (45 Gy in 25 fractions) followed 2-6 weeks later by a permanent iodine 125 implant of 108 Gy. Late toxicity was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late radiation morbidity scoring scheme. Biochemical control was defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus definition and the ASTRO Phoenix definition. Results: One hundred thirty-eight patients were enrolled from 20 institutions, and 131 were eligible. Median follow-up (living patients) was 8.2 years (range, 2.7-9.3 years). The 8-year estimate of late grade >3 genitourinary and/or gastrointestinal toxicity was 15%. The most common grade >3 toxicities were urinary frequency, dysuria, and proctitis. There were two grade 4 toxicities, both bladder necrosis, and no grade 5 toxicities. In addition, 42% of patients complained of grade 3 impotence (no erections) at 8 years. The 8-year estimate of biochemical failure was 18% and 21% by the Phoenix and ASTRO consensus definitions, respectively. Conclusion: Biochemical control for this treatment seems durable with 8 years of follow-up and is similar to high-dose external beam radiation alone or brachytherapy alone. Late toxicity in this multi-institutional trial is higher than reports from similar cohorts of patients treated with high-dose external-beam radiation alone or permanent low-doserate brachytherapy alone, perhaps suggesting further attention to strategies that limit doses to

  4. Extended (5-year) Outcomes of Accelerated Partial Breast Irradiation Using MammoSite Balloon Brachytherapy: Patterns of Failure, Patient Selection, and Dosimetric Correlates for Late Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, John A.; Verma, Vivek; Kim, Hayeon; Kalash, Ronny; Heron, Dwight E.; Johnson, Ronald; Beriwal, Sushil, E-mail: beriwals@upmc.edu

    2014-02-01

    Purpose: Accelerated partial breast irradiation (APBI) with balloon and catheter-based brachytherapy has gained increasing popularity in recent years and is the subject of ongoing phase III trials. Initial data suggest promising local control and cosmetic results in appropriately selected patients. Long-term data continue to evolve but are limited outside of the context of the American Society of Breast Surgeons Registry Trial. Methods and Materials: A retrospective review of 157 patients completing APBI after breast-conserving surgery and axillary staging via high-dose-rate {sup 192}Ir brachytherapy from June 2002 to December 2007 was made. APBI was delivered with a single-lumen MammoSite balloon-based applicator to a median dose of 34 Gy in 10 fractions over a 5-day period. Tumor coverage and critical organ dosimetry were retrospectively collected on the basis of computed tomography completed for conformance and symmetry. Results: At a median follow-up time of 5.5 years (range, 0-10.0 years), the 5-year and 7-year actuarial incidences of ipsilateral breast control were 98%/98%, of nodal control 99%/98%, and of distant control 99%/99%, respectively. The crude rate of ipsilateral breast recurrence was 2.5% (n=4); of nodal failure, 1.9% (n=3); and of distant failure, 0.6% (n=1). The 5-year and 7-year actuarial overall survival rates were 89%/86%, with breast cancer–specific survival of 100%/99%, respectively. Good to excellent cosmetic outcomes were achieved in 93.4% of patients. Telangiectasia developed in 27% of patients, with 1-year, 3-year, and 5-year actuarial incidence of 7%/24%/33%; skin dose >100% significantly predicted for the development of telangiectasia (50% vs 14%, P<.0001). Conclusions: Long-term single-institution outcomes suggest excellent tumor control, breast cosmesis, and minimal late toxicity. Skin toxicity is a function of skin dose, which may be ameliorated with dosimetric optimization afforded by newer multicatheter brachytherapy

  5. MO-D-BRD-04: NIST Air-Kerma Standard for Electronic Brachytherapy Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Mitch, M. [Nat’l Institute of Standards & Technology (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  6. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Oregon Health & Science Univ (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  7. MO-D-BRD-02: Radiological Physics and Surface Lesion Treatments with Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fulkerson, R.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  8. MO-D-BRD-01: Clinical Implementation of An Electronic Brachytherapy Program for the Skin

    Energy Technology Data Exchange (ETDEWEB)

    Ouhib, Z. [Lynn Regional Cancer Center (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  9. Preliminary experience on the implementation of computed tomography (CT)-based image guided brachytherapy (IGBT) of cervical cancer using high-dose-rate (HDR) Cobalt-60 source in University of Malaya Medical Centre (UMMC)

    Science.gov (United States)

    Jamalludin, Z.; Min, U. N.; Ishak, W. Z. Wan; Malik, R. Abdul

    2016-03-01

    This study presents our preliminary work of the computed tomography (CT) image guided brachytherapy (IGBT) implementation on cervical cancer patients. We developed a protocol in which patients undergo two Magnetic Resonance Imaging (MRI) examinations; a) prior to external beam radiotherapy (EBRT) and b) prior to intra-cavitary brachytherapy for tumour identification and delineation during IGBT planning and dosimetry. For each fraction, patients were simulated using CT simulator and images were transferred to the treatment planning system. The HR-CTV, IR-CTV, bladder and rectum were delineated on CT-based contouring for cervical cancer. Plans were optimised to achieve HR-CTV and IR-CTV dose (D90) of total EQD2 80Gy and 60Gy respectively, while limiting the minimum dose to the most irradiated 2cm3 volume (D2cc) of bladder and rectum to total EQD2 90Gy and 75Gy respectively. Data from seven insertions were analysed by comparing the volume-based with traditional point- based doses. Based on our data, there were differences between volume and point doses of HR- CTV, bladder and rectum organs. As the number of patients having the CT-based IGBT increases from day to day in our centre, it is expected that the treatment and dosimetry accuracy will be improved with the implementation.

  10. Study and development of methodology for radioactive iodine fixation in polymeric substrate for manufacturing sources used in brachytherapy; Estudo e desenvolvimento de metodologia para fixacao de iodo radioativo em substrato polimerico para confeccao de fontes utilizadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruna T.; Souza, Carla D.; Benega, Marcos A.G. and others, E-mail: bteigarodrigues@gmail.com, E-mail: carladdsouza@yahoo.com.br, E-mail: marcosagbenega@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes

    2014-07-01

    According global estimates of Globocan 2012 project of the International Agency for Research of Cancer, of the World Health Organization, there were 14,1 million new cases of cancer and a total of 8,2 million deaths from cancer. Also show that in 2030, the overall load will be 21,4 million new cases and 13,2 million cancer deaths. One of the prostate cancer therapy is brachytherapy, used in early and middle stages of the disease. It is made with the introduction of seeds with radioactive material within the tumor or in nearby regions, affecting the minimum surrounding tissues. The aim of this work is the study and developing the deposition of radioactive iodine on the polymeric substrate method, and an analysis relating the efficiency of the method to implementation in the laboratory of brachytherapy from IPEN. Iodine-125 is adsorbed on an epoxy resin solution. The objective of this study is to offer a new proposal for seeds. The results will give the data for the radiation protection and the procedures for radioactive waste management.

  11. High-dose-rate brachytherapy with local injection of bleomycin for N0 oral tongue cancer. Possibilities of the control of tumor implant by inserting applicators and the decrease in tumor dose

    Energy Technology Data Exchange (ETDEWEB)

    Ohga, Saiji; Uehara, Satoru [National Kyushu Medical Center Hospital, Fukuoka (Japan); Miyoshi, Makoto [Kitakyushu Municipal Medical Center Hospital, Fukuoka (Japan); Jingu, Kenichi [Fukuoka Univ. (Japan). School of Medicine

    2003-01-01

    Twenty-eight patients with N0 oral tongue cancer were treated with high-dose-rate (HDR) interstitial brachytherapy combined with local injection of bleomycin between December 1997 and June 2001 at the Department of Radiology, National Kyushu Medical Center Hospital. A median dose of 5 mg of bleomycin was injected locally, and 16-20 Gy was delivered to the area surrounding applicators for control of the tumor implant during the initial two days. The two-year local recurrence-free survival rate was 96% [T1, 2: 100% (8/8, 15/15), T3: 80% (4/5)]. The two-year secondary neck node metastasis rate was 7.1% [T1: 12.5% (1/8), T2: 6.7% (1/15), T3: 0% (0/5)]. There were no tumor implants in any patients. We tried to decrease the minimal tumor dose step by step. The groups with median minimal tumor doses of 60 Gy, 50 Gy, and 40 Gy had local recurrence rates of 12.5% (1/8), 0% (0/14), and 0% (0/6), respectively. Local recurrence rates were not increased by decreasing the minimal tumor dose. Two patients (7%) had secondary neck node metastasis. Late adverse effects were tongue ulcer: 11% (3/28), oral floor ulcer: 4% (1/28), and osteonecrosis: 4% (1/28). These results suggest that control of the tumor implant and the decrease in minimal tumor dose below 60 Gy may be possible with the local injection of bleomycin and delivery of doses to the area surrounding the applicators when N0 tongue cancer is treated using {sup 192}Ir-HDR brachytherapy. (author)

  12. [Endobronchial brachytherapy: state of the art in 2013].

    Science.gov (United States)

    Derhem, N; Sabila, H; Mornex, F

    2013-04-01

    Endobronchial brachytherapy is an invasive technique, which allows localizing radioactive sources at the tumour contact. Therefore, high doses are administered to tumour while healthy tissues can be spared. Initially dedicated to a palliative setting, improvements helped reaching 60 to 88% symptoms alleviation and 30 to 100% of endoscopic macroscopic response. New diagnostic techniques and early diagnosis extended the indications to a curative intent: endoluminal primitive tumour, post radiation endobronchial recurrence, inoperable patients. CT-based dosimetry is a keypoint to optimize treatment quality and to minimize potential side effects, making this treatment a safe and efficient technique for specific indications.

  13. Brachytherapy in breast cancer: an effective alternative

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2014-03-01

    Full Text Available Breast conserving surgery (BCS with following external beam radiation therapy (EBRT of the conserved breast has become widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of EBRT after BCS is to treat the whole breast up to a total dose of 42.5 to 50 Gy. An additional dose is given to treated volume as a boost to a portion of the breast. In the early stage of breast cancer, research has shown that the area requiring radiation treatment to prevent the cancer from local recurrence is the breast tissue that surrounds the area where the initial cancer was removed. Accelerated partial breast irradiation (APBI is an approach that treats only the lumpectomy bed plus a 1-2 cm margin rather than the whole breast and as a result allows accelerated delivery of the radiation dose in four to five days. There has been a growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy (3D-EBRT and intra-operative radiation therapy (IORT. Balloon-based brachytherapy approaches include MammoSite, Axxent electronic brachytherapy, Contura, hybrid brachytherapy devices. Another indication for breast brachytherapy is reirradiation of local recurrence after mastectomy. Published results of brachytherapy are very promising. We discuss the current status, indications, and technical aspects of breast cancer brachytherapy.

  14. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Toyonaka Municipal Hospital, Osaka (Japan); Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Graduate School of Medicine; Furukawa, Souhei; Kakimoto, Naoya [Osaka Univ., Suita (Japan). Graduate School of Dentistry

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  15. Brachytherapy for early oral tongue cancer: low dose rate to high dose rate.

    Science.gov (United States)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Furukawa, Souhei; Kakimoto, Naoya; Shimizutani, Kimishige; Inoue, Toshihiko

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n = 341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer.

  16. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Tozer-Loft, S.M

    2000-12-01

    A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy is explained in detail, and some improvements proposed. These 'natural' histograms are extended to show the effects of real point sources which do not exactly follow the inverse-square law, and to demonstrate the in-target dose-volume distribution, previously unpublished. The histograms are used as a way of mathematically analysing the properties of theoretical mono-energetic radionuclides, and for demonstrating the dosimetric properties of a potential new brachytherapy source (Ytterbium-169). A new modification of the Anderson formalism is then described for producing Anderson Inverse-Square Shifted (AISS) histograms for the Gamma Knife, which are shown to be useful for demonstrating the quality of stereotactic radiosurgery dose distributions. A study is performed analysing the results of Gamma Knife treatments on 44 patients suffering from a benign brain tumour (acoustic neuroma). Follow-up data is used to estimate the volume shrinkage or growth of each tumour, and this measure of outcome is compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising

  17. Intraoperative fluoroscopic dose assessment in prostate brachytherapy patients.

    Science.gov (United States)

    Reed, Daniel R; Wallner, Kent E; Narayanan, Sreeram; Sutlief, Steve G; Ford, Eric C; Cho, Paul S

    2005-09-01

    To evaluate a fluoroscopy-based intraoperative dosimetry system to guide placement of additional sources to underdosed areas, and perform computed tomography (CT) verification. Twenty-six patients with prostate carcinoma treated with either I-125 or Pd-103 brachytherapy at the Puget Sound VA using intraoperative postimplant dosimetry were analyzed. Implants were performed by standard techniques. After completion of the initial planned brachytherapy procedure, the initial fluoroscopic intraoperative dose reconstruction analysis (I-FL) was performed with three fluoroscopic images acquired at 0 (AP), +15, and -15 degrees. Automatic seed identification was performed and the three-dimensional (3D) seed coordinates were computed and imported into VariSeed for dose visualization. Based on a 3D assessment of the isodose patterns additional seeds were implanted, and the final fluoroscopic intraoperative dose reconstruction was performed (FL). A postimplant computed tomography (CT) scan was obtained after the procedure and dosimetric parameters and isodose patterns were analyzed and compared. An average of 4.7 additional seeds were implanted after intraoperative analysis of the dose coverage (I-FL), and a median of 5 seeds. After implantation of additional seeds the mean V100 increased from 89% (I-FL) to 92% (FL) (p sources to supplement inadequately dosed areas within the prostate gland. Additionally, guided implantation of additional source, can significantly improve V100s and D90s, without significantly increasing rectal doses.

  18. Value of diffusion weighted MR imaging as an early surrogate parameter for evaluation of tumor response to high-dose-rate brachytherapy of colorectal liver metastases

    Directory of Open Access Journals (Sweden)

    Röhl Friedrich-Wilhelm

    2011-04-01

    Full Text Available Abstract Background To assess the value of diffusion weighted imaging (DWI as an early surrogate parameter for treatment response of colorectal liver metastases to image-guided single-fraction 192Ir-high-dose-rate brachytherapy (HDR-BT. Methods Thirty patients with a total of 43 metastases underwent CT- or MRI-guided HDR-BT. In 13 of these patients a total of 15 additional lesions were identified, which were not treated at the initial session and served for comparison. Magnetic resonance imaging (MRI including breathhold echoplanar DWI sequences was performed prior to therapy (baseline MRI, 2 days after HDR-BT (early MRI as well as after 3 months (follow-up MRI. Tumor volume (TV and intratumoral apparent diffusion coefficient (ADC were measured independently by two radiologists. Statistical analysis was performed using univariate comparison, ANOVA and paired t test as well as Pearson's correlation. Results At early MRI no changes of TV and ADC were found for non-treated colorectal liver metastases. In contrast, mean TV of liver lesions treated with HDR-BT increased by 8.8% (p = 0.054 while mean tumor ADC decreased significantly by 11.4% (p p = 0.027 without significant change of mean ADC values. In contrast, mean TV of treated lesions decreased by 47.0% (p = 0.026 while the mean ADC increased inversely by 28.6% compared to baseline values (p Conclusions DWI is a promising imaging biomarker for early prediction of tumor response in patients with colorectal liver metastases treated with HDR-BT, yet the optimal interval between therapy and early follow-up needs to be elucidated.

  19. Patient-specific Monte Carlo-based dose-kernel approach for inverse planning in afterloading brachytherapy.

    Science.gov (United States)

    D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc

    2011-12-01

    Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011

  20. Patient-Specific Monte Carlo-Based Dose-Kernel Approach for Inverse Planning in Afterloading Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    D' Amours, Michel [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de l' Universite Laval, Hotel-Dieu de Quebec, Quebec, QC (Canada); Department of Physics, Physics Engineering, and Optics, Universite Laval, Quebec, QC (Canada); Pouliot, Jean [Department of Radiation Oncology, University of California, San Francisco, School of Medicine, San Francisco, CA (United States); Dagnault, Anne [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de l' Universite Laval, Hotel-Dieu de Quebec, Quebec, QC (Canada); Verhaegen, Frank [Department of Radiation Oncology, Maastro Clinic, GROW Research Institute, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Oncology, McGill University, Montreal, QC (Canada); Beaulieu, Luc, E-mail: beaulieu@phy.ulaval.ca [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de l' Universite Laval, Hotel-Dieu de Quebec, Quebec, QC (Canada); Department of Physics, Physics Engineering, and Optics, Universite Laval, Quebec, QC (Canada)

    2011-12-01

    Purpose: Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. Methods and Materials: The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. Results: A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. Conclusion: A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report

  1. Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning.

    Science.gov (United States)

    Dempsey, Claire

    2010-12-01

    To describe the steps undertaken to commission a 3D high dose rate (HDR) brachytherapy treatment planning system (TPS). Emphasis was placed on validating previously published recommendations, in addition to checking 3D parameters such as treatment optimization and dose volume histogram (DVH) analysis. Commissioning was performed of the brachytherapy module of the Nucletron Oncentra MasterPlan treatment planning system (version 3.2). Commissioning test results were compared to an independent external beam TPS (Varian Eclipse v 8.6) and the previously commissioned Nucletron Plato (v 14.3.7) brachytherapy treatment planning system, with point doses also independently verified using the brachytherapy module in RadCalc (v 6.0) independent point dose calculation software. Tests were divided into eight categories: (i) Image import accuracy, (ii) Reconstruction accuracy, (iii) Source configuration data check, (iv) Dose calculation accuracy, (v) Treatment optimization validation, (vi) DVH reproducibility, (vii) Treatment export check and (viii) Printout consistency. Point dose agreement between Oncentra, Plato and RadCalc was better than 5% with source data and dose calculation protocols following the American Association of Physicists in Medicine (AAPM) guidelines. Testing of image accuracy (import and reconstruction), along with validation of automated treatment optimization and DVH analysis generated a more comprehensive set of testing procedures than previously listed in published recommendations.

  2. Tandem-ring dwell time ratio in Nigeria: dose comparisons of two loading patterns in standard high-dose-rate brachytherapy planning for cervical cancer

    OpenAIRE

    2015-01-01

    Purpose In high-dose-rate (HDR) brachytherapy (BT), the source dwell times and dwell positions are essential treatment planning parameters. An optimal choice of these factors is fundamental to obtain the desired target coverage with the lowest achievable dose to the organs at risk (OARs). This study evaluates relevant dose parameters in cervix brachytherapy in order to assess existing tandem-ring dwell time ratio used at the first HDR BT center in Nigeria, and compare it with an alternative s...

  3. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  4. High dose rate interstitial brachytherapy in soft tissue sarcomas: technical aspect

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Mi Son; Kang, Seung Hee; Kim, Byoung Suck; Oh, Young Taek [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1999-03-01

    To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy. Between May 1995 and Dec. 1997, the patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1-1.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of source axis with 2-2.5 Gy/fraction, twice a day, starting on 6th day after the surgery. Within one month after the surgery, total dose of 50-55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12-41 months), no local recurrences were observed. And there was no severe form of chromic complication (RTOG/EORTC grade 3 or 4). The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  5. On the Development of a Miniature Neutron Generator for the Brachytherapy Treatment of Cancer

    Science.gov (United States)

    Forman, L.

    2009-03-01

    Brachytherapy refers to application of an irradiation source within a tumor. 252Cf needles used in brachytherapy have been successfully applied to treatment of some of the most virulent cancers but it is doubtful that it will be widely used because of difficulty in dealing with unwanted dose (source cannot be turned off) and in adhering to stringent NRC regulations that have been exacerbated in our post 911 environment. We have been working on the development of a miniature neutron generator with the reaction target placed at the end of a needle (tube) for brachytherapy applications. Orifice geometries are most amenable, e.g. rectum and cervix, but interstitial use is possible with microsurgery. This paper dicusses the results of a 30 watt DD neutron generator SBU project that demonstrates that sufficient hydrogen isotope current can be delivered down a small diameter needle required for a DT neutron treatment device, and, will summarize the progress of building a commercial device pursued by the All Russian Institute for Automatics (VNIIA) supported by the DOE's Industrial Proliferation Prevention Program (IPP). It is known that most of the fast neutron (FN) beam cancer treatment facilities have been closed down. It appears that the major limitation in the use of FN beams has been damage to healthy tissue, which is relatively insensitive to photons, but this problem is alleviated by brachytherapy. Moreover, recent clinical results indicate that fast neutrons in the boost mode are most highly effective in treating large, hypoxic, and rapidly repopulating diseases. It appears that early boost application of FN may halt angiogenesis (development and repair of tumor vascular system) and shrink the tumor resulting in lower hypoxia. The boost brachytherapy application of a small, low cost neutron generator holds promise of significant contribution to the treatment of cancer.

  6. Calculating of Dose Distribution in Tongue Brachytherapy by Different Radioisotopes using Monte Carlo Simulation and Comparing by Experimental Data

    Directory of Open Access Journals (Sweden)

    Banafsheh Zeinali Rafsanjani

    2011-06-01

    Full Text Available Introduction: Among different kinds of oral cavity cancers, the frequency of tongue cancer occurrence is more significant. Brachytherapy is the most common method to cure tongue cancers. Long sources are used in different techniques of tongue brachytherapy. The objective of this study is to asses the dose distribution around long sources, comparing different radioisotopes as brachytherapy sources, measuring the homogeneity of delivered dose to treatment volume and also comparing mandible dose and dose of tongue in the regions near the mandible with and without using shield. Material and Method: The Monte Carlo code MCNP4C was used for simulation. The accuracy of simulation was verified by comparing the results with experimental data. The sources like Ir-192, Cs-137, Ra-226, Au-198, In-111 and Ba-131 were simulated and the position of sources was determined by Paris system. Results: The percentage of mandible dose reduction with use of 2 mm Pb shield for the sources mentioned above were: 35.4%, 20.1%, 86.6%, 32.24%, 75.6%, and 36.8%. The tongue dose near the mandible with use of shied did not change significantly. The dose homogeneity from the most to least was obtained from these sources: Cs-137, Au-198, Ir-192, Ba-131, In-111 and Ra-226. Discussion and Conclusion: Ir-192 and Cs-137 were the best sources for tongue brachytherapy treatment but In-111 and Ra-226 were not suitable choices for tongue brachytherapy. The sources like Au-198 and Ba-131 had rather the same performance as Ir-192

  7. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Neeharika [Department of Sciences, Wentworth Institute of Technology, Boston, Massachusetts (United States); Cifter, Gizem [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sajo, Erno [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Kumar, Rajiv; Sridhar, Srinivas [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, Massachusetts (United States); Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ngwa, Wilfred, E-mail: wngwa@lroc.harvard.edu [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  8. Interstitial hyperthermia in combination with brachytherapy.

    Science.gov (United States)

    Coughlin, C T; Douple, E B; Strohbehn, J W; Eaton, W L; Trembly, B S; Wong, T Z

    1983-07-01

    Flexible coaxial cables were modified to serve as microwave antennas operating at a frequency of 915 MHz. These antennas were inserted into nylon afterloading tubes that had been implanted in tumors using conventional interstitial implantation techniques for iridium-192 seed brachytherapy. The tumor volume was heated to 42-45 degrees C within 15 minutes and heating was continued for a total of 1 hour per treatment. Immediately following a conventional brachytherapy dose and removal of the iridium seeds the tumors were heated again in a second treatment. This interstitial technique for delivering local hyperthermia should be compatible with most brachytherapy methods. The technique has proved so far to be practical and without complications. Temperature distributions obtained in tissue phantoms and a patient are described.

  9. Dosimetric study of I-125 seeds used in prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maira R.; Rosa, Luiz A.R. da, E-mail: mairasantos@ird.gov.br, E-mail: lrosa@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Facure, Alessandro, E-mail: facure@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cardoso, Simone C., E-mail: simone@if.ufrj.br [Laboratorio de Fisica da Radiacao Gama e X, Instituto de Fisica (IF/UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil); Pereira, Pedro P. [Dosimetrika, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer, E-mail: ppereira@dosimetrika.com.br [INCA-MS, Rio de Janeiro, RJ (Brazil); Silva, Ademir X. da, E-mail: ademir@con.ufrj.br [PEN/COPPE/UFRJ, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Among the possibilities for treatment of prostate cancer, radiotherapy is one of the most commonly used procedures. One of the radiation therapy modalities is brachytherapy, where radioactive sources are placed near or in contact with the tumor mass. Prostate Brachytherapy with iodine seed permanent implantation has become increasingly widespread because it is less invasive and offers the possibility of lower doses to organs at risk and therefore less side effects to patients. The planning for this type of treatment includes the acquisition of images and the delineation of the contours of organs at risk. Generally, important factors for dose administration as, for example, the actual composition of tissues and geometry particularities of the seeds used in the treatment are disregarded. In order to assess the impact of such approaches on the outcome of prostate permanent implant treatment, experimental results, performed with TLD detectors in a prostate phantom of solid water (RW3), and the formalism of the protocol compiled by the Task Group No.43 of the American Association of Physicists in Medicine, were compared for two different irradiation geometries. The present results indicate a good agreement between them. These dataset offers the possibility to determine correction factors that may be applied in actual treatment planning. (author)

  10. High dose rate versus low dose rate brachytherapy for oral cancer--a meta-analysis of clinical trials.

    Directory of Open Access Journals (Sweden)

    Zhenxing Liu

    Full Text Available OBJECTIVE: To compare the efficacy and safety of high dose rate (HDR and low dose rate (LDR brachytherapy in treating early-stage oral cancer. DATA SOURCES: A systematic search of MEDLINE, EMBASE and Cochrane Library databases, restricted to English language up to June 1, 2012, was performed to identify potentially relevant studies. STUDY SELECTION: Only randomized controlled trials (RCT and controlled trials that compared HDR to LDR brachytherapy in treatment of early-stage oral cancer (stages I, II and III were of interest. DATA EXTRACTION AND SYNTHESIS: Two investigators independently extracted data from retrieved studies and controversies were solved by discussion. Meta-analysis was performed using RevMan 5.1. One RCT and five controlled trials (607 patients: 447 for LDR and 160 for HDR met the inclusion criteria. The odds ratio showed no statistically significant difference between LDR group and HDR group in terms of local recurrence (OR = 1.12, CI 95% 0.62-2.01, overall mortality (OR = 1.01, CI 95% 0.61-1.66 and Grade 3/4 complications (OR = 0.86, CI 95% 0.52-1.42. CONCLUSIONS: This meta-analysis indicated that HDR brachytherapy was a comparable alternative to LDR brachytherapy in treatment of oral cancer. HDR brachytherapy might become a routine choice for early-stage oral cancer in the future.

  11. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yun; Rivard, Mark J. [Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2010-11-15

    Purpose: Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. Methods: In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition of an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR {sup 192}Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. Results: The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. Conclusions: A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while

  12. Macular epiretinal brachytherapy in treated age-related macular degeneration: MERITAGE study: twelve-month safety and efficacy results.

    Science.gov (United States)

    Dugel, Pravin U; Petrarca, Robert; Bennett, Michael; Barak, Adiel; Weinberger, Dov; Nau, Jeffrey; Jackson, Timothy L

    2012-07-01

    To evaluate the safety and efficacy of epimacular brachytherapy (EMB) for the treatment of chronic, active, neovascular age-related macular degeneration (AMD). Prospective, multicenter, interventional, noncontrolled clinical trial. Fifty-three eyes of 53 participants with neovascular AMD requiring frequent anti-vascular endothelial growth factor (VEGF) retreatment. Participants underwent pars plana vitrectomy with a single 24-Gy dose of EMB delivered using an intraocular, handheld cannula containing a strontium 90/yttrium 90 source positioned over the active lesion. Participants were retreated with ranibizumab administered monthly as needed, using predefined retreatment criteria. Optical coherence tomography (OCT) was undertaken monthly, with images assessed by an independent reading center. Coprimary outcomes at 12 months were proportion of participants with stable vision (losing brachytherapy produces stable visual acuity in most participants with previously treated, active disease. Epimacular brachytherapy may reduce the need for frequent anti-VEGF retreatment. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  13. Applicator Attenuation Effect on Dose Calculations of Esophageal High-Dose Rate Brachytherapy Using EDR2 Film

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Hosseini Daghigh

    2012-03-01

    Full Text Available Introduction Interaluminal brachytherapy is one of the important methods of esophageal cancer treatment. The effect of applicator attenuation is not considered in dose calculation method released by AAPM-TG43. In this study, the effect of High-Dose Rate (HDR brachytherapy esophageal applicator on dose distribution was surveyed in HDR brachytherapy. Materials and Methods A cylindrical PMMA phantom was built in order to be inserted by various sizes of esophageal applicators. EDR2 films were placed at 33 mm from Ir-192 source and irradiated with 1.5 Gy after planning using treatment planning system for all applicators. Results The results of film dosimetry in reference point for 6, 8, 10, and 20 mm applicators were 1.54, 1.53, 1.48, and 1.50 Gy, respectively. The difference between practical and treatment planning system results was 0.023 Gy (

  14. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J [University of Michigan, Ann Arbor, MI (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.

  15. SU-E-T-447: Electronic Brachytherapy (EBT) Treatment of Cervical Cancer - First Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D; Johnson, M; Thompson, J; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Chan, L; Hausen, H [Xoft Inc., San Jose, CA (United States)

    2014-06-01

    Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined by American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and

  16. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    Science.gov (United States)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  17. High dose rate endobronchial brachytherapy. Results and complications in 189 patients

    Energy Technology Data Exchange (ETDEWEB)

    Taulelle, M.; Chauvet, B.; Vincent, P.; Felix-Faure, C.; Buciarelli, B.; Garcia, R.; Brewer, Y.; Reboul, F. [Clinique Sainte Catherine, Dept. of Radiation Therapy, Avignon (France)

    1998-02-01

    The purpose of this study was to determine the benefit of high dose rate endobronchial brachytherapy in the treatment of obstructive lung cancer. Between September 1990 and March 1995, 189 patients with bronchogenic carcinoma were treated with high dose rate endobronchial brachytherapy. Most patients (63.3%) had received prior treatment and presented with symptomatic bronchial obstruction due to either recurrent or residual endobronchial disease. A small group (12%) was medically unfit for either surgical resection or thoracic radiotherapy and benefited from endobronchial brachytherapy alone for small endobronchial tumours. The remainder of the patients had not been treated previously and endobronchial brachytherapy was performed for life-threatening symptoms requiring emergency obstruction relief before other therapy. Treatment was performed weekly and consisted of three to four 8 to 10 Gy fractions at a radius of 10 mm from the centre of the source. Major symptomatic relief was obtained for haemoptysis (74%), dyspnoea (54%), and cough (54%). Complete endoscopic response was observed in 54% of cases. Median survival was 7 months for the entire group. For small, strictly endobronchial tumours, complete response rate was 96%, median survival 17 months, and 30 month survival 46%, with a plateau starting at 18 months. Grade 3 to 4 toxicities occurred at a rate of 17% and included massive haemoptysis (n=13), bronchial stenosis (n=12), soft tissue necrosis (n=8), and bronchial fistula (n=3). By univariate analysis, no factor was found to be predictive of late pulmonary toxicity. The present study confirms the usefulness of endobronchial brachytherapy in alleviating symptoms caused by endobronchial recurrence of bronchogenic carcinoma. In addition, this therapy can be tried with curative intent in patients who present with small endobronchial tumours and are not candidates for other forms of therapy. (au). 23 refs.

  18. Study and parameters survey for iodine-125 source dosimetry to be applied in brachytherapy; Estudo e levantamentos de parametros para dosimetria de fontes de iodo-125 aplicadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo Santana de

    2011-07-01

    The use of brachytherapy technique with iodine-125 seeds to prostate cancer treatment has been used for decades with good clinical outcomes. To aim the Brazilian population necessities, IPEN-CNEN/SP developed the iodine-125 seed prototype with national technology. The objectives of this work are the development and the study of dosimetric procedures associates with the experimental acquisition of the useful parameters for the iodine-125 dosimetric characterization and to evaluate if the developed procedures, in this work, have the basic conditions to determinate the dosimetric analysis, that are fundamental for clinical procedures. The dosimeters selected for the analysis are the TLD-100 (LiF:Mg,Ti), initially these dosimeters were submitted for two selection steps to choose the dosimeters more reproducible for the dosimetric analysis. The two steps were the selection by the mass of the dosimeters and the reproducibility after four irradiation series in a Cobalt-60 irradiator (CTR-IPEN). Afterwards these steps, the dosimeters were irradiated in linear accelerator with 6 MV energy (Service of Radiotherapy - Hospital Israelita Albert Einstein) to yield the individual calibration factors to each dosimeter. After, the dosimeters were used to the irradiations with iodine-125 seed, 6711 model, (GE-Healthcare). The irradiations and others analysis with iodine-125 seeds yield the useful values for the determination of the parameters suggested by the AAPM (American Association of Physicists in Medicine): constant of dose rate, geometry function, dose radial function and anisotropy function. The results showed good agreement with the values published by the literature, for the same iodine- 125 model, this fact confirms that the realized parameters will be able to be used for the IPEN-CNEN iodine-125 seeds dosimetry and quality control. (author)

  19. Study and methodology development for quality control in the production process of iodine-125 radioactive sealed sources applied to brachytherapy; Estudo e desenvolvimento de metodologia para controle de qualidade em processo de producao de fontes seladas de iodo-125 para aplicacao em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joao Augusto

    2009-07-01

    Today cancer is the second cause of death by disease in several countries, including Brazil. Excluding skin cancer, prostate cancer is the most incident in the population. Prostate tumor can be treated by several ways, including brachytherapy, which consists in introducing sealed radioactive sources (Iodine - 125 seeds) inside the tumor. The target region of treatment receives a high radiation dose, but healthy neighbor tissues receive a significantly reduced radiation dose. The seed is made of a welding sealed titanium capsule, 0.8 mm external diameter and 4.5 mm length, enclosing a 0.5 mm diameter silver wire with Iodine-125 adsorbed. After welded, the seeds have to be submitted to a leak test to prevent any radioactive material release. The aims of this work were: (a) the study of the different leakage test methods applied to radioactive seeds and recommended by the ISO 997820, (b) the choice of the appropriate method and (c) the flowchart determination of the process to be used during the seeds production. The essays exceeded the standards with the use of ultra-sound during immersion and the corresponding benefits to leakage detection. Best results were obtained with the immersion in distilled water at 20 degree C for 24 hours and distilled water at 70 degree C for 30 minutes. These methods will be used during seed production. The process flowchart has all the phases of the leakage tests according to the sequence determined in the experiments. (author)

  20. Computed tomography-ultrasound fusion brachytherapy: description and evolution of the technique.

    Science.gov (United States)

    Fuller, Donald B; Jin, Haoran

    2007-01-01

    In this manuscript, we describe our computed tomography (CT)-ultrasound (US) fusion prostate brachytherapy method and report the updated dosimetry result and trend. This cohort of 132 consecutive patients received CT-US fusion prostate brachytherapy from the first author (DBF) from December 2002 to August 2006. The technique consists of a hybrid preplanned and intraoperative dynamic dosimetry method, which initially delivers a standard preplanned source distribution, and then uses interval CT-based source identification dosimetry, fused to an identically spaced intraoperative US volume study series, to direct remedial sources that correct initial dosimetry deficiencies. The median and minimum prostate Day 0 prostate volume of interest receiving 100% of prescribed dose (V(100)) results in this patient cohort measured 98.26% and 92.61%, respectively, with all Day 0 prostate dose received by 90% of the volume of interest (D(90)) results exceeding 100% of the prescribed dose, and the maximum Day 0 prostate D(90) value measuring 128% of the prescribed dose. During the period of this analysis, a trend to the decreased quantity of dynamic remedial millicuries per case was identified, with the total sources decreasing from 116% to 106% of the preplanned level, resulting in minimal V(100) and D(90) decreases, while continuing to exceed the minimum Day 0 dosimetry requirements. CT-US fusion dynamic prostate brachytherapy represents a consistent prostate brachytherapy dosimetry delivery mechanism, creating a tight lower and upper bound to the final Day 0 prostate V(100) and D(90) parameters. The practice and pitfalls of this technique are discussed in detail.

  1. Portfolio of prospective clinical trials including brachytherapy: an analysis of the ClinicalTrials.gov database

    OpenAIRE

    Cihoric, Nikola; Tsikkinis, Alexandros; Miguelez, Cristina Gutierrez; Strnad, Vratislav; Soldatovic, Ivan; Ghadjar, Pirus; Jeremic, Branislav; Dal Pra, Alan; Aebersold, Daniel M; Lössl, Kristina

    2016-01-01

    Background To evaluate the current status of prospective interventional clinical trials that includes brachytherapy (BT) procedures. Methods The records of 175,538 (100 %) clinical trials registered at ClinicalTrials.gov were downloaded on September 2014 and a database was established. Trials using BT as an intervention were identified for further analyses. The selected trials were manually categorized according to indication(s), BT source, applied dose rate, primary sponsor type, location, p...

  2. Portfolio of prospective clinical trials including brachytherapy: an analysis of the ClinicalTrials.gov database

    OpenAIRE

    Cihoric, Nikola; Tsikkinis, Alexandros; Gutierrez Miguelez, Cristina; Strnad, Vratislav; Soldatovic, Ivan; Ghadjar, Pirus; Jeremic, Branislav; Dal Pra, Alan; Aebersold, Daniel M; Lössl, Kristina

    2016-01-01

    Background To evaluate the current status of prospective interventional clinical trials that includes brachytherapy (BT) procedures. Methods The records of 175,538 (100 %) clinical trials registered at ClinicalTrials.gov were downloaded on September 2014 and a database was established. Trials using BT as an intervention were identified for further analyses. The selected trials were manually categorized according to indication(s), BT source, applied dose rate, primary sponsor type,...

  3. CT-based interstitial HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C.; Baltas, D.; Zamboglou, N. [Staedtische Kliniken Offenbach (Germany). Strahlenklinik

    1999-09-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT-based treatment planning procedure for brachytherapy. Methods and Materials: A brachytherapy procedure based on CT-guided implantation technique and CT-based treatment planning has been developed and clinical evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron PLATO BPS treatment planning system for optimization and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are used for optimization of the 3D dose distribution. Dose-volume histogram based analysis of the dose distribution (COIN analysis) enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumor sites in 197 patients between 1996 and 1997. Results: The accuracy of the CT reconstruction was tested using first a quality assurance phantom and second, a simulated interstitial implant of 12 needles. These were compared with the results of reconstruction using radiographs. Both methods gave comparable results with regard to accuracy, but the CT based reconstruction was faster. Clinical feasibility was proved in pre-irradiated recurrences of brain tumors, in pretreated recurrences or metastatic disease, and in breast carcinomas. The tumor volumes treated were in the range 5.1 to 2,741 cm{sup 3}. Analysis of implant quality showed a slightly significant lower COIN value for the bone implants, but no differences with respect to the planning target volume. Conclusions: The Offenbach system, incorporating the PROMETHEUS software for interstitial HDR brachytherapy has proved to be extremely valuable

  4. Automated intraoperative calibration for prostate cancer brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor [Queen' s University, Kingston, Ontario K7L 3N6 (Canada); University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Acoustic MedSystems, Inc., Champaign, Illinois 61820-3979 (United States); Queen' s University, Kingston, Ontario K7L 3N6 (Canada) and Johns Hopkins University, Baltimore, Maryland 21218-2682 (United States)

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  5. Verification of the calculation program for brachytherapy planning system of high dose rate (PLATO); Programa de verificacion del calculo para un sistema de planificacion de braquiterapia de alta tasa de dosis (PLATO)

    Energy Technology Data Exchange (ETDEWEB)

    Almansa, J.; Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, R. del; Ososrio, J. L.

    2011-07-01

    In our treatments are performed brachytherapy high dose rate since 2007. The procedures performed include gynecological intracavitary treatment and interstitial. The treatments are performed with a source of Ir-192 activity between 5 and 10 Ci such that small variations in treatment times can cause damage to the patient. In addition the Royal Decree 1566/1998 on Quality Criteria in radiotherapy establishes the need to verify the monitor units or treatment time in radiotherapy and brachytherapy. All this justifies the existence of a redundant system for brachytherapy dose calculation that can reveal any abnormality is present.

  6. Prostate cancer brachytherapy; Braquiterapia de cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Centro de Oncologia. Dep. de Radioterapia; Srougi, Miguel; Nesrallah, Adriano [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina (EPM). Disciplina de Urologia]. E-mail: cevitabr@mandic.com.br

    1999-07-01

    The transperineal brachytherapy with {sup 125}I/Pd{sup 103} seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy.

  7. Clinical implementation of MR‐guided vaginal cylinder brachytherapy

    National Research Council Canada - National Science Library

    Owrangi, Amir M; Jolly, Shruti; Balter, James M; Cao, Yue; Maturen, Katherine E; Young, Lisa; Zhu, Tong; Prisciandaro, Joann I

    2015-01-01

    ...)‐guided vaginal brachytherapy using commercially available solid applicator models. To test the fidelity of solid applicator models to digitize vaginal cylinder applicators, three datasets were evaluated...

  8. State-of-the-art: prostate LDR brachytherapy.

    Science.gov (United States)

    Voulgaris, S; Nobes, J P; Laing, R W; Langley, S E M

    2008-01-01

    This article on low dose rate (LDR) prostate brachytherapy reviews long-term results, patient selection and quality of life issues. Mature results from the United States and United Kingdom are reported and issues regarding definitions of biochemical failure are discussed. Latest data comparing brachytherapy with radical prostatectomy or no definitive treatment and also the risk of secondary malignancies after prostate brachytherapy are presented. Urological parameters of patient selection and quality of life issues concerning urinary, sexual and bowel function are reviewed. The position of prostate brachytherapy next to surgery as a first-line treatment modality is demonstrated.

  9. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    Science.gov (United States)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  10. EVALUATION OF BRACHYTHERAPY FACILITY SHIELDING STATUS IN KOREA OBTAINED FROM RADIATION SAFETY REPORTS

    Directory of Open Access Journals (Sweden)

    MI HYUN KEUM

    2013-10-01

    Full Text Available Thirty-eight radiation safety reports for brachytherapy equipment were evaluated to determine the current status of brachytherapy units in Korea and to assess how radiation oncology departments in Korea complete radiation safety reports. The following data was collected: radiation safety report publication year, brachytherapy unit manufacturer, type and activity of the source that was used, affiliation of the drafter, exposure rate constant, the treatment time used to calculate workload and the HVL values used to calculate shielding design goal values. A significant number of the reports (47.4% included the personal information of the drafter. The treatment time estimates varied widely from 12 to 2,400 min/week. There was acceptable variation in the exposure rate constant values (ranging between 0.469 and 0.592 (R-m2/Ci·hr, as well as in the HVLs of concrete, steel and lead for Iridium-192 sources that were used to calculate shielding design goal values. There is a need for standard guidelines for completing radiation safety reports that realistically reflect the current clinical situation of radiation oncology departments in Korea. The present study may be useful for formulating these guidelines.

  11. The Preliminary Prototype of Medium Dose Rate Brachytherapy Equipment

    Directory of Open Access Journals (Sweden)

    A. Satmoko

    2013-08-01

    Full Text Available A preliminary prototype of a brachytherapy equipment has been constructed. The work started by developing conceptual design, followed by basic design and detailed design. In the conceptual design, design requirements are stated. In the basic design, technical specifications for main components are determined. In detailed design, general drawings are discussed. The prototype consists of three main systems: a mechanical system, an instrumentation system, and a safety system. The mechanical system assures the movement mechanism of the isotope source position beginning from the standby position until the applicators. It consists of three main modules: a position handling module, a container module, and a channel distribution module. The position handling module serves to move the isotope source position. As shielding, the second module is to store the source when the equipment is in standby position. The prototype provides 12 output channels. The channel selection is performed by the third module. The instrumentation system controls the movement of source position by handling motor operations. It consists of several modules. A microcontroller module serves as a control center whose task includes both controlling motors and communicating with computer. A motor module serves to handle motors. 10 sensors, including their signal conditionings, are introduced to read the environment conditions of the equipment. LEDs are used to display these conditions. In order to facilitate the operators’ duty, communication via RS232 is provided. The brachytherapy equipment can therefore be operated by using computer. Interface software is developed using C# language. To complete both mechanical and instrumentation systems performance, a safety system is developed to make sure that the safety for operator and patients from receiving excessive radiation. An interlock system is introduced to guard against abnormal conditions. In the worst case, a manual intervention

  12. Tissue modeling schemes in low energy breast brachytherapy.

    Science.gov (United States)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-21

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D(90) metric is used for the analysis and is based on the dose to water (D(90(w,m))). D(90(m,m)) is also reported for comparison to D(90(w,m)). The two-month post-implant D(90(w,m)) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D(90(w,m)) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this

  13. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0%