WorldWideScience

Sample records for 18f-fluorodeoxyglucose positron emission

  1. Risk of malignancy in thyroid incidentalomas detected by (18)f-fluorodeoxyglucose positron emission tomography

    Soelberg, Kerstin; Bonnema, Steen Joop; Brix, Thomas Heiberg

    2012-01-01

    Background: The expanding use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has led to the identification of increasing numbers of patients with an incidentaloma in the thyroid gland. We aimed to review the proportion of incidental thyroid cancers found by (18)F-FDG PET...... or PET/computed tomography imaging. Methods: Studies evaluating thyroid carcinomas discovered incidentally in patients or healthy volunteers by (18)F-FDG PET were systematically searched in the PubMed database from 2000 to 2011. The main exclusion criteria were known thyroid disease, lack of assigned...... diagnoses, investigation of diffuse uptake only, or investigation of patients with head and neck cancer, or cancer in the upper part of the thorax. Results: Twenty-two studies met our criteria comprising a total of 125,754 subjects. Of these, 1994 (1.6%) had unexpected focal hypermetabolic activity, while...

  2. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors

    Binderup, Tina; Knigge, Ulrich; Jakobsen, Annika Loft;

    2010-01-01

    -eight prospectively enrolled patients with NE tumors underwent FDG-PET imaging. FDG uptake was quantified by maximal standardized uptake value (SUVmax). The prognostic value of FDG uptake, proliferation index, chromogranin A, and liver metastases were assessed. RESULTS: During the 1-year follow-up, 14 patients died......PURPOSE: (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is currently not used on a routine basis for imaging of neuroendocrine (NE) tumors. The aim of this study was to investigate the prognostic value of FDG-PET in patients with NE tumors. EXPERIMENTAL DESIGN: Ninety...... was the only predictor of progression-free survival (HR, 8.4; P value of FDG-PET for NE tumors, which exceeds the prognostic value of traditional markers such as Ki67, chromogranin A, and liver metastases. FDG-PET may obtain an important role for NE...

  3. Predicting Outcome in Patients with Rhabdomyosarcoma: Role of [{sup 18}F]Fluorodeoxyglucose Positron Emission Tomography

    Casey, Dana L. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wexler, Leonard H. [Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Fox, Josef J. [Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Dharmarajan, Kavita V. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York (United States); Schoder, Heiko [Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Price, Alison N. [Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2014-12-01

    Purpose: To evaluate whether [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) response of the primary tumor after induction chemotherapy predicts outcomes in rhabdomyosarcoma (RMS). Methods and Materials: After excluding those with initial tumor resection, 107 patients who underwent FDG-PET after induction chemotherapy at Memorial Sloan Kettering Cancer Center from 2002 to 2013 were reviewed. Local control (LC), progression-free survival (PFS), and overall survival (OS) were calculated according to FDG-PET response and maximum standardized uptake value (SUV) at baseline (PET1/SUV1), after induction chemotherapy (PET2/SUV2), and after local therapy (PET3/SUV3). Receiver operator characteristic curves were used to determine the optimal cutoff for dichotomization of SUV1 and SUV2 values. Results: The SUV1 (<9.5 vs ≥9.5) was predictive of PFS (P=.02) and OS (P=.02), but not LC. After 12 weeks (median) of induction chemotherapy, 45 patients had negative PET2 scans and 62 had positive scans: 3-year PFS was 72% versus 44%, respectively (P=.01). The SUV2 (<1.5 vs ≥1.5) was similarly predictive of PFS (P=.005) and was associated with LC (P=.02) and OS (P=.03). A positive PET3 scan was predictive of worse PFS (P=.0009), LC (P=.05), and OS (P=.03). Conclusions: [{sup 18}F]fluorodeoxyglucose positron emission tomography is an early indicator of outcomes in patients with RMS. Future prospective trials may incorporate FDG-PET response data for risk-adapted therapy and early assessment of new treatment regimens.

  4. Diagnostic accuracy of 18F-Fluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer.

    Hooft, L.; Hoekstra, O.S.; Devillé, W.; Lips, W.; Teule, J.J.; Boers, M.; Tulder, M.W. van

    2001-01-01

    Positron emission tomography with 18F-fluorodeoxyglucose is a relatively new nuclear imaging technique in oncology. We conducted a systematic review to determine the diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in patients suspected of recurrent papillary or follicular

  5. Application of 18F-fluorodeoxyglucose Positron Emission Tomography in Diagnosis of Malignant Diseases

    Xiao-hong Ning; Qiu-li Meng; Yu-zhou Wang; Chun-mei Bai

    2009-01-01

    To testify the efficacy of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomo-graphy (PET) in the diagnosis of cancer.Methods A total of 170 patients with diagnosed cancer or suspicious cancer were enrolled in this study, and underwent 18F-FDG PET. The standard uptake value (SUV) and diameter for each abnormal region in PET images were analyzed. All data were analyzed by SPSS 11.5.Results PET scan identified a primary cancer in 45.8% (11/24) patients. The sensitivity and specificity of PET scan in differentiating malignant lesions from benign ones were 78.8% (52/66) and 77.1% (27/35) respectively. Twenty-nine out of 68 (42.6%) lesions were detected earlier by PET than by computed tomography. The SUV of primary cancer was significantly higher than that of metastatic lymph nodes (5.84±3.12 vs. 3.14±2.24, P<0.O01). And SUV of primary lung cancer was also significantly higher than that of metastatic lung cancer (6.30±3.01 vs. 2.86±2.37, P<0.01).Conclusion 18F-FDG PET plays a very important role in cancer diagnosis.

  6. Lymphocytic Thyroiditis Presenting as a Focal Uptake on 18F-Fluorodeoxyglucose Positron Emission Tomography: A Case Report

    Jung, Tae Seok; Kim, Eun Kyung; Lee, Sarah; Moon, Hee Jung; Kwak, Jin Young [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-12-15

    Diffuse increased uptake on 18F-Fluorodeoxyglucose Positron Emission Tomography (18F FDG PET) is a well-known finding of the lymphocytic thyroiditis. Nevertheless, a pathologic confirmation is needed in cases of a focal 18F FDG uptake in the thyroid gland. This article reports a rare case of a focal 18F FDG uptake lesion by PET, which was revealed pathologically to be lymphocytic thyroiditis

  7. [18F]Fluorodeoxyglucose-positron emission tomography screening for lung cancer: a systematic review and meta-analysis

    Chien, Chun-Ru; Liang, Ji-An; Chen, Jin-Hua; Wang, Hsiao-Nin; Lin, Cheng-Chieh; Chen, Chih-Yi; Wang, Pin-Hui; Kao, Chia-Hung; Yeh, Jun-Jun

    2013-01-01

    Abstract Rationale and objectives: Although low-dose computed tomography (CT) is a recommended modality for lung cancer screening in high-risk populations, the role of other modalities, such as [18F]fluorodeoxyglucose-positron emission tomography (PET), is unclear. We conducted a systematic review to describe the role of PET in lung cancer screening. Materials and methods: A systematic review was conducted by reviewing primary studies focusing on PET screening for lung cancer until July 2012....

  8. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons.

    Knopman, David S; Jack, Clifford R; Wiste, Heather J; Lundt, Emily S; Weigand, Stephen D; Vemuri, Prashanthi; Lowe, Val J; Kantarci, Kejal; Gunter, Jeffrey L; Senjem, Matthew L; Mielke, Michelle M; Roberts, Rosebud O; Boeve, Bradley F; Petersen, Ronald C

    2014-09-01

    Our objective was to examine associations between glucose metabolism, as measured by (18)F-fluorodeoxyglucose positron emission tomography (FDG PET), and age and to evaluate the impact of carriage of an apolipoprotein E (APOE) ε4 allele on glucose metabolism and on the associations between glucose metabolism and age. We studied 806 cognitively normal (CN) and 70 amyloid-imaging-positive cognitively impaired participants (35 with mild cognitive impairment and 35 with Alzheimer's disease [AD] dementia) from the Mayo Clinic Study of Aging, Mayo Alzheimer's Disease Research Center and an ancillary study who had undergone structural MRI, FDG PET, and (11)C-Pittsburgh compound B (PiB) PET. Using partial volume corrected and uncorrected FDG PET glucose uptake ratios, we evaluated associations of regional FDG ratios with age and carriage of an APOE ε4 allele in CN participants between the ages of 30 and 95 years, and compared those findings with the cognitively impaired participants. In region-of-interest (ROI) analyses, we found modest but statistically significant declines in FDG ratio in most cortical and subcortical regions as a function of age. We also found a main effect of APOE ε4 genotype on FDG ratio, with greater uptake in ε4 noncarriers compared with carriers but only in the posterior cingulate and/or precuneus, lateral parietal, and AD-signature meta-ROI. The latter consisted of voxels from posterior cingulate and/or precuneus, lateral parietal, and inferior temporal. In age- and sex-matched CN participants the magnitude of the difference in partial volume corrected FDG ratio in the AD-signature meta-ROI for APOE ε4 carriers compared with noncarriers was about 4 times smaller than the magnitude of the difference between age- and sex-matched elderly APOE ε4 carrier CN compared with AD dementia participants. In an analysis in participants older than 70 years (31.3% of whom had elevated PiB), there was no interaction between PiB status and APOE ε4 genotype

  9. Lymphomatous involvement of gastrointestinal tract: Evaluation by positron emission tomography with 18F-fluorodeoxyglucose

    Sith Phongkitkarun; Vithya Varavithya; Toshiki Kazama; Silvana C Faria; Martha V Mar; Donald A Podoloff; Homer A Macapinlac

    2005-01-01

    AIM: To demonstrate the 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) findings in patients with non-Hodgkin's lymphoma (NHL) involving the gastrointestinal (GI) tract and the clinical utility of modality despite of the known normal uptake of FDG in the GI tract.METHODS: Thirty-three patients with biopsy-proven gastrointestinal NHL who had undergone FDG-PET scan were included. All the patients were injected with 10-15 mCi FDG and scanned approximately 60 min later with a CTI/Siemens HR (+) PET scanner. PET scans were reviewed and the maximum standard uptake value (SUVmax) of the lesions was measured before and after the treatment,if data were available and compared with histologic diagnoses.RESULTS: Twenty-five patients had a high-grade lymphoma and eight had a low-grade lymphoma. The stomach was the most common site of the involvement (20 patients). In high-grade lymphoma, PET showed focal nodular or diffuse hypermetabolic activity. The average SUVmax±SD was 11.58±5.83. After the therapy,the patients whose biopsies showed no evidence of lymphoma had a lower uptake without focal lesions.The SUVmax±SD decreased from 11.58±5.83 to 2.21±0.78. In patients whose post-treatment biopsies showed lymphoma, the SUVmax±SD was 9.42±6.27. Low-grade follicular lymphomas of the colon and stomach showed diffuse hypermetabolic activity in the bowel wall (SUVmax 8.2 and 10.3, respectively). The SUVmax was 2.02-3.8 (mean 3.02) in the stomach lesions of patients with MALT lymphoma.CONCLUSION: 18F-FDG PET contributes to the diagnosis of high-grade gastrointestinal non-Hodgkin's lymphoma,even when there is the normal background FDG activity. Furthermore, the SUV plays a role in evaluating treatment response. Low-grade NHL demonstrates FDG uptake but at a lesser intensity than seen in high-grade NHL.

  10. Role of 18F-fluorodeoxyglucose positron emission tomography imaging in surgery for pancreatic cancer

    Hisao Wakabayashi; Yoshihiro Nishiyama; Tsuyoshi Otani; Takanori Sano; Shinichi Yachida; Keiichi Okano; Kunihiko Izuishi; Yasuyuki Suzuki

    2008-01-01

    AIM:To evaluate the role of positron emission tomo- graphy using 18F-fluorodeoxyglucose (FDG-PET) in the surgical management of patients with pancreatic cancer,including the diagnosis, staging, and selection of patients for the subsequent surgical treatment.METHODS: This study involved 53 patients with proven primary pancreatic cancer. The sensitivity of diagnosing the primary cancer was examined for FDG-PET, CT,cytological examination of the bile or pancreatic juice,and the serum levels of carcinoembrionic antigens (CEA) and carbohydrate antigen 19-9 (CA19-9). Next, the accuracy of staging was compared between FDG-PET and CT. Finally, FDG-PET was analyzed semiquantitatively using the standard uptake value (SUV). The impact of the SUV on patient management was evaluated by examining the correlations between the SUV and the histological findings of cancer.RESULTS: The sensitivity of FDG-PET, CT, cytological examination of the bile or pancreatic juice, and the serum levels of CEA and CA19-9 were 92.5%, 88.7%, 46.4%, 37.7% and 69.8%, respectively. In staging, FDG-PET was superior to CT only in diagnosing distant disease (bone metastasis). For local staging, the sensitivity of CT was better than that of FDG-PET. The SUV did not correlate with the pTNM stage, grades, invasions to the vessels and nerve, or with the size of the tumor. However, there was a statistically significant difference (4.6±2.9 vs 7.8±4.5, P = 0.024) in the SUV between patients with respectable and unresectable disease. CONCLUSION: FDG-PET is thus considered to be useful in the diagnosis of pancreatic cancer. However, regarding the staging of the disease, FDG-PET is not considered to be a sufficiently accurate diagnostic modality. Although the SUV does not correlate with the patho-histological prognostic factors, it may be useful in selecting patients who should undergo subsequent surgical treatment.

  11. 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of small pancreatic cancer

    Keiichi Okano; Keitaro Kakinoki; Shintaro Akamoto; Masanobu Hagiike; Hisashi Usuki; Yuka Yamamoto; Yoshihiro Nishiyama; Yasuyuki Suzuki

    2011-01-01

    AIM: To investigate the role of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in the diagnosis of small pancreatic cancer.METHODS: This study involved 31 patients with proven invasive ductal cancer of the pancreas. The patients were divided into 3 groups according to the maximum diameter of the tumor: TS1 (maximum tumor size ≤ 2.0 cm),TS2 (> 2.0 cm and ≤ 4.0 cm) or TS3-4 (> 4.0 cm). The relationships between the TS and various diagnostic tools, including FDG-PET with dual time point evaluation,were analyzed.RESULTS: The tumors ranged from 1.3 to 11.0 cm in diameter. Thirty of the 31 patients (97%) had a positive FDG-PET study. There were 5 patients classified as TS1,15 as TS2 and 11 as TS3-4. The sensitivity of FDG-PET,computed tomography (CT) and magnetic resonance imaging (MRI) were 100%, 40%, 0% in TS1, 93%,93%, 89% in TS2 and 100%, 100%, 100% in TS3-4.The sensitivity of FDG-PET was significantly higher in comparison to CT and MRI in patients with TS1 (P <0.032). The mean standardized uptake values (SUVs)did not show a significant difference in relation to the TS (TS1: 5.8 ± 4.5, TS2: 5.7 ± 2.2, TS3-4: 8.2 ± 3.9),respectively. All the TS1 tumors (from 13 to 20 mm)showed higher SUVs in FDG-PET with dual time point evaluation in the delayed phase compared with the early phase, which suggested the lesions were malignant.CONCLUSION: These results indicate that FDG-PET with dual time point evaluation is a useful modality for the detection of small pancreatic cancers with a diameter of less than 20 mm.

  12. Diagnostic role of 18F-fluorodeoxyglucose positron emission tomography for follicular lymphoma with gastrointestinal involvement

    Masaya Iwamuro; Hiroyuki Okada; Katsuyoshi Takata; Katsuji Shinagawa; Shigeatsu Fujiki; Junji Shiode; Atsushi Imagawa

    2012-01-01

    AIM:To investigate the capacity for 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)to evaluate patients with gastrointestinal lesions of follicular lymphoma.@@METHODS:This retrospective case series consisted of 41 patients with follicular lymphoma and gastrointestinal involvement who underwent 18F-FDG-PET and endoscopic evaluations at ten different institutions between November 1996 and October 2011.Data for endoscopic,radiological,and biological examinations performed were retrospectively reviewed from clinical records.A semi-quantitative analysis of 18F-FDG uptake was performed for each involved area by calculating the maximum standardized uptake value (SUVmax).Based on the positivity of 18F-FDG uptake in the gastrointestinal lesions analyzed,patients were subdivided into two groups.To identify potential predictive factors for 18F-FDG positivity,these two groups were compared with respect to gender,age at diagnosis of lymphoma,histopathological grade,pattern of follicular dendritic cells,mitotic rate,clinical stage,soluble interleukin-2 receptor levels detected by 18F-FDG-PET,lactate dehydrogenase (LDH) levels,hemoglobin levelsbone marrow involvement,detectability of gastrointestinal lesions by computed tomography (CT) scanningand follicular lymphoma international prognostic index (FLIPI) risk.@@RESULTS:Involvement of follicular lymphoma in the stomach,duodenum,jejunum,ileum,cecum,colon,and rectum was identified in 1,34,6,3,2,3,and 6patients,respectively.No patient had esophageal involvement.In total,19/41 (46.3%) patients exhibited true-positive 18F-FDG uptake in the lesions present in their gastrointestinal tract.In contrast,false-negative 18F-FDG uptake was detected in 24 patients (58.5%),while false-positive 18F-FDG uptake was detected in 5 patients (12.2%).In the former case,2/19 patients had both 18F-FDG-positive lesions and 18F-FDG-negative lesions in the gastrointestinal tract.In patients with 18F-FDG avidity,the SUVmax value of

  13. [18F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in Suspected Recurrent Breast Cancer

    Hildebrandt, Malene Grubbe; Gerke, Oke; Baun, Christina;

    2016-01-01

    PURPOSE: To prospectively investigate the diagnostic accuracy of [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) with dual-time-point imaging, contrast-enhanced CT (ceCT), and bone scintigraphy (BS) in patients with suspected breast cancer recurrence....... PATIENTS AND METHODS: One hundred women with suspected recurrence of breast cancer underwent 1-hour and 3-hour FDG-PET/CT, ceCT, and BS within approximately 10 days. The study was powered to estimate the precision of the individual imaging tests. Images were visually interpreted using a four...... the receiver operating curve and higher sensitivity, specificity, and superior likelihood ratios. CONCLUSION: FDG-PET/CT was accurate in diagnosing recurrence in breast cancer patients. It allowed for distant recurrence to be correctly ruled out and resulted in only a small number of false-positive cases...

  14. The emerging role of whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with sarcoidosis

    Silvia Taralli

    2012-01-01

    Full Text Available IntroductionThe purpose of this article is to examine the emerging role of whole-body positron emission tomography (PET with 18F-fluorodeoxyglucose (FDG in patients with sarcoidosis.Materials and methodsWe reviewed the literature on the use of FDG-PET in patients with sarcoidosis to identify how this technique is being applied in clinical practice.Results and discussionOur review shows that: 1 sarcoidosis is commonly associated with increased FDG uptake. Therefore, positive findings should be interpreted with caution when FDG-PET is being used to distinguish benign from malignant abnormalities; 2 FDG-PET seems to be a very useful molecular imaging method for staging sarcoidosis, identification of occult sites of involvement, guiding biopsy procedures, and monitoring patients’ responses to treatment; and 3 in patients with sarcoidosis, the diagnostic accuracy of FDG-PET is superior to that of 67Ga scintigraphy.

  15. [18F]Fluorodeoxyglucose Positron Emission Tomography Reveals a Complete Remission of Refractory Metastatic Melanoma after Therapy with Ipilimumab

    Yordanova, Anna; Schlenkhoff, Carl; Palmedo, Holger; Essler, Markus; Ahmadzadehfar, Hojjat

    2017-01-01

    Ipilimumab (YERVOY) is a monoclonal CTLA-4-antibody with anti-tumor-immunogenic effect and is used to treat malignant melanoma. In this case study, we present [18F]Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) images of a 37-year-old woman with metastatic melanoma, who was previously treated with interferon-alpha therapy and dacarbazine and still progressed. After four cycles of ipilimumab, there was a complete remission of the disease with no evidence of vital, FDG-positive tumor tissue. The follow-up for a total of 1 year confirmed the therapeutic success. This report demonstrates that FDG-PET/CT is a reliable imaging method for response monitoring in metastatic melanoma treated with ipilimumab.

  16. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  17. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Erdem Sürücü

    2016-10-01

    Full Text Available A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT.

  18. Dynamic 18F-fluorodeoxyglucose positron emission tomography/CT in hibernoma: enhanced tracer uptake mimicking liposarcoma

    Christos; Sachpekidis; Safwan; Roumia; Matthias; Schwarzbach; Antonia; Dimitrakopoulou-Strauss

    2013-01-01

    We report on two cases of patients with fat-equivalent masses in computed tomography(CT),referred to our department for dynamic positron emission tomography/CT(dPET/CT)with18F-fluorodeoxyglucose(18FFDG)in order to investigate their dignity.Both qualitative and quantitative information,as derived from dPET/CTs,couldn’t exclude a high-grade liposarcoma:Visual evaluation,revealed a large hypermetabolic focus of intense18F-FDG uptake in each patient(average SUVs 8.3 and 11.3).Regression-based parametric imaging demonstrated an enhanced distribution volume,which correlates to perfusion,and a high phosphorylation rate that correlates to cell viability.Kinetic analysis,based on a two-tissue compartment model demonstrated an enhanced FDG transport k1and an enhanced phosphorylation rate k3.A non-compartmental approach based on fractal dimension revealed also enhanced values.However,final diagnosis was based on biopsy,which revealed hibernoma,a benign brown fat tumor.Brown adipose contains increased numbers of mitochondria and a high-rate of glucose metabolism.Therefore,they have increased FDG uptake.The evaluation of lipomatous lesions on CT,with high FDG uptake,should include the possibility of hibernoma as a differential diagnosis.

  19. Gaussian Mixture Models and Model Selection for [18F] Fluorodeoxyglucose Positron Emission Tomography Classification in Alzheimer's Disease.

    Rui Li

    Full Text Available We present a method to discover discriminative brain metabolism patterns in [18F] fluorodeoxyglucose positron emission tomography (PET scans, facilitating the clinical diagnosis of Alzheimer's disease. In the work, the term "pattern" stands for a certain brain region that characterizes a target group of patients and can be used for a classification as well as interpretation purposes. Thus, it can be understood as a so-called "region of interest (ROI". In the literature, an ROI is often found by a given brain atlas that defines a number of brain regions, which corresponds to an anatomical approach. The present work introduces a semi-data-driven approach that is based on learning the characteristics of the given data, given some prior anatomical knowledge. A Gaussian Mixture Model (GMM and model selection are combined to return a clustering of voxels that may serve for the definition of ROIs. Experiments on both an in-house dataset and data of the Alzheimer's Disease Neuroimaging Initiative (ADNI suggest that the proposed approach arrives at a better diagnosis than a merely anatomical approach or conventional statistical hypothesis testing.

  20. Different subregional metabolism patterns in patients with cerebellar ataxia by 18F-fluorodeoxyglucose positron emission tomography

    Kim, Jae Seung; Oh, Jungsu S.; Lee, Chong Sik; Chung, Sun Ju

    2017-01-01

    We evaluated cerebellar subregional metabolic alterations in patients with cerebellar ataxia, a representative disease involving the spinocerebellum. We retrospectively analyzed 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images in 44 patients with multiple system atrophy of the cerebellar type (MSA-C), 9 patients with spinocerebellar ataxia (SCA) type 2, and 14 patients with SCA type 6 and compared with 15 patients with crossed cerebellar diaschisis (CCD) and 89 normal controls. Cerebellar subregional metabolism was assessed using 13 cerebellar subregions (bilateral anterior lobes [ANT], superior/mid/inferior posterior lobes [SUPP/MIDP/INFP], dentate nucleus [DN], anterior vermis [ANTV], and superior/inferior posterior vermis [SUPV/INFV]) to determine FDG uptake ratios. MSA-C and SCA type 2 showed severely decreased metabolic ratios in all cerebellar subregions compared to normal controls (ANT, 0.58 ± 0.08 and 0.50 ± 0.06 vs. 0.82 ± 0.07, respectively, p MSA-C. Asymmetric indices were higher in CCD and MSA-C than in normal controls (p MSA-C exhibited more asymmetric hypometabolism in the posterior lobe. PMID:28319124

  1. 18F-fluorodeoxyglucose positron emission tomography might be useful for diagnosis of hepatic amyloidosis

    Tawada A

    2014-06-01

    Full Text Available Akinobu Tawada,1 Tatsuo Kanda,1 Takashi Oide,2 Toshio Tsuyuguchi,1 Fumio Imazeki,1,3 Yukio Nakatani,2 Osamu Yokosuka11Department of Gastroenterology, 2Department of Diagnostic Pathology, Chiba University Hospital, Chuo-ku, Chiba, Japan; 3Safety and Health Organization, Chiba University, Inage-ku, Chiba, JapanAbstract: We report on a woman with hepatic involvement of primary systemic (immunoglobulin light chain, AL amyloidosis. Her diagnosis was confirmed by liver biopsy. Clinical symptoms of hepatic amyloidosis are generally mild at its first stage, with most frequent findings being hepatomegaly and alkaline phosphatase elevation. Recent advances in the understanding of the pathophysiology of systemic amyloidosis have made several treatments available. However, its prognosis is occasionally poor. Because liver biopsy is not always safe, other modalities for the diagnosis are needed. Of interest was that fluorodeoxyglucose (FDG uptake into the liver was observed, compared with that into the spleen, in this patient, indicating that FDG positron emission tomography and computed tomography might be useful for the diagnosis of hepatic amyloidosis with mild liver dysfunction.Keywords: amyloidosis, diagnosis, hepatic involvement, FDG PET

  2. (18)F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Malignancies of the Thyroid and in Head and Neck Squamous Cell Carcinoma

    Lauridsen, Jeppe Kiilerich; Rohde, Max; Thomassen, Anders

    2015-01-01

    18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is a valuable diagnostic tool in a spectrum of malignant and benign conditions, because of a high sensitivity to detect even very small lesions with increased metabolism. This review focuses on the use of FDG-PET......-PET/CT in malignancies of the thyroid gland and in head and neck squamous cell carcinoma....

  3. The role of {sup 18}F-fluorodeoxyglucose positron emission tomography in gestational trophoblastic tumours: a pilot study

    Chang, Ting Chang; Wu, Yen Ching; Wu, Tzu I. [University College of Medicine, Division of Gynecologic Oncology, Taoyuan (Taiwan); Yen, Tzu Chen; Chang, Yu.Cheng [Chang Gung Memorial Hospital, Department of Nuclear Medicine, Taoyuan (Taiwan); Li, Yiu Tai [Kuo General Hospital, Department of Obstetrics and Gynecology, Tainan (Taiwan); Ng, Koon Kwan [Chang Gung University College of Medicine, Departments of Diagnostic Radiology, Taoyuan (Taiwan); Jung, Shih Ming [Chang Gung Memorial Hospital, Anatomic Pathology, Taoyuan (Taiwan); Lai, Chyong Huey [University College of Medicine, Division of Gynecologic Oncology, Taoyuan (Taiwan); Chang Gung Memorial Hospital Linkou Medical Center, Department of Obstetrics and Gynecology, Taoyuan (Taiwan)

    2006-02-01

    We conducted a pilot trial to evaluate the value of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) in gestational trophoblastic tumours (GTTs). Patients with placental site trophoblastic tumour (PSTT), high-risk GTT (World Health Organisation score {>=}8, disease onset at postpartum or greater than 6 months after antecedent pregnancy), metastatic GTT, recurrent/resistant GTT after chemotherapy, or post-molar GTT with unexplained abnormal {beta}-hCG regression and patients undergoing re-evaluation after salvage treatment were enrolled. PET was undertaken within 1 week after computed tomography (CT). Clinical impacts of additional PET were determined on a scan basis. A total of 14 patients were recruited. Sixteen PET scans were performed, with one patient having three serial studies. Benefits of additional PET were seen in 7 of 16 (43.8%) scans; these benefits included disclosure of chemotherapy-resistant lesions (n=2), exclusion of false-positive CT lesions (n=1), detection of an additional lesion not found by conventional imaging (n=1) in high-risk GTT at the start of primary chemotherapy, and confirmation of complete response to treatment for PSTT or to salvage therapy for recurrent/resistant GTT (n=3). On the other hand, in two instances there were false-negative PET findings, six scans yielded no benefit, and one showed an indeterminate lesion. Our preliminary results suggest that {sup 18}F-FDG PET is potentially useful in selected patients with GTT by providing precise mapping of metastases and tumour extent upfront, by monitoring treatment response and by localising viable tumours after chemotherapy. A larger study is necessary to further define the role of {sup 18}F-FDG PET in GTT. (orig.)

  4. The use of molecular sieves to simulate hot lesions in {sup 18}F-fluorodeoxyglucose-positron emission tomography imaging

    Matheoud, R; Secco, C; Brambilla, M [Department of Medical Physics, Azienda Ospedaliera ' Maggiore della Carita' , C.so Mazzini 18-28100 Novara (Italy); Ridone, S [Department of Biotechnologies, Agro-Industry and Health protection, ENEA, Strada per Crescentino 41-13040 Saluggia (Italy); Inglese, E [Department of Nuclear Medicine, Azienda Ospedaliera ' Maggiore della Carita' , C.so Mazzini 18-28100 Novara (Italy)], E-mail: roberta.matheoud@maggioreosp.novara.it

    2008-04-21

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1520 mg) and of the activity concentration of the {sup 18}F-FDG solution (1-37 MBq ml{sup -1}), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the {sup 18}F-FDG uptake were assessed. The fit of the regression model is good (r{sup 2} = 0.83). This relation allows the production of zeolites of a desired {sup 18}F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the {sup 18}F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the {sup 18}F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the {sup 18}F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of {sup 18}F-FDG. These features, together with their variable dimensions and shapes, make them ideal {sup 18}F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging. (note)

  5. Clinical applications of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary

    HU Man; YU Jin-ming; ZHAO Wei; ZHANG Pin-liang; JU Gui-fang; FU Zheng; ZHANG Guo-li; KONG Li; YANG Yan-qin; MA Yi-dong

    2011-01-01

    Background Carcinoma of unknown primary (CUP) encompasses a heterogeneous group of tumors with varying clinical features. The management of patients of CUP remains a clinical challenge. The purpose of this study was to evaluate the clinical applications of integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) information in patients with CUP,including detecting the occult primary tumor and effecting on disease therapy.Methods One hundred and forty-nine patients with histologically-proven metastases of CUP were included. For all patients,the conventional diagnostic work-up was unsuccessful in localizing the primary site. Whole-body PET/CT images were obtained approximately 60 minutes after intravenous injection of 350-425 MBq of 18F-FDG.Results In 24.8% of patients,FDG PET/CT detected primary tumors that were not apparent after conventional workup.In this group of patients,the overall sensitivity,specificity,and accuracy rates of FDG PET/CT in detecting unknown primary tumors were 86.0%,87.7%,and 87.2%,respectively. FDG PET/CT imaging also led to the detection of previously unrecognized metastases in 29.5% of patients. Forty-seven (31.5%,47 of 149) patients underwent a change in therapeutic management.Conclusions FDG PET/CT is a valuable tool in patients with CUP,because it assisted in detecting unknown primary tumors and previously unrecognized distant metastases,and optimized the mangement of these patients.

  6. [18F]Fluorodeoxyglucose uptake by positron emission tomography predicts outcomes for oropharyngeal and hypopharyngeal cancer treated with definitive radiotherapy

    Ishihara, Takeaki; Kitajima, Kazuhiro; Suenaga, Yuko; Ejima, Yasuo; Komatsu, Hirokazu; Otsuki,, Naoki; Nibu, Ken-ichi; kiyota, Naomi; Takahashi, Satoru; Sasaki, Ryohei

    2017-01-01

    ABSTRACT This study evaluated the prognostic significance of the maximum standardized uptake value of the primary site (pSUVmax) in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans of patients with oropharyngeal or hypopharyngeal cancer who were treated using definitive radiotherapy. The study included 86 patients who were primarily treated with radiotherapy for oropharyngeal or hypopharyngeal cancer. Sixty-nine patients underwent concurrent chemotherapy. The associations between pre-treatment pSUVmax and treatment outcomes were evaluated. The most appropriate pSUVmax cut-off value for predicting disease-free survival (DFS) and local control (LC) was selected using receiver operating characteristic (ROC) curves. The median follow-up time for surviving patients was 60 months, while the median survival time in the entire patient cohort was 55 months. A pSUVmax cut-off value of 9.0 showed the best discriminative performance. Five-year OS and DFS rates were 65.9% and 60.0%, respectively. In univariate analyses, pSUVmax (p = 0.009), T-stage (p = 0.001), N-stage (p = 0.039), and clinical stage (p = 0.017) were identified as significant prognostic predictors for DFS. The multivariate analysis did not identify any statistically significant factors, but the association between pSUVmax and DFS was borderline significant (p = 0.055). Interestingly, pSUVmax was predictive of local controllability in T1–T2 disease (p = 0.024), but there was no significant association for T3–T4 disease (p = 0.735). In this study, pSUVmax was predictive of DFS and LC in patients with oropharyngeal or hypopharyngeal cancer that was treated with definitive radiotherapy. pSUVmax was strongly associated with LC in T1–T2 disease.

  7. Different subregional metabolism patterns in patients with cerebellar ataxia by 18F-fluorodeoxyglucose positron emission tomography.

    Oh, Minyoung; Kim, Jae Seung; Oh, Jungsu S; Lee, Chong Sik; Chung, Sun Ju

    2017-01-01

    We evaluated cerebellar subregional metabolic alterations in patients with cerebellar ataxia, a representative disease involving the spinocerebellum. We retrospectively analyzed 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images in 44 patients with multiple system atrophy of the cerebellar type (MSA-C), 9 patients with spinocerebellar ataxia (SCA) type 2, and 14 patients with SCA type 6 and compared with 15 patients with crossed cerebellar diaschisis (CCD) and 89 normal controls. Cerebellar subregional metabolism was assessed using 13 cerebellar subregions (bilateral anterior lobes [ANT], superior/mid/inferior posterior lobes [SUPP/MIDP/INFP], dentate nucleus [DN], anterior vermis [ANTV], and superior/inferior posterior vermis [SUPV/INFV]) to determine FDG uptake ratios. MSA-C and SCA type 2 showed severely decreased metabolic ratios in all cerebellar subregions compared to normal controls (ANT, 0.58 ± 0.08 and 0.50 ± 0.06 vs. 0.82 ± 0.07, respectively, p < 0.001). SCA type 6 showed lower metabolic ratios in almost all cerebellar subregions (ANT, 0.57 ± 0.06, p < 0.001) except INFV. Anterior-posterior lobe ratio measurements revealed that SCA type 2 (Right, 0.81 ± 0.05 vs. 0.88 ± 0.04, p < 0.001; Left, 0.83 ± 0.05 vs. 0.88 ± 0.04, p = 0.003) and SCA type 6 (Right, 0.72 ± 0.05 vs. 0.88 ± 0.04, p < 0.001; Left, 0.72 ± 0.05 vs. 0.88 ± 0.04, p < 0.001) showed preferential hypometabolism in the anterior lobe compared to normal controls, which was not observed in CCD and MSA-C. Asymmetric indices were higher in CCD and MSA-C than in normal controls (p < 0.001), whereas such differences were not found in SCA types 2 and 6. In summary, quantitative analysis of cerebellar subregional metabolism ratios revealed preferential involvement of the anterior lobe, corresponding to the spinocerebellum, in patients with cerebellar ataxia, whereas patients with CCD and MSA-C exhibited more asymmetric hypometabolism in the posterior lobe.

  8. {sup 18}F-fluorodeoxyglucose positron emission tomography for predicting tumor response to radiochemotherapy in nasopharyngeal carcinoma

    Su, Meng; Wei, Hangping; Lin, Ruifang; Zhang, Xuebang; Zou, Changlin [The First Affiliated Hospital of Wenzhou Medical University, Department of Radiation Oncology and Chemotherapy, Wenzhou, Zhejiang province (China); Zhao, Liang [The First Affiliated Hospital of Wenzhou Medical University, Department of Positron Emission Tomography, Wenzhou, Zhejiang province (China)

    2015-08-15

    The aim of this study was to evaluate the value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in predicting tumor response to radiochemotherapy in nasopharyngeal carcinoma (NPC). From July 2012 to March 2014, 46 NPC patients who had undergone PET scanning before receiving definitive intensity-modulated radiotherapy (IMRT) treatment in our hospital were enrolled. Factors potentially affecting tumor response to treatment were studied by multiple logistic regression analysis. After radiochemotherapy, 32 patients had a clinical complete response (CR), making the CR rate 69.6 %. Multiple logistic regression analysis demonstrated that the maximal standard uptake value (SUV{sub max}) of the primary tumor was the only factor related to tumor response (p = 0.001), and that the logistic model had a high positive predictive value (90.6 %). The area under the receiver operating characteristic (ROC) curve was 0.809, with a best cutoff threshold at 10.05. Patients with SUV{sub max} ≤ 10 had a higher CR rate than those with SUV{sub max} > 10 (p < 0.001). The SUV{sub max} of the primary tumor before treatment is an independent predictor of tumor response in NPC. (orig.) [German] Das Ziel der Arbeit bestand darin, den Wert der {sup 18}F-Fluordesoxyglukose-Positronenemissionstomographie ({sup 18}F-FDG-PET) zur Vorhersage des Tumoransprechens auf eine Radiochemotherapie beim Nasopharynxkarzinom (NPC) zu beurteilen. Von Juli 2012 bis Maerz 2014 wurden 46 NPC-Patienten, die sich vor definitiver intensitaetsmodulierter Strahlentherapie (IMRT) in unserem Krankenhaus einem PET-Scan unterzogen hatten, in die Studie aufgenommen. Faktoren, die moeglicherweise das Tumoransprechen auf die Behandlung beeinflussen, wurden mittels multipler logistischer Regressionsanalyse untersucht. Nach der Radiochemotherapie hatten 32 Patienten eine klinisch komplette Remission (CR), so dass eine CR-Rate von 69,6 % erreicht wurde. Die multiple logistische Regressionsanalyse zeigte

  9. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomogra

    Brian S Pugmire; Alexander R Guimaraes; Ruth Lim; Alison M Friedmann; Mary Huang; David Ebb; Howard Weinstein; Onofrio A Catalano; Umar Mahmood; Ciprian Catana; Michael S Gee

    2016-01-01

    AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose(18F-FDG)positron emission tomography and magnetic resonance imaging(PET-MRI) in the evaluation of pediatric oncology patients.METHODS: This prospective, observational, singlecenter study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to:(1) have a known or suspected cancer diagnosis;(2) be under the care of a pediatric hematologist/oncologist; and(3) be scheduled for clinically indicated 18F-FDG PETCT examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging(DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PETMRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PETMRI, for the detection of malignant lesions, including FDG maximum standardized uptake value(SUVmax) and minimum apparent diffusion coefficient(ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard.RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years(range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions(R = 0.93). PETMRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-computed tomography(CT) reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions(780.2 + 326.6) was significantly

  10. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly.

  11. A role of 18F-fluorodeoxyglucose positron emission/computed tomography in a strategy for abdominal wall metastasis of colorectal mucinous adenocarcinoma developed after laparoscopic surgery

    Kaneko Hironori

    2011-02-01

    Full Text Available Abstract Metastasis to the abdominal wall including port sites after laparoscopic surgery for colorectal cancer is rare. Resection of metastatic lesions may lead to greater survival benefit if the abdominal wall metastasis is the only manifestation of recurrent disease. A 57-year-old man, who underwent laparoscopic surgery for advanced mucinous adenocarcinoma of the cecum 6 years prior, developed a nodule in the surgical wound at the lower right abdomen. Although tumor markers were within normal limits, the metastasis to the abdominal wall and abdominal cavity from the previous cecal cancer was suspected. An abdominal computed tomography scan did not provide detective evidence of metastasis. 18F-fluorodeoxyglucose positron emission/computed tomography (18F-FDG PET/CT was therefore performed, which demonstrated increased 18F-fluorodeoxyglucose uptake (maximum standardized uptake value: 3.1 in the small abdominal wall nodule alone. Histopathological examination of the resected nodule confirmed the diagnosis of metastatic mucinous adenocarcinoma. Prognosis of intestinal mucinous adenocarcinoma is reported to be poorer than that of non-mucinous adenocarcinoma. In conclusion, this case suggests an important role of 18F-FDG PET/CT in early diagnosis and decision-making regarding therapy for recurrent disease in cases where a firm diagnosis of recurrent colorectal cancer is difficult to make.

  12. Detection of infectious colitis by {sup 18}F-fluorodeoxyglucose-positron emission tomography in a child receiving intensive care after cardiac surgery

    Ruf, Juri; Amthauer, Holger [Charite - Universitaetsmedizin Berlin, Klinik fuer Strahlenheilkunde, Campus Virchow-Klinikum, Berlin (Germany); Griebenow, Boris; Stiller, Brigitte; Lange, Peter E. [Deutsches Herzzentrum Berlin, Abteilung fuer Kinderkardiologie und angeborene Herzfehler, Berlin (Germany); Sarioglu, Nanette [Charite-Universitaetsmedizin Berlin, Institut fuer Pathologie, Campus Virchow-Klinikum, Berlin (Germany)

    2005-07-01

    Pyrexia of unknown origin (PUO) and suspected focal infection/inflammation are challenging medical problems. Nuclear medicine methods using scintigraphy with {sup 111}In- or {sup 99m}Tc-labelled antibodies or {sup 67}Ga-citrate have been validated for the diagnosis and detection of inflammatory processes. Recently, positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG) has been described as a promising imaging method, especially for PUO. We report the use of FDG-PET in an 18-month-old boy that revealed unexpected infectious colitis after cardiac surgery. This case suggests that FDG-PET is a valuable tool for the detection of unknown inflammatory foci in childhood, especially when the time needed for examination and radiation exposure are to be considered. (orig.)

  13. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see.

    Cocker, Myra S; Mc Ardle, Brian; Spence, J David; Lum, Cheemun; Hammond, Robert R; Ongaro, Deidre C; McDonald, Matthew A; Dekemp, Robert A; Tardif, Jean-Claude; Beanlands, Rob S B

    2012-12-01

    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

  14. Positron emission tomography/computed tomography with 18F-fluorodeoxyglucose identifies tumor growth or thrombosis in the portal vein with hepatocellular carcinoma

    Long Sun; Hua Wu; Wei-Ming Pan; Yong-Song Guan

    2007-01-01

    Patients suffering from hepatocellular carcinoma (HCC) with tumor thrombus in the portal vein generally have a poor prognosis. Portal vein tumor thrombus must be distinguished from portal vein blood thrombus, and this identification plays a very important role in management of HCC. Conventional imaging modalities have limitations in discrimination of portal vein tumor thrombus. The application of positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for discrimination between tumor extension and blood thrombus has been reported in few cases of HCC, while portal tumor thrombosis and portal vein clot identified by 18F-FDG PET/CT in HCC patients has not been reported so far.We present two HCC cases, one with portal vein tumor thrombus and one thrombosis who were identified with 18F-FDG PET/CT. This report illustrates the complimentary value of combining the morphological and functional imaging in achieving a correct diagnosis in such clinical situations.

  15. 18F-fluorodeoxyglucose Positron Emission Tomography in Kaposi Sarcoma Herpesvirus–Associated Multicentric Castleman Disease: Correlation With Activity, Severity, Inflammatory and Virologic Parameters

    Polizzotto, Mark N.; Millo, Corina; Uldrick, Thomas S.; Aleman, Karen; Whatley, Millie; Wyvill, Kathleen M.; O'Mahony, Deirdre; Marshall, Vickie; Whitby, Denise; Maass-Moreno, Roberto; Steinberg, Seth M.; Little, Richard F.; Yarchoan, Robert

    2015-01-01

    Background. Kaposi sarcoma herpesvirus (KSHV)-associated multicentric Castleman disease (MCD) is a lymphoproliferative inflammatory disorder commonly associated with human immunodeficiency virus (HIV). Its presentation may be difficult to distinguish from HIV and its complications, including lymphoma. Novel imaging strategies could address these problems. Methods. We prospectively characterized 18F-fluorodeoxyglucose positron emission tomography (PET) findings in 27 patients with KSHV-MCD. Patients were imaged with disease activity and at remission with scans evaluated blind to clinical status. Symptoms, C-reactive protein level, and HIV and KSHV loads were assessed in relation to imaging findings. Results. KSHV-MCD activity was associated with hypermetabolic symmetric lymphadenopathy (median maximal standardized uptake value [SUVmax], 6.0; range, 2.0–8.0) and splenomegaly (3.4; 1.2–11.0), with increased metabolism also noted in the marrow (2.1; range, 1.0–3.5) and salivary glands (3.0; range, 2.0–6.0). The 18F-fluorodeoxyglucose PET abnormalities improved at remission, with significant SUVmax decreases in the lymph nodes (P = .004), spleen (P = .008), marrow (P = .004), and salivary glands (P = .004). Nodal SUVmax correlated with symptom severity (P = .005), C-reactive protein level (R = 0.62; P = .004), and KSHV load (R = 0.54; P = .02) but not HIV load (P = .52). Conclusions. KSHV-MCD activity is associated with 18F-FDG PET abnormalities of the lymph nodes, spleen, marrow, and salivary glands. These findings have clinical implications for the diagnosis and monitoring of KSHV-MCD and shed light on its pathobiologic mechanism. PMID:25828248

  16. Whole-body 18F-fluorodeoxyglucose positron emission tomography/computed tomography images before and after chemotherapy for Kaposi sarcoma and highly active antiretrovirus therapy.

    Morooka, Miyako; Ito, Kimiteru; Kubota, Kazuo; Minamimoto, Ryogo; Shida, Yoshitaka; Hasuo, Kanehiro; Ito, Tateki; Tasato, Daisuke; Honda, Haruhito; Teruya, Katsuji; Kikuchi, Yoshimi; Ohtomo, Kuni

    2010-12-01

    Kaposi sarcoma is an acquired immunodeficiency syndrome-related disease that mainly involves the skin, gastrointestinal gut, and lungs. Whole-body 18F-fluorodeoxyglucose-positron emission tomography and computed tomography (FDG-PET/CT) scanning is useful for simultaneous detection of multiple lesions of Kaposi sarcoma. We present a 67-year-old man with a history of infection with human immunodeficiency virus who presented with numerous cutaneous lesions. FDG-PET/CT images showed lesions in the skin, lung, and lymph nodes. The gastrointestinal lesions were detected using gastric fiberscopy (GF) and colon fiberscopy (CF). After Kaposi sarcoma therapy, the uptake in the lesions of the skin, lung, and lymph nodes decreased, but new lesions were detected in the pancreas and lumbar spine. He had pancreatitis and Candida spondilitis. Whole-body FDG-PET/CT is useful for detecting lesions and determining the extension to which the disease has spread, adding the gastrointestinal lesions by GF and CF. After therapy, FDG-PET/CT can be used to demonstrate which lesions remain active and to determine the overall response to treatment. In this case, we show how useful FDG-PET/CT is and how difficult it is to treat Kaposi sarcoma.

  17. Additional benefit of {sup 18}F-fluorodeoxyglucose integrated positron emission tomography/computed tomography in the staging of oesophageal cancer

    Gillies, R.S. [Oxford Cancer and Haematology Centre, Churchill Hospital, Department of Medical Oncology, Oxford (United Kingdom); Oxford Cancer and Haematology Centre, Churchill Hospital, Department of Oesophagogastric Surgery, Oxford (United Kingdom); Middleton, M.R. [Oxford Cancer and Haematology Centre, Churchill Hospital, Department of Medical Oncology, Oxford (United Kingdom); Maynard, N.D. [Oxford Cancer and Haematology Centre, Churchill Hospital, Department of Oesophagogastric Surgery, Oxford (United Kingdom); Bradley, K.M.; Gleeson, F.V. [Oxford Cancer and Haematology Centre, Churchill Hospital, Department of Radiology, Oxford (United Kingdom)

    2011-02-15

    {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG PET) has been shown to improve the accuracy of staging in oesophageal cancer. We assessed the benefit of PET/CT over conventional staging and determined if tumour histology had any significant impact on PET/CT findings. A retrospective cohort study, reviewing the results from 200 consecutive patients considered suitable for radical treatment, undergoing routine PET/CT staging comparing the results from CT and endoscopic ultrasound, as well as multi-disciplinary team records. Adenocarcinoma and squamous cell carcinoma were compared for maximum Standardised Uptake Value (SUV{sub max}), involvement of local lymph nodes and distant metastases. PET/CT provided additional information in 37 patients (18.5%) and directly altered management in 34 (17%): 22 (11%) were upstaged; 15 (7.5%) were downstaged, 12 of whom (6%) received radical treatment. There were 11 false negatives (5.5%) and 1 false positive (0.5%). SUV{sub max} was significantly lower for adenocarcinoma than squamous cell carcinoma (median 9.1 versus 13.5, p = 0.003). Staging with PET/CT offers additional benefit over conventional imaging and should form part of routine staging for oesophageal cancer. Adenocarcinoma and squamous cell carcinoma display significantly different FDG-avidity. (orig.)

  18. 18-F fluorodeoxyglucose uptake in positron emission tomography as a pathological grade predictor for renal clear cell carcinomas

    Noda, Yoshifumi; Goshima, Satoshi; Kondo, Hiroshi; Watanabe, Haruo; Kawada, Hiroshi; Kawai, Nobuyuki; Tanahashi, Yukichi [Gifu University Hospital, Department of Radiology, Gifu (Japan); Kanematsu, Masayuki [Gifu University Hospital, Department of Radiology, Gifu (Japan); Gifu University Hospital, Department of Radiology Services, Gifu (Japan); Suzui, Natsuko [Gifu University Hospital, Department of Pathology, Gifu (Japan); Hirose, Yoshinobu [Osaka Medical College, Department of Pathology, Osaka (Japan); Matsunaga, Kengo [Kizawa Memorial Hospital, Department of Pathology, Minokamo (Japan); Nishibori, Hironori [Kizawa Memorial Hospital, Department of Radiology, Minokamo (Japan); Bae, Kyongtae T. [University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States)

    2015-10-15

    To evaluate the usefulness of Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18-F FDG-PET/CT) in the prediction of Fuhrman pathological grades of renal clear cell carcinoma (cRCC). This retrospective study was approved by our institutional review board, and written informed consent was waived. Thirty-one patients with pathologically proven cRCC underwent 18-F FDG-PET/CT for tumour staging. Maximum standardized uptake value of cRCC (tumour SUV{sub max}) and mean SUV of the liver and spleen (liver and spleen SUV{sub mean}) were measured by two independent observers. Tumour SUV{sub max}, tumour-to-liver SUV ratio, and tumour-to-spleen SUV ratio were correlated with the pathological grades. Logistic analysis demonstrated that only the tumour-to-liver SUV ratio was a significant parameter for differentiating high-grade (Fuhrman grades 3 and 4) tumours from low-grade (Fuhrman grades 1 and 2) tumours (P = 0.007 and 0.010 for observers 1 and 2, respectively). Sensitivity, specificity, and positive and negative predictive values for detecting tumours of Fuhrman grades 3 and 4 were 64, 100, 100, and 77 %, respectively, for observer 1, and 79, 88, 85, and 83 %, respectively, for observer 2. The tumour-to-liver SUV ratio with 18-F FDG-PET/CT appeared to be a valuable imaging biomarker in the prediction of high-grade cRCC. (orig.)

  19. 18F-fluorodeoxyglucose positron emission tomography in elderly patients with an elevated erythrocyte sedimentation rate of unknown origin.

    Karel-Jan D F Lensen

    Full Text Available Patients with an elevated erythrocyte sedimentation rate (ESR and non-specific symptoms often pose a diagnostic dilemma. PET/CT visualises infection, inflammation and malignancy, all of which may cause elevated ESR. The objective of this study was to determine the contribution of 18F-fluorodeoxglucose positron emission tomography (PET/CT in the diagnostic work-up of referred patients with an elevated ESR, in whom initial routine evaluation did not reveal a diagnosis. We conducted a combined retrospective (A and prospective (B study in elderly (>50 years patients with a significantly elevated ESR of ≥ 50 mm/h and non-specific complaints. In study A, 30 patients were included. Malignancy (8 patients, auto-inflammatory disease (8 patients, including 5 with large-vessel vasculitis and infection (3 patients were suggested by PET/CT. Two scans showed non-specific abnormalities and 9 scans were normal. Of the 21 abnormal PET/CT results, 12 diagnoses were independently confirmed and two alternative diagnosis were made. Two diagnoses were established in patients with a normal scan. In study B, 58 patients in whom a prior protocolised work-up was non-diagnostic, were included. Of these, 25 PET/CT-scans showed suspected auto-inflammatory disease, particularly large-vessel vasculitis (14 cases. Infection and malignancy was suspected in 5 and 3 cases, respectively. Seven scans demonstrated non-specific abnormalities, 20 were normal. Of the 40 abnormal PET/CT results, 22 diagnoses were confirmed, 3 alternative diagnoses were established. Only one diagnosis was established in the 20 patients with a normal scan. In both studies, the final diagnosis was based on histology, clinical follow-up, response to therapy or additional imaging. In conclusion, PET/CT may be of potential value in the diagnostic work-up of patients with elevated ESR if routine evaluation reveals no diagnosis. In particular, large-vessel vasculitis appears to be a common finding. A normal

  20. {sup 18}F-fluorodeoxyglucose positron emission tomography combined with whole-body computed tomographic angiography in critically ill patients with suspected severe sepsis with no definite diagnosis

    Mandry, Damien [CHU Nancy, Pole d' imagerie, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); INSERM, UMR 947, Nancy (France); Tatopoulos, Alexis; Lemarie, Jeremie; Bollaert, Pierre-Edouard; Gibot, Sebastien [University of Lorraine, Faculty of Medicine, Nancy (France); CHU de Nancy - Hopital Central, Service de Reanimation Medicale, Nancy (France); INSERM, UMR 1116, Nancy (France); Chevalier-Mathias, Elodie [CHU Nancy, Pole d' imagerie, Nancy (France); INSERM, UMR 947, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France); Roch, Veronique [CHU Nancy, Pole d' imagerie, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France); Olivier, Pierre [CHU Nancy, Pole d' imagerie, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France); Marie, Pierre-Yves [CHU Nancy, Pole d' imagerie, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); INSERM, UMR 1116, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France)

    2014-10-15

    Timely identification of septic foci is critical in patients with severe sepsis or septic shock of unknown origin. This prospective pilot study aimed to assess {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET), combined with whole-body computed tomographic angiography (CTA), in patients with suspected severe sepsis and for whom the prior diagnostic workup had been inconclusive. Patients hospitalized in an intensive care unit with a suspected severe sepsis but no definite diagnosis after 48 h of extensive investigations were prospectively included and referred for a whole body FDG-PET/CTA. Results from FDG-PET/CTA were assessed according to the final diagnosis obtained after follow-up and additional diagnostic workup. Seventeen patients were prospectively included, all on mechanical ventilation and 14 under vasopressor drugs. The FDG-PET/CTA exam 1) was responsible for only one desaturation and one hypotension, both quickly reversible under treatment; 2) led to suspect 16 infectious sites among which 13 (81 %) could be confirmed by further diagnostic procedures; and 3) triggered beneficial changes in the medical management of 12 of the 17 study patients (71 %). The FDG-PET/CTA images showed a single or predominant infectious focus in two cases where CTA was negative and in three cases where CTA exhibited multiple possible foci. Whole-body FDG-PET/CTA appears to be feasible, relatively safe, and provides reliable and useful information, when prospectively planned in patients with suspected severe sepsis and for whom prior diagnostic workup had been inconclusive. The FDG-PET images are particularly helpful when CTA exhibits no or multiple possible sites. (orig.)

  1. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    Ng, Sweet Ping, E-mail: sweet.ng@petermac.org [Peter MacCallum Cancer Centre, Melbourne (Australia); David, Steven [Peter MacCallum Cancer Centre, Melbourne (Australia); Alamgeer, Muhammad; Ganju, Vinod [Monash Cancer Centre, Melbourne (Australia)

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  2. Clinical Usefulness of {sup 18}F-Fluorodeoxyglucose-Positron Emission Tomography in Patients With Locally Advanced Pancreatic Cancer Planned to Undergo Concurrent Chemoradiation Therapy

    Chang, Jee Suk; Choi, Seo Hee; Lee, Youngin; Kim, Kyung Hwan [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Park, Jeong Youp; Song, Si Young [Department of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Arthur; Yun, Mijin; Lee, Jong Doo [Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Seong, Jinsil, E-mail: jsseong@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-09-01

    Purpose: To assess the role of coregistered {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) in detecting radiographically occult distant metastasis (DM) at staging in patients with locally advanced pancreatic cancer (LAPC) and to study whether FDG-PET parameters can predict relatively long-term survival in patients who are more likely to benefit from chemoradiation therapy (CRT). Methods and Materials: From our institutional database, we identified 388 LAPC patients with M0 on conventional computed tomography (CT) who were planned to undergo CRT. Coregistered FDG-PET staging was offered to all patients, and follow-up FDG-PET was used at the clinical discretion of the physician. Results: FDG-PET detected unsuspected CT-occult DM in 33% of all 388 patients and allowed them to receive systemic therapy immediately. The remaining 260 patients (PET-M0) underwent CRT selectively as an initial treatment. Early DM arose in 13.1% of 260 patients, and the 1-year estimated locoregional recurrence rate was 5.4%. Median overall survival (OS) and progression-free survival (PFS) were 14.6 and 9.3 months, respectively, at a median follow-up time of 32.3 months (range, 10-99.1 months). Patients with a baseline standardized uptake value (SUV) <3.5 and/or SUV decline ≥60% had significantly better OS and PFS than those having none, even after adjustment for all potential confounding variables (all P<.001). Conclusions: FDG-PET can detect radiographically occult DM at staging in one-third of patients and spare them from the potentially toxic therapy. Additionally, FDG-PET parameters including baseline SUV and SUV changes may serve as useful clinical markers for predicting the prognosis in LAPC patients.

  3. Combination of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging is an optimal way to evaluate rheumatoid arthritis in rats dynamically

    ZHANG Wei-tao; DU Xiang-ke; HUO Tian-long; WEI Zheng-mao; HAO Chuan-xi; AN Bei

    2013-01-01

    Background Rheumatoid arthritis (RA) is a chronic,systemic autoimmune inflammatory disorder.Many methods have been used to observe the progress of RA.The purpose of this study was to observe the progress of RA in rats with 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT),magnetic resonance (MR) imaging and arthritis score,and analyze the relationships among different methods in evaluation of RA.Methods Sixteen healthy Sprague Dawley (SD) rats about 8-week old were randomly assigned to a RA group and a control group.Bovine type Ⅱ emulsified incomplete Freud's adjuvant was used to induce arthritis in the RA group.Arthritis score of the rats in two groups were recorded,and 18F-FDG PET/CT,MR imaging were performed both on the corresponding rats every 3 days.All the rats were sacrificed at week 5,and histopathological examination was performed on rat knees stained with haematoxylin and eosin.Results The arthritis score and the standard uptake value (SUV) of knee joints in RA rats increased with the progression of arthritis gradually.Both peaks of arthritis score and SUV appeared at 21 days after the first immune injection,then the arthritis score and SUV of knee joints decreased slowly.The arthritis scores of knee joints in RA rats were positively correlated with their SUV changes.The MR images were confirmed by the histopathological studies.Conclusion PET/CT can detect the earliest molecular metabolism changes of RA,and MR imaging can follow up the dynamical anatomical changes of RA,all of which indicated that PET/CT and MR imaging may be applied as useful tools to monitor the progress of RA.

  4. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scan Findings for Ductal Carcinomas of Breast: Association of Standardized Uptake Value and Histological Findings

    Bae, So Young; Lee, Eun Hye [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Park, Jung Mi [Dept. of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Kwak, Jeong Ja [Dept. of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of)

    2012-02-15

    To evaluate the factors associated with variations in 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) uptake in ductal carcinomas of the breast. We enrolled 216 ductal carcinoma cases that underwent 18F-FDG PET/CT. We evaluated the positivity and measured peak standardized uptake value (pSUV) of lesions that underwent 18F-FDG PET/CT. We analyzed the correlation between pSUV and invasiveness, lesion size, and the histologic factors of invasive ductal carcinoma (IDC). In the 18F-FDG PET/CT of ductal carcinomas, sensitivity was 90.2%, positive and negative predictive values were 99.5% and 25.0%, respectively. In ductal carcinoma in situ (DCIS) and IDC, the sensitivities were 68.8% and 92.0%, respectively. The mean pSUV of true positive (TP) DCIS and IDC were 2.6 and 5.1 (p < 0.05), respectively, whereas the false negative (FN) were 1.3 and 1.2 (p > 0.05), respectively, and that of false positive (FP) and true negative (TN) lesions were 2.2 and 0.9, respectively. The mean size of TP DCIS and IDC were 4.5 cm and 2.7 cm (p < 0.05), respectively, whereas the mean size of FN DCIS and IDC were 1.5 cm and 1.4 cm (p > 0.05), respectively, and that of FP and TN lesions were 1.8 cm and 1.2 cm respectively. Among the histological factors affecting IDC, mitosis showed the best correlation with pSUV (rho = 0.5). For 18F-FDG PET/CT of ductal carcinomas, the positive predictive value was 99.5% and the FN rate was 9.7%. False negative factors included DCIS and an IDC < 1.5 cm, whereas mitosis was the TP factor.

  5. [18F]-fluorodeoxyglucose positron emission tomography can contribute to discriminate patients with poor prognosis in hormone receptor-positive breast cancer.

    Sung Gwe Ahn

    Full Text Available Patients with hormone receptor-positive breast cancer typically show favorable survival. However, identifying individuals at high risk of recurrence among these patients is a crucial issue. We tested the hypothesis that [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET scans can help predict prognosis in patients with hormone receptor-positive breast cancer.Between April 2004 and December 2008, 305 patients with hormone receptor-positive breast cancer who underwent FGD-PET were enrolled. Patients with luminal B subtype were identified by positivity for human epidermal growth factor receptor-2 (HER2 or high Ki67 (≥14% according to criteria recently recommended by the St. Gallen panelists. The cut-off value of SUVmax was defined using the time-dependent receiver operator characteristic curve for recurrence-free survival (RFS.At a median follow up of 6.23 years, continuous SUVmax was a significant prognostic factor with a hazard ratio (HR of 1.21 (p = 0.021. The cut-off value of SUVmax was defined as 4. Patients with luminal B subtype (n = 82 or high SUVmax (n = 107 showed a reduced RFS (p = 0.031 and 0.002, respectively. In multivariate analysis for RFS, SUVmax carried independent prognostic significance (p = 0.012 whereas classification with immunohistochemical markers did not (p = 0.274. The Harell c-index was 0.729. High SUVmax was significantly associated with larger tumor size, positive nodes, HER2 positivity, high Ki67 (≥14%, high tumor grade, and luminal B subtype.Among patients with hormone receptor-positive breast cancer, FDG-PET can help discriminate patients at high risk of tumor relapse.

  6. Usefulness of {sup 18}F-fluorodeoxyglucose positron emission tomography in follicular lymphoma management; Apport de la tomographie a emission de positons au {sup 18}F-fluorodeoxyglucose dans la prise en charge des lymphomes folliculaires

    Le Dortz, L.; Devillers, A.; Prigent, F.; Bahri, H.; Hervouet, T.; Garin, E. [Centre Eugene-Marquis, Service de Medecine Nucleaire, 35 - Rennes (France); Guibert, S. de.; Lamy, T. [CHU de Rennes, Service d' Hematologie, 35 - Rennes (France); Rolland, Y. [Centre Eugene-Marquis, Service de Radiologie, 35 - Rennes (France); Bayat, S. [CHU de Rennes, Dept. d' Information Medicale, 35 - Rennes (France)

    2009-06-15

    Purpose To assess the usefulness of positron emission tomography/computed tomography in staging, prognosis evaluation and re staging of patients with follicular lymphoma. Patients and methods a retrospective study was performed on 45 patients with untreated biopsy-proven follicular lymphoma who underwent F.D.G.-PET/CT and CT before and after chemo-immunotherapy induction treatment (rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone). Results PET/CT detected more nodal (+51%) and extra nodal (+89%) lesions than CT. PET/CT changed Ann Arbor stage in eight patients (18%). Five patients (11%) initially considered with early stage (I/II) were finally managed as advanced stage (III/IV). In this study, initial PET/CT was significantly more accurate to identify patients with poor prognosis than F.L.I.P.I.. Poor prognosis was defined as incomplete therapeutic response or early relapse. Accuracy of PET/CT for therapeutic response assessment was significantly higher than that of CT (0.97 vs 0.64), especially because of its ability to identify inactive residual masses. Beside, post-treatment PET/CT was able to predict patients outcome. The median progression free survival (P.F.S.) was 48 months in the PET/CT negative group as compared to 17.2 months for the group with residual uptake (P < 10-4). Conclusion F.D.G.-PET/CT is a very useful tool for staging, assessing prognosis and therapeutic response of patients with follicular lymphoma. (authors)

  7. Highly metabolic thrombus of the portal vein: 18F fluorodeoxyglucose positron emission tomography/computer tomography demonstration and clinical significance in hepatocellular carcinoma

    2008-01-01

    AIM: To assess the ability of 18F-fluorodeoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) to differentiate between benign and malignant portal vein thrombosis in hepatocellular carcinoma (HCC) patients. METHODS: Five consecutive patients who had HBV cirrhosis, biopsy-proven HCC, and thrombosis of the main portal vein and/or left/right portal vein on ultrasound (US), computer tomography (CT) or magnetic resonance imaging (MRI) were studied with 18F-FDG PET/CT. The presence or absence of a highly metabolic thrombus on 18F-FDG PET/CT was considered diagnostic for malignant or benign portal vein thrombosis, respectively. All patients were followed-up monthly with US, CT or MRI. Shrinkage of the thrombus or recanalization of the vessels on US, CT or MRI during follow-up was considered to be definitive evidence of the benign nature of the thrombosis, whereas enlargement of the thrombus, disruption of the vessel wall, and parenchymal infiltration over follow-up were considered to be consistent with malignancy 18F-FDG PET/CT, and US, CT or MRI results were compared. RESULTS: Follow-up (1 to 10 mo) showed signs of malignant thrombosis in 4 of the 5 patients. US, CT or MRI produced a true-positive result for malignancy in 4of the patients, and a false-positive result in 1.18F-FDG PET/CT showed a highly metabolic thrombus in 4 of the 5 patients.18F-FDG PET/CT achieved a true-positive result in all 4 of these patients, and a true-negative result in the other patient. No false-positive result was observed using 18F-FDG PET/CT.CONCLUSION: 18F-FDG PET/CT may be helpful in discriminating between benign and malignant portal vein thrombi. Patients may benefit from 18F-FDG PET/OT when portal vein thrombi can not be diagnosed exactly by US, CT or MRI.

  8. Assessment of Collagen-Induced Arthritis Using Cyanine 5.5 Conjugated with Hydrophobically Modified Glycol Chitosan Nanoparticles: Correlation with 18F-Fluorodeoxyglucose Positron Emission Tomography Data

    Cha, Ji Hyeon; Lee, Sang Hoon; Lee, Sheen Woo; Moon, Dae Huk [Asan Medical Center, Ulsan University College of Medicine, Seoul (Korea, Republic of); Park, Kyoung Soon [Biomedical Research Center, Seoul (Korea, Republic of); Biswal, Sandip [Stanford University School of Medicine, Stanford (United States)

    2012-07-15

    To evaluate the potential and correlation between near-infrared fluorescence (NIRF) imaging using cyanine 5.5 conjugated with hydrophobically modified glycol chitosan nanoparticles (HGC-Cy5.5) and {sup 18}F-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET) imaging of collagen-induced arthritis (CIA). We used 10 CIA and 3 normal mice. Nine days after the injecting collagen twice, microPET imaging was performed 40 minutes after the intravenous injection of 9.3 MBq {sup 18}F-FDG in 200 {mu}L PBS. One day later, NIRF imaging was performed two hours after the intravenous injection of HGC-cy5.5 (5 mg/kg). We assessed the correlation between these two modalities in the knees and ankles of CIA mice. The mean standardized uptake values of {sup 18}F-FDG for knees and ankles were 1.68 {+-} 0.76 and 0.79 {+-} 0.71, respectively, for CIA mice; and 0.57 {+-} 0.17 and 0.54 {+-} 0.20 respectively for control mice. From the NIRF images, the total photon counts per 30 mm{sup 2} for knees and ankles were 2.32 {+-} 1.54 X 10{sup 5} and 2.75 {+-} 1.51 X 10{sup 5}, respectively, for CIA mice, and 1.22 {+-} 0.27 X 10{sup 5} and 0.88 {+-} 0.24 X 10{sup 5}, respectively, for control mice. These two modalities showed a moderate correlation for knees (r = 0.604, p = 0.005) and ankles (r = 0.464, p = 0.039). Moreover, both HGC-Cy5.5 (p = 0.002) and {sup 18}F-FDG-PET (p = 0.005) imaging also showed statistically significant differences between CIA and normal mice. NIRF imaging using HGC-Cy5.5 was moderately correlated with {sup 18}F-FDG-PET imaging in the CIA model. As such, HGC-Cy5.5 imaging can be used for the early detection of rheumatoid arthritis.

  9. CyberKnife radiosurgery for inoperable stage IA non-small cell lung cancer: 18F-fluorodeoxyglucose positron emission tomography/computed tomography serial tumor response assessment

    Chang Thomas

    2010-02-01

    Full Text Available Abstract Objective To report serial 18F-fluorodeoxyglucose (18F-FDG positron emission tomography (PET/computed tomography (CT tumor response following CyberKnife radiosurgery for stage IA non-small cell lung cancer (NSCLC. Methods Patients with biopsy-proven inoperable stage IA NSCLC were enrolled into this IRB-approved study. Targeting was based on 3-5 gold fiducial markers implanted in or near tumors. Gross tumor volumes (GTVs were contoured using lung windows; margins were expanded by 5 mm to establish the planning treatment volumes (PTVs. Doses ranged from 42-60 Gy in 3 equal fractions. 18F-FDG PET/CT was performed prior to and at 3-6-month, 9-15 months and 18-24 months following treatment. The tumor maximum standardized uptake value (SUVmax was recorded for each time point. Results Twenty patients with an average maximum tumor diameter of 2.2 cm were treated over a 3-year period. A mean dose of 51 Gy was delivered to the PTV in 3 to 11 days (mean, 7 days. The 30-Gy isodose contour extended an average of 2 cm from the GTV. At a median follow-up of 43 months, the 2-year Kaplan-Meier overall survival estimate was 90% and the local control estimate was 95%. Mean tumor SUVmax before treatment was 6.2 (range, 2.0 to 10.7. During early follow-up the mean tumor SUVmax remained at 2.3 (range, 1.0 to 5.7, despite transient elevations in individual tumor SUVmax levels attributed to peritumoral radiation-induced pneumonitis visible on CT imaging. At 18-24 months the mean tumor SUVmax for controlled tumors was 2.0, with a narrow range of values (range, 1.5 to 2.8. A single local failure was confirmed at 24 months in a patient with an elevated tumor SUVmax of 8.4. Conclusion Local control and survival following CyberKnife radiosurgery for stage IA NSCLC is exceptional. Early transient increases in tumor SUVmax are likely related to radiation-induced pneumonitis. Tumor SUVmaxvalues return to background levels at 18-24 months, enhancing 18F-FDG PET

  10. Detection of internal mammary lymph node metastasis with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with stage III breast cancer

    Seo, Min Jung; Lee, Jong Jin; Kim, Hye Ok; Chae, Sun-Young; Ryu, Jin-Sook; Moon, Dae Hyuk [University of Ulsan College of Medicine, Asan Medical Center, Department of Nuclear Medicine, Songpa-gu, Seoul (Korea, Republic of); Park, Seol Hoon [Ulsan University Hospital, Department of Nuclear Medicine, Ulsan (Korea, Republic of); Ahn, Sei Hyun; Lee, Jong Won; Son, Byung Ho [University of Ulsan College of Medicine, Asan Medical Center, Department of Surgery, Seoul (Korea, Republic of); Gong, Gyung-Yub [University of Ulsan College of Medicine, Asan Medical Center, Department of Pathology, Seoul (Korea, Republic of)

    2014-03-15

    The present study assessed the positive predictive value (PPV) of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for the detection of internal mammary node (IMN) metastasis in patients with clinical stage III breast cancer. Patients who were diagnosed with clinical stage III breast cancer and underwent pretreatment {sup 18}F-FDG PET/CT were retrospectively analyzed. The {sup 18}F-FDG PET/CT scans were prospectively reviewed by two board-certified nuclear medicine physicians in a blinded manner. The intensities of IMNs were graded into four categories (no activity and lower, similar, and higher activities than that of the mediastinal blood pool). IMNs were measured from the combined CT (largest diameter of the short axis). Histologic data of the IMNs were obtained by ultrasonography-guided fine-needle aspiration biopsy or surgical excision. The PPV was calculated for pathologically confirmed IMNs. Visual grade, maximum standardized uptake values (SUV{sub max}), and sizes were analyzed according to the pathology results. There were 249 clinical stage III breast cancer patients (age 48.0 ± 10.1 years, range 26-79 years) who had undergone initial {sup 18}F-FDG PET/CT prior to treatment. Excluding 33 cases of stage IV breast cancer, 62 of 216 patients had visible IMNs on {sup 18}F-FDG PET/CT, and histologic confirmation was obtained in 31 patients. There were 27 metastatic and four nonmetastatic nodes (PPV 87.1 %). Metastatic nodes mostly presented with visual grade 3 (83.9 %), and SUV{sub max} and size were 3.5 ± 4.3 and 5.6 ± 2.0 mm, respectively. {sup 18}F-FDG PET/CT has a high PPV for IMN metastasis in clinical stage III breast cancer, indicating the possibility of metastasis in IMNs with FDG uptake similar to/lower than that of the blood pool or small-sized nodes. (orig.)

  11. Cervical lymph node hyperplasia on [{sup 18}F]-fluorodeoxyglucose positron emission tomography/computed tomography scan after treatment of children and adolescents with malignant lymphoma

    Hu, Ying-Ying, E-mail: huyy@sysucc.org.cn; Zhang, Xu, E-mail: zhangxu2@sysucc.org.cn; Long, Wen, E-mail: longwen2@sysucc.org.cn; Lin, Xiao-Ping, E-mail: linxp@sysucc.org.cn; Zhang, Ya-Rui, E-mail: zhangyr@sysucc.org.cn; Li, Yuan-Hua, E-mail: liyh@sysucc.org.cn; Xiao, Zi-Zheng, E-mail: xiaozzh@sysucc.org.cn; Zheng, Rong-Liang, E-mail: zhengrl@sysucc.org.cn; Liang, Pei-Yan, E-mail: liangpy@sysucc.org.cn; Fan, Wei, E-mail: fanwei@sysucc.org.cn

    2015-07-15

    Highlights: • Cervical lymph node hyperplasia is a benign processes. • Lymph node hyperplasia found in treated children and adolescents with lymphoma. • We define imaging manifestations of cervical lymph node hyperplasia in PET/CT. • Awareness of lymph node hyperplasia avoid invasive procedures and over-treatment. - Abstract: Purpose: To define imaging manifestations and clinical prognosis of cervical lymph node hyperplasia using [{sup 18}F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) scanning after treatment of children and adolescents with malignant lymphoma. Methods: Children and adolescent patients with malignant lymphoma who had high FDG uptake in their cervical lymph nodes via PET/CT after treatment, which was not due to tumor recurrence or residue, were retrospectively analyzed. Results: Twenty-seven patients with a median age of 12 years were included; 11 had Hodgkin's disease and 16 had non-Hodgkin's lymphoma. The time from PET/CT scan to completion of therapy was 1–36 months, 85.2% (23/27) of which took place within 12 months. Three patients had confirmed lymph node follicular hyperplasia by biopsy, while all 27 patients achieved disease-free survival during the follow-up period. The maximum standardized uptake values (SUV{sub max}) of cervical lymph nodes were 2.2–16.2 and the maximum short axis ranged from 0.3 to 1.2 cm. Cervical lymph node hyperplasia was noted in neck levels I–V, and neck level II bilaterally had the highest incidence (100%). Bilateral cervical lymph node hyperplasia was symmetrical in terms of both the SUV{sub max} and affected locations. Thymic hyperplasia and nasopharyngeal lymphoid hyperplasia were both observed in 24 patients (88.9%). There was no relationship in terms of the SUV{sub max} between cervical lymph nodes and thymic tissue, cervical nodes or nasopharyngeal lymphoid tissue. Conclusion: Cervical lymph node hyperplasia with high FDG uptake on PET/CT scans found

  12. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    Aparna Baranwal; M. Reza Mirbolooki; Jogeshwar Mukherjee

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [18F]FDG PET/CT. Drugs that enhance BAT activity may have...

  13. Impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography staging in newly diagnosed classical Hodgkin lymphoma: fewer cases with stage I disease and more with skeletal involvement.

    El-Galaly, Tarec Christoffer; Hutchings, Martin; Mylam, Karen Juul; Brown, Peter de Nully; Bukh, Anne; Johnsen, Hans Erik; Kamper, Peter; Loft, Annika; Iyer, Victor; Gormsen, Lars Christian; Nielsen, Anne Lerberg; Bøgsted, Martin; d'Amore, Francesco

    2014-10-01

    (18)F-Fluorodeoxyglucose positron emission tomography/ computed tomography (PET/CT) is a highly accurate staging method in classical Hodgkin lymphoma (cHL). We retrospectively compared the staging results obtained in two large cohorts of patients with cHL diagnosed before (n = 324) and after (n = 406) the introduction of PET/CT staging in a retrospective study. In PET/CT staged patients, stage I disease was less frequent (16% vs. 27%, p disease was more frequent (17% vs. 10%, p = 0.02). Imaging-detected skeletal involvement was recognized more often in PET/CT staged patients (17% vs. 2%, p Hodgkin Study Group (GHSG) risk classification (early, intermediate, advanced disease) predicted outcome in PET/CT staged patients. In conclusion, PET/CT led to higher disease stages, and the more frequently diagnosed skeletal lesions may be an adverse prognostic factor.

  14. Volume-Based Parameters of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Improve Disease Recurrence Prediction in Postmastectomy Breast Cancer Patients With 1 to 3 Positive Axillary Lymph Nodes

    Nakajima, Naomi, E-mail: haruhi0321@gmail.com [Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Department of Radiology, Ehime University, Ehime (Japan); Kataoka, Masaaki [Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Sugawara, Yoshifumi [Department of Diagnostic Radiology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Ochi, Takashi [Department of Radiology, Ehime University, Ehime (Japan); Kiyoto, Sachiko; Ohsumi, Shozo [Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Mochizuki, Teruhito [Department of Radiology, Ehime University, Ehime (Japan)

    2013-11-15

    Purpose: To determine whether volume-based parameters on pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer patients treated with mastectomy without adjuvant radiation therapy are predictive of recurrence. Methods and Materials: We retrospectively analyzed 93 patients with 1 to 3 positive axillary nodes after surgery, who were studied with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography for initial staging. We evaluated the relationship between positron emission tomography parameters, including the maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), and clinical outcomes. Results: The median follow-up duration was 45 months. Recurrence was observed in 11 patients. Metabolic tumor volume and TLG were significantly related to tumor size, number of involved nodes, nodal ratio, nuclear grade, estrogen receptor (ER) status, and triple negativity (TN) (all P values were <.05). In receiver operating characteristic curve analysis, MTV and TLG showed better predictive performance than tumor size, ER status, or TN (area under the curve: 0.85, 0.86, 0.79, 0.74, and 0.74, respectively). On multivariate analysis, MTV was an independent prognostic factor of locoregional recurrence-free survival (hazard ratio 34.42, 95% confidence interval 3.94-882.71, P=.0008) and disease-free survival (DFS) (hazard ratio 13.92, 95% confidence interval 2.65-103.78, P=.0018). The 3-year DFS rate was 93.8% for the lower MTV group (<53.1; n=85) and 25.0% for the higher MTV group (≥53.1; n=8; P<.0001, log–rank test). The 3-year DFS rate for patients with both ER-positive status and MTV <53.1 was 98.2%; and for those with ER-negative status and MTV ≥53.1 it was 25.0% (P<.0001). Conclusions: Volume-based parameters improve recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive nodes. The addition of MTV to ER status or TN has

  15. 18F-fluorodeoxyglucose positron emission tomography-computed tomography finding of left gonadal vein thrombosis in a case of renal cell carcinoma.

    Narayan, Ravishwar; Ravishankar, Uma; Natarajan, Savita; Vohra, Sandeep

    2016-01-01

    Tumor thrombus from renal cell carcinoma is commonly reported in renal vein and inferior vena cava with a few reports of gonadal vein involvement. Here, we report a case of an elderly female who underwent fluorodeoxyglucose (FDG) positron emission tomography-computed tomography scan for initial staging of left renal cell carcinoma. Along with an FDG avid left renal mass lesion, scan also revealed FDG avid tumor thrombus in the entire length of the left gonadal vein.

  16. High-resolution 18F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease

    Chittiboina, Prashant; Montgomery, Blake K.; Millo, Corina; Herscovitch, Peter; Lonser, Russell R.

    2016-01-01

    OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of 18F-fluorodeoxyglucose (18F-FDG). To determine the sensitivity of this imaging modality, the authors compared 18F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative 18F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11–59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences. 18F-FDG hrPET demonstrated increased 18F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3–14 mm). Maximum SUV was significantly higher for 18F-FDG hrPET–positive tumors (difference = 5.1, 95% CI 2.1–8.1; p = 0.004) than for 18F-FDG hrPET–negative tumors. 18F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with 18F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All 18F-FDG hrPET–positive adenomas had a less than a 180% ACTH increase and 18F-FDG hrPET–negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by 18F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on 18F-FDG hrPET. CONCLUSIONS While 18F-FDG hrPET imaging can detect

  17. Prognostic value of the standardized uptake value maximum change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography imaging in patients with advanced non-small-cell lung cancer

    Jin F

    2016-05-01

    Full Text Available Feng Jin,1,2 Hui Zhu,2 Zheng Fu,3 Li Kong,2 Jinming Yu2 1School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 2Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 3Department of Nuclear Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China Purpose: The purpose of this study was to investigate the prognostic value of the standardized uptake value maximum (SUVmax change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography (PET imaging in patients with advanced non-small-cell lung cancer (NSCLC.Patients and methods: We conducted a retrospective review of 115 patients with advanced NSCLC who underwent pretreatment dual-time-point 18F-fluorodeoxyglucose PET acquired at 1 and 2 hours after injection. The SUVmax from early images (SUVmax1 and SUVmax from delayed images (SUVmax2 were recorded and used to calculate the SUVmax changes, including the SUVmax increment (ΔSUVmax and percent change of the SUVmax (%ΔSUVmax. Progression-free survival (PFS and overall survival (OS were determined by the Kaplan–Meier method and were compared with the studied PET parameters, and the clinicopathological prognostic factors in univariate analyses and multivariate analyses were constructed using Cox proportional hazards regression.Results: One hundred and fifteen consecutive patients were reviewed, and the median follow-up time was 12.5 months. The estimated median PFS and OS were 3.8 and 9.6 months, respectively. In univariate analysis, SUVmax1, SUVmax2, ΔSUVmax, %ΔSUVmax, clinical stage, and Eastern Cooperative Oncology Group (ECOG scores were significant prognostic factors for PFS. Similar results were significantly correlated with OS, except %ΔSUVmax. In multivariate analysis, ΔSUVmax and %ΔSUVmax were significant

  18. Comparison of {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography, hydro-stomach computed tomography, and their combination for detecting primary gastric cancer

    Jang, Hye Young; Chung, Woo Suk; Song, E Rang; Kim, Jin Suk [Konyang University Myunggok Medical Research Institute, Konyang University Hospital, Konyang University College of Medicine, Daejeon (Korea, Republic of)

    2015-01-15

    To retrospectively compare the diagnostic accuracy for detecting primary gastric cancer on positron emission tomography/computed tomography (PET/CT) and hydro-stomach CT (S-CT) and determine whether the combination of the two techniques improves diagnostic performance. A total of 253 patients with pathologically proven primary gastric cancer underwent PET/CT and S-CT for the preoperative evaluation. Two radiologists independently reviewed the three sets (PET/CT set, S-CT set, and the combined set) of PET/CT and S-CT in a random order. They graded the likelihood for the presence of primary gastric cancer based on a 4-point scale. The diagnostic accuracy of the PET/CT set, the S-CT set, and the combined set were determined by the area under the alternative-free receiver operating characteristic curve, and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Diagnostic accuracy, sensitivity, and NPV for detecting all gastric cancers and early gastric cancers (EGCs) were significantly higher with the combined set than those with the PET/CT and S-CT sets. Specificity and PPV were significantly higher with the PET/CT set than those with the combined and S-CT set for detecting all gastric cancers and EGCs. The combination of PET/CT and S-CT is more accurate than S-CT alone, particularly for detecting EGCs.

  19. Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fluorodeoxyglucose positron emission tomography/computed axial tomography and magnetic resonance imaging

    Jensen, Thor Knak; Holt, Per; Gerke, Oke

    2011-01-01

    investigated the value of ¹⁸F-fluorodeoxyglucose (FDG) positron emission tomography/computed axial tomography (¹⁸F-FDG PET/CT) and magnetic resonance imaging (MRI) for preoperative N staging of bladder cancer. Material and methods. From June 2006 to January 2008, 48 consecutive patients diagnosed with bladder...... cancer were referred to preoperative staging including MRI and ¹⁸F-FDG PET/CT. Eighteen out of 48 patients underwent radical cystoprostatectomy including removal of lymph nodes for histology, and were included in the study. Values of ¹⁸F-FDG PET/CT and MRI for regional N staging were compared...... to histopathology findings, the gold standard. Results. ¹⁸F-FDG PET/CT and MRI were performed in 18 patients. The specificities for detection of lymph-node metastases for MRI and ¹⁸F-FDG PET/CT were 80% (n = 15) and 93.33% (n = 15), respectively. The negative predictive values were 80% (n = 15) and 87.5% (n = 16...

  20. Usefulness of 18F-fluorodeoxyglucose positron emission tomography scan in the assessment of periprosthetic collections: report of 2 cases with opposite management.

    Choufani, Camille; Pierret, Charles; Gontier, Eric; Mlynski, Amélie; de Kerangal, Xavier; Chapuis, Olivier

    2014-04-01

    Vascular prosthetic infection is a rare but serious complication of vascular surgery that requires rapid diagnosis and treatment. It is associated with high rates of amputation and death. The diagnosis is difficult when faced with a chronic nonspecific clinical presentation. We report 2 cases showing the diagnostic usefulness of positron emission tomography (PET). In 1 case, PET excluded with certainty the septic character of a periprosthetic collection fistulized with the skin by showing a periprosthetic fixation insufficient to diagnose an infection. In the other case, it confirmed the prosthetic infection in association with an evocative clinical picture by revealing a pathologic periprosthetic hyperfixation. PET scan therefore drew aside the diagnosis of prosthetic infection faced with a mild clinical and paraclinical presentation in the first case, and made it possible to pose it with certainty in the second case. This examination made it possible to save valuable time in 1 case and to elucidate the periprosthetic collection in the other case. Therefore, the rule of surgical explantation of any prosthesis with flow or periprosthetic collection is no more univocal.

  1. Use of (18)F-fluorodeoxyglucose positron emission tomography-computed tomography to aid in diagnosing intestinal adenocarcinoma in 2 rhesus macaques (Macaca mulatta).

    Caporizzo, Debra J; Kwiatkowski, Anna E; Chen, Ming-Kai; Beck, Amanda P; Booth, Carmen J; Zeiss, Caroline; Smith, Peter C; Carlson Scholz, Jodi A; Wilson, Steven R

    2014-06-01

    Two aged female rhesus macaques (Macaca mulatta) presented with weight loss and intermittent inappetence. The signalment and constellation of clinical signs led clinicians to suspect the presence of intestinal adenocarcinoma. Because of each animal's advanced age and inconclusive radiographic findings, a noninvasive diagnostic tool was preferred over exploratory laparotomy to assist in determining a diagnosis. Consequently, 2-[(18)F]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography-CT (FDG-PET-CT) was chosen to aid in confirming a suspicion of gastrointestinal adenocarcinoma in both animals. FDG is a glucose analogue labeled with fluorine-18 and is taken up by highly metabolically active cells, as observed in many cancers. Tomography revealed an annular constriction of the small intestine with focal FDG uptake in one animal, and an FDG avid transmural mass in the ascending colon of the second animal. Necropsy later confirmed both sites to be adenocarcinomas. This report supports the use of FDG-PET-CT as an adjunct to conventional radiography in the diagnosis of intestinal adenocarcinoma in nonhuman primates.

  2. Clinical role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in post-operative follow up of gastric cancer: Initial results

    Long Sun; Xin-Hui Su; Yong-Song Guan; Wei-Ming Pan; Zuo-Ming Luo; Ji-Hong Wei; Hua Wu

    2008-01-01

    AIM: To evaluate the clinical role of 18F-fluorodeo-xyglucose positron emission and computed tomography(18F-FDG PET/CT) in detection of gastric cancer recur rence after initial surgical resection.METHODS: In the period from January 2007 to May 2008, 23 patients who had previous surgical resection of histopathologically diagnosed gastric cancer underwent a total of 25 18F-FDG PET/CT scans as follow-up visits in our center. The standard of reference for tumor recurrence consisted of histopathologic confirmation or clinical follow-up information for at least 5 mo after PET/CT examinations.RESULTS: PET/Cr was positive in 14 patients (61%)and negative in 9 (39%). When correlated with final diagnosis, which was confirmed by histopathologic evidence of tumor recurrence in 8 of the 23 patients(35%) and by clinical follow-up in 15 (65%), PET/CT was true positive in 12 patients, false positive in 2,true negative in 8 and false negative in 2. Overall,the accuracy of PET/CT was 82.6%, the negative predictive value (NPV) was 77.7%, and the positive predictive value (PPV) was 85.7%. The 2 false positive PET/CT findings were actually chronic inflammatory tissue lesions. For the two patients with false negative PET/CT, the final diagnosis was recurrence of mucinous adenocarcinoma in the anastomosis in one patient and abdominal wall metastasis in the other. Importantly,PET/CT revealed true-positive findings in 11 (47.8%)patients who had negative or no definite findings by CT. PET/CT revealed extra-abdominal metastases in 7 patients and additional esophageal carcinoma in onepatient. Clinical treatment decisions were changed in 7 (30.4%) patients after introducing PET/CT into theirconventional post-operative follow-up program.CONCLUSION: Whole body 18F-FDG PET/CT was highly effective in discriminating true recurrence in post-operative patients with gastric cancer and had important impacts on clinical decisions in a considerable portion of patients.

  3. A comparison study of 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography-computed tomography scans in evaluation of patients with recurrent brain tumors

    Sharma, Rajnish; D’Souza, Maria; Jaimini, Abhinav; Hazari, Puja Panwar; Saw, Sanjeev; Pandey, Santosh; Singh, Dinesh; Solanki, Yachna; Kumar, Nitin; Mishra, Anil K.; Mondal, Anupam

    2016-01-01

    Introduction: 11C-methonine ([11C]-MET) positron emission tomography-computed tomography (PET-CT) is a well-established technique for evaluation of tumor for diagnosis and treatment planning in neurooncology. [11C]-MET reflects amino acid transport and has been shown to be more sensitive than magnetic resonance imaging (MRI) in stereotactic biopsy planning. This study compared fluorodeoxyglucose (FDG) PET-CT and MET PET-CT in the detection of various brain tumors. Materials and Methods: Sixty-four subjects of brain tumor treated by surgery, chemotherapy, and/or radiotherapy were subjected to [18F]-FDG, [11C]-MET, and MRI scan. The lesion was analyzed semiquantitatively using tumor to normal contralateral ratio. The diagnosis was confirmed by surgery, stereotactic biopsy, clinical follow-up, MRI, or CT scans. Results: Tumor recurrence was found in 5 out of 22 patients on [F-18] FDG scan while [11C]-MET was able to detect recurrence in 18 out of 22 patients in low-grade gliomas. Two of these patients were false positive for the presence of recurrence of tumor and later found to be harboring necrosis. Among oligodendroglioma, medulloblastoma and high-grade glioma out of 42 patients 39 were found to be concordant MET and FDG scans. On semiquantitative analysis, mean T/NT ratio was found to be 2.96 ± 0.94 for lesions positive for recurrence of tumors and 1.18 ± 0.74 for lesions negative for recurrence of tumor on [11C]-MET scan. While the ratio for FDG scan on semiquantitative analysis was found to be 2.05 ± 1.04 for lesions positive for recurrence of tumors and 0.52 ± 0.15 for lesions negative for recurrence of tumors. Conclusion: The study highlight that [11C]-MET is superior to [18F]-FDG PET scans to detect recurrence in low-grade glioma. A cut-off value of target to nontarget value of 1.47 is a useful parameter to distinguish benign from malignant lesion on an [11C]-MET Scan. Both [18F]-FDG and [11C]-MET scans were found to be useful in high-grade astrocytoma

  4. Prognostic Significance of Tumor Response as Assessed by Sequential {sup 18}F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography During Concurrent Chemoradiation Therapy for Cervical Cancer

    Oh, Dongryul [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Huh, Seung Jae, E-mail: sj5201.huh@samsung.com [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Park, Won [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Nam, Heerim [Department of Radiation Oncology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of); Choi, Joon Young; Kim, Byung-Tae [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2013-11-01

    Purpose: To investigate the prognostic role of metabolic response by the use of serial sets of positron emission tomography/computed tomography (PET/CT) in patients with cervical cancer who were treated with concurrent chemoradiation therapy (CCRT). Methods and Materials: A total of 60 patients who were treated with CCRT between February 2009 and December 2010 were analyzed. Three sequential PET/CT images were acquired for each patient: pre-CCRT, during-CCRT at 4 weeks of CCRT, and 1 month post-CCRT PET/CT. Metabolic responses were assessed qualitatively. The percentage changes in the maximum values of standardized uptake value (ΔSUV{sub max}%) from the PET/CT images acquired pre-CCRT and during-CCRT were calculated. Receiver operating characteristic (ROC) curve analysis was performed to evaluate whether ΔSUV{sub max}% could predict complete response (CR) on the post-CCRT PET/CT and to identify the best cutoff value. Prognostic factors of progression-free survival (PFS) were analyzed. Results: During-CCRT PET/CT showed that 8 patients (13%) had CR, and the other 52 patients (87%) had partial response (PR). On the post-CCRT PET/CT, 43 patients (73%) had CR, 12 patients (20%) had PR, and 4 patients (7%) had progressive disease. The average SUV{sub max} in primary tumors was 16.3 (range, 6.4-53.0) on the pre-CCRT PET/CT images and 5.3 (range, 0-19.4) on the during-CCRT PET/CT images. According to ROC curve analysis, ΔSUV{sub max}% could predict CR response on post-CCRT PET/CT (P<.001, cutoff value of 59.7%). In all patients, the PFS rate was 71.9% at 2 years. Multivariate analysis showed that ΔSUV{sub max}% ≥60% (P=.045) and CR response on the post-CCRT PET/CT (P=.012) were statistically significant predictors of PFS. Conclusion: Metabolic responses on the during-CCRT images at 4 weeks of treatment and 1-month post-CCRT PET/CT images may predict treatment outcomes in patients with cervical cancer. ΔSUV{sub max}% ≥60% at 4 weeks of CCRT may predict CR response

  5. Prediction of Survival by [18F]Fluorodeoxyglucose Positron Emission Tomography in Patients With Locally Advanced Non–Small-Cell Lung Cancer Undergoing Definitive Chemoradiation Therapy: Results of the ACRIN 6668/RTOG 0235 Trial

    Machtay, Mitchell; Duan, Fenghai; Siegel, Barry A.; Snyder, Bradley S.; Gorelick, Jeremy J.; Reddin, Janet S.; Munden, Reginald; Johnson, Douglas W.; Wilf, Larry H.; DeNittis, Albert; Sherwin, Nancy; Cho, Kwan Ho; Kim, Seok-ki; Videtic, Gregory; Neumann, Donald R.; Komaki, Ritsuko; Macapinlac, Homer; Bradley, Jeffrey D.; Alavi, Abass

    2013-01-01

    Purpose In this prospective National Cancer Institute–funded American College of Radiology Imaging Network/Radiation Therapy Oncology Group cooperative group trial, we hypothesized that standardized uptake value (SUV) on post-treatment [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) correlates with survival in stage III non–small-cell lung cancer (NSCLC). Patients and Methods Patients received conventional concurrent platinum-based chemoradiotherapy without surgery; postradiotherapy consolidation chemotherapy was allowed. Post-treatment FDG-PET was performed at approximately 14 weeks after radiotherapy. SUVs were analyzed both as peak SUV (SUVpeak) and maximum SUV (SUVmax; both institutional and central review readings), with institutional SUVpeak as the primary end point. Relationships between the continuous and categorical (cutoff) SUVs and survival were analyzed using Cox proportional hazards multivariate models. Results Of 250 enrolled patients (226 were evaluable for pretreatment SUV), 173 patients were evaluable for post-treatment SUV analyses. The 2-year survival rate for the entire population was 42.5%. Pretreatment SUVpeak and SUVmax (mean, 10.3 and 13.1, respectively) were not associated with survival. Mean post-treatment SUVpeak and SUVmax were 3.2 and 4.0, respectively. Post-treatment SUVpeak was associated with survival in a continuous variable model (hazard ratio, 1.087; 95% CI, 1.014 to 1.166; P = .020). When analyzed as a prespecified binary value (≤ v > 3.5), there was no association with survival. However, in exploratory analyses, significant results for survival were found using an SUVpeak cutoff of 5.0 (P = .041) or 7.0 (P < .001). All results were similar when SUVmax was used in univariate and multivariate models in place of SUVpeak. Conclusion Higher post-treatment tumor SUV (SUVpeak or SUVmax) is associated with worse survival in stage III NSCLC, although a clear cutoff value for routine clinical use as a prognostic

  6. Comparison of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis

    Ohira, Hiroshi; Birnie, David H.; Mc Ardle, Brian; Dick, Alexander; Klein, Ran; Renaud, Jennifer; DeKemp, Robert A.; Davies, Ross; Hessian, Renee; Liu, Peter; Nery, Pablo B. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); Pena, Elena; Dennie, Carole [The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); Bernick, Jordan; Wells, George A. [University of Ottawa Heart Institute, Cardiovascular Research Methods Center, Ottawa, ON (Canada); Leung, Eugene [The Ottawa Hospital, Division of Nuclear Medicine, Department of Medicine, Ottawa, Ontario (Canada); Yoshinaga, Keiichiro [Hokkaido University School of Medicine, Department of Molecular Imaging, Hokkaido (Japan); Tsujino, Ichizo; Sato, Takahiro; Nishimura, Masaharu [Hokkaido University School of Medicine, First Department of Medicine, Hokkaido (Japan); Manabe, Osamu; Tamaki, Nagara [Hokkaido University School of Medicine, Department of Nuclear Medicine, Hokkaido (Japan); Oyama-Manabe, Noriko [Hokkaido University Hospital, Diagnostic and Interventional Radiology, Hokkaido (Japan); Ruddy, Terrence D.; Beanlands, Rob S.B. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); The Ottawa Hospital, Division of Nuclear Medicine, Department of Medicine, Ottawa, Ontario (Canada); Chow, Benjamin J.W. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada)

    2016-02-15

    Cardiac sarcoidosis (CS) is a cause of conduction system disease (CSD). {sup 18}F-Fluorodeoxyglucose-positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) are used for detection of CS. The relative diagnostic value of these has not been well studied. The aim was to compare these imaging modalities in this population. We recruited steroid-naive patients with newly diagnosed CSD due to CS. All CS patients underwent both imaging studies within 12 weeks of each other. Patients were classified into two groups: group A with chronic mild CSD (right bundle branch block and/or axis deviation), and group B with new-onset atrioventricular block (AVB, Mobitz type II or third-degree AVB). Thirty patients were included. Positive findings on both imaging studies were seen in 72 % of patients (13/18) in group A and in 58 % of patients (7/12) in group B. The remainder (28 %) of the patients in group A were positive only on CMR. Of the patients in group B, 8 % were positive only on CMR and 33 % were positive only on FDG PET. Patients in group A were more likely to be positive only on CMR, and patients in group B were more likely to be positive only on FDG PET (p = 0.02). Patients in group B positive only on FDG PET underwent CMR earlier relative to their symptomatology than patients positive only on CMR (median 7.0, IQR 1.5 - 34.3, vs. 72.0, IQR 25.0 - 79.5 days; p = 0.03). The number of positive FDG PET and CMR studies was different in patients with CSD depending on their clinical presentation. This study demonstrated that CMR can adequately detect cardiac involvement associated with chronic mild CSD. In patients presenting with new-onset AVB and a negative CMR study, FDG PET may be useful for detecting cardiac involvement due to CS. (orig.)

  7. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study

    Asadpour Branka

    2006-03-01

    Full Text Available Abstract Background Experimental and clinical evidence suggest that hypoxia in solid tumours reduces their sensitivity to conventional treatment modalities modulating response to ionizing radiation or chemotherapeutic agents. The aim of the present study was to show the feasibility of determining radiotherapeutically relevant hypoxia and early tumour response by ([18F] Fluoromisonidazole (FMISO and [18F]-2-fluoro-2'-deoxyglucose (FDG PET. Methods Eight patients with non-small-cell lung cancer underwent PET scans. Tumour tissue oxygenation was measured with FMISO PET, whereas tumour glucose metabolism was measured with FDG PET. All PET studies were carried out with an ECAT EXACT 922/47® scanner with an axial field of view of 16.2 cm. FMISO PET consisted of one static scan of the relevant region, performed 180 min after intravenous administration of the tracer. The acquisition and reconstruction parameters were as follows: 30 min emission scanning and 4 min transmission scanning with 68-Ge/68-Ga rod sources. The patients were treated with chemotherapy, consisting of 2 cycles of gemcitabine (1200 mg/m2 and vinorelbine (30 mg/m2 followed by concurrent radio- (2.0 Gy/d; total dose 66.0 Gy and chemotherapy with gemcitabine (300–500 mg/m2 every two weeks. FMISO PET and FDG PET were performed in all patients 3 days before and 14 days after finishing chemotherapy. Results FMISO PET allowed for the qualitative and quantitative definition of hypoxic sub-areas which may correspond to a localization of local recurrences. In addition, changes in FMISO and FDG PET measure the early response to therapy, and in this way, may predict freedom from disease, as well as overall survival. Conclusion These preliminary results warrant validation in larger trials. If confirmed, several novel treatment strategies may be considered, including the early use of PET to evaluate the effectiveness of the selected therapy.

  8. Metabolic Response of Lymph Nodes Immediately After RT Is Related With Survival Outcome of Patients With Pelvic Node-Positive Cervical Cancer Using Consecutive [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Yoon, Mee Sun; Ahn, Sung-Ja; Nah, Byung-Sik; Chung, Woong-Ki [Department of Radiation Oncology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Song, Ho-Chun; Yoo, Su Woong [Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju (Korea, Republic of); Song, Ju-Young; Jeong, Jae-Uk [Department of Radiation Oncology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Nam, Taek-Keun, E-mail: tknam@chonnam.ac.kr [Department of Radiation Oncology, Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2012-11-15

    Purpose: To evaluate the metabolic response of uterine cervix and pelvic lymph nodes (LNs) using consecutive {sup 18}F-fluorodeoxyglucose-positron emission tomography/computed tomography (PET/CT) immediately after RT and to correlate survival outcome with the metabolic response. Methods and Materials: We retrospectively reviewed 48 patients with cervical cancer who had positive pelvic LNs by preradiation therapy (pre-RT) PET/CT. All patients underwent PET/CT scans immediately after RT (inter-RT PET/CT) after median 63 Gy to the gross LNs. The metabolic response of the LNs was assessed quantitatively and semiquantitatively by measurement of the maximal standardized uptake value (SUV{sub max}). Results: Classifying the metabolic response of all nodal lesions, 37 patients (77%) had LNs with complete metabolic response on the inter-RT PET/CT (LNCMRi), and 11 patients had a non-LNCMRi, including 4 patients with progressive metabolic disease. The overall 3-year survival rates were 83% for the patients with LNCMRi and 73% for the non-LNCMRi group (P=.038). The disease-free survival for patients with LNCMRi were significantly better than that for the non-LNCMRi group (71% vs 18%, respectively, P<.001). The 3-year distant metastasis-free survival rates were 79% for the patients with LNCMRi and 27% for the non-LNCMRi group (P<.001). There were no statistically significant differences in overall survival (76% vs 86%, respectively, P=.954) and disease-free survival rates (58% vs 61%, respectively, P=.818) between the CMR of primary cervical tumor and the non-CMR groups. Conclusions: The results showed a significant correlation between survival outcome and the interim metabolic response of pelvic LNs. CMR of nodal lesion on inter-RT PET/CT had excellent overall survival, disease-free survival and distant metastasis-free survival rates. This suggested that PET/CT immediately after RT can be a useful tool for the evaluation of the interim response of the LNs and identify a subset

  9. Impact of pretreatment whole-tumor perfusion computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography measurements on local control of non–small cell lung cancer treated with stereotactic body radiotherapy

    Aoki, Masahiko; Akimoto, Hiroyoshi; Sato, Mariko; Hirose, Katsumi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Seino, Hiroko; Kakehata, Shinya; Tsushima, Fumiyasu; Fujita, Hiromasa; Fujita, Tamaki; Fujioka, Ichitaro; Tanaka, Mitsuki; Miura, Hiroyuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    This study aimed to investigate the correlation between the average iodine density (AID) detected by dual-energy computed tomography (DE-CT) and the maximum standardized uptake value (SUVmax) yielded by [18F] fluorodeoxyglucose positron emission tomography (18F-FDG PET) for non–small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT). Seventy-four patients with medically inoperable NSCLC who underwent both DE-CT and 18F-FDG PET/CT before SBRT (50‒60 Gy in 5‒6 fractions) were followed up after a median interval of 24.5 months. Kaplan–Meier analysis was used to determine associations between local control (LC) and variables, including AID, SUVmax, tumor size, histology, and prescribed dose. The median AID and SUVmax were 18.64 (range, 1.18–45.31) (100 µg/cm3) and 3.2 (range, 0.7–17.6), respectively. No correlation was observed between AID and SUVmax. Two-year LC rates were 96.2% vs 75.0% (P = 0.039) and 72.0% vs 96.2% (P = 0.002) for patients classified according to high vs low AID or SUVmax, respectively. Two-year LC rates for patients with adenocarcinoma vs squamous cell carcinoma vs unknown cancer were 96.4% vs 67.1% vs 92.9% (P = 0.008), respectively. Multivariate analysis identified SUVmax as a significant predictor of LC. The 2-year LC rate was only 48.5% in the subgroup of lower AID and higher SUVmax vs >90% (range, 94.4–100%) in other subgroups (P = 0.000). Despite the short follow-up period, a reduction in AID and subsequent increase in SUVmax correlated significantly with local failure in SBRT-treated NSCLC patients. Further studies involving larger populations and longer follow-up periods are needed to confirm these results. PMID:27296251

  10. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    Aparna Baranwal

    2015-12-01

    Full Text Available Metabolic activity of brown adipose tissue (BAT is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET blockers and is measurable using [18F]fluorodeoxyglucose ([18F]FDG positron emission tomography/computed tomography (PET/CT in rats. Using the streptozotocin (STZ-treated rat model of type 1 diabetes mellitus (T1DM, we investigated BAT activity in this rat model under fasting and nonfasting conditions using [18F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZand confirmed by glucose measures. [18F]FDG was injected in the rats (fasted or nonfasted pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [18F]FDG metabolic activity was computed as standard uptake values (SUVs in interscapular brown adipose tissue (IBAT and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [18F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood sugar

  11. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood

  12. Increased (18)F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT.

    Metser, Ur; Even-Sapir, Einat

    2007-05-01

    The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) in the field of oncology is rapidly evolving; however, (18)F-FDG is not tumor specific. Aside from physiological uptake (18)F-FDG also may accumulate in benign processes. Knowledge of these (18)F-FDG-avid nonmalignant lesions is essential for accurate PET interpretation in oncologic patients to avoid a false-positive interpretation. Through the systematic review of the reports of PET/computed tomography (CT) studies performed in oncologic patients during a 6-month period, we found benign nonphysiological uptake of (18)F-FDG in more than 25% of studies. In half of these, (18)F-FDG uptake was moderate or marked in intensity, similar to that of malignant sites. A total of 73% of benign lesions were inflammatory in nature, with post-traumatic bone and soft-tissue abnormalities (including iatrogenic injury) and benign tumors accounting for the remainder. The differentiation of benign from malignant uptake of (18)F-FDG on PET alone may be particularly challenging as a result of the low anatomical resolution of PET and paucity of anatomical landmarks. Fusion imaging, namely PET/CT, has been shown to improve not only the sensitivity of PET interpretation but also its specificity. Aside from better anatomical localization of lesions on PET/CT, morphological characterization of lesions on CT often may improve the diagnostic accuracy of nonspecific (18)F-FDG uptake. Correlation with CT on fused PET/CT data may obviate the need for further evaluation or biopsy in more than one-third of scintigraphic equivocal lesions. Familiarity with (18)F-FDG-avid nonmalignant lesions also may extend the use of (18)F-FDG-PET imaging beyond the field of oncology. We have tabulated our experience with benign entities associated with increased (18)F-FDG uptake on whole-body PET/CT from 12,000 whole-body (18)F-FDG-PET/CT studies performed during a 4-year period.

  13. Predictive ability of 18F-fluorodeoxyglucose positron emission tomography/computed tomography for pathological complete response and prognosis after neoadjuvant chemotherapy in triple-negative breast cancer patients

    Sachiko Kiyoto

    2016-01-01

    Full Text Available Objective The mortality of patients with locally advanced triple-negative breast cancer (TNBC is high, and pathological complete response (pCR to neoadjuvant chemotherapy (NAC is associated with improved prognosis. This retrospective study was designed and powered to investigate the ability of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT to predict pathological response to NAC and prognosis after NAC.Methods The data of 32 consecutive women with clinical stage II or III TNBC from January 2006 to December 2013 in our institution who underwent FDG-PET/CT at baseline and after NAC were retrospectively analyzed. The maximum standardized uptake value (SUVmax in the primary tumor at each examination and the change in SUVmax (ΔSUVmax between the two scans were measured. Correlations between PET parameters and pathological response, and correlations between PET parameters and disease-free survival (DFS were examined.Results At the completion of NAC, surgery showed pCR in 7 patients, while 25 had residual tumor, so-called non-pCR. Median follow-up was 39.0 months. Of the non-pCR patients, 9 relapsed at 3 years. Of all assessed clinical, biological, and PET parameters, N-stage, clinical stage, and ΔSUVmax were predictors of pathological response (p=0.0288, 0.0068, 0.0068; Fischer’s exact test. The cut-off value of ΔSUVmax to differentiate pCR evaluated by the receiver operating characteristic (ROC curve analysis was 81.3%. Three-year disease-free survival (DFS was lower in patients with non-pCR than in patients with pCR (p=0.328, log-rank test. The cut-off value of ΔSUVmax to differentiate 3-year DFS evaluated by the ROC analysis was 15.9%. In all cases, 3-year DFS was lower in patients with ΔSUVmax

  14. 抽动秽语综合征PET脑代谢显像的研究%Study of 18 F-fluorodeoxyglucose positron emission tomography images in the Tourette syndrome

    唐玲; 欧阳巧洪; 王瑞霞; 董雪雅

    2011-01-01

    目的:利用PET技术观察抽动秽语综合征(TS)患者脑功能异常的部位.方法:经临床确诊TS患者65例,利用18氟-脱氧葡萄糖(18F-FDG)行PET脑显像,图像采集自动重建后,目视观察18F-FDG在PET脑显像图像中的代谢分布.结果:65例TS患者中PET脑显像异常者61例(93.8%).异常部位代谢分布表现为放射性分布减低.受累的部位以颞叶和顶叶居多,右侧颞叶受累30例(49%),左侧颞叶受累9例(14.7%);左侧顶叶受累28例(45.9%),右侧顶叶受累9例(14.7%).受累部位为1处者24例(39.3%),2处及以上者38例(62.3 %).结论:大多数TS患者都存在脑功能障碍,且受累部位代谢分布均为放射性分布减低;PET对TS的诊断有一定帮助.%Objective: To observe the characteristics of cerebral blood flow by positive emission tomography (PET) in the patients with Tourette Syndrome (TS) and to localize the abnormal region of cerebral glucose metabolism. Methods: The brains of 65 patients with TS were scanned with PET after administration of 18 F-fluorodeoxyglucose (18F-FDG). The patient’s images which were obtained through computer processing were analyzed in detail. Results: There were 61 abnormal PET images in the 65 patients, the positive rate was 93. 8%. Lowered distribution of radiation was found in abnormal region in form of hypometabolism. The predominant abnormal regions were frontal lobe [the rate of positive focus on the right side was 30 cases (49%) and on the left side 9 cases (14. 7%) and parietal lobe [the positive focus on the left side was 45.9% (28 cases) and on the right side was 14. 7%(9 cases) ]. The positive rate of multi-focus was 62. 3% (38 cases), and that of the single-focus was 39.3% (24 cases). Conclusion: Cerebral dysfunction was found in most of the patients with TS. 18F-FDG PET is very useful in the diagnosis of TS, and decreased distribution of radio-active isotope in the diseased parts of the brain.

  15. Prognostic impact of clinician-based interpretation of 18F-fluorodeoxyglucose positron emission tomography/computed tomography reports obtained in patients with newly diagnosed diffuse large B-cell lymphoma

    Mylam, Karen J; El-Galaly, Tarec C; Hutchings, Martin;

    2014-01-01

    The aim of this study was to evaluate the prognostic value of clinician interpretation of positron emission tomography/computed tomography (PET/CT) reports at mid-therapy, interim PET (I-PET) and after the end of first-line therapy (E-PET) in patients with diffuse large B-cell lymphoma (DLBCL...... indeterminate. Indeterminate reports accounted for 59% of I-PET and 49% of E-PET reports. Two-year overall survival (OS) for patients with a positive, indeterminate and negative I-PET was 58%, 87% and 89% (p ....001) for positive, indeterminate and negative interpretation of PET/CT reports. Progression-free survival and OS did not differ significantly in patients with a negative and an indeterminate I-PET report. The use of well-defined reporting criteria, e.g. the Deauville five-point scale, is likely to reduce the number...

  16. Preoperative [{sup 18}F]-fluorodeoxyglucose positron emission tomography standardized uptake value of neck lymph nodes may aid in selecting patients with oral cavity squamous cell carcinoma for salvage therapy after relapse

    Liao, Chun-Ta; Huang, Shiang-Fu; Chen, I. How [Chang Gung Memorial Hospital and Chang Gung Univ., Dept. of Otorhinolaryngology, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Dept. of Head and Neck Surgery, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Head and Neck Oncology Group, Cancer Center, Taoyuan, Taiwan (China); Chang, Joseph Tung-Chieh [Chang Gung Memorial Hospital and Chang Gung Univ., Head and Neck Oncology Group, Cancer Center, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Radiation Oncology, Taoyuan, Taiwan (China); Wang, Hung-Ming [Chang Gung Memorial Hospital and Chang Gung Univ., Head and Neck Oncology Group, Cancer Center, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Hema-Oncology, Taoyuan, Taiwan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital and Chang Gung Univ., Head and Neck Oncology Group, Cancer Center, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Diagnostic Radiology, Taoyuan, Taiwan (China); Hsueh, Chuen; Lee, Li-Yu. [Chang Gung Memorial Hospital and Chang Gung Univ., Head and Neck Oncology Group, Cancer Center, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Pathology, Taoyuan, Taiwan (China); Lin, Chih-Hung [Chang Gung Memorial Hospital and Chang Gung Univ., Head and Neck Oncology Group, Cancer Center, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Plastic and Reconstructive Surgery, Taoyuan, Taiwan (China); Cheng, Ann-Joy [Chang Gung Memorial Hospital and Chang Gung Univ., Head and Neck Oncology Group, Cancer Center, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital and Chang Gung Univ., Medical Biotechnology, Biostatistics Consulting Center/Dept. of Public Health, Taoyuan, Taiwan (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital and Chang Gung Univ., Taoyuan, Taiwan (China)

    2009-11-15

    Relapse of tumours in patients with oral cavity squamous cell carcinoma (OSCC) is associated with a dismal outcome. In this prospective study, we sought to investigate the clinical significance of the preoperative maximal standardized uptake value (SUVmax) at the neck lymph nodes in selecting patients with OSCC for salvage therapy after relapse. Between 2002 and 2007, 108 patients with early relapse of OSCC (n=75) or late relapse of OSCC (n=33) were identified. Salvage therapy was performed in 47 patients. All patients underwent 2-deoxy-2[{sup 18}F]-fluoro-d-glucose positron emission tomography during the 2 weeks before surgery and neck dissection. All patients were followed for 12 months or more after surgery or until death. The optimal cut-off value for the neck lymph node SUVmax (SUVnodal-max) was selected according to the 5-year disease-specific survival (DSS) rate. Independent risk factors were identified by Cox regression analysis. The mean follow-up for all patients was 20.3 months (41.1 months for surviving patients). In the early relapse group, several prognostic factors were identified in univariate and multivariate analyses, including a SUVnodal-max value of {>=}4.2. A scoring system based on univariate analysis was formulated. Patients with a score of 0 had a better 5-year DSS than those with scores of 1 or higher (58% vs. 5%, p=0.0003). In patients with late relapse, a SUVnodal-max value of {>=}4.2 had the highest prognostic value for predicting the 5-year DSS (45% vs. 0%, p=0.0005). Among patients with relapsed OSCC, the SUVnodal-max value may aid in selecting patients for salvage therapy. (orig.)

  17. Emission computed tomography of /sup 18/F-fluorodeoxyglucose and /sup 13/N-ammonia in stroke and epilepsy

    Kuhl, D.E.; Phelps, M.E.; Engel, J. Jr.

    1980-01-01

    The ECAT Positron Tomograph was used to scan normal control subjects, stroke patients at various times during recovery, and patients with partial epilepsy during EEG monitoring. /sup 18/F-fluorodeoxyglucose (/sup 18/FDG) and /sup 13/N-Ammonia (/sup 13/NH/sub 3/) were used as indicators of abnormalities in local cerebral glucose utilization (LCMR/sub glc/) and relative perfusion, respectively. Hypometabolism, due to deactivation or minimal damage, was demonstrated with the /sup 18/FDG scan in deep structures and broad zones of cerebral cortex which appeared normal on x-ray CT (XCT) and /sup 99m/Tc pertechnetate scans. In patients with partial epilepsy, who had unilateral or focal electrical abnormalities, interictal /sup 18/FDG scan patterns clearly showed localized regions of decreased (20 to 50%) LCMR/sub glc/, which correlated anatomically with the eventual EEG localization.

  18. A computer tomography-based spatial normalization for the analysis of [{sup 18}F]fluorodeoxyglucose position emission tomography of the brain

    Cho, Hanna; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung [Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jin Su [Molecular Imaging Research Center, Korea Institute Radiological and Medical Science, Seoul(Korea, Republic of)

    2014-12-15

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [{sup 18}F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [{sup 18}F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [18F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  19. 18氟-氟代脱氧葡萄糖 PET/CT 显像对评价肝癌肝移植患者预后的价值%Feasibility study of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography in proposing selection criteria for patients with hepatocellular carcinoma in liver transplantation

    许泽清; 张林启; 王晓燕; 张祥松

    2014-01-01

    目的:初步探讨18氟-氟代脱氧葡萄糖(18 F-FDG) PET/CT显像作为肝癌肝移植筛选标准的可行性。方法回顾性分析2008年9月至2012年3月中山大学附属第一医院肝移植科初治的31例肝移植术前未经抗肿瘤治疗的肝细胞癌( HCC )患者;术前行18 F-FDG PET/CT,将肿瘤的Tsuvmax/Bsuvmax值(简称T/B值)作为反映代谢活性的半定量指标,应用ROC曲线计算T/B影响HCC肝移植后复发转移的最佳临界值。通过单因素和多因素分析方法对31例患者临床病理特征进行分析,明确影响HCC肝移植术后复发的危险因素。结果随访期间肿瘤转移复发的总发生率为51.6%(16/31),移植后6个月、1年、2年无瘤生存率分别为93.5%、67.7%、46.8%。单因素分析结果显示,影响HCC肝移植患者术后肿瘤复发转移的变量有T/B值、肿瘤最大径、肿瘤数目、术前AFP水平。 Cox回归多因素分析结果显示,T/B值、AFP水平和肿瘤数目是影响HCC肝移植后复发的独立因素。结论 T/B值、术前AFP水平和肿瘤数目是影响HCC肝移植术后复发的独立危险因素;18 F-FDG PET/CT作为肿瘤生物学行为的预后指标,可以筛选HCC肝移植受体。%Objective To explore the feasibility of 18 F-fluorodeoxyglucose ( FDG) positron emission tomography/computed tomography ( PET/CT) in proposing selection criteria for patients with hepatocellular carcinoma ( HCC) in liver transplantation.Methods We respectively analyzed 31 cases of HCC patients from our hospital and those accepting no anti-tumor therapy or orthotopic liver transplantation before 18 F-FDG PET/CT examination.The T/B value was set as a semi-quantitative parameter reflecting the metabolic activities of tumors.And receiver operating characteristic ( ROC) curve was plotted to determine the optimal cutoff value of T/B affecting HCC recurrence after transplantation.Their clinicopathological features were analyzed by

  20. 脑电监测在癫痫患者间期皮层和皮层下高代谢灶判读中的应用%Video-electroencephalography Applied in Interpretation of Cortical and Subcortical Hypermetabolic Foci in Interictal 18 F-fluorodeoxyglucose Positron Emission Tomography Imaging in Patients with Epilepsy

    牛娜; 崔瑞雪; 张颖; 李方

    2015-01-01

    Objective To evaluate the role of vedio-electroencehpalography ( VEEG) monitoring in inter-preting the cortical and subcortical hypermetabolic foci in interictal 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography ( PET) imaging in patients with epilepsy .Methods From January 2008 to March 2014 in Peking Union Medical College Hospital , 3 epileptic patients whose first 18 F-FDG PET scan showed unexplained hypermetabolic foci without seizure underwent repeated 18 F-FDG PET scan in the interictal status proved by VEEG monitoring after discharge suppression by intravenous diazepam .Then compared the first and second scan images.Results For case 1 who suffered from epilepsy originating from medial right temporal lobe , unexplain-able hypermetabolic foci in right frontal lobe , basal ganglia , thalamus, and left cerebellum were present in in-terictal 18 F-FDG PET scan.After suppressing cortical discharge under VEEG monitoring , the second 18 F-FDG PET scan showed that the cortical and subcortical hypermetabolism disappeared , indicating that the hypermetabol-ic foci in the first scan was due to the subclinical discharge in a potential extratemporal seizure origin site , and the existence of efferent network activity from that origin site to ipsilateral basal ganglia and thalamus and contra -lateral cerebellum .The original clinical decision of simple anterior temporal lobectomy was altered based on the findings.For case 2, hypermtabolism was present in a large part of right frontal lobe , which persisted after sup-pressing discharge under VEEG monitoring .While the hypermetabolic foci in ipsilateral basal ganglia and contra-lateral cerebellum became less obvious in the second 18F-FDG PET scan, proving that the original lesion (inflam-mation) with hypermetabolism existed in the cortex , and the hypermetabolic foci in basal ganglia and thalamus were due to secondary functional change .Case 3 suffered from temporal lobe epilepsy with origin undeterminable with

  1. {sup 18}F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer

    Poisson, Thomas [Institut Gustave Roussy and University Paris-Sud XI, Department of Nuclear Medicine and Endocrine Oncology, Villejuif Cedex (France); Service de Medecine Nucleaire, Hopital Bichat, Paris (France); Deandreis, Desiree; Leboulleux, Sophie; Lumbroso, Jean; Baudin, Eric [Institut Gustave Roussy and University Paris-Sud XI, Department of Nuclear Medicine and Endocrine Oncology, Villejuif Cedex (France); Bidault, Francois [Institut Gustave Roussy and University Paris-Sud XI, Department of Radiology, Villejuif Cedex (France); Bonniaud, Guillaume [Institut Gustave Roussy and University Paris-Sud XI, Department of Medical Physics, Villejuif Cedex (France); Baillot, Sylvain; Auperin, Anne [Institut Gustave Roussy and University Paris-Sud XI, Department of Epidemiology, Villejuif Cedex (France); Ghuzlan, Abir Al [Institut Gustave Roussy and University Paris-Sud XI, Department of Pathology, Villejuif Cedex (France); Travagli, Jean-Paul [Institut Gustave Roussy and University Paris-Sud XI, Department of Endocrine Surgery, Villejuif Cedex (France); Schlumberger, Martin [Institut Gustave Roussy and University Paris-Sud XI, Department of Nuclear Medicine and Endocrine Oncology, Villejuif Cedex (France); Institut Gustave Roussy, Service de Medecine Nucleaire et de Cancerologie Endocrinienne, Villejuif (France)

    2010-12-15

    Our aim was to evaluate in anaplastic thyroid carcinoma (ATC) patients the value of {sup 18}F-FDG PET/CT compared with total body computed tomography (CT) using intravenous contrast material for initial staging, prognostic assessment, therapeutic monitoring and follow-up. Twenty consecutive ATC patients underwent PET/CT for initial staging. PET/CT was performed again during follow-up. The gold standard was progression on imaging follow-up (CT or PET/CT) or confirmation with another imaging modality. A total of 265 lesions in 63 organs were depicted in 18 patients. Thirty-five per cent of involved organs were demonstrated only with PET/CT and one involved organ only with CT. In three patients, the extent of disease was significantly changed with PET/CT that demonstrated unknown metastases. Initial treatment modalities were modified by PET/CT findings in 25% of cases. The volume of FDG uptake ({>=}300 ml) and the intensity of FDG uptake (SUV{sub max} {>=}18) were significant prognostic factors for survival. PET/CT permitted an earlier assessment of tumour response to treatment than CT in 4 of the 11 patients in whom both examinations were performed. After treatment with combined radiotherapy and chemotherapy, only the two patients with a negative control PET/CT had a confirmed complete remission at 14 and 38 months; all eight patients who had persistent FDG uptake during treatment had a clinical recurrence and died. FDG PET/CT appears to be the reference imaging modality for ATC at initial staging and seems promising in the early evaluation of treatment response and follow-up. (orig.)

  2. HIV infection and arterial inflammation assessed by (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET)

    Knudsen, Andreas; Hag, Anne Mette Fisker; Loft, Annika

    2015-01-01

    , the ascending, descending, and abdominal aorta. We performed correlation analyses between FDG uptake and intima-media thickness (IMT), and soluble biomarkers of inflammation. We found no difference in arterial FDG uptake between the HIV-infected patients and healthy controls quantified either as mean SUVmax...... or target-to background ratio in the carotid region, the ascending aorta, the descending aorta, or the abdominal aorta. Correlations between SUV, IMT, and soluble biomarkers were scarce in both groups. CONCLUSION: In a group of optimally treated HIV-infected patients with full viral suppression, low...

  3. Quantitative gene expression underlying 18f-fluorodeoxyglucose uptake in colon cancer

    Engelmann, Bodil E.; Binderup, Tina; Kjær, Andreas;

    2015-01-01

    Background: Positron emission tomography (PET) with the glucose analogue 18F-fluorodeoxyglucose (FDG) is widely used in oncologic imaging. This study examines the molecular mechanism underlying the detection of colon cancer (CC) by FDG-PET. Methods: Pre-operative PET/CT scans and tissue samples....... Mean gene expression levels of GLUT1, HK2, ki67, HIF1α, VEGF and CaIX, but not HK1, were significantly higher in primary tumours than in surrounding normal colonic mucosa. Linear regressions pairing tumour SUVmax with gene expression levels showed significant correlations between SUVmax and HK2, ki67...

  4. 18F-Fluorodeoxyglucose Positron Emission Tomography for Primary Thyroid Cancer: Correlation with the Clinical, Pathologic and Sonographic Findings

    Kim, Kyung Eun; Kim, Eun Kyung; Moon, Hee Jung; Kwak, Jin Young [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-06-15

    We wanted to investigate the incidence and the clinicopathologic and sonographic characteristics of thyroid cancers that exhibit positive PET scans. From January 2007 to February 2008, 156 patients with thyroid cancer underwent both sonography and FDG-PET for the purpose of staging the cancer. We conducted a retrospective review of their clinical, radiologic and pathologic records and we evaluated the incidence of PET-positive thyroid cancer, as well as the associated clinicopathologic aggressiveness and the sonographic features. The incidence of PET-positive thyroid carcinoma was 78.2% (122/156). On univariate analysis, PET-positive thyroid cancer was significantly associated with tumor size, extracapsular invasion and central lymph node metastasis, but there was no association between the sonographic features of the thyroid cancer or the sonographic features of the 2 groups of tumor (1. probably benign and 2. suspicious for malignancy) and the FDG uptake. Multivariate logistic regression analysis showed a significant association between PET positivity and both extrathyroidal extension and a higher cancer stage (III/IV) (p < 0.05). The incidence of PET positive thyroid carcinoma is high (78.2%) and PET positivity is significantly associated with tumor size, extracapsular extension and a higher stage. However, there is no significant association between PET positivity and the sonographic features of thyroid carcinoma

  5. Primary spindle cell sarcoma of the prostate and 18 F-fluorodeoxyglucose-positron-emission tomography/computed tomography findings

    Hakan Öztürk

    2015-01-01

    Conclusion: Spindle sarcomas of the prostate have quite aggressive nature and they have high potential to metastase. Average life expectancy is <1 year and the prognosis is poor. CTx and radiation therapy can′t yield curative effects due to poor differentiation.

  6. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography.

    Timmers, H.J.L.M.; Chen, C.C.; Carrasquillo, J.A.; Whatley, M.; Ling, A.; Eisenhofer, G.; King, K.S.; Rao, J.U.; Wesley, R.A.; Adams, K.T.; Pacak, K.

    2012-01-01

    BACKGROUND: Pheochromocytomas and paragangliomas (PPGLs) are rare tumors of the adrenal medulla and extra-adrenal sympathetic chromaffin tissues; their anatomical and functional imaging are critical to guiding treatment decisions. This study aimed to compare the sensitivity and specificity of (18)F-

  7. Usefulness of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in dermatofibrosarcoma protuberans on treatment with imatinib

    Kashyap, Raghava; Muddu, Vamshi Krishna; Anantamakula, Sameera; Sri, Satya

    2016-01-01

    Dermatofibrosarcoma protuberans (DFSP) is a rare locally aggressive tumor with distant metastases being unusual. We present a case of metastatic DFSP treated with imatinib showing complete metabolic response to treatment. PMID:27385888

  8. ({sup 18}F)-fluorodeoxyglucose PET/CT in cervix cancer: Lymph node assessment and prognostic/predictive value of primary tumour analysis; Tomographie par emission de positons au ({sup 18}F)-fluorodesoxyglucose dans les cancers du col uterin: evaluation ganglionnaire et valeur pronostique/predictive des donnees de la tumeur primitive

    Leseur, J.; Williaume, D.; Le Prise, E.; De Crevoisier, R. [Departement des radiations, centre Eugene-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex (France); Devillers, A.; Garin, E. [Service de medecine nucleaire, centre Eugene-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex (France); Fougerou, C. [Service de pharmacologie, CHU de Rennes, 35033 Rennes cedex 09 (France); Inserm 0203, centre d' investigations cliniques, CHU de Rennes, 35033 Rennes cedex 09 (France); Universite de Rennes 1, CS 46510, 35065 Rennes cedex (France); Bouriel, C. [Service de radiologie, centre Eugene-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex (France); Leveque, J. [Departement de gynecologie et obstetrique, CHU Anne-de-Bretagne, 16, boulevard de Bulgarie, 35203 Rennes cedex 2 (France); Monpetit, E. [Departement des radiations, clinique Oceane, 11, rue du Docteur-Joseph-Audic, Le Tenenio, BP 50020, 56001 Vannes cedex (France); Blanchot, J. [Departement de gynecologie et obstetrique, clinique mutualiste La Sagesse, 4, place Saint-Guenole, CS 44345, 35043 Rennes cedex (France)

    2011-12-15

    Purpose. - In cervix carcinoma: (a) to evaluate the ability of ({sup 18}F)-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the lymph node detection; (b) to investigate the prognostic and predictive value of the primary cervical PET parameters. Patients and methods. - Ninety patients treated for cervix carcinoma and evaluated initially by MRI and FDG PET were included. The performances of FDG-PET for lymph node detection (relatively to the lymph node dissection) have been described (sensitivity, specificity, positive predictive value and negative predictive value). PET tumour parameters analyzed were: maximum standard uptake value (SUV{sub max}), the volume and the maximum diameter. The prognostic and predictive values of these parameters were investigated. The tumour response was evaluated on surgical specimens. Results. - PET detected the cervical tumour with a sensitivity of 97% (mean values: SUV{sub max} = 15.8, volume = 27 mm{sup 3}, maximum diameter = 47). For the detection of the lymph nodes, the values of sensibility, specificity, positive predictive value and negative predictive value were: 86, 56, 69 and 78% in the pelvic, and 90, 67, 50 and 95% for the para-aortic area, respectively. The SUV{sub max} was correlated with histologic response (P = 0.04). The frequency of partial histological response was significantly higher for tumour SUV{sub max}> 10.9 (P = 0.017). The maximum PET diameter and pathologic response had an impact on disease-free survival and overall survival in multivariate analysis (P < 0.05). Conclusion. - PET has high sensitivity in detecting pelvic and para-aortic lymph nodes. Some primary cervical tumour PET parameters are useful as prognostic and predictive factors. (authors)

  9. The increased accumulation of [{sup 18}F]fluorodeoxyglucose in untreated prostate cancer

    Oyama, Nobuyuki; Akino, Hironobu; Suzuki, Yuji; Kanamaru, Hiroshi; Okada, Kenichiro [Fukui Medical Univ., Matsuoka (Japan); Sadato, Norihiro; Yonekura, Yoshiharu

    1999-12-01

    To evaluate the clinical usefulness of [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) compared with histopathological grading, clinical stage and serum prostatic specific antigen (PSA) level in the detection and characterization of prostate cancer. Forty-four patients with histologically proven prostate cancer and five control subjects with benign prostatic hyperplasia (BPH) were prospectively investigated with FDG-PET prior to treatment. By visual inspection, FDG accumulation was positive in 28 patients with prostate cancer (sensitivity 64%), whereas all were negative in the control group. FDG-PET in three patients with lymph node metastases did not show any high intrapelvic accumulations corresponding to metastatic sites. Among 12 patients with multiple bone metastases which were detected with 99m-HMDP bone scintigraphy, nine (75%) showed moderate to high FDG accumulation at the sites of bone metastases. Quantitatively, FDG accumulation in prostate cancer was significantly higher than in BPH and there was a tendency for FDG uptake of tumors to be higher with higher histological Gleason grades. Furthermore, FDG uptake in tumors with lymph node and/or bone metastasis was significantly higher than that of localized stages. However, the correlation between PSA and FDG uptake in the prostate cancer was very weak for clinical relevance. Although FDG-PET was not sensitive enough to detect prostate cancer in clinical use, it is suggested that glucose metabolism in prostate cancer tended to be higher in patients with tumors of advanced stages. (author)

  10. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of {sup 18}F-Fluorodeoxyglucose After Radiation Treatment

    Wilson, George D., E-mail: george.wilson@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Thibodeau, Bryan J.; Fortier, Laura E.; Pruetz, Barbara L. [Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Galoforo, Sandra; Baschnagel, Andrew M.; Chunta, John [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Oliver Wong, Ching Yee [Department of Diagnostic Radiology and Molecular Imaging Medicine, William Beaumont Hospital, Royal Oak, Michigan (United States); Yan, Di; Marples, Brian [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Huang, Jiayi [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2014-11-01

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm{sup 3} they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1α and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: {sup 18}F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism.

  11. Foot skin depots of 18F-fluorodeoxyglucose do not enable PET/CT lymphography of the lower extremity lymphatic system in man

    Jensen, Mads Radmer; Simonsen, Lene; Lonsdale, Markus;

    2013-01-01

    consecutive PET scans of the same region.Blood activity increased faster and to a greater extent in the great saphenous veins compared to the medial cubital vein. PET/CT images showed activity in the superficial and deep veins of the lower extremities. No lymphatic collectors or nodes were visualized......BACKGROUND: In mice, 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomography (PET/CT) lymphography enables detailed imaging of the lymphatic system and quantification of lymph node function. If this applies to humans, it may improve staging of several malignancies. The aim...... of this study was to elucidate whether foot skin depots of 18F-FDG make PET/CT imaging of the lower extremity lymphatic system possible in man. FINDINGS: In four healthy volunteers, 18F-FDG depots (5 MBq in 0.1-mL isotonic saline) were injected intradermally in one foot and subcutaneously in the other. Activity...

  12. The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder.

    Dierickx, Daan; Tousseyn, Thomas; Requilé, Annelies; Verscuren, Raf; Sagaert, Xavier; Morscio, Julie; Wlodarska, Iwona; Herreman, An; Kuypers, Dirk; Van Cleemput, Johan; Nevens, Frederik; Dupont, Lieven; Uyttebroeck, Anne; Pirenne, Jacques; De Wolf-Peeters, Christiane; Verhoef, Gregor; Brepoels, Lieselot; Gheysens, Olivier

    2013-05-01

    We investigated sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-fluorodeoxyglucose-positron emission tomography in 170 cases with suspected or biopsy-proven posttransplant lymphoproliferative disorder. All solid organ and hematopoietic stem cell transplant recipients who underwent an 18F-fluorodeoxyglucose-positron emission tomography scan between 2003 and 2010 in our center for the indication posttransplant lymphoproliferative disorder, were retrospectively reviewed and results were compared with tissue biopsy whenever possible. One hundred and seventy positron emission tomography scans in 150 patients were eligible for evaluation. In 45 cases, the patient had a biopsy-confirmed posttransplant lymphoproliferative disorder before positron emission tomography scanning and positron emission tomography was performed for staging purposes. In the remaining 125 cases, positron emission tomography was performed to differentiate between posttransplant lymphoproliferative disorder and other diseases. 18F-fluorodeoxyglucose-uptake was quantitatively expressed by calculation of maximum and mean standardized uptake value in the most intense lesion or, in the absence of attenuation corrected positron emission tomography scans, by comparing uptake in target lesion to liver and mediastinal uptake. We found an overall sensitivity of 89%, specificity of 89%, positive predictive value of 91% and negative predictive value of 87% for posttransplant lymphoproliferative disorder detection by 18F-fluorodeoxyglucose-positron emission tomography. In a subanalysis of the 125 scans performed for differentiating posttransplant lymphoproliferative disorder from other diseases, sensitivity, specificity, positive predictive value and negative predictive value were 90%, 89%, 85% and 93%, respectively. 18F-fluorodeoxyglucose-uptake in posttransplant lymphoproliferative disorder was generally high with a median mean and maximum standardized uptake

  13. Evaluation of the response chemotherapy for penile metastasis of bladder cancer using 18F-fluorodeoxyglucose-PET/CT

    Öztürk, Hakan

    2015-01-01

    Background Metachronous penile metastasis of bladder cancer occurs very rarely. The clinical management of the disease involves complex problems, and the disease is associated with a poor prognosis. The common mode of spread to the penis is by the retrograde venous route. Patients and methods A 68-year-old patient who was diagnosed with invasive bladder cancer underwent 18F-fluorodeoxyglucose (FDG)-positron-emission tomography/computed tomography (PET/CT) for staging purposes. An 18 mm intracavernosal metastatic lesion was detected in the penis with a SUVmax of 12.9. Results After the administration of gemcitabine + cisplatin-based chemotherapy, remission was observed in the metastatic penile lesion according to EORTC criteria (12 mm, SUVmax: 9), and second line chemotherapy program was planned. Conclusion Penile metastasis from bladder cancer is an indicator of poor prognosis. The patients with penile metastasis poorly respond to therapy, despite the use of effective systemic chemotherapy. The researchers of the current study achieved a partial response to chemotherapy in the current case of penile metastasis. The disease-specific life expectancy is less than one year in these patients. Radical ablative surgery does not contribute to survival; however, it offers an alternative method in symptomatic patients. PMID:25912005

  14. Adding maximum standard uptake value of primary lesion and lymph nodes in 18F-fluorodeoxyglucose PET helps predict distant metastasis in patients with nasopharyngeal carcinoma.

    Qi Shi

    Full Text Available To find out the most valuable parameter of 18F-Fluorodeoxyglucose positron emission tomography for predicting distant metastasis in nasopharyngeal carcinoma.From June 2007 through December 2010, 43 non-metastatic NPC patients who underwent 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT before radical Intensity-Modulated Radiation Therapy were enrolled and reviewed retrospectively. PET parameters including maximum standardized uptake value (SUV max, mean standardized uptake value (SUV mean, metabolic tumor volume (MTV, and total lesion glucose (TLG of both primary tumor and cervical lymph nodes were calculated. Total SUV max were recorded as the sum of SUV max of primary tumor and cervical lymph nodes. Total SUV mean, Total MTV and Total TLG were calculated in the same way as Total SUV max.The median follow-up was 32 months (range, 23-68 months. Distant metastasis was the main pattern of treatment failure. Univariate analysis showed higher SUV max, SUV mean, MTV, and TLG of primary tumor, Total SUV max, Total MTV, Total TLG, and stage T3-4 were factors predicting for significantly poorer distant metastasis-free survival (p = 0.042, p = 0.008, p = 0.023, p = 0.023, p = 0.024, p = 0.033, p = 0.016, p = 0.015. In multivariate analysis, Total SUV max was the independent predictive factor for distant metastasis (p = 0.046. Spearman Rank correlation analysis showed mediate to strong correlationship between Total SUV max and SUV max-T, and between Total SUV max and SUV max-N(Spearman coefficient: 0.568 and 0.834; p = 0.000 and p = 0.000.Preliminary results indicated that Total SUV max was an independently predictive factor for distant metastasis in patients of nasopharyngeal carcinoma treated with Intensity-Modulated Radiation Therapy.

  15. Predictive value of 18F-fluorodeoxyglucose PET/CT for transarterial chemolipiodolization of hepatocellular carcinoma

    Myeong Jun Song; Si Hyun Bae; Ie Ryung Yoo; Chung-Hwa Park; Jeong Won Jang; Ho Jong Chun; Byung Gil Choi

    2012-01-01

    AIM:To investigate the correlation of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) with clinical features and the prediction of treatment response.METHODS:A total of 83 hepatocellular carcinoma (HCC) patients undergoing 18F-FDG PET before transarterial chemolipiodolization with systemic chemo-infusion between October,2006 and May,2009 were retrospectively enrolled.The patients included 68 men and 15women (mean age,60 ± 10.7 years).The effect of 18F-FDG-monitored PET uptake on clinical features and on the evaluated treatment response was ascertained with modified Response Evaluation Criteria in Solid Tumors.The PET parameters of maximal standardized uptake value of the tumor (TSUVmax),the ratio of the tumor maximal standardized uptake value (SUV) to the liver maximal SUV (TSuVmax/LSuVmax) and the ratio of tumor maximal SUV to the liver mean SUV (TSuVmax/LSuVmean)were tested as predictive factors.RESULTS:Among the 3 SUV parameters,the Tsuvmax/lsuVmean ratio (cutoff value of 1.90) was significantly associated with tumor burden including tumor size,tumor number,α-fetoprotein levels and tumor stage (P <0.001,P =0.008,P =0.011,P < 0.001,respectively).The objective response rates in patients with a high SUV ratio (≥ 1.90) were significantly better than those with a low SUV ratio (< 1.90) (P =0.020).The overall survival rates of patients exhibiting a low Tsuwax/LSu-Vmean ratio (< 1.90) and those with a high SUV ratio (≥1.90) was 38.2 and 10.3 mo,respectively (P < 0.01).However,the time to progression showed no significant difference between the groups (P =0.15).CONCLUSION:18F-FDG PET can be an important predictor of HCC treatment.In particular,the Tsuvmax/LsUVmean ratio (cutoff value of 1.90) can provide useful information in treatment prognosis for HCC patients treated with locoregional therapy.

  16. Low-carbohydrate diet versus euglycemic hyperinsulinemic clamp for the assessment of myocardial viability with 18F-fluorodeoxyglucose-PET: a pilot study.

    Soares, José; Rodrigues Filho, Filadelfo; Izaki, Marisa; Giorgi, Maria Clementina P; Catapirra, Rosa M A; Abe, Rubens; Vinagre, Carmen G C M; Cerri, Giovanni G; Meneghetti, José Cláudio

    2014-02-01

    Positron emission tomography with (18)F-fluorodeoxyglucose (FDG-PET) is considered the gold standard for myocardial viability. A pilot study was undertaken to compare FDG-PET using euglycemic hyperinsulinemic clamp before (18)F-fluorodeoxyglucose ((18)F-FDG) administration (PET-CLAMP) with a new proposed technique consisting of a 24-h low-carbohydrate diet before (18)F-FDG injection (PET-DIET), for the assessment of hypoperfused but viable myocardium (hibernating myocardium). Thirty patients with previous myocardial infarction were subjected to rest (99m)Tc-sestamibi-SPECT and two (18)F-FDG studies (PET-CLAMP and PET-DIET). Myocardial tracer uptake was visually scored using a 5-point scale in a 17-segment model. Hibernating myocardium was defined as normal or mildly reduced metabolism ((18)F-FDG uptake) in areas with reduced perfusion ((99m)Tc-sestamibi uptake) since (18)F-FDG uptake was higher than the degree of hypoperfusion-perfusion/metabolism mismatch indicating a larger flow defect. PET-DIET identified 79 segments and PET-CLAMP 71 as hibernating myocardium. Both methods agreed in 61 segments (agreement = 94.5 %, κ = 0.78). PET-DIET identified 230 segments and PET-CLAMP 238 as nonviable. None of the patients had hypoglycemia after DIET, while 20 % had it during CLAMP. PET-DIET compared with PET-CLAMP had a good correlation for the assessment of hibernating myocardium. To our knowledge, these data provide the first evidence of the possibility of myocardial viability assessment with this technique.

  17. Positron emission tomography with 18F-fluorodeoxyglucose in fever of unknown origin and infectious and non-infectious inflammatory diseases

    Bleeker-Rovers, C.P.

    2007-01-01

    In management of patients with fever of unknown origin (FUO) or suspected infectious or inflammatory disease, timely identification and localization of infectious and inflammatory lesions is essential for optimal treatment. Since activated inflammatory cells take up large amounts of glucose as a res

  18. Assessment of tumour response with {sup 18}F-fluorodeoxyglucose positron emission tomography using three-dimensional measures compared to SUVmax-a phantom study

    Boucek, J A; Jones, C G [WA PET Service, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Western Australia (Australia); Francis, R J [Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Western Australia (Australia); Khan, N; Turlach, B A [School of Mathematics and Statistics, University of Western Australia (Australia); Green, A J [Cancer Research UK Targeting and Imaging Group, Royal Free Hospital, University College London, London (United Kingdom)], E-mail: Ros.Francis@health.wa.gov.au

    2008-08-21

    SUVmax is currently the most common semi-quantitative method of response assessment on FDG PET. By defining the tumour volume of interest (VOI), a measure of total glycolytic volume (TGV) may be obtained. We aimed to comprehensively examine, in a phantom setting, the accuracy of TGV in reflecting actual lesion activity and to compare TGV with SUVmax for response assessment. The algorithms for VOI generation from which TGV was derived included fixed threshold techniques at 50% of maximum (MAX50), 70% of maximum (MAX70), an adaptive threshold of 50% of (maximum + background)/2 (BM50) and a semi-automated iterative region-growing algorithm, GRAB. Comparison with both actual lesion activity and response scenarios was performed. SUVmax correlated poorly with actual lesion activity (r = 0.651) and change in lesion activity (r = 0.605). In a response matrix scenario SUVmax performed poorly when all scenarios were considered, but performed well when only clinically likely scenarios were included. The TGV derived using MAX50 and MAX70 algorithms performed poorly in evaluation of lesion change. The TGV derived from BM50 and GRAB algorithms however performed extremely well in correlation with actual lesion activity (r = 0.993 and r = 0.982, respectively), change in lesion activity (r = 0.972 and r = 0.963, respectively) and in the response scenario matrix. TGV{sub GRAB} demonstrated narrow confidence bands when modelled with actual lesion activity. Measures of TGV generated by iterative algorithms such as GRAB show potential for increased sensitivity of metabolic response monitoring compared to SUVmax, which may have important implications for improved patient care.

  19. {sup 18}F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: implications for future clinical trials

    Win, Thida [Lister Hospital, Respiratory Medicine, Stevenage (United Kingdom); Lambrou, Tryphon; Hutton, Brian F.; Kayani, Irfan; Endozo, Raymondo; Shortman, Robert I.; Groves, Ashley M. [UCL/UCH, Institute of Nuclear Medicine, London (United Kingdom); Screaton, Nicholas J. [Papworth Hospital, Radiology Department, Cambridge (United Kingdom); Porter, Joanna C. [UCL/UCH, Centre for Respiratory Diseases, London (United Kingdom); Maher, Toby M. [Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom); Lukey, Pauline [GSK, Fibrosis DPU, Research and Development, Stevenage (United Kingdom)

    2012-03-15

    Noninvasive markers of disease activity in patients with idiopathic pulmonary fibrosis (IPF) are lacking. We performed this study to investigate the reproducibility of pulmonary {sup 18}F-FDG PET/CT in patients with IPF. The study group comprised 13 patients (11 men, 2 women; mean age 71.1 {+-} 9.9 years) with IPF recruited for two thoracic {sup 18}F-FDG PET/CT studies performed within 2 weeks of each other. All patients were diagnosed with IPF in consensus at multidisciplinary meetings as a result of typical clinical, high-resolution CT and pulmonary function test features. Three methods for evaluating pulmonary {sup 18}F-FDG uptake were used. The maximal {sup 18}F-FDG pulmonary uptake (SUVmax) in the lungs was determined using manual region-of-interest placement. An {sup 18}F-FDG uptake intensity histogram was automatically constructed from segmented lungs to evaluate the distribution of SUVs. Finally, mean SUV was determined for volumes-of-interest in pulmonary regions with interstitial lung changes identified on CT scans. Processing included correction for tissue fraction effects. Bland-Altman analysis was performed and interclass correlation coefficients (ICC) were determined to assess the reproducibility between the first and second PET scans, as well as the level of intraobserver and interobserver agreement. The mean time between the two scans was 6.3 {+-} 4.3 days. The interscan ICCs for pulmonary SUVmax analysis and mean SUV corrected for tissue fraction effects were 0.90 and 0.91, respectively. Intensity histograms were different in only 1 of the 13 paired studies. Intraobserver agreement was also excellent (0.80 and 0.85, respectively). Some bias was observed between observers, suggesting that serial studies would benefit from analysis by the same observer. This study demonstrated that there is excellent short-term reproducibility in pulmonary {sup 18}F-FDG uptake in patients with IPF. (orig.)

  20. Importance of fluorodeoxyglucose-positron emission tomography (FDG-PET) and endoscopic ultrasonography parameters in predicting survival following surgery for esophageal cancer

    Omloo, J. M. T.; Sloof, G. W.; Boellaard, R.; Hoekstra, O. S.; Jager, P. L.; van Dullemen, H. M.; Fockens, P.; Plukker, J. T. M.; van Lanschot, J. J. B.

    2008-01-01

    Background and study aims: To assess the prognostic importance of standardized uptake value (SUV) for 18F-fluorodeoxyglucose (FDG) at positron emission tomography (PET) and of EUS parameters, in esophageal cancer patients primarily treated by surgery. Patients and methods: Between October 2002 and A

  1. [18F]fluorodeoxyglucose uptake as a predictor of large joint destruction in patients with rheumatoid arthritis.

    Yonemoto, Yukio; Okamura, Koichi; Takeuchi, Kimihiko; Kaneko, Tetsuya; Kobayashi, Tsutomu; Okura, Chisa; Tsushima, Yoshito; Takagishi, Kenji

    2016-01-01

    The present retrospective study investigated the relationship between [(18)F]fluorodeoxyglucose-positron emission tomography (FDG-PET) findings and subsequent progression of joint destruction on plain X-ray. Nineteen rheumatoid arthritis (RA) patients (59 joints) who underwent FDG-PET and whose joints could be evaluated on plain X-ray 5 years later were included in this retrospective investigation. The relationship between the standardized uptake value (SUV) on FDG-PET and Larsen grade progression on plain X-ray was investigated for each joint. Factors related to progression of joint destruction were also investigated. Joints with advanced joint destruction (Larsen grades IV and V) on X-ray imaging at the time of FDG-PET were excluded. On initial plain X-ray images taken at the time of FDG-PET, a significant correlation was observed between the initial SUV of each joint and the progression of joint destruction 5 years later (R = 0.47, P < 0.01). Significant correlations between the SUV and progression of joint destruction were observed in both load-bearing (R = 0.52, P < 0.01) and non-load-bearing joints (R = 0.52, P < 0.01). On logistic regression analysis, higher SUV and lower prednisolone dose were associated with greater risk of progressive joint destruction (P < 0.05). On receiver operating characteristics curve analysis, the optimum threshold for identifying preceding joint destruction was an SUVmean of 1.33. In RA joints, FDG uptake was seen mostly by inflammatory cells; therefore, FDG uptake reflected joint inflammation. Additionally, the activity seen on FDG-PET might be associated with future radiographic changes in RA patients.

  2. Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse

    Hain, S F; O’Doherty, M J; Timothy, A R; Leslie, M D; Harper, P. G.; Huddart, R A

    2000-01-01

    Differentiation of active disease from fibrosis/mature teratoma in patients with residual masses or identifying of sites of recurrence in patients with raised markers following treatment of their testicular cancer remains a problem.18F-fluorodeoxyglucose positron emission tomography (FDG-PET) has the potential to identify active disease and thereby influence further management in these patients. We performed a retrospective study of the use of FDG-PET in detecting residual/recurrent testicula...

  3. [18F]fluorodeoxyglucose PET/computed tomography in breast cancer and gynecologic cancers

    Hildebrandt, Malene Grubbe; Kodahl, Annette Raskov; Teilmann-Jørgensen, Dorte;

    2015-01-01

    In this literature review, an update is provided on the role of [(18)F]fluorodeoxyglucose PET/computed tomography in different clinical settings of the 4 most frequent female-specific cancer types: breast, endometrial, ovarian, and cervical cancer. The most recent knowledge regarding primary diag...

  4. Diffusion-weighted MRI, {sup 11}C-choline PET and {sup 18}F-fluorodeoxyglucose PET for predicting the Gleason score in prostate carcinoma

    Chang, Joe H. [Austin Health, Radiation Oncology Centre, Heidelberg, VIC (Australia); University of Melbourne, Parkville, VIC (Australia); Lim Joon, Daryl; Wada, Morikatsu [Austin Health, Radiation Oncology Centre, Heidelberg, VIC (Australia); Lee, Sze Ting; Scott, Andrew M. [Austin Health, Centre for PET, Heidelberg, VIC (Australia); University of Melbourne, Parkville, VIC (Australia); Ludwig Institute for Cancer Research, Heidelberg, VIC (Australia); Hiew, Chee-Yan; Esler, Stephen [Austin Health, Department of Radiology, Heidelberg, VIC (Australia); Gong, Sylvia J.; Tochon-Danguy, Henri; Chan, J.G. [Austin Health, Centre for PET, Heidelberg, VIC (Australia); Clouston, David [Tissupath, Mt Waverley, VIC (Australia); O' Sullivan, Richard [Epworth Hospital, Healthcare Imaging, Richmond, VIC (Australia); Goh, Yin P. [Diagnostic Imaging, Monash Health, Clayton, VIC (Australia); Bolton, Damien [Austin Health, Department of Urology, Heidelberg, VIC (Australia); University of Melbourne, Parkville, VIC (Australia); Khoo, Vincent [Austin Health, Radiation Oncology Centre, Heidelberg, VIC (Australia); University of Melbourne, Parkville, VIC (Australia); The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Department of Clinical Oncology, London (United Kingdom); Davis, Ian D. [Monash University Eastern Health Clinical School, Box Hill, VIC (Australia)

    2014-03-15

    To evaluate the accuracy of transrectal ultrasound-guided (TRUS) biopsy, diffusion-weighted (DW) magnetic resonance imaging (MRI), {sup 11}C-choline (CHOL) positron emission tomography (PET), and {sup 18}F-fluorodeoxyglucose (FDG) PET in predicting the prostatectomy Gleason risk (GR). The study included 21 patients who underwent TRUS biopsy and multi-technique imaging before radical prostatectomy. Values from five different tests (TRUS biopsy, DW MRI, CHOL PET, FDG PET, and combined DW MRI/CHOL PET) were correlated with the prostatectomy GR using Spearman's ρ. Tests that were found to have significant correlations were used to classify patients into GR groups. The following tests had significant correlations with prostatectomy GR: TRUS biopsy (ρ = 0.617, P = 0.003), DW MRI (ρ = -0.601, P = 0.004), and combined DW MRI/CHOL PET (ρ = -0.623, P = 0.003). CHOL PET alone and FDG PET only had weak correlations. The correct GR classification rates were 67 % with TRUS biopsy, 67 % with DW MRI, and 76 % with combined DW MRI/CHOL PET. DW MRI and combined DW MRI/CHOL PET have significant correlations and high rates of correct classification of the prostatectomy GR, the strength and accuracy of which are comparable with TRUS biopsy. (orig.)

  5. Use of interictal (18)F-fluorodeoxyglucose (FDG)-PET and magnetoencephalography (MEG) to localize epileptogenic foci in non-lesional epilepsy in a cohort of 16 patients.

    Wang, Yuchun; Liu, Bo; Fu, Liqi; Cui, Zhiqiang

    2015-08-15

    We assessed the efficacy of interictal 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) and magnetoencephalography (MEG) for localizing the epileptogenic foci in a small cohort of patients with non-lesional epilepsy. Sixteen patients, aged 8-32 years, with non-lesional epilepsy underwent MRI, continuous scalp video-electroencephalography (EEG) monitoring, interictal (FDG)-PET and MEG at our institution. Each patient subsequently underwent intracranial grid placement. The data from the intracranial grids was correlated with the previous studies to determine the efficacy of FDG-PET and MEG in localizing the epileptogenic zone. Of the 16 patients, the epileptogenic zone was accurately localized in 8 (50%) using FDG-PET and in 12 patients (75%) using MEG. Of the 11 patients with a temporal hypometabolism, only 4 were ultimately confirmed as temporal lobe epilepsy via intracranial grids and 2 additional patients were found to have extra-temporal lobe epilepsy. Compared to interictal FDG-PET, MEG appears to be more sensitive to detection of the epileptogenic zone in this small cohort of non-lesional epilepsy patients though provided more diffuse foci. Our findings can help in determining the surgical eligibility of a patient especially when MRI or video-EEG monitoring are non-localizing, and can help with placement of subdural grids and strips for EEG studies.

  6. Tumor Delineation and Quantitative Assessment of Glucose Metabolic Rate within Histologic Subtypes of Non-Small Cell Lung Cancer by Using Dynamic (18)F Fluorodeoxyglucose PET.

    Meijer, Tineke W H; de Geus-Oei, Lioe-Fee; Visser, Eric P; Oyen, Wim J G; Looijen-Salamon, Monika G; Visvikis, Dimitris; Verhagen, Ad F T M; Bussink, Johan; Vriens, Dennis

    2016-11-15

    Purpose To assess whether dynamic fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET) has added value over static (18)F-FDG PET for tumor delineation in non-small cell lung cancer (NSCLC) radiation therapy planning by using pathology volumes as the reference standard and to compare pharmacokinetic rate constants of (18)F-FDG metabolism, including regional variation, between NSCLC histologic subtypes. Materials and Methods The study was approved by the institutional review board. Patients gave written informed consent. In this prospective observational study, 1-hour dynamic (18)F-FDG PET/computed tomographic examinations were performed in 35 patients (36 resectable NSCLCs) between 2009 and 2014. Static and parametric images of glucose metabolic rate were obtained to determine lesion volumes by using three delineation strategies. Pathology volume was calculated from three orthogonal dimensions (n = 32). Whole tumor and regional rate constants and blood volume fraction (VB) were computed by using compartment modeling. Results Pathology volumes were larger than PET volumes (median difference, 8.7-25.2 cm(3); Wilcoxon signed rank test, P segmentation on static (18)F-FDG PET images is in best agreement with pathology volume and could be useful for NSCLC autocontouring. Differences in glycolytic rate and VB between SCC and AC are relevant for research in targeting agents and radiation therapy dose escalation. (©) RSNA, 2016 Online supplemental material is available for this article.

  7. The Combination of 18F-Fiuorodeoxyglucose Positron Emission Tomography(FDG-PET)and Clinical Prediction Model Resulted Best Accuracy in Predicting Solitary Pulmonary Nodules%PET扫描结合临床预测模型可更好地预测孤立肺结节的性质

    杨衿记; 董嵩

    2009-01-01

    1文献来源,Herder GJ,van Tinteren H,Golding RP,et al.Clinical prediction model to characterize pulmonary nodules:Validation and added value of 18F-fluorodeoxyglucose positron emission tomography[J].Chest,2005,128,2490-2496.2证据水平3。

  8. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may...... be alleviated by (18)F-fluorodeoxyglucose (FDG)-PET and FDG-PET/CT imaging, which may provide clinically important information with regard to primary differentiation between tumor types, initial staging and risk stratification, therapy planning, response evaluation, and recurrence detection. This article...... describes some of the potential contemporary applications of FDG and PET in primary brain tumors....

  9. Physiological Uptake of 18F-Fluorodeoxyglucose in Uterine Endometrium and Myometrium: Correlation with Uterine Motility Evaluated by Cine Magnetic Resonance Imaging

    Kido, A.; Nishizawa, S.; Okada, H. (Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamakita City, Shizuoka (Japan)); Nakamoto, Y.; Yamamoto, A.; Fujimoto, K.; Togashi, K. Dept. of Diagnostic Radiology, Kyoto Univ. Hospital, Kyoto City, Kyoto (Japan))

    2009-05-15

    Background: Accumulation of 18F-fluorodeoxyglucose (18F-FDG) in the uterine endometrium and uterine motility are dependent on menstrual cycle. However, the relationship between them remains unknown. Purpose: To investigate the relationship between radiometabolic activity of 18F-FDG in the uterus and uterine motility observed by cine magnetic resonance imaging (MRI). Material and Methods: The study population consisted of 65 healthy, fertile women, selected from 229 women who underwent positron emission tomography (PET), computed tomography (CT), and MRI for cancer screening at our facility. They were divided into three groups according to their menstrual cycle phases: menstrual, follicular-periovulatory, and luteal. Regions of interest (ROIs) were placed over the endometrium and myometrium to calculate the standardized uptake value (SUV). Uterine peristalsis and contraction shown by cine MR imaging were evaluated visually, and the correlation between FDG uptake and uterine movements was assessed. Results: After excluding nine patients due to inadequate images, 56 patients (19 follicular-periovulatory, 27 luteal, and 10 menstrual) were analyzed. FDG uptake of the endometrium, frequency of peristalsis, and the presence of sustained contraction varied according to the menstruation cycle, with a tendency toward greater uptake in the menstrual phase, but there was little relationship between the frequency of uterine peristalsis and FDG accumulation in the uterus. Significantly higher FDG accumulation in the endometrium was observed in patients with sustained contractions (3.32+-1.47) than in those without contractions (2.45+-0.66). Conclusion: Our preliminary data suggest that FDG accumulation in the endometrium tends to be higher in patients with uterine contraction, although there was no significant correlation between uterine peristalsis and FDG uptake in the uterine myometrium or endometrium

  10. Renal Metastasis and Dual (18F-Fluorodeoxyglucose and 131I) Avid Skeletal Metastasis in a Patient with Papillary Thyroid Cancer

    Kulkarni, Prashanth; Rekha, Pobbi Setty Radhakrishna Gupta; Prabhu, Meghana; Venkataramarao, Sunil Hejjaji; Raju, Nalini; Chandrasekhar, Naveen Hedne; Kannan, Subramanian

    2017-01-01

    Differentiated thyroid carcinoma (DTC) though usually behaves in an indolent manner, can have unusual metastatic presentation. Initial presentation of metastatic disease has been reported in 1–12% of DTC being less frequent in papillary (~2%) than in follicular (~10%) thyroid carcinoma. Renal metastasis from DTC is very rare. To our knowledge, only about 30 cases have been reported in the English literature to date. To make clinicians aware that management of such high-risk thyroid cancer frequently requires novel multimodality imaging and therapeutic techniques. A 72-year-old female is described who presented with abdominal pain and bilateral lower limbs swelling. Initial contrast enhanced computed tomography (CT) scan of abdomen showed a well-encapsulated mass in the upper pole of right kidney favoring a renal cell carcinoma. Postright sided radical nephrectomy, histopathology, and immunohistochemistry reports suggested metastatic deposits from thyroid malignancy. 18F-fluorodeoxyglucose (FDG) positron emission tomography-CT demonstrated hypermetabolic nodule in the left lobe of thyroid and a lytic lesion involving left acetabulum suggestive of skeletal metastasis. Subsequently, ultrasound-guided fine needle aspiration cytology of the thyroid nodules in bilateral lobes confirmed thyroid malignancy (Bethesda 6/6). Total thyroidectomy revealed papillary thyroid cancer (PTC) (follicular variant-PTC [FV-PTC]). After surgery, 131I-whole body scan showed iodine avid lytic lesion in the left acetabulum. The present case is a rare scenario of a renal metastasis as the presenting feature of an FV-PTC. Dual avidity in metastatic thyroid cancers (iodine and FDG) is rare and based on the degree of dedifferentiation of the DTC. PMID:28242987

  11. Factors associated with {sup 18}F-fluorodeoxyglucose uptake in T1 and T2 invasive ductal carcinoma of the breast

    Kim, So Jung; Kim, Seong Jang; Kim, In Joo; Park, Kyoung June; Kim, Bum Soo; Shin, Seung Hyeon [Pusan National University Hospital, Pusan National University, Busan (Korea, Republic of)

    2016-09-15

    The objective of this study was to investigate the relationship between diversity of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake of primary tumor in positron emission tomography (PET) and various clinicopathologic factors in breast cancer of same pathologic T1, T2 stage. A total of 258 patients with invasive ductal breast cancer were enrolled in this study. All patients underwent {sup 18}F-FDG PET-CT before surgery. Patients were divided into two groups according to tumor size based on the pathologic T stage, and maximum standardized uptake value (SUV{sub max}) of 2.5, respectively. On the univariate analysis, estrogen receptor (ER), tumor size, lymphovascular invasion, p53, pathologic N status (pN) and Nottingham tumor grade (NG) were associated with high SUV{sub max} in T1 and T2 breast cancer. On the multivariate logistic regression, tumor size and NG remained significant variables dividing high and low SUV{sub max}. In the T1 group, ER, p53 and NG were significantly associated with high SUV{sub max} on the univariate analysis. In this group, p53 and NG remained significant variables for dividing high and low SUV{sub max} on the multivariate logistic regression. In the T2 group, only NG was associated with high SUV{sub max} on the univariate analysis.NG showed an association with {sup 18}F-FDG uptake in both T1 and T2 breast cancer independently; however, p53 in T1 breast cancer.

  12. Prognostic Value of Volume-Based {sup 18}F-Fluorodeoxyglucose PET/CT Parameters in Patients with Clinically Node-Negative Oral Tongue Squamous Cell Carcinoma

    Lee, Su Jin [Dept. of Nuclear Medicine, Ajou University School of Medicine, Suwon (Korea, Republic of); Choi, Joon Young; Lee, Hwan Joo; Hyun, Seung Hyup; Moon, Seung Hwan; Kim, Byung Tae [Dept. of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Baek, Chung Hwan; Son, Young Ik [Dept. of Otorhinolaryngology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To evaluate the prognostic value of volume-based metabolic parameters measured with {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) in patients with clinically node-negative (cN0) oral tongue squamous cell carcinoma (OTSCC) as compared with other prognostic factors. In this study, we included a total of 57 patients who had been diagnosed with cN0 tongue cancer by radiologic, ({sup 18}F-FDG PET/CT, and physical examinations. The maximum standardized uptake value (SUVmax), average SUV (SUVavg), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for primary tumors were measured with ({sup 18}F-FDG PET. The prognostic significances of these parameters and other clinical variables were assessed by Cox proportional hazards regression analysis. In the univariate analysis, pathological node (pN) stage, American Joint Committee on Cancer (AJCC) stage, SUVmax, SUVavg, MTV, and TLG were significant predictors for survival. On a multivariate analysis, pN stage (hazard ratio = 10.555, p = 0.049), AJCC stage (hazard ratio = 13.220, p = 0.045), and MTV (hazard ratio = 2.698, p 0.033) were significant prognostic factors in cN0 OTSCC patients. The patients with MTV {>=} 7.78 cm{sup 3} showed a worse prognosis than those with MTV < 7.78 cm{sup 3} (p = 0.037). The MTV of primary tumor as a volumetric parameter of ({sup 18}F-FDG PET, in addition to pN stage and AJCC stage, is an independent prognostic factor for survival in cN0 OTSCC.

  13. Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation

    Blomberg, Björn Alexander; Thomassen, Anders; Takx, Richard A P

    2014-01-01

    BACKGROUND: This study aimed to determine if delayed (18)F-fluorodeoxyglucose ((18)FDG) PET/CT imaging improves quantitation of atherosclerotic plaque inflammation. Blood-pool activity can disturb the arterial (18)FDG signal. With time, blood-pool activity declines. Therefore, delayed imaging can...... potentially improve quantitation of vascular inflammation. METHODS AND RESULTS: 40 subjects were prospectively assessed by dual-time-point PET/CT imaging at approximately 90 and 180 minutes after (18)FDG administration. For both time-points, global uptake of (18)FDG was determined in the carotid arteries...... and thoracic aorta by calculating the blood-pool corrected maximum standardized uptake value (cSUVMAX). A target-to-background ratio (TBR) was calculated to determine the contrast resolution at 90 and 180 minutes. Furthermore, we assessed whether the acquisition time-point affected the relation between c...

  14. [Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography].

    Franck, G; Salmon, E; Poirrier, R; Sadzot, B; Franco, G

    1987-03-01

    Measurements of regional cerebral glucose uptake by the 18F-fluorodeoxyglucose technique (18FDG) and positron emission tomography (PET) along with polygraph recordings were made serially during relaxed wakefulness and different stages of nocturnal sleep in two right-handed normal volunteers. During stage III-IV sleep, values declined diffusely in both hemispheric regions (-31%), thalamus (-33%), cerebellum (-33%) and brain stem (-25%). During paradoxical sleep regional values increased diffusely compared with slow wave sleep. Compared to wakefulness, regional metabolic values seemed to increase but the results were more variable from one volunteer to the other. These preliminary data indicate important regional alterations in cerebral metabolism between sleep states.

  15. Benign breast lesions detected by positron emission tomography-computed tomography

    Benveniste, Ana P., E-mail: apbenveniste@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Yang, Wei, E-mail: wyang@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Benveniste, Marcelo F., E-mail: mfbenveniste@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mawlawi, Osama R., E-mail: omawlawi@mdanderson.org [Department of imaging physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Marom, Edith M., E-mail: emarom@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    {sup 18}F-fluorodeoxyglucose positron emission computed tomography (FDG PET-CT) is widely used in the initial staging and response evaluation of patients with malignancy. This review describes a spectrum of benign breast findings incidentally detected by FDG PET-CT at staging that may be misinterpreted as malignancy. We describe the pattern of distribution and intensity of FDG uptake in a spectrum of benign breast diseases with their corresponding typical morphological imaging characteristics to help the nuclear medicine physician and/or general radiologist identify benign lesions, avoiding unnecessary breast imaging work-up and biopsies.

  16. 18F-fluorocholine versus 18F-fluorodeoxyglucose for PET/CT imaging in patients with suspected relapsing or progressive multiple myeloma: a pilot study

    Cassou-Mounat, Thibaut [AP-HP, Department of Nuclear Medicine, Hopital Tenon, Paris (France); AP-HP, Department of Nuclear Medicine, Hopital Saint Antoine, Paris (France); Universite Pierre et Marie Curie (UPMC), Paris (France); Balogova, Sona [AP-HP, Department of Nuclear Medicine, Hopital Tenon, Paris (France); Comenius University and St. Elisabeth Oncology Institute, Department of Nuclear Medicine, Bratislava (Slovakia); Nataf, Valerie [AP-HP, Department of Nuclear Medicine, Hopital Tenon, Paris (France); AP-HP, Radiopharmacy, Hopital Tenon, Paris (France); Calzada, Marie [AP-HP, Department of Nuclear Medicine, Hopital Tenon, Paris (France); AP-HP, Department of Nuclear Medicine, Hopital Saint Antoine, Paris (France); Huchet, Virginie; Kerrou, Khaldoun [AP-HP, Department of Nuclear Medicine, Hopital Tenon, Paris (France); Devaux, Jean-Yves [AP-HP, Department of Nuclear Medicine, Hopital Saint Antoine, Paris (France); Universite Pierre et Marie Curie (UPMC), Paris (France); Mohty, Mohamad; Garderet, Laurent [Universite Pierre et Marie Curie (UPMC), Paris (France); INSERM, UMRS 938, Proliferation and Differentiation of Stem Cells, Paris (France); AP-HP, Departement d' Hematologie et de Therapie Cellulaire, Hopital Saint Antoine, Paris (France); Talbot, Jean-Noel [AP-HP, Department of Nuclear Medicine, Hopital Tenon, Paris (France); Universite Pierre et Marie Curie (UPMC), Paris (France)

    2016-10-15

    Hybrid positron emission tomography/computed tomography (PET/CT) has now become available, as well as whole-body, low-dose multidetector row computed tomography (MDCT) or magnetic resonance imaging (MRI). The radioactive glucose analogue 18F-fluorodeoxyglucose (FDG) is the most widely used tracer but has a relatively low sensitivity in detecting multiple myeloma (MM). We compared FDG with a more recent metabolic tracer, 18F-fluorocholine (FCH), for the detection of MM lesions at time of disease relapse or progression. We analyzed the results of FDG and FCH imaging in 21 MM patients undergoing PET/CT for suspected relapsing or progressive MM. For each patient and each tracer, an on-site reader and a masked reader independently determined the number of intraosseous and extraosseous foci of tracer and the intensity of uptake as measured by their SUVmax and the corresponding target/non-target ratio (T/NT). In the skeleton of 21 patients, no foci were found for two cases, uncountable foci were observed in four patients, including some mismatched FCH/FDG foci. In the 15 patients with countable bone foci, the on-site reader detected 72 FDG foci vs. 127 FCH foci (+76 %), whereas the masked reader detected 69 FDG foci vs. 121 FCH foci (+75 %), both differences being significant. Interobserver agreement on the total number of bone foci was very high, with a kappa coefficient of 0.81 for FDG and 0.89 for FCH. Measurement of uptake in the matched foci that took up both tracers revealed a significantly higher median SUVmax and T/NT for FCH vs. FDG. Almost all unmatched foci were FCH-positive FDG-negative (57/59 = 97 % on-site and 56/60 = 93 % on masked reading); they were more frequently observed than matched foci in the head and neck region. These findings suggest that PET/CT performed for suspected relapsing or progressive MM would reveal more lesions when using FCH rather than FDG. (orig.)

  17. Can an alternative backround-corrected [18F] fluorodeoxyglucose (FDG standard uptake value (SUV be used for monitoring tumor local control following lung cancer stereotactic body radiosurgery?

    Charles Shang

    2014-08-01

    assessing local tumor control after lung SBRT......................................................Cite this article as: Shang CY, Kasper ME, Kathriarachchi V, Benda RK, Kleinman JH, Cole J, Williams TR. Can an alternative backround-corrected [18F] fluorodeoxyglucose (FDG standard uptake value (SUV be used for monitoring tumor local control following lung cancer stereotactic body radiosurgery? Int J Cancer Ther Oncol 2014; 2(4:020317.DOI: 10.14319/ijcto.0203.17

  18. Long-term quality assurance of [18F]-fluorodeoxyglucose (FDG) manufacturing

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of 18F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade “A” isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade “A” isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [18F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems. PMID:27508102

  19. Long-term quality assurance of [(18)F]-fluorodeoxyglucose (FDG) manufacturing.

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of (18)F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade "A" isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade "A" isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [(18)F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems.

  20. Possibilities of positron emission tomography in the diagnosis of primary and recurrent ovarian cancer: a review of literature

    L. A. Ashrafyan

    2012-01-01

    Full Text Available Positron emission tomography (PET is a current radionuclide imaging technique that can supplement a diagnostic process with information on physiological and metabolic disorders in the foci of injury and specify the characteristics of a tumor process. The paper analyzes publications on the use of PET with 18F-fluorodeoxyglucose in different clinical situations in the presence of ovarian cancer for both the identification of early-stage disease, the differential diagnosis of ovarian masses and the timely detection of recurrences, follow-up during and after combination treatment. The authors’ opinions that the technique is restricted, which yields false-positive and false-negative results, are given.

  1. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of metastasis as well as additional sites of metastasis compared to conventional methods. The response assessment resulted in change of treatment regimen in 14 % of patients.

  2. pO polarography, contrast enhanced color duplex sonography (CDS, [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia?

    Hamacher Kurt

    2007-06-01

    Full Text Available Abstract Background The present study was conducted to analyze the value of ([18F] fluoromisonidazole (FMISO and [18F]-2-fluoro-2'-deoxyglucose (FDG PET as well as color pixel density (CPD and tumor perfusion (TP assessed by color duplex sonography (CDS for determination of therapeutic relevant hypoxia. As a standard for measuring tissue oxygenation in human tumors, the invasive, computerized polarographic needle electrode system (pO2 histography was used for comparing the different non invasive measurements. Methods Until now a total of 38 Patients with malignancies of the head and neck were examined. Tumor tissue pO2 was measured using a pO2-histograph. The needle electrode was placed CT-controlled in the tumor without general or local anesthesia. To assess the biological and clinical relevance of oxygenation measurement, the relative frequency of pO2 readings, with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as mean and median pO2 were stated. FMISO PET consisted of one static scan of the relevant region, performed 120 min after intravenous administration. FMISO tumor to muscle ratios (FMISOT/M and tumor to blood ratios (FMISOT/B were calculated. FDG PET of the lymph node metastases was performed 71 ± 17 min after intravenous administration. To visualize as many vessels as possible by CDS, a contrast enhancer (Levovist®, Schering Corp., Germany was administered. Color pixel density (CPD was defined as the ratio of colored to grey pixels in a region of interest. From CDS signals two parameters were extracted: color hue – defining velocity (v and color area – defining perfused area (A. Signal intensity as a measure of tissue perfusion (TP was quantified as follows: TP = vmean × Amean. Results In order to investigate the degree of linear association, we calculated the Pearson correlation coefficient. Slight (|r| > 0.4 to moderate (|r| > 0.6 correlation was found between the parameters of pO2 polarography (pO2 readings with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as median pO2, CPD and FMISOT/M. Only a slight correlation between TP and the fraction of pO2 values ≤ 10.0 mmHg, median and mean pO2 could be detected. After exclusion of four outliers the absolute values of the Pearson correlation coefficients increased clearly. There was no relevant association between mean or maximum FDG uptake and the different polarographic- as well as the CDS parameters. Conclusion CDS and FMISO PET represent different approaches for estimation of therapy relevant tumor hypoxia. Each of these approaches is methodologically limited, making evaluation of clinical potential in prospective studies necessary.

  3. {sup 18}F-Fluorodeoxyglucose PET/CT in a Patient with Esophageal and Genital Leiomyomatosis

    An, Young Sil; Kim, Deog Yoon [Kyung Hee University, Seoul (Korea, Republic of)

    2009-12-15

    Diffuse esophageal leiomyomatosis is a rare benign tumor, which can be associated with leiomyoma in female genital tracts involving the uterus, vagina, and vulva. Alport syndrome, an inherited disorder that includes the kidneys, eyes, and sensorineural hearing loss, is also rarely associated with these multiple leiomyomatosis. In our case, {sup 18}F-fluoroseoxyglucose positron emission tomography/ computed tomography was used to distinguish esophageal and genital leiomyomatosis from malignant masses.

  4. Case of Pulmonary Cryptococcosis Mimicking Hematogeneous Metastases in an Immuocompetent Patient: Value of Absent 18F-Fluorodeoxylucose Uptake on Positron Emission Tomography/CT Scan

    Lee, Chiao-Hua [Department of Radiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan (China); Tzao, Ching [Department of Thoracic Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan (China); Chang, Tsun-Hou; Chang, Wei-Chou; Huang, Guo-Shu [Department of Radiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan (China); Lin, Chih-Kung; Lin, Hsin-Chung [Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan (China); Hsu, Hsian-He [Department of Radiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan (China)

    2013-07-01

    The radiologic appearance of multiple discrete pulmonary nodules in immunocompetent patients, with cryptococcal infection, has been rarely described. We describe a case of pulmonary cryptococcosis, presenting with bilaterally and randomly distributed nodules on a computed tomography, mimicking hematogeneous metastases. Positron emission tomography does not demonstrate 18F-fluorodeoxyglucose (FDG) uptake, suggesting a low probability for malignancy, which is a crucial piece of information for clinicians when making a management decision. We find the absence of FDG uptake correlates with the pathologic finding of an infectious nodule, composed of fibrosis and necrosis.

  5. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. (Univ. of California, Irvine (USA))

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  6. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter;

    2010-01-01

    Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an essential role in the clinical management of patients. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis of anatomic, functional......, and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...... allows functional assessment with techniques such as diffusion-weighted MRI, MR spectroscopy, and dynamic contrast-enhanced MRI. The most common PET radiotracer, (18)F-fluorodeoxyglucose, is not very useful in prostate cancer. However, in recent years other PET tracers have improved the accuracy of PET...

  7. The next generation of positron emission tomography radiopharmaceuticals in oncology.

    Rice, Samuel L; Roney, Celeste A; Daumar, Pierre; Lewis, Jason S

    2011-07-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively.

  8. Whole body muscle activity during the FIFA 11+ program evaluated by positron emission tomography.

    Junsuke Nakase

    Full Text Available PURPOSE: This study investigated the effect of the FIFA 11+ warm-up program on whole body muscle activity using positron emission tomography. METHODS: Ten healthy male volunteers were divided into a control group and a group that performed injury prevention exercises (The 11+. The subjects of the control group were placed in a sitting position for 20 min and 37 MBq of (18F-fluorodeoxyglucose (FDG was injected intravenously. The subjects then remained seated for 45 min. The subjects of the exercise group performed part 2 of the 11+for 20 min, after which FDG was injected. They then performed part 2 of the 11+for 20 min, and rested for 25 min in a sitting position. Positron emission tomography-computed tomography images were obtained 50 min after FDG injection in each group. Regions of interest were defined within 30 muscles. The standardized uptake value was calculated to examine the FDG uptake of muscle tissue per unit volume. RESULTS: FDG accumulation within the abdominal rectus, gluteus medius and minimus were significantly higher in the exercise group than in the control group (P<0.05. CONCLUSION: The hip abductor muscles and abdominal rectus were active during part 2 of the FIFA 11+ program.

  9. 结直肠癌18F-FDG的摄取与HK一Ⅱ表达的相关性%Relationship between 18F-fluorodeoxyglucose uptake and expression of HK-Ⅱ in colorectal cancer

    申景涛; 辛小燕; 贾支俊; 李爱梅; 郭万华

    2012-01-01

    Objective To study the relationships between 18 F-fluorodeoxyglucose (18 F-FDG) uptake and expression of hexokinase- Ⅱ (HK- Ⅱ ) in colorectal cancer in patients with colorectal cancer. Methods 18 F-FDG positron emission tomography(PET-CT) examination was performed in 20 patients with colorectal cancer. The mean standard uptake value (SUVmean) was measured. The expression of HK- Ⅱ was detected semiquantitativcly by immunohistochemistry. The correlation of histopathology and HK- Ⅱ with SUVmean was analyzed. Results The 18 F-FDG was highly uptaken by colorectal cancer with a SUVmean value of 5. 42±1. 67. The SUVmean values of colorectal cancer with infiltrating type, tumor type and ulcer type were 6. 55 ± 1. 63, 4. 20 ± 1. 29 and 5. 83 ± 1. 60, respectively(P<0. 05). The SUVmean value was higher in colorectal cancer with metastasis than that without(7. 14 ± 1.07 vs 4. 84 ± 1. 41) (P<0. 05). There was a significant correlation between HK-Ⅱ expression and SUVmean value(r=0. 589,P<0. 01) in colorectal cancer. Conclusion Expression of HK- Ⅱ is positively correlated with 18 F-FDG uptake in patients with colorectal cancer.%目的 探讨结直肠癌的18F标记的脱氧葡萄糖(18 F-FDG)摄取与肿瘤组织己糖激酶-Ⅱ(HKⅡ)表达的相关性.方法 20例结直肠癌患者术前进行18 F-FDG正电子发射断层显像(PET)-CT检查,测定肿瘤平均标准摄取值(SUVmean).应用免疫组织化学法检测肿瘤组织HK-Ⅱ的表达;分析SUVmean与组织病理关系及与HK-Ⅱ表达的相关性.结果 20例结直肠癌患者均为高摄取,SUVmean为5.42±1.67.浸润型SUVmean为6.55±1.63,明显高于肿块型的4.20±1.29和溃疡型的5.83±1.60(P<0.05).有远处转移组SUVmean为7.14±1.07,高于无转移组的4.84±1.41(P<0.05).SUVmean与HK-Ⅱ的表达呈正相关(r=0.589,P<0.01).结论 结直肠癌组织的18 F-FDG摄取与HK-Ⅱ表达呈现正相关.

  10. Restaging following radical radiotherapy for head and neck cancer using [{sup 18}F]- Fluorodeoxyglucose position emission tomography

    Hannah, A.; Scott, A.M.; Pathmaraj, K.; Akhurst, T.; Berlangieri, H.; Tochon-Danguy, H.; Chan, G.; McKay, W.J.; Sizeland, A. [Royal Melbourne Hospital, Melbourne, VIC, (Australia). Nuclear Medicine Department]|[Austin and Repatriation Medical Centre, (Australia). Centre for PET and Ludwig Institute for Cancer Research

    1997-09-01

    Full text: Previous studies have suggested that FDG-PET may be useful in monitoring disease activity in patients with head and neck cancer undergoing radical radiotherapy treatment, however its accuracy in comparison to a histological reference standard is not clear. We assess the use of FDG-PET in a pilot group of nine patients with histologically proved carcinoma of the head and neck (eight squamous cell carcinoma and one adenocarcinoma), six of which had a known primary site. All underwent radical radiotherapy (average of 13 weeks before PET, range 4 - 47 weeks) followed by neck dissection after the FDG-PET study. Image data were reconstructed using conventional back-projection as well as ordered subset expectation maximisation (OSEM). Blinded and unblinded (with access to details of radiotherapy timing, site of original primary and metastases) interpretation of back-projected and blinded interpretation of OSEM image sets were compared with histological reference standard data. For Iymph node analysis, the neck was divided into five regions bilaterally encompassing regional node groups. Histological material from the primary site was only available in three cases and PET was true negative (TN) in two and true positive (TP) in one. A total of 47 regions were dissected, 13 of which contained viable tumour histologically (13/105 nodes) in four patients. On a regional basis, with blinded interpretation of studies, PET was TP in two, TN in 38, false positive (FP) in one and false negative (FN) in six. OSEM gave identical results. In only one case did unblinded interpretation give different results, converting the FP region into a TN. Two FN regions lay near a viable primary site and two other FN regions contained only small amounts of disease histologically. FDG-PET shows promising specificity for residual disease, but sensitivity is hampered by small volume disease and poor spatial delineation where a large amount of disease is present. Clinical information may also favourably alter scan interpretation.

  11. Correlation between {sup 18}F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ., Health System, Seoul (Korea, Republic of)

    2012-09-15

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1{+-}5.7 vs. 9.8{+-}4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival.

  12. Vasculitis assessment with [{sup 18}F]F.D.G. positron emission tomography; Place de la tomographie par emission de positons (TEP) au [{sup 18}F]FDG dans l'exploration des vascularites

    Liozon, E. [CHU Dupuytren, Services de Medecine Interne A, 87 - Limoges (France); Monteil, J. [CHU Dupuytren, Services de Medecine Nucleaire, 87 - Limoges (France)

    2008-10-15

    [{sup 18}F]fluorodeoxyglucose ({sup 18}F.D.G.) positron emission tomography (PET) is a noninvasive metabolic imaging modality that is well suited to the assessment of activity and extent of large vessel vasculitis, such as giant cell arteritis and Takayasu arteritis. PET could be more effective than magnetic resonance imaging in detecting the earliest stages of vascular wall inflammation. The visual grading of vascular [{sup 18}F]F.D.G. uptake makes it possible to discriminate arteritis from atherosclerosis, providing therefore high specificity. High sensitivity can be achieved provided scanning is performed during active inflammatory phase, preferably before starting corticosteroid treatment. Large scale prospective studies are needed to determine the exact value of PET imaging in assessing the large vessel vasculitis outcome and response to immunosuppressive treatment.

  13. Influence of TSH on uptake of [{sup 18}F]fluorodeoxyglucose in human thyroid cells in vitro

    Deichen, J.T.; Schmidt, C.; Prante, O.; Maschauer, S.; Kuwert, T. [Nuklearmedizinische Klinik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Krankenhausstrasse 12, 91054, Erlangen (Germany); Papadopoulos, T. [Pathologisch-Anatomisches Institut, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2004-04-01

    Recent clinical evidence suggests that positron emission tomography with fluorine-18 fluorodeoxyglucose (FDG-PET) is more accurate in detecting thyroid carcinomatous tissue at high than at low TSH levels. The aim of this study was to determine the influence of TSH on FDG uptake in human thyroid cells in vitro. Monolayers of human thyroid tissue were cultured after mechanical disintegration and enzymatic digestion of samples from patients undergoing surgery for nodular goitre. The purity of thyroid cell preparations was ascertained by immunohistochemical staining for the epithelial antigen KL-1, and their viability by measuring the synthesis of thyroglobulin in vitro. The cells were incubated with 0.8-1.5 MBq FDG/ml uptake medium for 1 h. FDG uptake in thyroid cells was quantified as percent of whole FDG activity per well (% ID) or as % ID in relation to total protein mass. This experimental protocol was subsequently varied to study the effect of incubation time, glucose dependency and TSH. Furthermore, radio-thin layer chromatography was used to identify intracellular FDG metabolites. FDG accumulated in the thyroid cells linearly with time, doubling roughly every 20 min. Uptake was competitively inhibited by unlabelled glucose and decreased to approximately 70% at 100 mg/dl glucose compared to the value measured in glucose-free medium. FDG was intracellularly trapped as FDG-6 phosphate and FDG-1,6-diphosphate. TSH significantly increased FDG uptake in vitro in a time- and concentration-dependent manner: Cells cultured at a TSH concentration of 50 {mu}U/ ml doubled FDG uptake compared to TSH-free conditions, and uptake after 72 h of TSH pre-incubation was approximately 300% of that without TSH pre-incubation. TSH stimulates FDG uptake by benign thyroid cells in a time- and concentration-dependent manner. This supports the clinical evidence that in well-differentiated thyroid carcinomas, most of which are still TSH-sensitive, FDG-PET is more accurate at high levels

  14. Positron emission tomography/computer tomography in guidance of extrahepatic hepatocellular carcinoma metastasis management

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common primary cancers in the world. Surgery is the gold standard for treatment of patients with HCC. Recurrence and metastasis are the major obstacles to further improve the prognosis of HCC. Most recurrences are intrahepatic. However, 30% of the recurrences are extrahepatic. The role of resection in intrahepatic recurrences is widely accepted. The role of resection in extrahepatic HCC recurrence and metastasis is not well established. 18F fluorodeoxyglucose (18F-FDG) positron emission tomography/computer tomography (PET/CT) is useful in detecting distant metastasis from a variety of malignancies and shows superior accuracy to conventional imaging modalities in identification of intrahepatic and extrahepatic metastasis. We present one patient with one new isolated omental lymph node metastasis, who had a history of huge HCC resected six years ago. The metastatic focus was identified with 18 F-FDG PET/CT and resected. The follow-up revealed good prognosis with a long-term survival potential after resection of the omental lymphatic metastasis.

  15. Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography.

    Maddalena, Francesca; Lettini, Giacomo; Gallicchio, Rosj; Sisinni, Lorenza; Simeon, Vittorio; Nardelli, Anna; Venetucci, Angela Assunta; Storto, Giovanni; Landriscina, Matteo

    2015-01-01

    To date, there is no definitive demonstration of the utility of positron emission tomography (PET) in studying glucose metabolism in cultured cell lines. Thus, this study was designed to compare PET to more standardized methods for the quantitative assessment of glucose uptake in nontransformed and transformed living cells and to validate PET for metabolic studies in vitro. Human colon and breast carcinoma cell lines and mouse embryo fibroblasts were evaluated for [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake by PET and autoradiography and 2-deoxyglucose (2-DG) incorporation by colorimetric assay and analyzed for the radiotoxic effects of [(18)F]FDG and the expression levels of glucose transporters. Indeed, [(18)F]FDG incorporation on PET was comparable to [(18)F]FDG uptake by autoradiography and 2-DG incorporation by colorimetric assay, although radiotracer-based methods exhibited more pronounced differences between individual cell lines. As expected, these data correlated with glucose transporters 1 to 4 and hexokinase II expression in tumor cell lines and mouse fibroblasts. Notably, [(18)F]FDG incorporation resulted in low apoptotic rates, with fibroblasts being slightly more sensitive to radiotracer-induced cell death. The quantitative analysis of [(18)F]FDG uptake in living cells by PET represents a valuable and reproducible method to study tumor cell metabolism in vitro, being representative of the differences in the molecular profile of normal and tumor cell lines.

  16. Positron emission tomography

    Muehllehner, Gerd; Karp, Joel S [Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States)

    2006-07-07

    The developments in positron emission tomography (PET) are reviewed with an emphasis on instrumentation for clinical PET imaging. After a brief summary of positron imaging before the advent of computed tomography, various improvements are highlighted including the move from PET scanners with septa to fully 3D scanners, changes in the preferred scintillators, efforts to improve the energy discrimination, and improvements in attenuation correction. Time-of-flight PET imaging is given special attention due to the recent revival of this technique, which promises significant improvement. Besides technical instrumentation efforts, other factors which influenced the acceptance of clinical PET are also discussed. (review)

  17. Positron emission tomography

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  18. Detection of Incidental 18F-FDG-Avid Primary Malignancies Using Whole-Body 18F-Fluorodeoxyglucose Positron Emission Tomography and Computed Tomography%18F-FDG PET/CT显像发现意外高代谢原发恶性肿瘤的初步研究

    房娜; 王艳丽; 曾磊; 赵伟; 崔新建

    2012-01-01

    Objective To evaluate the value of whole-body "F-FDG PET/CT in the detection of incidental 18F-FDG-av-id primary malignancies. Methods 3967 patients who had known or suspected primary malignant lesions, and 929 for routine health examination were included in this study. The data of whole-body lgF-FDG PET/CT scans from July 2007 to December 2010 were retrospectively reviewed. "F-FDG-avid lesions which had unrelated to the primary disease or detected in people for routine health examination were interpreted as incidental abnormalities. These abnormalities were compared with the final diagnosis obtained from pathological results, other imaging modalities diagnosis, and clinical follow-up information. Results 19F-FDG-avid lesions were found in 245 of 4896 patients, and these lesions were pathologically proven to be malignant in 53 patients. The sites included thyroid (4 lesions), lung (6 lesions), colon and rectum (17 lesions), stomach (8 lesions), prostate (6 lesions), breast (2 lesions), pancreas (2 lesions), and others (8 lesions). Conclusion The incidental l8F-FDG-avid lesions on PET/CT reflect suspect malignant lesions, which need further diagnosis and change therapy management subsequently.%目的 研究18-氟脱氧葡萄糖正电子发射计算机断层扫描( 18F-FDG PET/CT)显像发现意外高代谢原发恶性肿瘤的价值.方法 回顾性分析2007年7月至2010年12月共4896例18F-FDG PET/CT显像结果,其中已知或可疑恶性肿瘤患者3967例,健康体检者929名.意外高代谢病灶定义为新发现的与原发或可疑肿瘤无关的、或在健康体检者发现的18-氟脱氧葡萄糖(18F-FDG)代谢异常增高灶.通过病理学检查、临床随访等进一步明确诊断.结果 共发现可疑意外高代谢病灶245个,其中53个病灶经病理证实为意外恶性原发肿瘤,依次为甲状腺癌4个、肺癌6个、结直肠癌17个、胃癌8个、前列腺癌6个、胰腺癌2个、乳腺癌2个、其他8个.结论 18F-FDG PET/CT显像上意外高代谢病灶往往提示恶性病灶,有必要进一步明确病理,调整治疗方案,从而改善患者预后.

  19. Carcinoma of unknown primary of neuroendocrine origin: Accurate detection of primary with (68)Ga-labelled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI3-Octreotide positron emission tomography/computed tomography enterography.

    Jain, Tarun Kumar; Karunanithi, Sellam; Dhull, Varun Singh; Roy, Shambo Guha; Kumar, Rakesh

    2014-04-01

    (68)Ga-labelled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI3-Octreotide ((68)Ga-DOTANOC) positron emission tomography/computed tomography (PET/CT) is an excellent modality in patients with carcinoma of unknown primary of neuroendocrine origin. Most of the primary lesions are located in mid gut region where the lesions have poor resolution due to undistended and overlapping intestinal loops and motility-related artifacts. Although PET/CT enteroclysis, enterography and colonography have been described with (18)F-fluorodeoxyglucose, PET/CT enterography with(68)Ga-DOTANOC has not been described in the literature. Here, we present a case where(68)Ga-DOTANOC PET/CT enterography was useful in identifying the primary neuroendocrine tumor lesion in small intestine with accurate delineation.

  20. Multiple bone metastases detected on 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography in a breast cancer patient: Case report and literature review

    Zeki Dostbil

    2012-09-01

    Full Text Available Bone scintigraphy has been widely used to assess skeletal metastasis in patients with breast cancer. 18F-FDGPET/CT is another imaging modality that has gained previously wide use to determine metastasis based on increased glucose metabolism in malignant cells. Generally, these two modalities give similar results in evaluation of bone metastasis of breast cancer. In this breast cancer case, 99mTc-MDP bone scintigraphy showed normal findings in regards to skeletal metastasis while 18FFDG-PET/CT, contrast-enhanced CT and MRI revealed multiple metastatic focuses. J Clin Exp Invest 2012; 3 (3: 426-429Key words: 18F-fluorodeoxyglucose, bone metastasis, bone scintigraphy, positron emission tomography

  1. {sup 18}F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    Skovgaard, Dorthe [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); Kjaer, Michael [Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); El-Ali, Henrik [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Kjaer, Andreas [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Rigshospitalet, Department Clinical Physiology, Nuclear Medicine and PET, Center of Diagnostic Investigations, Copenhagen (Denmark)

    2009-05-15

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. {sup 18}F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance{>=}1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  2. Methods and applications of positron-based medical imaging

    Herzog, H. [Institute of Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany)]. E-mail: h.herzog@fz-juelich.de

    2007-02-15

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV {gamma}-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with {sup 11}C, {sup 13}N, {sup 15}O, or {sup 18}F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [{sup 18}F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  3. Positron Emission Tomography (PET)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  4. Positron Emission Tomography (PET)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  5. [18F]-FDG positron emission tomography--an established clinical tool opening a new window into exercise physiology.

    Rudroff, Thorsten; Kindred, John H; Kalliokoski, Kari K

    2015-05-15

    Positron emission tomography (PET) with [(18)F]-fluorodeoxyglucose (FDG) is an established clinical tool primarily used to diagnose and evaluate disease status in patients with cancer. PET imaging using FDG can be a highly valuable tool to investigate normal human physiology by providing a noninvasive, quantitative measure of glucose uptake into various cell types. Over the past years it has also been increasingly used in exercise physiology studies to identify changes in glucose uptake, metabolism, and muscle activity during different exercise modalities. Metabolically active cells transport FDG, an (18)fluorine-labeled glucose analog tracer, from the blood into the cells where it is then phosphorylated but not further metabolized. This metabolic trapping process forms the basis of this method's use during exercise. The tracer is given to a participant during an exercise task, and the actual PET imaging is performed immediately after the exercise. Provided the uptake period is of sufficient duration, and the imaging is performed shortly after the exercise; the captured image strongly reflects the metabolic activity of the cells used during the task. When combined with repeated blood sampling to determine tracer blood concentration over time, also known as the input function, glucose uptake rate of the tissues can be quantitatively calculated. This synthesis provides an accounting of studies using FDG-PET to measure acute exercise-induced skeletal muscle activity, describes the advantages and limitations of this imaging technique, and discusses its applications to the field of exercise physiology.

  6. Insufficiency of Positron Emission Tomography and Magnetic Resonance Spectroscopy in the Diagnosis of Intravascular Lymphoma of the Central Nervous System

    Nobuyuki Kawai

    2012-07-01

    Full Text Available Intravascular large B-cell lymphoma (IVL is a rare type of extranodal lymphoma with an aggressive clinical course characterized by the proliferation of lymphoma cells within the lumen of small vessels. Diagnosis is often difficult because of marked variability in clinical presentation and nonspecific laboratory and radiological findings, especially when central nervous system (CNS symptoms are the only manifestation. Modern metabolic imaging techniques such as positron emission tomography (PET and 1H-magnetic resonance spectroscopy (MRS have been reported to be useful in the diagnosis of conventional primary CNS lymphoma. We report the case of a 69-year-old man who presented with a progressive leukoencephalopathic syndrome. The patient was examined by 18F-fluorodeoxyglucose and 11C-methionine PET and MRS, but none of these examinations were able to show the presence of a tumor in the lesions or to clarify the tumor characteristics. Brain biopsy was the only way to obtain a definite diagnosis of IVL. The patient was treated intensively with standard immunochemotherapy but died 6 months after the diagnosis. Here, we discuss the insufficiency of modern metabolic imaging techniques, including PET and MRS, and recommend a rapid decision of brain biopsy in the diagnosis of IVL only involving the CNS.

  7. Positron emission mammography imaging

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  8. Positron Emission Mammography imaging

    Moses, William W.

    2004-06-01

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and X-ray mammography, as well as PEM and X-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  9. Localized fetomaternal hyperglycemia: spatial and kinetic definition by positron emission tomography.

    Jianrong Yao

    Full Text Available BACKGROUND: Complex but common maternal diseases such as diabetes and obesity contribute to adverse fetal outcomes. Understanding of the mechanisms involved is hampered by difficulty in isolating individual elements of complex maternal states in vivo. We approached this problem in the context of maternal diabetes and sought an approach to expose the developing fetus in vivo to isolated hyperglycemia in the pregnant rat. METHODOLOGY AND PRINCIPAL FINDINGS: We hypothesized that glucose infused into the arterial supply of one uterine horn would more highly expose fetuses in the ipsilateral versus contralateral uterine horn. To test this, the glucose tracer [18F]fluorodeoxyglucose (FDG was infused via the left uterine artery. Regional glucose uptake into maternal tissues and fetuses was quantified using positron emission tomography (PET. Upon infusion, FDG accumulation began in the left-sided placentae, subsequently spreading to the fetuses. Over two hours after completion of the infusion, FDG accumulation was significantly greater in left compared to right uterine horn fetuses, favoring the left by 1.9+/-0.1 and 2.8+/-0.3 fold under fasted and hyperinsulinemic conditions (p<10(-11 n=32-35 and p<10(-12 n=27-45 respectively. By contrast, centrally administered [3H]-2-deoxyglucose accumulated equally between the fetuses of the two uterine horns. Induction of significant hyperglycemia (10(3 mg/dL localized to the left uterine artery was sustained for at least 48 hours while maternal euglycemia was maintained. CONCLUSIONS AND SIGNIFICANCE: This approach exposes selected fetuses to localized hyperglycemia in vivo, minimizing exposure of the mother and thus secondary effects. Additionally, a set of less exposed internal control fetuses are maintained for comparison, allowing direct study of the in vivo fetal effects of isolated hyperglycemia. Broadly, this approach can be extended to study a variety of maternal-sided perturbations suspected to directly

  10. Diagnostic value for extrahepatic metastases of hepatocellular carcinoma in positron emission tomography/computed tomography scan

    Ji Eun Lee; Jae Young Jang; Soung Won Jeong; Sae Hwan Lee; Sang Gyune Kim; Sang-Woo Cha; Young Seok Kim

    2012-01-01

    AIM:To evaluated the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) scan in diagnosis of hepatocellular carcinoma (HCC) and extrahepatic metastases.METHODS:A total of 138 patients with HCC who had both conventional imaging modalities and 18F-FDG PET/CT scan done between November 2006 and March 2011 were enrolled.Diagnostic value of each imaging modality for detection of extrahepatic metastases was evaluated.Clinical factors and tumor characteristics including PET imaging were analyzed as indicative factors for metastases by univariate and multivariate methods.RESULTS:The accuracy of chest CT was significantly superior compared with the accuracy of PET imaging for detecting lung metastases.The detection rate of metastatic pulmonary nodule ≥ 1 cm was 12/13(92.3%),when < 1 cm was 2/10 (20%) in PET imaging.The accuracy of PET imaging was significantly superior compared with the accuracy of bone scan for detecting bone metastases.In multivariate analysis,increased tumor size (≥ 5 cm) (P =0.042) and increased average standardized uptake value (SUV)uptake (P =0.028) were predictive factors for extrahepatic metastases.Isometabolic HCC in PET imaging was inversely correlated in multivariate analysis (P =0.035).According to the receiver operating characteristic curve,the optimal cutoff of average SUV to predict extrahepatic metastases was 3.4.CONCLUSION:18F-FDG PET/CT scan is invaluable for detection of lung metastases larger than 1 cm and bone metastases.Primary HCC having larger than 5 cm and increased average SUV uptake more than 3.4should be considered for extrahepatic metastases.

  11. Pitfalls in Positron Emission Tomography/Computed Tomography Imaging: Causes and Their Classifications

    Tian-ran Li; Jia-he Tian; Hui Wang; Zi-qian Chen; Chun-lei Zhao

    2009-01-01

    Objective To describe the pitfalls in positron emission tomography/computed tomography (PET/CT) imaging and classify them according to the principles of their generation. Methods We summarized retrospectively the 18F-fluorodeoxyglucose (FDP) PET/CT imaging pitfalls through reviewing the PET/CT images of 872 patients. The pitfalls were divided into artifacts and infrequent physiological uptake, and the artifacts were further classified according to their causes. Meanwhile, we calculated the incidences of various pitfalls. Whether the PET/CT pitfalls influenced the diagnostic decision was analyzed. The appearances of pitfalls in PET were also described. Results Pitfalls could be found in PET/CT images of 684 (78.4%) patients. Artifacts were found in 664 (76.15%) patients, and could be classified into self-factor artifacts and equipment- or technology- related artifacts. Among self-factor artifacts, respiratory motion (57.5%), postprandial or hyperglycemia artifacts (2.41%), and metal or high density matter artifacts (1.38%) were frequent. As for equipment- or technology-related factors, injection point outleakage or radiotracer contamination (13.88%) and truncation artifacts (1.83%) were most common ones. Infrequent physiological FDG uptakes, including fatty uptake, endometrial uptake, and bilateral breast feeding period uptake, were found in 20 (2.29%) patients. Among all pitfalls, the artifacts in 92 (13.4%) patients and infrequent physiological uptakes in 6 (0.88%) patients affected the diagnostic results. Artifact images in PET could be described as hot or cold area and the images of infrequent physiological uptake were always shown as hot area. Conclusions The incidence of pitfall in PET/CT imaging was high and the causes of pitfalls are various. Among all causes that artifacts generated, respiratory motion is the most common. Some pitfalls may disturb clinical physicians' decision, so it is important to recognize artifacts and physiological uptake, and

  12. Detection of occult disease in breast cancer using fluorodeoxyglucose camera-based positron emission tomography.

    Pecking, A P; Mechelany-Corone, C; Bertrand-Kermorgant, F; Alberini, J L; Floiras, J L; Goupil, A; Pichon, M F

    2001-10-01

    An isolated increase of blood tumor marker CA 15.3 in breast cancer is considered a sensitive indicator for occult metastatic disease but by itself is not sufficient for initiating therapeutic intervention. We investigated the potential of camera-based positron emission tomography (PET) imaging using [18F]-fluorodeoxyglucose (FDG) to detect clinically occult recurrences in 132 female patients (age, 35-69 years) treated for breast cancer, all presenting with an isolated increase in blood tumor marker CA 15.3 without any other evidence of metastatic disease. FDG results were correlated to pathology results or to a sequentially guided conventional imaging method. One hundred nineteen patients were eligible for correlations. Positive FDG scans were obtained for 106 patients, including 89 with a single lesion and 17 with 2 or more lesion. There were 92 true-positive and 14 false-positive cases, 10 of which became true positive within 1 year. Among the 13 negative cases, 7 were false negative and 6 were true negative. Camera-based PET using FDG has successfully identified clinically occult disease with an overall sensitivity of 93.6% and a positive predictive value of 96.2%. The smallest detected size was 6 mm for a lymph node metastasis (tumor to nontumor ratio, 4:2). FDG camera-based PET localized tumors in 85.7% of cases suspected for clinically occult metastatic disease on the basis of a significant increase in blood tumor marker. A positive FDG scan associated with an elevated CA 15.3 level is most consistent with metastatic relapse of breast cancer.

  13. NMF on positron emission tomography

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus;

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which...

  14. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method.

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; von Frenckell, R; Franck, G

    1990-04-09

    Using the [18F]fluorodeoxyglucose method and positron emission tomography, we studied cerebral glucose utilization during sleep and wakefulness in 11 young normal subjects. Each of them was studied at least thrice: during wakefulness, slow wave sleep (SWS) and rapid eye movement sleep (REMS), at 1 week intervals. Four stage 3-4 SWS and 4 REMS fulfilled the steady state conditions of the model. The control population consisted of 9 normal age-matched subjects studied twice during wakefulness at, at least, 1 week intervals. Under these conditions, the average difference between the first and the second cerebral glucose metabolic rates (CMRGlu was: -7.91 +/- 15.46%, which does not differ significantly from zero (P = 0.13). During SWS, a significant decrease in CMRGlu was observed as compared to wakefulness (mean difference: -43.80 +/- 14.10%, P less than 0.01). All brain regions were equally affected but thalamic nuclei had significantly lower glucose utilization than the average cortex. During REMS, the CMRGlu were as high as during wakefulness (mean difference: 4.30 +/- 7.40%, P = 0.35). The metabolic pattern during REMS appeared more heterogeneous than at wake. An activation of left temporal and occipital areas is suggested. It is hypothetized that energy requirements for maintaining membrane polarity are reduced during SWS because of a decreased rate of synaptic events. During REMS, cerebral glucose utilization is similar to that of wakefulness, presumably because of reactivated neurotransmission and increased need for ion gradients maintenance.

  15. Dipyridamole-dobutamine-stress-magnetic resonance imaging for the assessment of myocardial viability in patients with chronic coronary artery disease and comparison to positron emission tomography

    Kaiser, B

    2000-01-01

    The purpose of this study was to evaluate the diagnostic value of (infra-low-dose)dipyridamole-(low-dose)-dobutamine-stress-MRI (DDS-MRI) for the assessment of myocardial viability by comparing the results to those of positron emission tomography (PET). Multisectional baseline- and stress-CINE-MRI as well as (18F)-fluorodeoxyglucose (18F-FDG)and (13N)-ammonia-PET were performed in 8 patients with chronic coronary artery disease and left ventricular dysfunction. MRI data analysis included the quantitative assessment of enddiastolic wall thickness (EDWT) and systolic wall thickening (SWT) for both baseline and stress examination in a total of 864 myocardial segments (6 slices, 18 seg./slice). MRI- and PET-results were compared in 128 corresponding myocardial regions following a 16-regions-model covering the entire left ventricle from apex to base. MRI viability criterions were a mean regional EDWT > 5.5 mm or a mean regional stress-induced SWT > 1.5 mm. PET defined regional myocardial viability either by a norm...

  16. Co-registered positron emission tomography/computed tomography and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging features of multiple angiosarcoma of the liver.

    Kamatani, Takashi; Iguchi, Hiroyoshi; Okada, Takemichi; Yamazaki, Hitoshi; Tsunoda, Hidekazu; Watanabe, Masaaki; Oda, Masaya; Ohbu, Makoto; Yokomori, Hiroaki

    2014-10-01

    Hepatic angiosarcoma is a very rare disease, accounting for only 2% of primary liver malignancy. An 82-year-old man was admitted to our hospital because of jaundice and weight loss. Computed tomography (CT) and magnetic resonance imaging (MRI) showed diffuse and multiple space-occupying lesions. On gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, the tumor was not enhanced intensely in the arterial phase following contrast injection, and was then gradually enhanced homogeneously. In the delayed phase and hepatobiliary phase, the tumor was completely washed out. Whole-body (18) F-fluorodeoxyglucose positron emission tomography (FDG-PET)/CT fusion scanning confirmed metabolic activity with maximum uptake value of 3.64 in the lesions. A liver biopsy showed spindle-shaped tumor cells proliferating along sinusoids, with elongated and hyperchromatic nuclei. Immunohistochemical studies showed tumor cells positive for von Willebrand factor and CD34. These findings were consistent with angiosarcoma of the liver. This case report is the first description of co-registered FDG-PET/CT images and Gd-EOB-DTPA-enhanced MRI of primary hepatic angiosarcoma.

  17. Characterization of pulmonary lesions in patients with suspected lung cancer: computed tomography versus [¹⁸F] fluorodeoxyglucose-positron emission tomography/computed tomography.

    Harders, Stefan Walbom; Madsen, Hans Henrik; Hjorthaug, Karin; Arveschoug, Anne Kirstine; Rasmussen, Torben Riis; Meldgaard, Peter; Andersen, Johanne Bach; Pilegaard, Hans Kristian; Hager, Henrik; Rehling, Michael; Rasmussen, Finn

    2012-10-16

    Pulmonary nodules are of high clinical importance, given they may prove to be an early manifestation of lung cancer. Pulmonary nodules are small, focal, radiographic opacities that may be solitary or multiple. A solitary pulmonary nodule is a single, small (pulmonary nodules remains unclear. However, the question of malignancy of any given nodule remains the same. A standard contrast-enhanced computed tomography (CT) scan is often the first examination, followed by a number of other examinations. The purpose of this study was to examine the clinical feasibility of CT versus integrated [18F]fluorodeoxyglucose-positron emission tomography (PET)/low-dose CT scan in patients with suspected lung cancer and pulmonary lesions on CT. All results were controlled for reproducibility. We found that when used early in the work-up of the lesions, CT raised the prevalence of lung cancer in the population to the point where further diagnostic imaging examination could be considered futile. We also found that the overall diagnostic accuracy, as well as the classification probabilities and predictive values of the two modalities were not significantly different; the reproducibility of these results was substantial.

  18. The Correlation Between Pre-treatment Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Parameters and Clinical Prognostic Factors in Pediatric Hodgkin Lymphoma

    Tatcı, Ebru; Uslu Biner, İnci; Emir, Suna; Tanyıldız, Hikmet Gülşah; Özmen, Özlem; Alagöz, Engin; Gökçek, Atila; Şahin, Gürses

    2017-01-01

    Objective: To compare standardized uptake values (SUV) derived from pre-treatment 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging and clinical prognostic factors in pediatric patients with Hodgkin lymphoma (HL). Methods: Pre-treatment FDG PET/CT findings of 28 children with HL were evaluated in this retrospective study. Metabolic tumor volume (MTV), SUVmax normalized by weight (SUVweight), lean body mass (SUVlbm), body surface area (SUVbsa) and plasma glucose levels of tumors (SUVglucose) were calculated using pre-treatment FDG PET/CT scan images. These metabolic parameters were correlated with clinical factors [age, sex, number of lymph node groups, presence of splenic involvement, bulky mediastinal disease, Ann Arbor stage, serum white blood cell (WBC) count, erythrocyte sedimentation rate (ESR), serum albumin and hemoglobin levels]. Results: SUVbsa, SUVlbm, SUVweight, SUVglucose and MTV were higher in patients with stage III-IV disease, bulky tumor and ≥3 lymph node groups (p0.05). SUVbsa and SUVlbm were higher in patients with anemia (p0.05). Conclusion: Metabolic parameters derived from pre-treatment FDG PET/CT may have an important role in predicting high-risk disease in patients with HL. Also, SUVbsa and SUVlbm may be better markers than SUVweight in the quantitative evaluation of FDG PET/CT scans in pediatric patients. PMID:28291005

  19. Positron Emission Tomography and head and neck cancers: Recurrence and post-treatment surveillance; TEP au {sup 18}-FDG et cancers ORL: recidive et surveillance post-therapeutique

    Colavolpe, C.; Guedj, E.; Tessonnier, L.; Mundler, O. [CHU La Timone, Service Central de Biophysique et de Medecine Nucleaire, 13 - Marseille (France); Fakhry, N.; Zanaret, M. [CHU La Timone, Service d' ORL et de Chirurgie Cervicofaciale, 13 - Marseille (France)

    2008-08-15

    Recurrence of head and neck squamous cell carcinomas occurs early and currently, with poor prognosis. Post-therapeutic surveillance aims to diagnose a recurrence as early as possible in order to perform curative salvage therapy. The risk of recurrence is highest in locally advanced cancers. Morphological imaging, including Computed Tomography (CT Scan) and magnetic resonance imaging, can be limited by the anatomic changes following surgery and radiotherapy, and sometimes cannot provide early diagnosis of recurrence. Histology presents some risk of morbidity, especially in irradiated tissues, and sampling error. Positron Emission Tomography (PET) with {sup 18}F-fluorodeoxyglucose (F.D.G.) is superior to conventional imaging for the diagnosis and staging of recurrence, especially when it is performed three months after the end of treatments. F.D.G.-PET has high sensitivity and negative predictive value for recurrence, so that further morphological and invasive investigations should not be performed in case of negative examination. On the other hand, because of its limited specificity and positive predictive value, any positive PET finding should be documented, in order to avoid false positives findings. The diagnosis of recurrence is the field of application in which F.D.G.-PET has the greatest impact on head and neck cancer management: it is considered as a standard. However, the interest of F.D.G.-PET during systematic follow-up has not yet been confirmed. PET should only be performed in difficult cases and within evaluation protocols. (authors)

  20. Quantifying [{sup 18}F]fluorodeoxyglucose uptake in the arterial wall: the effects of dual time-point imaging and partial volume effect correction

    Blomberg, Bjoern A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Odense University Hospital, Department of Nuclear Medicine, Odense (Denmark); Bashyam, Arjun; Ramachandran, Abhinay; Gholami, Saeid; Houshmand, Sina; Salavati, Ali; Werner, Tom; Alavi, Abass [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands)

    2015-08-15

    The human arterial wall is smaller than the spatial resolution of current positron emission tomographs. Therefore, partial volume effects should be considered when quantifying arterial wall {sup 18}F-FDG uptake. We evaluated the impact of a novel method for partial volume effect (PVE) correction with contrast-enhanced CT (CECT) assistance on quantification of arterial wall {sup 18}F-FDG uptake at different imaging time-points. Ten subjects were assessed by CECT imaging and dual time-point PET/CT imaging at approximately 60 and 180 min after {sup 18}F-FDG administration. For both time-points, uptake of {sup 18}F-FDG was determined in the aortic wall by calculating the blood pool-corrected maximum standardized uptake value (cSUV{sub MAX}) and cSUV{sub MEAN}. The PVE-corrected SUV{sub MEAN} (pvcSUV{sub MEAN}) was also calculated using {sup 18}F-FDG PET/CT and CECT images. Finally, corresponding target-to-background ratios (TBR) were calculated. At 60 min, pvcSUV{sub MEAN} was on average 3.1 times greater than cSUV{sub MAX} (P <.0001) and 8.5 times greater than cSUV{sub MEAN} (P <.0001). At 180 min, pvcSUV{sub MEAN} was on average 2.6 times greater than cSUV{sub MAX} (P <.0001) and 6.6 times greater than cSUV{sub MEAN} (P <.0001). This study demonstrated that CECT-assisted PVE correction significantly influences quantification of arterial wall {sup 18}F-FDG uptake. Therefore, partial volume effects should be considered when quantifying arterial wall {sup 18}F-FDG uptake with PET. (orig.)

  1. 18F-FLT Positron Emission Tomography/Computed Tomography Imaging in Pancreatic Cancer: Determination of Tumor Proliferative Activity and Comparison with Glycolytic Activity as Measured by 18F-FDG Positron Emission Tomography/Computed Tomography Imaging

    Senait Aknaw Debebe

    2016-02-01

    Full Text Available Objective: This phase-I imaging study examined the imaging characteristic of 3’-deoxy-3’-(18F-fluorothymidine (18F-FLT positron emission tomography (PET in patients with pancreatic cancer and comparisons were made with (18F-fluorodeoxyglucose (18F-FDG. The ultimate aim was to develop a molecular imaging tool that could better define the biologic characteristics of pancreas cancer, and to identify the patients who could potentially benefit from surgical resection who were deemed inoperable by conventional means of staging. Methods: Six patients with newly diagnosed pancreatic cancer underwent a combined FLT and FDG computed tomography (CT PET/CT imaging protocol. The FLT PET/CT scan was performed within 1 week of FDG PET/CT imaging. Tumor uptake of a tracer was determined and compared using various techniques; statistical thresholding (z score=2.5, and fixed standardized uptake value (SUV thresholds of 1.4 and 2.5, and applying a threshold of 40% of maximum SUV (SUVmax and mean SUV (SUVmean. The correlation of functional tumor volumes (FTV between 18F-FDG and 18F-FLT was assessed using linear regression analysis. Results: It was found that there is a correlation in FTV due to metabolic and proliferation activity when using a threshold of SUV 2.5 for FDG and 1.4 for FLT (r=0.698, p=ns, but a better correlation was obtained when using SUV of 2.5 for both tracers (r=0.698, p=ns. The z score thresholding (z=2.5 method showed lower correlation between the FTVs (r=0.698, p=ns of FDG and FLT PET. Conclusion: Different tumor segmentation techniques yielded varying degrees of correlation in FTV between FLT and FDGPET images. FLT imaging may have a different meaning in determining tumor biology and prognosis.

  2. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  3. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.

    Vallabhajosula, Shankar

    2007-11-01

    Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on

  4. In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography.

    Rojas, Santiago; Herance, José Raúl; Gispert, Juan Domingo; Abad, Sergio; Torrent, Elia; Jiménez, Xavier; Pareto, Deborah; Perpiña, Unai; Sarroca, Sara; Rodríguez, Elisenda; Ortega-Aznar, Arantxa; Sanfeliu, Coral

    2013-07-01

    Positron emission tomography (PET) has been used extensively to evaluate the neuropathology of Alzheimer's disease (AD) in vivo. Radiotracers directed toward the amyloid deposition such as [(18)F]-FDDNP (2-(1-{6-[(2-[F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile) and [(11)C]-PIB (Pittsburg compound B) have shown exceptional value in animal models and AD patients. Previously, the glucose analogue [(18)F]-FDG (2-[(18)F]fluorodeoxyglucose) allowed researchers and clinicians to evaluate the brain glucose consumption and proved its utility for the early diagnosis and the monitoring of the progression of AD. Animal models of AD are based on the transgenic expression of different human mutant genes linked to familial AD. The novel transgenic 5XFAD mouse containing 5 mutated genes in its genome has been proposed as an AD model with rapid and massive cerebral amyloid deposition. PET studies performed with animal-dedicated scanners indicate that PET with amyloid-targeted radiotracers can detect the pathological amyloid deposition in transgenic mice and rats. However, in other studies no differences were found between transgenic mice and their wild type littermates. We sought to investigate in 5XFAD mice if the radiotracers [(11)C]-PIB, and [(18)F]-Florbetapir could quantify the amyloid deposition in vivo and if [(18)F]-FDG could do so with regard to glucose consumption. We found that 5XFAD animals presented higher cerebral binding of [(18)F]-Florbetapir, [(11)C]-PIB, and [(18)F]-FDG. These results support the use of amyloid PET radiotracers for the evaluation of AD animal models. Probably, the increased uptake observed with [(18)F]-FDG is a consequence of glial activation that occurs in 5XFAD mice.

  5. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography.

    Aristophanous, Michalis; Penney, Bill C; Martel, Mary K; Pelizzari, Charles A

    2007-11-01

    The increased interest in 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an "analysis region" to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the

  6. Combined measurement of tumor perfusion and glucose metabolism for improved tumor characterization in advanced cervical carcinoma. A PET/CT pilot study using [{sup 15}O]water and [{sup 18}F]fluorodeoxyglucose

    Apostolova, I.; Steffen, I.G. [Charite University Medical Center, Department of Nuclear Medicine, Berlin (Germany); Otto-von-Guericke University, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Hofheinz, F. [Helmholtz-Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden (Germany); Buchert, R.; Michel, R.; Rosner, C.; Prasad, V.; Brenner, W. [Charite University Medical Center, Department of Nuclear Medicine, Berlin (Germany); Koehler, C. [Charite University Medical Center, Department of Gynaecology, Berlin (Germany); Derlin, T. [University Medical Center Hamburg-Eppendorf, Department of Radiology, Hamburg (Germany); Marnitz, S. [Charite University Medical Center, Department of Radiooncology, Berlin (Germany)

    2014-06-15

    The aim of this pilot study was (1) to evaluate the combination of [{sup 18}F]fluorodeoxyglucose (FDG) and [{sup 15}O]water for detection of flow-metabolism mismatch in advanced cervical carcinomas, i.e., increased glycolysis at low blood flow, as a possible parameter for prediction of response to treatment, and (2) to propose a method for automated quantification of its spatial extent. The study retrospectively included 10 women with advanced cervical carcinoma in whom PET with both FDG and [{sup 15}O]water had been performed prior to therapy. The metabolically active tumor volume was delineated automatically in the FDG images. For computation of the regional blood flow in the tumor, a recovery corrected image-derived arterial input function was used. A tumor voxel was classified as mismatched when the voxel SUV of FDG was larger than the median tumor SUV and the voxel perfusion (K1) was smaller than the median perfusion. The absolute mismatch volume (aMMV) was defined as the volume of all mismatched voxels in ml, and the relative mismatch volume (rMMV) as the ratio of the aMMV to the metabolic tumor volume in percent. The tumors were quite heterogeneous with respect to both FDG uptake and perfusion. The aMMV clustered into 2 groups: ''large aMMV'' ≥ 10 ml in 40 % of patients and ''small aMMV'' ≤ 5 ml in 60 % of patients. The rMMV ranged from 12.7-24.9 %. There was no correlation between rMMV and metabolic tumor volume. There was a tendency (p = 0.126) for an association between rMMV and histological grading, rMMV being about 20 % higher in G3 than in G2 tumors. rMMV did not correlate with SUV or perfusion. These results suggest that combined PET with FDG and [{sup 15}O]water allows detection and quantitative characterization of flow-metabolism mismatch in advanced cervical carcinomas. (orig.) [German] Ziel dieser Pilotstudie war es, (1) die Kombination von Positronen-Emissions-Tomographie (PET) mit [{sup 15}O]Wasser und

  7. Positron Emission Mammotomography with Dual Planar Detectors

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  8. Diagnostic Performance of Positron Emission Tomography/Computed Tomography Using Fluorine-18 Fluorodeoxyglucose in Detecting Locoregional Nodal Involvement in Patients with Anal Canal Cancer: A Systematic Review and Meta-Analysis

    Carmelo Caldarella

    2014-01-01

    Full Text Available Purpose. The diagnostic performance of positron emission tomography using 18F-fluorodeoxyglucose (FDG-PET in detecting nodal involvement in patients with anal canal cancer (ACC has been investigated by several studies with conflicting results. The aim of our study is to systematically review and meta-analyze published data about this topic. Methods. A comprehensive computer literature search of PubMed/MEDLINE, Scopus, and Embase databases was carried out on July 10 to find relevant articles concerning the diagnostic performance of FDG-PET in detecting locoregional nodal involvement in patients with ACC. No language restriction was used. Pooled diagnostic performance on a lesion-based analysis was calculated. Results. Seven retrospective and five prospective studies have been reviewed. Six studies allowed assessing pooled sensitivity; five studies allowed assessing pooled specificity. Sensitivity and specificity values of FDG-PET/CT on a lesion-based analysis ranged from 31 to 100% and from 53 to 98%, with pooled estimates of 56% (95% CI: 45–67% and 90% (95% CI: 86–93%, respectively. Conclusions. Our meta-analysis demonstrates that FDG-PET is a specific diagnostic tool in detecting locoregional lymph node involvement in patients with ACC. Low sensitivity is a major concern; however, higher sensitivity could be reached combining FDG-PET with MR scan.

  9. Positron emission tomography basic sciences

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  10. The application of 18F-fluorodeoxyglucose PET/CT in radiotherapy of pancreatic cancer%18 F-氟脱氧葡萄糖PET/CT在胰腺癌放疗中的应用

    贾臻; 张火俊

    2016-01-01

    18F- fluorodeoxyglucose (FDG) PET/CT has important application value in ra-diotherapy of pancreatic cancer. Compared with the traditional imaging examination, PET/CT can improve the accuracy of diagnosis and staging of pancreatic cancer before radiotherapy. During radio-therapy, PET/CT can improve the accuracy of target volume delineation and reduce the adverse effects of irradiation in normal adjacent tissues. Regions of tumor metabolic activity following radio-therapy can be predicted from the baseline PET/CT and treatment planning could be changed. Meanwhile, PET/CT could evaluate the efficacy and prognosis of radiotherapy. With the develop-ment of systematic research, 18F-FDG PET/CT will play an increasingly important role in radiothera-py of pancreatic cancer.%18 F-氟脱氧葡萄糖PET/CT在胰腺癌的放疗中具有重要的应用价值。 PET/CT较常规影像学检查能提高胰腺癌放疗前的诊断及分期准确性。在放疗过程中,以PET/CT检查为基础的靶区勾画能够准确地覆盖肿瘤组织及保护周围正常组织,同时可以按照其所提示的肿瘤代谢活性调整放疗计划。 PET/CT还能够进行放疗的疗效评估及预后评判。相信随着研究的进展,18 F-氟脱氧葡萄糖PET/CT将在胰腺癌放疗中发挥越来越重要的作用。

  11. ⁶⁴Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment.

    Pang, Bo; Zhao, Yongfeng; Luehmann, Hannah; Yang, Xuan; Detering, Lisa; You, Meng; Zhang, Chao; Zhang, Lei; Li, Zhi-Yuan; Ren, Qiushi; Liu, Yongjian; Xia, Younan

    2016-03-22

    This article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy.

  12. Gene Expression of Glucose Transporter 1 (GLUT1, Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

    Andreas Kjaer

    2013-10-01

    Full Text Available Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs and hexokinases (HKs, which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET. The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs in comparison with 14 colorectal adenocarcinomas (CRAs. The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38% compared to CRAs (86%, P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111 and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53. There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047, but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36% than CRAs (86%, (P = 0.04. The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

  13. The value of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in asymptomatic examinees with unexplained elevated blood carcinoembryonic antigen levels

    Li, Wenfeng [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Radiation Oncology, Wenzhou (China); Yin, Weiwei [The First Affiliated Hospital of Wenzhou Medical University, Division of PET/CT, Department of Radiology, Wenzhou (China); Ou, Rongying [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Gynaecology and Obstetrics, Wenzhou (China); Chen, Ting; Xiong, Lingling; Xu, Yunsheng [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Dermatovenereology, Wenzhou (China); Cheng, Dezhi; Xie, Deyao [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Department of Cardiothoracic Surgery, Wenzhou (China); Zheng, Xiangwu; Zhao, Liang [The First Affiliated Hospital of Wenzhou Medical University, Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Division of PET/CT, Department of Radiology, Wenzhou (China); The First Affiliated Hospital of Wenzhou Medical University, Institutes of Intelligent and Molecular Imaging, Wenzhou (China)

    2016-04-15

    Cancer is still a clinical challenge, with many efforts invested in order to achieve timely detection. Unexplained elevated blood carcinoembryonic antigen levels are occasionally observed in an asymptomatic population and considered as a risk factor of cancers. The purpose of this study was to determine the validity of 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) for detecting cancer in an asymptomatic population with an unexplained elevation in blood carcinoembryonic antigen (CEA) levels. This retrospective study included a total of 1920 asymptomatic examinees conducted from August 2011 through September 2013. The participants underwent CEA assay and conventional medical imaging (CEA-conventional), or CEA assay and F-18 FDG-PET/CT (CEA-PET/CT). The validity of conventional medical imaging and CEA-PET/CT scanning for detecting cancer and early-stage cancer in an asymptomatic population with an unexplained elevation in blood CEA levels were evaluated. Sensitivity, specificity, cancer detection rate, missed cancer detection rate, early-stage cancer detection rate, and early-stage cancer ratio using the CEA-PET/CT scanning were 96.6 %, 100 %, 10.4 %, 0.4 %, 3.7 %, and 34.5 %, respectively. In contrast, the corresponding values obtained using the conventional medical imaging were 50.6 % (P < 0.0001), 100 % (P > 0.9999), 50.6 % (P < 0.0001), 99.9 % (P = 0.055), 2.6 % (P < 0.0001), 2.5 % (P = 0.04), 0.7 % (P = 0.0004), and 14.5 % (P = 0.002), respectively. The F-18 FDG-PET/CT scanning significantly improved the validity of the cancer detection program in the asymptomatic population with an unexplained elevation in CEA levels. (orig.)

  14. Can positron emission tomography/computed tomography with the dual tracers fluorine-18 fluoroestradiol and fluorodeoxyglucose predict neoadjuvant chemotherapy response of breast cancer?--A pilot study.

    Zhongyi Yang

    Full Text Available OBJECTIVE: To assess the clinical value of dual tracers Positron emission tomography/computed tomography (PET/CT (18F-fluoroestradiol ((18F-FES and (18F-fluorodeoxyglucose ((18F-FDG in predicting neoadjuvant chemotherapy response (NAC of breast cancer. METHODS: Eighteen consecutive patients with newly diagnosed, non-inflammatory, stage II and III breast cancer undergoing NAC were included. Before chemotherapy, they underwent both (18F-FES and (18F-FDG PET/CT scans. Surgery was performed after three to six cycles of chemotherapy. Tumor response was graded and divided into two groups: the responders and non-responders. We used the maximum standardized uptake value (SUVmax to qualify each primary lesion. RESULTS: Pathologic analysis revealed 10 patients were responders while the other 8 patients were non-responders. There was no statistical difference of SUVmax-FDG and tumor size between these two groups (P>0.05. On the contrary, SUVmax-FES was lower in responders (1.75±0.66 versus 4.42±1.14; U=5, P=0.002; and SUVmax-FES/FDG also showed great value in predicting outcome (0.16±0.06 versus 0.54±0.22; U=5, P=0.002. CONCLUSIONS: Our study showed (18F-FES PET/CT might be feasible to predict response of NAC. However, whether the use of dual tracers (18F-FES and (18F-FDG has complementary value should be further studied.

  15. Depressed glucose consumption at reperfusion following brain ischemia does not correlate with mitochondrial dysfunction and development of infarction: an in vivo positron emission tomography study.

    Martín, Abraham; Rojas, Santiago; Pareto, Deborah; Santalucia, Tomàs; Millán, Olga; Abasolo, Ibane; Gómez, Vanessa; Llop, Jordi; Gispert, Joan D; Falcon, Carles; Bargalló, Núria; Planas, Anna M

    2009-05-01

    Glucose consumption is severely depressed in the ischemic core, whereas it is maintained or even increased in penumbral regions during ischemia. Conversely, glucose utilization is severely reduced early after reperfusion in spite that glucose and oxygen are available. Experimental studies suggest that glucose hypometabolism might be an early predictor of brain infarction. However, the relationship between early glucose hypometabolism with later development of infarction remains to be further studied in the same subjects. Here, glucose consumption was assessed in vivo by positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) in a rat model of ischemia/reperfusion. Perfusion was evaluated by PET with (13)NH(3) during and after 2-hour (h) middle cerebral artery occlusion, and (18)F-FDG was given after 2h of reperfusion. Brain infarction was evaluated at 24h. Mitochondrial oxygen consumption was examined ex vivo using a biochemical method. Cortical (18)F-FDG uptake was reduced by 45% and 25% in the ischemic core and periphery, respectively. However, substantial alteration of mitochondrial respiration was not apparent until 24h, suggesting that mitochondria retained the ability to consume oxygen early after reperfusion. These results show reduced glucose use at early reperfusion in regions that will later develop infarction and, to a lesser extent, in adjacent regions. Depressed glucose metabolism in the ischemic core might be attributable to reduced metabolic requirement due to irreversible cellular injury. However, reduced glucose metabolism in peripheral regions suggests either an impairment of glycolysis or reduced glucose demand. Thus, our study supports that glycolytic depression early after reperfusion is not always related to subsequent development of infarction.

  16. Interim positron emission tomography scan associated with international prognostic index and germinal center B cell-like signature as prognostic index in diffuse large B-cell lymphoma.

    Lanic, Hélène; Mareschal, Sylvain; Mechken, Férial; Picquenot, Jean-Michel; Cornic, Marie; Maingonnat, Catherine; Bertrand, Philippe; Clatot, Florian; Bohers, Elodie; Stamatoullas, Aspasia; Leprêtre, Stéphane; Rainville, Vinciane; Ruminy, Philippe; Bastard, Christian; Tilly, Hervé; Becker, Stéphanie; Vera, Pierre; Jardin, Fabrice

    2012-01-01

    [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is essential to optimize the initial staging and to predict the prognosis of diffuse large B-cell lymphoma (DLBCL). To assess the relationship between the germinal center B cell-like/activated B cell-like (GCB/ABC) classification and PET scan features in DLBCL, 57 cases treated with rituximab and a cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP)/CHOP-like regimen were analyzed. The expression profile of 18 GCB/ABC related genes and five genes coding for glucose transporters (GLUTs) was determined from frozen tissues using DASL (cDNA-mediated Annealing, Selection, Ligation and extension) technology. According to the gene expression profile (GEP), 30 cases of DLBCL were classified as GCB subtype (2-year progression-free survival [PFS] 76%) and 27 cases as ABC subtype (2-year PFS 51%, p = 0.03). Using a semiquantitative assessment of the decrease in standard uptake value (SUV) at interim PET performed after 3-4 cycles of chemotherapy, we defined fast (n = 36) and slow (n = 9) metabolic responders. In multivariate analysis, GCB/ABC subtype, age-adjusted international prognostic index (aaIPI) and slow/fast metabolic response were independent variables that predicted outcome. A score incorporating aaIPI, fast/slow metabolic response and GCB/ABC classification was used to define two groups with highly significantly distinct outcomes. Our study suggests that the combination of GEP, aaIPI and interim PET more accurately predicts DLBCL prognosis and is therefore suitable for tailoring therapeutic strategies.

  17. Radiopharmaceutical chemistry for positron emission tomography

    Elsinga, PH

    2002-01-01

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic F-18-fluorination

  18. Para neoplastic syndromes: Usefulness of {sup 18}F-fluoro-deoxy-glucose (F.D.G.) positron emission tomography (PET); Syndromes paraneoplasiques: interet de la tomographie par emission de positons (TEP) au {sup 18}F-fluoro-deoxyglucose (FDG)

    Banayan, S.; Janier, M.; Guillerma-Zucchi, N.; Billotey, C. [Hopital Edouard-Herriot, Service de Medecine Nucleaire, 69 - Lyon (France); Ninet, J. [Hopital Edouard-Herriot, Service de Medecine Interne, 69 - Lyon (France); Delmas, P. [Hopital Edouard-Herriot, Service de Rhumatologie, 69 - Lyon (France); Thivolet, C. [Hopital Edouard-Herriot, Service d' Endocrinologie, 69 - Lyon (France); Pellet, O. [Centre Hospitalier de Lyon-Sud, Service de Medecine Nucleaire, 69 (France)

    2008-05-15

    Background We evaluated the performance of {sup 18}F-fluorodeoxyglucose ({sup 18}F.D.G.) positron emission tomography (PET) in the diagnosis of underlying malignancy in cases of suspected para neoplastic syndrome (P.S.). Methods {sup 18}F.D.G.-PET was performed in 31 patients, clinically suspected to have P.S.. The P.S. were 34, among which 12 neurological diseases, eight endocrine, seven rheumatological, one dermatological and six vascular. We compared computed tomography (CT), iodine-enhanced most of the time, and {sup 18}F.D.G.-PET reports to clinicians definitive conclusion at the end of the work-up and a follow-up period of, at least, two months. Results We obtained a histological diagnosis of cancer for ten patients, but could only identify the primary site of malignancy for nine of them. {sup 18}F.D.G.-PET showed six primary sites among which three were not seen on CT. CT disclosed four primary sites, among which one was not seen on {sup 18}F.D.G.-PET. In one case, {sup 18}F.D.G.-PET disclosed regional lymph node metastases whereas these were not identified by CT. Eleven non-neoplastic causes were evidenced, among which {sup 18}F.D.G.-PET played a major role in three cases. Ten causes were still undetermined at the end of the study. Conclusion Whole-body {sup 18}F.D.G.-PET study plays an important role in the identification of underlying malignancy in clinically suspected para neoplastic syndromes; either by identifying the primary tumor or by directing biopsy of metastases. Furthermore, it can identify non-neoplastic causes. (authors)

  19. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer.

    Mac Manus, Michael P; Hicks, Rodney J

    2012-09-01

    Positron emission tomography (PET)/computed tomography (CT) has rapidly assumed a critical role in the management of patients with locoregionally advanced lung cancers who are candidates for definitive radiation therapy (RT). Definitive RT is given with curative intent, but can only be successful in patients without distant metastasis and if all gross tumor is contained within the treated volume. An increasing body of evidence supports the use of PET-based imaging for selection of patients for both surgery and definitive RT. Similarly, the use of PET/CT images for accurate target volume definition in lung cancer is a dynamic area of research. Most available evidence on PET staging of lung cancer relates to non-small cell lung cancer (NSCLC). In general clinical use, (18)F-fluorodeoxyglucose (FDG) is the primary radiopharmaceutical useful in NSCLC. Other tracers, including proliferation markers and hypoxia tracers, may have significant roles in future. Much of the FDG-PET literature describing the impact of PET on actual patient management has concerned candidates for surgical resection. In the few prospective studies where PET was used for staging and patient selection in NSCLC candidates for definitive RT, 25%-30% of patients were denied definitive RT, generally because PET detected unsuspected advanced locoregional or distant metastatic disease. PET/CT and CT findings are often discordant in NSCLC but studies with clinical-pathological correlation always show that PET-assisted staging is more accurate than conventional assessment. In all studies in which "PET-defined" and "non-PET-defined" RT target volumes were compared, there were major differences between PET and non-PET volumes. Therefore, in cases where PET-assisted and non-PET staging are different and biopsy confirmation is unavailable, it is rational to use the most accurate modality (namely PET/CT) to define the target volume. The use of PET/CT in patient selection and target volume definition is likely

  20. Diagnostic performance of {sup 18}F-fluorothymidine PET/CT for primary colorectal cancer and its lymph node metastasis: comparison with {sup 18}F-fluorodeoxyglucose PET/CT

    Nakajo, Masatoyo [Kagoshima University, Graduate School of Medical and Dental Sciences, Department of Radiology, Kagoshima (Japan); Nanpuh Hospital, Department of Radiology, Kagoshima (Japan); Nakajo, Masayuki; Jinguji, Megumi; Fukukura, Yoshihiko [Kagoshima University, Graduate School of Medical and Dental Sciences, Department of Radiology, Kagoshima (Japan); Kajiya, Yoriko; Tani, Atushi [Nanpuh Hospital, Department of Radiology, Kagoshima (Japan); Nishimata, Nobuaki; Shimaoka, Shunji; Nihara, Tohru [Nanpuh Hospital, Department of Gastroenterology, Kagoshima (Japan); Aridome, Kuniaki [Nanpuh Hospital, Department of Surgery, Kagoshima (Japan); Tanaka, Sadao [Nanpuh Hospital, Department of Pathology, Kagoshima (Japan); Koriyama, Chihaya [Kagoshima University, Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima (Japan)

    2013-08-15

    To examine the diagnostic performance of {sup 18}F-fluorothymidine (FLT) PET/CT in primary and metastatic lymph node colorectal cancer foci in comparison with {sup 18}F-fluorodeoxyglucose (FDG) PET/CT. The study population comprised 28 patients with 30 newly diagnosed colorectal cancers who underwent surgical resection of the primary lesion and regional lymph nodes after both FLT and FDG PET/CT. The associations between SUVmax levels and pathological factors were evaluated using the Mann-Whitney U or Kruskal-Wallis test. Differences in diagnostic indexes for detecting nodal metastasis between the two tracers were estimated using the McNemar exact or {chi} {sup 2} test. All 30 primary cancers (43.0 {+-} 20.0 mm, range 14 - 85 mm) were visualized by both tracers, but none of the FLT SUVmax values exceeded the FDG SUVmax values in any of the primary cancers (6.6 {+-} 2.4 vs. 13.6 {+-} 5.8, p < 0.001). The sensitivity, specificity and accuracy for detecting nodal metastasis were 41 % (15/37), 98.8 % (493/499) and 94.8 % (508/536) for FDG PET/CT, and 32 % (12/37), 98.8 % (493/499) and 94.2 % (505/536) for FLT PET/CT, respectively. The sensitivity (p = 0.45), specificity (p = 0.68) and accuracy (p = 0.58) were not different between the tracers. Nodal uptake of FLT and FDG was discordant in 7 (19 %) of 37 metastatic nodes. There were ten concordant true-positive nodes of which six showed higher FDG SUVmax and four showed higher FLT SUVmax, but the difference between FDG and FLT SUVmax was not significant (5.56 {+-} 3.55 and 3.62 {+-} 1.45, respectively; p = 0.22). FLT has the same potential as FDG in PET/CT for the diagnosis of primary and nodal foci of colorectal cancer despite significantly lower FLT uptake in primary foci. (orig.)

  1. {sup 18}F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

    Hirata, Kenji; Shiga, Tohru; Tamaki, Nagara [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro [Graduate School of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Hattori, Naoya [Graduate School of Medicine, Hokkaido University, Department of Molecular Imaging, Sapporo (Japan); Magota, Keiichi [Hokkaido University Hospital, Department of Radiology, Sapporo (Japan); Tanaka, Shinya [Graduate School of Medicine, Hokkaido University, Department of Cancer Pathology, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan)

    2012-05-15

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that {sup 18}F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and {sup 18}F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p {<=} 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 {+-} 0.60, range 1.71-3.81) than in non-GBM patients (1.22 {+-} 0.06, range 1.09-1.29, p {<=} 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also

  2. Advanced Instrumentation for Positron Emission Tomography [PET

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  3. Is positron emission tomography useful in stroke?

    DeReuck, J; Leys, D; DeKeyser, J

    1997-01-01

    Positron emission tomography (PET) has been widely used in the study of stroke and related cerebrovascular diseases. It has shown the various stages leading to cerebral infarction and defined the significance of the ischaemic penumbra. PET scan can predict the clinical outcome of patients with acute

  4. The Clinical Value of 18F-fluorodeoxyglucose PET/CT in Lymphoma%18F-FDG PET/CT显像应用于恶性淋巴瘤的临床价值

    宋秀宇; 徐文贵; 戴东; 马文超

    2009-01-01

    Objective To evaluate 18F-fluorodeoxyglucose PET/CT imaging for the diagnosis,staging and treatment evaluation of lymphoma. Methods Before definite therapy,59 patients underwent PET/CT imaging and were diagnosed for lymphoma.The results of PET/CT imaging were compared before and after treatment in 17 patients. Results 54 patients with lymphoma were determined by pathology(44 NHL patients and 10 HL patients).Without any treatment,the sensitivity, specificity and accuracy of PET/CT in identifying lymphoma was 100%, 91.5%, 91.5% respectively,and it led to change 20.4% in clinical staging and 9.3% in management. 18F-FDG PET/CT and BMB produced equivalent results in patients.After 2~4 courses of treatment, 6 of the 17 cases show the tumors were mildly suppressed,the other 11 cases had the residual sites or new sites. Conclusion 18F-FDG PET/CT imaging plays an important role in diagnosis,staging and treatment evaluation.It is useful for differentiating active tumors from fibrosis and necrosis after treatment.%目的 探讨18F-FDG PET/CT显像对恶性淋巴瘤的临床分期和疗效评价方面的临床价值.方法 回顾性分析59例PET/CT显像结果诊断为恶性淋巴瘤的初诊患者,并对17例治疗前后的PET/CT显像结果进行对照分析.结果 病理证实54例为恶性淋巴瘤(非霍奇金淋巴瘤44例,霍奇金淋巴瘤10例),PET/CT显像的敏感性、特异性、准确性分别为100%、91.5%、91.5%.其中11例(20.4%)的临床分期得到上调,并改变了5例(9.3%)的治疗方案. 18F-FDG PET/CT显像与骨髓穿刺结果基本一致.对照研究中17例中的6例示病灶处于抑制状态,11例示肿瘤残存或新发阳性病灶.结论 18F-FDG PET/CT显像在恶性淋巴瘤的临床分期及疗效评价方面具有重要的临床意义,有助于残余病灶性质的鉴别.

  5. 89Zr radiochemistry for positron emission tomography.

    Severin, Gregory W; Engle, Jonathan W; Barnhart, Todd E; Nickles, R Jerry

    2011-09-01

    The positron emitting isotope (89)Zr is an ideal radionuclide for use in positron emission tomography (PET) imaging with monoclonal antibodies (mAbs). This article reviews the cyclotron physics of (89)Zr production, and the chemical separation methods for isolating it from yttrium target material. (89)Zr coordination with the bifunctional chelate desferrioxamine B is discussed, along with the common procedures for attaching the chelate to mAbs. The review is intended to detail the procedure for creating (89)Zr labeled mAbs, going from cyclotron to PET.

  6. PET studies with L-(1- sup 11 C)tyrosine, L-(methyl- sup 11 C)methionine and sup 18 F-fluorodeoxyglucose in relation to bromocryptine treatment

    Daemen, B.J.G.; Elsinga, P.H.; Paans, A.M.J.; Vaalburg, W. (Rijksuniversiteit Groningen (Netherlands). Dept. of Nuclear Medicine); Zwertbroek, R.; Doorenbos, H. (Rijksuniversiteit Groningen (Netherlands). Dept. of Endocrinology)

    1991-07-01

    Aspects of metabolism in prolactinomas were investigated by positron emission tomography using L-(1-{sup 11}C)tyrosine, L-(methyl-{sup 11}C)methionine and fluorodeoxyl glucose 18. Using L-(1-{sup 11}C)tyrosine, four patients were monitored prior to and 18 h after an injection of 50 mg bromocryptine. At 18 h after bromocryptine intervention L-(1-{sup 11}C)tyrosine uptake into tumour was reduced with 28% (P<0.07). A correlation analysis of the bromocryptine-induced decrease in L-(1-{sup 11}C)tyrosine uptake and the reduction of serum prolactin levels indicated that the action of bromocryptine on prolactin synthesis and prolactin release is not coupled. In the untreated situation, the four patients were investigated with {sup 18}FDG as well, but the prolactinomas could not be visualized. Three untreated patients were studied with L-(methyl-{sup 11}C)methionine. The tumour-imaging potential of L-(methyl-{sup 11}C)methionine and L-(1-{sup 11}C)tyrosine appeared to be nearly equivalent for prolactinomas. Unlike prolactinoma tissue, the salivary glands showed a pronounced preference for L-(1-{sup 11}C)tyrosine as compared to L-(methyl-{sup 11}C)methionine. L-(1-{sup 11}C)tyrosine is a valuable tool to obtain information on the metabolism and treatment of prolactinomas. (orig.).

  7. Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma

    Yoshioka Takako

    2011-07-01

    Full Text Available Abstract Background To determine safe surgical margins for soft tissue sarcoma, it is essential to perform a general evaluation of the extent of tumor, responses to auxiliary therapy, and other factors preoperatively using multiple types of diagnostic imaging. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT is a tool for diagnostic imaging that has recently spread rapidly in clinical use. At present, the roles played by FDG-PET/CT in determination of margins for surgical resection of sarcoma are unclear. The present study was undertaken to explore the roles of FDG-PET/CT in determination of surgical margins for soft tissue sarcoma and to examine whether PET can serve as a standard means for setting the margins of surgical resection during reduced surgery. Methods The study involved 7 patients with sarcoma who underwent surgery in our department and in whom evaluation with FDG-PET/CT was possible. Sarcoma was histologically rated as MFH in 6 cases and leiomyosarcoma in 1 case. In all cases, sarcoma was superficial (T1a or T2a. The tumor border was defined by contrast-enhanced MRI, and SUVs were measured at intervals of 1 cm over a 5-cm long area from the tumor border. Mapping of viable tumor cells was carried out on whole-mount sections of resected tissue, and SUVs were compared with histopathological findings. Results Preoperative maximum SUVs (SUV-max of the tumor averaged 11.7 (range: 3.8-22.1. Mean SUV-max was 2.2 (range: 0.3-3.8 at 1 cm from the tumor border, 1.1 (0.85-1.47 at 2 cm, 0.83 (0.65-1.15 at 3 cm, 0.7 (0.42-0.95 at 4 cm, and 0.64 (0.45-0.82 at 5 cm. When resected tissue was mapped, tumor cells were absent in the areas where SUV-max was below 1.0. Conclusions Our findings suggest that a safe surgical margin free of viable tumor cells can be ensured if the SUV cut-off level is set at 1.0. FDG-PET/CT is promising as a diagnostic imaging technique for setting of safe minimal margins for surgical

  8. Positron Emission Tomography: Its 65 years

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  9. Emission and transmission noise propagation in positron emission computed tomography

    Gullberg, G.T.; Huesman, R.H.

    1979-06-01

    Errors in positron emission computed tomograms are the result of noise propagated from three sources: (1) the statistical fluctuation in the positron coincidence events; (2) the statistical fluctuation in the incident transmission beam; and (3) the statistical fluctuation in the transmitted beam. The data for the transmission study in (2) and (3) are used to compensate for internal absorption of the distributed positron source. For the reconstruction of a circular phantom using the convolution algorithm, the percent root-mean-square uncertainty (%RMS) is related to the total measured positron events C and the incident photon flux per cm I/sub 0/. Our derivation of the %RMS uncertainty based on the propagation of errors yields a simple expression: %RMS = ..sqrt..K/sub 1//C + K/sub 2//I/sub 0/. The constants K/sub 1/ = 4.52 x 10/sup 8/ and K/sub 2/ = 1.48 x 10/sup 8/ were determined for a 20 cm diameter disc based on computer simulation. The projection data were analytically calculated with an attenuation coefficient ..mu.. = 0.0958 cm/sup -1/ for 140 angles between 0 and ..pi... Poisson noise was added to the positron coincidence events, the incident transmission events I/sub 0/, and the transmitted events. These results indicate that for a total number of incident transmission photons per cm of 2.0 x 10/sup 5/, the contrast resolution for a fixed spatial resolution is limited to 27% even with an infinite number of emission events. For a total of 10/sup 6/ emission events the contrast resolution is 34%.

  10. Positron Emission Tomography of the Heart

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  11. Motion correction in thoracic positron emission tomography

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  12. Positron emission tomography of the heart

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  13. Positron emission tomography and radiation oncology

    Fullerton, PhD, Gary D.; Fox, MD, Peter; Phillips, MD, William T.

    2001-10-01

    Medical physics research is providing new avenues for addressing the fundamental problem of radiation therapy-how to provide a tumor-killing dose while reducing the dose to a non-lethal level for critical organs in adjacent portions of the patient anatomy. This talk reviews the revolutionary impact of Positron Emission Tomography on the practice of radiation oncology. The concepts of PET imaging and the development of "tumor" imaging methods using 18F-DG flouro-deoxyglucose are presented to provide the foundation for contemporary research and application to therapy. PET imaging influences radiation therapy decisions in multiple ways. Imaging of occult but viable tumor metastases eliminates misguided therapy attempts. The ability to distinguish viable tumor from scar tissue and necroses allows reduction of treatment portals and more selective treatments. Much research remains before the clinical benefits of these advances are fully realized.

  14. Fundamental limits of positron emission mammography

    Moses, William W.; Qi, Jinyi

    2001-06-01

    We explore the causes of performance limitation in positron emission mammography cameras. We compare two basic camera geometries containing the same volume of 511 keV photon detectors, one with a parallel plane geometry and another with a rectangular geometry. We find that both geometries have similar performance for the phantom imaged (in Monte Carlo simulation), even though the solid angle coverage of the rectangular camera is about 50 percent higher than the parallel plane camera. The reconstruction algorithm used significantly affects the resulting image; iterative methods significantly outperform the commonly used focal plane tomography. Finally, the characteristics of the tumor itself, specifically the absolute amount of radiotracer taken up by the tumor, will significantly affect the imaging performance.

  15. Instrumentation optimization for positron emission mammography

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  16. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  17. Positron emission tomography in drug development and drug evaluation

    Paans, AMJ; Vaalburg, W

    2000-01-01

    Positron Emission Tomography (PET) is an imaging modality which can determine biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labeled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation usin

  18. Effects of hyperoxygenation on FDG-uptake in head-and-neck cancer.

    Geus-Oei, L.F. de; Kaanders, J.H.A.M.; Pop, L.A.M.; Corstens, F.H.M.; Oyen, W.J.G.

    2006-01-01

    PURPOSE: Tumor hyperoxygenation results in high response rates to ARCON (accelerated radiotherapy with carbogen and nicotinamide). The effect of hyperoxygenation on tumor metabolism using [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) was investigated. METHODS: Within one week, F

  19. Use of micro-positron emission tomography with 18F-fallypride to measure the levels of dopamine receptor-D2 and 18F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats

    Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo

    2016-01-01

    Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with 18F-fallypride and 18F-fluorodeoxyglucose (18F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with 18F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with 18F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with 18F-fallypride and 18F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment. PMID:27103832

  20. Amyloid positron emission tomography and cognitive reserve

    Matteo Bauckneht; Agnese Picco; Flavio Nobili; Silvia Morbelli

    2015-01-01

    Alzheimer’s disease(AD) is characterized by a nonlinear progressive course and several aspects influence the relationship between cerebral amount of AD pathology and the clinical expression of the disease. Brain cognitive reserve(CR) refers to the hypothesized capacity of an adult brain to cope with brain damage in order to minimize symptomatology. CR phenomenon contributed to explain the disjunction between the degree of neurodegeneration and the clinical phenotype of AD. The possibility to track brain amyloidosis(Aβ) in vivo has huge relevance for AD diagnosis and new therapeutic approaches. The clinical repercussions of positron emission tomography(PET)-assessed Aβ load are certainly mediated by CR thus potentially hampering the prognostic meaning of amyloid PET in selected groups of patients. Similarly, amyloid PET and cerebrospinal fluid amyloidosis biomarkers have recently provided new evidence for CR. The present review discusses the concept of CR in the framework of available neuroimaging studies and specifically deals with the reciprocal influences between amyloid PET and CR in AD patients and with the potential consequent interventional strategies for AD.

  1. Microfluidics for Positron Emission Tomography Probe Development

    Ming-Wei Wang

    2010-07-01

    Full Text Available Owing to increased needs for positron emission tomography (PET, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidics-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates, and easier purification processes with greater yield and higher specific activity of desired probes. Several proof-of-principle examples along with the basics of device architecture and operation and the potential limitations of each design are discussed. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”, an easy-to-use, stand-alone, flexible, fully automated, radiochemical microfluidic platform can provide simpler and more cost-effective procedures for molecular imaging using PET.

  2. Data acquisition with a positron emission tomograph

    Freifelder, R.; Karp, J.S. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1997-12-31

    Positron Emission Tomography (PET) is a clinical imaging modality used in Nuclear Medicine. PET measures functionality rather than anatomical features and is therefore invaluable in the treatment of diseases which are characterized by functional changes in organs rather than anatomical changes. Typical diseases for which PET is used are cancer, epilepsy, and heart disease. While the scanners are not very complex, the performance demands on the devices are high. Excellent spatial resolution, 4-5 mm, and high sensitivity are key to maintaining high image quality. Compensation or suppression of scattered radiation is also necessary for good image quality. The ability to acquire data under high counting rates is also necessary in order to minimize the injected dose to the patient, minimize the patient`s time in the scanner, and finally to minimize blurring due to patient motion. We have adapted various techniques in our data acquisition system which will be reported on in this talk. These include pulse clipping using lumped delay lines, flash ADCs with short sampling time, the use of a local positioning algorithm to limit the number of data words being used in subsequent second level software triggers and calculations, and finally the use of high speed dedicated calculator boards for on-line rebinning and reduction of the data. Modifications to the system to allow for transmission scanning will also be discussed.

  3. (18)F-FDG PET/CT in a rare case of Stewart-Treves syndrome

    Jensen, Mads Radmer; Friberg, Lars; Karlsmark, Tonny

    2011-01-01

    The aim of this article is to illustrate the possible applications of (18)F-fluorodeoxyglucose positron emission tomography/computer tomography ((18)F-FDG PET/CT) in chronic extremity lymphedema and its complications.......The aim of this article is to illustrate the possible applications of (18)F-fluorodeoxyglucose positron emission tomography/computer tomography ((18)F-FDG PET/CT) in chronic extremity lymphedema and its complications....

  4. Comparison of 3'-deoxy-3'-[{sup 18}F]fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours

    Herrmann, K.; Beer, A.J.; Wester, H.J.; Schwaiger, M. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Erkan, M.; Friess, H.; Kleeff, J. [Technische Universitaet Muenchen, Department of General Surgery, Munich (Germany); Dobritz, M. [Technische Universitaet Muenchen, Institute of Radiology, Munich (Germany); Schuster, T. [Technische Universitaet Muenchen, Institute of Medical Statistics and Epidemiology, Munich (Germany); Siveke, J.T.; Schmid, R.M. [Technische Universitaet Muenchen, Department of Internal Medicine II, Munich (Germany); Buck, A.K. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany)

    2012-05-15

    Despite recent advances in clinical imaging modalities, differentiation of pancreatic masses remains difficult. Here, we tested the diagnostic accuracy of molecular-based imaging including 3'-deoxy-3'-[{sup 18}F]fluorothymidine (FLT) positron emission tomography (PET) and [{sup 18}F]fluorodeoxyglucose (FDG) PET/CT in patients with suspected pancreatic masses scheduled to undergo surgery. A total of 46 patients with pancreatic tumours suspicious for malignancy and scheduled for resective surgery were recruited prospectively. In 41 patients, FLT PET and FDG PET/CT scans were performed. A diagnostic CT performed on a routine basis was available in 31 patients. FLT PET and FDG PET/CT emission images were acquired according to standard protocols. Tracer uptake in the tumour [FDG and FLT standardized uptake value (SUV)] was quantified by the region of interest (ROI) technique. For FDG PET/CT analysis, correct ROI placement was ensured via side-by-side reading of corresponding CT images. Of 41 patients, 33 had malignancy, whereas 8 patients had benign disease. Visual analysis of FDG and FLT PET resulted in sensitivity values of 91% (30/33) and 70% (23/33), respectively. Corresponding specificities were 50% (4/8) for FDG PET and 75% (6/8) for FLT PET. In the subgroup of patients with contrast-enhanced CT (n = 31), sensitivities were 96% (PET/CT), 88% (CT alone), 92% (FDG PET) and 72% (FLT PET), respectively. Mean FLT uptake in all malignant tumours was 3.0 (range SUV{sub max} 1.1-6.5; mean FDG SUV{sub max} 7.9, range 3.3-17.8; p < 0.001). For differentiation of pancreatic tumours, FDG PET and FDG PET/CT showed a higher sensitivity but lower specificity than FLT PET. Interestingly, visual analysis of FLT PET led to two false-positive findings by misinterpreting physiological bowel uptake as pathological FLT uptake in the pancreas. Due to the limited number of patients, the clinical value of adding FLT PET to the diagnostic workup of pancreatic tumours remains to

  5. Positron Emission Mammography with Multiple Angle Acquisition

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  6. Positron Emission Mammography with Multiple Angle Acquisition

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  7. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  8. Positron emission tomography : measurement of transgene expression

    de Vries, EFJ; Vaalburg, W

    2002-01-01

    Noninvasive and repetitive imaging of transgene expression can play a pivotal role in the development of gene therapy strategies, as it offers investigators a means to determine the effectiveness of their gene transfection protocols. In the last decade, imaging of transgene expression using positron

  9. 64Cu loaded liposomes as positron emission tomography imaging agents

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle;

    2011-01-01

    We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclid...

  10. Quantification in dynamic and small-animal positron emission tomography

    Disselhorst, Johannes Antonius

    2011-01-01

    This thesis covers two aspects of positron emission tomography (PET) quantification. The first section addresses the characterization and optimization of a small-animal PET/CT scanner. The sensitivity and resolution as well as various parameters affecting image quality (reconstruction settings, type

  11. Positron Emission Tomography : background, possibilities and perspectives in neuroscience

    Paans, AMJ

    1997-01-01

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way. This includes the measurement of the pharmacokinetics of labeled drugs and the measurement of the effects of drugs and/or therapy on metabolism. Also deviations of no

  12. Fluorinated amino acids for tumour imaging with positron emission tomography.

    Laverman, P.; Boerman, O.C.; Corstens, F.H.M.; Oyen, W.J.G.

    2002-01-01

    The currently preferred radiopharmaceutical for positron emission tomography (PET) in oncology is 2-[(18)F]fluoro-deoxyglucose (FDG). Increased accumulation of this deoxyglucose analogue in tumour cells is based on elevated glucose metabolism by tumour cells and subsequent trapping in the cells. In

  13. Positron emission particle tracking-Application and labelling techniques

    David J.Parker; Xianfeng Fan

    2008-01-01

    The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on the motion and flow fields of fluids or granular materials in multiphase systems, for example, fluids in rock cracks, chemical reactors and food processors; dynamic behaviour of granular materials in chemical reactors, granulators, mixers, dryers, rotating kilns and ball mills. The information obtained by the PEPT technique can be used to optimise the design, operational conditions for a wide range of industrial process systems, and to evaluate modelling work. The technique is based on tracking radioactively labelled particles (up to three particles) by detecting the pairs of back-to-back 511 ke V -γ-rays arising from annihilation of emitted positrons. It therefore involves a positron camera, location algorithms for calculating the tracer location and speed, and tracer labelling techniques. This paper will review the particle tracking technique from tracking algorithm, tracer labelling to their application.

  14. A novel clustering approach to positron emission particle tracking

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2016-03-01

    A novel approach to positron emission particle tracking is presented based on determining regions of space with high density of line of response crossing via clustering. The method is shown to be able to accurately track multiple particles in systems where the number of particles is unknown and in which particles can enter and leave the field of view of the scanning system. This method is explored in various environments and its parametric dependence is studied. - Highlights: • A new approach to positron emission particle tracking is presented. • Using G-means clustering, multiple particle tracking is enabled. • Multiple and variable number particle tracking is explored. • Parametric dependence of algorithm is studied.

  15. ENVISION, developing Positron Emission Tomography for particle therapy

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Positron Emission Tomography (PET) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  16. Current and future technological trends in positron emission tomography.

    Karp, J S; Freifelder, R

    1992-04-01

    Current trends in positron emission tomography (PET) instrumentation are examined, with an emphasis on providing information suitable to the prospective PET user. Basic principles underlying PET are explained and information on performance measurements, techniques, and quantitation are given in order to allow the user to compare and contrast different types of PET scanners. These scanner designs are described. Specific examples are given and the combination of PET with other modalities is discussed.

  17. Positron Emission Particle Tracking (PEPT) for Fluid Flow Measurements

    Langford, Seth, E-mail: utne@utk.edu [Department of Nuclear Engineering, University of Tennessee-Knoxville, 315 Pasqua Nuclear Engineering, Knoxville, TN 37996 (United States); Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 401 Nielsen Physics Building, Knoxville, TN 37996 (United States); Tenpenny, Daniel; Ruggles, Arthur [Department of Nuclear Engineering, University of Tennessee-Knoxville, 315 Pasqua Nuclear Engineering, Knoxville, TN 37996 (United States)

    2016-06-15

    Highlights: • A new method for tracking multiple particles using positron emission particle tracking (PEPT) is introduced. • PEPT measurement of flow in a rectangular channel is tested against PIV and PTV. • Further work is identified to improve performance of PEPT for flow measurement. - Abstract: Positron emission particle tracking (PEPT) is used to study the behavior of flow in a rectangular test section. A multiple-particle tracking technique (multi-PEPT) is proposed and tested using a once-through flow system and a preclinical positron emission tomography (PET) scanner. This measurement is then compared to particle image velocimetry (PIV) and high-speed particle tracking velocimetry (PTV) studies of the same test section. Uncertainties in the established flow measurement methods used to validate the PEPT performance are quantified. Mean flow velocity are compared as measured by the three methods. Minor variations are exposed in the data comparisons, and uncertainty exists due to the statistical nature of our PEPT method. Nonetheless, multi-PEPT is shown to be capable as a means of examining characteristics of a complex flow regime.

  18. Investigation of granular impact using positron emission particle tracking

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  19. [Methods and clinical applications of positron emission tomography in endocrinology].

    De Landsheere, C; Lamotte, D

    1990-01-01

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for 150, 13N, 11C and 18F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormone-dependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactin) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptine can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology.

  20. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose

    Rigo, P. [Division of Nuclear Medicine, University Hospital, Sart Tilman, Liege (Belgium); Paulus, P. [Division of Nuclear Medicine, University Hospital, Sart Tilman, Liege (Belgium); Kaschten, B.J. [Cyclotron Research Centre, University of Liege and Division of Neurosurgery, University Hospital, Sart Tilman, Liege (Belgium); Hustinx, R. [Division of Nuclear Medicine, University Hospital, Sart Tilman, Liege (Belgium); Bury, T. [Division of Pneumology, University Hospital, Sart Tilman, Liege (Belgium); Jerusalem, G. [Division of Onco-Hematology, University Hospital, Sart Tilman, Liege (Belgium); Benoit, T. [Division of Nuclear Medicine, University Hospital, Sart Tilman, Liege (Belgium); Foidart-Willems, J. [Division of Nuclear Medicine, University Hospital, Sart Tilman, Liege (Belgium)

    1996-12-01

    Positron emission tomography (PET) is now primarily used in oncological indication owing to the successful application of fluorine-18 fluorodeoxyglucose (FDG) in an increasing number of clinical indications at different stages of diagnosis, and for staging and follow-up. This review first considers the biological characteristics of FDG and then discusses methodological considerations regarding its use. Clinical indications are considered, and the results achieved in respect of various organs and tumour types are reviewed in depth. The review concludes with a brief consideration of the ways in which clinical PET might be improved. (orig.). With 6 figs., 8 tabs.

  1. Serotonin synthesis studied with positron emission tomography, (PET)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure......-L-(beta-11C tryptophan) (5HTP) quantifies the activity of amino acid decarboxylase in the conversion to 5HT. On the other hand, alpha-methyl-tryptophan (AMT) measures the conversion to the corresponding 5-hydroxytryptophan analogue. The irreversible binding of the PET probe 5HTP in the monkey brain was lower...

  2. RPC: from High Energy Physics to Positron Emission Tomography

    Belli, G; Vecchi, C De; Giroletti, E; Musitelli, G; Nardo, R; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Sani, G; Torre, P; Vitulo, P; Viviani, C [Dipartimento di Fisica Nucleare e Teorica - Universita di Pavia and Istituto Nazionale di Fisica Nucleare - Sezione di Pavia - via A. Bassi, 6 Pavia - (Italy)

    2006-05-15

    A low cost gas-based charged particle detector, the Resistive Plate Counter (RPC) intensively used in fixed target and collider high energy experiments, is proposed as basic detector for Positron Emission Tomography. The performance of RPCs in terms of intrinsic space and time resolution and electronic pulse height response, makes it possible to transform standard RPCs into photon detectors and therefore to compensate for the photon sensitivity of scintillating crystals, when the efficiency of the complex crystal + photomultiplier is turned into standard quantum efficiency (q.e). Prototype multigap glass RPCs were developed which optimize {gamma} detection efficiency and thus might substitute the traditional scintillators setups.

  3. [Positron emission tomography: diagnostic imaging on a molecular level].

    Allemann, K; Wyss, M; Wergin, M; Bley, C Rohrer; Ametamay, S; Bruehlmeier, M; Kaser-Hotz, B

    2004-08-01

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed.

  4. Kinetic modeling in pre-clinical positron emission tomography

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  5. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  6. Use and impact of positron computed tomography scanning in epilepsy

    Mazziotta, J.C.; Engel, J. Jr.

    1984-01-01

    Through the effective combination of instrumentation, tracer kinetic principles, and radiopharmaceuticals, positron computed tomography (PET) allows for the analytic, noninvasive measurement of local tissue physiology in humans. A large number of studies have already been performed in patients with epilepsy using 18F-fluorodeoxyglucose (FDG) to measure local cerebral glucose utilization. In patients with complex partial epilepsy who are candidates for surgery, hypometabolic zones have been seen consistently (70%) in the interictal state. The complex anatomical and pathophysiological investigation of these hypometabolic zones is discussed. Ictal studies of patients with partial seizures have demonstrated a much more variable metabolic pattern which usually consists of hypermetabolism relative to baseline or interictal studies. Generalized epilepsy produced by electroconvulsive shock and petit mal epilepsy have been studied using FDG to estimate glucose metabolism.

  7. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  8. Comparison of 18F-fluorodeoxyglucose dual-head tomography with coincidence and 99mTc-methylenediphosphonate bone scintigraphy in diagnosis and therapeutic evaluation of bone metastases%18F-FDG符合探测显像与99mTc-MDP骨显像评价肿瘤骨转移的对比研究

    武新宇; 高永举; 闫新慧

    2014-01-01

    Objective To compare the value of 18F-fluorodeoxyglucose (18F-FDG) dual-head tomography with coincidence (DHTC) and 99mTc-methylenediphosphonate (99mTc-MDP) bone scintigraphy (BS) in diagnosis and therapeutic evaluation of bone metastases. Methods A total of 42 cases with cancer bone metastases, averagely aged (53.62±12.48) years old, were enrolled in this study. 18 cases did not receive any treatment, and 11 patients received inspection 2-5 times for assessment of therapeutic effects. 18F-FDG DHTC and 99mTc-MDP BS were performed within one week in all patients. The sensitivity, specificity and accuracy of 18F-FDG DHTC and 99mTc-MDP BS were compared. Results Of the 42 patients with bone metastases, 36 cases were correctly detected by 18F-FDG DHTC, and 32 were correctly detected by 99mTc-MDP BS. The difference of the sensitivity was not significant (χ2=1.25,P=0.320). Among 18 patients who did not receive any treatment, all got correct diagnosis by 18F-FDG DHTC, and 12 were positive on 99mTc-MDP BS. The difference of the diagnostic accuracy was significant (χ2=4.17,P<0.05). The result of 18F-FDG DHTC was strongly correlated with the clinical therapeutic evaluation(r=0.834,P<0.02). Conclusion 18F-FDG DHTC offers an advantage in diagnosis and therapeutic evaluation of bone metastases over 99mTc-MDP BS.%目的:比较18F-脱氧葡萄糖(18F-FDG)符合探测显像及99mTc-亚甲基二膦酸盐(99mTc-MDP)骨显像在肿瘤骨转移诊断及疗效评价中的价值。方法收集本院行18F-FDG符合探测显像及99mTc-MDP骨显像的骨转移患者42例,平均年龄(53.62±12.48)岁。其中未进行任何治疗患者18例,另11例治疗后多次(2~5次)行18F-FDG符合探测显像及99mTc-MDP全身骨显像。两种检查在1周内完成。比较两种方法在肿瘤骨转移诊断及疗效评价中的价值。结果18F-FDG符合探测显像有36例明确诊断,99mTc-MDP骨显像有32例明确诊断,两种方法的诊断准确率

  9. Positron Emission Tomography Application to Drug Development and Research

    Salvadori, Piero A.

    The research for the identification and development of new drugs represents a very complex process implying long times and massive investments. This process was not able to parallel the rate of discoveries made in the field of genomic and molecular biology and a gap created between demand of new drugs and the ability of pharmaceutical companies to select good candidates. Positron Emission Tomography, among the different Molecular Imaging modalities, could represent a new tool for the early assessment and screening of new drug candidates and, due to its physical performances and the characteristics of positron-labeled tracers, gain the role of "Biomarker" accepted by the Companies and the Regulatory Bodies of Drug Agencies. To fulfil this task PET has to exploit all of its special features such as data absolute quantification and modelling, high spatial resolution and dynamic imaging. Relevant efforts need to be directed to the careful design and validation of experimental protocols with the main goal of achieving consistency in multi- centric trials.

  10. Studies of the brain cannabinoid system using positron emission tomography

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  11. A Case of Corticobasal Degeneration Studied with Positron Emission Tomography

    H. Nagasawa

    1993-01-01

    Full Text Available We measured cerebral blood flow, oxygen metabolism, glucose utilization, and dopamine metabolism in the brain of a patient with corticobasal degeneration using positron emission tomography (PET. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Brain imagings of glucose and dopamine metabolism can demonstrate greater abnormalities in the cerebral cortex and in the striatum contralateral to the more affected side than those of blood flow and oxygen metabolism. This unique combination study measuring both cerebral glucose utilization and dopamine metabolism in the nigrostriatal system can provide efficient information about the dysfunctions which are correlated with individual clinical symptoms, and this study is essential to diagnosis of corticobasal degeneration.

  12. Positron emission tomography in CNS drug discovery and drug monitoring.

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  13. Positron Emission Tomography: state of the art and future developments

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  14. Data acquisition electronics for positron emission mammography (PEM) detectors

    Martinez, J.D. [Digital Systems Design Group, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)]. E-mail: jormarp1@doctor.upv.es; Sebastia, A. [Digital Systems Design Group, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cerda, J. [Digital Systems Design Group, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Esteve, R. [Digital Systems Design Group, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Mora, F.J. [Digital Systems Design Group, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Toledo, J.F. [Digital Systems Design Group, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Benlloch, J.M. [Nuclear Medical Physics Group, Instituto de Fisica Corpuscular (CSIC-UV), Poligono de la Coma s/n, 46980 Paterna, Valencia (Spain); Gimenez, N. [Nuclear Medical Physics Group, Instituto de Fisica Corpuscular (CSIC-UV), Poligono de la Coma s/n, 46980 Paterna, Valencia (Spain); Gimenez, M. [Nuclear Medical Physics Group, Instituto de Fisica Corpuscular (CSIC-UV), Poligono de la Coma s/n, 46980 Paterna, Valencia (Spain); Lerche, Ch. W. [Nuclear Medical Physics Group, Instituto de Fisica Corpuscular (CSIC-UV), Poligono de la Coma s/n, 46980 Paterna, Valencia (Spain); Pavon, N. [Nuclear Medical Physics Group, Instituto de Fisica Corpuscular (CSIC-UV), Poligono de la Coma s/n, 46980 Paterna, Valencia (Spain); Sanchez, F. [Nuclear Medical Physics Group, Instituto de Fisica Corpuscular (CSIC-UV), Poligono de la Coma s/n, 46980 Paterna, Valencia (Spain)

    2005-01-21

    Positron emission mammography (PEM) is an innovative technique to increase sensitivity and overcome the main drawbacks of conventional X-ray screening. However, dedicated PET imaging systems demand specific hardware solutions for data acquisition and processing that can take advantage of the reduction in the number of channels. Data acquisition issues can affect PEM scanners performance and they should be exhaustively addressed in order to exploit the increment in the event count rate. This is crucial in order to reduce both the scanning time and the total injected dose. This paper presents the electronics for our PEM camera prototype that enables us to achieve very high-count rates and perform comprehensive online processing. Results about acquisition in our detector for a typical clinical setup are studied using Monte Carlo simulation of hot lesion phantoms.

  15. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. (National Institute of Aging, Baltimore, MD (USA))

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  16. Lesion detection and quantitation of positron emission mammography

    Qi, Jinyi; Huesman, Ronald H.

    2001-12-01

    A Positron Emission Mammography (PEM) scanner dedicated to breast imaging is being developed at our laboratory. We have developed a list mode likelihood reconstruction algorithm for this scanner. Here we theoretically study the lesion detection and quantitation. The lesion detectability is studied theoretically using computer observers. We found that for the zero-order quadratic prior, the region of interest observer can achieve the performance of the prewhitening observer with a properly selected smoothing parameter. We also study the lesion quantitation using the test statistic of the region of interest observer. The theoretical expressions for the bias, variance, and ensemble mean squared error of the quantitation are derived. Computer simulations show that the theoretical predictions are in good agreement with the Monte Carlo results for both lesion detection and quantitation.

  17. Positron emission tomography of incidentally detected small pulmonary nodules

    Fischer, B M; Mortensen, J; Dirksen, A;

    2004-01-01

    The aim of this study was to assess the value of fluorodeoxyglucose positron emission tomography (FDG PET) imaging of small pulmonary nodules incidentally detected by spiral computed tomography (CT) in a high-risk population. Ten patients (five females, five males, aged 54-72 years) were recruited...... (approx. 3.3% of the entire study population). The prevalence of malignancy in this group was 50%. The accuracy of PET was high, in spite of the fact that seven patients had nodules smaller than 15 mm and two patients had bronchoalveolar cell carcinoma. This small prospective study indicates...... that subsequent assessment with FDG PET of small pulmonary nodules incidentally detected by CT has the potential to minimize the numbers of invasive procedures performed in individuals with a benign pulmonary lesion. FDG PET also increases the possibility of an early diagnosis as compared to the strategy...

  18. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    Nariai, Tadashi [Tokyo Medical and Dental Univ. (Japan). Graduate School

    2001-02-01

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [{sup 15}O]water and [{sup 18}F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [{sup 11}C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  19. Spatial registration of echocardiographic and positron emission tomographic heart studies

    Savi, A. [INB CNR, Inst. H.S. Raffaele, Univ. of Milan (Italy); Gilardi, M.C. [INB CNR, Inst. H.S. Raffaele, Univ. of Milan (Italy); Rizzo, G. [INB CNR, Inst. H.S. Raffaele, Univ. of Milan (Italy); Pepi, M. [Centro Cardiologico, Fondazione I. Monzino, Milan (Italy); Landoni, C. [INB CNR, Inst. H.S. Raffaele, Univ. of Milan (Italy); Rossetti, C. [INB CNR, Inst. H.S. Raffaele, Univ. of Milan (Italy); Lucignani, G. [INB CNR, Inst. H.S. Raffaele, Univ. of Milan (Italy); Bartorelli, A. [Centro Cardiologico, Fondazione I. Monzino, Milan (Italy); Fazio, F. [INB CNR, Inst. H.S. Raffaele, Univ. of Milan (Italy)

    1995-03-01

    A method has been developed to match corresponding heart regions from functional echocardiographic (Echo) and metabolic fluorine-18-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) studies in individual patients. Echo and PET images are spatially correlated by determining homologous anatomical landmarks (the two papillary muscles and the inferior junction of the right ventricle), identifiable in images obtained by both acquisition modalities. Echo-PET image registration is first performed in the plane identified by the three landmarks, using a rigid rotate-translate scale model. The registration parameters are then used to transform the whole PET volume. This allows a consistent Echo-PET regional analysis, according to a segmental subdivision of the heart. The technique was tested on patients. The overlay of Echo and PET registered images proved the reliability of realignment of the three markers and a good spatial correlation of myocardial walls. This approach to image registration could be applied to other acquisition modalities (such as magnetic resonance imaging and single-photon emission tomography), provided that the three anatomical landmarks are visualized. (orig.)

  20. Estudo do metabolismo da glicose na tuberculose pulmonar ativa utilizando a tomografia por emissão de pósitrons (18F-FDG PET Evaluation of glucose metabolism in active lung tuberculosis by positron-emission tomography (18F-FDG PET

    SIDNEY BOMBARDA

    2002-09-01

    Full Text Available Os métodos de imagem utilizados na avaliação da tuberculose pulmonar incluem a radiografia e a tomografia computadorizada do tórax. As imagens obtidas pelos métodos de medicina nuclear permitem estudos funcionais e metabólicos dos órgãos de interesse, através do uso de radiofármacos específicos. Alterações do metabolismo da glicose podem ser detectadas pela tomografia por emissão de pósitrons (PET utilizando-se o 18F-fluorodesoxiglicose (18F-FDG. Essas alterações estão presentes nas doenças neoplásicas, inflamatórias e infecciosas. A tuberculose é uma doença granulomatosa causada pelo Mycobacterium tuberculosis, que se utiliza de glicose como fonte de energia. Objetivo: O estudo do metabolismo da glicose na tuberculose pulmonar através da PET e sua comparação com a tomografia computadorizada de tórax. Material e métodos: Foram avaliados 20 pacientes portadores de tuberculose pulmonar. Todos foram submetidos à PET e à tomografia computadorizada de tórax, em até 30 dias após o início do tratamento. Resultados: Todos os pacientes apresentaram captação positiva do 18F-FDG na PET. Na tomografia computadorizada do tórax, todos os pacientes apresentaram sinais compatíveis com atividade de tuberculose. A sensibilidade dos dois métodos foi de 100%. Houve concordância entre os achados do 18F-FDG PET e da tomografia computadorizada (K = 0,27 e p Current methods to evaluate lung tuberculosis include chest radiography and computed tomography. Nuclear medicine imaging techniques are performed after administration of specific radiopharmaceuticals that accumulate in the organs of interest. Alterations of glucose metabolism can be observed by positron-emission tomography, using 18F-fluorodeoxyglucose (18F-FDG PET. These findings are present in the neoplasms, but also in inflammatory and infectious diseases. Tuberculosis is a granulomatous disease caused by Mycobacterium tuberculosis , that uses glucose as an energy source

  1. Positron Emission Tomography with Three-Dimensional Reconstruction

    Erlandsson, K.

    1996-10-01

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of `mobile pixels`, which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs.

  2. Positron Emission Tomography Detector Development for Plant Biology

    Weisenberger, A G; McKisson, J; Stolin, A; Zorn, C; Howell, C R; Crowell, A S; Reid, C D; Majewski, S

    2010-01-01

    There are opportunities for the development of new tools to advance plant biology research through the use of radionuclides. Thomas Jefferson National Accelerator Facility, Duke University, West Virginia University and the University of Maryland are collaborating on the development of radionuclide imaging technologies to facilitate plant biology research. Biological research into optimizing plant productivity under various environmental constraints, biofuel and carbon sequestration research are areas that could potentially benefit from new imaging technologies. Using 11CO2 tracers, the investigators at Triangle University Nuclear Laboratory / Duke University Phytotron are currently researching the dynamical responses of plants to environmental changes forecasted from increasing greenhouse trace gases involved in global change. The biological research primary focus is to investigate the impact of elevated atmospheric CO2 and nutrients limitation on carbon and nitrogen dynamics in plants. We report here on preliminary results of 11CO2 plant imaging experiments involving barley plants using Jefferson Lab dual planar positron emission tomography detectors to image 11CO2 in live barley plants. New detector designs will be developed based on the preliminary studies reported here and further planned.

  3. Usefulness of Positron Emission Tomographic Studies for Gliomas

    MIYAKE, Keisuke; OGAWA, Daisuke; OKADA, Masaki; HATAKEYAMA, Tetsuhiro; TAMIYA, Takashi

    2016-01-01

    Non-invasive positron emission tomography (PET) enables the measurement of metabolic and molecular processes with high sensitivity. PET plays a significant role in the diagnosis, prognosis, and treatment of brain tumors and predominantly detects brain tumors by detecting their metabolic alterations, including energy metabolism, amino acids, nucleic acids, and hypoxia. Glucose metabolic tracers are related to tumor cell energy and exhibit good sensitivity but poor specificity for malignant tumors. Amino acid metabolic tracers provide a better delineation of tumors and cellular proliferation. Nucleic acid metabolic tracers have a high sensitivity for malignant tumors and cellular proliferation. Hypoxic metabolism tracers are useful for detecting resistance to radiotherapy and chemotherapy. Therefore, PET imaging techniques are useful for detecting biopsy-targeting points, deciding on tumor resection, radiotherapy planning, monitoring therapy, and distinguishing brain tumor recurrence or progression from post-radiotherapy effects. However, it is not possible to use only one PET tracer to make all clinical decisions because each tracer has both advantages and disadvantages. This study focuses on the different kinds of PET tracers and summarizes their recent applications in patients with gliomas. Combinational uses of PET tracers are expected to contribute to differential diagnosis, prognosis, treatment targeting, and monitoring therapy. PMID:27250577

  4. Epithelioid sarcoma with muscle metastasis detected by positron emission tomography

    Oya Masafumi

    2008-08-01

    Full Text Available Abstract Background Epithelioid sarcoma is an uncommon high-grade sarcoma, mostly involving the extremities. Case presentation A 33-year-old man was referred to our institute with a diagnosis of Volkmann's contracture with the symptom of flexion contracture of the fingers associated with swelling in his left forearm. Magnetic resonance imaging (MRI showed abnormal signal intensity, comprising iso-signal intensity on T1- and high-signal intensity on T2-weighted images surrounding the flexor tendons in the forearm. Diagnosis of epithelioid sarcoma was made by open biopsy, and amputation at the upper arm was then undertaken. [18F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET detected multiple lesions with an increased uptake in the right neck, the bilateral upper arms and the right thigh, as well as in the left axillary lymph nodes, with maximum standardized uptake value (SUVmax ranging from 2.0 to 5.5 g/ml. Magnetic resonance imaging confirmed that there was a lesion within the right thigh muscle which was suggestive of metastasis, even though the lesion was occult clinically. Conclusion Increased uptake on FDG-PET might be representative of epithelioid sarcoma, and for this reason FDG-PET may be useful for detecting metastasis. Muscle metastasis is not well documented in epithelioid sarcoma. Accordingly, the frequency of muscle metastasis, including occult metastasis, needs to be further analyzed.

  5. Characterization of time resolved photodetector systems for Positron Emission Tomography

    Powolny, François

    The main topic of this work is the study of detector systems composed of a scintillator, a photodetector and readout electronics, for Positron Emission Tomography (PET). In particular, the timing properties of such detector systems are studied. The first idea is to take advantage of the good timing properties of the NINO chip, which is a fast preamplifier-discriminator developed for the ALICE Time of flight detector at CERN. This chip uses a time over threshold technique that is to be applied for the first time in medical imaging applications. A unique feature of this technique is that it delivers both timing and energy information with a single digital pulse, the time stamp with the rising edge and the energy from the pulse width. This entails substantial simplification of the entire readout architecture of a tomograph. The scintillator chosen in the detector system is LSO. Crystals of 2x2x10mm3 were used. For the photodetector, APDs were first used, and were then replaced by SiPMs to make use of their highe...

  6. European health telematics networks for positron emission tomography

    Kontaxakis, George [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain)]. E-mail: g.kontaxakis@upm.es; Pozo, Miguel Angel [Centro PET Complutense, Madrid 28040 (Spain); Universidad Complutense de Madrid, Instituto Pluridisciplinar, Madrid 28040 (Spain); Ohl, Roland [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Visvikis, Dimitris [U650 INSERM, Lab. du Traitement de L' Information Medicale, University of Brest Occidentale, CHU Morvan, Brest 29609 (France); Sachpazidis, Ilias [Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany); Ortega, Fernando [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Guerra, Pedro [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Cheze-Le Rest, Catherine [Dept. Medicine Nucleaire, CHU Morvan, Brest 29609 (France); Selby, Peter [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Pan, Leyun [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Diaz, Javier [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Dimitrakopoulou-Strauss, Antonia [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Santos, Andres [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Strauss, Ludwig [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Sakas, Georgios [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany)

    2006-12-20

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  7. Comparison of scintillators for positron emission mammography (PEM) systems

    Raymond Raylman; Stanislaw Majewski; Mark Smith; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov; Jamal J. Derakhshan

    2003-02-01

    Positron emission mammography (PEM) has promise as an effective method for the detection of breast lesions. Perhaps the most significant design feature of a PEM system is the choice of scintillator material. In this investigation we compared three scintillators for use in PEM: NaI(Tl), gadolinium oxyorthosilicate (GSO), and lutetium-gadolinium oxyorthosilicate (LGSO). The PEM systems consisted of two 30/spl times/30 arrays of pixelated scintillators (3/spl times/3/spl times/10 mm/sup 3/ for GSO and LGSO and 3/spl times/3/spl times/19 mm/sup 3/ for NaI(Tl)) coupled to arrays of square position-sensitive photomultiplier tubes. The Compton scatter fraction, system energy resolution, spatial resolution, spatial resolution uniformity, and detection sensitivity were compared. Compton scatter fractions for the systems were comparable, between 8% and 9%. The NaI(Tl) system produced the best system energy resolution (18.2%), the GSO system had the worst system energy resolution (28.7%).

  8. Therapy response evaluation with positron emission tomography-computed tomography.

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice.

  9. Markerless motion tracking of awake animals in positron emission tomography.

    Kyme, Andre; Se, Stephen; Meikle, Steven; Angelis, Georgios; Ryder, Will; Popovic, Kata; Yatigammana, Dylan; Fulton, Roger

    2014-11-01

    Noninvasive functional imaging of awake, unrestrained small animals using motion-compensation removes the need for anesthetics and enables an animal's behavioral response to stimuli or administered drugs to be studied concurrently with imaging. While the feasibility of motion-compensated radiotracer imaging of awake rodents using marker-based optical motion tracking has been shown, markerless motion tracking would avoid the risk of marker detachment, streamline the experimental workflow, and potentially provide more accurate pose estimates over a greater range of motion. We have developed a stereoscopic tracking system which relies on native features on the head to estimate motion. Features are detected and matched across multiple camera views to accumulate a database of head landmarks and pose is estimated based on 3D-2D registration of the landmarks to features in each image. Pose estimates of a taxidermal rat head phantom undergoing realistic rat head motion via robot control had a root mean square error of 0.15 and 1.8 mm using markerless and marker-based motion tracking, respectively. Markerless motion tracking also led to an appreciable reduction in motion artifacts in motion-compensated positron emission tomography imaging of a live, unanesthetized rat. The results suggest that further improvements in live subjects are likely if nonrigid features are discriminated robustly and excluded from the pose estimation process.

  10. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  11. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both ...

  12. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    2012-12-04

    ... HUMAN SERVICES Food and Drug Administration Guidance on Investigational New Drug Applications for... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs in submitting investigational new drug applications (INDs)....

  13. 76 FR 47593 - Guidance for Small Business Entities on Current Good Manufacturing Practice for Positron Emission...

    2011-08-05

    ... a guidance for small business entities entitled ``PET Drugs--Current Good Manufacturing Practice... entitled ``PET Drugs--Current Good Manufacturing Practice (CGMP); Small Entity Compliance Guide.'' This... Manufacturing Practice for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug...

  14. Physiologic positron emission tomography/CT imaging of an integrated orbital implant.

    Graue, Gerardo F; Finger, Paul T

    2012-01-01

    A 46-year-old woman with a T4N0M0 choroidal melanoma was staged for metastatic disease with whole-body positron emission tomography/CT imaging. She underwent enucleation of the right eye and placement of a 20-mm MEDPOR spherical implant. Four months after surgery, follow-up positron emission tomography/CT imaging revealed physiologic metabolic activity in the MEDPOR implant with no evidence of orbital melanoma or chronic inflammation.

  15. Alcohol ADME in primates studied with positron emission tomography.

    Zizhong Li

    Full Text Available BACKGROUND AND PURPOSE: The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood. EXPERIMENTAL APPROACH: The ADME of C-11 labeled alcohol, CH(3 (11CH(2OH, 1 and C-11 and deuterium dual labeled alcohol, CH(3 (11CD(2OH, 2 in baboons was compared based on the principle that C-D bond is stronger than C-H bond, thus the reaction is slower if C-D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC of positron emission tomography (PET scans: peak uptake (C(max; peak uptake time (T(max, half-life of peak uptake (T(1/2, the area under the curve (AUC(60 min, and the residue uptake (C(60 min. KEY RESULTS: For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol. CONCLUSION AND IMPLICATIONS: The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences.

  16. Effect of tissue heterogeneity on quantification in positron emission tomography

    Blomqvist, G. [Dept. of Clinical Neuroscience, Experimental Alcohol and Drug Addiction Research Section, Karolinska Hospital, Stockholm (Sweden); Lammertsma, A.A. [PET Methodology Group, Cyclotron Unit, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom); Mazoyer, B. [Service Hospitalier Frederic Joliot CEA/Dept. de Biologie, Hopital d`Orsay and Antenne d`Informatique Medicale, Hopital Robert Debre, Paris (France); Wienhard, K. [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-07-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR{sub glc} in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k{sub 2} and k{sub 3} for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k{sub on}.B{sub max} could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B{sub max} was found to be insensitive while K{sub d} was very sensitive to tissue heterogeneity. (orig.)

  17. Noninvasive imaging of islet grafts using positron-emission tomography

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  18. Reconstruction Algorithms for Positron Emission Tomography and Single Photon Emission Computed Tomography and their Numerical Implementation

    Fokas, A S; Marinakis, V

    2004-01-01

    The modern imaging techniques of Positron Emission Tomography and of Single Photon Emission Computed Tomography are not only two of the most important tools for studying the functional characteristics of the brain, but they now also play a vital role in several areas of clinical medicine, including neurology, oncology and cardiology. The basic mathematical problems associated with these techniques are the construction of the inverse of the Radon transform and of the inverse of the so called attenuated Radon transform respectively. We first show that, by employing mathematical techniques developed in the theory of nonlinear integrable equations, it is possible to obtain analytic formulas for these two inverse transforms. We then present algorithms for the numerical implementation of these analytic formulas, based on approximating the given data in terms of cubic splines. Several numerical tests are presented which suggest that our algorithms are capable of producing accurate reconstruction for realistic phanto...

  19. The 511 keV emission from positron annihilation in the Galaxy

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G. [CNRS, UMR7095, UMPC and Institut d' Astrophysique de Paris, F-75014, Paris (France) and LAPP, 9 Chemin de Bellevue, BP 110 F-74941 Annecy-le-Vieux (France); A. F. Ioffe Institute of Physics and Technology, Russian Academy of Sciences, 194021, St. Petersburg (Russian Federation); Max Planck Institut fuer Extraterrestrische Physik, D-85741 Garching (Germany); Laboratoire d' Astrophysique de Toulouse-Tarbes, Universite de Toulouse, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse (France); American University of Sharjah, College of Arts and Sciences/Physics Department, P.O. Box 26666, Sharjah (United Arab Emirates); CESR, Universite de Toulouse, CNRS, 9, Avenue du Colonel Roche, Boite Postal 4346, F-31028 Toulouse Cedex 4 (France); L.U.P.M., Universite Montpellier II, CNRS, Place Eugene Bataillon, F-34095 Montpellier (France); Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California 94305 (United States); Max Planck Institut fuer Extraterrestrische Physik, D-85741, Garching (Germany); Max Planck Institut fur Extraterrestrische Physik, Garching, D-85741 Germany, and MPI Halbleiterlabor, Otto-Hahn-Ring 6, D-81739 Muenchen (Germany)

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  20. Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET Imaging Using GEANT4 Toolkit

    Mohsen Mashayekhi

    2015-05-01

    Full Text Available Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET. In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEANT4 toolkit was used to simulate the transport and interactions of positrons. Calculations were performed for the soft tissue phantom (8 mm ×8 mm × 8 mm. Positrons were emitted isotropically from the center of the phantom. By the application of a magnetic field perpendicular to the path of positrons, lateral scattering of positrons could be prevented due to Lorentz force. When the positron energy was below the cut-off threshold (0.001 MeV, the simulation was terminated. Results The findings showed that the presence of a magnetic field increased the rate of positron annihilation. At magnetic field strengths of 3, 7, and 10 Tesla, 18F with the lowest decay energy showed improvements in the ratio of full width at half maximum (FWHM resolution to the peak of curve by 3.64%, 3.89%, and 5.96%, respectively. In addition, at magnetic field strengths of 3, 7 and 10 Tesla, 82Rb with the highest decay energy showed improvements in resolution by 33%, 85%, and 99%, respectively. Conclusion Application of a magnetic field perpendicular to the positron diffusion plane prevented the scattering of positrons, and consequently, improved the intrinsic spatial resolution of PET imaging, caused by positron range effects.

  1. Molecular Imaging of Transporters with Positron Emission Tomography

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  2. Positron emission tomography and migraine. Tomographie par emission de positons et migraine

    Chabriat, H. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1992-04-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT{sub 2} serotonin receptors can be studied in migraine patients with PET.

  3. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    Boellaard, Ronald; O'Doherty, Mike J; Weber, Wolfgang A;

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about[18F]-fluorodeoxyglucose (FDG) positron emission tomography......-computed tomography (PET/CT) and is provided to help the physician and physicist to assist to carrying out,interpret, and document quantitative FDG PET/CT examinations,but will concentrate on the optimisation of diagnostic quality and quantitative information....

  4. A Unique Case of Increased 18F-FDG Metabolic Activity in the Soft Tissues of the Bilateral Upper Thighs Due to Immunizations in a Pediatric Patient

    Galloway, Terrel L.; Johnston, Mickaila J.; Starsiak, Michael D.; Silverman, Eugene D.

    2017-01-01

    A case of a 7-month-old white female who was referred for 18F-fluorodeoxyglucose (FDG) Positron emission tomography/computed tomography (PET/CT) initial evaluation of a lytic skull lesion with presumed diagnosis of Langerhans cell histiocytosis is described. Incidentally, she was found to have hypermetabolic nodules in the soft tissues of her anterior thighs. PMID:28217022

  5. Differences in lateral hemispheric asymmetries of glucose utilization between early- and late-onset Alzheimer-type dementia

    Koss, E.; Friedland, R.P.; Ober, B.A.; Jagust, W.J.

    1985-05-01

    Positron emission tomography with (/sup 18/F)fluorodeoxyglucose revealed greater right than left hemispheric impairment of cortical glucose metabolism in patients with probable Alzheimer's disease who were younger than 65 but not in those over 65. This asymmetry was related to poor visuospatial performance.

  6. FDG-PET parameters as prognostic factor in esophageal cancer patients: a review

    J.M.T. Omloo; M. van Heijl; O.S. Hoekstra; M.I. van Berge Henegouwen; J.J.B. van Lanschot; G.W. Sloof

    2011-01-01

    (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) has been used extensively to explore whether FDG Uptake can be used to provide prognostic information for esophageal cancer patients. The aim of the present review is to evaluate the literature available to date concerning the potential

  7. Detection of penile metastasis from bladder cancer using F 18 FDG PET/CT

    Lee, Dong Yun; Lee, Jong Jin [Univ. of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2012-12-15

    A 74 year old man who had experienced priapism for 2 months after radical cystectomy for bladder cancer visited our hospital, and underwent metastatic work up {sup 18}F fluorodeoxyglucose (FDG) positron emission tomography/computed tomography(PET/CT)showed diffuse hypermetabolic activity along the penis shaft, which was confirmed as a penile metastasis.

  8. Response evaluation after chemoradiotherapy for advanced nodal disease in head and neck cancer using diffusion-weighted MRI and 18F-FDG-PET-CT

    Schouten, C.S.; Graaf, P. de; Alberts, F.M.; Hoekstra, O.S.; Comans, E.F.; Bloemena, E.; Witte, B.I.; Sanchez, E.; Leemans, C.R.; Castelijns, J.A.; Bree, R. de

    2015-01-01

    OBJECTIVES: Evaluation of accuracy and interobserver variation of diffusion-weighted magnetic resonance imaging (DW-MRI) and 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDGPET-CT) to detect residual lymph node metastases after chemoradiotherapy (CRT) in advanced stag

  9. Response evaluation after chemoradiotherapy for advanced nodal disease in head and neck cancer using diffusion-weighted MRI and 18F-FDG-PET-CT

    Schouten, C.S.; de Graaf, P.; Alberts, F.M.; Hoekstra, O.S.; Comans, E.F.I.; Bloemena, E.; Witte, B.I.; Sanchez, E.; Leemans, C.R.; Castelijns, J.A.; de Bree, R.

    2015-01-01

    Objectives Evaluation of accuracy and interobserver variation of diffusion-weighted magnetic resonance imaging (DW-MRI) and 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDGPET-CT) to detect residual lymph node metastases after chemoradiotherapy (CRT) in advanced stage

  10. Prevalence and Risk Factors of Carotid Vessel Wall Inflammation in Coronary Artery Disease Patients FDG-PET and CT Imaging Study

    J. Bucerius; R. Duivenvoorden; V. Mani; C. Moncrieff; J.H.F. Rudd; C. Calcagno; J. Machac; V. Fuster; M.E. Farkouh; Z.A. Fayad

    2011-01-01

    OBJECTIVES We investigated the prevalence and clinical risk factors of carotid vessel wall inflammation by means of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) in a population consisting of coronary artery disease (CAD) patients. BACKGROUND The atherosclerotic disease process is

  11. DaPeCa-3

    Jakobsen, Jakob K; Alslev, Louise; Ipsen, Pia

    2015-01-01

    OBJECTIVES: To estimate the diagnostic accuracy of sentinel node biopsy (SNB) combined with preoperative (18) F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) for inguinal lymph node (LN) evaluation in patients with invasive penile squamous cell carcinoma (PSCC) ...

  12. FDG-PET parameters as prognostic factor in esophageal cancer patients: A review

    J.M. Omloo (Jikke); M. van Heijl (Mark); O.S. Hoekstra (Otto); M.I. van Berge Henegouwen (Mark); J.J.B. van Lanschot (Jan); G.W. Sloof (Gerrit)

    2011-01-01

    textabstractBackground:18F-fluorodeoxyglucose positron emission tomography (FDG-PET) has been used extensively to explore whether FDG Uptake can be used to provide prognostic information for esophageal cancer patients. The aim of the present review is to evaluate the literature available to date con

  13. A comparison of the diagnostic value of MRI and 18F-FDG-PET/CT in suspected spondylodiscitis

    Smids, C.; Kouijzer, I.J.E.; Vos, F.J.; Sprong, T.A.; Hosman, A.J.F.; Rooy, de J.W.; Aarntzen, E.H.J.G.; Geus-Oei, de L.; Oyen, W.J.G.; Bleeker-Rovers, Chantal P.

    2017-01-01

    Purpose The purpose of this study was to evaluate the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT scan) and magnetic resonance imaging (MRI) in diagnosing spondylodiscitis and its complications, such as epidural and paraspinal abscess

  14. A comparison of the diagnostic value of MRI and 18F-FDG-PET/CT in suspected spondylodiscitis

    Smids, C.; Kouijzer, I.J.E.; Vos, F.J.; Sprong, T.A.; Hosman, A.J.F.; Rooy, de J.W.; Aarntzen, E.H.J.G.; Geus-Oei, de L.; Oyen, W.J.G.; Bleeker-Rovers, Chantal P.

    2016-01-01

    Purpose The purpose of this study was to evaluate the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT scan) and magnetic resonance imaging (MRI) in diagnosing spondylodiscitis and its complications, such as epidural and paraspinal abscess

  15. Neural estimation of kinetic rate constants from dynamic PET-scans

    Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai;

    1994-01-01

    A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster ...... than direct fitting of rate constants using the parametrized transients of the compartment model...

  16. (18)F-FDG PET during stereotactic body radiotherapy for stage I lung tumours cannot predict outcome : a pilot study

    Wiegman, Erwin M.; Pruim, Jan; Ubbels, Jan F.; Groen, Harry J. M.; Langendijk, Johannes A.; Widder, Joachim

    2011-01-01

    (18)F-Fluorodeoxyglucose positron emission tomography (FDG PET) has been used to assess metabolic response several months after stereotactic body radiotherapy (SBRT) for early-stage non-small cell lung cancer. However, whether a metabolic response can be observed already during treatment and thus ca

  17. Reproducibility of functional volume and activity concentration in (18)F-FDG PET/CT of liver metastases in colorectal cancer

    Heijmen, L.; Geus-Oei, L.F. de; Wilt, J.H. de; Visvikis, D.; Hatt, M.; Visser, E.P.; Bussink, J.; Punt, C.J.A.; Oyen, W.J.G.; Laarhoven, H.W.M. van

    2012-01-01

    PURPOSE: Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before (18)F-FDG PET can be implemented for response evaluation the repeatability should be known. Th

  18. [(18)F]-Sodium fluoride uptake in Takayasu arteritis

    Alexanderson-Rosas, E; Monroy-Gonzalez, A G; Juarez-Orozco, Luis Eduardo; Martinez-Aguilar, M M; Estrada, E; Soldevilla, I; Garcia-Pérez, O; Soto-Lopez, M E

    2016-01-01

    BACKGROUND: While (18)F-fluorodeoxyglucose and (18)F-sodium fluoride with positron emission tomography relate with inflammation and calcification, their role in the assessment of patients with Takayasu arteritis has not yet been studied. METHODS: We present 5 patients with suspected active metabolic

  19. Positron emission tomography of cerebral function during electroacupuncture in Ganshu (BL18) and Qimen (LR14) in rat model of liver-qi depression syndrome%电针肝俞、期门对肝气郁结模型大鼠正电子发射脑功能成像研究

    刘子旺; 赵海滨; 张秀静; 单保慈; 刘华; 贺立娟

    2012-01-01

    Objective To obtain the visible evidence of electroacupuncture regulating injured cerebral function in liver-qi depression syndrome by applying positron emission tomography ( PET) of cerebral function, and explore the mechanism of its effect on nerve center. Methods Wistar rats ( n = 20) were divided into model group of liver-qi depression syndrome ( model group) and treatment group of electroacupuncture ( treatment group) according to body weight. The two groups were given 18F fluorodeoxyglucose (18F-FDG) PET imaging scanning respectively before and after modeling. The data of two groups before and after modeling were treated with two-sample t-test (P < 0. 001) by using SPM2 imagine analysis software, and the regions with brain glucose metabolism changes in bver-qi depression syndrome regulated by electroacupuncture were obtained. Results The visible evidence of electroacupuncture regulating injured cerebral function in liver-qi depression syndrome has been obtained initially. Compared with model group, the cerebral regions with decreased glucose metabolism in treatment group included left frontal lobe, parietal lobe, paracentral lobule, supracallosal gyrus, thalamus and hypothalamus, and the regions with increased glucose metabolism included left basal ganglion, temporal lobe, right frontal lobe and subthalamus besides left frontal lobe and parietal lobe. Conclusion The glucose metabolism in different cerebral regions can be influenced after electroacupuncture in Ganshu (BL18) and Qimen (LR14).%目的 采用正电子发射计算机断层显像(PET)脑功能成像技术,获取电针调控肝气郁结证脑功能受损客观可视性依据,探讨其中枢作用机制.方法 将Wistar大鼠20只按体重随机分为肝郁模型组、电针治疗组,分别于造模前后进行氟18脱氧葡萄糖(18F-FDG) PET脑功能成像扫描,应用SPM2图像分析软件对模型组和电针组造模前后数据进行双样本t检验(P<0.001),获得电针调控肝气郁结证

  20. PET和脑磁图综合定位对难治性癫(癎)低剂量立体定向放射外科治疗远期效果的影响%Effect of combined localization by positron emission tomography and magnetoencephalography on long-term efficacy of low dose radiosurgery for intractable epilepsy

    王克万; 漆松涛; 杨开军; 徐波涛; 王洪筱; 李玉芬

    2012-01-01

    目的 为探讨正电子发射断层扫描(PET)和脑磁图综合定位对难治性癫(癎)低剂量放射外科治疗远期效果的影响.方法 回顾性分析采用放射外科治疗的8例难治性癫(癎)病人的临床资料,治疗前均行MRI、视频脑电图(VEEG)、18F-脱氧葡萄糖正电子发射断层扫描(18F-FDG PET)显像、脑磁图检查.放射外科治疗以脑磁图定位区为中心靶点,体积大于脑磁图显示范围,但局限于PET低代谢区内.中心剂量为11~13.25 Gy.结果 随访8例,时间8~10年.Engel分级:Ⅰ级4例,Ⅱ级2例,Ⅲ级2例.2例行脑磁图复查未检出致(癎)灶,1例行PET复查见原低代谢区无明显变化.结论 PET和脑磁图综合定位可明显增加致(癎)灶定位准确性,从而提高放射外科疗效.%Objective To investigate the effect of localization of positron emission tomography (PET) and magnetoencephalography (MEG) to localize the epileptic foci on the long-term efficacy of low dose stereotactic radiosurgery for intractable epilepsy. Methods Clinical data of 8 patients with intractable epilepsy were analyzed retrospectively who underwent radiosurgery. All the patients were examined by MRI, video electroencephalogram (VEEG), 18F-fluorodeoxyglucose PET (18F-FDG PET) and MEG before surgery. The foci localized by MEG were set as central target of radiosurgery and the volume was larger than the regions by MEG but within the low metabolic areas detected by PET. The central dose of radiosurgery was 11 to 13.25 Gy. Results All the patients were followed up for 8 to 10 years. The results were class Ⅰ in 4 patients, class Ⅱ in 2 and class Ⅲ in 2 according to Engel classification. Two patients were reexamined by MEG and no epileptic foci were found. One patient was reexamined by PET and no obvious change of the original low metabolic areas was found. Conclusions PET combined with MEG can increase the accuracy of localization of epileptic foci and improve the outcome of radiosurgery.

  1. Plastic scintillators for positron emission tomography obtained by the bulk polymerization method

    Kapłon, Łukasz; Molenda, Marcin; Moskal, Paweł; Wieczorek, Anna; Bednarski, Tomasz; Białas, Piotr; Czerwiński, Eryk; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Niedźwiecki, Szymon; Pałka, Marek; Pawlik, Monika; Raczyński, Lech; Rudy, Zbigniew; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Michał; Słomski, Artur; Smyrski, Jerzy; Strzelecki, Adam; Wiślicki, Wojciech; Zieliński, Marcin; Zoń, Natalia

    2015-01-01

    This paper describes three methods regarding the production of plastic scintillators. One method appears to be suitable for the manufacturing of plastic scintillator, revealing properties which fulfill the requirements of novel positron emission tomography scanners based on plastic scintillators. The key parameters of the manufacturing process are determined and discussed.

  2. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    2012-02-14

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a draft...

  3. Diagnosis of heterotopic bone marrow in the mediastinum using /sup 52/Fe and positron emission tomography

    Borgies, P. (Cliniques Universitaires Saint-Luc, Brussels (Belgium). Dept. of Hematology; Cliniques Universitaires Saint-Luc, Brussels (Belgium). Dept. of Nuclear Medicine); Ferrant, A. (Louvain Univ., Louvain-la-Neuve (Belgium). Lab. of Positron Emission Tomography); Leners, N.; Michaux, J.L.; Bol, A.; Michel, C.; Cogneau, M.; Sokal, G.

    1989-11-01

    A patient with hereditary spherocytosis was admitted with mediastinal masses on the chest X-ray. /sup 52/Fe and positron emission tomography (PET) showed uptake of /sup 52/Fe in the masses and established the diagnosis of thoracic extra medullary hematopoiesis. (orig.).

  4. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  5. Positron emission tomography for serial imaging of the contused adult rat spinal cord.

    Nandoe, R.D.S.; Yu, J.; Seidel, J.; Rahiem, S.T.; Hurtado, A.; Tsui, B.M.; Grotenhuis, J.A.; Pomper, M.G.; Oudega, M.

    2010-01-01

    We investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was e

  6. Cobalt-55 positron emission tomography of ipsilateral thalamic and crossed cerebellar hypometabolism after supratentorial ischaemic stroke

    De Reuck, J; Stevens, H; Jansen, H; Keppens, J; Strijckmans, K; Goethals, P; Lemahieu, [No Value; Santens, P; Korf, J

    1999-01-01

    Cobalt-55 (Co-55) is a positron emission tomography (PET) tracer used to demonstrate brain damage, possibly associated to calcium-mediated processes. The degree of Co-55 accumulation correlates with the severity of ischaemia in stroke patients. It is still a matter of debate whether ipsilateral thal

  7. Positron emission tomography in presurgical diagnosis of partial epilepsies. Praeoperative Lokalisationsdiagnostik bei fokaler Epilepsie durch PET

    Hajek, M.; Leenders, K.L. (Universitaetsspital Zurich (Switzerland). Neurologische Klinik Paul Scherrer Institut, Villigen (Switzerland)); Wieser, H.G. (Universitaetsspital Zurich (Switzerland). Neurologische Klinik)

    1992-06-01

    We present results of studies in which positron emission tomography was applied to the presurgical evaluation of epileptics. Emphasis is placed on results of PET studies with various tracers in partial epilepsies and on the use of PET in age-related epileptic syndromes in children. (orig.).

  8. Positron emission tomography (PET) methodology for small animals and its application in radiopharmaceutical preclinical investigation

    Hume, Susan P.; Jones, Terry

    1998-11-01

    The use and usefulness of positron emission tomography (PET) to quantify the specific and selective in vivo binding of radioligands in small laboratory animals is briefly reviewed up to the end of 1996. Emphasis is placed on practical experience with a dedicated, small diameter, tomograph (built in collaboration with CTI, Knoxville, TN), implementing conventional PET methodology.

  9. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. Met

  10. Detection of unknown primary head and neck tumors by positron emission tomography

    Braams, JW; Pruim, J; Kole, AC; Nikkels, PGJ; Vaalburg, W; Vermey, A; Roodenburg, JLN

    1997-01-01

    The purpose of this study was to investigate the potential of using positron emission tomography (PET) with F-18-labeled fluoro-2-deoxy-D-glucose (FDG) to detect unknown primary tumors of cervical metastases. Thirteen patients with various histologic types of cervical metastases of unknown primary o

  11. Positron emission tomography/computed tomography for optimized colon cancer staging and follow up

    Engelmann, Bodil Elisabeth; Loft, Annika; Kjær, Andreas;

    2014-01-01

    OBJECTIVES: Optimal management of colon cancer (CC) requires detailed assessment of extent of disease. This study prospectively investigates the diagnostic accuracy of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) for staging and detection of recurrence...

  12. Predictive value of early F-18-fluoro-deoxyglucose positron emission tomography in chemosensitive relapsed lymphoma

    Schot, B; van Imhoff, G; Pruim, J; Sluiter, W; Vaalburg, W; Vellenga, E

    2003-01-01

    F-18-fluoro-deoxyglucose (FDG) positron emission tomography (PET) might be a better tool than computerized tomography (CT) in predicting long-term treatment outcome in patients with relapsed chemosensitive lymphoma who are candidates for autologous stem cell transplantation (ASCT). We studied patien

  13. High-density avalanche chambers for positron emission tomography

    Manfrass, P.; Enghardt, W.; Fromm, W.D.; Wohlfarth, D.; Hohmuth, K.

    1988-12-15

    A positron tomograph for radiopharmaceutical and medical research is under construction. In its final stage it will cover six high-density avalanche chambers (HIDAC) in a hexagonal arrangement. Each detector with a sensitive area of 50x28 cm/sup 2/ will consist of a stack of four pairs of multihole photon-to-electron converters with a multiwire proportional counter (MWPC) in between. An experimental investigation of detector properties as time and spatial resolutions as well as detector efficiency in dependence to converter structure, electric field strength and counting gas mixture preceded the final design of these detectors. Results of these studies are outlined. Furthermore, longitudinal tomograms taken with a stationary test camera are presented.

  14. Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

    Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.

    2017-01-01

    Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.

  15. Three-dimensional imaging of hidden objects using positron emission backscatter

    Lee, Dongwon [Los Alamos National Laboratory; Cowee, Misa [Los Alamos National Laboratory; Fenimore, Ed [Los Alamos National Laboratory; Galassi, Mark [Los Alamos National Laboratory; Looker, Quinn [Los Alamos National Laboratory; Mcneil, Wendy V [Los Alamos National Laboratory; Stonehill, Laura [Los Alamos National Laboratory; Wallace, Mark [Los Alamos National Laboratory

    2009-01-01

    Positron emission backscatter imaging is a technique for interrogation and three-dimensional (3-D) reconstruction of hidden objects when we only have access to the objects from one side. Using time-of-flight differences in detected direct and backscattered positron-emitted photons, we construct 3-D images of target objects. Recently at Los Alamos National Laboratory, a fully three-dimensional imaging system has been built and the experimental results are discussed in this paper. Quantitative analysis of images reconstructed in both two- and three-dimensions are also presented.

  16. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  17. Positron-Cyclotron Maser for the Core Emissions from Pulsars

    Ma, C; Wang, D; Wu, X; Ma, Chun-yu; Mao, Ding-yi; Wang, De-yu; Wu, Xin-ji

    1997-01-01

    We use the cyclotron-maser theory to explain the core emission from the magnetosphere of pulsars. As a kind of direct and efficient maser type of emission, it can give rise to escaping radiation with extremely high brightness temperature and narrow angle with respect to the magnetic axis. We find that the growth rates and real frequencies of the O-mode electromagnetic wave propagating parallel to the magnetic fields depend on the ratio of the plasma frequency $\\omega_p$ and the gyrofrequency $\\omega_b$ rather than the plasma frequency alone, as described by other models. The emission takes place in the region where the magnitude of $\\omega_p/\\omega_b$ is $10^{-2}$. The corresponding altitude is about a few decades of neutron star radius, where the magnetic field strength is about $10^6-10^8 G$. The qualitative spectrum and the lower frequency cut-off of the radio emission is obtained by this model.

  18. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation.

    Chapman, J D; Schneider, R F; Urbain, J L; Hanks, G E

    2001-01-01

    Radiotherapy prescription can now be customized to target the major mechanism(s) of resistance of individual tumors. In that regard, functional imaging techniques should be exploited to identify the dominant mechanism(s). Tumor biology research has identified several mechanisms of tumor resistance that may be unique to radiation treatments. These fall into 3 broad areas associated with (1) tumor hypoxic fraction, (2) tumor growth rate, (3) and the intrinsic radiosensitivity of tumor clonogens. Imaging research has markers in various stages of development for quantifying relevant information about each of these mechanisms, and those that measure tumor oxygenation and predict for radioresistance are the most advanced. Positron-emission tomography (PET) measurement of oxygen 15 has yielded important information, particularly about brain tissue perfusion, metabolism, and function. Indirect markers of tumor hypoxia have exploited the covalent binding of bioreductive intermediates of azomycin-containing compounds whose uptakes are inversely proportional to intracellular oxygen concentrations. Pilot clinical studies with single-photon emission computed tomography (SPECT) and PET detection of radiolabeled markers to tumor hypoxia have been reported. Recently, other studies have attempted to exploit the reduction properties of both technetium and copper chelates for the selective deposition of radioactive metals in hypoxic tissues. A growing number of potentially useful isotopes are now available for labeling several novel chemicals that could have the appropriate specificity and sensitivity. Preclinical studies with "microSPECT" and "microPET" will be important to define the optimal radiodiagnostic(s) for measuring tissue oxygenation and for determining the time after their administration for optimal hypoxic signal acquisition. Radiolabeled markers of growth kinetics and intrinsic radiosensitivity of cells in solid tumors are also being developed. We conclude that

  19. The electronics system for the LBNL positron emission mammography (PEM) camera

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  20. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined.

  1. Positron emission tomography scanning is coming to a hospital near you soon!

    Bashir, Humayun; Shabo, Gregory; Nunan, T O

    2008-04-01

    Positron emission tomography (PET) is still generally not available in the UK; however, there are plans to introduce a national service in England from April 2008. Plans are also at an advanced stage in Scotland and Wales. The main uses of PET are in preoperative staging of lung cancer, detection of recurrent colorectal cancer, and management of patients with lymphoma. Although these provide the bulk of the referral base, PET is also of use in specific situations in patients with less common cancers, such as head and neck cancer, gynaecological cancer, and melanoma. In its more common uses, PET has been shown to be cost effective. Positron emission tomography will play an increasing role in the evaluation of response to treatment to enable early separation of patients who are responding well to chemotherapy from those who are not responding and need to be transferred to another therapy.

  2. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle Westergren;

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...... study investigates the positive (PPV) and negative predictive value (NPV) of PET-CT in stage I disease and the clinical impact of the scan results in all disease stages....

  3. Usefulness of myocardial positron emission tomography/nuclear imaging in Takotsubo cardiomyopathy

    Marzia; Testa; Mauro; Feola

    2014-01-01

    AIM:To analyse and summarize all the articles related to positron emission tomography and Takotsubo cardiomyopathy(TTC).METHODS:We performed a systematic review of the existing literature on positron emission tomography/nuclear imaging and Takotsubo cardiomyopathy using PUBMED database.We combined search terms such as"takotsubo","takotsubo syndrome","myocardial positron emission tomography","positron emission tomography".All case reports were excluded.The list included only four articles which were reviewed by two independent investigators.It was not possible to undertake a formal meta-analysis because of the heterogeneity of the studies;therefore,we made a narrative synthesis of the collected data.RESULTS:Nuclear medicine techniques can be useful employed in the differential diagnosis of TTC from an acute coronary syndrome(ACS).In fact,transient left ventricular(LV)apical ballooning is a syndrome frequently misdiagnosed as an ACS and can mimic symptoms of myocardial infarction with ST-T segments changes on electrocardiography(ECG),a limited re-lease of myocardial enzyme,mainly reported after sudden emotional or physical stress,and an akinesis or dyskinesis of the left ventricle apex which are completely reversible in a few weeks.In the studies included in this review,nuclear medicine techniques have demonstrated a discrepancy between normal perfusion and a reduced glucose utilization in TTC,commonly known as"inverse flow metabolism mismatch".This suggests that apical ballooning represents a transient metabolic disorder on the cellular level,rather than a structural contractile disease of the myocardium,due to a transient decrease of glucose metabolism that might be related to a coronary microcirculation impairment followed by prolonged myocardial stunning.CONCLUSION:Nuclear medicine techniques can be usefully used for the diagnosis of TTC and can increase our knowledge of the pathophysiological mechanisms of TTC.

  4. The establishment of crystal position look-up table for positron emission tomography with block detectors

    CHAI Pei; SHAN BaoCi

    2009-01-01

    A method has been developed to establish the crystal position look-up table for positron emission tomography with block detectors.It is based on the principle that the counts in crystal position histogram obey the Gaussian mixture model(GMM).This method has taken full consideration of the characteristics of the GMM and the detector itself.The experimental results have proved that it is simple,reliable,and universal.

  5. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W;

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present s...... study investigates the positive (PPV) and negative predictive value (NPV) of PET-CT in stage I disease and the clinical impact of the scan results in all disease stages....

  6. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  7. Imaging Chronic Pain and Inflammation : Positron Emission Tomography Studies of Whiplash Associated Disorder

    2008-01-01

    This thesis is on chronic neck pain after a rear impact car injury, so called whiplash associated disorder (WAD). Three empirical studies using positron emission tomography (PET) with different radioligands have been performed. The first study evaluated resting state regional cerebral blood flow (rCBF) in WAD patients and in healthy, pain-free controls, by use of oxygen-15 labeled water. Patients had heightened resting rCBF bilaterally in the posterior parahippocampal and the posterior cingul...

  8. Dynamic positron emission tomography in man using small bismuth germanate crystals

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  9. Tomography by positrons emission: integral unit to the service of Mexico; Tomografia por emision de positrones: unidad integral al servicio de Mexico

    Lopez D, F.A. [Unidad PET-Ciclotron, Facultad de Medicina, UNAM (Mexico)]. e-mail: fred-alonso@correo.unam.mx

    2005-07-01

    The applications of the Positron emission tomography (PET) together with the one radiopharmaceutical 2 - [{sup 18} F]-fluoro-2-deoxy-D-glucose in the area of the medical imaging is expanding quickly and it possesses a bigger impact at the moment in favor of those patient to who suffers an oncological, cardiac or neurological illness in Mexico. (Author)

  10. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche.

  11. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  12. Aspects of positron emission tomography radiochemistry as relevant for food chemistry.

    Wuest, F

    2005-12-01

    Positron emission tomography (PET) is a medical imaging technique using compounds labelled with short-lived positron emitting radioisotopes to obtain functional information of physiological, biochemical and pharmacological processes in vivo. The need to understand the potential link between the ingestion of individual dietary agents and the effect of health promotion or health risk requires the exact metabolic characterization of food ingredients in vivo. This exciting but rather new research field of PET would provide new insights and perspectives on food chemistry by assessing quantitative information on pharmocokinetics and pharmacodynamics of food ingredients and dietary agents. To fully exploit PET technology in food chemistry appropriately radiolabelled compounds as relevant for food sciences are needed. The most widely used short-lived positron emitters are (11)C (t(1/2) = 20.4 min) and (18)F (t(1/2) = 109.8 min). Longer-lived radioisotopes are available by using (76)Br (t(1/2) = 16.2 h) and (124)I (t(1/2) = 4.12 d). The present review article tries to discuss some aspects for the radiolabelling of food ingredients and dietary agents either by means of isotopic labelling with (11)C or via prosthetic group labelling approaches using the positron emitting halogens (18)F, (76)Br and (124)I.

  13. Functional testicular evaluation using PET/CT with {sup 18}F-fluorodeoxyglucose

    Dierickx, Lawrence Oliver; Zerdoud, Slimane; Filleron, Thomas; Brillouet, Severine [Institut Claudius Regaud, Service of Nuclear Medicine, Toulouse (France); Huyghe, Eric; Delauney, Boris; Bujan, Louis; Plante, Pierre [CHU Toulouse, Toulouse (France); Nogueira, Daniela; Montagut, Jacques [I.F.R.E.A.R.E.S., Toulouse (France); Courbon, Frederic [Institut Claudius Regaud, Service of Nuclear Medicine, Toulouse (France); CHU Toulouse, Toulouse (France)

    2012-01-15

    PET/CT using {sup 18}F-FDG is a well-established diagnostic examination in oncology, cardiology and neurology. The clinical significance of nontumoral testicular uptake of FDG is unknown. Functional testicular imaging may have important clinical applications in the diagnosis and prognosis of male infertility. The aim of this study was to determine the andrological value of a FDG PET/CT in analysing testicular function, by correlating the PET/CT data with the sperm parameters. Retrospective analysis of FDG PET/CT in 20 consecutive cancer patients without testicular pathology in whom two semen samples had been obtained for analysis before any chemotherapy. FDG PET/CT parameters were the mean standardized uptake value (SUVmean), used for measuring the intensity of uptake, and the functional testicular volume (FV). For statistical analysis, a Spearman's rank correlation test and a Mann-Whitney test were used. Of 20 patients (mean age 22 years), 18 had provided two sperm samples for cryopreservation. Sperm concentration was above 20 x 10{sup 6}/ml in 55% of the patients. The intensity of uptake and the FV were correlated with the total sperm count, the sperm concentration and motility (p < 0.05). The difference in SUVmean between the two testes showed an inverse correlation with sperm concentration (p = 0.036). Normospermic and oligospermic men had significant differences in: (1) mean SUVmean, (2) mean FV, and (3) the difference in intensity of uptake between the testes (p < 0.05). This is the first report on the andrological value of FDG PET/CT in analysing nontumoral testicular function. This pilot study showed a significant correlation between intensity of uptake of FDG and testicular FV with the main sperm parameters. PET/CT with FDG could become a useful new tool in assisted reproductive technologies and other andrological or urological applications. (orig.)

  14. Correlation of hepatic {sup 18}F-fluorodeoxyglucose uptake with fatty liver

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2006-10-15

    Liver demonstrates heterogeneous FDG uptake and sometimes it shows abnormally increased uptake even though there is no malignant tissue. However, there was no previous study to correlate these various pattern of hepatic FDG uptake with benign liver disease. Therefore, we evaluated the significance of hepatic FDG uptake associated with various clinical factors including fatty liver, liver function tests and lipid profiles. We reviewed a total of 188 patients (male/female: 120/68, mean age: 50 {+-} 9) who underwent PET/CT for screening of malignancy. Patients with DM, impaired glucose tolerance, previous severe hepatic disease or long-term medication history were excluded. The FDG uptake in liver was analyzed semi-quantitatively using ROI on transaxial images (segment 8) and we compared mean standardized uptake value (SUV) between fatty liver and non-fatty liver group. We also evaluated the correlation between hepatic FDG uptake and various clinical factors including serum liver function test (ALT, AST), {gamma} -GT, total cholesterol and triglyceride concentration. The effect of alcoholic history and body mass index on hepatic FDG uptake was analyzed within the fatty liver patients. The hepatic FDG uptake of fatty liver group was significantly higher than that of non-fatty liver group. Serum total cholesterol and triglyceride concentration showed significant correlation with hepatic FDG uptake. However, there was no significant correlation between other factors (ALT, AST, and {gamma} -GT) and FDG uptake. Also there was no difference of mean SUV between normal and abnormal groups on the basis of alcoholic history and body mass index within fatty liver patients. Fatty liver and high serum triglyceride concentration were the independent factors affecting hepatic FDG uptake according to multivariate analysis. In conclusion, hepatic FDG uptake was strongly correlated with fatty liver and serum triglyceride concentration.

  15. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  16. Respiratory motion in positron emission tomography for oncology applications: Problems and solutions

    Visvikis, D. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France)]. E-mail: Visvikis.Dimitris@univ-brest.fr; Lamare, F. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France); Bruyant, P. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France); Boussion, N. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France); Cheze Le Rest, C. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France)

    2006-12-20

    The effect of physiological motion in emission tomography is a reduction in overall image contrast and loss of sensitivity. In particular, respiratory motion affects imaging in the thoracic and the upper abdomen area, leading to a reduction in lesion detection as a result of the associated blurring. Furthermore, respiratory motion leads to a compromise in quantitative accuracy in terms of functional volume determination and activity concentration recovery for oncology imaging. This paper presents a review of the current state of the art in the implementation of respiratory motion compensation techniques in positron emission tomography (PET) imaging for oncology applications.

  17. Quantitative analysis of myocardial glucose utilization in patients with left ventricular dysfunction by means of {sup 18}F-FDG dynamic positron tomography and three-compartment analysis

    Morita, Koichi; Yoshinaga, Keiichiro; Mabuchi, Megumi; Kageyama, Hiroyuki; Shiga, Tohru; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Kita-ku, Sapporo (Japan); Katoh, Chietsugu; Kuge, Yuji [Hokkaido University Graduate School of Medicine, Department of Tracer Kinetics, Kita-ku, Sapporo (Japan); Noriyasu, Kazuyuki; Tsukamoto, Takahiro [Hokkaido University Graduate School of Medicine, Department of Cardiovascular Medicine, Kita-Ku, Sapporo (Japan)

    2005-07-01

    Myocardial glucose utilization (MGU) is altered in various heart diseases. The aim of this study was to quantitatively assess regional myocardial glucose utilization in patients with left ventricular (LV) dysfunction by dynamic{sup 18}F-fluorodeoxyglucose positron emission tomography (FDG PET). A total of 18 subjects were studied, including ten with LV dysfunction (seven with idiopathic dilated cardiomyopathy and three with aortic regurgitation; NYHA II in 8 and III in 2) and eight healthy normal volunteers. Patients with diabetes mellitus were excluded. A dynamic PET study was performed for 40 min following the injection of 370 MBq of FDG after 50-g glucose loading. On the basis of a three-compartment model, MGU, K{sub 1}, k{sub 2}, and k{sub 3} were computed on a pixel by pixel basis to generate LV myocardial parametric maps. FDG standardized uptake value (SUV) was also calculated using static images obtained 40 min after FDG injection. These metabolic values were compared with myocardial flow distribution (%Flow), LVEF, LV volumes, and LV wall thickening (WT) determined by gated myocardial single-photon emission computed tomography using QGS software in eight myocardial segments. MGU correlated positively with LV volumes and negatively with LVEF. K{sub 1} was significantly higher in the segments of the patients than in those of the normal volunteers (0.082{+-}0.055 vs 0.041{+-}0.017 ml min{sup -1} g{sup -1}, p<0.05), although there was no difference in MGU between the groups. On the other hand, SUV, k{sub 2}, and k{sub 3} did not differ significantly between the groups. Among the patients, the K{sub 1} values were significantly higher in the areas with impaired WT (%WT<17%) (0.109{+-}0.063 vs 0.069{+-}0.062 ml min{sup -1} g{sup -1}, p<0.05) and in the areas with flow reduction (%Flow<71%) (0.112{+-}0.076 vs 0.071{+-}0.046 ml min{sup -1} g{sup -1}, p<0.05). These results indicate that glucose utilization was preserved in the patients with LV dysfunction, mainly

  18. Application of Positron Emission Tomography to Aerosol Transport Research in a Model of Human Lungs

    Jicha M.

    2013-04-01

    Full Text Available Positron Emission Tomography (PET is a convenient method for measurement of aerosol deposition in complex models of lungs. It allows not only the evaluation of regional deposition characteristics but also precisely detects deposition hot spots. The method is based on a detection of a pair of annihilation photons moving in opposite directions as a result of positron – electron interaction after the positron emission decay of a suitable radioisotope. Liquid di(2-ethylhexyl sebacate (DEHS particles tagged with fluorine-18 as a radioactive tracer were generated by condensation monodisperse aerosol generator. Aerosol deposition was measured for three different inhalation flowrates and for two sizes of particles. Combination of PET with Computed Tomography (CT in one device allowed precise localisation of particular segments of the model. The results proved correlation of deposition efficiency with Stokes number, which means that the main deposition mechanism is inertial impaction. As a next task the methodology for tagging the solid aerosol particles with radioactive tracer will be developed and deposition of porous and fiber aerosols will be measured.

  19. Geneva University - The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography

    Université de Genève

    2012-01-01

    Geneva University École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 14 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11.15 a.m. - Science II, Auditoire 1S081, 30, quai Ernest-Ansermet, 1211 Genève 4 The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography Dr Chiara CASELLA   ETH Zurich   PET (Positron Emission Tomography) is a tool for in-vivo functional imaging, successfully used since the earliest days of nuclear medicine. It is based on the detection of the two coincident 511 keV photons from the annihilation of a positron, emitted from a radiotracer injected into the body. Tomographic analysis of the coincidence data allows for a 3D reconstructed image of the source distribution. The AX-PET experiment proposes a novel geometrical approach for a PET scanner, in which l...

  20. High power laser production of short-lived isotopes for positron emission tomography

    Ledingham, K W D [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); McKenna, P [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); McCanny, T [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Shimizu, S [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yang, J M [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Robson, L [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zweit, J [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Gillies, J M [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Bailey, J [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Chimon, G N [CR-UK/UMIST Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX (United Kingdom); Clarke, R J [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Neely, D [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Norreys, P A [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Collier, J L [Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX110QX (United Kingdom); Singhal, R P [Department of Physics and Astronomy, University of Glasgow G12 8QQ (United Kingdom); Wei, M S [Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ (United Kingdom)] [and others

    2004-08-21

    Positron emission tomography (PET) is a powerful diagnostic/imaging technique requiring the production of the short-lived positron emitting isotopes {sup 11}C, {sup 13}N, {sup 15}O and {sup 18}F by proton irradiation of natural/enriched targets using cyclotrons. The development of PET has been hampered due to the size and shielding requirements of nuclear installations. Recent results show that when an intense laser beam interacts with solid targets, megaelectronvolt (MeV) protons capable of producing PET isotopes are generated. This report describes how to generate intense PET sources of {sup 11}C and {sup 18}F using a petawatt laser beam. The work describing the laser production of {sup 18}F through a (p,n) {sup 18}O reaction, and the subsequent synthesis of 2-[{sup 18}F] is reported for the first time. The potential for developing compact laser technology for this purpose is discussed.

  1. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons.

    Sato, K; Kobayashi, Y

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  2. Cosmic Ray Electrons, Positrons and the Synchrotron emission of the Galaxy: consistent analysis and implications

    Di Bernardo, Giuseppe; Gaggero, Daniele; Grasso, Dario; Maccione, Luca

    2012-01-01

    A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ~ 1 GeV and at constraining several propagation parameters. We find that above 4 GeV the electron source spectrum is compatible with a power-law of index -2.5. Below 4 GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only within low reacceleration models. We also constrain the scale-height zt of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z_t < 2 kpc are excluded. This result may have strong implications for particle dark matter searches.

  3. Radiolabeled phosphonium salts as mitocondrial voltage sensors for positron emission tomography myocardial imaging agents

    Kim, Dong Yon; Min, Jung Joon [Dept. of Nuclear Medicine,Chonnam National University Medical School and Hwasun Hospital, Gwangju (Korea, Republic of)

    2016-09-15

    Despite substantial advances in the diagnosis of cardiovascular disease, {sup 18}F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenyl phosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  4. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  5. A positron emission tomography study of wind-up pain in chronic postherniotomy pain

    Kupers, Ron; Lonsdale, Markus Georg; Aasvang, Eske Kvanner;

    2011-01-01

    -induced wind-up pain in neuropathic pain patients. We therefore used positron emission tomography (PET) to investigate the cerebral response pattern of mechanical wind-up pain in a homogenous group of 10 neuropathic pain patients with long-standing postherniotomy pain in the groin area. Patients were scanned......) and the brain stem. A direct comparison between wind-up pain and pressure pain revealed that both activated a largely overlapping network. Since no de novo brain areas were activated by wind-up pain, our data suggest that the processes specific to wind-up pain do not occur at the cerebral level....

  6. Synthesis of analogues of (-)-cytisine for in vivo studies of nicotinic receptors using positron emission tomography.

    Marrière, E; Rouden, J; Tadino, V; Lasne, M C

    2000-04-20

    [formula: see text] 9-Substituted analogues of (-)-cytisine were synthesized in high yields via palladium-mediated couplings of either 9-(-)-bromocytisine and organostannanes or 9-(-)-trimethylstannylcytisine and fluorobromobenzene. The protection of the amine with a nitroso group and the use of PdCl2(PPh3)2 to carry out the Stille reaction allowed the rapid synthesis of 9-(4'-[18F]fluorophenyl)cytisine (18F: t1/2 = 109.7 min), a new promising radioligand (radiochemical yield: 10% from [18F]KF, 150 min, four steps) for positron emission tomography studies of alpha 4 beta 2 nicotinic receptors.

  7. Fluorodeoxyglucose positron emission tomography (FDG-PET) for monitoring lymphadenopathy in the autoimmune lymphoproliferative syndrome (ALPS).

    Rao, V Koneti; Carrasquillo, Jorge A; Dale, Janet K; Bacharach, Stephen L; Whatley, Millie; Dugan, Faith; Tretler, Jean; Fleisher, Thomas; Puck, Jennifer M; Wilson, Wyndham; Jaffe, Elaine S; Avila, Nilo; Chen, Clara C; Straus, Stephen E

    2006-02-01

    Autoimmune lymphoproliferative syndrome (ALPS) is associated with mutations that impair the activity of lymphocyte apoptosis proteins, leading to chronic lymphadenopathy, hepatosplenomegaly, autoimmunity, and an increased risk of lymphoma. We investigated the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) in discriminating benign from malignant lymphadenopathy in ALPS. We report that FDG avidity of benign lymph nodes in ALPS can be high and, hence, by itself does not imply presence of lymphoma; but FDG-PET can help guide the decision for selecting which of many enlarged nodes in ALPS patients to biopsy when lymphoma is suspected.

  8. Positron emission tomography in the diagnosis and staging of lung cancer

    Fischer, B M; Mortensen, J; Højgaard, L

    2001-01-01

    positron emission tomography (PET) and gamma-camera PET in the diagnostic investigation of non-small-cell lung cancer (NSCLC). A systematic literature search was carried out in the MEDLINE and EMBASE databases and the Cochrane Controlled Trials Register. We identified 55 original works on the diagnostic......Lung cancer is the cause of 32% of all male cancer deaths and 25% of all female cancer deaths. Because the prognosis depends on early diagnosis and staging, continuous evaluation of the diagnostic tools available is important. The aim of this study was to assess the diagnostic value of dedicated...

  9. A feature point identification method for positron emission particle tracking with multiple tracers

    Wiggins, Cody; Santos, Roque; Ruggles, Arthur

    2017-01-01

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases.

  10. Neuro-imaging and positron emission tomography of congenital homonymous hemianopsia.

    Bosley, T M; Kiyosawa, M; Moster, M; Harbour, R; Zimmerman, R; Savino, P J; Sergott, R C; Alavi, A; Reivich, M

    1991-04-15

    Congenital homonymous hemianopsia is an uncommon asymptomatic visual field defect discovered typically in young adult life that is caused by a diverse group of insults to the retrochiasmal afferent visual system occurring prenatally, at birth, or during early childhood. We treated eight patients with congenital homonymous hemianopsia; seven with damage involving the optic radiations and one with an abnormality of the optic tract. We performed positron emission tomography using 18F-fluoro-2-deoxyglucose on two patients with dense homonymous hemianopsias, lesions of the contralateral optic radiations, and largely intact occipital cortex. These studies showed minimal abnormalities in resting visual cortex glucose metabolism of the affected visual cortex.

  11. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.; Dowling-Zimmerman, S.; Pickar, D.; Boronow, J.; Morihisa, J.M.; van Kammen, D.P.; Carpenter, W.; Kessler, R.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern.

  12. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    Herraiz, J. L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Sitek, A., E-mail: sarkadiu@gmail.com [Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  13. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  14. High-resolution PET (positron emission tomography) for medical science studies

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. (Lawrence Berkeley Lab., CA (USA))

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  15. In vivo evaluation of [11C]preladenant positron emission tomography for quantification of adenosine A2A receptors in the rat brain

    Zhou, Xiaoyun; Khanapur, Shivashankar; de Jong, Johan R; Willemsen, Antoon T.M.; Dierckx, Rudi Ajo; Elsinga, Philip H; de Vries, Erik Fj

    2016-01-01

    [(11)C]Preladenant was developed as a novel adenosine A2A receptor positron emission tomography radioligand. The present study aims to evaluate the suitability of [(11)C]preladenant positron emission tomography for the quantification of striatal A2A receptor density and the assessment of striatal A2

  16. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich;

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed...

  17. Cosmic ray electrons, positrons and the synchrotron emission of the Galaxy: consistent analysis and implications

    Bernardo, Giuseppe Di [Department of Physics, University of Gothenburg, SE 412 96 Gothenburg (Sweden); Evoli, Carmelo [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Gaggero, Daniele [SISSA, Via Bonomea 265, 34136 Trieste (Italy); Grasso, Dario [Dipartimento di Fisica, Università di Siena, Via Roma 56, I-56100 Siena (Italy); Maccione, Luca, E-mail: giuseppe.dibernardo@physics.gu.se, E-mail: carmelo.evoli@desy.de, E-mail: dgaggero@sissa.it, E-mail: dario.grasso@pi.infn.it, E-mail: luca.maccione@lmu.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany)

    2013-03-01

    A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ∼< 1GeV and at constraining several propagation parameters. We find that above 4GeV the e{sup −} source spectrum is compatible with a power-law of index ∼ 2.5. Below 4GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only within low reacceleration models. We also constrain the scale-height z{sub t} of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z{sub t} ∼< 2kpc are excluded. This result may have strong implications for particle dark matter searches.

  18. Pretargeted Positron Emission Tomography Imaging That Employs Supramolecular Nanoparticles with in Vivo Bioorthogonal Chemistry.

    Hou, Shuang; Choi, Jin-Sil; Garcia, Mitch Andre; Xing, Yan; Chen, Kuan-Ju; Chen, Yi-Ming; Jiang, Ziyue K; Ro, Tracy; Wu, Lily; Stout, David B; Tomlinson, James S; Wang, Hao; Chen, Kai; Tseng, Hsian-Rong; Lin, Wei-Yu

    2016-01-26

    A pretargeted oncologic positron emission tomography (PET) imaging that leverages the power of supramolecular nanoparticles with in vivo bioorthogonal chemistry was demonstrated for the clinically relevant problem of tumor imaging. The advantages of this approach are that (i) the pharmacokinetics (PKs) of tumor-targeting and imaging agents can be independently altered via chemical alteration to achieve the desired in vivo performance and (ii) the interplay between the two PKs and other controllable variables confers a second layer of control toward improved PET imaging. In brief, we utilized supramolecular chemistry to synthesize tumor-targeting nanoparticles containing transcyclooctene (TCO, a bioorthogonal reactive motif), called TCO⊂SNPs. After the intravenous injection and subsequent concentration of the TCO⊂SNPs in the tumors of living mice, a small molecule containing both the complementary bioorthogonal motif (tetrazine, Tz) and a positron-emitting radioisotope ((64)Cu) was injected to react selectively and irreversibly to TCO. High-contrast PET imaging of the tumor mass was accomplished after the rapid clearance of the unreacted (64)Cu-Tz probe. Our nanoparticle approach encompasses a wider gamut of tumor types due to the use of EPR effects, which is a universal phenomenon for most solid tumors.

  19. Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET Imaging Using GEANT4 Toolkit

    Mohsen Mashayekhi

    2015-05-01

    Application of a magnetic field perpendicular to the positron diffusion plane prevented the scattering of positrons, and consequently, improved the intrinsic spatial resolution of PET imaging, caused by positron range effects.

  20. Attenuation correction with Region Growing Method used in the Positron Emission Mammography System

    Gu, Xiao-Yue; Yin, Peng-Fei; Yun, Ming-Kai; Pei, Chai; Fan, Xin; Huang, Xian-Chao; Sun, Xiao-Li; Wei, Long

    2014-01-01

    Positron Emission Mammography imaging system (PEMi) is a nuclear medicine diagnosis method dedicated for breast imaging. It provides a better resolution in detection of millimeter-sized breast tumors than whole-body PET. To address the requirement of semi-quantitative analysis with the radiotracer concentration map of the breast, a new attenuation correction method based on three-dimensional seeded region growing image segmentation (3DSRG-AC) solution was developed. The method gives a 3D connected region as the segmentation result instead of image slices. The continuously segmentation property makes this new method free of activity variation of breast tissues. Threshold value chosen is the key point for the segmentation process. The first valley of the grey level histogram of the reconstruction image is set as the lower threshold, which works fine in clinical application. Results show that attenuation correction for PEMi improves the image quality and the quantitative accuracy of radioactivity distribution de...

  1. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects.

  2. Design And Development Of A Mammary And Axillary Region Positron Emission Tomography System (maxpet)

    Doshi, N K

    2000-01-01

    Breast cancer is the second leading cause of cancer death in women. Currently, mammography and physical breast examination, both non-invasive techniques, provide the two most effective methods available for screening potential breast cancer patients. During the management of patients, however, several invasive techniques such as axillary lymph node dissection, core biopsies and lumpectomies, are utilized to determine the stage or malignancy of the disease with significant cost and morbidity associated with them. Positron Emission Tomography (PET), using [F-18] fluorodeoxyglucose (FDG) tracer is a sensitive and non-invasive imaging modality that may be a cost-effective alternative to certain invasive procedures. In this project we have developed a low cost, high performance, dedicated PET camera (maxPET) for mammary and axillary region imaging. The system consists of two 15x15 cm2 planar scintillation detector arrays composed of modular detectors operating in coincidence. The modular detectors are comprised of...

  3. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease

    Korsholm, Kirsten; Feldt-Rasmussen, Ulla; Granqvist, Henrik;

    2015-01-01

    risk of cerebrovascular disease at a young age in addition to heart and kidney failure. OBJECTIVE: The objective of this study was to assess brain function and structure in the Danish cohort of patients with Fabry disease in a prospective way using 18-fluoro-deoxyglucose (F-18 FDG) positron emission....... CONCLUSION: Our data indicated that, in patients with Fabry disease, MRI is the preferable clinical modality--if applicable--when monitoring cerebral status, as no additional major brain-pathology was detected with FDG-PET.......BACKGROUND: Fabry disease is a rare metabolic glycosphingolipid storage disease caused by deficiency of the lysosomal enzyme α-galactosidase A--leading to cellular accumulation of globotriasylceramide in different organs, vessels, tissues, and nerves. The disease is associated with an increased...

  4. Characterization of hepatic tumors using [11C]metomidate through positron emission tomography

    Roivainen, Anne; Naum, Alexandru; Nuutinen, Heikki

    2013-01-01

    ABSTRACT: BACKGROUND: Using positron emission tomography (PET), we compared two tracers, [11C]metomidate ([11C]MTO) and [11C]acetate ([11C]ACE), for the characterization of hepatic tumors. METHODS: Thirty-three patients underwent PET with [11C]MTO and [11C]ACE and magnetic resonance imaging (MRI......). Based on the histology of the tumor biopsy, 14 patients had hepatocellular carcinoma (HCC), 9 patients had focal nodular hyperplasia (FNH), and 10 patients had other types of hepatic tumors. Tumor uptake was evaluated by calculating the maximum and mean standardized uptake value and tumor-to-liver ratio....... RESULTS: Altogether, 120 hepatic lesions (59 HCC, 18 FNH, 30 metastases of different primaries, 9 adenomas, and 4 regenerating nodules of liver cirrhosis) were detected by MRI. The overall tumor detection rate was slightly higher for [11C]MTO (39%) than for [11C]ACE (33%). [11C]ACE was more sensitive...

  5. EndoTOFPET-US a Novel Multimodal Tool for Endoscopy and Positron Emission Tomography

    Garutti, Erika

    2013-01-01

    The EndoTOFPET-US project aims to jointly exploit Time-Of-Flight Positron Emission Tomography (TOFPET) and ultrasound endoscopy with a multi-modal instrument for the development of new biomarkers for pancreas and prostate oncology. The paper outlines the functionality of the proposed instrument and the challenges for its realization. The high level of miniaturization and integration poses strong demands to the fields of scintillating crystallography, ultra-fast photon detection, highly integrated electronics and system integration. Solutions are presented to obtain a coincidence time resolution better than 200 ps and a spatial resolution of ~1 mm with an asymmetric TOFPET detector. A tracking system with better than 1 mm spatial resolution precision enables the online alignment of the system. The detector design, the production and test status of the single detector

  6. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E;

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...... subjects using three different MRI techniques: arterial spin labeling (ASL), dynamic contrast enhanced T1 weighted perfusion MRI (DCE) and phase contrast mapping (PCM). All MRI measurements were performed within the same session. In 10 of the subjects repeated CBF measurements by (15) O labeled water PET......L/100 g/min, 16.2% and 4.8%, for DCE 43.0 mL/100 g/min, 20.0%, 15.1% and for PET 41.9 mL/100 g/min, 16.5% and 11.9%, respectively. Only for DCE and PCM a significant positive correlation between measurements was demonstrated. CONCLUSION: These findings confirm large between subject variability in CBF...

  7. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    Matthews, Robert; Choi, Minsig

    2016-09-09

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  8. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    Biegon, A.; Biegon, A.; Kim, S.-W.; Logan, J.; Hooker, J.M.; Muench, L.; Fowler, J.S.

    2010-01-12

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [{sup 11}C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in [{sup 11}C]vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.

  9. An objective evaluation framework for segmentation techniques of functional positron emission tomography studies

    Kim, J; Eberl, S; Feng, D

    2004-01-01

    Segmentation of multi-dimensional functional positron emission tomography (PET) studies into regions of interest (ROI) exhibiting similar temporal behavior is useful in diagnosis and evaluation of neurological images. Quantitative evaluation plays a crucial role in measuring the segmentation algorithm's performance. Due to the lack of "ground truth" available for evaluating segmentation of clinical images, automated segmentation results are usually compared with manual delineation of structures which is, however, subjective, and is difficult to perform. Alternatively, segmentation of co-registered anatomical images such as magnetic resonance imaging (MRI) can be used as the ground truth to the PET segmentation. However, this is limited to PET studies which have corresponding MRI. In this study, we introduce a framework for the objective and quantitative evaluation of functional PET study segmentation without the need for manual delineation or registration to anatomical images of the patient. The segmentation ...

  10. Initial characterization of a position-sensitive photodiode/BGO detector for PET (positron emission tomography)

    Derenzo, S.E.; Moses, W.W.; Jackson, H.G.; Turko, B.T.; Cahoon, J.L.; Geyer, A.B.; Vuletich, T.

    1988-11-01

    We present initial results of a position-sensitive photodiode/BGO detector for high resolution, multi-layer positron emission tomography (PET). Position sensitivity is achieved by dividing the 3 mm /times/ 20 mm rectangular photosensitive area along the diagonal to form two triangular segments. Each segment was individually connected to a low-noise amplifier. The photodiodes and crystals were cooled to /minus/100/degree/C to reduce dark current and increase the BGO signal. With an amplifier peaking time of 17 ..mu..sec, the sum of the signals (511 keV photopeak) was 3200 electrons with a full width at half maximum (fwhm) of 750 electrons. The ratio of one signal to the sum determined the depth of interaction with a resolution of 11 mm fwhm. 27 refs., 7 figs.

  11. A New Positron Emission Tomography (PET) Radioligand for Imaging Sigma-1 Receptors in Living Subjects

    James, Michelle L; Shen, Bin; Zavaleta, Cristina L;

    2012-01-01

    Sigma-1 receptor (S1R) radioligands have the potential to detect and monitor various neurological diseases. Herein we report the synthesis, radiofluorination and evaluation of a new S1R ligand 6-(3-fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one ([(18)F]FTC-146, [(18)F]13). [(18)F......]13 was synthesized by nucleophilic fluorination, affording a product with >99% radiochemical purity (RCP) and specific activity (SA) of 2.6 ± 1.2 Ci/µmol (n = 13) at end of synthesis (EOS). Positron emission tomography (PET) and ex vivo autoradiography studies of [(18)F]13 in mice showed high uptake...

  12. Hypoxia imaging using Positron Emission Tomography in non-small cell lung cancer: implications for radiotherapy.

    Bollineni, Vikram Rao; Wiegman, Erwin M; Pruim, Jan; Groen, Harry J M; Langendijk, Johannes A

    2012-12-01

    Tumour hypoxia is an important contributor to radioresistance. Thus, increasing the radiation dose to hypoxic areas may result in improved locoregional tumour control. However, this strategy requires accurate detection of the hypoxic sub-volume using PET imaging. Secondly, hypoxia imaging may also provide prognostic information and may be of help to monitor treatment response. Therefore, a systematic review of the scientific literature was carried out on the use of Positron Emission Tomography (PET) to image Tumour hypoxia in non-small cell lung cancer (NSCLC). More specifically, the purpose of this review was (1) to summarize the different hypoxia tracers used, (2) to investigate whether Tumour hypoxia can be detected in NSCLC and finally (3) whether the presence of hypoxia can be used to predict outcome.

  13. Imaging amyloid in Parkinson's disease dementia and dementia with Lewy bodies with positron emission tomography.

    Brooks, David J

    2009-01-01

    Although Parkinson's disease with later dementia (PDD) and dementia with Lewy bodies (DLB) are pathologically characterized by the presence of intraneuronal Lewy inclusion bodies, amyloid deposition is also associated to varying degrees with both these disorders. Fibrillar amyloid load can now be quantitated in vivo with positron emission tomography (PET) using imaging biomarkers. Here the reported findings of 11C-PIB PET studies concerning the amyloid load associated with PD and its influence on dementia are reviewed. It is concluded that the presence of amyloid acts to accelerate the dementia process in Lewy body disorders, though has little influence on its nature. Anti-amyloid strategies could be a relevant approach for slowing dementia in a number of DLB and PDD cases.

  14. A positron emission particle tracking investigation of the flow regimes in tumbling mills

    Govender, I.; Pathmathas, T.

    2017-01-01

    Using positron emission particle tracking (PEPT) data we recover key granular rheology ingredients (velocity, shear rate, volume concentration, bed depth) for developing, testing and calibrating granular flow models. In this regard, 5 mm glass beads were rotated within a 476 mm diameter mill fitted with angled lifter bars along the inner azimuthal walls and operated in batch mode across a range of drum rotation speeds that span cascading and cataracting Froude regimes. After averaging the PEPT outputs into representative volume elements, subsequent continuum analysis of the flowing layer revealed a rich coexistence of flow regimes: a quasi-static layer dominated by frictional interactions, a dense, liquid-like layer that is stressed by frictional and collisional interactions, and an inertial layer that interacts mainly through collisions. Combining the inertial number with an empirically formulated dilatancy law and the measured granular rheological ingredients then facilitated the recovery of the total depth-dependent pressure of the free surface layer.

  15. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki;

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  16. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...... PET and MRI have previously been used for imaging plaque morphology and function: however, the combination of the two methods may offer new synergistic opportunities. Here, we will give a short summary of current relevant clinical applications of PET and MRI in the setting of atherosclerosis....... Additionally, our initial experiences with simultaneous PET/MRI for atherosclerosis imaging are presented. Finally, future potential vascular applications exploiting the unique combination of PET and MRI will be discussed....

  17. Facile synthesis of ( sup 11 C)buprenorphine for positron emission tomographic studies of opioid receptors

    Lever, J.R.; Dannals, R.F.; Wagner, H.N. Jr. (Johns Hopkins Univ., Baltimore, MD (USA). School of Hygiene and Public Health Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Radiology); Mazza, S.M. (Johns Hopkins Univ., Baltimore, MD (USA). School of Hygiene and Public Health); Ravert, H.T.; Wilson, A.A. (Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Radiology)

    1990-01-01

    We have developed a simple and rapid method for the production of buprenorphine (BPN), a potent opioid partial agonist, labelled with carbon-11 at the 6-methoxy position. The procedure uses a precursor synthesized in high yield (89%) from BPN in two steps and employs ({sup 11}C)iodomethane as the radiolabelling reagent. ({sup 11}C)BPN of 97% radiochemical purity can be prepared in high specific activity (41 GBq/{mu}mol; 1120 mCi/{mu}mol) in a radiochemical yield of 10% at end-of-synthesis (not decay corrected). The ({sup 11}C)BPN is available for use in studies of cerebral opioid receptors by positron emission tomography within 24 min from end-of-bombardment, including radiosynthesis, purification, formulation for i.v. injection and determination of specific activity. (author).

  18. Short time bacterial endotoxins test for positron emission tomography by means of positively charged filters

    Nakazawa, Nobuhiro; Wakita, Kazuo [Nishijin Hospital, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural Univ. of Medicine (Japan)] (and others)

    2002-11-01

    Positron emission tomography (PET) radiotracers have very short physical half-lives. It is hard to complete a bacterial endotoxins test prior to release from medical institutes. For endotoxin quantitative determination, limulus amebocyte lysate (LAL) reagent and kinetic-turbidimetry system were previously developed. We investigated the possibility of a short time test by means of positively charged filters. As a result of this study, the effects of positively charged filters on endotoxin removal were over 99.5% for [{sup 18}F]FDG and [{sup 18}F]NaF, which were contaminated with the indicated concentration of endotoxin. Combining this filter and the kinetic-turbidimetric method, it was possible to complete a bacterial endotoxins test in 5 min prior to the patient's administration. This test should be required prior to release for PET radiopharmaceutical quality control. It has been suggested that this combination is a good method for this purpose. (author)

  19. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

    Aboagye, Eric O.; Kenny, Laura M.; Myers, Melvyn [Imperial College London, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Gilbert, Fiona J. [University of Cambridge, Radiology Department, Cambridge (United Kingdom); Fleming, Ian N. [University of Aberdeen, NCRI PET Research Network, Aberdeen Bioimaging Centre, Aberdeen (United Kingdom); Beer, Ambros J. [Technische Universitaet Munchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Cunningham, Vincent J. [University of Aberdeen, Institute of Medical Sciences, Aberdeen (United Kingdom); Marsden, Paul K. [St. Thomas' Hospital, Division of Imaging Sciences, PET Imaging Centre, London (United Kingdom); Visvikis, Dimitris [INSERM National Institute of Health and Clinical Sciences LaTIM, CHU Morvan, Brest (France); Gee, Antony D. [St. Thomas' Hospital, Division of Imaging Sciences, The Rayne Institute, London (United Kingdom); Groves, Ashley M. [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Cook, Gary J. [St. Thomas' Hospital, KCL Division of Imaging, Sciences and Biomedical Engineering, PET Imaging Centre, London (United Kingdom); Kinahan, Paul E. [University of Washington, 222 Old Fisheries Center (FIS), Box 357987, Seattle, WA (United States); Clarke, Larry [Cancer Imaging Program, Imaging Technology Development Branch, Rockville, MD (United States)

    2012-07-15

    The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [{sup 15}O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics. (orig.)

  20. Serotonin transporter in attention-deficit hyperactivity disorder--preliminary results from a positron emission tomography study.

    Karlsson, Linnea; Tuominen, Lauri; Huotarinen, Antti; Leppämäki, Sami; Sihvola, Elina; Helin, Semi; Sipilä, Maria; Tani, Pekka; Hirvonen, Jussi; Hietala, Jarmo; Karlsson, Hasse

    2013-05-30

    The serotonin transporter (SERT) in attention-deficit hyperactivity disorder (ADHD) patients has not been explored by earlier positron emission tomography (PET) studies. We measured SERT availability in female ADHD patients (n=8) and healthy controls (n=14) with PET and [11C]MADAM as a tracer. No significant group differences in [11C]MADAM binding potential were noted.

  1. Experimental validation of granular dynamics simulations of gas-fluidised beds with homogeneous inflow conditions using Positron Emission Particle Tracking

    Hoomans, B.P.B.; Kuipers, J.A.M.; Mohd Salleh, M.; Seville, J.P.

    2001-01-01

    A hard-sphere granular dynamics model of a two-dimensional gas-fluidised bed was experimentally validated using Positron Emission Particle Tracking (PEPT). In the model the Newtonian equations of motion are solved for each solid particle while taking into account the particle¿particle and particle¿w

  2. Regional myocardial oxygen consumption estimated by carbon-11 acetate and positron emission tomography before and after repetitive ischemia

    Kofoed, K F; Hansen, P R; Holm, S

    2011-01-01

    Preserved myocardial oxygen consumption estimated by carbon 11-acetate and positron emission tomography (PET) in myocardial regions with chronic but reversibly depressed contractile function in patients with ischemic heart disease have been suggested to be caused by repeated short episodes of acu...

  3. F-18 Fluorodeoxy Glucose Positron Emission Tomography/Computed Tomography Findings in a Rare Case of Penile Leiomyosarcoma

    Kuruva Manohar

    2011-01-01

    Full Text Available Penile cancer is a rare entity accounting for only 0.4% all male malignancies. Penile leiomyosarcomas are even rarer with only around 35 cases reported in literature. We report a rare case of penile leiomyosarcoma illustrating F-18 Fluorodeoxy glucose (FDG positron emission tomography/computed tomography (PET/CT features and histopathology correlation.

  4. The prognostic value of positron emission tomography in non-small cell lung cancer : Analysis of 266 cases

    Kramer, H.; Post, W.J.; Pruim, J.; Groen, H.J.M.

    2006-01-01

    Positron emission tomography (PET) is more accurate than computed tomography (CT) in the staging of non-small cell lung cancer (NSCLC). We analyzed the prognostic value of PET for survival in NSCLC patients. Methods: Consecutive patients with proven NSCLC with PET for staging were selected. Staging

  5. Better yield of (18)fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation

    van Tol, KM; Jager, PL; Piers, DA; Pruim, J; de Vries, EGE; Dullaart, RPF; Links, TP

    2002-01-01

    To determine whether (18)fluorodeoxyglucose-positron emission tomography (FDG-PET) for the detection of recurrences or metastases of differentiated thyroid carcinoma should be performed during thyrotropin (TSH) suppression or TSH stimulation, eight patients were studied sequentially. After the secon

  6. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted.

  7. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  8. Positron emission tomography in pebble beds. Part 1: Liquid particle deposition

    Barth, T., E-mail: t.barth@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Ludwig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Kulenkampff, J.; Gründig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Franke, K. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy (IRP), Permoserstraße 15, 04318 Leipzig (Germany); Lippmann-Pipke, J. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2014-02-15

    Highlights: • Particle deposition in a pebble bed was recorded by positron emission tomography. • The particles were radioactively labelled and their spatial distribution was recorded. • Particle deposition was mainly driven by particle inertia and turbulent dispersion. • Particle deposits form hot spots on the upstream face of the single pebbles. - Abstract: Accidental scenarios such as the depressurisation of the primary circuit of high temperature gas cooled pebble bed reactors may lead to the release of fission products via the discharge of radioactive graphite dust. For a detailed source term assessment in such accident scenarios knowledge of the flow mechanics of dust transport in complex coolant circuit components, like pebble beds, recuperator structures and pipe systems is necessary. In this article an experimental study of aerosol deposition in a pebble bed is described. We investigated the deposition of radiolabelled liquid aerosol particles in a scaled pebble bed in an air-driven small-scale aerosol flow test facility under isothermal ambient conditions. The aerosol particles were generated by means of a condensational aerosol generator with potassium-fluoride (KF) condensation nuclei. Particle concentration measurements upstream and downstream of the pebble bed were performed by isokinetic sampling and particle counting. The results agree with typical deposition curves for turbulent and inertia driven particle deposition. Furthermore, positron emission tomography (PET) was performed to visualize and measure particle deposition distributions in the pebble bed. Results of a selected deposition experiment with moderately large particles (d{sub aero} = 3.5 μm, Re{sup ′}{sub pb}=2200) show that the deposited particles are located in the vicinity of the upstream stagnation points of the pebbles. These findings support the thesis that inertia driven particle deposition is predominating.

  9. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (νdispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy.

  10. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.

    Passamonti, Luca; Vázquez Rodríguez, Patricia; Hong, Young T; Allinson, Kieren S J; Williamson, David; Borchert, Robin J; Sami, Saber; Cope, Thomas E; Bevan-Jones, W Richard; Jones, P Simon; Arnold, Robert; Surendranathan, Ajenthan; Mak, Elijah; Su, Li; Fryer, Tim D; Aigbirhio, Franklin I; O'Brien, John T; Rowe, James B

    2017-01-24

    The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer (18)F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the (18)F-AV-1451 autoradiographic binding in post mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the (18)F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased (18)F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P Alzheimer's disease, relative to patients with progressive supranuclear palsy and with control subjects, in the hippocampus and in occipital, parietal, temporal, and frontal cortices (t's > 2.2, P's Alzheimer's disease, (18)F-AV-1451 binding was elevated in the midbrain (t = 2.1, P 2.7, P's Alzheimer's disease and to distinguish it from other tauopathies with distinct clinical and pathological characteristics such as progressive supranuclear palsy.

  11. Development of a dedicated positron emission tomography system for the detection and biopsy of breast cancer

    Raylman, Raymond R.; Majewski, Stan; Kross, Brian; Popov, Vladimir; Proffitt, James; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Dedicated positron emission mammography breast imaging systems have shown great promise for the detection of small, radiotracer-avid lesions. Our group (a collaboration consisting of West Virginia University, Jefferson Lab and the University of Washington) is extending this work by developing a positron emission mammography-tomography (PEM-PET) system for imaging and biopsy of breast lesions. The system will have four planar detector heads that will rotate about the breast to acquire multi-view data suitable for tomographic reconstruction. Each detector head will consist of a 96×72 array of 2×2×15 mm 3 LYSO detector elements (pitch=2.1 mm) mounted on a 3×4 array of 5×5 cm 2 flat panel position-sensitive photomultiplier tubes. PEM-PET is expected to have approximately two-millimeter resolution and possess the ability to guide the needle biopsy of suspicious lesions seen on the PET images. Initial tests of the scintillator arrays yielded excellent results. Pixel maps for all four scintillator arrays demonstrated that separation of the LYSO elements was very good; all of the LYSO array elements were observed, even in areas between individual PSPMTs. System energy resolution was measured to be 25% FWHM at 511 keV. Future work includes the use of field programmable gate arrays (FPGAs) to replace the current VME-based data acquisition system, a PSPMT gain normalization procedure to help improve response uniformity and energy resolution, and the addition of an x-ray source and detector to produce multi-modality PEM-PET-CT images of the breast.

  12. Implementation of sum-peak method for standardization of positron emission radionuclides; Implementacao do metodo pico-soma para padronizacao de radionuclideos emissores de positrons

    Fragoso, Maria da Conceicao de Farias; Oliveira, Mercia Liane de; Lima, Fernando Roberto de Andrade, E-mail: mcfragoso@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    Positron Emission Tomography (PET) is being increasingly recognized as an important quantitative imaging tool for diagnosis and assessing response to therapy. As correct dose administration plays a crucial part in nuclear medicine, it is important that the instruments used to assay the activity of the short-lived radionuclides are calibrated accurately, with traceability to the national or international standards. The sum-peak method has been widely used for radionuclide standardization. The purpose of this study was to implement the methodology for standardization of PET radiopharmaceuticals at the Regional Center for Nuclear Sciences of the Northeast (CRCN-NE). (author)

  13. Sub-millimeter nuclear medical imaging with reduced dose application in positron emission tomography using beta-gamma coincidences

    Lang, C; Parodi, K; Thirolf, P G

    2013-01-01

    Positron emission tomography (PET) permits a functional understanding of the underlying causes of many diseases. Modern whole-body PET systems reach a spatial resolution of 2-6 mm (FWHM). A limitation of this technique occurs from the thermalization and diffusion of the positron before its annihilation, typically within the mm range. We present a nuclear medical imaging technique, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced effective dose application compared to conventional PET. This 'gamma-PET' technique draws on specific medical isotopes, simultaneously emitting an additional photon accompanying the beta^+ decay. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize the potential of this technique, MC simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in ...

  14. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    Parodi, Katia, E-mail: Katia.parodi@physik.uni-muenchen.de [Faculty of Physics, Department of Medical Physics, Ludwig Maximilians University Munich, Munich 85748 (Germany)

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  15. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  16. Optimised motion tracking for positron emission tomography studies of brain function in awake rats.

    Andre Z Kyme

    Full Text Available Positron emission tomography (PET is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by avoiding confounds due to anaesthetic drugs and enabling freely moving animals to be imaged during normal and evoked behaviours. Due to the frequent and rapid motion exhibited by alert, awake animals, optimal motion correction requires frequently sampled pose information and precise synchronisation of these data with events in the PET coincidence data stream. Motion measurements should also be as accurate as possible to avoid degrading the excellent spatial resolution provided by state-of-the-art scanners. Here we describe and validate methods for optimised motion tracking suited to the correction of motion in awake rats. A hardware based synchronisation approach is used to achieve temporal alignment of tracker and scanner data to within 10 ms. We explored the impact of motion tracker synchronisation error, pose sampling rate, rate of motion, and marker size on motion correction accuracy. With accurate synchronisation (20 Hz, and a small head marker suitable for awake animal studies, excellent motion correction results were obtained in phantom studies with a variety of continuous motion patterns, including realistic rat motion (<5% bias in mean concentration. Feasibility of the approach was also demonstrated in an awake rat study. We conclude that motion tracking parameters needed for effective motion correction in preclinical brain imaging of awake rats are achievable in the laboratory setting. This could broaden the scope of animal experiments currently possible with PET.

  17. Graphics processing unit (GPU)-accelerated particle filter framework for positron emission tomography image reconstruction.

    Yu, Fengchao; Liu, Huafeng; Hu, Zhenghui; Shi, Pengcheng

    2012-04-01

    As a consequence of the random nature of photon emissions and detections, the data collected by a positron emission tomography (PET) imaging system can be shown to be Poisson distributed. Meanwhile, there have been considerable efforts within the tracer kinetic modeling communities aimed at establishing the relationship between the PET data and physiological parameters that affect the uptake and metabolism of the tracer. Both statistical and physiological models are important to PET reconstruction. The majority of previous efforts are based on simplified, nonphysical mathematical expression, such as Poisson modeling of the measured data, which is, on the whole, completed without consideration of the underlying physiology. In this paper, we proposed a graphics processing unit (GPU)-accelerated reconstruction strategy that can take both statistical model and physiological model into consideration with the aid of state-space evolution equations. The proposed strategy formulates the organ activity distribution through tracer kinetics models and the photon-counting measurements through observation equations, thus making it possible to unify these two constraints into a general framework. In order to accelerate reconstruction, GPU-based parallel computing is introduced. Experiments of Zubal-thorax-phantom data, Monte Carlo simulated phantom data, and real phantom data show the power of the method. Furthermore, thanks to the computing power of the GPU, the reconstruction time is practical for clinical application.

  18. An automatic classification technique for attenuation correction in positron emission tomography

    Bettinardi, V.; Pagani, E.; Gilardi, M.C.; Landoni, C.; Riddell, C.; Rizzo, G.; Castiglioni, I.; Belluzzo, D.; Lucignani, G.; Fazio, F. [INB-CNR, Scientific Inst. H San Raffaele, Univ. of Milan (Italy); Schubert, S. [GE Medical System, Milwaukee, WI (United States)

    1999-05-01

    In this paper a clustering technique is proposed for attenuation correction (AC) in positron emission tomography (PET). The method is unsupervised and adaptive with respect to counting statistics in the transmission (TR) images. The technique allows the classification of pre- or post-injection TR images into main tissue components in terms of attenuation coefficients. The classified TR images are then forward projected to generate new TR sinograms to be used for AC in the reconstruction of the corresponding emission (EM) data. The technique has been tested on phantoms and clinical data of brain, heart and whole-body PET studies. The method allows: (a) reduction of noise propagation from TR into EM images, (b) reduction of TR scanning to a few minutes (3 min) with maintenance of the quantitative accuracy (within 6%) of longer acquisition scans (15-20 min), (c) reduction of the radiation dose to the patient, (d) performance of quantitative whole-body studies. (orig.) With 8 figs., 4 tabs., 25 refs.

  19. Fluorodeoxyglucose-positron emission tomography in carcinoma nasopharynx: Can we predict outcomes and tailor therapy based on postradiotherapy fluorodeoxyglucose-positron emission tomography?

    Sarbani Ghosh Laskar

    2016-01-01

    Full Text Available Background: Positron emission tomography-computed tomography (PET-CT is an emerging modality for staging and response evaluation in carcinoma nasopharynx. This study was conducted to evaluate the impact of PET-CT in assessing response and outcomes in carcinoma nasopharynx. Materials and Methods: Forty-five patients of nonmetastatic carcinoma nasopharynx who underwent PET-CT for response evaluation at 10-12 weeks posttherapy between 2004 and 2009 were evaluated. Patients were classified as responders (Group A if there was a complete response on PET-CT or as nonresponders (Group B if there was any uptake above the background activity. Data regarding demographics, treatment, and outcomes were collected from their records and compared across the Groups A and B. Results: The median age was 41 years. 42 out of 45 (93.3% patients had WHO Grade 2B disease (undifferentiated squamous carcinoma. 24.4%, 31.1%, 15.6, and 28.8% patients were in American Joint Committee on Cancer Stage IIb, III, Iva, and IVb. All patients were treated with neoadjuvant chemotherapy followed by concomitant chemoradiotherapy. Forty-five patients, 28 (62.2% were classified as responders, whereas 17 (37.8% were classified as nonresponders. There was no significant difference in the age, sex, WHO grade, and stage distribution between the groups. Compliance to treatment was comparable across both groups. The median follow-up was 25.3 months (759 days. The disease-free survival (DFS of the group was 57.3% at 3 years. The DFS at 3 years was 87.3% and 19.7% for Group A and B, respectively (log-rank test, P < 0.001. Univariate and multivariate analysis revealed Groups to be the only significant factor predicting DFS (P value 0.002 and < 0.001, respectively. In Group B, the most common site of disease failure was distant (9, 53%. Conclusion: PET-CT can be used to evaluate response and as a tool to identify patients at higher risk of distant failure. Further, this could be exploited to

  20. FDG PET scans as evaluation of clinical response to dendritic cell vaccination in patients with malignant melanoma

    Engell-Noerregaard, Lotte; Hendel, Helle W; Johannesen, Helle H;

    2013-01-01

    BACKGROUND: Measurements of tumour metabolism by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) have been successfully applied to monitor tumour response after chemo- and chemo-radiotherapy and may not have the same limitations as other morphological imaging techniques. In this st......BACKGROUND: Measurements of tumour metabolism by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) have been successfully applied to monitor tumour response after chemo- and chemo-radiotherapy and may not have the same limitations as other morphological imaging techniques...... in CT scans might be due to oedema or immune-infiltrates and not progression of the disease. Thus, further investigation into the contribution of PET scans to the evaluation of cancer immunotherapy is needed....

  1. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  2. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate

  3. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  4. Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors

    Shokouhi S

    2015-04-01

    Full Text Available Sepideh Shokouhi,1 Baxter P Rogers,1 Hakmook Kang,2 Zhaohua Ding,1 Daniel O Claassen,3 John W Mckay,1 William R Riddle1On behalf of the Alzheimer’s Disease Neuroimaging Initiative1Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, 2Department of Biostatistics, 3Department of Neurology, Vanderbilt University, Nashville, TN, USABackground: Amyloid-beta (Aβ imaging with positron emission tomography (PET holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2, have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation.Methods: We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2 to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR. For three-dimensional data, we compared the area under the wS2 curves with the subjects’ cerebrospinal fluid measures.Results: Overall, the longitudinal changes in wS2

  5. A novel image reconstruction methodology based on inverse Monte Carlo analysis for positron emission tomography

    Kudrolli, Haris A.

    2001-04-01

    A three dimensional (3D) reconstruction procedure for Positron Emission Tomography (PET) based on inverse Monte Carlo analysis is presented. PET is a medical imaging modality which employs a positron emitting radio-tracer to give functional images of an organ's metabolic activity. This makes PET an invaluable tool in the detection of cancer and for in-vivo biochemical measurements. There are a number of analytical and iterative algorithms for image reconstruction of PET data. Analytical algorithms are computationally fast, but the assumptions intrinsic in the line integral model limit their accuracy. Iterative algorithms can apply accurate models for reconstruction and give improvements in image quality, but at an increased computational cost. These algorithms require the explicit calculation of the system response matrix, which may not be easy to calculate. This matrix gives the probability that a photon emitted from a certain source element will be detected in a particular detector line of response. The ``Three Dimensional Stochastic Sampling'' (SS3D) procedure implements iterative algorithms in a manner that does not require the explicit calculation of the system response matrix. It uses Monte Carlo techniques to simulate the process of photon emission from a source distribution and interaction with the detector. This technique has the advantage of being able to model complex detector systems and also take into account the physics of gamma ray interaction within the source and detector systems, which leads to an accurate image estimate. A series of simulation studies was conducted to validate the method using the Maximum Likelihood - Expectation Maximization (ML-EM) algorithm. The accuracy of the reconstructed images was improved by using an algorithm that required a priori knowledge of the source distribution. Means to reduce the computational time for reconstruction were explored by using parallel processors and algorithms that had faster convergence rates

  6. Abnormal 18F-FDG uptakes in the prostate due to two different conditions of urine reflux: a mimicker of prostate cancer

    Inamura, Kensuke; Kaji, Yasushi; Sakamoto, Setsu; Masuda, Akinori; Kamai, Takao

    2016-01-01

    A 69-year-old man with lung cancer underwent 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT for staging. FDG PET/CT showed high uptakes in the prostate gland with calcification, and magnetic resonance imaging was recommended to check the prostatic malignancy. T2-weighted images revealed midline cystic lesion at the base to midgland level and cystic lesion in right apical peripheral zone. We suspected urine reflux conditions. Voiding cystourethrography demonstrated those cy...

  7. Primary Pulmonary Epithelioid Hemangioendothelioma: A Rare Cause of PET-Negative Pulmonary Nodules

    Riccardo Cazzuffi

    2011-01-01

    Full Text Available We report here a case of primary pulmonary epithelioid hemangioendothelioma diagnosed in a 67-year-old Caucasian man, presenting with exertion dyspnoea, dry cough, and multiple bilateral pulmonary nodules revealed by computed tomography. At the 18F-fluorodeoxyglucose positron emission tomography, these nodules were negative. The histopathological diagnosis was made on a pulmonary wedge resection (performed during video-thoracoscopic surgery.

  8. Primary Pulmonary Epithelioid Hemangioendothelioma: A Rare Cause of PET-Negative Pulmonary Nodules

    Cazzuffi, Riccardo; Calia, Nunzio; Ravenna, Franco; Pasquini, Claudio; Saturni, Sara; Cavallesco, Giorgio Narciso; Quarantotto, Francesco; Rinaldi, Rosa; Cogo, Annaluisa; Caramori, Gaetano; Papi, Alberto

    2011-01-01

    We report here a case of primary pulmonary epithelioid hemangioendothelioma diagnosed in a 67-year-old Caucasian man, presenting with exertion dyspnoea, dry cough, and multiple bilateral pulmonary nodules revealed by computed tomography. At the 18F-fluorodeoxyglucose positron emission tomography, these nodules were negative. The histopathological diagnosis was made on a pulmonary wedge resection (performed during video-thoracoscopic surgery). PMID:21869893

  9. Rituximab induced lung injury in a case of NHL: Diagnosis and follow up on FDG PET/CT

    Joshi, Prathamesh; Lele, Vikram [Jaslok Hospital and Research Centre, Worli (United States); Saikia, Tapan [Prince Aly Khan Hospital, Mumbai (India)

    2012-09-15

    Rituximab induced lung injury is a rare but serious side effect of this agent. We describe the valuable role played by 18F fluorodeoxyglucose positron emission tomography computed tomography (FDG PET CT)in the diagnosis and follow up of this condition in a patient with non Hodgkin's lymphoma (NHL)receiving rituximab. Abnormal uptake of FDG in lungs of patients receiving this drug should be care fully evaluated to diagnose this potentially fatal side effect.

  10. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET

    Shuai Liu; Yinyan Wang; Kaibin Xu; Fan Ping; Renzhi Wang; Fang Li; Xin Cheng

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using 18F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the...

  11. Functional and metabolic changes in the brain in neuropathic pain syndrome against the background of chronic epidural electrostimulation of the spinal cord.

    Sufianov, A A; Shapkin, A G; Sufianova, G Z; Elishev, V G; Barashin, D A; Berdichevskii, V B; Churkin, S V

    2014-08-01

    Changes in functional and metabolic activities of the brain were evaluated by EEG and positron-emission/computer tomography with 18F-fluorodeoxyglucose in patients with neuropathic pain syndrome previous to and 3 months after implantation of a system for chronic epidural spinal cord stimulation. In most cases, the use of a nerve stimulator was followed by alleviation of neuropathic pain and partial normalization of functional and metabolic activities of brain structures responsible for pain perception, emotiogenic, behavioral, and autonomic responses.

  12. Increased T cell glucose uptake reflects acute rejection in lung grafts

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the graft...

  13. The value of fluorodeoxyglucose positron emission tomography in differentiating malig-nant from benign lesions in patients with adrenal masses%18F-FDG PET和PET/CT在肾上腺病变鉴别诊断中的作用

    程欣; 崔瑞雪; 潘慧; 党永红; 李方

    2011-01-01

    Objective: To explore the value of 18 F - fluorodeoxyglucose ( 18 FDG) positron emission tomography (PET) or PET computer tomography(PET/CT) in distinguishing benign from malignant lesions in patients with adrenal masses. Methods: 18 FDG PET (or PET/CT)imagings were performed for 25 patients with adrenal lesions, and all cases had the homochronous enhanced CT scans. Subsequently histopathological results were obtained within 1 month. Semiquantiative analysis of metabolic changes in adrenal masses was done by calculating the maximal standard uptake value (SUVmax) and the SUVmax ratio of adrenal mass to liver. Results: The cases were divided into 2 groups: groupA which include 8 of 25 cases with symptoms (Cushing's syndrome or high blood pressure) caused by abnormal endocrinal secretion of adrenal mass and groupB which include 17 of 25 cases without symptoms. In groupA,The size of benign lesions(3.26 ± 1.01 cm) was obviously smaller than that of malignant ones(7.80 ±1.82 cm), the average SUVmax( 5.04 ± 2.07 ) and the SUVmax ratio of adrenal mass to liver( 2.52 ±0.62) of benign masses is a little lower than that of malignant ones respectively(8.33 ± 2.57, 2.92 ± 1.03 ). In groupB, The size, the average SUVmax and the ratio of SUVmax adrenal mass/SUVmax liver in benign lesions ( 2.25 ± 0. 69 cm, 1.93 ± 0. 54, 0.76 ± 0.20) were all obviously less than that of malignant ones respectively(5.62 ± 3.95 cm, 11.39 ± 7.96, 4.51 ± 2.92). Conclusion: For the patients without endocrinal symptoms , malignant adrenal lesions could be differentiated from benign masses simplely by18 FDG PET imaging, but for the patients with endocrinal symptoms, the differentiation could not Only according to the SUVmax of 18 FDG PET, but need refer to the clinical backgroud and other imaging modality such as enhanced CT scan.%目的:探讨F-脱氧葡萄糖(FDG)PET或PET/CT显像在肾上腺病变鉴别诊断中的应用价值.方法:25例肾上腺占位患者均行FDG PET

  14. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  15. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography

    Dolle, F.; Luus, C.; Reynolds, A.; Kassiou, M. [CEA, Institut d' Imagerie BioMedicale, Service Hospitalier Frederic Joliot, Orsay (France)

    2009-07-01

    The translocator protein (18 kDa) (TSPO), formerly known as the peripheral benzodiazepine receptor (PBR), was originally identified as an alternate binding site for the central benzodiazepine receptor (CBR) ligand, diazepam, in the periphery, but has now been distinguished as a novel site. The TSPO is ubiquitously expressed in peripheral tissues but only minimally in the healthy brain and increased levels of TSPO expression have been noted in neuro inflammatory conditions such as Alzheimer's disease, Parkinson's disease and stroke. This increase in TSPO expression has been reported to coincide with the process of micro-glial activation, whereby the brain's intrinsic immune system becomes active. Therefore, by using recently developed high affinity, selective TSPO ligands in conjunction with functional imaging modalities such as positron emission tomography (PET), it becomes possible to study the process of micro-glial activation in the living brain. A number of high affinity ligands, the majority of which are C, N-substituted acetamide derivatives, have been successfully radiolabelled and used in in vivo studies of the TSPO and the process of micro-glial activation. This review highlights recent achievements (up to December 2008) in the field of functional imaging of the TSPO as well as the radio-syntheses involved in such studies. (authors)

  16. Positron Emission Tomography (PET Quantification of GABAA Receptors in the Brain of Fragile X Patients.

    Charlotte D'Hulst

    Full Text Available Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS, a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.

  17. The Use of Positron Emission Tomography in Soft Tissue Sarcoma Patients under Therapy with Trabectedin

    Gerlinde Egerer

    2009-07-01

    Full Text Available Background: We used 2-deoxy-2-[18F] fluoro-D-glucose (FDG positron emission tomography (PET to evaluate the FDG uptake in patients with advanced and/or metastatic soft tissue sarcoma (STS undergoing therapy with Ecteinascidin-743 (ET-743, Trabectedin, YondelisTM. Patients and Methods: The pilot study included nine patients with metastatic STS receiving a minimum of one cycle of treatment with trabectedin. Patients were examined using PET prior to onset of therapy and after completion of one or three cycles of trabectedin. Restaging according to Response Evaluation Criteria in Solid Tumours (RECIST was performed in parallel using computed tomography (CT and/or magnetic resonance imaging (MRI and served for reference. Results: Clinical outcome of nine evaluable patients was as follows: one patient with partial remission (PR, three patients with stable disease (SD, and five patients with progressive disease (PD. A more than 40% decrease of the standardized uptake value (SUV of sequential PET examination could be demonstrated for the responding patient (PR, whereas patients with SD or PD showed a stable SUV, but no increase in SUV. Conclusion: To our knowledge, this is the first small series of patients being treated with trabectedin and monitored using sequential PET imaging demonstrating SUV stabilization in nearly all monitored patients.

  18. Positron emission tomography / computerized tomography evaluation of primary Hodgkin's disease of liver.

    Gota, V S; Purandare, N C; Gujral, S; Shah, S; Nair, R; Rangarajan, V

    2009-01-01

    Occurrence of primary Hodgkin's lymphoma (PHL) of the liver is extremely rare. We report on a case of a 60-year-old male who presented with liver mass and B-symptomatology. Hepatoma or hepatic metastasis from a gastrointestinal primary was initially suspected. Tumor markers like AFP, CEA, Total PSA, and CA-19.9 were within normal limits. Positron Emission Tomography / Computerized Tomography (PET/CT) revealed a large hepatic lesion and a nodal mass in the porta hepatis. A liver biopsy was consistent with Hodgkin's lymphoma. There was complete regression of the hepatic lesion and evidence of shrinkage of the nodal mass following four cycles of chemotherapy. 18F Fluro -de-oxy Glucose (FDG) PET / CT in this case helped in establishing a primary hepatic lymphoma by demonstrating the absence of pathologically hypermetabolic foci in any other nodes or organs. PET / CT scan is a useful adjunct to conventional imaging and histopathology, not only to establish the initial diagnosis, but also to monitor treatment response in PHL.

  19. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  20. Modelling Random Coincidences in Positron Emission Tomography by Using Singles and Prompts: A Comparison Study

    2016-01-01

    Random coincidences degrade the image in Positron Emission Tomography, PET. To compensate for their degradation effects, the rate of random coincidences should be estimated. Under certain circumstances, current estimation methods fail to provide accurate results. We propose a novel method, “Singles–Prompts” (SP), that includes the information conveyed by prompt coincidences and models the pile–up. The SP method has the same structure than the well-known “Singles Rate” (SR) approach. Hence, SP can straightforwardly replace SR. In this work, the SP method has been extensively assessed and compared to two conventional methods, SR and the delayed window (DW) method, in a preclinical PET scenario using Monte–Carlo simulations. SP offers accurate estimates for the randoms rates, while SR and DW tend to overestimate the rates (∼10%, and 5%, respectively). With pile-up, the SP method is more robust than SR (but less than DW). At the image level, the contrast is overestimated in SR-corrected images, +16%, while SP produces the correct value. Spill–over is slightly reduced using SP instead of SR. The DW images values are similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms were not compensated for. In particular, the contrast is reduced, −16%. In general, the better estimations of SP translate into better image quality. PMID:27603143

  1. Photo-detectors for time of flight positron emission tomography (ToF-PET).

    Spanoudaki, Virginia Ch; Levin, Craig S

    2010-01-01

    We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs.

  2. Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET

    Craig S. Levin

    2010-11-01

    Full Text Available We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET. PET is a molecular imaging modality that collects pairs of coincident (temporally correlated annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs and silicon photo-multipliers (SiPMs with a special focus on SiPMs.

  3. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  4. Dynamic positron emission tomography image restoration via a kinetics-induced bilateral filter.

    Zhaoying Bian

    Full Text Available Dynamic positron emission tomography (PET imaging is a powerful tool that provides useful quantitative information on physiological and biochemical processes. However, low signal-to-noise ratio in short dynamic frames makes accurate kinetic parameter estimation from noisy voxel-wise time activity curves (TAC a challenging task. To address this problem, several spatial filters have been investigated to reduce the noise of each frame with noticeable gains. These filters include the Gaussian filter, bilateral filter, and wavelet-based filter. These filters usually consider only the local properties of each frame without exploring potential kinetic information from entire frames. Thus, in this work, to improve PET parametric imaging accuracy, we present a kinetics-induced bilateral filter (KIBF to reduce the noise of dynamic image frames by incorporating the similarity between the voxel-wise TACs using the framework of bilateral filter. The aim of the proposed KIBF algorithm is to reduce the noise in homogeneous areas while preserving the distinct kinetics of regions of interest. Experimental results on digital brain phantom and in vivo rat study with typical (18F-FDG kinetics have shown that the present KIBF algorithm can achieve notable gains over other existing algorithms in terms of quantitative accuracy measures and visual inspection.

  5. The role of positron emission tomography in the detection of pancreatic disease

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of /sup 11/C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D.) of injected /sup 11/C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic /sup 11/C concentration was identical in the four groups of patients. Pancreatic uptake of /sup 11/C-L-methionine was significantly lower in patients with chronic pancreatitis (n = 13) and pancreatic carcinoma (n = 10) (p <0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  6. The role of positron emission tomography in the detection of pancreatic disease

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of 11C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D). of injected 11C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic 11C concentration was identical in the four groups of patients. Pancreatic uptake of 11C-L-methionine was significantly lower in patients with chronic pancreatitis (n . 13) and pancreatic carcinoma (n . 10) (p less than 0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  7. Small-Animal Imaging Using Clinical Positron Emission Tomography/Computed Tomography and Super-Resolution

    Frank P. DiFilippo

    2012-05-01

    Full Text Available Considering the high cost of dedicated small-animal positron emission tomography/computed tomography (PET/CT, an acceptable alternative in many situations might be clinical PET/CT. However, spatial resolution and image quality are of concern. The utility of clinical PET/CT for small-animal research and image quality improvements from super-resolution (spatial subsampling were investigated. National Electrical Manufacturers Association (NEMA NU 4 phantom and mouse data were acquired with a clinical PET/CT scanner, as both conventional static and stepped scans. Static scans were reconstructed with and without point spread function (PSF modeling. Stepped images were postprocessed with iterative deconvolution to produce super-resolution images. Image quality was markedly improved using the super-resolution technique, avoiding certain artifacts produced by PSF modeling. The 2 mm rod of the NU 4 phantom was visualized with high contrast, and the major structures of the mouse were well resolved. Although not a perfect substitute for a state-of-the-art small-animal PET/CT scanner, a clinical PET/CT scanner with super-resolution produces acceptable small-animal image quality for many preclinical research studies.

  8. Monitoring of patients treated with particle therapy using positron-emission-tomography (PET: the MIRANDA study

    Combs Stephanie E

    2012-04-01

    Full Text Available Abstract Background The purpose of this clinical study is to investigate the clinical feasibility and effectiveness of offline Positron-Emission-Tomography (PET quality assurance for promoting the accuracy of proton and carbon ion beam therapy. Methods/Design A total of 240 patients will be recruited, evenly sampled among different analysis groups including tumors of the brain, skull base, head and neck region, upper gastrointestinal tract including the liver, lower gastrointestinal tract, prostate and pelvic region. From the comparison of the measured activity with the planned dose and its corresponding simulated activity distribution, conclusions on the delivered treatment will be inferred and, in case of significant deviations, correction strategies will be elaborated. Discussion The investigated patients are expected to benefit from this study, since in case of detected deviations between planned and actual treatment delivery a proper intervention (e.g., correction could be performed in a subsequent irradiation fraction. In this way, an overall better treatment could be achieved than without any in-vivo verification. Moreover, site-specific patient-population information on the precision of the ion range at HIT might enable improvement of the CT-range calibration curve as well as safe reduction of the treatment margins to promote enhanced treatment plan conformality and dose escalation for full clinical exploitation of the promises of ion beam therapy. Trial Registration NCT01528670

  9. The value of positron emission tomography in patients with non-small cell lung cancer

    Kee, Frank [Centre for Public Health, Queen' s University Belfast, Mulhouse Building, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland (United Kingdom)], E-mail: f.kee@qub.ac.uk; Erridge, Sara [Edinburgh Cancer Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, Scotland (United Kingdom); Bradbury, Ian [Frontier Science (Scotland) Ltd., Grampian View, Kincraig, Inverness-shire PH21 1NA, Scotland (United Kingdom); Cairns, Karen [School of Maths and Physics, Queen' s University Belfast, David Bates Building, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2010-01-15

    Background: Pre-operative assessment of non-small cell lung cancer (NSCLC) is a major application of positron emission tomography (FDG-PET). Despite substantial evidence of diagnostic accuracy, relatively little attention has been paid to its effects on patient outcomes. This paper addresses this by extending an existing decision model to include patient-elicited utilities. Patients and methods: A decision-tree model of the effect of FDG-PET on pre-operative staging was converted to a Markov model. Utilities for futile and appropriate thoracotomy were elicited from 75 patients undergoing staging investigation for NSCLC. The decision model was then used to estimate the expected value of perfect information (EVPI) associated with three sources of uncertainty-the accuracy of PET, the accuracy of CT and the patient related utility of a futile thoracotomy. Results: The model confirmed the apparent cost-effectiveness of FDG-PET and indicated that the EVPI associated with the utility of futile thoracotomy considerably exceeds that associated with measures of accuracy. Conclusion: The study highlights the importance of patient related utilities in assessing the cost-effectiveness of diagnostic technologies. In the specific case of PET for pre-operative staging of NSCLC, future research effort should focus on such elicitation, rather than further refinement of accuracy estimates.

  10. Virtual positron emission tomography/computed tomography-bronchoscopy: possibilities, advantages and limitations of clinical application

    Seemann, Marcus D. [University of Magdeburg, Department of Radiology and Nuclear Medicine, Magdeburg (Germany); Schaefer, Juergen F. [Eberhard-Karls University, Department of Diagnostic Radiology, Tuebingen (Germany); Englmeier, Karl-Hans [Institute of Medical Informatics, GSF-National Research Center for Environment and Health, Neuherberg (Germany)

    2007-03-15

    The aim of this study was to demonstrate the possibilities, advantages and limitations of virtual bronchoscopy using data sets from positron emission tomography (PET) and computed tomography (CT). Twelve consecutive patients with lung cancer underwent PET/CT. PET was performed with F-18-labelled 2-[fluorine-18]-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG). The tracheobronchial system was segmented with a volume-growing algorithm, using the CT data sets, and visualized with a shaded-surface rendering method. The primary tumours and the lymph node metastases were segmented for virtual CT-bronchoscopy using the CT data set and for virtual PET/CT-bronchoscopy using the PET/CT data set. Virtual CT-bronchoscopy using the low-dose or diagnostic CT facilitates the detection of anatomical/morphological structure changes of the tracheobronchial system. Virtual PET/CT-bronchoscopy was superior to virtual CT-bronchoscopy in the detection of lymph node metastases (P=0.001), because it uses the CT information and the molecular/metabolic information from PET. Virtual PET/CT-bronchoscopy with a transparent colour-coded shaded-surface rendering model is expected to improve the diagnostic accuracy of identification and characterization of malignancies, assessment of tumour staging, differentiation of viable tumour tissue from atelectases and scars, verification of infections, evaluation of therapeutic response and detection of an early stage of recurrence that is not detectable or is misjudged in comparison with virtual CT-bronchoscopy. (orig.)

  11. INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy.

    Bisogni, Maria Giuseppina; Attili, Andrea; Battistoni, Giuseppe; Belcari, Nicola; Camarlinghi, Niccolo'; Cerello, Piergiorgio; Coli, Silvia; Del Guerra, Alberto; Ferrari, Alfredo; Ferrero, Veronica; Fiorina, Elisa; Giraudo, Giuseppe; Kostara, Eleftheria; Morrocchi, Matteo; Pennazio, Francesco; Peroni, Cristiana; Piliero, Maria Antonietta; Pirrone, Giovanni; Rivetti, Angelo; Rolo, Manuel D; Rosso, Valeria; Sala, Paola; Sportelli, Giancarlo; Wheadon, Richard

    2017-01-01

    The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging. This paper presents the general architecture of the INSIDE project but focuses on the in-beam PET scanner that has been designed to reconstruct the particles range with millimetric resolution within a fraction of the dose delivered in a treatment of head and neck tumors. The in-beam PET scanner has been recently installed at the Italian National Center of Oncologic Hadrontherapy (CNAO) in Pavia, Italy, and the commissioning phase has just started. The results of the first beam test with clinical proton beams on phantoms clearly show the capability of the in-beam PET to operate during the irradiation delivery and to reconstruct on-line the beam-induced activity map. The accuracy in the activity distal fall-off determination is millimetric for therapeutic doses.

  12. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer

    Kezban Berberoğlu

    2016-06-01

    Full Text Available Radiotherapy (RT plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases interuser variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.

  13. Neural correlates of sensorimotor gating: A metabolic positron emission tomography study in awake rats

    Cathrin eRohleder

    2014-05-01

    Full Text Available Impaired sensorimotor gating occurs in neuropsychiatric disorders such as schizophrenia and can be measured using the prepulse inhibition (PPI paradigm of the acoustic startle response. This assay is frequently used to validate animal models of neuropsychiatric disorders and to explore the therapeutic potential of new drugs. The underlying neural network of PPI has been extensively studied with invasive methods and genetic modifications. However, its relevance for healthy untreated animals and the functional interplay between startle- and PPI-related areas during a PPI session is so far unknown. Therefore, we studied awake rats in a PPI paradigm, startle control and background noise control, combined with behavioral [18F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET. Subtractive analyses between conditions were used to identify brain regions involved in startle and PPI processing in well-hearing Black hooded rats. For correlative analysis with regard to the amount of PPI we also included hearing-impaired Lister hooded rats that startled more often, because their hearing threshold was just below the lowest prepulses. Metabolic imaging showed that the brain areas proposed for startle and PPI mediation are active during PPI paradigms in healthy untreated rats. More importantly, we show for the first time that the whole PPI modulation network is active during passive PPI sessions, where no selective attention to prepulse or startle stimulus is required. We conclude that this reflects ongoing monitoring of stimulus significance and constant adjustment of sensorimotor gating.

  14. Preclinical positron emission tomography scanner based on a monolithic annulus of scintillator: initial design study.

    Stolin, Alexander V; Martone, Peter F; Jaliparthi, Gangadhar; Raylman, Raymond R

    2017-01-01

    Positron emission tomography (PET) scanners designed for imaging of small animals have transformed translational research by reducing the necessity to invasively monitor physiology and disease progression. Virtually all of these scanners are based on the use of pixelated detector modules arranged in rings. This design, while generally successful, has some limitations. Specifically, use of discrete detector modules to construct PET scanners reduces detection sensitivity and can introduce artifacts in reconstructed images, requiring the use of correction methods. To address these challenges, and facilitate measurement of photon depth-of-interaction in the detector, we investigated a small animal PET scanner (called AnnPET) based on a monolithic annulus of scintillator. The scanner was created by placing 12 flat facets around the outer surface of the scintillator to accommodate placement of silicon photomultiplier arrays. Its performance characteristics were explored using Monte Carlo simulations and sections of the NEMA NU4-2008 protocol. Results from this study revealed that AnnPET's reconstructed spatial resolution is predicted to be [Formula: see text] full width at half maximum in the radial, tangential, and axial directions. Peak detection sensitivity is predicted to be 10.1%. Images of simulated phantoms (mini-hot rod and mouse whole body) yielded promising results, indicating the potential of this system for enhancing PET imaging of small animals.

  15. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  16. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  17. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong; Nahm, Sang-Soep

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.

  18. Molecular imaging of neuroinflammation in preclinical rodent models using positron emission tomography.

    Gargiulo, Sara; Coda, Anna R; Panico, Mariarosaria; Gramanzini, Matteo; Moresco, Rosa M; Chalon, Sylvie; Pappatà, Sabina

    2017-03-01

    Neuroinflammation (NI) is an adaptive response to different noxious stimuli, involving microglia, astrocytes and peripheral immune cells. NI is a hallmark of several acute and chronic diseases of central nervous system (CNS) and contributes to both damage and repair of CNS tissue. Interventional or genetically modified rodent models mimicking human neuropathologies may provide valuable insights on basic mechanisms of NI, but also for improving the development of new diagnostic and therapeutic strategies. Preclinical positron emission tomography (PET) allows to investigate noninvasively the inflammatory response in CNS of rodent models at a molecular level, validating innovative probes for early diagnosis, and characterizing the time course of neuroinflammatory changes and their relationship with disease progression, as well as the effects of experimental treatments with high translational potential. In particular, recent efforts of preclinical PET field are intended to develop specific and selective radiotracers that target the activation of innate immune system in CNS. Here, we have reviewed the state of art for PET in relevant rodent models of acute and chronic neuropathologies associated with NI, with particular regard on imaging of activated microglia and astrocytes.

  19. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography

    Li, Juan; Yang, Wenjiang; Cui, Rongli; Wang, Dongliang; Chang, Yanan; Gu, Weihong; Yin, Wenyan; Bai, Xue; Chen, Kui; Xia, Lin; Geng, Huan; Xing, Gengmei

    2016-04-01

    Fullerenes (C60) and metallofullerenes (Gd@C82) have similar chemical structure, but the bio-effects of both fullerene-based materials are distinct in vivo. Tracking organic carbon-based materials such as C60 and Gd@C82 is difficult in vivo due to the high content of carbon element in the living tissues themselves. In this study, the biodistribution and metabolism of fullerenes (C60 and Gd@C82) radiolabeled with 64Cu were observed by positron emission tomography (PET). 64Cu-C60 and 64Cu-Gd@C82 were prepared using 1, 4, 7, 10-tetrakis (carbamoylmethyl)-1, 4, 7, 10-tetra-azacyclodo-decanes grafted on carbon cages as a chelator for 64Cu, and were obtained rapidly with high radiochemical yield (≥90%). The new radio-conjugates were evaluated in vivo in the normal mouse model and tissue distribution by small animal PET/CT imaging and histology was carried out. The PET imaging, the biodistribution and the excretion of C60 and Gd@C82 indicated that C60 samples have higher blood retention and lower renal clearance than the Gd@C82 samples in vivo and suggested that the differences in metabolism and distribution in vivo were caused by the structural differences of the groups on the fullerene cages though there is chemical similarity between C60 and Gd@C82.

  20. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  1. Development of analog solid-state photo-detectors for Positron Emission Tomography

    Bisogni, Maria Giuseppina, E-mail: giuseppina.bisogni@pi.infn.it; Morrocchi, Matteo

    2016-02-11

    Solid-state photo-detectors are one of the main innovations of past century in the field of sensors. First produced in the early forties with the invention of the p–n junction in silicon and the study of its optical properties, photo-detectors received a major boost in the sixties when the p-i-n (PIN) photodiode was developed and successfully used in several applications. The development of devices with internal gain, avalanche photodiodes (APD) first and then Geiger-mode avalanche photodiodes, named single photon avalanche diode (SPAD), leads to a substantial improvement in sensitivity and allowed single photon detection. Later on, thousands of SPADs have been assembled in arrays of few millimeters squared (named SiPM, silicon photo-multiplier) with single photon resolution. The high internal gain of SiPMs, together with other features peculiar of the silicon technology like compactness, speed and compatibility with magnetic fields, promoted SiPMs as the principal photo-detector competitor of photomultipliers in many applications from radiation detection to medical imaging. This paper provides a review of the properties of analog solid-state photo-detectors. Particular emphasis is given to latest advances on Positron Emission Tomography instrumentation boosted by the adoption of the silicon photo-detectors as an alternative to photomultiplier tubes (PMTs). Special attention is dedicated to the SiPMs, which are playing a key role in the development of innovative scanners.

  2. Optimized separation procedure for production of no-carrier-added radiomanganese for positron emission tomography

    Buchholz, Martin; Spahn, Ingo; Coenen, Heinz H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM), Nuklearchemie (INM-5)

    2015-07-01

    The {sup nat}Cr(p,xn)-process is a very efficient route for production of {sup 52g}Mn(T{sub 1/2} = 5.59 d). Based on measurements of distribution coefficients with different media and ion-exchange resins, an optimized chromatographic separation of radiomanganese from {sup nat}Cr with the resin Amberlite CG400 was developed. With this system {sup nat}Cr is eluted first with an acetic acid/methanol 1:1 mixture at room temperature and {sup 52g}Mn thereafter with 3 M HCl at 50 C. Within a separation time of 4 h the method yielded 99.5% of the n.c.a. {sup 52g}Mn in 2-3 mL of 3 M HCl. An ICP-MS analysis revealed a chromium impurity of 0.07 mg (0.014%) in the n.c.a. {sup 52g}Mn solution, making this separation method suitable for the production of {sup 52g}Mn for medical applications like positron emission tomography (PET).

  3. A behavioral and micro positron emission tomography imaging study in a rat model of hypothyroidism.

    Yu, Jing; Tang, Yi-Yuang; Feng, Hong-Bo; Cheng, Xiao-Xin

    2014-09-01

    Hypothyroidism leads to somatic, neuropsychological, and psychiatric changes that are similar to depression. The mechanisms underlying the behavioral abnormalities in adult onset hypothyroidism remain ambiguous. Hypothyroidism was induced in adult male Wistar rats by the maintenance of 0.05% propylthiouracil (PTU) in drinking water for 5 weeks (hypothyroid group; HP group); control rats (CON group) received an equivalent amount of water. The open field and sucrose preference tests were employed, and the link between behavioral changes and brain glucose metabolism was evaluated using micro positron emission tomography imaging. The open field test revealed slightly decreased locomotor activity and significantly reduced rearing and defecation in the hypothyroid group. Hypothyroid rats were also characterized by decreased body weight, sucrose preference, and relative sucrose intake compared to control rats. Hypothyroidism induced reduced brain glucose metabolism in the bilateral motor cortex, the caudate putamen, the cortex cingulate, the nucleus accumbens, and the frontal association cortex. A decreased sucrose preference was positively correlated with metabolic glucose changes in the caudate putamen and the nucleus accumbens. The results indicate that the activity pattern in adult onset hypothyroidism is different from the activity pattern when hypothyroidism is induced in the developmental period of the central nervous system. Decreased sucrose preference in hypothyroid rats may be attributed to anhedonia. Furthermore, these findings suggest there may be a common mechanism underlying adult onset hypothyroidism and depression.

  4. Kinetic analysis of [11C]vorozole binding in the human brain with positron emission tomography.

    Logan, Jean; Kim, Sung Won; Pareto, Deborah; Telang, Frank; Wang, Gene-Jack; Fowler, Joanna S; Biegon, Anat

    2014-01-01

    Using positron emission tomography, we investigated the kinetics of [11C]vorozole ([11C]VOR), a radiotracer for the enzyme aromatase that catalyzes the last step in estrogen biosynthesis. Six subjects were scanned under baseline conditions followed by retest 2 weeks later. The retest was followed by a blocking study with 2.5 mg of the aromatase inhibitor letrozole. The binding potential (BP(A)ND) was estimated from a Lassen plot using the total tissue distribution volume (VT) for baseline and blocked. for the thalamus was found to be 15 times higher than that for the cerebellum. From the letrozole studies, we found that [11C]VOR exhibits a slow binding compartment (small k4) that has a nonspecific and a blockable component. Because of the sensitivity of VT to variations in k4, a common value was used for the four highest binding regions. We also considered the tissue uptake to plasma ratio for 60 to 90 minutes as an outcome measure. Using the ratio method, the difference between the highest and lowest was 2.4 compared to 3.5 for the VT. The ratio method underestimates the high regions but is less variable and may be more suitable for patient studies. Because of its kinetics and distribution, this tracer is not a candidate for a bolus infusion or reference tissue methods.

  5. Positron emission tomography molecular imaging of dopaminergic system in drug addiction.

    Hou, Haifeng; Tian, Mei; Zhang, Hong

    2012-05-01

    Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction.

  6. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals

    Hume, S.P.; Gunn, R.N.; Jones, T. [PET Methodology Group, MRC Cyclotron Unit, Hammersmith Hospital, London, W12 0NN (United Kingdom)

    1998-02-01

    With the stated aim of scanning small regions of interest in mice, several high-resolution positron emission tomographic (PET) systems are presently under development. Some, however, have low sensitivity and require high doses of radioactivity to achieve count statistics adequate to reconstruct small volumes. Using in vivo dissociation constants for three carbon-11 labelled ligands previously measured in rat brain, the present paper utilises simple saturation kinetics to estimate the limits on radioactivity and specific activity, to minimise the degree of receptor occupancy and achieve maximal specific binding of the radioligand. The extent of the problem is exemplified by considering a high-affinity ligand (dissociation constant in vitro {proportional_to}0.1 nM; in vivo {proportional_to}5 nmol/kg i.v. injected dose), where routinely produced levels of specific activity ({proportional_to}100 MBq/nmol) would limit the activity injected into mice to {proportional_to}0.1 MBq for a 1% receptor occupancy. If, as is feasible, the new generation of high resolution PET systems requires an injected activity >10 MBq, then a >100-fold increase in specific activity would be needed for tracer kinetics to hold. The paper highlights the need to consider realistically achievable goals if high-resolution PET is to be accepted as a viable methodology to acquire pharmacologically and physiologically accurate ligand-receptor binding data in mice. (orig.) With 2 figs., 14 refs.

  7. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  8. PETALO, a new concept for a Positron Emission TOF Apparatus based on Liquid xenOn

    Benlloch-Rodriguez, J M

    2016-01-01

    This master thesis presents a new type of Positron Emission TOF Apparatus using Liquid xenOn (PETALO). The detector is based in the Liquid Xenon Scintillating Cell (LXSC). The cell is a box filled with liquid xenon (LXe) whose transverse dimensions are chosen to optimize packing and with a thickness optimized to contain a large fraction of the incoming photons. The entry and exit faces of the box (relative to the incoming gammas direction) are instrumented with large silicon photomultipliers (SiPMs), coated with a wavelength shifter, tetraphenyl butadiene (TPB). The non-instrumented faces are covered by reflecting Teflon coated with TPB. In this thesis we show that the LXSC can display an energy resolution of 5% FWHM, much better than that of conventional solid scintillators such as LSO/LYSO. The LXSC can measure the interaction point of the incoming photon with a resolution in the three coordinates of 1 mm. The very fast scintillation time of LXe (2 ns) and the availability of suitable sensors and electronic...

  9. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring

    Amarnath eChallapalli

    2016-02-01

    Full Text Available Cancer cells do reprogramme their energy metabolism to enable several functions such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article we review both established and evolving radioprobes developed in association with positron emission tomography (PET to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[18F]-fluoro-D-glucose is well established in the clinic. Analogues of choline including [11C]-choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogrammed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism.

  10. Speech disorders in olivopontocerebellar atrophy correlate with positron emission tomography findings

    Kluin, K.J.; Gilman, S.; Markel, D.S.; Koeppe, R.A.; Rosenthal, G.; Junck, L.

    1988-06-01

    We compared the severity of ataxic and spastic dysarthria with local cerebral metabolic rates for glucose (lCMRGlc) in 30 patients with olivopontocerebellar atrophy (OPCA). Perceptual analysis was used to examine the speech disorders, and rating scales were devised to quantitate the degree of ataxia and spasticity in the speech of each patient. lCMRGlc was measured with /sup 18/F-2-fluoro-2-deoxy-D-glucose and positron emission tomography (PET). PET studies revealed marked hypometabolism in the cerebellar hemispheres, cerebellar vermis, and brainstem of OPCA patients compared with 30 control subjects. With data normalized to the cerebral cortex, a significant inverse correlation was found between the severity of ataxia in speech and the lCMRGlc within the cerebellar vermis, cerebellar hemispheres, and brainstem, but not within the thalamus. No significant correlation was found between the severity of spasticity in speech and lCMRGlc in any of these structures. The findings support the view that the severity of ataxia in speech in OPCA is related to the functional activity of the cerebellum and its connections in the brainstem.

  11. Experience with carbon-11 choline positron emission tomography in prostate carcinoma

    Kotzerke, J.; Neumaier, B.; Guhlmann, A.; Reske, S.N. [Ulm Univ. (Germany). Dept. of Nuclear Medicine; Prang, J.; Volkmer, B.; Kleinschmidt, K.; Hautmann, R. [Dept. of Urology, Univ. of Ulm (Germany)

    2000-09-01

    We investigated the potential of carbon-11 choline positron emission tomography (PET) for the detection of lymph node and bone metastases in prostate cancer. A total of 23 patients were studied (known metastases: 8; suspicion of metastases: 3; primary staging: 12). Whole-body PET imaging was performed 5 min after injection of the tracer and completed within 1 h. Focally increased tracer uptake in bone or abdominal lymph node regions was interpreted as representing tumour involvement. All known bone and lymph node metastases could be recognized by [{sup 11}C]choline PET. One out of ten negative scans for primary staging was false-negative (lymph node <1 cm) and one out of two positive scans was false-positive with regard to lymph node involvement (focal bowel activity). It is concluded that [{sup 11}C]choline PET is a promising new tool for the primary staging of prostate cancer, with lymph node and bone metastases demonstrating high tracer uptake. Therapeutic management could be influenced by these results in that the technique may permit avoidance of surgical lymph node exploration. (orig.)

  12. Assessment of myocardial metabolism by positron emission tomography; Stoffwechseluntersuchungen des Herzens mit der Positronenemissionstomographie

    Bengel, F.M.; Schwaiger, M. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik

    1999-06-01

    In combination with a variety of tracers, positron emission tomography does provide noninvasive quantitative information not only about myocardial utilisation of substrates such as glucose or free fatty acids, but also about overall oxidative metabolism. PET studies of myocardial metabolism have substantially contributed to an improved understanding of regulatory mechanism as well as interaction between different substrates under normal conditions as well as under pathologic conditions such as ischemia, heart failure or diabetes mellitus, and will continue to do so in the future. (orig.) [German] Fuer die Positronenemissionstomographie stehen verschiedene Tracer zur Verfuegung, die am menschlichen Herzen nichtinvasive Quantifizierung der Utilisation von Substraten wie Glukose oder freien Fettsaeuren, aber auch des gesamten sauerstoffabhaengigen Metabolismus ermoeglichen. Stoffwechseluntersuchungen des Herzens mit der PET haben zu einem genaueren Verstaendnis von Regulationsmechanismen und Interaktionen zwischen verschiedenen Substraten sowohl im Normalzustand als auch unter pathologischen Bedingungen wie etwa bei ischaemischen Syndromen, Herzinsuffizienz oder Diabetis mellitus beigetragen. Insbesondere durch Untersuchungen von metabolischen Auswirkungen verschiedener Therapieansaetze bei Herzerkrankungen und zur Vorhersage der Effektivitaet solcher therapeutischer Strategien kann die PET auch in Zukunft einen Beitrag zur Weiterentwicklung der Kardiologie leisten. (orig.)

  13. Incidental finding of a left over guide wire on a positron emission tomography

    Yap, Kok Hooi; Lee, Phong Teck; Buch, Mamta; Rammohan, Kandadai Seshadri

    2012-12-15

    The Seldinger technique is commonly used cannulate vessels for radiographical procedures. Loss of a guide wire into the circulation is a rare and preventable complication. It is often noticed by chance during routine radiographs. However, there is a lack of reported cases of incidental fin dings of leftover guide wire on a PET scan. An intravascular foreign body should be retrieved as soon as the diagnosis is made, to prevent complications such as embolisation or vascular damage by fractured wires. Interventional radiology is the method of choice for retrieval. We report a rare case of the coincidental finding of a lost guide wire on a PET scan. A 37 year old man presented with psychotic episodes, thigh weakness, weight gain, increased appetite and leg cramps. He was subsequently diagnosed with cushing syndrome secondary to ectopic adrenocorticotropic secretion from a right lung tumour. He subsequently underwent a staging positron emission tomography (PET) scan. The lung tumour had no uptake on PET bit had increased activity uptake on octreotide scanning. These appearances were suggestive of with carcinoid tumour. The PET scan also revealed an incidental finding of a leftover guide wire used during peripheral inserted central catheter (PICC) recently. The wire extended from right atrium to inferior vena cava. It also showed a high uptake in the adrenal glands, indicating hyperplasia, which was most likely due to adrenocorticotropic hormone stimulation. He underwent a percutaneous wire retrieval via the right femoral vein in a cardiac catheterisation laboratory and was transferred to a thoracic surgical unit for lung tumor resection.

  14. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  15. Quality assurance set-up for a new positron emission tomography detector

    Cortinovis, Daniele; Xu, Chen; Zvolsky, Milan [DESY, Hamburg (Germany); Hamburg Univ. (Germany); Garutti, Erika [Hamburg Univ. (Germany); Silenzi, Alessandro [DESY, Hamburg (Germany)

    2013-07-01

    The PicoSEC-MCNet Project (PICOsecond Siliconphotomultiplier-Electronics- and Crystal research-Marie-Curie-Network) aims to develop a new class of ultra-fast photon detectors for High Energy Physics (HEP) and Positron Emission Tomography (PET). This actual technology development is covered in the EndoTOFPET-US project. A new Time Of Flight PET detector will improve the diagnosis capability of pancreatic and prostate tumors with unprecedented spatial resolution. The detector consists of two parts: a PET head mounted on an ultrasound probe and an external plate. Photons are detected by scintillating crystals individually readout by silicon photomultipliers (SiPMs). Their fast response allows to meet the critical requirement of at least 200 ps (FWHM) coincidence time resolution, essential for a spatial resolution of 3 cm along the Line Of Response (LOR) and efficient background rejection. DESY together with Hamburg University are responsible for the quality assurance and the commissioning of the whole system, and the necessary infrastructure is being set up. Within this task, the light yield uniformity for the combined scintillator-SiPM system of the external plate must be measured. This talk will introduce and describe the set-up which will allows a fast, automatic and high precision measurement of the light yield for the 4096 combined scintillator-SiPMs of the external plate.

  16. Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging

    Ammar A Chaudhry; Maryam Gul; Elaine Gould; Mathew Teng; Kevin Baker; Robert Matthews

    2016-01-01

    Differentiation between neoplastic and nonneoplastic conditions magnetic resonance imaging(MRI) has established itself as one of the key clinical tools in evaluation of musculoskeletal pathology. However, MRI still has several key limitations which require supplemental information from additional modalities to complete evaluation of various disorders. This has led to the development hybrid positron emission tomography(PET)-MRI which is rapidly evolving to address key clinical questions by using the morphological strengths of MRI and functional information of PET imaging. In this article, we aim to review physical principles and techniques of PET-MRI and discuss clinical utility of functional information obtained from PET imaging and structural information obtained from MRI imaging for the evaluation of musculoskeletal pathology. More specifically, this review highlights the role of PET-MRI in musculoskeletal oncology including initial diagnosis and staging, treatment planning and posttreatment follow-up. Also we will review utility of PET-MRI in evaluating musculoskeletal infections(especially in the immunocompromised and diabetics) and inflammatory condition. Additionally, common pitfalls of PET-MRI will be addressed.

  17. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    Mark F Smith; Raymond R Raylman; Stan Majewski; Andrew G Weisenberger

    2004-05-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artifacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumor models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation.

  18. FPGA-Based Front-End Electronics for Positron Emission Tomography.

    Haselman, Michael; Dewitt, Don; McDougald, Wendy; Lewellen, Thomas K; Miyaoka, Robert; Hauck, Scott

    2009-02-22

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm.

  19. Eyeblink conditioning in unmedicated schizophrenia patients: a positron emission tomography study.

    Parker, Krystal L; Andreasen, Nancy C; Liu, Dawei; Freeman, John H; O'Leary, Daniel S

    2013-12-30

    Previous studies suggest that patients with schizophrenia exhibit dysfunctions in a widely distributed circuit-the cortico-cerebellar-thalamic-cortical circuit, or CCTCC-and that this may explain the multiple cognitive deficits observed in the disorder. This study uses positron emission tomography (PET) with O(15) H₂O to measure regional cerebral blood flow (rCBF) in response to a classic test of cerebellar function, the associative learning that occurs during eyeblink conditioning, in a sample of 20 unmedicated schizophrenia patients and 20 closely matched healthy controls. The PET paradigm examined three phases of acquisition and extinction (early, middle and late). The patients displayed impaired behavioral performance during both acquisition and extinction. The imaging data indicate that, compared to the control subjects, the patients displayed decreases in rCBF in all three components of the CCTCC during both acquisition and extinction. Specifically, patients had less rCBF in the middle and medial frontal lobes, anterior cerebellar lobules I/V and VI, as well as the thalamus during acquisition and although similar areas were found in the frontal lobe, ipsilateral cerebellar lobule IX showed consistently less activity in patients during extinction. Thus this study provides additional support for the hypothesis that patients with schizophrenia have a cognitive dysmetria--an inability to smoothly coordinate many different types of mental activity--that affects even a very basic cognitive task that taps into associative learning.

  20. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  1. Function of the shoulder muscles during arm elevation: an assessment using positron emission tomography

    Omi, Rei; Sano, Hirotaka; Ohnuma, Masahiro; Kishimoto, Koshi N; Watanuki, Shoichi; Tashiro, Manabu; Itoi, Eiji

    2010-01-01

    Although 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) has been used for the assessment of skeletal muscle activities, its application to the shoulder muscles is only sparse. The purpose of this study was to investigate the activities of the shoulder muscles during arm elevation using PET. Six healthy volunteers performed an arm elevation exercise before and after FDG injection. The exercise consisted of 200 repetitions of arm elevation in the scapular plane with a 0.25-kg weight fixed to the wrist on both arms. PET examination was performed 50 min after FDG injection. For control data, PET scan was repeated for each subject on a separate day without any exercise. The volume of interest was established for each shoulder muscle. The subscapularis was divided into three portions (superior, middle, and inferior). The standardized uptake value (SUV) was calculated in each muscle to quantify its activity. The SUVs increased significantly after exercise in the deltoid, supraspinatus, and the superior portion of subscapularis. Among three divided portions of the subscapularis, the SUV of the superior one-third was significantly greater than the rest of the muscle after exercise. Our current study clearly indicated that there were two functionally different portions in the subscapularis muscle and the superior one-third played an important role during arm elevation in the scapular plane. PMID:20298439

  2. Significance of incidental focal uptake in prostate on 18-fluoro-2-deoxyglucose positron emission tomography CT images

    Han, E J; H O, J; Choi, W H; Yoo, I R; Chung, S K

    2010-01-01

    To evaluate the clinical significance of incidental focal prostate fluorodeoxyglucose (FDG) uptake, we reviewed 18-F-FDG positron emission tomography (PET)/CT scans from 2003 to 2007 and selected cases with focal FDG uptake in prostate. Cases of known prostate cancer were excluded. The maximum standardised uptake value (SUVmax), site (central or peripheral) and pattern (discrete or ill-defined) of FDG uptake, calcification (present or absent) and prostate volume (

  3. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools

    Hawe, David; Hernández Fernández, Francisco R.; O’Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O’Sullivan, Finbarr

    2012-01-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course da...

  4. Characteristics of glucose metabolism and amyloid deposition by positron emission tomography images in Alzheimer’s disease

    纪勇

    2013-01-01

    Objective To investigate positron emission tomography (PET) image characteristics of glucose metabolism and amyloid deposition as demonstrated by fluorodeoxyglucose (18F-FDG) and Pittsburgh Compound B (PiB) in Alzheimer’s disease (AD) .Methods Patients with mild AD and moderate AD (n=6,each) were included in this study.6 healthy subjects were selected as normal controls.Cognitive function was assessed by the minimental state examination,Montreal Cognitive Assessment and Clinical Dementia Rating.Ventricular dilation,cor-

  5. Lhermitte-Duclos disease presenting with positron emission tomography-magnetic resonance fusion imaging: a case report

    Calabria Ferdinando

    2012-03-01

    Full Text Available Abstract Introduction Lhermitte-Duclos disease or dysplastic gangliocytoma of the cerebellum is an extremely rare tumor. It is a slowly enlarging mass within the cerebellar cortex. The majority of cases are diagnosed in the third or fourth decade of life. Case presentation We report the case of a 37-year-old Caucasian woman who underwent positron emission tomography-computed tomography with fluorine-18-fluorodeoxyglucose for evaluation of a solitary lung node. No pathological uptake was detected in the solitary lung node but the positron emission tomography-computed tomography of her brain showed intense tracer uptake, suggestive of a malignant neoplasm, in a mass in her left cerebellar lobe. Our patient had experienced two years of occipital headache and movement disorder. Subsequently, magnetic resonance imaging was performed with contrast agent administration, showing a large subtentorial mass in her left cerebellar hemisphere, with compression and dislocation of the fourth ventricle. Metabolic data provided by positron emission tomography and morphological magnetic resonance imaging views were fused in post-processing, allowing a diagnosis of dysplastic gangliocytoma with increased glucose metabolism. Total resection of the tumor was performed and histological examination confirmed the diagnosis of Lhermitte-Duclos disease. Conclusions Our case indicates that increased uptake of fluorine-18-fluorodeoxyglucose may be misinterpreted as a neoplastic process in the evaluation of patients with Lhermitte-Duclos disease, but supports the usefulness of integrated positron emission tomography-magnetic resonance imaging in the exact pathophysiologic explanation of this disease and in making the correct diagnosis. However, an accurate physical examination and exact knowledge of clinical data is of the utmost importance.

  6. Particle physics methodologies applied to time-of-flight positron emission tomography with silicon-photomultipliers and inorganic scintillators

    Leming, Edward J

    2015-01-01

    Positron emission tomography, or PET, is a medical imaging technique which has been used in clinical environments for over two decades. With the advent of fast timing detectors and scintillating crystals, it is possible to envisage improvements to the technique\\ud with the inclusion of time-of-flight capabilities. In this context, silicon photomultipliers coupled to fast inorganic LYSO crystals are investigated as a possible technology choice. As part of the ENVISION collaboration a range of ...

  7. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    Hua-Guang Zheng; Rong Zhang; Xin Li; Fang-Fei Li; Ya-Chen Wang; Xue-Mei Wang; Ling-Long Lu; Tao Feng

    2015-01-01

    Background: The relationship between monosymptomatic resting tremor (mRT) and Parkinson′s disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Methods: Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified...

  8. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; FREIFELDER, RICHARD; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluor...

  9. Quantification of myocardial perfusion using cardiac magnetic resonance imaging correlates significantly to rubidium-82 positron emission tomography in patients with severe coronary artery disease

    Qayyum, Abbas A; Hasbak, Philip; Larsson, Henrik B W

    2014-01-01

    INTRODUCTION: Aim was to compare absolute myocardial perfusion using cardiac magnetic resonance imaging (CMRI) based on Tikhonov's procedure of deconvolution and rubidium-82 positron emission tomography (Rb-82 PET). MATERIALS AND METHODS: Fourteen patients with coronary artery stenosis underwent ...

  10. Traditional versus up-front [F-18] fluorodeoxyglucose-positron emission tomography staging of non-small-cell lung cancer : A Dutch cooperative randomized study

    Herder, GJM; Kramer, H; Hoekstra, OS; Smit, EF; Pruim, J; van Tinteren, H; Comans, EF; Verboom, P; Uyl-De Groot, CA; Welling, A; Paul, MA; Boers, M; Postmus, PE; Teule, GJ; Groen, HJM

    2006-01-01

    Purpose We investigated whether application of positron emission tomography (PET) immediately after first presentation might simplify staging while maintaining accuracy, as compared with traditional strategy in routine clinical setting. Methods At first presentation, patients with a provisional diag

  11. Hyperventilation-induced reduction in cerebral blood flow: Assessment by positron emission tomography

    Bednarczyk, E.M.; Rutherford, W.F.; Leisure, G.P.; Munger, M.A.; Panacek, E.A.; Miraldi, F.D.; Green, J.A. (Case Western Reserve Univ. School of Medicine, Cleveland, OH (USA))

    1990-05-01

    The use of positron emission tomography (PET) has been well documented as a relatively noninvasive method of measuring cerebral blood flow (CBF), both globally and regionally. The utility of readily detecting alterations in CBF is apparent, particularly when applied to the evaluation of therapeutic interventions thought to influence CBF. We report the effects of hypocapnia, an experimental condition of known cerebral vasoconstriction, in ten normal volunteers. Subjects had brain blood flow evaluated utilizing H215O as the positron emitter before and after approximately five minutes of hyperventilation. Baseline CBF was measured as a mean +/- SD of 61.2 +/- 16.3 mL/min/100 g of tissue. Mean baseline arterial blood gas values were PaO2 107.4 +/- 14 mm Hg, PaCO2 37.7 +/- 0.89 mm Hg, and pH 7.39 (calculated from mean (H+)). Post hyperventilation, global CBF was measured as 31.1 +/- 10.8 mL/min/100 g. Mean arterial blood gas values were PaO2 141.7 +/- 21 mm Hg, PaCO2 19.7 +/- 5 mm Hg, and pH 7.63 (calculated from mean (H+)). CBF decreased by a mean of 49.5 +/- 11 percent. Data analysis using the Student's t-test showed a significant change over baseline in PaCO2 (p less than 0.001) and CBF (p less than 0.001), in the hyperventilated state. Correlations were noted between the decrease in CBF and change in PaCO2 (r = 0.81) as well as between hyperventilation PaCO2 and the change in CBF (r = 0.97). We conclude that, as measured by PET, CBF decreases significantly during a state of artificial hyperventilation to a degree consistent with results seen using other methods. PET appears to be a valuable tool in the assessment of interventions that could influence CBF.

  12. Fundamental studies of myocardial defect size quantification using positron emission tomography and single photon emission computed tomography

    Yoneyama, Tatsuya [Kanazawa Univ. (Japan). School of Medicine

    2001-04-01

    In Flurine-18 fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) acquisition, a transmission scan is usually performed before the PET tracer injection (cold transmission method), followed by a subsequent emission scan. However, this procedure is time consuming. An alternative approach, in which the transmission scan is performed after the emission scan (hot transmission method), would significantly reduce the time required for data acquisition. Recently, three-dimensional PET acquisition (3D PET) has become available. The counting sensitivity is much higher in 3D PET than in conventional two-dimensional PET (2D PET), resulting in a shorter acquisition time and reduced radiation exposure for the patient. On the other hand, {sup 18}F-FDG imaging using single photon emission computed tomography (SPECT), a more widely available method than PET, has emerged as an alternative to PET. The purpose of this study was to investigate the accuracy of measurement of myocardial defect sizes by these new techniques, using a chest phantom. Acquisitions were performed using an elliptical cylinder chest phantom. Plastic inserts, ranging in size from 2-60% of the myocardium (n=12), were used as simulated models of transmural myocardial infarction. Fluorine-18 was given into each part of the phantom. PET imaging with cold and hot transmission methods, 3D PET, and SPECT imaging were performed with different acquisition times and different radioisotope concentrations. All PET and SPECT data were analyzed using a semiquantitative polar map approach. Defect sizes were quantified using various cutoff thresholds, and were expressed as a percentage of the left ventricular myocardium. The PET and SPECT measurements were compared with the true defect sizes. Among the various cutoff levels tested, the mean absolute difference between the measured and true defect sizes was minimal at 50% of peak activity for both PET and SPECT. The PET measurements with the hot transmission

  13. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy

    Vázquez Rodríguez, Patricia; Hong, Young T.; Allinson, Kieren S. J.; Williamson, David; Borchert, Robin J.; Sami, Saber; Cope, Thomas E.; Bevan-Jones, W. Richard; Jones, P. Simon; Arnold, Robert; Surendranathan, Ajenthan; Mak, Elijah; Su, Li; Fryer, Tim D.; Aigbirhio, Franklin I.; O’Brien, John T.; Rowe, James B.

    2017-01-01

    Abstract The ability to assess the distribution and extent of tau pathology in Alzheimer’s disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer’s pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer’s disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer’s and non-Alzheimer’s tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer’s disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P 2.2, P’s 2.7, P’s < 0.02). The support vector machine assigned patients’ diagnoses with 94% accuracy. The post-mortem autoradiographic data showed that 18F-AV-1451 strongly bound to Alzheimer-related tau pathology, but less specifically in progressive supranuclear palsy. 18F-AV-1451 binding to the basal ganglia was strong in all groups in vivo. Postmortem histochemical staining showed absence of neuromelanin-containing cells in the basal ganglia, indicating that off-target binding to neuromelanin is an insufficient explanation of 18F-AV-1451 positron emission tomography data in vivo, at least in the basal ganglia. Overall, we confirm the potential of 18F

  14. Prognostic value of 18-fluorodeoxyglucose positron emission tomography-computed tomography in resectable colorectal cancer

    Jang Eun Lee; Sang Woo Kim; Jin Su Kim; Kyu Yong Choi; Won Kyung Kang; Seong Taek Oh; Ie Ryung Yoo

    2012-01-01

    AIM:To assess the prognostic value of preoperative 18 fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT) in patients with resectable colorectal cancer.METHODS:One hundred sixty-three patients with resectable colorectal cancer who underwent FDG-PET/CT before surgery were included.Patient data including pathologic stage at presentation,histology,treatment,disease-free survival and the maximum standardized uptake value (SUVmax) of the primary tumor on FDGPET/CT were retrospectively analyzed.Median follow up duration was 756 (range,419-1355).The primary end point was disease-free survival.RESULTS:Twenty-five of 163 patients (15.3%) had recurrences.The median SUVmax values of the recurrence and no-recurrence groups were 8.9 (range,5-24) and 8.2 (range,0-23,P =0.998).Receiver operating characteristic (ROC) curve analysis showed no significant association between SUVmax and recurrence (area under the curve =0.5,P =0.998,95%CI:0.389-0.611).Because a statistically significant value was not found,SUVmax was dichotomized at its median of 8.6.The disease-free survival curve was analyzed using the median SUVmax (8.6) as the cut off.Univariate and multivariate analysis did not provide evidence that disease-free survival rates for the subgroups defined by the median SUVmax were significantly different (P =0.52,P =0.25).CONCLUSION:Our study suggests that the high FDG uptake of primary mass in resectable colorectal cancer doesn't have a significant relationship with tumor recurrence and disease-free survival.

  15. Positron emission tomography (PET) study of patients with pituitary adenoma using labeled amino acid

    Mineura, Katsuyoshi; Sasajima, Toshio; Sakamoto, Tetsuya; Kowada, Masayoshi (Akita Univ. (Japan). Hospital); Shishido, Fumio; Uemura, Kazuo

    1989-12-01

    Four cases with pituitary adenomas were studied using {sup 11}C-L-methionine (C-11 Met) positron-emission tomography (PET). The C-11 Met was intravenously administered at a dose of 0.6 mCi/kg. The uptake of the tracer for tumors was calculated on the PET images 45 min after the injection; the uptake index was represented as a percentage of the total count in the arterial blood over a period of 45 min. In all cases, the C-11 Met accumulated intensely in the tumor regions; the PET images clearly delineated the extent of the tumor. The C-11 Met uptake index for pituitary adenomas varied widely from 3.94 x 10{sup -2}% to 15.36 x 10{sup -2}%, with a mean of 7.87 x 10{sup -2}%. These indices for the tumors increased markedly in comparison with that of the contralateral left temporal gray matter as a nontumor region (1.89 x 10{sup -2}% to 2.43 x 10{sup -2}% with a mean of 2.06 x 10{sup -2}%). In a case of prolactinoma, repeated PET following bromocriptine treatment showed a decrease in the C-11 Met uptake index; this decrease reflected changes in the serum prolactin value. In another case with ACTH-producing adenoma, the T/NT (tumor/nontumor) ratio fell from 3.44 to 2.40; however, the C-11 Met index remained unchanged. C-11 Met PET images facilitate determining the extent of pituitary adenomas and the monitoring of tumor response to treatment. Further application may give useful knowledge on the amino-acid metabolism of the tumor. (author).

  16. Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

    Sonja Probst

    2014-01-01

    Full Text Available In this study, simultaneous positron emission tomography (PET/magnetic resonance (MR imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG, 11C-choline, and 18F-fluorothymidine (18F-FLT to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the analysis of tracer uptake of the tumors using the morphologic information acquired by MR. New Zealand White rabbits were infected with cottontail rabbit papillomavirus genomes and were imaged for up to 10 months with a simultaneous PET/MR system during the course of infection. The uptake characteristics of the PET tracers 11C-choline and 18F-FLT of tumors and reference tissues were examined relative to the clinical standard, 18F-FDG. Tracer biodistribution of various organs was measured by gamma-counting after the last PET scan and compared to the in vivo PET/MR 18F-FDG uptake. Increased tracer uptake was found 2 months postinfection in primary tumors with 18F-FDG and 11C-choline, whereas 18F-FLT failed to detect the tumors at all measured time points. Our data show that the PET tracer 18F-FDG is superior for imaging papillomavirus-induced tumors in rabbits compared to 11C-choline and 18F-FLT. However, 11C-choline imaging, which has previously been applied to detect various tumor entities in patients, appears to be an alternative to 18F-FDG.

  17. Importance of defect detectability in Positron Emission Tomography imaging of abdominal lesions

    Shozo Yamashita

    2015-07-01

    Full Text Available Objective(s: This study was designed to assess defect detectability in positron emission tomography (PET imaging of abdominal lesions. Methods: A National Electrical Manufactures Association International Electrotechnical Commission phantom was used. The simulated abdominal lesion was scanned for 10 min using dynamic list-mode acquisition method. Images, acquired with scan duration of 1-10 min, were reconstructed using VUE point HD and a 4.7 mm full-width at half-maximum (FWHM Gaussian filter. Iteration-subset combinations of 2-16 and 2-32 were used. Visual and physical analyses were performed using the acquired images. To sequentially evaluate defect detectability in clinical settings, we examined two middle-aged male subjects. One had a liver cyst (approximately 10 mm in diameter and the other suffered from pancreatic cancer with an inner defect region (approximately 9 mm in diameter. Results: In the phantom study, at least 6 and 3 min acquisition durations were required to visualize 10 and 13 mm defect spheres, respectively. On the other hand, spheres with diameters ≥17 mm could be detected even if the acquisition duration was only 1 min. The visual scores were significantly correlated with background (BG variability. In clinical settings, the liver cyst could be slightly visualized with an acquisition duration of 6 min, although image quality was suboptimal. For pancreatic cancer, the acquisition duration of 3 min was insufficient to clearly describe the defect region. Conclusion: The improvement of BG variability is the most important factor for enhancing lesion detection. Our clinical scan duration (3 min/bed may not be suitable for the detection of small lesions or accurate tumor delineation since an acquisition duration of at least 6 min is required to visualize 10 mm lesions, regardless of reconstruction parameters. Improvements in defect detectability are important for radiation treatment planning and accurate PET-based diagnosis.

  18. Importance of Defect Detectability in Positron Emission Tomography Imaging of Abdominal Lesions

    Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Nakaichi, Tetsu; Tsuji, Shiro; Nakajima, Kenichi

    2015-01-01

    Objective(s): This study was designed to assess defect detectability in positron emission tomography (PET) imaging of abdominal lesions. Methods: A National Electrical Manufactures Association International Electrotechnical Commission phantom was used. The simulated abdominal lesion was scanned for 10 min using dynamic list-mode acquisition method. Images, acquired with scan duration of 1-10 min, were reconstructed using VUE point HD and a 4.7 mm full-width at half-maximum (FWHM) Gaussian filter. Iteration-subset combinations of 2-16 and 2-32 were used. Visual and physical analyses were performed using the acquired images. To sequentially evaluate defect detectability in clinical settings, we examined two middle-aged male subjects. One had a liver cyst (approximately 10 mm in diameter) and the other suffered from pancreatic cancer with an inner defect region (approximately 9 mm in diameter). Results: In the phantom study, at least 6 and 3 min acquisition durations were required to visualize 10 and 13 mm defect spheres, respectively. On the other hand, spheres with diameters ≥17 mm could be detected even if the acquisition duration was only 1 min. The visual scores were significantly correlated with background (BG) variability. In clinical settings, the liver cyst could be slightly visualized with an acquisition duration of 6 min, although image quality was suboptimal. For pancreatic cancer, the acquisition duration of 3 min was insufficient to clearly describe the defect region. Conclusion: The improvement of BG variability is the most important factor for enhancing lesion detection. Our clinical scan duration (3 min/bed) may not be suitable for the detection of small lesions or accurate tumor delineation since an acquisition duration of at least 6 min is required to visualize 10 mm lesions, regardless of reconstruction parameters. Improvements in defect detectability are important for radiation treatment planning and accurate PET-based diagnosis. PMID:27408887

  19. {sup 18}F-FDG positron emission tomography in the early diagnosis of enterocolitis: preliminary results

    Kresnik, E.; Gallowitsch, H.J.; Igerc, I.; Kumnig, G.; Gomez, I.; Lind, P. [Nuclear Medicine and Special Endocrinology, PET Centre, General Hospital, St. Veiterstrasse 47, 9020 Klagenfurt (Austria); Mikosch, P.; Alberer, D.; Hebenstreit, A. [Department of Internal Medicine and Gastroenterology, General Hospital, Klagenfurt (Austria); Wuertz, F. [Department of Pathology, General Hospital, Klagenfurt (Austria); Kogler, D.; Gasser, J. [Department of Radiology, General Hospital, Klagenfurt (Austria)

    2002-10-01

    Collagenous and eosinophilic colitis are rare diseases characterised by chronic watery diarrhoea. Radiographic evaluation of the gastrointestinal tract and colonoscopy are usually non-diagnostic since as many as one-third of patients will have minor abnormalities. To date a few investigators have reported increased fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) uptake on positron emission tomography (PET) in patients with acute enterocolitis, but there have been no reports on the use of {sup 18}F-FDG PET for the diagnosis of collagenous or eosinophilic colitis in an early clinical stage. The aim of this preliminary study was to evaluate the usefulness of {sup 18}F-FDG PET in the early diagnosis of patients with colitis. We investigated five women (mean age 61.2{+-}12.1 years) who had been diagnosed as having colitis in an early clinical stage. In all but one of the patients, the diagnosis of colitis was based on biopsy. Magnetic resonance colonography, ultrasonography and colonoscopy were performed in all but one of the patients. Two women were identified as having collagenous colitis in an early clinical stage. Another two patients had eosinophilic colitis. The morphological imaging methods, magnetic resonance colonography and ultrasonography, yielded no suspicious findings, and the results of colonoscopy similarly showed no abnormalities. One patient had colitis due to bacterial infection. In all patients {sup 18}F-FDG PET showed a pathological increase in tracer uptake in the large bowel, suggestive of colitis. In four of the five patients, colitis was confirmed by histology, and in one, by bacterial analysis. {sup 18}F-FDG PET was able to detect colitis in an early clinical stage, when morphological imaging methods and colonoscopy were non-diagnostic. The early performance of {sup 18}F-FDG PET imaging in patients with possible colitis is encouraging. (orig.)

  20. The Silicon Photomultiplier for application to high-resolution Positron Emission Tomography

    Herbert, D. J.; Moehrs, S.; D'Ascenzo, N.; Belcari, N.; Del Guerra, A.; Morsani, F.; Saveliev, V.

    2007-04-01

    Positron Emission Tomography (PET) for small animal studies requires high-resolution gamma cameras with high sensitivity. Traditionally, inorganic scintillators are used and, in recent times, coupled to position sensitive PMTs to achieve a higher resolution. Such PSPMTs are costly, operated at high voltage and have a relatively low packing fraction. However, their advantage, compared to current solid state photodetectors, is their high signal-to-noise ratio. The Silicon Photomultiplier (SiPM) is a silicon diode detector that shows great promise as a photodetector for scintillators and hence application in nuclear medicine imaging applications. The microcell MRS (Metal-Resistor-Semiconductor) structure of the SiPM leads to a self-quenching, Geiger-mode avalanche photodiode (GAPD), that produces a large gain (5×105) at low bias voltage (50 V) and proportional output for moderate photon flux. Such a compact silicon detector, with a performance similar to a PMT, is obviously well disposed to being developed into a close-packed array in order to have a position-sensitive detection surface. We propose a miniature, high-resolution camera for a small-animal PET imaging system that is based on such an array of SiPM. The design is based upon the classic Anger camera principle; each detector module consists of a continuous slab of scintillator, viewed by a matrix of SiPM. A detector head of 4×4 cm2 in area is proposed, constructed from three such modules of the continuous camera described above. The stacked layers would give the system intrinsic depth of interaction (DOI) information. A summary of measured SiPM performance and results of a simulation of the proposed camera, using the Monte Carlo package GEANT4, are presented. It is shown that using three layers of 5 mm thick LSO, gives an efficiency of 68% with maximum count rates in the front layers. Intrinsic spatial resolution of system.

  1. Radiation detector developments in medical applications: inorganic scintillators in positron emission tomography.

    van Eijk, Carel W E

    2008-01-01

    In recent years, a number of new gamma-ray scintillators are commercially available. These scintillators are either derived from known scintillators, e.g. Lu1-xYxAlO3: Ce (LuYAP) from LuAlO3:Ce and Lu(2(1-x))Y2xSiO5:Ce (LYSO) from Lu2SiO5:Ce or are the result of new discoveries, e.g. LaCl3:Ce and LaBr3:Ce. The first two materials are primarily of interest because of the relatively high detection efficiency and fast response; LYSO has found application in time-of-flight (TOF) positron-emission tomography (TOF PET) and the LuYAP-LYSO combination is used in small-animal PET. The halide scintillators have an excellent energy resolution of approximately 3% at 662 keV and they have a relatively high light yield. LaBr3:Ce is being studied for application in TOF PET. At the same time, the search for and research on new scintillator materials are going on. For example, LuI3:Ce is a new material with a very high light yield (approximately 90,000 photons MeV(-1)). Other examples of new materials are (C6H13NH3)2PbI4 and (C3H7NH3)2PbBr4, organic-inorganic hybrid compounds, of which the former has a very fast sub-nanosecond response. The new scintillators show great promise for new developments in medical applications, in particular, for PET systems.

  2. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography

    Thomas, Benjamin A.; Cuplov, Vesna; Bousse, Alexandre; Mendes, Adriana; Thielemans, Kris; Hutton, Brian F.; Erlandsson, Kjell

    2016-11-01

    Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.

  3. Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1

    Moharir, Mahendranath [Hospital for Sick Children, Division of Neurology, Ontario (Canada); London, Kevin [Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney (Australia); Howman-Giles, Robert [University of Sydney, Discipline of Imaging, Faculty of Medicine, Sydney (Australia); North, Kathryn [Children' s Hospital at Westmead, Institute for Neuroscience and Muscle Research, Sydney, NSW (Australia)

    2010-07-15

    There is little consensus regarding optimal surveillance of optic pathway glioma (OPG) and plexiform neurofibroma (PNF) in childhood neurofibromatosis type 1 (NF1). {sup 18}F-2-Fluoro-2-deoxy-D-glucose (FDG) positron emission tomography and computed tomography (PET/CT) is employed in the surveillance of adult PNFs; but its utility has neither been specifically studied in children with PNFs nor in children with OPG. Review of PET/CT studies was performed in NF1 children with OPG or PNF. FDG-avidity of tumours was semi-quantitatively analysed and graded by calculating the maximum standardised uptake value (SUV{sub max}) [grade 1: <3 (low), grade 2: >3-<4 (intermediate), grade 3: >4 (intense)]. Eighteen children (ten girls; median age: 8.5-years) had PET/CT. Nineteen OPGs were imaged. The SUV{sub max} could be measured in 16. Ten were grade 1 and three each were grade 2 and grade 3. FDG-avidity reduced from grade 3 to grade 1 in two symptomatic OPGs following chemotherapy and this was associated with clinical improvement. PET/CT diagnosed symptomatic OPGs with a sensitivity of 0.625 [95% confidence interval (CI): 0.259-0.897] and specificity of 0.875 (95% CI: 0.466-0.993). Sixteen PNFs were imaged. Twelve were grade 1 and two each were grade 2 and grade 3. The two grade 3 PNFs were confirmed malignant peripheral nerve sheath tumours. PET/CT diagnosed malignant transformation with a sensitivity of 1.0 (95% CI: 0.197-1.0) and specificity of 0.857 (95% CI: 0.561-0.974). PET/CT may contribute useful information to the surveillance of OPG in childhood NF1 - particularly to identify progressive, symptomatic tumours. As in adults, PET/CT is useful for the detection of malignant transformation in PNFs in children with NF1. (orig.)

  4. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study

    Otte, A. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland)]|[Department of Nuclear Medicine, University Hospital Freiburg (Germany); Weiner, S.M. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Peter, H.H. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Mueller-Brand, J. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Goetze, M. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Moser, E. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Gutfleisch, J. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Hoegerle, S. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Juengling, F.D. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Nitzsche, E.U. [Department of Nuclear Medicine, University Hospital Freiburg (Germany)

    1997-07-01

    In contrast to morphological imaging [such as magnetic resonance imaging (MRI) or computed tomography], functional imaging may be of advantage in the detection of brain abnormalities in cases of neuropsychiatric systemic lupus erythematosus (SLE). Therefore, we studied 13 patients (aged 40{+-}14 years, 11 female, 2 male) with neuropsychiatric SLE who met four of the American Rheumatism Association criteria for the classification of SLE. Ten clinically and neurologically healthy volunteers served as controls (aged 40{+-}12 years, 5 female, 5 male). Both groups were investigated using fluorine-18-labelled fluorodeoxyglucose brain positron emission tomography (PET) and cranial MRI. The normal controls and 11 of the 13 patients showed normal MRI scans. However, PET scan was abnormal in all 13 SLE patients. Significant group-to-group differences in the glucose metabolic index (GMI=region of interest uptake/global uptake at the level of the basal ganglia and thalamus) were found in the parieto-occipital region on both sides: the GMI of the parieto-occipital region on the right side was 0.922{+-}0.045 in patients and 1.066{+-}0.081 in controls (P<0.0001, Mann Whitney U test), while on the left side it was 0.892{+-}0.060 in patients and 1.034{+-}0.051 in controls (P=0.0002). Parieto-occipital hypometabolism is a conspicuous finding in mainly MRI-negative neuropsychiatric SLE. As the parieto-occipital region is located at the boundary of blood supply of all three major arteries, it could be the most vulnerable zone of the cerebrum and may be affected at an early stage of the cerebrovascular disease. (orig.). With 1 fig., 1 tab.

  5. Molecular imaging of atherosclerotic lesions by positron emission tomography - can it meet the expectations?

    Brammen, Lindsay; Steiner, Sabine; Berent, Robert; Sinzinger, Helmut

    2016-01-01

    Early non-invasive imaging of atherosclerosis and in particular the detection of lesions at risk with high specificity could significantly affect cardiovascular morbidity and mortality. Conventional nuclear medicine approaches, in particular using autologous radiolabeled lipoproteins, can be related to histopathological findings; however, they fail to identify lesions at risk. Positron emission tomography (PET) tracers with much better physical properties have been examined, the most detailed information being available for F-18-deoxyglucose (FDG) and F-18-sodium fluoride (NaF). These two approaches are sensitive to different biochemical mechanisms, i.e. inflammation and microcalcification. Initial enthusiasm, in particular for F-18-FDG, has disappeared, although for F-18-NaF there is some hope, but this is not a breakthrough. No tracer is available so far that is able to identify a specific characteristic of a lesion prone to rupture. Other PET tracers in the pipeline have been examined, mainly in experimental models and only a few in patients, but they failed to contribute significantly to early lesion discovery and do not support great expectations. The key question is: Do we understand what we see? Moreover, methodological problems, a lack of standardization of imaging protocols and aspects of quantification provide a wide range for potential future improvements. While monitoring a therapeutic intervention seems to be possible for both F-18-FDG and F-18-NaF, highly specific early identification of lesions at risk by PET imaging is still far away. As of today, PET is not ready for routine clinical judgment of atherosclerotic lesions at risk to rupture. Even if all these problems can be solved, radiation exposure will still remain a concern, in particular for repeated studies.

  6. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma: a preliminary report

    Liu Renshyan [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China)]|[National Def. Medical Center, Taipei (Taiwan, Province of China); Yeh Shinhwa [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Huang Minhsiung [Div. of Thoracic Surgery, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Wang Liangshun [Div. of Thoracic Surgery, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Chu Leeshing [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China)]|[National Def. Medical Center, Taipei (Taiwan, Province of China); Chang Chenpei [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Chu Yumkung [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Wu Lingchi [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China)

    1995-12-01

    This study aimed to analyse the uptake patterns of fluorine-18 fluorodeoxyglucose (FDG) in thymomas of different stages. FDG positron emission tomography (PET) scan was performed in 12 patients suspected of having thymoma and in nine controls. Qualitative visual interpretation was used to detect the foci with FDG uptake higher than that of normal mediastinum. Tumour/lung ratio (TLR) was calculated from the counts of ROIs over the mass and over comparable normal lung tissue in thymoma patients. Mediastinum/lung ratio (MLR) was calculated from the counts of ROIs over the anterior mediastinum and lung in controls. The PET scan patterns of distribution of foci with FDG uptake and TLRs were correlated with the computed tomography (CT) of magnetic resonance imaging (MRI) findings, and staging of the thymomas. Thymectomy was performed in ten patients and thoracoscopy was done in two patients. The results revealed ten thymomas (two stage I tumours, two stage II, four stage III and two stage IV, according to the Masaoka classification), and two cases of thymic hyperplasia associated with myasthenia gravis. Myasthenia gravis was also noted in four thymoma patients. FDG studies showed (a) diffuse uptake in the widened anterior mediastinum in patients with thymic hyperplasia, (b) confined focal FDG uptake in the non-invasive or less invasive, stage I and II thymomas, and (c) multiple discrete foci of FDG uptake in the mediastinum and thoraci structures in stage III and IV advanced invasive thymomas. The thymomas had the highest TLRs, followed by the TLRs of thymic hyperplasia and the MLRs of control subjects. No significant difference was found between thymomas in different stages or between thymomas with and thymomas without myasthenia gravis. In comparison with CT and/or MRI, FDG/PET detected more lesions in patients with invasive thymomas and downgraded the staging of thymoma in four patients. (orig./MG)

  7. Cerebral blood flow and metabolism for Broca's aphasia using positron emission tomography

    Kato, Toshiaki

    1987-12-01

    A total of 11 patients with Broca's aphasia (BA) underwent positron emission tomography (PET) with the purpose of investigating the responsible region and the symptomatic flow and metabolism thresholds for BA. Computed tomography (CT) was concurrently performed. In the group of 3 patients undergoing PET with C-11 glucose, both PET and CT provided abnormal findings in the region that is thought to be responsible for BA (Broca's area), including the cortex and subcortex in the anterior region to Sylvian fissure. The Broca's area in the remaining one was shown as low C-11 accumulation area on PET and as isodensity on CT. The second group, consisting of 8 BA patients and 30 control patients without BA, underwent PET using O-15 steady method. PET showed reduction of regional cerebral blood flow (rCBF) and oxygen metabolic rate (rCMRO/sub 2/) in the Broca's area in all BA patients. Computed tomography showed abnormal low density in the Broca's area in 3 patients, and abnormal findings in the basal ganglionic region and subcortex without evidence for abnormal low density in the Broca's area in the other 5 patients. Comparison of rCBF and rCMRO/sub 2/ in BA patients with those in control patients may show the symptomatic thresholds to be 20 - 27 ml100 gmin for rCBF and 2.0 ml100 gmin for rCMRO/sub 2/. (Namekawa, K.).

  8. Whole-body energy mapping under physical exercise using positron emission tomography.

    Iemitsu, M; Itoh, M; Fujimoto, T; Tashiro, M; Nagatomi, R; Ohmori, H; Ishii, K

    2000-12-01

    We attempted to visualize dynamic adjustment of glucose utilization in humans in the whole-body organs during physical exercise by using three-dimensional positron emission tomography (3D-PET) and [18F]-2-fluoro-deoxy-glucose (FDG). Twelve healthy male volunteers collaborated on the study; six subjects were assigned to the resting control group (C) and the other six to the running group (E). Group E subjects performed running on a flat road for 35 min. After 15 min of running, subjects injected FDG and kept on running thereafter for another 20 min. Group C subjects sat on a comfortable chair in a quiet room for 35 min after the injection of FDG. After scanning by PET, the regions of interest (ROIs) were manually set on brain, heart, thorax, abdomen, lower extremities, and the rest of the body on the corresponding transaxial images. The uptake of FDG in each region was evaluated as the % fraction of FDG accumulation relative to the total amount of whole-body accumulation. The results revealed increase of FDG uptake after running in the lower leg muscles from 24.6 +/- 9.5% to 43.1 +/- 4.7% and in the heart from 2.3 +/- 0.4% to 2.8 +/- 0.6%. The differences were significant (P body. FDG uptake in the abdominal region reduced from 37.3 +/- 7.2% to 19.7 +/- 4.9%. However, FDG uptake in the brain remained stable, i.e., 11.9 +/- 2.8% at rest and 10.3 +/- 2.5% after exercise. Thus, 3D-PET is a tool to visualize the dynamic adjustment of energy consumption during physical exercise in humans.

  9. Imaging glucose metabolism in perfluorocarbon-perfused hepatocyte bioreactors using positron emission tomography.

    Nieuwoudt, Martin; Wiggett, Scholtz; Malfeld, Susan; van der Merwe, Schalk W

    2009-01-01

    In vitro hepatocyte bioreactor functionality depends particularly on maintaining appropriate oxygen levels and exposure to nonparenchymal cells. An attractive solution without immunological consequences to the patient is incorporating a perfluorocarbon oxygen carrier in the circulating medium and co-culturing hepatocytes with stellate cells. Since bioreactors are normally sealed sterile units, demonstrating metabolic functionality is hindered by limited access to the cells after their aggregation in the matrix. A novel possibility is to use positron emission tomography (PET) to image cellular radioactive glucose uptake under O(2)-limited conditions. In this study, primary cell isolation procedures were carried out on eight pigs. Pairs of cell-seeded and cell-free (control) bioreactors with and without perfluorocarbon were cultured under identical conditions and were oxygenated using hypoxic (5% O(2)) and ambient (20% O(2)) gas mixes. Sixteen PET scans were conducted 24 h after cell isolation, the same timescale as that involved in treating a liver failure patient with a primary-cell bioreactor. In all cases, cell-seeded bioreactors without perfluorocarbon were more radioactive, i.e., were more glycolytic, than those with perfluorocarbon. This difference was significant in the hypoxic pair of bioreactors but not in the ambient pair of bioreactors. Additionally, in the same hypoxic bioreactors, circulating extracellular steady-state glucose levels were significantly lower and lactate levels were higher than those in the ambient bioreactors. Similar findings have been made in other in vitro hepatocyte studies investigating the effects of perfluorocarbons. PET is attractive for studying in situ O(2)-dependent bioreactor metabolism because of its visual and numerically quantifiable outputs. Longer-term metabolic studies (e.g., 5-10 days) investigating the effect of perfluorocarbon on bioreactor longevity will complement these findings in the future.

  10. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    Yeung, Timothy P C [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Robarts Research Institute, The University of Western Ontario, Ontario, Canada, N6A 5B7 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Lee, Ting-Yim [Robarts Research Institute, The University of Western Ontario, Ontario, Canada, N6A 5B7 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Department of Medical Imaging, The University of Western Ontario, London Health Sciences Centre, Victoria Hospital, Ontario, Canada, N6A 5W9 (Australia); Lawson Health Research Institute, St. Joseph' s Health Care London, Ontario, Canada, N6A 4V2 (Canada); Wong, Eugene [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Department of Physics and Astronomy, The University of Western Ontario, Ontario, Canada, N6A 3K7 (Canada); He, Wenqing [Department of Statistical and Actuarial Sciences, The University of Western Ontario, Ontario, Canada, N6A 5B7 (Canada); Fisher, Barbara; VanderSpek, Lauren L [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Macdonald, David [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Department of Clinical Neurological Sciences, The University of Western Ontario, London Health Sciences Centre, University Hospital, Ontario, Canada, N6A 5A5 (Canada); Bauman, Glenn, E-mail: glenn.bauman@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada)

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  11. Motion management in positron emission tomography/computed tomography for radiation treatment planning.

    Bettinardi, Valentino; Picchio, Maria; Di Muzio, Nadia; Gilardi, Maria Carla

    2012-09-01

    Hybrid positron emission tomography (PET)/computed tomography (CT) scanners combine, in a unique gantry, 2 of the most important diagnostic imaging systems, a CT and a PET tomograph, enabling anatomical (CT) and functional (PET) studies to be performed in a single study session. Furthermore, as the 2 scanners use the same spatial coordinate system, the reconstructed CT and PET images are spatially co-registered, allowing an accurate localization of the functional signal over the corresponding anatomical structure. This peculiarity of the hybrid PET/CT system results in improved tumor characterization for oncological applications, and more recently, it was found to be also useful for target volume definition (TVD) and treatment planning in radiotherapy (RT) applications. In fact, the use of combined PET/CT information has been shown to improve the RT treatment plan when compared with that obtained by a CT alone. A limiting factor to the accuracy of TVD by PET/CT is organ and tumor motion, which is mainly due to patient respiration. In fact, respiratory motion has a degrading effect on PET/CT image quality, and this is also critical for TVD, as it can lead to possible tumor missing or undertreatment. Thus, the management of respiratory motion is becoming an increasingly essential component in RT treatment planning; indeed, it has been recognized that the use of personalized motion information can improve TVD and, consequently, permit increased tumor dosage while sparing surrounding healthy tissues and organs at risk. This review describes the methods used for motion management in PET/CT for radiation treatment planning. The article covers the following: (1) problems caused by organ and lesion motion owing to respiration, and the artifacts generated on CT, PET, and PET/CT images; (2) data acquisition and processing techniques used to manage respiratory motion in PET/CT studies; and (3) the use of personalized motion information for TVD and radiation treatment planning.

  12. Clinical utility of 11C-flumazenil positron emission tomography in intractable temporal lobe epilepsy

    Padma M

    2004-10-01

    Full Text Available BACKGROUND: 11C-flumazenil (FMZ positron emission tomography (PET is a new entrant into the armamentarium for pre-surgical evaluation of patients with intractable temporal lobe epilepsy (TLE. AIMS: To analyze the clinical utility of FMZ PET to detect lesional and remote cortical areas of abnormal benzodiazepine receptor binding in relation to magnetic resonance imaging (MRI, 2-Deoxy-2 [18F] fluoro-D-glucose, (18F FDG PET, electrophysiological findings and semiology of epilepsy in patients with intractable TLE. MATERIALS AND METHODS: Patients underwent a high resolution MRI, prolonged Video-EEG monitoring before 18F FDG and 11C FMZ PET studies. Regional cortical FMZ PET abnormalities were defined on co-registered PET images using an objective method based on definition of areas of abnormal asymmetry (asymmetry index {AI}>10%. SETTINGS AND DESIGN: Prospective. STATISTICAL ANALYSIS: Student′s "t" test. RESULTS: Twenty patients (Mean age: 35.2 years [20-51]; M:F=12:8 completed the study. Mean age at seizure onset was 10.3 years (birth-38 years; mean duration, 23.9 years (6-50 years. Concordance with the MRI lesion was seen in 10 patients (nine with hippocampal sclerosis and one with tuberous sclerosis. In the other 10, with either normal or ambiguous MRI findings, FMZ and FDG uptake were abnormal in all, concordant with the electrophysiological localization of the epileptic foci. Remote FMZ PET abnormalities (n=18 were associated with early age of seizure onset (P=0.005 and long duration of epilepsy (P=0.01. CONCLUSIONS: FMZ-binding asymmetry is a sensitive method to detect regions of epileptic foci in patients with intractable TLE.

  13. Positron emission tomography thyroid incidentaloma: Is it different in Indian subcontinent?

    R Vaish

    2016-01-01

    Full Text Available Background: Positron emission tomography (PET forms an integral part in work-up and follow-up of various malignancies. With the increased use of PET in oncology, finding of an incidental focal thyroid uptake (incidentaloma is not unusual and presents a diagnostic challenge. Aim: The aim of the following study is to evaluate the frequency and radio-pathologic correlation of focal 18-fluoro deoxyglucose uptake (FDG on PET within the thyroid from a large series. Materials and Methods: Retrospective review of 37,000 consecutive patients who underwent FDG-PET at tertiary cancer center in India. Radiological, pathological, PET scan and follow-up details were evaluated. Statistical analyzes were carried out using Mann Whitney test and Pearson correlation. Results: Abnormal thyroid uptake was seen in 78 (0.2% patients. Nearly 61 (0.16% scans had focal and 17 (0.04% had diffuse FDG uptake. A total of 57 patients with focal uptake were available for further evaluation. No further evaluation was done in 24 (42.1% patients who had advanced index malignancy. Of the remaining 33 patients 26 were benign and seven were a cause for concern (four primary thyroid cancers, one follicular neoplasm with hurthle cell change and two metastatic cancers. There was no significant correlation in Standardized uptake value (SUV max of benign and malignant lesion (P = 0.5 on Mann Whitney or size (r = 0.087 Pearson correlation co-efficient P= 0.667. Conclusion: Incidence of PET incidentaloma is low in this large cohort of Indian patients. Nearly 27% of focal incidentaloma were malignant. There was no correlation between the SUVmax, size and malignancy.

  14. Fluorodeoxyglucose positron emission tomography in the initial staging of germ cell tumours

    Hain, S.F.; O' Doherty, M.J. [Clinical PET Centre, Guy' s and St Thomas' Hospitals, London (United Kingdom); Timothy, A.R.; Leslie, M.D.; Partridge, S.E. [Dept. of Clinical Oncology, Guy' s and St Thomas' Hospitals, London (United Kingdom); Huddart, R.A. [Dept. of Radiotherapy and Oncology, Royal Marsden, Surrey (United Kingdom)

    2000-05-01

    Testicular cancer is a rare tumour with the potential for cure at diagnosis. It is important, however, to identify those patients with metastases at presentation so as to ensure that the optimum treatment strategy is employed. Many criteria have been used to try to place patients into high- or low-risk groups, with variable success. Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has the potential to identify active disease and thereby influence further management. Here we report on a retrospective study of the use of FDG-PET in the detection of metastatic testicular carcinoma at diagnosis. Thirty-one patients [13 with seminoma and 18 with non-seminomatous germ cell tumours (13 teratomas, 5 mixed)] were staged by FDG-PET scanning. The imaging was performed using a Siemens ECAT 951 scanner. All results were assessed on the basis of histology or clinical follow-up. FDG-PET scan identified metastatic disease in ten and was negative in 16; there were no false-positives and five false-negatives. There were six patients in whom FDG-PET was negative and computed tomography was regarded as suspicious but follow-up was inconclusive. The positive predictive value was 100%. The negative predictive value was 76% or 91%, depending on whether the aforementioned six cases were regarded as true-negatives or false-negatives. It may be concluded that FDG-PET is capable of detecting metastatic disease at diagnosis that is not identified by other imaging techniques. These preliminary results are sufficient to suggest that a large prospective study should be performed to evaluate the role of FDG-PET in primary staging of disease. (orig.)

  15. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography

    Mintun, M.A.; Raichle, M.E.; Kilbourn, M.R.; Wooten, G.F.; Welch, M.J.

    1984-03-01

    We propose an in vivo method for use with positron emission tomography (PET) that results in a quantitative characterization of neuroleptic binding sites using radiolabeled spiperone. The data are analyzed using a mathematical model that describes transport, nonspecific binding, and specific binding in the brain. The model demonstrates that the receptor quantities Bmax (i.e., the number of binding sites) and KD-1 (i.e., the binding affinity) are not separably ascertainable with tracer methodology in human subjects. We have, therefore, introduced a new term, the binding potential, equivalent to the product BmaxKD-1, which reflects the capacity of a given tissue, or region of a tissue, for ligand-binding site interaction. The procedure for obtaining these measurements is illustrated with data from sequential PET scans of baboons after intravenous injection of carrier-added (18F)spiperone. From these data we estimate the brain tissue nonspecific binding of spiperone to be in the range of 94.2 to 95.3%, and the regional brain spiperone permeability (measured as the permeability-surface area product) to be in the range of 0.025 to 0.036 cm3/(s X ml). The binding potential of the striatum ranged from 17.4 to 21.6; these in vivo estimates compare favorably to in vitro values in the literature. To our knowledge this represents the first direct evidence that PET can be used to characterize quantitatively, locally and in vivo, drug binding sites in brain. The ability to make such measurements with PET should permit the detailed investigation of diseases thought to result from disorders of receptor function.

  16. Role of (18F) 2-fluoro-2-deoxyglucose positron emission tomography in upper gastrointestinal malignancies

    Elizabeth C Smyth; Manish A Shah

    2011-01-01

    The role of whole-body FDG [(18F) 2-fluoro-2-deoxyglucose] positron emission tomography (PET) scanning as an imaging modality in the management of patients with malignancy has evolved enormously over the past two decades. FDG-PET has demonstrated significant efficacy in the staging, prognostication and detection of occult metastatic disease in malignancies of the gastrointestinal tract, in addition to assessment of the response to cytotoxic chemotherapy in a more timely manner than has traditionally been possible by more conventional imaging tools. The sensitivity and specificity of FDG-PET for the detection and staging of malignancy depend not only on the site and size of the primary tumor and metastases, but also on histological cell type, reflecting underlying disparities in glucose metabolism. The metabolic response to neo-adjuvant chemotherapy or to chemo-radiotherapy in cancers of the gastro-esophageal junction or stomach has been demonstrated in several prospective studies to correlate significantly with both the histological tumor response to treatment and with consequent improvements in overall survival. This may offer a future paradigm of personalized treatment based on the PET response to chemotherapy. FDG-PET has been less successful in efforts to screen for and detect recurrent upper gastrointestinal malignancies, and in the detection of low volume metastatic peritoneal disease. Efforts to improve the accuracy of PET include the use of novel radiotracers such as (18F) FLT (3-deoxy-3-fluorothymidine) or 11C-choline, or fusion PET-CT with concurrent high-resolution computed tomography. This review focuses on the role of FDG-PET scanning in staging and response assessment in malignancies of the upper gastrointestinal tract, specifically gastric, esophageal and pancreas carcinoma.

  17. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications.

    Yaghoubi, Shahriar S; Campbell, Dean O; Radu, Caius G; Czernin, Johannes

    2012-01-01

    Positron emission tomography (PET) imaging reporter genes (IRGs) and PET reporter probes (PRPs) are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.

  18. Positron Emission Tomography Reporter Genes and Reporter Probes: Gene and Cell Therapy Applications

    Shahriar S. Yaghoubi, Dean O. Campbell, Caius G. Radu, Johannes Czernin

    2012-01-01

    Full Text Available Positron emission tomography (PET imaging reporter genes (IRGs and PET reporter probes (PRPs are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.

  19. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Nakanishi, Kouhei; Yamamoto, Seiichi

    2016-11-01

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four