WorldWideScience

Sample records for 15n natural abundance

  1. Change of 15N natural abundance15N) in a forest soil receiving elevated N deposition

    International Nuclear Information System (INIS)

    Natural abundance of 15N15N) has been used to interpret N mineralization in forest ecosystems. Forest litter typically has depleted δ15N values ranging from -8 to 0 per mille and δ15N values of organic N in forest soil profiles become more enriched with depth. This study investigated (1) the change of δ15N and total N with depth, and (2) the relation between the change of δ15N within the 0 to 10, 10 to 20 and 20 to 30 cm intervals of the mineral layer and the N mineralization rates in these layers

  2. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    Science.gov (United States)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  3. Bradyrhizobium strain and the 15N natural abundance quantification of biological N2 fixation in soybean

    International Nuclear Information System (INIS)

    In commercial plantations of soybean in both the Southern and the Cerrado regions, contributions from biological nitrogen fixation (BNF) are generally proportionately high. When using the 15N natural abundance technique to quantify BNF inputs, it is essential to determine, with accuracy, the 15N abundance of the N derived from BNF (the 'B' value). This study aimed to determine the effect of four recommended strains of Bradyrhizobium spp. (two B. japonicum and two B. elkanii) on the 'B' value of soybean grown in pots in an open field using an equation based on the determination of δ15N natural abundance in a non-labelled soil, and estimate of the contribution of BNF derived from the use of 15N-isotope dilution in soils enriched with 15N. To evaluate N2 fixation by soybean, three non-N2-fixing reference crops were grown under the same conditions. Regardless of Bradyrhizobium strain, no differences were observed in dry matter, nodule weight and total N between labelled and non-labelled soil. The N2 fixation of the soybeans grown in the two soil conditions were similar. The mean 'B' values of the soybeans inoculated with the B. japonicum strains were -1.84 per mille and -0.50 per mille, while those inoculated with B. elkanii were -3.67 per mille and -1.0 per mille, for the shoot tissue and the whole plant, respectively. Finally, the 'B' value for the soybean crop varied considerably in function of the inoculated Bradyrhizobium strain, being most important when only the shoot tissue was utilised to estimate the proportion of N in the plant derived from N2 fixation. (author)

  4. Natural abundance (14)N and (15)N solid-state NMR of pharmaceuticals and their polymorphs.

    Science.gov (United States)

    Veinberg, Stanislav L; Johnston, Karen E; Jaroszewicz, Michael J; Kispal, Brianna M; Mireault, Christopher R; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W

    2016-06-29

    (14)N ultra-wideline (UW), (1)H{(15)N} indirectly-detected HETCOR (idHETCOR) and (15)N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of (14)N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. A case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW (14)N SSNMR spectra of stationary samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R''NH(+) and RR'NH2(+)) or other (i.e., RNH2 and RNO2) nitrogen environments. Directly-excited (14)N NMR spectra were acquired using the WURST-CPMG pulse sequence, which incorporates WURST (wideband, uniform rate, and smooth truncation) pulses and a CPMG (Carr-Purcell Meiboom-Gill) refocusing protocol. In certain cases, spectra were acquired using (1)H → (14)N broadband cross-polarization, via the BRAIN-CP (broadband adiabatic inversion - cross polarization) pulse sequence. These spectra provide (14)N electric field gradient (EFG) tensor parameters and orientations that are particularly sensitive to variations in local structure and intermolecular hydrogen-bonding interactions. The (1)H{(15)N} idHETCOR spectra, acquired under conditions of fast magic-angle spinning (MAS), used CP transfers to provide (1)H-(15)N chemical shift correlations for all nitrogen environments, except for two sites in acebutolol and nicardipine. One of these two sites (RR'NH2(+) in acebutolol) was successfully detected using the DNP-enhanced (15)N{(1)H} CP/MAS measurement, and one (RNO2 in nicardipine) remained elusive due to the absence of

  5. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    Science.gov (United States)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  6. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    Science.gov (United States)

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin.

  7. Feasibility analysis of organic Tea authentication using 15N natural abundance method

    International Nuclear Information System (INIS)

    Organic agricultural products were always adulterated by pollutant-free agricultural products in market because of lacking of available authentication technique. Organic tea was one of the largest organic agricultural products in China which are facing the same problem and can not be accepted by consumers. In this paper, based on the newest information of δ 15N from soil-plant-fertilizer system, a new method was suggested to identify whether N fertilizer was applied to organic tea in producing processing. Meanwhile, the principle of this new method and its feasibility were discussed. (authors)

  8. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2011-12-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  9. Short-range spatial variability of soil δ15N natural abundance – effects on symbiotic N2-fixation estimates in pea

    DEFF Research Database (Denmark)

    Holdensen, Lars; Hauggaard-Nielsen, Henrik; Jensen, Erik Steen

    2007-01-01

    abundance in spring barley and N2-fixing pea was measured within the 0.15-4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley......The δ15N natural abundance (‰) of the total soil N pool varies at the landscape level, but knowledge on short-range variability and consequences for the reliability of isotopic methods are poorly understood. The short-range spatial variability of soil δ15N natural abundance as revealed by the 15N......-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop...

  10. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    Science.gov (United States)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  11. Natural isotopes abundance of 15N and 13C in leaves of some N2-fixing and non N2-fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    Variability in the natural abundance isotopes of 15N and 13C in leaves of several legume and non-legume plant species grown at different sites of two areas in semi-arid regions of Syria was determined. In the first area (non-saline soil), the 15N values of a number of fixing and non-fixing reference plants ranged from -2.09 to +9.46, depending on plant species and studied site. 15N in a number of legume species including Acacia cyanopylla (-1.73), Acacia farnesiana (-0.55), Prosopis juliflora (-1.64) and Medicago arborea (+1.6) were close to the atmospheric value pointing to a major contribution of N2 fixing in these species; whereas, those of reference plants were highly positive (between +3.6 and +9.46%). In the actinorhizal tree, Elaeagnus angustifolia, the 15N abundance was far lower (-0.46 to -2.1%) strongly suggesting that the plant obtained large proportional contribution from BNF. In contrast, δ15N values in some other legumes and actinorhizal plants were relatively similar to those of reference plants, suggesting that the contribution of fixed N2 is negligible. On the other hand, δ13C% values in leaves of C3 plants were affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were the same within each plant species although they were grown at different sites. Moreover, dual stable isotope analysis in leaves of Prosopis juliflora and other non- legumes grown on a salt affected soil (second area) was also conducted. Results showed that salinity did not affect C assimilation in this woody legume since a higher carbon discrimination was obtained indicating that this plant is a salt tolerant species; whereas, N2-fixation was drastically affected (δ15N= +7.03). (Author)

  12. [Responses of Soil and Plant 15N Natural Abundance to Long-term N Addition in an N-Saturated Pinus massoniana Forest in Southwest China].

    Science.gov (United States)

    Liu, Wen-jing; Kang, Rong-hua; Zhang, Ting; Zhu, Jing; Duan, Lei

    2015-08-01

    Increasing N deposition in China will possibly cause N saturation of forest ecosystem, further resulting in a series of serious environmental problems. In order to explore the response of forest ecosystem to N deposition in China, and further evaluate and predict the N status of ecosystem, the 15N natural abundance (delta 15N) of soil and plants was measured in a typical Masson pine (Pinus massoniana) forest in southwest China to examine the potential use of delta 15N enrichment factor (epsilon(p/s)) as an effective indicator of N status. Long-term high N addition could significantly increase delta 15N of soil and plants, which was suggested by an on-going N fertilizing experiment with NH4NO3 or NaNO3 for 7 years. Meanwhile, delta 15N of soil and plants under NH, deposition was significantly higher than that under NO- deposition, suggesting different responses of ecosystem to different N-forms of deposition. The "N enrichment factor (epsilon(p/s)) had positive correlations with N deposition, N nitrification, and N leaching in the soil water. Linear correlation between "N enrichment factor and N deposition was found for all Masson pine forests investigated in this and previous studies in China, demonstrating that 15N enrichment factor could be used as an indicator of N status. The NH3 emission control should also be carried out accompanying with NOx emission control in the future, because NH4- deposition had significantly greater impact on the forest ecosystem than NO3- deposition with the same equivalence. PMID:26592030

  13. Natural abundances of 15N and 13C in leaves of some N2-fixing and non-N2-fixing trees and shrubs in Syria.

    Science.gov (United States)

    Kurdali, F; Al-Shamma'a, M

    2009-09-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the (15)N and (13)C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the delta(15)N values in four legume species (Acacia cyanophylla,-1.73 per thousand Acacia farnesiana,-0.55 per thousand Prosopis juliflora,-1.64 per thousand; and Medicago arborea,+1.6 \\textperthousand) and one actinorhizal plant (Elaeagnus angustifolia,-0.46 to-2.1 per thousand) were found to be close to that of the atmospheric value pointing to a major contribution of N(2) fixing in these species; whereas, delta(15)N values of the non-fixing plant species were highly positive. delta(13)C per thousand; in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of-28.67 per thousand; to a maximum of-23 per thousand. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil), a higher carbon discrimination value (Delta(13)C per thousand) was exhibited by P. juliflora, indicating that the latter is a salt tolerant species; however, its delta(15)N was highly positive (+7.03 per thousand) suggesting a negligible contribution of the fixed N(2). Hence, it was concluded that the enhancement of N(2) fixation might be achieved by selection of salt-tolerant Rhizobium strains. PMID:20183233

  14. Natural abundances of 15N and 13C in leaves of some N2- fixing and non N2- fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the 12N and 13C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the δ15N values in four legume species (Acacia cyanopylla, -1.73 %; Acacia farnesiana, -0.55%; Prosopis juliflora, -1.64%, and Medicago arborea, +1.6%) and one actinorhizal plant (Elaeagnus angustifolia, -0.46 to -2.1%) were found to be close to that of the atmospheric value pointing to a major contribution of N2 fixing in these species; whereas, δ15N values of the non-fixing plant species were highly positive.δ13C% in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil) a higher carbon discrimination value (Δ3C%) was exhibited by Prosopis juliflora indicating that the latter is a salt tolerant species; however, its δ 15N was highly positive (+7.03%) suggesting a negligible contribution of the fixed N2. Hence, it was concluded that the enhancement of N2 fixation might be achieved by selection of salt-tolerant rhizobium strains. (author)

  15. Sensitive measurement of NH4+ 15N/14N (delta 15NH4+) at natural abundance levels in fresh and saltwaters.

    Science.gov (United States)

    Zhang, Lin; Altabet, Mark A; Wu, Taixing; Hadas, Ora

    2007-07-15

    We report a new method for determining the 15N/14N of NH4+ at natural abundance level in both freshwater and seawater. NH4+ is first quantitatively oxidized to NO2- by hypobromite (BrO-) at pH approximately 12. After the addition of sodium arsenite to consume excess BrO-, yield is verified by colorimetric NO2- determination. NO2- is further reduced to N2O using a 1:1 sodium azide and acetic acid buffer solution using previously established procedures. The product N2O is then analyzed for isotopic composition using a continuous flow purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. Reliable delta 15N values (standard deviation is 0.3 per thousand or better) are obtained over an NH4+ concentration range of 0.5-10 microM using 20 mL volumes of either freshwater or seawater samples. Higher concentration samples are readily diluted to lower concentration. Preexisting NO2- is removed by treatment with sulfanilic acid. There is no interference from any of the nitrogen-containing compounds tested except short-chain aliphatic amino acids (i.e., glycine) which typically are present at very low environmental concentrations. As compared to published methods, our approach is more robust, readily applicable at low concentrations and small sample volumes, and requires less time for preparation and analysis.

  16. Importance of drought stress and nitrogen fixation in the desert legume Alhagi sparsifolia - Results from 13C and 15N natural-abundance studies in the field

    International Nuclear Information System (INIS)

    Ecological adaptation of plant species to arid environments is poorly understood. Water and nitrogen are likely to be the two major constraints to growth and production in the Taklamakan desert (35 mm annual precipitation). Plants must have special adaptations to avoid lethal water deficits. Moreover, the supply of inorganic nitrogen sources, e.g. nitrate and ammonium, may be restricted due to diminished mineralization. Therefore, as a legume, nitrogen fixation may play an important role in the nutrition of A. sparsifolia. To be able to make recommendations for sustainable use of Alhagi, a study on natural abundance of the stable isotopes, 13C and 15N, was conducted in the foreland of Qira oasis at the southern rim of the Taklamakan desert. Alhagi bushes were sampled monthly during 1999, and carbon-isotope composition of leaves and leaf solutes were investigated as measures of long-term and short-term water restriction, respectively. Preliminary investigations in 1998 of Alhagi plants led to the assumption that individuals growing near the fields of the oasis assimilated inorganic nitrogen forms such as NO3- or NH4+ (δ15N values of 5 to 8), whereas individuals growing close to the desert used N2 fixation as their main source of nitrogen (δ15N values near zero). Therefore, Alhagi plants were sampled along a gradient from the oasis into the desert. The carbon-isotope data revealed that all Alhagi species were well supplied with water throughout the season. The δ13C values of leaves and solutes were consistently negative, indicating no long- or shortterm drought stress at any time, and this was supported by other water-relations data. Thus, Alhagi plants seem to have contact with groundwater and an efficient water-conducting system; moisture deficiency was not a limiting factor. The δ15N values of Alhagi leaves along a 5-km gradient from the Qira Research Station into the desert showed no significant trend. Some plants were clearly fixing atmospheric N2, but most

  17. Determinação da fixação biológica de nitrogênio no amendoim forrageiro (Arachis spp. por intermédio da abundância natural de 15N Determination of biological nitrogen fixation by the forage groundnut (Arachis spp. using the 15N natural abundance technique

    Directory of Open Access Journals (Sweden)

    Cesar Heraclides Behling Miranda

    2003-12-01

    Full Text Available Quantificou-se a fixação biológica de nitrogênio (FBN em cinco acessos de Arachis pintoi (BRA31534, BRA31828, BRA31796, BRA15121 e BRA30333 e dois de A. repens (BRA31801 e BRA31861. Os mesmos foram estabelecidos em um solo Latosolo Vermelho Escuro sujeito a inundação estacional, sendo a FBN estimada segundo a técnica da abundância natural do isótopo 15N (d15N. Estolões dos acessos foram plantados em novembro de 1999, em parcelas de 2,0 m x 2,0 m, com quatro repetições, distribuídas em blocos ao acaso. A massa verde das plantas acima de cinco centímetros do solo foi colhida em janeiro de 2000 e seca em estufa a 65ºC até peso constante, sendo posteriormente pesada e moída para análise dos conteúdos em N e d15N, em espectrômetro de massa. Verificaram-se diferenças significativas entre os genótipos quanto à produção de matéria seca (MS e N total, sobressaindo-se BRA31534 e BRA31828, com produções de 4,2 t/ha e conteúdos totais de N de 102 e 110 kg/ha, respectivamente. Os acessos BRA30333 e BRA31861 produziram apenas 2,6 t de MS/ha, com 59 e 65 kg/ha de N total, respectivamente. As taxas de FBN dos acessos testados, medidas por comparação dos seus teores de d15N com os de plantas não fixadoras crescendo na mesma área, variaram de 36% (BRA15121 a 90% (BRA31828 do N total das plantas, equivalente a 26 e 99 kg de N/ha, respectivamente. Verificou-se correlação positiva e significativa (r = 0,92, pThe biological nitrogen fixation (BNF of five Arachis pintoi (BRA31534, BRA31828, BRA31796, BRA15121 E BRA30333 and two A. repens (BRA31801 e BRA31861 accessions, grown in a Dark Red Latosol prone to seasonal flooding was evaluated using the 15N natural abundance method (d15N. Stolons of each accession were planted in November 1999, in plots of 2.0 m by 2.0 m, with four replications allotted to randomized blocks. Plant mass above five cm was harvested in January 2000. There were significant differences among the tested

  18. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    Science.gov (United States)

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  19. The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Nilsson, Lars Ola; Schmidt, Inger Kappel;

    2013-01-01

    for these N variables and for the litter δ15N and enrichment factor. Litter from ash and sycamore maple with high N status and low fungal mycelia activity was enriched in 15N (+0.9 delta units) relative to other tree species (European beech, pedunculate oak, lime and Norway spruce) even though the latter...

  20. Carbono, nitrogênio e abundância natural de δ13c e δ15n em uma cronossequência de agricultura sob plantio direto no cerrado goiano

    Directory of Open Access Journals (Sweden)

    Roni Fernandes Guareschi

    2014-08-01

    Full Text Available A conversão do cerrado nativo em sistemas agropecuários pode alterar com o passar dos anos de cultivo os teores de C e N, bem como o sinal isotópico do δ13C e δ15N do solo. Desta forma, o objetivo deste trabalho foi avaliar os teores de C, N e abundância natural de δ13C e δ15N no perfil do solo em uma cronossequência de agricultura sob sistema plantio direto (SPD no cerrado goiano. Para isso, em Montividiu, GO, foram selecionadas áreas sob SPD com diferentes tempos de implantação: SPD com três anos de implantação (SPD3, SPD com 15 anos de implantação (SPD15 e SPD com 20 anos de implantação (SPD20, as quais foram comparadas com áreas de cerrado nativo (CE e pastagem (PA. Foram coletadas amostras de solo nas profundidades de 0,00-0,05; 0,05-0,10; 0,10-0,20; 0,20-0,30; 0,30-0,40; 0,40-0,50; 0,50-0,60; 0,60-0,80; e 0,80-1,00 m. O solo das áreas de estudo foi classificado como Latossolo Vermelho distroférrico. O manejo do solo sob SPD após 20 anos aumentou os teores de C e N na camada superficial do solo (0,00-0,05 m, em relação às outras áreas avaliadas. Nas demais profundidades avaliadas, observou-se que está ocorrendo aumento nos teores C e N com o passar dos anos de adoção do SPD (três para 15 anos; no entanto, tais áreas ainda não foram capazes de recuperar os teores desses elementos em relação à vegetação nativa de CE. Por meio dos resultados de δ13C, pôde-se constatar que a origem da MOS nas áreas de SPD é referente à plantas do ciclo fotossintético C4. Verificou-se que até os 0,30 m do perfil do solo os resultados de δ13C estão reduzindo com o passar dos anos de adoção do SPD. Os menores e maiores valores de δ15N foram encontrados nas áreas de CE e PA, SPD3, enquanto SPD15 e SPD20 apresentaram valores intermediários de δ15N, em relação às demais áreas avaliadas.

  1. 15N and 13C abundances in marine environments with emphasis on biogeochemical structure of food networks

    International Nuclear Information System (INIS)

    Distributions of δ15N and δ13C for biogenic substances in the Antarctic Ocean and in the Otsuchi River estuary in Japan were investigated to construct isotope biogeochemical framework for assessing marine ecosystems. The isotopic compositions of phytoplankton were particularly low in the Antarctic Ocean. High nitrate and CO2 concentrations in the surface sea waters, and the low light intensity seem to enhance the kinetic isotope fractionations that preferred the depletion of 15N and 13C in the algal body. A clear-cut linear relationship between animal δ15N and its trophic level was obtained in the Antarctic system. In the estuary, the variation of isotope ratios were principally governed by the mixing of land-derived organic matter, marine phytoplankton, and seagrasses. A food-chain effect of 15N enrichment was also confirmed. An isotopically ordered structure was presented for a marine estuarine ecosystem. The isotopic abundances in a food network vary mainly because of the variation in 15N and 13C contents of primary producers grown under different environmental conditions and because of the enrichment of 15N along food chains. (author)

  2. Revision of the 15N(p, γ)16O reaction rate and oxygen abundance in H-burning zones

    Science.gov (United States)

    Caciolli, A.; Mazzocchi, C.; Capogrosso, V.; Bemmerer, D.; Broggini, C.; Corvisiero, P.; Costantini, H.; Elekes, Z.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Lemut, A.; Marta, M.; Menegazzo, R.; Palmerini, S.; Prati, P.; Roca, V.; Rolfs, C.; Rossi Alvarez, C.; Somorjai, E.; Straniero, O.; Strieder, F.; Terrasi, F.; Trautvetter, H. P.; Vomiero, A.

    2011-09-01

    Context. The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T ≃ 30 × 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the red giant branch (RGB) phase of the star or to the pollution of the primordial gas by an early population of massive asymptotic giant branch (AGB) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. Aims: The activation of this cycle depends on the rate of the 15N(p, γ)16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. Methods: We present a new measurement of the 15N(p, γ)16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 × 106 K and 780 × 106 K. This range includes the 15N(p, γ)16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. Results: With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.

  3. Revision of the 15N(p,{\\gamma})16O reaction rate and oxygen abundance in H-burning zones

    CERN Document Server

    Caciolli, A; Capogrosso, V; Bemmerer, D; Broggini, C; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Marta, M; Menegazzo, R; Palmerini, S; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2011-01-01

    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\\simeq} 30 {\\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures...

  4. Natural Nitrogen—15 Abundance of Ammonium Nitrogen and Fixed Ammonium in Soils

    Institute of Scientific and Technical Information of China (English)

    SHISHU-LIAN; XINGGUANG-XI; 等

    1992-01-01

    The present article deals with the natural nitrogen-15 abundance of ammonium nitrogen and fixed ammonium in different soils.Variations in the natural 15N abundance of ammonium nitrogen mineralized in soils under anaerobic incubation condition were related to soil pH.The δ 15N of mineralizable N in acid soils was lower but that in neutral and calcareous soils was higher compared with the δ 15N of total N in the soils.A variation tendence was also found in the δ 15N of amino-acid N in the hydrolysates of soils.The natural 15N abundance of fixed ammonium was higher than that of total N in most surface soils and other soil horizons,indicating that the increase of δ 15N in the soil borizons beneath subsurface horizon of some forest soils and acid paddy soils was related to the higher δ 15N value of fixed ammonium in the soil.

  5. Abundance of 13C and 15N in emmer, spelt and naked barley grown on differently manured soils: towards a method for identifying past manuring practice

    DEFF Research Database (Denmark)

    Kanstrup, Marie; Thomsen, Ingrid Kaag; Andersen, Astrid Junker;

    2011-01-01

    on the soil. We have examined the δ15N and δ13C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ15N values of soil and of grain......The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ15N value of soil and of modern crops grown...... and straw fractions of the ancient cereal types; differences in δ15N between unmanured and PK treatments were insignificant. The offset in straw and grain δ15N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ13C values were not affected by...

  6. The analysis of 15N/14N ratios in natural samples, with emphasis on nitrate and ammonium in precipitation

    International Nuclear Information System (INIS)

    The nitrogen cycle is one of the most important of the earth's elemental cycles. The report describes the procedures used for the analysis of 15N/14N ratios in ammonium and nitrate (and organic nitrogen), and summaries without discussion the data obtained for precipitation (by rain and dust) collected at the Council for Scientific and Industrial Research site. The 15N/14N ratios of nitrogen compounds were determined on N2 gas. This was measured by means of a mass spectrometer. The isotopic analysis of organic nitrogen were conducted in two ways: Kjeldahl digestion to form ammonium, and Dumas combustion directly to N2

  7. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    The application of the stable isotope 15N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15N tracer technique. On the basis of the latest results of 15N tracer research in life sciences and agriculture methods of 15N tracer research in biological systems are compiled. The 15N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15N analysis and aspects of 15N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15N tracer experiments are made. (author)

  8. Will Abundant Natural Gas Solve Climate Change?

    Science.gov (United States)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  9. Determining the source of nitrate pollution in the Niger discontinuous aquifers using the natural {15N }/{14N } ratios

    Science.gov (United States)

    Girard, Pierre; Hillaire-Marcel, Claude

    1997-12-01

    In the semi-arid Niamey area (Niger), more than 10% of the deep wells exploiting the fracture network of the Precambrian aquifer are contaminated by nitrates, with concentrations as high as 10 meq l -1. In order to identify the source(s) of this pollution, nitrate and 15N contents in the polluted wells were monitored over a 20-month period. Potential sources of nitrate contamination were also analyzed for their 15N content. The isotopic compositions of nitrate in polluted waters were > + 12‰ and in rare cases exceeded +17‰. Latrines (˜ + 15‰) may be the major nitrate source for wells showing δ15N values above +15‰. Below this value, waters may be polluted by a combination of nitrates from both latrine and soil sources (˜ + 10‰). In some cases, the soil may account for up to 85% of the groundwater nitrate load. This mode of groundwater pollution is thought to be a consequence of deforestation. Despite their reputation as polluting agents, fertilizers ( +0.5 < δ 15N < + 3.6‰ ) which are used in rice paddies close to the contaminated areas, do not appear to be a significant source of nitrate contamination. Denitrification is probably not a significant process in the study area. Results suggest that nitrate contamination of the aquifer is a consequence of unregulated urbanization (home-made latrines) and deforestation. While latrines are limited to the urban zones, intensive cutting of the forest to meet the city dwellers' wood demand occurs in an ever increasing area around the capital, threatening the local water supply.

  10. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    Science.gov (United States)

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  11. DETERMINING 15N ABUNDANCE IN AMMONIUM, NITRATE AND NITRITE IN SOIL BY MEASURING NITROUS OXIDE PRODUCED%N2O产生法测定土壤无机态氮15N丰度

    Institute of Scientific and Technical Information of China (English)

    曹亚澄; 钟明; 龚华; 陆国兴

    2013-01-01

    A new method was designed for direct determination of 15N abundance of NH4+,NO3-and NO2-in soils with mass spectrometry.The principle of this method was based on analysis and quantification of 15N abundance of the N2O produced from NH4+,NO3-and NO2-through transformation reactions catalyzed with their respective specific chemical reagents separately.The measured values of 15N abundance of the N2O tally well with their respective reference values in NH4+,NO3-and NO2-.The method was characterized by quickness,simpleness and freedom from contamination of atmospheric nitrogen.Especially this method has a very low detection limit,and 5 ~ 20 μg N in the sample is adequate for detection.Therefore,it will be of a great help to study on mineralization,nitrification and denitrification of nitrogen in soils.%用化学方法分别将土壤中微量的铵、硝酸盐和亚硝酸盐转化为N2O气体,然后用带自动预浓缩装置的同位素比值质谱仪测定N2O中的15N丰度.N2O中的15N丰度测量值完全符合铵、硝酸盐和亚硝酸盐的15N参考值.方法快速、简单和准确,不受空气氮的污染.特别是方法的检测限很低,每批次样品中只需含5~ 20μg N.它将有助于土壤氮素的矿化作用、硝化作用和反硝化作用的研究.

  12. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

    DEFF Research Database (Denmark)

    Pörtl, K.; Zechmeister-Boltenstern, S.; Wanek, W.;

    2007-01-01

    .8 parts per thousand, spruce stand: 5.9 +/- 0.9 parts per thousand) and of dissolved organic N (DON; mixed stand: 5.3 +/- 1.7 parts per thousand, spruce stand: 2.6 +/- 3.3 parts per thousand) were not significantly different; these pools were most enriched in N-15 of all soil N pools. Denitrification...

  13. Synthesis of Gemcitabine-13C, 15N2 and Gemcitabine-13C, 15N2 Metabolites

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-gu;YANG Shao-zu;YAN Sheng-wang;FANG Ning-jing;CAI Ding-long;LI Gang

    2014-02-01

    Full Text Available Homemade urea-13C, 15N2 was used to react with 3-methyl acrylonitrile closure to form cytosine-13C, 15N2 (2,which was protected by trimethylsilylation with BSA and condensed with 2-deoxy-2,2-difluoro-D-erythro-pentofuranose-3,5-dibenzoate-1-methanesulfonate at 120 ℃ to afford blocked gemcitabine-13C, 15N2. Hydrolytic removal of the blocking groups of gemcitabine-13C, 15N2 with NaOH gave gemcitabine-13C, 15N2, and its metabolite was obtained by further hydrolytic deamination of gemcitabine-13C, 15N2. The final products were characterized and detected by HPLC, LC-MS and NMR, and confirmed that the chemical purities were higher than 98%, isotopic abundances were 99% 13C, 98% 15N, and they were suitable for drug metabolism studies.

  14. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    Science.gov (United States)

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami

    2016-03-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological

  15. Food Resources of Stream Macronivertebrates Determined by Natural-Abundance stable C and N Isotopes and a 15N Tracer Addition

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, P. J.

    2000-01-01

    Trophic relationships were examined using natural-abundance {sup 13}C and {sup 15}N analyses and a {sup 15}N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the {sup 15}N-tracer addition experiment, we added {sup 15}NH{sub 4} to stream water over a 6-wk period in early spring, and measured {sup 15}N:{sup 14}N ratios in different taxa and biomass compartments over distance and time. Samples collected from a station upstream from the {sup 15}N addition provided data on natural-abundance {sup 13}C:{sup 12}C and {sup 15}N:{sup 14}N ratios. The natural-abundance {sup 15}N analysis proved to be of limited value in identifying food resources of macroinvertebrates because {sup 15}N values were not greatly different among food resources. In general, the natural-abundance stable isotope approach was most useful for determining whether epilithon or detritus were important food resources for organisms that may use both (e.g., the snail Elimia clavaeformis), and to provide corroborative evidence of food resources of taxa for which the {sup 15}N tracer results were not definitive. The {sup 15}N tracer results showed that the mayflies Stenonema spp. and Baetis spp. assimilated primarily epilithon, although Baetis appeared to assimilate a portion of the epilithon (e.g., algal cells) with more rapid N turnover than the bulk pool sampled. Although Elimia did not reach isotopic equilibrium during the tracer experiment, application of a N-turnover model to the field data suggested that it assimilated a combination of epilithon and detritus. The amphipod Gammarus minus appeared to depend mostly on fine benthic organic matter (FBOM), and the coleopteran Anchytarsus bicolor on epixylon. The caddisfly Diplectrona modesta appeared to assimilate primarily a fast N-turnover portion of the FBOM pool, and Simuliidae a fast N-turnover component of the suspended particulate organic matter pool rather than the bulk pool sampled. Together, the

  16. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    Science.gov (United States)

    Sgouridis, F.; Ullah, S.; Stott, A.

    2015-08-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. For our chamber design (volume / surface = 8:1) and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m-2 h-1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O) was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique under the same field conditions

  17. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    Directory of Open Access Journals (Sweden)

    F. Sgouridis

    2015-08-01

    Full Text Available Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS. The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume. Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands by lowering the 15N tracer application rate to 0.04–0.5 kg 15N ha−1. For our chamber design (volume / surface = 8:1 and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m−2 h−1 and 0.2 ng N m−2 h−1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m−2 h−1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique

  18. Relative Magnitude and Controls of in Situ N2 and N2O Fluxes due to Denitrification in Natural and Seminatural Terrestrial Ecosystems Using (15)N Tracers.

    Science.gov (United States)

    Sgouridis, Fotis; Ullah, Sami

    2015-12-15

    Denitrification is the most uncertain component of the nitrogen (N) cycle, hampering our ability to assess its contribution to reactive N (Nr) removal. This uncertainty emanates from the difficulty in measuring in situ soil N2 production and from the high spatiotemporal variability of the process itself. In situ denitrification was measured monthly between April 2013 and October 2014 in natural (organic and forest) and seminatural ecosystems (semi-improved and improved grasslands) in two UK catchments. Using the (15)N-gas flux method with low additions of (15)NO3(-) tracer, a minimum detectable flux rate of 4 μg N m(-2) h(-1) and 0.2 ng N m(-2) h(-1) for N2 and N2O, respectively, was achieved. Denitrification rates were lower in organic and forest (8 and 10 kg N ha(-1) y(-1), respectively) than in semi-improved and improved grassland soils (13 and 25 kg N ha(-1) y(-1), respectively). The ratio of N2O/N2 + N2O was low and ranged from soil respiration, nitrate, C:N ratio, bulk density, moisture, and pH across the sites. Overall, the contribution of denitrification to Nr removal in natural ecosystems was ~50% of the annual atmospheric Nr deposition, making these ecosystems vulnerable to chronic N saturation. PMID:26509488

  19. Preliminary insights into δ15N and δ18O of nitrate in natural mosses: a new application of the denitrifier method.

    Science.gov (United States)

    Liu, Xue-Yan; Koba, Keisuke; Takebayashi, Yu; Liu, Cong-Qiang; Fang, Yun-Ting; Yoh, Muneoki

    2012-03-01

    Natural mosses have been employed as reactive and accumulative indicators of atmospheric pollutants. Using the denitrifier method, the concentration, δ(15)N and δ(18)O of moss nitrate (NO(3)(-)) were measured to elucidate the sources of NO(3)(-) trapped in natural mosses. Oven drying at 55-70 °C, not lyophilization, was recommended to dry mosses for NO(3)(-) analyses. An investigation from urban to mountain sites in western Tokyo suggested that moss [NO(3)(-)] can respond to NO(3)(-) availability in different habitats. NO(3)(-) in terricolous mosses showed isotopic ratios as close to those of soil NO(3)(-), reflecting the utilization of soil NO(3)(-). Isotopic signatures of NO(3)(-) in corticolous and epilithic mosses elucidated atmospheric NO(3)(-) sources and strength from the urban (vehicle NO(x) emission) to mountain area (wet-deposition NO(3)(-)). However, mechanisms and isotopic effects of moss NO(3)(-) utilization must be further verified to enable the application of moss NO(3)(-) isotopes for source identification.

  20. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  1. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    Science.gov (United States)

    Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  2. Deuterium/hydrogen natural isotopic abundance in fruit juices

    International Nuclear Information System (INIS)

    Stable isotopic analyses of various elements such as carbon, hydrogen and oxygen are currently applied for the authentification of naturalness of fruit juices. Deuterium is particularly of interest because of the wide variation of its abundance. Due to evaporation-transpiration the deuterium content of the water in fruit juices is enriched compared to local ground water. In the case of our investigation on apple, another fractionation, originating in technological process, was observed. The concentrated juice water is enriched by 6o/oo as compared to natural fruit juice water. (authors)

  3. Chlorine-36 abundance in natural and synthetic perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Heikoop, Jeffrey M [Los Alamos National Laboratory; Dale, M [NON LANL; Sturchio, Neil C [UNIV OF ILLIONOIS; Caffee, M [PURDUE UNIV; Belosa, A D [UNIV OF ILLINOIS; Heraty, Jr., L J [UNIV OF ILLINOIS; Bohike, J K [RESTON, VA; Hatzinger, P B [SHAW ENIVIORNMENTAL C0.; Jackson, W A [TEXAS TECH; Gu, B [ORNL

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  4. Influence of 15N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil

    DEFF Research Database (Denmark)

    Mathieu, O.; Levegue, J.; Henault, C.;

    2007-01-01

    Nitrous oxide, a greenhouse gas, is mainly emitted from soils during the denitrification process. Nitrogen stable-isotope investigations can help to characterise the N(2)O source and N(2)O production mechanisms. The stable-isotope approach is increasingly used with (15)N natural abundance...... or relatively low (15)N enrichment levels and requires a good knowledge of the isotopic fractionation effect inherent to this biological mechanism. This paper reports the measurement of the net and instantaneous isotopic fractionation factor (alpha(i)(s/p)) during the denitrification of NO(3)(-) to N(2)O over...... a range of (15)N substrate enrichments (0.37 to 1.00 atom% (15)N). At natural abundance level, the isotopic fractionation effect reported falls well within the range of data previously observed. For (15)N-enriched substrate, the value of alpha(i)(s/p) was not constant and decreased from 1.024 to 1...

  5. Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material.

    Science.gov (United States)

    Sun, Chengjun; Goharpey, Amir Hossein; Rai, Ayush; Zhang, Teng; Ko, Dong-Kyun

    2016-08-31

    The development of paper-based sensors, antennas, and energy-harvesting devices can transform the way electronic devices are manufactured and used. Herein we describe an approach to fabricate paper thermoelectric generators for the first time by directly impregnating naturally abundant cellulose materials with p- or n-type colloidal semiconductor quantum dots. We investigate Seebeck coefficients and electrical conductivities as a function of temperature between 300 and 400 K as well as in-plane thermal conductivities using Angstrom's method. We further demonstrate equipment-free fabrication of flexible thermoelectric modules using p- and n-type paper strips. Leveraged by paper's inherently low thermal conductivity and high flexibility, these paper modules have the potential to efficiently utilize heat available in natural and man-made environments by maximizing the thermal contact to heat sources of arbitrary geometry.

  6. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    Science.gov (United States)

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  7. 15N NMR spectroscopy of Pseudomonas cytochrome c-551

    International Nuclear Information System (INIS)

    15N-1H correlation spectroscopy with detection at the 1H frequency has been used at natural abundance to detect nitrogen nuclei bonded to protons in the ferrocytochrome c-551 from Pseudomonas aeruginosa (ATCC 19429). Side-chain aromatic nitrogen, main-chain amides, and side-chain amides have been assigned to specific residues by comparison to previous proton assignments. Assignment ambiguities arising from overlap in the proton dimension have been resolved by examining spectra as a function of temperature and pH. Nitrogen chemical shifts are reported at pH 4.6 and 9.4 and three temperatures, 32, 50, and 60 degree C. Significant differences arise from the observed protein shifts and expected shifts in the random coil polypeptide

  8. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N

  9. 15N natural abundance as a tool for assessing N2-fixation of herbaceous, shrub and tree legumes in improved fallows

    NARCIS (Netherlands)

    Gathumbi, S.M.; Cadisch, G.; Giller, K.E.

    2002-01-01

    Short-term legume–cereal rotation systems (referred to as improved fallows) with N2 fixing leguminous species are being actively promoted to improve soil fertility in fallowed fields of smallholder farms in many parts of the tropics. Few estimates of N2-fixation in deep-rooted woody fallow species a

  10. CHANGE IN NATURAL ABUNDANCE OF 15N AND ESTIMATION OF N LOSSES FROM DAIRY MANURE DURING STORAGE BY MASS BALANCE AND NITROGEN-TO-PHOSPHORUS RATIO

    Science.gov (United States)

    The main objective was to evaluate methodologies to estimate N losses from stored dairy manure. Manure with high N (HN) and low N (LN) content was obtained from two groups of cows assigned diets of 17 and 15% CP (DM), respectively. Manure collected from the barn floor was diluted with water to 10% ...

  11. Study on synthesis of 15N-hydrazine hydrate

    International Nuclear Information System (INIS)

    The 15N labeled hydrazine hydrate is a strong reducing agent in the synthesis procedure of stable isotope labeled compounds, and it has been widely used in the isotope-labeled pharmaceutical synthesis. The reaction conditions of 15N labeled hydrazine hydrate were mainly investigated by single-factor design, and the following optimized conditions were obtained: the concentration of available chlorine was 115-120 g/L, the chlorination re- action time was 30∼40 min, the reflux time was 7 min, and the mass ratio of material was m(catalyst) : m (urea) = 1.0 : 10.0, and the yield of 15N labeled hydrazine hydrate was 76.1%, the abundance of 15N was 99.20%. (authors)

  12. Earthworm eco-physiological characteristics and quantification of earthworm feeding in vermifiltration system for sewage sludge stabilization using stable isotopic natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Xing, Meiyan, E-mail: lixiaowei419@163.com; Yang, Jian; Dai, Xiaohu

    2014-07-15

    Highlights: • Earthworm growth biomass and activity decreased with the VF depth. • Earthworm gut microbial communities were dominated by Gammaproteobacteria. • δ{sup 15}N and δ{sup 13}C in earthworms decreased with time, and increased with the VF depth. • Effect of earthworm feeding in enhanced VSS reduction was analyzed quantitatively. • Earthworm feeding had low contribution to the enhanced VSS reduction. - Abstract: Previous studies showed that the presence of earthworm improves treatment performance of vermifilter (VF) for sewage sludge stabilization, but earthworm eco-physiological characteristics and effects in VF were not fully investigated. In this study, earthworm population, enzymatic activity, gut microbial community and stable isotopic abundance were investigated in the VF. Results showed that biomass, average weight, number and alkaline phosphatase activity of the earthworms tended to decrease, while protein content and activities of peroxidase and catalase had an increasing tendency as the VF depth. Earthworm gut microbial communities were dominated by Gammaproteobacteria, and the percentages arrived to 76–92% of the microbial species detected. {sup 15}N and {sup 13}C natural abundance of the earthworms decreased with operation time, and increased as the VF depth. Quantitative analysis using δ{sup 15}N showed that earthworm feeding and earthworm–microorganism interaction were responsible for approximately 21% and 79%, respectively, of the enhanced volatile suspended solid reduction due to the presence of earthworm. The finding provides a quantitative insight into how earthworms influence on sewage sludge stabilization in vermifiltration system.

  13. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    This study investigated 15N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15N (815N) was therefore an index of stock nutrient inputs. Soil δ15N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ15N from stock camps was lower than its associated soil, implying that 15N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ15N and soil δ15N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  14. Experimental evidence for diel δ15N-patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.).

    Science.gov (United States)

    Peuke, A D; Gessler, A; Tcherkez, G

    2013-12-01

    Nitrogen isotope signatures in plants might give insights in the metabolism and allocation of nitrogen. To obtain a deeper understanding of the modifications of the nitrogen isotope signatures, we determined δ(15)N in transport saps and in different fractions of leaves, axes and roots during a diel course along the plant axis. The most significant diel variations were observed in xylem and phloem saps where δ(15)N was significantly higher during the day compared with during the night. However in xylem saps, this was observed only in the canopy, but not at the hypocotyl positions. In the canopy, δ(15)N was correlated fairly well between phloem and xylem saps. These variations in δ(15)N in transport saps can be attributed to nitrate reduction in leaves during the photoperiod as well as to (15)N-enriched glutamine acting as transport form of N. δ(15)N of the water soluble fraction of roots and leaves partially affected δ(15)N of phloem and xylems saps. δ(15)N patterns are likely the result of a complex set of interactions and N-fluxes between plant organs. Furthermore, the natural nitrogen isotope abundance in plant tissue is not constant during the diel course - a fact that needs to be taken into account when sampling for isotopic studies.

  15. Vertical δ13C and δ15N changes during pedogenesis

    Science.gov (United States)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  16. FAO/IAEA - interregional training course on the use of 15N in soil science and plant nutrition

    International Nuclear Information System (INIS)

    This training manual provides an introduction for the basic methodology and principles of application of the stable isotope 15N. After preliminary remarks on stable isotope terminology fundamentals, experimental problems and methods of quantitative nitrogen determination in soil and plant studies are reported in the main part of the manual. An appendix with a compilation of different parameters such as natural abundance of stable isotopes, selected atomic weights and multiples of them conversion factors of chemical compounds, and much more concludes the manual

  17. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 6

    International Nuclear Information System (INIS)

    Three colostomized laving hens received 40 g 15N-labelled wheat with 20.13 atom-% 15N excess (15N'), 19.18 atom-% 15N'-lysine, 18.17 atom-% 15N'-histidine and 20.43 atom-% 15N'-arginine per day over a period of four days. After having received the same non-labelled feed ration on the following four days, the hens were slaughtered. The incorporation and distribution of 15N' in the total nitrogen and the nitrogen of the basic amino acids was determined in liver, kidneys, muscles, bones and the remaining carcass (excluding blood, digestive tract and genital organs). The quota of nitrogen of natural isotope frequency (14N) of the total 14N of the hens' carcasses was 47% in the muscles, 14% in the bones and 20% in the feathers; the relative 15N' values were 37%, 8% and 1%, resp. The atom-% 15N' in the kidneys was twice as much as in the liver four days after the last 15N' application. The average percentage of the nitrogen in the three basic amino acids of the total nitrogen in the tissues and organs (excluding feathers) is 25% concerning both 14N and 15N'. The 15N' balance revealed that in hen 1 100%, in hen 2 102% and in hen 3 101% of the consumed wheat 15N' were found. (author)

  18. Natural Abundance 14C Content of Dibutyl Phthalate (DBP from Three Marine Algae

    Directory of Open Access Journals (Sweden)

    Kazuyo Ukai

    2006-11-01

    Full Text Available Abstract: Analysis of the natural abundance 14C content of dibutyl phthalate (DBP from two edible brown algae, Undaria pinnatifida and Laminaria japonica, and a green alga, Ulva sp., revealed that the DBP was naturally produced. The natural abundance 14C content of di-(2-ethylhexyl phthalate (DEHP obtained from the same algae was about 50-80% of the standard sample and the 14C content of the petrochemical (industrial products of DBP and DEHP were below the detection limit.

  19. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    Science.gov (United States)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  20. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    Science.gov (United States)

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  1. Use of N Natural Abundance and N Species Concentrations to Assess N-Cycling in Constructed and Natural Coastal Wetlands

    Directory of Open Access Journals (Sweden)

    C. Marjorie Aelion

    2010-01-01

    Full Text Available Natural abundance of N stable isotopes used in combination with concentrations may be useful indicators of N-cycling in wetlands. Concentrations and N signatures of NO3−, NH4+, and sediment organic nitrogen (SON were measured in two impacted coastal golf course retention ponds and two natural marshes. Limited NO3− was detected in natural site surface water or pore water, but both isotopic signature and concentrations of NO3− in surface water of impacted sites indicated anthropogenic inputs. In natural sites, NH4+ concentrations were greatest in deeper pore water and least in surface water, suggesting diffusion predominates. The natural sites had greater %SON, and N indicated that the natural sites also had greater NH4+ released from SON mineralization than impacted sites. In NO3−-limited systems, neither concentrations nor N natural abundance was able to provide information on N-cycling, while processes associated with NH4+ were better elucidated by using both concentrations and N natural abundance.

  2. Assessment of Soil Organic Carbon Stability in Agricultural Systems by Using Natural Abundance Signals of Stable Carbon and Nitrogen Isotopes

    International Nuclear Information System (INIS)

    Information on the stability and age of soil organic matter (SOM) pools is of vital importance for assessing the impact of soil management and environmental factors on SOM, an important part of the global carbon (C) cycle. The terrestrial soil organic C pool, up to a depth of 1 m, contains about 1500 Pg C (Batjes, 1996). This is about 2.5 times more organic C than the vegetation (650 Pg C) and about twice as much as in the atmosphere (750 Pg C) (Batjes, 1998), but the assessment of the stability and age of SOM using 14C radio carbon technique are expensive. Conen et al. (2008) developed a model to estimate the SOM stability based on the isotopic discrimination of 15N natural abundance by soil micro-organisms and the change in C/N ratio during organic matter decomposition, for steady state, Alpine and permanent grasslands. In the framework of the IAEA funded coordinated research project (CRP) on Soil Quality and Nutrient Management for Sustainable Food Production in Mulch based Cropping Systems in sub-Saharan Africa, research was initiated to use this model in agricultural systems for developing a cost effective and affordable technique for Member States to determine the stability of SOM. As part of this research, soil samples were taken and analysed in four long term field experiments, established on soils with low and high SOM, in Austria and Belgium. The participating institutions are the Austrian Agency for Health and Food Safety (AGES), the University of Natural Resources and Life Sciences in Vienna (BOKU), the University of Leuven (KUL), the Soil Service of Belgium (BDB) and the Centre Wallon de Recherches Agronomiques (CRA-W)

  3. 15N in biological nitrogen fixation studies

    International Nuclear Information System (INIS)

    A bibliography with 298 references on the use of the stable nitrogen isotope 15N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  4. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    Science.gov (United States)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  5. 15N2 incorporation by rhizosphere soil

    International Nuclear Information System (INIS)

    Heterotrophic nitrogen fixation by rhizosphere soil samples from 20 rice cultivars grown under uniform field conditions was estimated employing 15N-tracer technique. Rhizosphere soil samples from different rice cultivars showed striking differences with regard to their ability to incorporate 15N2. Rhizosphere samples from rice straw-amended (3 and 6 tons/ha) soil exhibited more pronounced nitrogen-fixing activity than the samples form unamended soil; while the activity of the rhizosphere samples from soil receiving combined nitrogen (40 and 80 kg N/ha) was relatively low. However, the inhibitory effect of combined nitrogen was not expressed in the presence of rice straw at 6 tons/ha. Results suggest that plant variety, application of combined nitrogen and organic matter influence the rhizosphere nitrogen fixation. (orig.)

  6. On the nature of sn stars. I. A detailed abundance study

    OpenAIRE

    Saffe, C.; H. Levato

    2014-01-01

    The sn stars present sharp Balmer lines, sharp metallic lines and broad coreless He I lines. Initially Abt & Levato proposed a shell-like nature to explain the sn stars, although this scenario was subsequently questioned. We aim to derive abundances for a sample of 9 stars, including sn and non-sn stars, to determine the possible relation between sn and CP stars. We analysed the photospheric chemical composition of sn stars and show that approximately 40% of them display chemical peculiaritie...

  7. Synthesis of 15N labeled glyphosate

    International Nuclear Information System (INIS)

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of 15N labeled glyphosate. The 15N-herbicide was undertaken by phosphometilation with the phosphit dialquil and 15N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  8. 15N-labed glycine synthesis

    OpenAIRE

    Claudinéia R. O. Tavares; José A. Bendassolli; Fernando Coelho; Carlos R. Sant Ana Filho; Clelber V. Prestes

    2006-01-01

    This work describes a method for 15N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of alpha-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia (15NH3). Special care was taken to avoid possible 15NH3 losses, since its production cost is high. In that respect, although the purchase cost of the 13N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an i...

  9. Measuring Long-Lived ^{13}C-Singlet State Lifetimes at Natural Abundance

    CERN Document Server

    Claytor, Kevin E; Feng, Yesu; Warren, Warren

    2013-01-01

    Long-lived singlet states hold the potential to drastically extend the lifetime of hyperpolarization in molecular tracers for in-vivo magnetic resonance imaging (MRI). Such long lived hyperpolarization can be used for elucidation of fundamental metabolic pathways, early diagnosis, and optimization of clinical tests for new medication. All previous measurements of 13C singlet state lifetimes rely on costly and time consuming syntheses of 13C labeled compounds. Here we show that it is possible to determine 13C singlet state lifetimes by detecting the naturally abundant doubly-labeled species. This approach allows for rapid and low cost screening of potential molecular biomarkers bearing long-lived singlet states.

  10. EVALUACIÓN DEL MÉTODO DE LA ABUNDANCIA NATURAL 15N EN LA ESTIMACIÓN DEL EFECTO DE LA TRANSFERENCIA DE NITRÓGENO DE LA LEGUMINOSA Canavalia ensiformis (CANAVALIA) SOBRE LA NUTRICIÓN NITROGENADA DE LA PLANTA ASOCIADA Musa acuminata (PLÁTANO)

    OpenAIRE

    Natacha Motisi; Tournebize, R.; J. Sierra

    2007-01-01

    La asociación de una leguminosa con un cultivo de cosecha ha demostrado ser una práctica eficaz para aportar nitrógeno (N) al sistema suelo-planta y así reducir el uso de fertilizantes. El objetivo de este estudio fue analizar la utilidad del método de la abundancia natural 15N para evaluar ese aporte. Se realizó un ensayo en macetas bajo condiciones de invernadero con la asociación canavalia-plátano, con el objeto de estimar la contribución de los exudados de la leguminosa y del N producto d...

  11. Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest

    Directory of Open Access Journals (Sweden)

    Luiz dos Anjos

    2004-06-01

    Full Text Available Bird communities were studied in two types of fragmented habitat of Atlantic forest in the State of Paraná, southern Brazil; one consisted of forest fragments that were created as a result of human activities (forest remnants, the other consisted of a set of naturally occurring forest fragments (forest patches. Using quantitative data obtained by the point counts method in 3 forest patches and 3 forest remnants during one year, species richness and relative abundance were compared in those habitats, considering species groups according to their general feeding habits. Insectivores, omnivores, and frugivores presented similar general tendencies in both habitats (decrease of species number with decreasing size and increasing isolation of forest fragment. However, these tendencies were different, when considering the relative abundance data: the trunk insectivores presented the highest value in the smallest patch while the lowest relative abundance was in the smallest remnant. In the naturally fragmented landscape, time permitted that the loss of some species of trunk insectivores be compensated for the increase in abundance of other species. In contrast, the remnants essentially represented newly formed islands that are not yet at equilibrium and where future species losses would make them similar to the patches.Comunidades de aves foram estudadas em duas regiões fragmentadas de floresta Atlântica no Estado do Paraná, sul do Brasil; uma região é constituída de fragmentos florestais que foram criados como resultado de atividades humanas (remanescentes florestais e a outra de um conjunto de fragmentos florestais naturais (manchas de floresta. Usando dados quantitativos (o método de contagens pontuais previamente obtidos em 3 manchas de floresta e em 3 remanescentes florestais durante um ano, a riqueza e a abundância relativa de aves foram comparadas naqueles habitats considerando as espécies pelos seus hábitos alimentares. Inset

  12. Utilization of 15N-labelled urea in laying hens. 8

    International Nuclear Information System (INIS)

    3 colostomized laying hybrids received orally with a conventional ration 1% urea with 96.06 atom-% 15N excess (15N') over a period of 6 days. In the period of the experiment every hen consumed 2.87 g 15N'. After another 2 days, on which they received conventional feed urea, the animals were butchered. 15N' was determined in the total N and in 15 amino acids of the oviduct. Of the 15 amino acids the labelling of glutamic acid, glycine and serine was highest and on average amounted to 0.80, 0.66 and 0.67 atom-% 15N', resp. In lysine and arginine only 0.10 and 0.11 atom-% 15N' could be detected. The amino acid N with natural isotopic frequency amounted to a quarter for the basic amino acids, a tenth for the branched chain ones and for the non-essential ones (glutamic acid, aspartic acid, serine, glycine, alanine, proline) a third of the total oviduct 14N. The average quota of 15N' is only 3.6%, that of the branched chain amino acids 4.5 and that of the non-essential ones 21.1%. Consequently, the 15N' of the urea is mainly used for the synthesis of the non-essential amino acids of the oviduct. (author)

  13. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    Science.gov (United States)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  14. The magnitude of spatial and temporal variation in δ15N and δ13C differs between taxonomic groups: Implications for food web studies

    Science.gov (United States)

    Hyndes, Glenn A.; Hanson, Christine E.; Vanderklift, Mathew A.

    2013-03-01

    Understanding variability in stable isotope abundance is essential for effective hypothesis testing and evaluating food sources, trophic levels and food web structure. The magnitude and sources of variability are likely to differ among taxonomic and functional groups. We aimed to quantify variability of δ13C and δ15N for 16 species representing seven distinct taxonomic groups of benthic invertebrates and autotrophs in a marine ecosystem. We quantified the magnitude of variability among individuals or shoots separated by metres, among eight sites separated by kilometres, and between two survey occasions separated by months. δ13C varied by as much as 7‰ for primary producers, 4‰ for consumers, while δ15N varied by as much as 9‰ and 2‰ respectively. Variation in δ15N of seagrass was largely accounted for by differences among sites, while variation in δ13C was mainly attributable to shoots collected a few metres apart. Compared to seagrasses, variation in macroalgae was mainly explained by differences between the two survey occasions for δ15N and among individuals collected a few metres apart for δ13C. Variation was generally lower for consumers and typically explained by differences among individuals for δ15N but displayed inconsistent patterns for δ13C. Dual isotope Bayesian mixing models showed that the potential contributions of food sources for herbivorous consumers varied among sites and between survey occasions, and also that there was high variability or uncertainty in the contributions of sources within sites. The relative consistency in the main sources of variation among broad taxonomic groups in autotrophs suggests that aspects of physiology that are phylogenetically conserved might be important influences on variation in natural abundances of stable isotopes. In comparison, the sources of variability were less consistent within and among broad consumer groups, suggesting complex interactions between consumers and their food sources.

  15. [Humus composition and stable carbon isotope natural abundance in paddy soil under long-term fertilization].

    Science.gov (United States)

    Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing

    2008-09-01

    Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).

  16. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  17. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. PMID:27359161

  18. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  19. Rapid mass spectrometric analysis of 15N-Leu incorporation fidelity during preparation of specifically labeled NMR samples

    DEFF Research Database (Denmark)

    Truhlar, Stephanie M E; Cervantes, Carla F; Torpey, Justin W;

    2008-01-01

    analyzing the isotopic abundance of the peptides in the mass spectra using the program DEX. This analysis determined that expression with a 10-fold excess of unlabeled amino acids relative to the (15)N-amino acid prevents the scrambling of the (15)N label that is observed when equimolar amounts are used......Advances in NMR spectroscopy have enabled the study of larger proteins that typically have significant overlap in their spectra. Specific (15)N-amino acid incorporation is a powerful tool for reducing spectral overlap and attaining reliable sequential assignments. However, scrambling of the label...... during protein expression is a common problem. We describe a rapid method to evaluate the fidelity of specific (15)N-amino acid incorporation. The selectively labeled protein is proteolyzed, and the resulting peptides are analyzed using MALDI mass spectrometry. The (15)N incorporation is determined by...

  20. Application of stable isotopes (δ{sup 34}S-SO{sub 4}, δ{sup 18}O-SO{sub 4,} δ{sup 15}N-NO{sub 3}, δ{sup 18}O-NO{sub 3}) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Urresti-Estala, Begoña, E-mail: b.urresti@uma.es [Universidad de Málaga, Facultad de Ciencias, Grupo de Geodinámica Externa, Campus de Teatinos s/n, 29071 Málaga (Spain); Vadillo-Pérez, Iñaki; Jiménez-Gavilán, Pablo [Universidad de Málaga, Facultad de Ciencias, Grupo de Geodinámica Externa, Campus de Teatinos s/n, 29071 Málaga (Spain); Soler, Albert [Grup de Mineralogia Aplicada i Medi Ambient, Fac. Geologia, Universitat de Barcelona, Barcelona (Spain); Sánchez-García, Damián; Carrasco-Cantos, Francisco [Universidad de Málaga, Facultad de Ciencias, Grupo de Geodinámica Externa, Campus de Teatinos s/n, 29071 Málaga (Spain)

    2015-02-15

    The integrated use of isotopes (δ{sup 34}S-SO{sub 4}, δ{sup 18}O-SO{sub 4,} δ{sup 15}N-NO{sub 3}, δ{sup 18}O-NO{sub 3}), taking into account existing hydrogeological knowledge of the study area (mainly hydrochemical), was applied in the Guadalhorce River Basin (southern Spain) to characterise SO{sub 4}{sup 2−} and NO{sub 3}{sup −} sources, and to quantify natural background levels (NBLs) in groundwater bodies. According to Water Framework Directive 2000/60/EC and, more recently, Groundwater Directive 2006/118/EC, it is important to determine NBLs, as their correct assessment is the first, essential step to characterising groundwater bodies, establishing threshold values, assessing chemical status and identifying trends in pollutant concentrations. In many cases, NBLs are high for some parameters and types of groundwater, making it difficult to distinguish clearly between factors of natural or human origin. The main advantages of using stable isotopes in a complex area like the Guadalhorce River Basin that exhibits widely varying hydrogeological and hydrochemical conditions and longstanding anthropogenic influences (mainly agriculture, but also many others) is accurate determination of pollution sources and precise quantification of NBLs. Since chemical analyses only provides the concentration of pollutants in water and not the source, three isotopic sampling campaigns for sulphates (δ{sup 34}S-SO{sub 4}, δ{sup 18}O-SO{sub 4}) were carried out, in 2006, 2007 and 2012, and another one was conducted for nitrates (δ{sup 15}N-NO{sub 3}, δ{sup 18}O-NO{sub 3}), in 2009, in groundwater bodies in order to trace the origins of each pollutant. The present study identified different pollution sources of dissolved NO{sub 3}{sup −} in groundwater using an isotopic composition and quantified the percentage of natural (lithology, chemical and biological processes) and anthropogenic (fertilisers, manure and sewage) SO{sub 4}{sup 2−} and matched a concentration

  1. Elevated Bacterial Abundance in Laboratory-Grown and Naturally Occurring Frost Flowers Under Late Winter Conditions

    Science.gov (United States)

    Bowman, J. S.; Deming, J. W.

    2009-12-01

    Sea ice has been identified as an important microbial habitat, with bacteria and other microbes concentrated in the brine inclusions between ice crystals. Frost flowers, thought to draw brine from underlying sea ice, have not been characterized from a microbial standpoint. To test whether frost flowers serve as an upward vector of bacteria contained within sea ice brines we grew frost flowers in a freezer laboratory (air temperature of -21°C) from saline water spiked with the mesophilic (and thus passive under experimental conditions) bacterium Halomonas pacifica. Salinity of melted samples was measured and bacterial abundance determined by epifluorescent microscopy. Bacterial counts scaled to ice-melt volume averaged 2.82 x 106 ml-1 for frost flowers, compared to 9.47 x 105 ml-1 for underlying ice (3 x higher). Bacterial counts also correlated significantly with salinity (maximum value of 62.5 psu) for frost flowers, brine skim, and ice (df = 17, r = 0.59, p < 0.0001). Segregation coefficients were calculated to describe the efficiency of transport of both cells and salt from the starting solution into frost flowers. From these coefficients an enrichment index was calculated to test for bacterial concentration into frost flowers at a different rate than salt. Analysis with a Student’s T-test (df = 24, t = 0.306, p = .76) indicated that cells and salt were not transported into frost flowers with a significantly different efficiency. To test these findings in the field we then collected frost flowers (and related samples) from new sea ice near Barrow, Alaska in April 2009. Bacterial counts were significantly elevated (again, a 3-fold increase) in natural frost flowers (mean = 2.73 x 105 ml-1) compared to underlying sea ice (mean = 8.46 x 104 cells ml-1). For all field samples collected (frost flowers, underlying brine skim and sea ice, as well as snow), bacterial abundance correlated significantly with salinity (maximum value 124 psu, df = 40, r = 0.60, p < 0

  2. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    Science.gov (United States)

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  3. Grafting and carbonated irrigation water in transport of 15N and in the tomato production

    International Nuclear Information System (INIS)

    The effects of CO2 application through irrigation water, and of grafting in transport of 15N and in the tomato production, were studied. These treatments were arranged in a 2 x 2 factorial scheme (with and without CO2 in irrigation water and grafted and non-grafted tomato), in a completely randomized design, with four replications. The injection of CO2 into the water began at 34 days after transplant of seedlings (DAT) and continued for all irrigations. The application of the sulfate of ammonium with abundance in atoms of 15N of 3.13% in plants destined to analysis was done at 45 DAT when the plants were in the middle of fructification. After 14 days of fertilizer (15N) application the plants were harvested, washed, dried and sent for analysis of 15N in plant tissue. The results demonstrated that CO2 and the grafting did not alter the transport of 15N in the plant. The production of commercial fruits was larger when CO2 was applied in water. (author)

  4. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    International Nuclear Information System (INIS)

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry. (author)

  5. The {sup 15}N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele A.B. [Universidade Regional de Blumenau, (FURB), SC (Brazil); Reichart, Klaus; Bacchi, Osny O.S.; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)]. E-mail: klaus@cena.usp.br; Dourado-Neto, Durval [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ)

    2007-12-15

    The use of the {sup 15}N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of {sup 15}N labeled fertilizer experiments, using as an example a coffee crop fertilized with {sup 15}N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% {sup 15}N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and {sup 15}N enrichments of plant material by mass-spectrometry. (author)

  6. Influence of niche differentiation on the abundance of methanogenic archaea and methane production potential in natural wetland ecosystems across China

    OpenAIRE

    D. Liu; Ding, W.; Jia, Z; Cai, Z.

    2010-01-01

    Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability. To understand the underlying factors that induce differences in CH4 emissions from natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical profile soils sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjia...

  7. Marcação de fitomassa de cana-de-açúcar com aplicação de solução de uréia marcada com15N Sugarcane phytomass labeling with application of 15N-urea solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Faroni

    2007-06-01

    Full Text Available O objetivo deste trabalho foi comparar três métodos de aplicação de solução de uréia marcada com15N (15N-uréia : pulverização foliar, injeção na base do colmo e imersão radicular, a fim de se definir qual seria o mais eficiente na marcação de fitomassa de cana-de-açúcar. O experimento foi instalado na Estação Experimental Apta - Pólo Regional Centro Sul, em Piracicaba, SP. A cana-de-açúcar, variedade SP80 3280, foi plantada em vasos preenchidos com aproximadamente 120 dm³ de Neossolo Quartzarênico de textura arenosa. O delineamento experimental foi inteiramente casualizado, com quatro repetições. A fitomassa de cana-de-açúcar dos três tratamentos, no 11º mês de desenvolvimento, não diferiu estatisticamente, e suas abundâncias de 15N foram superiores à natural, tendo-se verificado a seguinte ordem decrescente de marcação com 15N: parte aérea > rizoma > rizomas+raízes na camada de 0,0-0,2 m > raízes na camada de 0,2-0,4 m > raízes em profundidade maior que 0,4 m. Entre os métodos de aplicação de 15N-uréia, a injeção na base de colmos é o de mais fácil execução, o mais efetivo na marcação da fitomassa e o que apresentou a maior recuperação do traçador (96%. A aplicação foliar é comparável à injeção, somente na marcação e na recuperação do traçador no sistema radicular.The objective of this research was to compare three methods of 15N-urea solutions application: spray on leaf, injection in the plant base stem and root immersion, in order to define the most efficient labeling sugarcane phytomass with 15N method. The experiment was carried out at APTA - Pólo Regional Centro Sul, in Piracicaba, SP, Brazil, and the sugarcane variety SP80 3280 was planted in pots filled out with approximately 120 dm³ of a Typic Quartzipsamment soil. The experiment was conducted in a completely randomized design with four replicates. There were no difference between the methods in the plant parts dry

  8. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    Science.gov (United States)

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed. PMID:26791974

  9. Model reconstruction of nitrate pollution of riverbank filtration using 15N and 18O data, Karany, Czech Republic

    International Nuclear Information System (INIS)

    Stable isotopes of O (δ18O) in water and N (δ15N) in NO3- have been used as natural indigenous groundwater tracers for sources of water and of NO3- at two riverbank filtration (RBF) water supply systems. Both RBF systems (Skorkov and Sojovice) have wells in unconsolidated Quaternary sediments close to the Jizera River (Czech Republic) that have been affected by increasing NO3- concentrations. The area is underlain by Turonian sandstones and marls that form a deeper bedrock aquifer. Sources of NO3- are local sewerage systems and landfills (point sources) and seasonal application of manure and inorganic fertilizers (diffuse sources). At RBF Skorkov recharge to wells can be modelled using a two-component model with 60% river water contribution and 40% of very shallow groundwater with an average residence time of one month. During periods of abundant precipitation, groundwater originates entirely from the unsaturated zone of the Quaternary aquifer; extensive pumping for over 40a has created new, bypassing flow paths that preferentially drain the contaminated unsaturated zone. During dry periods, wells are recharged by longer residence time groundwater from the Quaternary aquifer. At RBF Sojovice there is an additional recharge component of groundwater from the Turonian aquifer, which is sandier at this locality; this contains denitrified NO3- with highly positive δ15N values

  10. Multinuclear NMR of 15 N labelled organic molecules

    International Nuclear Information System (INIS)

    The paper presents the application of multinuclear NMR techniques to the study of 15 N labeled organic molecules. There are some important points of great interest in such type of research, namely, structure determination, i.e. location of the 15 N in molecule and determination of 15 N concentration in order to obtain quantitative results about the intramolecular short and long range interaction. Different NMR techniques were used in the study of 13 C, 1 H and 15 N. Obtaining the 15 N NMR signal imposes some special preparation of the spectrometer. First, we had to manage a very large spectral window (-400 to +1200 ppm) which makes difficult finding the signal. Secondly, in the condition of proton decoupling, in a very large band, a decrease of the signal can occur due to the NOE negative effect. To avoid this effect, other decoupling method, called 'inverse gated 1 H decoupling' was used. As a reference, for 15 N, we used CH3NO2, fixed at 0 ppm. In order to find the suitable spectral window we used the formamide (15 N). The results of obtaining the 15 N-labeled procaine are presented. (author)

  11. Species diversity and abundance of aphids and their natural enemies in a crop association

    OpenAIRE

    Chevalier Mendes Lopes, Thomas; Hatt, Séverin; Starý, Petr; JAPOSHVILI, George; Francis, Frédéric

    2015-01-01

    Crop associations can be efficient to reduce aphid populations, by disrupting the visual and olfactory location of host plants. However, increasing the chemical and structural complexity of vegetation can also decrease the searching efficiency of predators and parasitoids, which are not always more abundant in complex habitats. Using attractive semiochemicals such as methyl salicylate (MeSA) combined with a crop association seems promising to maximise aphid control. We compared the abundances...

  12. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis

    Directory of Open Access Journals (Sweden)

    Jessica eTout

    2015-05-01

    Full Text Available Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2-3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i the whole Vibrio community and (ii the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2-3 orders of magnitude and V. coralliilyticus abundance increased by 4 orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems.

  13. Elemental abundances at early times: the nature of Damped Lyman-alpha systems

    OpenAIRE

    Molla, Mercedes; Diaz, Angeles,; Ferrini, Federico

    1999-01-01

    The distribution of element abundances with redshift in Damped Ly-alpha (DLA) systems can be adequately reproduced by the same model reproducing the halo and disk components of the Milky Way Galaxy at different galactocentric distances: DLA systems are well represented by normal spiral galaxies in their early evolutionary stages.

  14. Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics

    Science.gov (United States)

    Using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, we investigated the distribution of the low abundant proteins that are involved in soybean seed development in four wild and twelve cultivated soybean genotypes. We found proteomic variation of these proteins within and...

  15. Preparation of double labeled 13C, 15N3-nitrofurantoin%双标记13C,15N3-呋喃妥因的制备

    Institute of Scientific and Technical Information of China (English)

    徐建飞; 杜晓宁; 王伟; 张彰

    2012-01-01

    以双标记13C,15N3 -氨基脲为原料,先与苯甲醛缩合,继而与氯乙酸乙酯取代、环化,再经盐酸水解反应后与5-硝基糠醛二乙酯反应,最终制得双标记13C,15N3-呋喃妥因.产物经红外光谱、高效液相色谱及质谱表征.结果表明,所选用的合成路线反应条件温和,产物总收率高于60%,且同位素丰度不下降;目标产物的化学纯度>99.0%,13C同位素丰度>98%,15N同位素丰度>99%.%A novel method was established to synthesize double labeled 13C,15N3-nitrofurantoin. Starting material 13C,15 N3-semicarbazide was firstly converted to benzaldehyde semicarbazone (II) by condensation with benzaldehyde. Compound (II) was then allowed to react with ethyl a-chloroacetate in the presence of sodium ethoxide, forming 1-benzylideneaminohydratoin (III). Compound (III) was hydrolyzed with hydrochloric acid and condensed with 5-nitro furfural diacetate, generating the target compound) nitrofurantoin-13C,l5N3) (V). As-synthesized target product was characterized by infrared spectrometry, high-performance liquid chromatog-raphy, and mass spectrometry. It has been found that the established synthetic route is dominated by mild reaction conditions and gives rise to the final product in a yield of above 60%, while the abundance of the isotopes does not tend to decline. Namely, the chemical purity of the target product is above 99. 0%, and the abundances of 13C and 15N are above 98% and 99%, respectively.

  16. Preparation of 15N labelled protein sample by gene engineering technology

    International Nuclear Information System (INIS)

    Using the advanced multi-dimension heteronuclear pulses and isotope labelled protein technique, nuclear magnetic resonance spectroscopy has become an important tool in analysis of the solution conformation of protein. On the basis of the high level expression of a protein-trichosanthin in recombinant E.coli using DNA, 15N was used to label the protein, the 15N labelled trichosanthin was obtained by affinity chromatography on Ni-NTA agarose. Terminating pregnant effect in mice showed that this recombinant protein had the same activity as natural trichosanthin. A 1H-15N heteronuclear single-quantum coherence (HSQC) spectrum was obtained from an AM-500 NMR spectrometer, demonstrating that this method is suitable in preparing labelled protein sample for NMR

  17. EVALUACIÓN DEL MÉTODO DE LA ABUNDANCIA NATURAL 15N EN LA ESTIMACIÓN DEL EFECTO DE LA TRANSFERENCIA DE NITRÓGENO DE LA LEGUMINOSA Canavalia ensiformis (CANAVALIA SOBRE LA NUTRICIÓN NITROGENADA DE LA PLANTA ASOCIADA Musa acuminata (PLÁTANO

    Directory of Open Access Journals (Sweden)

    Natacha Motisi

    2007-01-01

    Full Text Available La asociación de una leguminosa con un cultivo de cosecha ha demostrado ser una práctica eficaz para aportar nitrógeno (N al sistema suelo-planta y así reducir el uso de fertilizantes. El objetivo de este estudio fue analizar la utilidad del método de la abundancia natural 15N para evaluar ese aporte. Se realizó un ensayo en macetas bajo condiciones de invernadero con la asociación canavalia-plátano, con el objeto de estimar la contribución de los exudados de la leguminosa y del N producto de la descomposición de sus raíces después del corte de la parte aérea. Las estimaciones fueron realizadas con un modelo de compartimientos que tiene en cuenta la discriminación isotópica en el suelo y en el plátano. Del N total absorbido por el plátano, 5 % provino de los exudados de canavalia, 53 % del N liberado por la descomposición de las raíces y 42 % del N del suelo. La contribución de los exudados fue relativamente baja a causa de una fuerte competición entre canavalia y plátano, principalmente por el fósforo disponible en el suelo. El contenido de 15N de la última media hoja adulta del plátano mostró una alta correlación con el de la planta entera. Esto sugiere que la última hoja podría ser utilizada como indicador de la transferencia de N desde la leguminosa. La determinación de la transferencia de N durante el ciclo de crecimiento de canavalia, así como la evaluación del indicador, necesitan una calibración en condiciones de campo, la cual debería ser desarrollada para cada tipo de suelo.

  18. Organic vs. conventional grassland management: do (15N and (13C isotopic signatures of hay and soil samples differ?

    Directory of Open Access Journals (Sweden)

    Valentin H Klaus

    Full Text Available Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15N and δ(13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15N (δ(15N plant - δ(15N soil to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13C in hay and δ(15N in both soil and hay between management types, but showed that δ(13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be

  19. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    Science.gov (United States)

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  20. (15)N Heteronuclear Chemical Exchange Saturation Transfer MRI.

    Science.gov (United States)

    Zeng, Haifeng; Xu, Jiadi; Yadav, Nirbhay N; McMahon, Michael T; Harden, Bradley; Frueh, Dominique; van Zijl, Peter C M

    2016-09-01

    A two-step heteronuclear enhancement approach was combined with chemical exchange saturation transfer (CEST) to magnify (15)N MRI signal of molecules through indirect detection via water protons. Previous CEST studies have been limited to radiofrequency (rf) saturation transfer or excitation transfer employing protons. Here, the signal of (15)N is detected indirectly through the water signal by first inverting selectively protons that are scalar-coupled to (15)N in the urea molecule, followed by chemical exchange of the amide proton to bulk water. In addition to providing a small sensitivity enhancement, this approach can be used to monitor the exchange rates and thus the pH sensitivity of the participating (15)N-bound protons. PMID:27548755

  1. Abundance of non-native crabs in intertidal habitats of New England with natural and artificial structure

    OpenAIRE

    Lovely, Christina M.; O’Connor, Nancy J.; Judge, Michael L.

    2015-01-01

    Marine habitats containing complex physical structure (e.g., crevices) can provide shelter from predation for benthic invertebrates. To examine effects of natural and artificial structure on the abundance of intertidal juvenile crabs, 2 experiments were conducted in Kingston Bay, Massachusetts, USA, from July to September, 2012. In the first experiment, structure was manipulated in a two-factor design that was placed in the high intertidal for 3 one-week periods to test for both substrate typ...

  2. Using natural isotopic abundances to determine the source of nitrous oxide (N2O) emissions

    Science.gov (United States)

    Mothet, A.; Sebilo, M.; Laverman, A. M.; Vaury, V.; Mariotti, A.

    2012-04-01

    Numerous greenhouse gas studies have focused on carbon dioxide (CO2), whereas nitrous oxide (N2O) also plays a major role in global warming. Indeed, while nitrous oxide is 1000 times less concentrated than CO2 in the atmosphere, it is 300 times more efficient in terms of global warming potential. In addition, its atmospheric concentration increases with 0,3 % per year. According to the literature, nitrous oxide is produced, in soils and sediments, by two major processes: (1) Nitrification, mediated by autotrophic nitrifying bacteria under oxic conditions; (2) Denitrification, mediated by heterotrophic denitrifying bacteria under anoxic conditions. Denitrification induces intensive, localized and instantaneous fluxes. N2O emissions can be easily measured and modeled. In contrast, nitrification induces weak emissions, but spatially and temporally extended. Therefore, this process could represent a large potential of N2O emissions from soils and sediments. The study of isotopomer's isotopic composition of N2O, i.e. the intramolecular distribution or site preference (SP) determined by 15N measurement allows the determination of the origin of N2O emissions (nitrification vs. denitrification). Recent studies on pure cultures have showed that SP associated with nitrification is 35 ‰ while SP associated with denitrification is 0 ‰. The aim of this study was to determine SP associated with denitrification in soils and sediments, taking into account the environmental denitrifying bacterial communities, and under different environmental variables. To this end, flow-through reactors were used to determine denitrification rates at different temperatures and varying substrate (nitrate) concentrations. Site preference was measured for the different experiments. Different experiments of denitrification were realized in sediment flow through reactors under denitrifying conditions (anoxia, presence of organic matter and nitrate). We used acetylene (25°C) to block the enzyme

  3. Nature's Starships. I. Observed Abundances and Relative Frequencies of Amino Acids in Meteorites

    CERN Document Server

    Cobb, Alyssa K

    2014-01-01

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. The...

  4. Nature's starships. I. Observed abundances and relative frequencies of amino acids in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Alyssa K.; Pudritz, Ralph E., E-mail: cobbak@mcmaster.ca, E-mail: pudritz@physics.mcmaster.ca [Origins Institute, McMaster University, ABB 241, 1280 Main Street, Hamilton, ON L8S 4M1 (Canada)

    2014-03-10

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.

  5. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    Science.gov (United States)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  6. Species richness and abundance of hesperioidea and papilionoidea (lepidoptera) in Las Delicias natural reserve, Santa Marta, Magdalena, Colombia

    International Nuclear Information System (INIS)

    In the foothills of the Sierra Nevada de Santa Marta, Colombia, are formations of dry tropical secondary forest hosting a fauna representative of lepidoptera, which can be used as an indicator of group condition, because of their sensitivity to intervention and specificity in the use of resources; in the present study the changes in richness and abundance of butterflies hesperioidea papilionoidea in nature reserve Las Delicias were evaluated. Two sampling sites with different degrees of intervention were selected. The first site is located between 400- 550 over sea level, while the second at 200 m. We performed four samples, from April to July 2008; using two networks lepidopterist and 10 van someren rydon traps baited with macerated fruit and fish. We captured 432 individuals belonging to 66 species, distributed in 52 genera. Nymphalidae were the most rich family (42) and abundance (250); highlighting the species mechanitis lysimnia fabricius (41 specimens), typical in forest with very good coverage. Site 2, was the most diverse (48) and abundance (236), because in this place there was a greater stratification and tree coverage, and the presence of water resources during the sampling. With the arrival of rain in June and July, there was greater flowering and fruiting of vegetation in the area, increasing the availability of resources and therefore a greater richness and abundance of papilionoidea and hesperioidea in the study area.

  7. Seasonal changes in nitrogen availability, and root and microbial uptake of 15N13C9-phenylalanine and 15N-ammonium in situ at a temperate heath

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Michelsen, Anders; Jonasson, Sven Evert;

    2011-01-01

    In the plant biosynthesis of secondary compounds, phenylalanine is a precursor of condensed tannins. Tannins are deposited into the soil in plant root exudates and dead plant material and have been suggested to precipitate some soil nutrients and hence reduce nutrient availability for plants. Free...... amino acid,inorganic and microbial N concentration during the growing season was investigated in an ecosystem with a natural tannin chemosphere. The influence of tannins on the uptake of nitrogen in plants and microbes was followed by injecting tannic acid (TA), ammonium-15N and phenylalanine-15N/13C9....... Plants preferred ammonium over phenylalanine, while microbes had no preference. Soil microbes had a 77% uptake of intact phenylalanine. Phenylalanine was acquired intact by both grasses and Calluna, with 63% and 38% uptake of intact phenylalanine in grass fine roots and Calluna roots, respectively...

  8. Balance study of the fate of 15N fertilizer

    International Nuclear Information System (INIS)

    An interim report is presented on a series of experiments with wooden box-type lysimeters (60 cm x 60 cm x 70 cm) loaded with a sandy soil, a loess soil and straw-amended soil. The lysimeters support crops rotated over a five-year period to be studied - potato, barley, sugar-beet, barley (with winter rape) and finally (1979) potato. Each lysimeter received split applications of urea at total rates of 0, 50 or 100 kg.ha-1. The effects of soil residues of the herbicide monolinuron were also studied. The report deals with data collected during the first three years of the planned experiments (1975 - 1977 inclusive). 15N-labelled urea (47 atom 15N% excess) was initially used but in some experiments this was followed by applications of unlabelled urea in order to study the fate of the residual 15N in the subsequent years. The results to date indicated that in the first year highest recoveries in the plant of the applied 15N obtained on the sandy soil. The low recoveries of 15N in the subsequent years when unlabelled urea was supplied also indicated significant storage by soil or root organic matter of the applied 15N. Compared with the control (zero application of urea nitrogen), potato took up more total nitrogen in the presence of fertilizer including more of the unlabelled soil pool nitrogen. Analyses of the soil profiles in terms of total soil nitrogen and fertilizer-derived nitrogen (on the basis of 15N assays) indicated leaching of the labelled nitrogen down the soil profile in all cases during the three-year period. Analysis of NO3-N in leachates confirmed the presence of labelled urea-derived nitrogen. (author)

  9. What Turns a Blessing into a Curse? The Political Economy of Natural Resource Abundance

    NARCIS (Netherlands)

    S.M. Murshed (Syed)

    2008-01-01

    textabstractABSTRACT: I review the relationship between natural resource endowment type and economic growth in developing countries. Certain types of natural resources such as oil and minerals tend to exhibit concentrated production and revenue patterns, while revenue flows from other resources such

  10. Fertilizer 15N balance in a coffee cropping system: a case study in Brazil

    International Nuclear Information System (INIS)

    Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/ 2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0-1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0.9 %, respectively

  11. Utilization of 15N-urea in laying hens. 3

    International Nuclear Information System (INIS)

    In 3 colostomized laying hens the incorporation of heavy nitrogen from urea into the amino acids of the 21 eggs laid during the 8-day experiment was determined. In these eggs the content of 15 amino acids was ascertained separately in white and yolk of the eggs and their atom-% 15N excess (15N') was determined. The heavy nitrogen could be detected in all amino acids investigated. The incorporation of 15N' into the essential amino acids of the white and yolk of eggs is very low. Of the 15N' amount of the urea applied 0.18% could be detected in the 9 essential amino acids of the white of egg and 0.12% in those of the yolk. For the 6 analyzed nonessential amino acids the rediscovery quota of 15N' in the white of egg was 0.50% and in the yolk 0.81% is that the NPN-source urea is insignificant for egg protein synthesis. (author)

  12. Nitrate dynamics in natural plants: Insights based on the concentration and natural isotope abundances of tissue nitrate

    Directory of Open Access Journals (Sweden)

    Xue Yan Liu

    2014-07-01

    Full Text Available The dynamics of nitrate (NO3-, a major nitrogen (N source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO3- uptake and reduction may vary with external N availability. Abrupt application and short operation times, field N addition, and isotopic labeling hinder the elucidation of in situ NO3--use mechanisms. The concentration and natural isotopes of tissue NO3- can offer insights into the plant NO3- sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO3- utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO3- in plants. Moreover, this study highlights the utility and benefits of these parameters in interpreting NO3- sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO3- in plants, and discuss the implications of NO3- concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO3 - and plant ecophysiological functions in interspecific and intra-plant NO3- variations. We introduce N and O isotope systematics of NO3- in plants and discusse the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and ∆17O; and isotope mass-balance calculations to constrain sources and reduction of NO3- in possible scenarios for natural plants are deliberated. Finally, we construct a preliminary framework of intraplant δ18O-NO3- variation, and summarize the uncertainties in using tissue NO3- parameters to interpret plant NO3- utilization.

  13. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    Science.gov (United States)

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  14. 3D H2BC: A novel experiment for small-molecule and biomolecular NMR at natural isotopic abundance

    DEFF Research Database (Denmark)

    Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard;

    2009-01-01

    3D H2BC is introduced for heteronuclear assignment on natural abundance samples even for biomolecules up to at least 10 kDa in low millimolar concentrations as an overnight experiment using the latest generation of cryogenically cooled probes. The short pulse sequence duration of H2BC is maintain...... in the 3D version due to multiple use of the constant-time delay. Applications ranging from a small lipid to a non-recombinant protein demonstrate the merits of 3D H2BC and the ease of obtaining assignments in chains of protonated carbons....

  15. Paramagnetic relaxation enhancement solid-state NMR studies of heterogeneous catalytic reaction over HY zeolite using natural abundance reactant.

    Science.gov (United States)

    Zhou, Lei; Li, Shenhui; Su, Yongchao; Li, Bojie; Deng, Feng

    2015-01-01

    Paramagnetic relaxation enhancement solid-state NMR (PRE ssNMR) technique was used to investigate catalytic reaction over zeolite HY. After introducing paramagnetic Cu(II) ions into the zeolite, the enhancement of longitudinal relaxation rates of nearby nuclei, i.e.(29)Si of the framework and (13)C of the absorbents, was measured. It was demonstrated that the PRE ssNMR technique facilitated the fast acquisition of NMR signals to monitor the heterogeneous catalytic reaction (such as acetone to hydrocarbon) using natural abundance reactants. PMID:25616847

  16. Species composition and relative seasonal abundance of spiders from the field and tree layers of the Roodeplaat Dam Nature Reserve

    Directory of Open Access Journals (Sweden)

    Anna S. Dippenaar-Schoeman

    1989-10-01

    Full Text Available A survey of spiders was carried out at the Roodeplaat Dam Nature Reserve near Pretoria. Over a 4-year period 10 270 spiders were collected from grasses, herbs and trees. A total of 82 genera of spiders representing 27 families were recorded. Of all the spiders caught, 29,3 percent belonged to the Tetrag-nathidae, 22,7 percent to the Araneidae and 21,4 percent to the Salticidae. The proportion of spiders in each of the remaining 24 families did not exceed 6 percent of the total catch. The species composition and seasonal abundance are discussed.

  17. Natural Resources and Violent Conflict: Resource Abundance, Dependence and the Onset of Civil Wars

    NARCIS (Netherlands)

    Brunnschweiler, C.N.; Bulte, E.H.

    2009-01-01

    In this paper we examine the claim that natural resources invite civil conflict, and challenge the main stylized facts in this literature. We find that the conventional measure of resource dependence is endogenous with respect to conflict, and that instrumenting for dependence implies that it is no

  18. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    Directory of Open Access Journals (Sweden)

    Richard Dabundo

    Full Text Available We report on the contamination of commercial 15-nitrogen (15N N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1 d(-1, to 530 nmoles N L(-1 d(-1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of

  19. Fertilizer {sup 15}N balance in a coffee cropping system: a case study in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo [Universidade Regional de Blumenau (URB), SC (Brazil). Dept. de Engenharia Florestal]. E-mail: tfenilli@furb.br; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mails: klaus@cena.usp.br; osny@cena.usp.br; Favarin, Jose Laercio [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Producao Vegetal; Silva, Adriana Lucia [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil). Fazenda Santo Antonio]. E-mail: adriana.silva@ctc.com.br; Timm, Luis Carlos [Universidade Federal de Pelotas (UFPel), RS (Brazil). Dept. de Engenharia Rural]. E-mail: lcartimm@yahoo.com.br

    2008-07-15

    Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the {sup 15}N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the {sup 15}N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/ 2005, respectively, both of them as ammonium sulfate enriched to a {sup 15}N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and {sup 15}N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH{sub 3} were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and {sup 15}N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of {sup 15}N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0-1.0 m soil profile. Annual leaching and volatilization losses were

  20. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    Science.gov (United States)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  1. Isotopic enrichment of 15N by ionic exchange cromatography

    International Nuclear Information System (INIS)

    The ionic exchange chromatographic method in columns of resin which is employed in the study of isotopic enrichment of 15N is presented. Determinations are made of the isotopic separation constant for the exchange of isotopes 15N and 14N in the equilibrium involving ammonium hidroxide in the solution phase and ions NH4+ adsorbed in cationic resins: Dowex 50W-X8 and X12, 100-200 mesh. Experiments are also conducted for determination of height of theoretical plates for situations of equilibrium of the NH4+ band in two systems of resin's columns aimed at estimating the experimental conditions used. The isotopic analyses of nitrogen are carried out by mass spectrometry

  2. Synthesis of 15 alpha-hydroxyestrogen 15-N-acetylglucosaminides.

    Science.gov (United States)

    Suzuki, E; Namba, S; Kurihara, H; Goto, J; Matsuki, Y; Nambara, T

    1995-03-01

    The synthesis of 15-N-acetylglucosaminides of 15 alpha-hydroxyesterone, 15 alpha-hydroxyestradiol, and 15 alpha-hydroxyestriol (estetrol) is described. The latter two were prepared by condensation of 2-acetamido-1 alpha-chloro-1,2-dideoxy-3,4,6-trio-O-acetyl-D-glucopyranose with appropriately protected 15 alpha-hydroxyestrogens by the Koenigs-Knorr reaction employing cadmium carbonate as a catalyst. Subsequent removal of protecting groups with methanolic potassium hydroxide provided the desired conjugates. 15 alpha-Hydroxyestrone 15-N-acetylglucosaminide was synthesized from the corresponding 15 alpha-hydroxyestradiol derivative by Jones oxidation followed by brief alkaline hydrolysis. These conjugates underwent enzymatic hydrolysis with beta-N-acetylglucosaminidase from Jack beans to produce 15 alpha-hydroxyestrogens. PMID:7792832

  3. Evaluation of N sub 2 fixation by applying sup 15 N labeled plant material and ammonium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C.Y.; Yoshida, T.

    1990-06-01

    Effect of different {sup 15}N labeled sources on the estimation of N{sub 2} fixation was investigated. The combination of {sup 15}N labeled ammonium sulfate, {sup 15}N labeled plant material, and {sup 15}N labeled ammonium sulfate with unlabeled plant material, was examined in pot experiments. Two cultivars of soybean (Glycine max) and one of mungbean (Vigna radiata) were used. No significant difference was observed among the treatments for the estimation of N{sub 2} fixation. This was due to the homogeneity and stability of the {sup 15}N abundance in soil which resulted in a similar N uptake from the soil by the N{sub 2} fixing and reference crops. The plant yield, total N uptake and amount of N{sub 2} fixed were higher in the Yellow Soil than in the Andosol. The amount of N{sub 2} fixed was strongly influenced by the plant growth and consequently it affected the plant yield. The slow decomposition of plant material in the Andosol resulted in a low yield in both the N{sub 2} fixing and reference crops. Thus, the artificial decrease of the available N content in soil, by application of plant material, did not stimulate N{sub 2} fixation but suppressed plant growth and N{sub 2} fixation.

  4. Geomorphic control on the δ15N of mountain forests

    Directory of Open Access Journals (Sweden)

    R. G. Hilton

    2013-03-01

    Full Text Available Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope and climatic (precipitation, temperature characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.

  5. Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error.

    Science.gov (United States)

    Schenk, David J; Lockley, William J S; Elmore, Charles S; Hesk, Dave; Roberts, Drew

    2016-04-01

    When the isotopic abundance or specific activity of a labeled compound is determined by mass spectrometry (MS), it is necessary to correct the raw MS data to eliminate ion intensity contributions, which arise from the presence of heavy isotopes at natural abundance (e.g., a typical carbon compound contains ~1.1% (13) C per carbon atom). The most common approach is to employ a correction in which the mass-to-charge distribution of the corresponding unlabeled compound is used to subtract the natural abundance contributions from the raw mass-to-charge distribution pattern of the labeled compound. Following this correction, the residual intensities should be due to the presence of the newly introduced labeled atoms only. However, this will only be the case when the natural abundance mass isotopomer distribution of the unlabeled compound is the same as that of the labeled species. Although this may be a good approximation, it cannot be accurate in all cases. The implications of this approximation for the determination of isotopic abundance and specific activity have been examined in practice. Isotopically mixed stable-atom labeled valine batches were produced, and both these and [(14) C6 ]carbamazepine were analyzed by MS to determine the extent of the error introduced by the approach. Our studies revealed that significant errors are possible for small highly-labeled compounds, such as valine, under some circumstances. In the case with [(14) C6 ]carbamazepine, the errors introduced were minor but could be significant for (14) C-labeled compounds with particular isotopic distributions. This source of systematic error can be minimized, although not eliminated, by the selection of an appropriate isotopic correction pattern or by the use of a program that varies the natural abundance distribution throughout the correction. PMID:26916110

  6. Cryptic or day-to-day parts of the riverbed N cycle - new challenges for 15N

    Science.gov (United States)

    Trimmer, Mark; Ouyang, Liao; Lansdown, Katrina

    2016-04-01

    The discovery of anaerobic ammonium oxidation (anammox) not only changed our understanding of the nitrogen cycle in aquatic ecosystems but it also undermined some of the key 15N techniques used to study it. Reformulations of principle equations and the development of new 15N2 and 15N2O techniques enabled the simultaneous quantification of N2 production by anammox and denitrification in mainly soft, cohesive sediments where redox gradients are clearly defined and solute exchanged governed by diffusion. At the heart of the application of 15N, for the quantification of natural 14N cycling, is the key assumption that the respective pools of 15N and 14N are evenly mixed and that both are cycled without bias towards each other. Recent evidence, however, from a variety of aquatic ecosystems, suggests that this may not be the case. For example, organic N may be oxidised directly to N2 gas without ever mixing with the inorganic pool or inorganic intermediates (e.g. nitrite) are 'shunted' internally and also fail to mix evenly with the applied tracer pool. Our most recent work in permeable, oxic gravel riverbeds presents some particular challenges to the application of 15N. In these systems, a tight coupling between aerobic nitrification and anaerobic N2 production - in the presence of 100

  7. Variability in δ{sup 15}N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: inesgviana@gmail.com; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ{sup 15}N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ{sup 15}N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ{sup 15}N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ{sup 15}N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ{sup 15}N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ{sup 15}N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. - Highlights: • Variability of Fucacean δ{sup 15}N indicates N sources along a salinity gradient. • δ{sup 15}N of Fucaceae and seawater are not correlated at short time scales. • Isotopic fractionation in macroalgal tissue varies at seasonal and at local scale. • Fucacean species are suitable for monitoring chronic N loadings.

  8. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    Science.gov (United States)

    Evidence is presented for the covalent binding ofbiologically reduced metabolites of 2,4,6-15N3-trinitrotoluene(TNT) to different soil fractions (humic acids, fulvicacids, and humin) using liquid 15N NMR spectroscopy. Asilylation p...

  9. Dynamic of N fertilizers: urea (15 N) and aqua ammonia (15 N) incorporated to the sugar cane soil. Final report

    International Nuclear Information System (INIS)

    The dynamic of N fertilizers, urea and aqua ammonia, in the soil of sugar cane crops are studied with an emphasis on the horizontal and vertical moving. The nitrogen routing from urea and aqua ammonia sources, by isotopic technique with 15 N in relation to the leaching, volatilization and extraction by the cultivation and residue of N immobilized manure in the soil with sugar cane plantation is also analysed. (C.G.C.)

  10. Effects of weed cover composition on insect pest and natural enemy abundance in a field of Dracaena marginata (Asparagales: Asparagaceae) in Costa Rica.

    Science.gov (United States)

    Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J

    2014-04-01

    Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies. PMID:24517852

  11. Poly-ethers from Winogradskyella poriferorum: Antifouling potential, time-course study of production and natural abundance

    KAUST Repository

    Dash, Swagatika

    2011-08-01

    A sponge-associated bacterium, Winogradskyella poriferorum strain UST030701-295T was cultured up to 100l for extraction of antifouling bioactive compounds. Five poly-ethers were isolated and partially characterized based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS); two of them showed inhibitory effects on biofilm formation of marine bacteria and larval settlement of macro-foulers but did not produce any adverse effects on the phenotypes of zebra fish embryos at a concentration of 5μgml -1. The effect of culture duration on the production of the poly-ethers and the bioactivity of the relevant extracts was monitored over a period of 12days. The total crude poly-ether production increased from day 2 to day 5 and the highest bioactivity was observed on day 3. The poly-ethers were found to be localized in the cellular fraction of the extracts, implying their natural occurrence. The potent bioactivity of these poly-ethers together with their high natural abundance in bacteria makes them promising candidates as ingredients in antifouling applications. © 2011 Elsevier Ltd.

  12. Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules

    Science.gov (United States)

    Pizzarello, Sandra; Holmes, William

    2009-04-01

    Amino acids, amines and aldehydes were obtained from the water extracts of two CR2 carbonaceous chondrites from Antarctica and analyzed for their molecular and 15N isotopic content. These compounds were found to differ significantly from those of CM chondrites in both overall abundances and molecular distribution. The amino acids suites comprise a preponderant abundance of linear, 2-H amino acids, show rapid non-linear decrease with the compounds' increasing chain length and include protein amino acids never identified in meteorites before, such as threonine, tyrosine and phenylalanine. The presence of tertiary amines as well as a diverse, large abundance of aldehydes and ketones also distinguishes both CR2 organic suites. The δ 15N values determined for CR2 amino acids have a distribution between molecular subgroups that is opposite to the one of their δD values, with 2-H amino acids having higher δ 15N and lower δD values than 2-methyl amino acids, while the opposite is true for 2-methyl amino acids. Based on theoretical data, these isotopic findings would place the formation of the two amino acid groups or their direct precursors at different ISM stages of star formation.

  13. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    Science.gov (United States)

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, periphyton 34S and 15N was generally low. However, 34S was low enough at some sites to be suggestive of sulfate reduction, complicating the use of S isotopes. Juvenile salmon SIA ranged in values consistent with using production derived from re-mineralization as well as direct utilization, but only by a minority fraction of coho salmon. Dependency on salmon-derived nutrients ranged from relatively high to relatively low, suggesting a space-limited system. No one particular isotope was found to be superior for determining the relative importance of salmon-derived nutrients.

  14. Estimation of the endogenous N proportions in ileal digesta and faeces in 15N-labelled pigs

    International Nuclear Information System (INIS)

    4 castrated male pigs 40 kg fitted with simple 'T' cannulas in the terminal ileum were given 15N-labelled ammonium salts, added to a low protein diet, for 6 days. Excretion of 15N in urine and feces was monitored daily throughout the labelling and subsequent experimental periods. During the experimental period the pigs were given a diet based on wheat and fish meal, supplemented with varying levels of partially hydrolyzed straw meal to give crude fiber contents ranging from 40 to 132 g/kg. After adaptation to the particular levels of straw meal, feces and ileal digesta were collected during successive 24 h periods. N digestibility values were determined by the chromium oxide ratio method. The retention of 15N-labelled non-specific N was 0.46 of the dose given. The validity of using urine values as a measure of 15N abundance in endogenous N was demonstrated by the similarity of 15N abundance in urine immediately before slaughter at the end of the experiment and in the digestive secretory organs thereafter. The average amount of endogenous N passing the terminal ileum was 3.4 g/day or 0.30-0.50 of total ileal N flow. This was not affected by dietary fiber level. The proportion of fecal N which was of endogenous origin was similar to that in ileal digesta, suggesting similar utilization of endogenous and residual dietary N by hindgut bacteria. Half the endogenous N entering the large intestine was reabsorbed there. Increasing dietary crude fiber from 40 to 132 g/kg increased fecal endogenous N excretion from 1.3 to 2.0 g/animal and day. (author)

  15. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    International Nuclear Information System (INIS)

    The mass spectrometric determination of minor abundant isotopes, 234U and 236U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n(234U)/n(238U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n(234U)/n(235U) and n(236U)/n(235U) ratios were determined using ion counting in combination with the decelerating device. The n(235U)/n(238U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n(234U)/n(235U) ratios and 5-25 percent for the n(236U)/n(235U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International Atomic Energy Agency (IAEA) from uranium milling and mining facilities (Australia

  16. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ovaskainen, R

    1999-11-01

    The mass spectrometric determination of minor abundant isotopes, {sup 234}U and {sup 236}U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n({sup 234}U)/n({sup 238}U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n({sup 234}U)/n({sup 235}U) and n({sup 236}U)/n({sup 235}U) ratios were determined using ion counting in combination with the decelerating device. The n({sup 235}U)/n({sup 238}U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n({sup 234}U)/n({sup 235}U) ratios and 5-25 percent for the n({sup 236}U)/n({sup 235}U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International

  17. Influence of niche differentiation on the abundance of methanogenic archaea and methane production potential in natural wetland ecosystems across China

    Directory of Open Access Journals (Sweden)

    D. Liu

    2010-10-01

    Full Text Available Methane (CH4 emissions from natural wetland ecosystems exhibit large spatial variability. To understand the underlying factors that induce differences in CH4 emissions from natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical profile soils sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau. The top soil layer had the highest population of methanogens (1.07−8.29×109 cells g−1 soil in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2=0.718, P<0.001, n=13 and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2=0.758, P<0.001, n=13 in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2=0.011, P>0.05, n=13, it is related to the dissolved organic carbon concentration (R2=0.305, P=0.05, n=13. This suggests that the methanogen population is not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 274 μg CH4 kg−1 soil d−1 in the Poyang wetland to 665 μg CH4 kg−1 soil d−1 in the Carex lasiocarpa

  18. Determination of organic milk authenticity using carbon and nitrogen natural isotopes.

    Science.gov (United States)

    Chung, Ill-Min; Park, Inmyoung; Yoon, Jae-Yeon; Yang, Ye-Seul; Kim, Seung-Hyun

    2014-10-01

    Natural stable isotopes of carbon and nitrogen ((12)C, (13)C, (14)N, (15)N) have abundances unique to each living creature. Therefore, measurement of the stable isotope ratio of carbon and nitrogen (δ(13)C=(13)C/(12)C, δ(15)N=(15)N/(14)N) in milk provides a reliable method to determine organic milk (OM) authenticity. In the present study, the mean δ(13)C value of OM was higher than that of conventional milk (CM), whereas the mean δ(15)N value of OM was lower than that of CM; nonetheless both δ(13)C and δ(15)N values were statistically different for the OM and CM (Pauthenticity using stable isotopes of carbon and nitrogen.

  19. Abundance of non-native crabs in intertidal habitats of New England with natural and artificial structure.

    Science.gov (United States)

    Lovely, Christina M; O'Connor, Nancy J; Judge, Michael L

    2015-01-01

    Marine habitats containing complex physical structure (e.g., crevices) can provide shelter from predation for benthic invertebrates. To examine effects of natural and artificial structure on the abundance of intertidal juvenile crabs, 2 experiments were conducted in Kingston Bay, Massachusetts, USA, from July to September, 2012. In the first experiment, structure was manipulated in a two-factor design that was placed in the high intertidal for 3 one-week periods to test for both substrate type (sand vs. rock) and the presence or absence of artificial structure (mesh grow-out bags used in aquaculture, ∼0.5 m(2) with 62 mm(2) mesh openings). The Asian shore crab, Hemigrapsus sanguineus, and small individuals of the green crab, Carcinus maenas, were observed only in the treatments of rocks and mesh bag plus rocks. Most green crabs were small (bags placed on a muddy sand substrate in the low intertidal zone: mesh grow-out bags without shells, grow-out bags with oyster shells, and grow-out bags containing live oysters. Replicate bags were deployed weekly for 7 weeks in a randomized complete block design. All crabs collected in the bags were juvenile C. maenas (1-15 mm carapace width), and numbers of crabs differed 6-fold among treatments, with most crabs present in bags with live oysters (29.5 ± 10.6 m(-2) [mean ± S.D.]) and fewest in bags without shells (4.9 ± 3.7 m(-2)). Both C. maenas and H. sanguineus occurred in habitats with natural structure (cobble rocks). The attraction of juvenile C. maenas to artificial structure consisting of plastic mesh bags containing both oyster shells and living oysters could potentially impact oyster aquaculture operations. PMID:26401456

  20. Constraining the S factor of 15N(p,g)16O at Astrophysical Energies

    CERN Document Server

    LeBlanc, P J; Goerres, J; Junker, M; Azuma, R; Beard, M; Bemmerer, D; Best, A; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Couder, M; deBoer, R; Elekes, Z; Falahat, S; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Kaeppeler, F; Kontos, A; Kuntz, R; Leiste, H; Lemut, A; Li, Q; Limata, B; Marta, M; Mazzocchi, C; Menegazzo, R; O'Brien, S; Palumbo, A; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Stech, E; Straniero, O; Strieder, F; Tan, W; Terrasi, F; Trautvetter, H P; Uberseder, E; Wiescher, M

    2010-01-01

    The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV and 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.

  1. Growth, development, and fertilizer-15N recovery by the coffee plant

    International Nuclear Information System (INIS)

    The relationship between growth and fertilizer nitrogen recovery by perennial crops such as coffee is poorly understood and improved understanding of such relations is important for the establishment of rational crop management practices. In order to characterize the growth of a typical coffee crop in Brazil and quantify the recovery of 15N labeled ammonium sulfate, and improve information for fertilizer management practices this study presents results for two consecutive cropping years, fertilized with 280 and 350 kg ha-1 of N, respectively, applied in four splittings, using five replicates. Shoot dry matter accumulation was evaluated every 60 days, separating plants into branches, leaves and fruits. Labeled sub-plots were used to evaluate N-total and 15N abundance by mass spectrometry. During the first year the aerial part reached a recovery of 71% of the fertilizer N applied up to February, but this value was reduced to 34% at harvest and 19% at the beginning of the next flowering period due to leaf fall and fruit export. For the second year the aerial part absorbed 36% of the fertilizer N up to March, 47% up to harvest and 19% up to the beginning of the next flowering period. The splitting into four applications of the used fertilizer rates was adequate for the requirements of the crop at these growth stages of the coffee crop. (author)

  2. Growth, development, and fertilizer-{sup 15}N recovery by the coffee plant

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil). Dept. de Engenharia Florestal; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: klaus@cena.usp.br; Dourado-Neto, Durval; Favarin, Jose Laercio [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Producao Vegetal; Trivelim, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Costa, Flavio Murilo Pereira da [Ministerio do Desenvolvimento Agrario, Brasilia, DF (Brazil). Secretaria de Assuntos Fundiarios - SEAF

    2007-09-15

    The relationship between growth and fertilizer nitrogen recovery by perennial crops such as coffee is poorly understood and improved understanding of such relations is important for the establishment of rational crop management practices. In order to characterize the growth of a typical coffee crop in Brazil and quantify the recovery of {sup 15}N labeled ammonium sulfate, and improve information for fertilizer management practices this study presents results for two consecutive cropping years, fertilized with 280 and 350 kg ha{sup -1} of N, respectively, applied in four splittings, using five replicates. Shoot dry matter accumulation was evaluated every 60 days, separating plants into branches, leaves and fruits. Labeled sub-plots were used to evaluate N-total and {sup 15}N abundance by mass spectrometry. During the first year the aerial part reached a recovery of 71% of the fertilizer N applied up to February, but this value was reduced to 34% at harvest and 19% at the beginning of the next flowering period due to leaf fall and fruit export. For the second year the aerial part absorbed 36% of the fertilizer N up to March, 47% up to harvest and 19% up to the beginning of the next flowering period. The splitting into four applications of the used fertilizer rates was adequate for the requirements of the crop at these growth stages of the coffee crop. (author)

  3. Bird Species Abundance and Their Correlationship with Microclimate and Habitat Variables at Natural Wetland Reserve, Peninsular Malaysia

    OpenAIRE

    Muhammad Nawaz Rajpar; Mohamed Zakaria

    2011-01-01

    Birds are the most conspicuous and significant component of freshwater wetland ecosystem. Presence or absence of birds may indicate the ecological conditions of the wetland area. The objectives of this study were to determine bird species abundance and their relationship with microclimate and habitat variables. Distance sampling point count method was applied for determining species abundance and multiple regressions was used for finding relationship between bird species abundance, microclima...

  4. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    Directory of Open Access Journals (Sweden)

    Peter evan der Sleen

    2015-04-01

    Full Text Available Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated 15N abundance15N in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of 15N-depleted nitrate from the soil following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests we measured long-term δ15N values in trees from Bolivia, Cameroon and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pit to the bark across the stem of 28 large trees (the ‘radial’ method. In the second, δ15N values were compared across a fixed diameter (the ‘fixed-diameter’ method. We sampled 400 trees that differed widely in size, but measured δ15N in the stem around the same diameter (20 cm dbh in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ15N values over time with an explicit control for the potential size-effects on δ15N values. We found a significant increase of tree-ring δ15N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ15N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ15N values within trees reflect tree ontogeny (size development. However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ15N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ15N values can be properly

  5. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  6. Fate of orally administered {sup 15}N-labeled polyamines in rats bearing solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masaki; Samejima, Keijiro; Goda, Hitomi; Niitsu, Masaru [Josai Univ., Sakado, Saitama (Japan). Faculty of Pharmaceutical Sciences; Xu Yongji [Qingdao Univ. of Science and Technology (China). Inst. of Chemical and Molecular Technology; Takahashi, Masakazu [Sasaki Inst., Tokyo (Japan); Hashimoto, Yoshiyuki [Kyoritsu Coll. of Pharmacy, Tokyo (Japan)

    2003-03-01

    We studied absorption, distribution, metabolism, and excretion of polyamines (putrescine, spermidine, and spermine) in the gastrointestinal tract using {sup 15}N-labeled polyamines as tracers and ionspray ionization mass spectrometry (IS-MS). The relatively simple protocol using rats bearing solid tumors provided useful information. Three {sup 15}N-labeled polyamines that were simultaneously administered were absorbed equally from gastrointestinal tract, and distributed within tissues at various concentrations. The uptake of {sup 15}N-spermidine seemed preferential to that of {sup 15}N-spermine since the concentrations of {sup 15}N-spermidine in the liver and tumors were higher, whereas those of {sup 15}N-spermine were higher in the kidney, probably due to the excretion of excess extracellular spermine. Most of the absorbed {sup 15}N-putrescine seemed to be lost, suggesting blood and tissue diamine oxidase degradation. Concentrations of {sup 15}N-spermidine and {sup 15}N-spermine in the tumor were low. We also describe the findings from two rats that were administered with {sup 15}N-spermine. The tissue concentrations of {sup 15}N-spermine were unusually high, and significant levels of {sup 15}N-spermidine were derived from {sup 15}N-spermine in these animals. (author)

  7. (H)N(COCA)NH and HN(COCA)NH experiments for 1H-15N backbone assignments in 13C/15N-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Clay; Palmer, Arthur G. III [Columbia University, Department of Biochemistry and Molecular Biophysics (United States); Cavanagh, John [New York State Department of Health, NMR Structural Biology Facility, Wadsworth Center (United States)

    1997-01-15

    Triple resonance HN(COCA)NH pulse sequences for correlating 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins that utilize overlapping coherence transfer periods provide increased sensitivity relative to pulse sequences that utilize sequential coherence transfer periods. Although the overlapping sequence elements reduce the overall duration of the pulse sequences, the principal benefit derives from a reduction in the number of 180 deg. pulses. Two versions of the technique are presented: a 3D (H)N(COCA)NH experiment that correlates 15N(i),1H(i-1), and 15N(i-1) spins, and a 3D HN(COCA)NH experiment that correlates 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins by simultaneously encoding the 1H(i) and 15N(i) chemical shifts during the t1 evolution period. The methods are demonstrated on a 13C/15N-enriched sample of the protein ubiquitin and are easily adapted for application to 2H/13C/15N-enriched proteins.

  8. Metabolic studies in colostomized laying hens using 15N-labelled wheat. 4

    International Nuclear Information System (INIS)

    3 colostomized laying hybrids received over 4 days a dosage of 672 mg 15N excess (15N'), 20.3 mg lysine 15N', 23.0 mg histidine 15N' and 66.7 mg arginine 15N' with a ration customary in production. After feeding the same unlabelled ration for another 4 days the hens were killed and the N content of the blood as well as of its fractions (cells, plasma, free amino acids of the plasma) was determined. The 15N' was determined in the total blood, the corpuscles, the plasma, the nonprotein-N (NPN) fraction as well as in the amino acids lysine, histidine and arginine. The average amount of the blood cell N in the total blood N was 58.5% and that of the plasma 40.3%; the corresponding 15N' values amounted to 66.1% and 33.9%, respectively. The sum of the 15N' of the basic amino acids of the blood cells, on an average, amounted to 39.7% of the total cell 15N'; the corresponding average value for the total 15N' in lysine, histidine and arginine of the blood plasma 15N' was 23.6.% and the quota of the three free amino acids of the total NP15N' of the plasma was 6.2%. (author)

  9. Natural abundance (δ¹⁵N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient.

    Science.gov (United States)

    Soper, Fiona M; Richards, Anna E; Siddique, Ilyas; Aidar, Marcos P M; Cook, Garry D; Hutley, Lindsay B; Robinson, Nicole; Schmidt, Susanne

    2015-05-01

    Water and nitrogen (N) interact to influence soil N cycling and plant N acquisition. We studied indices of soil N availability and acquisition by woody plant taxa with distinct nutritional specialisations along a north Australian rainfall gradient from monsoonal savanna (1,600-1,300 mm annual rainfall) to semi-arid woodland (600-250 mm). Aridity resulted in increased 'openness' of N cycling, indicated by increasing δ(15)N(soil) and nitrate:ammonium ratios, as plant communities transitioned from N to water limitation. In this context, we tested the hypothesis that δ(15)N(root) xylem sap provides a more direct measure of plant N acquisition than δ(15)N(foliage). We found highly variable offsets between δ(15)N(foliage) and δ(15)N(root) xylem sap, both between taxa at a single site (1.3-3.4 ‰) and within taxa across sites (0.8-3.4 ‰). As a result, δ(15)N(foliage) overlapped between N-fixing Acacia and non-fixing Eucalyptus/Corymbia and could not be used to reliably identify biological N fixation (BNF). However, Acacia δ(15)N(root) xylem sap indicated a decline in BNF with aridity corroborated by absence of root nodules and increasing xylem sap nitrate concentrations and consistent with shifting resource limitation. Acacia dominance at arid sites may be attributed to flexibility in N acquisition rather than BNF capacity. δ(15)N(root) xylem sap showed no evidence of shifting N acquisition in non-mycorrhizal Hakea/Grevillea and indicated only minor shifts in Eucalyptus/Corymbia consistent with enrichment of δ(15)N(soil) and/or decreasing mycorrhizal colonisation with aridity. We propose that δ(15)N(root) xylem sap is a more direct indicator of N source than δ(15)N(foliage), with calibration required before it could be applied to quantify BNF.

  10. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  11. Distribution of complemented 15N - (NH4)2SO4 in an ethanolic fermentation process on insolube-N and solube-N fractions

    International Nuclear Information System (INIS)

    Looking for stillage labeling with 15N for further utilization in studies of mineral fertilization of sugar-cane, 15N-(NH4)2SO4 (43.5ppm, 45.401 atoms% 15N) was supplemented in a single fermentative cycle, in a laboratory scale. A nitrogen fractionation was made between insoluble-N and soluble-N in several componentes of the fermentative process (yeast, sugar-cane juice, centrifugate wine, centrifugate yeast and stillage) with the objective of studying the added nitrogen distribution and its isotopic abundance composition. The nitrogen fractionation, and the isotopic analysis by mass spectrometry of 15N, in the fractions of the several components of the fermentative process, showed 81.1% of N recovery, being 3.2% in stillage and mainly in a soluble-N fraction (71.4%), and the rest found in centrifugate yeast (77.9%), distributed mainly in a insoluble-N fraction (92.0%). Desuniform isotopic label was found in stillage, between soluble-N (1.333 atoms%15N) and insoluble-N fractions (0.744 atoms% 15N). Means to improve the isotopic uniformity in these fractions is discussed. (autor)

  12. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    Science.gov (United States)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  13. Determination of 15N nitrates in water samples using mass spectrometry

    International Nuclear Information System (INIS)

    The nitrogen element (Z = 7) has two stable isotopes, whose relative quantities are 99.64% for 14N and 0.36% for 15N. Nitrogen is part of many processes and reactions that are important to life and that affect the quality of the water. Within the nitrogen cycle there are kinetic and thermodynamic fractionation processes, which are potentially important for tracing its sources and demands. Water contamination due to nitrates is a serious problem that is affecting large parts of the biosphere. Surface water contamination can be remedied by prevention and control measures, but the problem becomes acute when the contamination penetrates to groundwater water. Contaminated groundwater can remain in the aquifers for centuries, even milleniums, and decontamination is very difficult, if not impossible. Isotopic techniques can help to evaluate how vulnerable the groundwater is to contamination from the surface when its displacement speed and extra load area are determined. Then the sources of surface contamination (natural, industrial, agricultural, domestic) can be identified. Isotopic techniques can also describe an incipient contamination, and they can provide an early alert when chemical or biological indicators do not reveal any signs for concern. The isotopic fractionation of several nitrogen compounds provide the basis for using 15N as a hydrological isotope tool. There are three main sources of nitrogen contamination in water, these are: organic nitrogen in the soil, nitrogenized fertilizers, domestic, industrial and animal wastes. The following technical procedure describes the method for determining the isotopic ration 15N/14N in nitrates in water. The nitrate is separated from the water using ion exchange columns through a resin, which is eluded with HCI and with the addition of silver oxide becomes silver nitrate. This solution is freeze-dried and submitted to combustion at 850 in a sealed quartz tube, using copper/copper oxide for the nitrogen reduction and

  14. The effect of organic matter and nitrification inhibitor on 15 N H4 and 15 N O3 absorption by the maize

    International Nuclear Information System (INIS)

    The effect of the forms 15 N H4 and 15 N O3 in presence or absence of organic matter and of the nitrification inhibitor AM (2-amino-4-chloro-6-methyl-pyrimidine) in dry matter weight and nitrogen content of the plant derived from soil and form fertilizer is studied. The experiment was carried out in greenhouse and the test plant was the hybrid Maize Centralmex . The fertilizers (15 N H4)2 S O4 and Na15 N O3, were added in two levels: 40 and 120 Kg N/ha, with 1,02% of N and 1,4% of 15 N in excess, respectively. Three soils of different physical and chemical characteristics were used; Regosol intergrade, Latosol Roxo and Podzolized de Lins e Marilia var. Marilia. (M.A.C.)

  15. Utilization of 15N-labelled urea in laying hens. 4

    International Nuclear Information System (INIS)

    In order to study the utilization of urea in poultry, 3 colostomized laying hybrids were orally supplied with a traditional ration supplemented with 1% 15N'-labelled urea with a 15N excess (15N') of 96.06 atom-% over a period of 6 days. After another 2 days on which the hens received the same ration with unlabelled urea, they were killed. The atom-% 15N' of the blood on an average of the 3 hens was 0.64, of the plasma 1.40 and of the corpuscles 0.47. The TCA-soluble fraction of the blood had an average 15N' of 1.14 atom-%; the 15N amount was 9.7% of the total amount of 15N in the blood. The amount of 15N' in the urea in the blood was 6.8 atom-%. This shows that the absorbed urea is decomposed very slowly. The quota of 15N' in the basic amino acids from the total 15N' of the blood plasma was only 0.3% and that of the corpuscles 2.2%. The average 15N' of the mature follicles was 2.39 atom-% whereas the smallest and the remaining ovary contain 1.12 atom-%. The labelling level of lysine in mature egg cells was, in contrast to this, only 0.08 atom-% 15N' and in infantile follicles 0.04 atom-% 15N'. 1% of the 15N' quota was in the follicles and the remaining ovary. Of the basic amino acids, histidine is most strongly labelled. The lower incorporation of the 15N' from urea into the basic amino acids shows that the nitrogen of this compound can be used for the synthesis of the essential amino acids to a low degree only. (author)

  16. δ15N variation in Ulva lactuca as a proxy for anthropogenic nitrogen inputs in coastal areas of Gulf of Gaeta (Mediterranean Sea)

    International Nuclear Information System (INIS)

    Highlights: • Ulva lactuca and Cystoseira amentacea δ15N values were assessed in the Gulf of Gaeta. • U. lactuca was more responsive than C. amentacea to environmental pollution. • Comparison of fragments from the same frond overcomes natural isotopic variability. • Spatial analysis indicated areas in the Gulf differently affected by N inputs. - Abstract: We tested the capacity of Ulva lactuca to mark N sources across large marine areas by measuring variation in its δ15N at several sites in the Gulf of Gaeta. Comparisons were made with the macroalga Cystoseira amentacea. Variation of δ15N values was assessed also in the coastal waters off the Circeo Natural Park, where U. lactuca and C. amentacea were harvested, as these waters are barely influenced by human activities and were used as reference site. A small fragment from each frond was preserved before deployment in order to characterize the initial isotopic values. After 48 h of submersion, U. lactuca was more responsive than C. amentacea to environmental variation and δ15N enrichment in the Gulf of Gaeta was observed. The spatial distribution of δ15N enrichment indicated that different macro-areas in the Gulf were affected by N inputs from different origins. Comparison of the δ15N values of fragments taken from the same transplanted frond avoided bias arising from natural isotopic variability

  17. Mimicking floodplain reconnection and disconnection using 15N mesocosm incubations

    Directory of Open Access Journals (Sweden)

    W. Wanek

    2012-04-01

    Full Text Available Floodplain restoration changes the nitrate delivery pattern and dissolved organic matter pool in backwaters but other effects are not yet well known. We performed two mesocosm experiments to quantify the nitrate metabolism in two types of floodplains. Rates of denitrification, dissimilatory nitrate reduction to ammonium (DNRA and anammox were measured using 15N tracer additions in mesocosms containing undisturbed floodplain sediments originating from (1 restored and (2 disconnected sites in the Alluvial Zone National Park on the Danube River downstream of Vienna, Austria. DNRA rates were an order of magnitude lower than denitrification and neither rate was affected by changes in nitrate delivery pattern or organic matter quality. Anammox was not detected at any of the sites. Denitrification was out-competed by assimilation which was estimated to use up to 70% of the available nitrate. Overall, denitrification was higher in the restored sites, with mean rates of 5.7±2.8 mmol N m−2 h−1 compared to the disconnected site (0.6±0.5 mmol N m−1 h−1. In addition, ratios of N2O : N2 were lower in the restored site indicating a more complete denitrification. Nitrate addition did not have any effect on denitrification, nor on the N2O : N2 ratio. However, DOM quality significantly changed the N2O : N2 ratio in both sites. Addition of riverine derived organic matter lowered the N2O : N2 ratio in the disconnected site, whereas addition of floodplain derived organic matter increased the N2O : N2 ratio in the restored site. These results demonstrate that increasing floodplains hydrological connection to the main river channel increases nitrogen retention and decreases nitrous oxide emissions.

  18. Measurement of (15)N enrichment of glutamine and urea cycle amino acids derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using liquid chromatography-tandem quadrupole mass spectrometry.

    Science.gov (United States)

    Nakamura, Hidehiro; Karakawa, Sachise; Watanabe, Akiko; Kawamata, Yasuko; Kuwahara, Tomomi; Shimbo, Kazutaka; Sakai, Ryosei

    2015-05-01

    6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) is an amino acid-specific derivatizing reagent that has been used for sensitive amino acid quantification by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). In this study, we aimed to evaluate the ability of this method to measure the isotopic enrichment of amino acids and to determine the positional (15)N enrichment of urea cycle amino acids (i.e., arginine, ornithine, and citrulline) and glutamine. The distribution of the M and M+1 isotopomers of each natural AQC-amino acid was nearly identical to the theoretical distribution. The standard deviation of the (M+1)/M ratio for each amino acid in repeated measurements was approximately 0.1%, and the ratios were stable regardless of the injected amounts. Linearity in the measurements of (15)N enrichment was confirmed by measuring a series of (15)N-labeled arginine standards. The positional (15)N enrichment of urea cycle amino acids and glutamine was estimated from the isotopic distribution of unique fragment ions generated at different collision energies. This method was able to identify their positional (15)N enrichment in the plasma of rats fed (15)N-labeled glutamine. These results suggest the utility of LC-MS/MS detection of AQC-amino acids for the measurement of isotopic enrichment in (15)N-labeled amino acids and indicate that this method is useful for the study of nitrogen metabolism in living organisms.

  19. 15N isotope fractionation in an aquatic food chain: Bellamya aeruginosa (Reeve) as an algal control agent.

    Science.gov (United States)

    Han, Shiqun; Yan, Shaohua; Chen, Kaining; Zhang, Zhenhua; Zed, Rengel; Zhang, Jianqiu; Song, Wei; Liu, Haiqin

    2010-01-01

    15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Kütz. demonstrated the greatest 15N accumulation capacity, with the natural variation in isotopic ratio (delta 15N) and the isotope fractionation factor (epsilon, % per hundred) being the highest among the species investigated. The transformation and utilization of 15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication. PMID:20397413

  20. Bird Species Abundance and Their Correlationship with Microclimate and Habitat Variables at Natural Wetland Reserve, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz Rajpar

    2011-01-01

    Full Text Available Birds are the most conspicuous and significant component of freshwater wetland ecosystem. Presence or absence of birds may indicate the ecological conditions of the wetland area. The objectives of this study were to determine bird species abundance and their relationship with microclimate and habitat variables. Distance sampling point count method was applied for determining species abundance and multiple regressions was used for finding relationship between bird species abundance, microclimate and habitat variables. Bird species were monitored during November, 2007 to January, 2009. A total of 8728 individual birds comprising 89 species and 38 families were detected. Marsh Swamp was swarmed by 84 species (69.8% followed open water body by 55 species (17.7% and lotus swamp by 57 species (12.6%. Purple swamphen Porphyrio porphyrio (9.1% of all detections was the most abundant bird species of marsh swamp, lesser whistling duck—Dendrocygna javanica (2.3% was dominant species of open water body and pink-necked green pigeon—Treron vernans (1.7% was most common species of lotus swamp. Results revealed that the habitat characteristics such as vegetation composition (i.e. emergent and submerged vegetations, grasses, shrubs, and trees, vegetation structures (tree diameter and height and microclimate variables (temperature, relative humidity and light intensity were the key factors that influenced the distribution, diversity and density of the wetland bird species. This study also revealed that the wetland bird species have adapted a fairly unique set of microhabitat and microclimate conditions.

  1. Studies with 15N-labelled lysine in colostomized laying hens. 5

    International Nuclear Information System (INIS)

    3 colostomized laying hens received, together with a commercial ration of 120 g, 0.2 % 15N-labelled L-lysine with an atom-% 15N excess (15N') of 48 %; subsequently the same ration was fed over a period od 4 days with 0.2 % unlabelled L-lysine. After the end of the experiment the hens were slaughtered. The atom-% 15N' was determined in total, in the lysine, histidine and arginine N of blood cells, plasma, NPN fraction of the blood, stomach, small intestine, cecum and rectum. 15N' in the blood cells was 0.11 atom-% in the blood plasma 0.17 atom-%, in the NPN fraction of the blood 0.09 atom-%, in the tissues of the gastrointestinal tract 0.11 atom-% and in its contents 0.12 atom-%. On the average the blood contained per hen 77.9 % lysine-15N', 16.4 % arginine-15N' and 5.7 % histidine-15N' of the basic amino acid-15N'. For the gastrointestinal tract 78.7 % lysine-15N', 19.0 % arginine-15N' and 2.3 % histidine-15N' of the 15N' of the basic amino acids were ascertained. In comparison to histidine the α-amino-N of lysine is incorporated to a considerably higher degree into arginine. For lysine and arginine the atom-% 15N' in the contents of the gastrointestinal tract is 4 days after the end of the supplementation of labelled lysine 8 to 10 times higher than in the feces of the last day of the experiment. This indicates a considerable secretion of the 2 amino acids in the gastrointestinal tract and their reabsorption to a large extent. (author)

  2. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying {sup 13}C- and {sup 15}N-labeled substrates simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Lars M. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); RWTH Aachen University, Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, Aachen (Germany); Desphande, Rahul R. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Michigan State University, Department of Plant Biology, East Lansing, MI (United States); Schmid, Andreas [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Hayen, Heiko [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V, Dortmund (Germany); University of Wuppertal, Department of Food Chemistry, Wuppertal (Germany)

    2012-06-15

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly {sup 13}C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., {sup 13}C and {sup 15}N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with {sup 13}C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both {sup 13}C-labeled glucose and {sup 15}N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  3. Stabilization dynamics of root versus needle-derived 13C and 15N during 10 years in a temperate forest soil.

    Science.gov (United States)

    Bird, J. A.; Hatton, P. J.; Castanha, C.; Torn, M. S.

    2012-12-01

    Belowground plant carbon (C) allocation as fine roots can result in greater retention of C in soils compared with aboveground litter in temperate forest ecosystems. However, much of our understanding of the fate of fine root C and nitrogen (N) in soils comes from short-term studies, often lasting only a few months to a few years. In 2011, we concluded a 10-year field study that compared the fate of dual-labeled (13C/15N) Ponderosa pine fine roots (forest soil of the Sierra Nevada, CA, USA. The 13C- and 15N-labeled fine roots or needles were added to mesocosms at two soil depths (top of O or A horizon) to compare C and N stabilization in mineral versus organic soil horizons. We will present data on retention of litter C and N in soil after 0.5, 1.5, 5 and 10 years in situ. For soil samples recovered after 5 years, litter-derived C and N recovered in the mineral soil was partitioned into several operationally-defined physical and chemical soil organic matter (SOM) fractions, which were also characterized by natural abundance 14C. In addition, we compared two fractionation methods (i.e., with and without occluded light fraction isolation) on the partitioning of litter-derived C and N in mineral soil. After 5 years in situ the retention of fine root C in soil (59.9±3.8%) was significantly greater than that of added needle C (38.4±2.0%); however the depth of litter placement in the soil did not affect total litter C or N recovery. Our results provide a direct, decade-scale measure of stabilization of above- and belowground plant inputs to soil, including a portrait of the dominant stabilization mechanisms.

  4. Biomonitoring of traffic-related nitrogen oxides in the Maurienne valley (Savoie, France), using purple moor grass growth parameters and leaf 15N/14N ratio

    International Nuclear Information System (INIS)

    Effects of traffic-related nitrogenous emissions on purple moor grass (Molinia caerulea (L.) Moench) transplants, used here as a new biomonitoring species, were assessed along 500 m long transects orthogonal to roads located in two open areas in the Maurienne valley (French Alps). Leaves were sampled during summer 2004 and 2005 for total N-content and 15N-abundance determination while nitrogen oxides (NO and NO2) concentrations were determined using passive diffusion samplers. A significant and negative correlation was observed between plant total N-content, and 15N-abundance and the logarithm of the distance to the road axis. The strongest decreases in plant N parameters were observed between 15 and 100 m from road axis. They were equivalent to background levels at a distance of about 800 m from the roads. In addition, motor vehicle pollution significantly affected vegetation at road edge, as was established from the relationship between leaf 15N-abundance, total N-content and road traffic densities. - Effects of motor vehicle emissions on the δ15N, N-contents and growth of purple moor grass as a function of the distance to roads.

  5. Spatiotemporal changes in flying insect abundance and their functional diversity as a function of distance to natural habitats in a mass flowering crop

    OpenAIRE

    Geslin, Benoît; Oddie, Melissa; Folschweiller, Morgane; Legras, Gaëlle; Seymour, Colleen L.; van Veen, F.J.Frank; Thébault, Elisa

    2016-01-01

    International audience To meet the dietary requirements of a burgeoning human population, the demand for animal-dependent crops continues to grow. To meet the demand, intensive farming practices are used. The gains in food production associated with agricultural intensification may be offset by its detrimental effects on pollinator populations through natural habitat fragmentation and pesticide use. Abundance and species richness of pollinators have been found to decrease with increasing d...

  6. 15N tracer kinetic studies on the validity of various 15N tracer substances for determining whole-body protein parameters in very small preterm infants

    International Nuclear Information System (INIS)

    Reliable 15N tracer substances for tracer kinetic determination of whole-body protein parameters in very small preterm infants are still a matter of intensive research, especially after some doubts have been raised about the validity of [15N]glycine, a commonly used 15N tracer. Protein turnover, synthesis, breakdown, and further protein metabolism data were determined by a paired comparison in four preterm infants. Their post-conceptual age was 32.2 +/- 0.8 weeks, and their body weight was 1670 +/- 181 g. Tracer substances applied in this study were a [15N]amino acid mixture (Ia) and [15N]glycine (Ib). In a second group of three infants with a post conceptual age of 15N-labeled 32.0 +/- 1.0 weeks and a body weight of 1,907 +/- 137 g, yeast protein hydrolysate (II) was used as a tracer substance. A three-pool model was employed for the analysis of the data. This model takes into account renal and fecal 15N losses after a single 15N pulse. Protein turnovers were as follows: 11.9 +/- 3.1 g kg-1 d-1 (Ia), 16.2 +/- 2.5 g kg-1 d-1 (Ib), and 10.8 +/- 3.0 g kg-1 d-1 (II). We were able to demonstrate an overestimation of the protein turnover when Ib was used. There was an expected correspondence in the results obtained from Ia and II. The 15N-labeled yeast protein hydrolysate is a relatively cheap tracer that allows reliable determination of whole-body protein parameters in very small preterm infants

  7. Patterns of δ13 C and δ15 N in wolverine Gulo gulo tissues from the Brooks Range, Alaska

    Institute of Scientific and Technical Information of China (English)

    Fredrik DALERUM; Anders ANGERBJ(O)RN; Kyran KUNKEL; Brad S.SHULTS

    2009-01-01

    Knowledge of carnivore diets is essential to understand hew carnivore populations respond demographically to variations in prey abundance. Analysis of stable isotopes is a useful complement to traditional methods of analyzing carnivore diets. We used data on δ13 C and δ15 N in wolverine tissues to investigate patterns of seasonal and annual diet variation in a wolverine Gulo gulo population in the western Brooks Range, Alaska, USA. The stable isotope ratios in wolverine tissues generally reflected that of terrestrial carnivores, corroborating previous diet studies on wolverines. We also found variation in δ13 C and δ15 N both between muscle samples collected over several years and between tissues with different assimilation rates, even after correcting for isotopic fractionation. This suggests both annual and seasonal diet variation. Our results indicate that data on δ13 C and δ15 N holds promise for qualitative assessments of wolverine diet changes over time. Such temporal variation may be important indicators of ecological responses to environmental perturbations, and we suggest that more refined studies of stable isotopes may be an important tool when studying temporal change in diets of wolverines and similar carnivores.

  8. Regulation of [15N]urea synthesis from [5-15N]glutamine. Role of pH, hormones, and pyruvate.

    Science.gov (United States)

    Nissim, I; Yudkoff, M; Brosnan, J T

    1996-12-01

    We have utilized both [5-15N]glutamine and [3-13C] pyruvate as metabolic tracers in order to: (i) examine the effect of pH, glucagon (GLU), or insulin on the precursor-product relationship between 15NH3, [15N]citrulline, and, thereby, [15N]urea synthesis and (ii) elucidate the mechanism(s) by which pyruvate stimulates [15N] urea synthesis. Hepatocytes isolated from rat were incubated at pH 6.8, 7.4, or 7.6 with 1 mM [5-15N]glutamine and 0.1 mM 14NH4Cl in the presence or the absence of [3-13C] pyruvate (2 mM). A separate series of experiments was performed at pH 7.4 in the presence of insulin or GLU. 15NH3 enrichment exceeded or was equal to that of [15N]citrulline under all conditions except for pH 7.6, when the 15N enrichment in citrulline exceeded that in ammonia. The formation of [15N]citrulline (atom % excess) was increased with higher pH. Flux through phosphate-dependent glutaminase (PDG) and [15N]urea synthesis were stimulated (p < 0.05) at pH 7.6 or with GLU and decreased (p < 0.05) at pH 6.8. Insulin had no significant effect on flux through PDG or on [15N]urea synthesis. Decreased [15N]urea production at pH 6.8 was associated with depleted aspartate and glutamate levels. Pyruvate attenuated this decrease in the aspartate and glutamate pools and stimulated [15N]urea synthesis. Production of Asp from pyruvate was increased with increasing medium pH. Approximately 80% of Asp was derived from [3-13C]pyruvate regardless of incubation pH or addition of hormone. Furthermore, approximately 20, 40, and 50% of the mitochondrial N-acetylglutamate (NAG) pool was derived from [3-13C]pyruvate at pH 6.8, 7.4, and 7.6, respectively. Both the concentration and formation of [13C]NAG from [3-13C]pyruvate were increased (p < 0.05) with glucagon and decreased (p < 0.05) with insulin or at pH 6.8. The data suggest a correlation between changes in [15N]urea synthesis and alterations in the level and synthesis of [13C]NAG from pyruvate. The current observations suggest that the

  9. Soil organic matter stability in agricultural land: New insights using δ15N, δ13C and C:N ratio

    Science.gov (United States)

    Mao, Yanling; Heiling, Maria; De Clercq, Tim; Resch, Christian; Aigner, Martina; Mayr, Leo; Vanlauwe, Bernard; Thuita, Moses; Steier, Peter; Leifeld, Jens; Merckx, Roel; Spiegel, Heide; Cepuder, Peter; Nguyen, Minh-Long; Zaman, Mohammad; Dercon, Gerd

    2014-05-01

    Soil organic matter (SOM) contains three times more carbon than in the atmosphere or terrestrial vegetation. This major pool of organic carbon is sensitive to climate change, but the mechanisms for carbon stabilization in soils are still not well understood and the ultimate potential for carbon stabilization is unknown. For predicting SOM dynamics, it is necessary to gain information on the turnover rates or stability of different soil organic carbon pools. The common method to determine stability and age of SOM is the 14C radio carbon technique, which is very expensive and therefore limited in use. Conen et al. (2008) developed a model to estimate the SOM stability based on the isotopic discrimination of 15N natural abundance by soil micro-organisms, and the decreasing C:N ratio during organic matter decomposition. This model has been developed for permanent grasslands in the Swiss Alps under steady-state conditions. The objective of our study was to validate whether this model could be used or adapted, in combination with 13C isotope signatures of SOM, to predict the relative age and stability of SOM fractions in more disturbed agricultural ecosystems. The present study was carried out on soils collected from six long-term experimental trials (from 12 to 50 years) under different agricultural management practices (e.g. no tillage vs conventional tillage, and mulch, fertilizer, green or animal manure application), located in Austria, Belgium, Kenya and China. Top and subsoil were sampled until 80-100 cm depth. Particulate organic matter (POM) fraction was obtained by wet sieving (> 63μm) after sonification and density separation (model and preliminary validated by 14C dating. At all sites, the POM has a higher C:N ratio and a lower δ15N signature compared to the mOM fraction. The POM in top soil layers (model, developed for grasslands, can be used to determine the stability of SOM in agricultural ecosystems. The C:N ratio and δ15N signature of the POM and m

  10. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops.

    Science.gov (United States)

    Shackelford, Gorm; Steward, Peter R; Benton, Tim G; Kunin, William E; Potts, Simon G; Biesmeijer, Jacobus C; Sait, Steven M

    2013-11-01

    To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest-control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta-analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non-crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non-crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non-woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance-richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non-crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the 'specialist-generalist' or 'cultural difference' mechanism. If complexity has stronger

  11. A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants

    OpenAIRE

    Harrison Fell; Daniel T. Kaffine

    2014-01-01

    Since 2007, coal-fired electricity generation in the US has declined by a stunning 25%. At the same time, natural gas-fired generation and wind generation have dramatically increased due to technological advances and policy interventions. We examine the joint impact of natural gas prices and wind generation on coal generation, with a particular focus on the interaction between low natural gas prices and increased wind generation. Exploiting detailed daily unit-level data, we estimate the resp...

  12. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert;

    2006-01-01

    the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production......•  Shrub abundance is expected to increase with enhanced temperature and nutrient availability in the Arctic, and associated changes in abundance of ectomycorrhizal (EM) fungi could be a key link between plant responses and longer-term changes in soil organic matter storage. This study quantifies....... We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. •  Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site...

  13. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    OpenAIRE

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Rohe, Lena

    2013-01-01

    Acetylene inhibition of N2O reduction in laboratory soil and groundwaterdenitrification assays: evaluation by 15N tracer and 15N site preference ofN2ODaniel Weymann (1), Reinhard Well (2), Dominika Lewicka-Szczebak (2,3), and Rohe Lena (2)(1) Forschungszentrum Juelich, Agrosphere Institute (IBG-3), Juelich, Germany (), (2)Thünen-Institute of Climate-Smart Agriculture, Braunschweig, Germany, (3) University of Wroclaw, PolandThe measurement of denitrification in soils and...

  14. Investigation into endogenous N metabolism in 15N-labelled pigs. 1

    International Nuclear Information System (INIS)

    4 male castrated pigs (55-65 kg) either received a wheat-fish meal diet (1 and 2) or a wheat-horse bean diet (3 and 4) without straw meal supplement (1 and 3) or with a supplement of 20% dry matter (2 and 4). In order to investigate whether a 15N labelling of the pigs is also possible with a protein excess in the ration, the animals received 24.8 g (1 and 2) and 11.6 g crude protein/kg/sup 0.75/ live weight (3 and 4). During a 10-day 15N-labelling 385 mg 15N excess (15N') per kg/sup 0.75/ were applied with 15N labelling the following quotas of the applied 15N amount were incorporated: 1 = 10.2%, 2 = 7.2%, 3 = 18.7%, 4 = 14.4%. 15N excretion in both TCA fractions of feces showed a highly significant positive correlation to the increasing content of crude fibre in the 4 diets. The immediate 15N incorporation into the TCA-precipitable fraction of feces proves that 15N enters the large intestine endogenously and serves bacterial protein synthesis. 3 days after the last 15 application the pigs were killed. The values of atom-% 15N' were determined in the TCA-precipitable blood plasma and in the TCA-precipitable fraction of the liver. The other examined organs and tissues showed smaller differences between the test animals. The results show that the 15N labelling of tissues and organs of pigs is also possible at a high level of protein supply by means of an oral application of [15N] ammonia salts. (author)

  15. Direct contribution of nitrogen deposition to nitrous oxide emissions in a temperate beech and spruce forest – a 15N tracer study

    Directory of Open Access Journals (Sweden)

    E. Veldkamp

    2011-03-01

    Full Text Available The impact of atmospheric nitrogen (N deposition on nitrous oxide (N2O emissions in forest ecosystems is still unclear. Our study assessed the direct contribution of N deposition to N2O emissions in temperate forests exposed to chronic high N depositions using a 15N labelling technique. In a Norway spruce stand (Picea abies and in a beech stand (Fagus sylvatica at the Solling, Germany, we used a low concentrated 15N-labelled ammonium-nitrate solution to simulate N deposition. Nitrous oxide fluxes and 15N isotope abundances in N2O were measured using the closed chamber method combined with 15N isotope analyses. Emissions of N2O were higher in the beech stand (2.6 ± 0.6 kg N ha−1 yr−1 than in the spruce stand (0.3 ± 0.1 kg N ha−1 yr−1. We observed a direct effect of N input on 15N-N2O emissions, which lasted for less than three weeks and was mainly caused by denitrification. No further increase in 15N enrichment of N2O occurred during a one-year experiment, which was probably due to immobilisation of deposited N. The annual emission factor for N2O from deposited N was 0.1% for the spruce stand and 0.6% for the beech stand. Standard methods used in the literature applied to the same stands grossly overestimated emission factors with values of up to 25%. Only 6–13% of the total N2O emissions were derived from direct N depositions. Whether the remaining emissions resulted from accumulated anthropogenic N depositions or native soil N, could not be distinguished with the applied methods. The 15N tracer technique is a useful tool, which may improve estimates of the current contribution of N deposition to N2O emissions.

  16. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    Science.gov (United States)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    the biosynthetic pathway of threonine and the other amino acids. The δ 15N value of phenylalanine does not change significantly with trophic level, reflecting its conservative nature as an essential amino acid, and thus represents the isotopic composition of the nitrogen at the base of the food web. Δ 15N Glu-Phe values in particular are shown to reflect trophic level nitrogen sources within a food web. In relation to the reconstruction of ancient human diet the contribution of marine and terrestrial protein are strongly reflected in Δ 15N Glu-Phe values. Differences in nitrogen metabolism are also shown to have an influence upon individual amino acid δ 15N values with Δ 15N Glu-Phe values emphasising differences between the different physiological adaptations. The latter is demonstrated in tortoises, which can excrete nitrogen in the form of uric acid and urea and display negative Δ 15N Glu-Phe values whereas those for marine and terrestrial mammals are positive. The findings amplify the potential advantages of compound-specific nitrogen isotope analysis in the study of nitrogen flow within food webs and in the reconstruction of past human diets.

  17. Nitrogen (15N) recovery from ammonium and nitrate applied to the soil by sugar cane

    International Nuclear Information System (INIS)

    An experiment was developed in a field aimed to compare the recovery of the ammonium-15 N and nitrate-15 N by the sugar cane plants harvested mechanically without burning. A rate of 70 kg ha-1 of N was applied as ammonium nitrate, in strip, onto cultural residues. Two lineal meters micropots were used. They received the fertilizer labeled with 15 N. Two treatments were established using labeled ammonium (NH4+-15 N) or nitrate (NO3-15 N). Two months after fertilization, four samples of the aerial part (two lineal meters) for treatment in the portions that did not receive the fertilizer-15 N, were taken in order to evaluated the fitomass production (Mg ha-1) and N-total accumulated (kg ha-1). This evaluation was repeated every two months up to complete five of them. Two leaves (leaves with 3 deg C visible auricle) were collected from plants that were in a middle of the micropots (15 N) and in corresponding positions in the adjacent rows, to evaluated the concentration of 15 N. There was a larger absorption of the nitrate-N (30.5%) than of the ammonium-N (21.2%). On the other hand, in the soil the results showed larger ammonium-15 N residual effect concentration, probably due to microorganism immobilization. (author)

  18. Effects of growth and change of food on the δ15N in marine fishes

    International Nuclear Information System (INIS)

    Information is limited concerning variation of the δ15N with growth in marine organisms and consequently the effect of growth of marine biota on the δ15N is not yet well understood. The δ15N in 26 species of marine fishes taken from Japanese coastal waters together with 4664 stomach contents of these fishes were examined to investigate the effects of food habits and growth on the δ15N. The mean δ15N for two species that fed mainly on large-size fishes and six species that fed mainly on small-size fishes were 14.5±1.0per mille and 12.8±0.7per mille, respectively. For five species that fed mainly on decapod crustaceans, two species that fed mainly on zooplankton, and three species that fed mainly on benthos (mainly Polychaeta), the δ15N were 13.0±0.7, 9.7±0.9, and 12.2±1.2per mille, respectively. The mean δ15N in the species whose prey were mainly fish or decapod crustaceans was about 3-5per mille higher than the species whose prey was mainly zooplankton. Within the four species that shift their food habits with growth to higher trophic level, the δ15N significantly increased with growth in one species (Pacific cod), while not significant increase in the δ15N with growth in the remaining species. (author)

  19. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Modi, S.; Behere, D.V.; Mitra, S. (Tata Institute of Fundamental Research, Bombay (India))

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  20. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 5

    International Nuclear Information System (INIS)

    In an experiment with 3 colostomized laying hybrids each animal received 80 g pelleted mixed feed and 40 g 15N-labelled wheat with 20.13 atom-% 15N excess (15N') over a period of four days. On the following four days the hens received rations composed in the same way with unlabelled wheat, however in the tissues and organs of the slaughtered hens 15N' was determined in the total N and the amino acids lysine, histidine and arginine in both the segments of the gastro intestinal tract and in its content. The amount of 15N' stomach, small intestine and colon was 43.7%, 27.2% and 29.1%, respectively. The tissue of the small intestine contained, on an average, the highest 15N' in lysine of all the basic amino acids. It was 0.82 atom-% 15N' for lysine, 0.55% for histidine and 0.63% for arginine. The percentage of the 15N' of the basic amino acids from the corresponding total 15N' amount of the charges was 20.5% in the contents of the gastrointestinal tract, 28.0% in the stomach tissue and in the tissues of the small intestine 24.4% of the cecum 21.5% and of the rectum 25.7%. (author)

  1. Utilization of 15N-labelled urea in laying hens. 6

    International Nuclear Information System (INIS)

    3 colostomized laying hybrids received a normal ration containing 1% 15N-labelled urea with 96.06% atom-% 15N excess (15N') over six days. Subsequently the same ration with unlabelled urea was given over 2 days, after which the animals were butchered. In the kidneys the 15N' amounted to 1.1 atom-% and 1.8 atom-% in the liver. The TCA soluble N fraction and the ammonia were more highly labelled than the total N. Lysine, histidine and arginine were lowly labelled in the kidneys. This also applies to the liver with the exception of histidine. In the branch-chained and aromatic amino acids of the liver the 15N' was between 0.2 and 0.3 atom-%. The highest labelling of non-essential amino acids was found in glutamic acid with 0.9 atom-% 15N' and aspartic acid with 1.1 atom-% 15 N'. The evaluation of the amino acid in the liver showed that the 6 non-essential amino acids account for two thirds of the total amino acid 15N' whereas the 9 essential ones account for one third of the amino acid 15N' only. (author)

  2. Nitrogen storage and distribution and reuse of 15N-urea applied in autumn on different branch leaves of winter Jujube (Zizyphus jujuba Mill. var. inermis Rehd) trees

    International Nuclear Information System (INIS)

    The effectiveness of foliage spraying with urea to augment the seasonal internal cycling of N in winter Jujube was studied. Different branches leaves of 6-year-old trees were painted with 5% abundance of 15N-urea solution after fruit harvesting. Results showed that 15N was detected in all the tree organs during the dormant season. In the following year 15N was also detected in new growth organs (deciduous spurs, leaves and flowers). The treated branches and adjacent organs were the main sinks of Nitrogen in the dormant season. Ndff% in the treated branches was significantly decreased during dormant season. And a decrease of 59.13% was observed in the new growth branch treated and 60.05% in the perennial branches. Reserved nitrogen was reused for initial growth (leaves and deciduous spurs). 15N stored in perennial organs also remobilized to sustain new growth of treated branches. It is different from the treated new growth branch, 15N stored in the treated perennial branches is not only transported for new organs growth, but also for roots growth. (authors)

  3. Simultaneous acquisition of {sup 13}C{sup {alpha}}-{sup 15}N and {sup 1}H-{sup 15}N-{sup 15}N sequential correlations in proteins: application of dual receivers in 3D HNN

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Swagata; Paul, Subhradip; Hosur, Ramakrishna V., E-mail: hosur@tifr.res.in [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2012-01-15

    We describe here, adaptation of the HNN pulse sequence for multiple nuclei detection using two independent receivers by utilizing the detectable {sup 13}C{sup {alpha}} transverse magnetization which was otherwise dephased out in the conventional HNN experiment. It enables acquisition of 2D {sup 13}C{sup {alpha}}-{sup 15}N sequential correlations along with the standard 3D {sup 15}N-{sup 15}N-{sup 1}H correlations, which provides directionality to sequential walk in HNN, on one hand, and enhances the speed of backbone assignment, on the other. We foresee that the implementation of dual direct detection opens up new avenues for a wide variety of modifications that would further enhance the value and applications of the experiment, and enable derivation of hitherto impossible information.

  4. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    Science.gov (United States)

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  5. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats

    Directory of Open Access Journals (Sweden)

    Gouagna Louis

    2012-07-01

    Full Text Available Abstract Background Anopheles arabiensis (Diptera: Culicidae is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7] was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]. Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex

  6. Fertilizer 15N balance in a coffee cropping system: a case study in Brazil Balanço do 15N do fertilizante em uma cultura de café: um estudo de caso no Brasil

    Directory of Open Access Journals (Sweden)

    Tatiele Anete Bergamo Fenilli

    2008-08-01

    Full Text Available Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0_1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0

  7. Natural-abundance two-dimensional solid-state sup 29 Si NMR investigations of three-dimensional lattice connectivities in zeolite structures

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, C.A.; Feng, Y.; Gies, H.; Grondey, H.; Kokotailo, G.T. (Univ. of British Columbia, Vancouver (Canada))

    1990-04-25

    The 3D lattice connectivities in zeolites ZSM-12 and KZ-2 have been investigated by natural-abundance {sup 29}Si/{sup 29}Si COSY and INADEQUATE 2D NMR experiments. In both cases the results are in exact agreement with the lattice structures, the INADEQUATE experiment being particularly successful and detecting all of the connectivities. In addition, it is possible to observe directly the scalar J couplings that are in the range of 10-15 Hz. The approach is of quite general applicability and may be extended to other 3D structures.

  8. δ(15) N from soil to wine in bulk samples and proline.

    Science.gov (United States)

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27479606

  9. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    Science.gov (United States)

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  10. Human dietary δ(15)N intake: representative data for principle food items.

    Science.gov (United States)

    Huelsemann, F; Koehler, K; Braun, H; Schaenzer, W; Flenker, U

    2013-09-01

    Dietary analysis using δ(15)N values of human remains such as bone and hair is usually based on general principles and limited data sets. Even for modern humans, the direct ascertainment of dietary δ(15)N is difficult and laborious, due to the complexity of metabolism and nitrogen fractionation, differing dietary habits and variation of δ(15)N values of food items. The objective of this study was to summarize contemporary regional experimental and global literature data to ascertain mean representative δ(15)N values for distinct food categories. A comprehensive data set of more than 12,000 analyzed food samples was summarized from the literature. Data originated from studies dealing with (1) authenticity tracing or origin control of food items, and (2) effects of fertilization or nutrition on δ(15)N values of plants or animals. Regional German food δ(15)N values revealed no major differences compared with the mean global values derived from the literature. We found that, in contrast to other food categories, historical faunal remains of pig and poultry are significantly enriched in (15)N compared to modern samples. This difference may be due to modern industrialized breeding practices. In some food categories variations in agricultural and feeding regimens cause significant differences in δ(15)N values that may lead to misinterpretations when only limited information is available.

  11. δ(15) N from soil to wine in bulk samples and proline.

    Science.gov (United States)

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A fast method to prepare water samples for 15N analysis

    Institute of Scientific and Technical Information of China (English)

    肖化云; 刘丛强

    2001-01-01

    Automatic element analyser is often used to prepare organic matters tor 15N analysis. It is seldom used to prepare water samples. Water samples are conventionally dealt with by Kjeldahl-Rittenberg technique. But it requires tedious and labor-intensive sample preparation. A fast and reliable method is proposed in this paper to prepare water samples for 15N analysis.

  13. Utilization of 15N-labelled urea in laying hens. 2

    International Nuclear Information System (INIS)

    In an N metabolism experiment 3 colostomized laying hybrids received 2870 mg 15N excess (15N') per animal in 6 days in the form of urea with their conventional feed rations. During the 8-day experiment the 21 eggs laid were separated into egg-shell, white of egg and yolk. Weight, N content and 15N' of the individual fractions of the eggs were determined. On an average 4.6% of the heavy nitrogen was in the egg-shells, 50% in the white of egg and 45.5% in the yolk. 2.8%, 4.5% and 5.5% (hens 1 - 3) of the 15N' consumed were detected in the eggs. The maximum 15N' output in the white of egg was reached on the 6th day, whereas 15N' output in the yolk showed a nearly linear increase in the time of the experiment. The results show that labelled nitrogen from urea is incorporated into the egg to a lower degree than after the feeding of 15N-labelled proteins and that the development of its incorporation into the white of egg and the yolk differ from that after the feeding of 15N-labelled native proteins. (author)

  14. House and Stable Fly Seasonal Abundance, Larval Development Substrates, and Natural Parasitism on Small Equine Farms in Florida.

    Science.gov (United States)

    Machtinger, E T; Leppla, N C; Hogsette, J A

    2016-08-01

    House flies, Musca domestica Linnaeus, and stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), are common pests on horse farms. The successful use of pupal parasitoids for management of these pests requires knowledge of seasonal fluctuations and biology of the flies as well as natural parasitism levels. However, these dynamics have not been investigated on small equine farms. A 1-year field study began in July 2010, in north central Florida, to determine adult fly population levels and breeding areas on four small equine farms. Weekly surveillance showed that pest flies were present year-round, though there were differences in adult population levels among farms and seasons. Fly development was not confirmed on two of the four small farms, suggesting that subtle differences in husbandry may adversely affect the development of immature flies. In six substrates previously identified as the most common among the farms, stable fly puparia were found overwhelmingly in hay mixed with equine manure and house fly puparia were found in fresh pine shavings mixed with equine manure. Natural parasitism was minimal as expected, but greatest numbers of natural parasitoids collected were of the genus Spalangia. Differences in adult and immature fly numbers recovered emphasizes the need for farm owners to confirm on-site fly development prior to purchase and release of biological control agents. Additionally, due to the low natural parasitism levels and domination of parasitism by Spalangia cameroni, augmentative releases using this species may be the most effective. PMID:26902468

  15. House and Stable Fly Seasonal Abundance, Larval Development Substrates, and Natural Parasitism on Small Equine Farms in Florida.

    Science.gov (United States)

    Machtinger, E T; Leppla, N C; Hogsette, J A

    2016-08-01

    House flies, Musca domestica Linnaeus, and stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), are common pests on horse farms. The successful use of pupal parasitoids for management of these pests requires knowledge of seasonal fluctuations and biology of the flies as well as natural parasitism levels. However, these dynamics have not been investigated on small equine farms. A 1-year field study began in July 2010, in north central Florida, to determine adult fly population levels and breeding areas on four small equine farms. Weekly surveillance showed that pest flies were present year-round, though there were differences in adult population levels among farms and seasons. Fly development was not confirmed on two of the four small farms, suggesting that subtle differences in husbandry may adversely affect the development of immature flies. In six substrates previously identified as the most common among the farms, stable fly puparia were found overwhelmingly in hay mixed with equine manure and house fly puparia were found in fresh pine shavings mixed with equine manure. Natural parasitism was minimal as expected, but greatest numbers of natural parasitoids collected were of the genus Spalangia. Differences in adult and immature fly numbers recovered emphasizes the need for farm owners to confirm on-site fly development prior to purchase and release of biological control agents. Additionally, due to the low natural parasitism levels and domination of parasitism by Spalangia cameroni, augmentative releases using this species may be the most effective.

  16. Seasonal variation in species composition and abundance of demersal fish and invertebrates in a Seagrass Natural Reserve on the eastern coast of the Shandong Peninsula, China

    Science.gov (United States)

    Xu, Qiang; Guo, Dong; Zhang, Peidong; Zhang, Xiumei; Li, Wentao; Wu, Zhongxin

    2016-03-01

    Seagrass habitats are structurally complex ecosystems, which support high productivity and biodiversity. In temperate systems the density of seagrass may change seasonally, and this may influence the associated fish and invertebrate community. Little is known about the role of seagrass beds as possible nursery areas for fish and invertebrates in China. To study the functioning of a seagrass habitat in northern China, demersal fish and invertebrates were collected monthly using traps, from February 2009 to January 2010. The density, leaf length and biomass of the dominant seagrass Zostera marina and water temperature were also measured. The study was conducted in a Seagrass Natural Reserve (SNR) on the eastern coast of the Shandong Peninsula, China. A total of 22 fish species and five invertebrate species were recorded over the year. The dominant fish species were Synechogobius ommaturus, Sebastes schlegelii, Pholis fangi, Pagrus major and Hexagrammos otakii and these species accounted for 87% of the total number of fish. The dominant invertebrate species were Charybdis japonica and Octopus variabilis and these accounted for 98% of the total abundance of invertebrates. There was high temporal variation in species composition and abundance. The peak number of fish species occurred in August-October 2009, while the number of individual fish and biomass was highest during November 2009. Invertebrate numbers and biomass was highest in March, April, July and September 2009. Temporal changes in species abundance of fishes and invertebrates corresponded with changes in the shoot density and leaf length of the seagrass, Zostera marina.

  17. Syntheses of 15N-labeled pre-queuosine nucleobase derivatives

    Directory of Open Access Journals (Sweden)

    Jasmin Levic

    2014-08-01

    Full Text Available Pre-queuosine or queuine (preQ1 is a guanine derivative that is involved in the biosynthetic pathway of the hypermodified tRNA nucleoside queuosine (Que. The core structure of preQ1 is represented by 7-(aminomethyl-7-deazaguanine (preQ1 base. Here, we report the synthesis of three preQ1 base derivatives with complementary 15N-labeling patterns, utilizing [15N]-KCN, [15N]-phthalimide, and [15N3]-guanidine as cost-affordable 15N sources. Such derivatives are required to explore the binding process of the preQ1 base to RNA targets using advanced NMR spectroscopic methods. PreQ1 base specifically binds to bacterial mRNA domains and thereby regulates genes that are required for queuosine biosynthesis.

  18. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs

    International Nuclear Information System (INIS)

    Highlights: → Green macroalgae exposed to nutrient solutions exhibited changes in tissue 15N signatures. → Macroalgae exhibited no fractionation with NO3 and slight fractionation with NH4. → Algae exposed to cruise ship waste water had increased tissue δ15N indicating a heavy N source. → Field bioassays exhibited decreased δ15N indicating isotopically light riverine δ15N-NO3 was likely the dominant N source. → Algal bioassays could not detect a δ15N cruise ship waste water signal in this system. - Abstract: Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5 per mille in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  19. Utilization of 15N-labelled urea in laying hens. 9

    International Nuclear Information System (INIS)

    For studying the incorporation of the 15N labelled urea into individual organs and tissues 3 colostomized laying hens were butchered after they had received 1% urea (96.06 atom-% 15N excess) with a high quality ration over a period of six days and after receiving conventional urea for another two days. Nitrogen and atom-% 15N excess (15N') were determined in the bones, the feathers and the remaining body (skin, lungs and windpipe, head with comb and wattle, lower leg without bones and with skin, pancreas and fatty tissue). In the remaining body the atom-% 15N' was determined in 15 amino acids. The labelling in the remaining body and the bones was approximately the same and averaged 0.37 atom-% 15N'. A significantly lower relative frequency could be detected in the feathers. The lysine of the remaining body contained only 0.04 atom-% 15N', tyrosine 0.06, histidine and arginine 0.07. The phenylalanine and proline molecules were labelled with 0.11 atom-% 15N'. Most 15N' was incorporated in serine and glutamic acid with over 0.30 atom-%. In the six non-essential amino acids out of the 15 amino acids studied, 48.6 of the non-isotopic nitrogen of the total N of the remaining body and 70.7% of the isotopic nitrogen of total 15N' could be detected. Consequently the urea N is mainly used for the synthesis of the non-essential amino acids, with its utilization being very low. (author)

  20. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  1. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  2. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances.

    Science.gov (United States)

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. PMID:27220098

  3. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions

    Science.gov (United States)

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J.

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state 33S (spin I = 3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH 4) 2WS 4 and (NH 4) 2MoS 4. These materials all exhibit 33S quadrupole coupling constants ( CQ) in the range 0.1-1.0 MHz, with precise CQ values being determined from analysis of the PT enhanced 33S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I = 3/2 nuclei with similar CQ values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance 33S MAS NMR, a time saving which is extremely welcome for this important low-γ nucleus.

  4. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance ¹¹⁹Sn precursors.

    Science.gov (United States)

    Gunther, William R; Michaelis, Vladimir K; Caporini, Marc A; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-04-30

    The catalytic activity of tin-containing zeolites, such as Sn-Beta, is critically dependent on the successful incorporation of the tin metal center into the zeolite framework. However, synchrotron-based techniques or solid-state nuclear magnetic resonance (ssNMR) of samples enriched with (119)Sn isotopes are the only reliable methods to verify framework incorporation. This work demonstrates, for the first time, the use of dynamic nuclear polarization (DNP) NMR for characterizing zeolites containing ~2 wt % of natural abundance Sn without the need for (119)Sn isotopic enrichment. The biradicals TOTAPOL, bTbK, bCTbK, and SPIROPOL functioned effectively as polarizing sources, and the solvent enabled proper transfer of spin polarization from the radical's unpaired electrons to the target nuclei. Using bCTbK led to an enhancement (ε) of 75, allowing the characterization of natural-abundance (119)Sn-Beta with excellent signal-to-noise ratios in <24 h. Without DNP, no (119)Sn resonances were detected after 10 days of continuous analysis. PMID:24697321

  5. Seasonal Abundance and Natural Inoculativity of Insect Vectors of Xylella fastidiosa in Oklahoma Tree Nurseries and Vineyards.

    Science.gov (United States)

    Overall, Lisa M; Rebek, Eric J

    2015-12-01

    Xylella fastidiosa is the causative agent of diseases of perennial plants including peach, plum, elm, oak, pecan, and grape. This bacterial pathogen is transmitted by xylem-feeding insects. In recent years, Pierce's disease of grape has been detected in 10 counties in central and northeastern Oklahoma, prompting further investigation of the disease epidemiology in this state. We surveyed vineyards and tree nurseries in Oklahoma for potential insect vectors to determine species composition, infectivity, and natural inoculativity of commonly captured insect vectors. Yellow sticky cards were used to sample insect fauna at each location. Insects were removed from sticky cards and screened for X. fastidiosa using immunocapture-PCR to determine their infectivity. A second objective was to test the natural inoculativity of insect vectors that are found in vineyards. Graphocephala versuta (Say), Graphocephala coccinea (Forster), Paraulacizes irrorata (F.), Oncometopia orbona (F.), Cuerna costalis (F.), and Entylia carinata Germar were collected from vineyards and taken back to the lab to determine their natural inoculativity. Immunocapture-PCR was used to test plant and insect samples for presence of X. fastidiosa. The three most frequently captured species from vineyards and tree nurseries were G. versuta, Clastoptera xanthocephala Germar, and O. orbona. Of those insects screened for X. fastidiosa, 2.4% tested positive for the bacterium. Field-collected G. versuta were inoculative to both ragweed and alfalfa. Following a 7-d inoculation access period, a higher percentage of alfalfa became infected than ragweed. Results from this study provide insight into the epidemiology of X. fastidiosa in Oklahoma. PMID:26331482

  6. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    OpenAIRE

    Olin, Jill A.; Hussey, Nigel E.; Alice Grgicak-Mannion; Mark W Fritts; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for lar...

  7. Linking nitrogen dynamics to climate variability off central California: a 51 year record based on 15N/ 14N in CalCOFI zooplankton

    Science.gov (United States)

    Rau, Greg H.; Ohman, Mark D.; Pierrot-Bults, Annelies

    2003-08-01

    Long-term variability in zooplankton 15N/ 14N was investigated in two species of calanoid copepods ( Calanus pacificus and Eucalanus californicus) and two chaetognaths ( Sagitta bierii and Sagitta euneritica) sampled in the spring of selected years from 1951 to 2001 off the central California coast. No statistically significant trend in 15N/ 14N was detected for any of the four species, with isotopic ratios in 2001 resembling those in copepods and chaetognaths sampled five decades earlier. Zooplankton body lengths also showed no long-term trends. With respect to proposed regime shifts in this region, heterogeneity in 15N/ 14N was detected only for S. bierii when comparing the periods 1951-1975, 1978-1998, and 1999-2001. In this species the 15N/ 14N in the most recent, brief period (1999-2001) averaged slightly lower than in the previous period. Three of the four species ( C. pacificus, S. bierii, and S. euneritica) showed significant increases in 15N/ 14N during major El Niños. El Niño-related enrichment in 15N could arise as a consequence of increased nitrate demand:supply at the base of the food web or advection of 15N-enriched nitrate from more southerly waters. While a range of physical and climate indices were evaluated, anomalies of 15N/ 14N from the long-term mean were found to be significantly related only to: (i) the Southern Oscillation Index in the case of both chaetognath species, (ii) a regional surface water temperature record ( S. bierii only), (iii) an index of wind-driven coastal upwelling for the surface-dwelling C. pacificus, and (iv) variability in the Pacific Decadal Oscillation for the somewhat deeper-dwelling E. californicus. The relationships among each species' 15N/ 14N averaged over the total sampling period was: E. californicus≈C. pacificus≪S. euneritica < S. bierii, consistent with trophic 15N biomagnification and the predatory nature of Sagitta.

  8. Variations in the natural ¹⁵N abundance of Brassica chinensis grown in uncultivated soil affected by different nitrogen fertilizers.

    Science.gov (United States)

    Yuan, Yuwei; Hu, Guixian; Zhao, Ming; Chen, Tianjin; Zhang, Yongzhi; Zhu, Jiahong; Wang, Qiang

    2014-11-26

    To further investigate the method of using δ(15)N as a marker for organic vegetable discrimination, the effects of different fertilizers on the δ(15)N in different growing stages of Brassica chinensis (B. chinensis) grown in uncultivated soil were investigated with a pot experiment. B. chinensis was planted with uncultivated soil and different fertilizer treatments and then harvested three times in three seasons consecutively. For the spring experiments in the years of 2011 and 2012, the δ(15)N value of B. chinensis, which increased due to organic manure application and decreased due to chemical fertilizer application, was significantly different (p fertilizer urea treatment, and from +7.7‰ to +10.9‰ for the compost-chemical fertilizer treatment. However, the δ(15)N values observed in the autumn experiment of 2011 without any fertilizer application increased ranging from +13.4‰ to +15.4‰, + 11.2‰ to +17.7‰, +10.7‰ to +17.1‰, and +10.6‰ to +19.1‰, respectively, for the same treatments mentioned above. This result was not significantly different between manure treatment and chemical treatment. The δ(15)N values of soil obtained in the spring of 2011 during three growing stages were slightly affected by fertilizers and varied in the range of +1.6‰ to +2.5‰ for CK, +4.7‰ to +6.5‰ for compost treatment, +2.1‰ to +2.4‰ for chemical treatment, and +2.7‰ to +4.6‰ for chemical-compost treatment, respectively. High δ(15)N values of B. chinensis were observed in these experiments, which would be useful to supplement a δ(15)N database for discriminating organic vegetables. Although there was a significant difference between manure treatment and chemical treatment, it was still difficult to discriminate whether a labeled organic vegetable was really grown without chemical fertilizer just with a fixed high δ(15)N value, especially for the vegetables planted simultaneously with chemical and compost fertilizer.

  9. The 15N-enrichment in dark clouds and Solar System objects

    CERN Document Server

    Hily-Blant, Pierre; Faure, Alexandre; Quirico, Eric

    2013-01-01

    The line intensities of the fundamental rotational transitions of H13CN and HC15N were observed towards two prestellar cores, L183 and L1544, and lead to molecular isotopic ratios 140 6 14N/15N 6 250 and 140 6 14N/15N 6 360, respectively. The range of values reflect genuine spatial variations within the cores. A comprehensive analysis of the available measurements of the nitrogen isotopic ratio in prestellar cores show that molecules carrying the nitrile functional group appear to be systematically 15N-enriched com- pared to those carrying the amine functional group. A chemical origin for the differential 15N-enhance- ment between nitrile- and amine-bearing interstellar molecules is proposed. This sheds new light on several observations of Solar System objects: (i) the similar N isotopic fractionation in Jupiter's NH3 and solar wind N+; (ii) the 15N-enrichments in cometary HCN and CN (that might represent a direct inter- stellar inheritance); and (iii) 15N-enrichments observed in organics in primitive cosmoma...

  10. 15N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    International Nuclear Information System (INIS)

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the 15N tracer technique. N was added at the rate of 196 and 70 kg ha-1 as 15N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS15N; (III) SH15N + AS; (IV) SH15N; and (V) AS15N + SH. Sugarcane was cultivated for five years and was harvested three times. 15N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha-1. (author)

  11. Steroselective synthesis and application of L-( sup 15 N) amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J. (Los Alamos National Lab., NM (United States)); Lodwig, S.N. (Centralia Coll., WA (United States). Div. of Science)

    1991-01-01

    We have developed two general approaches to the stereoselective synthesis of {sup 15}N- and {sup 13}C-labeled amino acids. First, labeled serine, biosynthesized using the methylotrophic bacterium M. extorquens AM1, serves as a chiral precursor for the synthesis of other amino acids. For example, pyridoxal phosphate enzymes can be used for the conversion of L-({alpha}-{sup 15}N)serine to L-({alpha}-{sup 15}N)tyrosine, L-({alpha}-{sup 15}N)tryptophan, and L-({alpha}-{sup 15}N)cysteine. In the second approach, developed by Oppolzer and Tamura, an electrophilic amination'' reagent, 1-chloro-1-nitrosocyclohexane, was used to convert chiral enolates into L-{alpha}-amino acids. We prepared 1-chloro-1-({sup 15}N) nitrosocyclohexane and used it to aminate chiral enolates to produce L-({alpha}-{sup 15}N)amino acids. The stereoselectivity of this scheme using the Oppolzer sultam chiral auxiliary is remarkable, producing enantiomer ratios of 200 to 1. 22 refs., 4 figs.

  12. Quantitative Proteomics: Measuring Protein Synthesis Using 15N Amino Acids Labeling in Pancreas Cancer Cells

    OpenAIRE

    Zhao, Yingchun; Lee, Wai-Nang Paul; Lim, Shu; Go, Vay Liang; Xiao, Jing; Cao, Rui; Zhang, Hengwei; Recker, Robert; Xiao, Gary Guishan

    2009-01-01

    Pancreatic cancer MIA PaCa cells were cultured in the presence and absence of 15N amino acids mixture for 72 hours. During protein synthesis, the incorporation of 15N amino acids results in a new mass isotopomer distribution in protein, which is approximated by the concatenation of two binomial distributions of 13C and 15N. Fraction of protein synthesis (FSR) can thus be determined from the relative intensities of the ‘labeled’ (new) and the ‘unlabeled” (old) spectra. Six prominent spots were...

  13. Radiative p 15N Capture in the Region of Astrophysical Energies

    Science.gov (United States)

    Dubovichenko, S. B.; Burtebaev, N.; Dzhazairov-Kakhramanov, A. V.; Alimov, D. K.

    2016-06-01

    Within the framework of the modified potential cluster model with classification of orbital states according to the Young schemes, the possibility of describing experimental data for the astrophysical S-factor of p 15N radiative capture at energies from 50 to 1500 keV is considered. It is shown that on the basis of M1 and E1 transitions from various p 15N scattering states to the ground state of the 16O nucleus in the p 15N channel it is entirely possible to successfully explain the overall behavior of the S-factor in the considered energy region in the presence of two resonances.

  14. Nitrogen distribution a 15 N fertilizer in different soil fractions of a barley cultivation

    International Nuclear Information System (INIS)

    A culture of barley in the open fields has been fertilized on 9 m2 with Ca(NO3)2 containing 20,8% 15N excess. At the crop, 15 N distribution shows that half of the fertilized nitrogen which is exported by the crop has become organic in the Ap horizon. The use of different methods of fractionation of the soil, shows the biological character of this reorganization, in which the biomass appears to be the main 15 N nitrogen stock

  15. Effect of petroleum products on the decomposition of soil organic matter as assessed by 13C natural abundance

    Science.gov (United States)

    Stelmach, Wioleta; Szarlip, Paweł; Trembaczowski, Andrzej; Bieganowski, Andrzej

    2016-04-01

    Petroleum products are common contaminants in soils due to human activities. They are toxic for microorganisms and threat their functions, including decomposition of soil organic matter (SOM). The direct estimation of altered SOM decomposition - based on the CO2 emission - is impossible after oil contamination, because oil decomposition also contributes to the CO2 release. We used the natural differences in the isotopic signature (δ13C) of SOM and of oil products to partition the total CO2 for both sources and to analyze the suppression of SOM decomposition. The dynamics of 13C fractionation during the mineralization of gasoline and diesel was measured during 42 days. The 13C fractionation varied between -8.8‰ and +3.6‰ within the first 10 days, and stabilized thereafter at about -5.3‰ for gasoline and +3.2‰ for diesel. These 13C fractionations and δ13C values of CO2 emitted from the soil were used for correct partitioning of the total CO2. Contamination with gasoline reduced the CO2 efflux from SOM decomposition by a factor of 25 (from 151 to 6 mg C-CO2 kg‑1 soil during 42 days). The negative effect of diesel was much lower: the CO2 efflux from SOM was decreased by less than a factor of 2. The strong effect of gasoline versus diesel reflects the lower absorption of gasoline to mineral particles and the development of a thin film on water surfaces, leading to toxicity for microorganisms. We conclude that the small differences of 13C of SOM and of organic pollutants can be used to partition CO2 fluxes and analyze pollutant effects on SOM decomposition.

  16. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  17. Evaluation of the protein metabolism during hepatic coma evidenced by 15N tracer data

    International Nuclear Information System (INIS)

    In patients in coma hepaticum as well as in pigs with experimental hepatic coma the protein metabolism was studied under conditions of parenteral application of an amino acid diet using 15N-glycine as tracer

  18. Measurement of marine productivity using 15N and 13C tracers: Some methodological aspects

    Indian Academy of Sciences (India)

    Naveen Gandhi; Sanjeev Kumar; S Prakash; R Ramesh; M S Sheshshayee

    2011-02-01

    Various experiments involving the measurement of new, regenerated and total productivity using 15N and 13C tracers were carried out in the Bay of Bengal (BOB) and in the Arabian Sea. Results from 15N tracer experiments indicate that nitrate uptake can be underestimated by experiments with incubation time > 4 hours. Indirect evidence suggests pico- and nano-phytoplankton, on their dominance over microphytoplankton, can also influence the f-ratios. Difference in energy requirement for assimilation of different nitrogen compounds decides the preferred nitrogen source during the early hours of incubation. Variation in light intensity during incubation also plays a significant role in the assimilation of nitrogen. Results from time course experiments with both 15N and 13C tracers suggest that photoinhibition appears significant in BOB and the Arabian Sea during noon. A significant correlation has been found in the productivity values obtained using 15N and 13C tracers.

  19. 15N NMR Spectroscopic Study on Nitrogen Formsin1mmHumic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil, alateritic red soil and a weathered coal and the effect of acidhydrolysis on N structures of soil humic substances were studied byusing {15N cross-polarization magic angle spinning nuclearmagnetic resonance (CPMAS NMR) spectroscopy. Of the detectable15N-signal intensity in the spectra of soil humic substances71%79% may be attributed to amide groups, 10%18%to aromatic/aliphatic amines and 6%11% to indole- andpyrrole-like N. Whereas in the spectrum of the fulvic acid fromweathered coal 46%, at least, of the total 15N-signalintensity might be assigned to pyrrole-like N, 14% toaromatic/aliphatic amines, and the remaining intensities could not beassigned with certainty. Data on nonhydrolyzable residue ofprotein-sugar mixture and a 15N-labelled soil fulvic acidconfirm the formation of nonhydrolyzable heterocyclic N during acidhydrolysis.

  20. Metabolic studies in colostomized laying hens using 15N-labelled wheat. 3

    International Nuclear Information System (INIS)

    In colostomized laying hens fed with 15N-labelled wheat protein the atomic percentage 15N excess (15N') was determined in the total, lysine, histidine, and arginine N, respectively, of isolated ovarian follicles of the residual ovary and of the oviduct. The labelling of the basic amino acids became smaller with decreasing size of the follicles. The proportions between the 3 amino acids were inconsistent and typical for the individual hens, whereas in the yolk a constant ratio of the amino acids was found. The 15N' in the 3 amino acids of the residual ovary and of the oviduct revealed greater differences between the individual hens. In the lysine, histidine and arginine 21.2% of the labelled N of the follicles was demonstrated

  1. Methodical investigation of the endogenous N excretion in feces by 15N-labelled rats

    International Nuclear Information System (INIS)

    Wistar rats (approximately 100g live weight, n = 8) received a wheat diet and were labelled over a period of 7 days with 15N-ammonium acetate. From day 1 - 5 of the experiment after the end of the labelling feces and urine were collected and analysed. After the animals were killed (day 5 of the experiment) the atom-% 15N excess (15N') in the contents of the digestive tract as well as in the tissues of stomach wall, intestinal wall, liver, pancreas and blood plasma was determined. The TCA-soluble fraction of the blood plasma showed 0.44 atom-% 15N' on day 5 after the end of 15N labelling. 3 hours before the killing fecal N also showed 0.44 and during the last collection period (24 hours before) an average of 0.51 atom-% 15N'. Urine decreased in the same period from 0.71 to 0.59 atom-% 15N'. The endogenous fecal N is calculated to 88%. As the tissues of the digestive tract are likely to supply the biggest part of the endogenous fecal protein, the values of atom-% 15N' from the TCA-precipitable fraction of the intestinal wall and of the pancreas gland was calculed to an average of 0.526. According to this the calculation endogenous fecal N is 84%. It is probable that the quota of endogenous fecal N in the total amount of fecal N varies in dependence on the fermentable crude fiber in the diet as well as on the age of the test animals and thus the bacterial protein synthesis in the colon. As the N used by the bacteria is likely to come from the TCA-soluble fraction of the blood, the calculation formula suggested, which uses the TCA-soluble fraction of the blood plasma, achieves good approximate values also for higher bacterial protein synthesis in the colon. (author)

  2. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    Science.gov (United States)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  3. 15N-标记的气相色谱-同位素比质谱与气相气谱-质谱联用鉴定微生物反硝化作用%Isotopic Confirmation of Occurrence of Microbial Denitrification Based on N2 and N2O Production Monitored by Gas Chromatography/Isotope Ratio Mass Spectrometry and Gas Chromatography/Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    艾国民; 郑海燕; 张敏; 刘志培

    2011-01-01

    A new 15N-labled procedure based on isotopic ratio monitoring of N2 by GC-isolink-IRMS (isotope artio mass spectrometer) with high precision and of N2() by GC-MS in SIM mode with high sensitivity was developed for the identification and confirmation of in vitro microbial denitrification. Gas metabolites, produced by Alcaligenes faecalis, including atmospheric gases in the confined culti-vation tube, were analyzed using GS-CarbonPlot column, and a satisfactory baseline separation of N2/ O2, CO2, N2O and water vapour was obtained in a single run, which eliminated CO2 and H2O inter-ference contributed to isotopic determination of N2 and N2O. In δ15N analysis of N2, combustion oven in GC isolink can remove all of the O2in the sample gases, and precise and accurate δ15N measurement can be conducted. The δ15 N value of N2 of 15N-labled sample, 15N-natural abundance control, and 15N-KNO3 blank control were (2. 394 ± 0. 261)%0, (0. 022 + 0. 044)%0 and (0. 315 ± 0. 045)%0, respectively. In addition, significant increase in relative isotopic abundance of 14.15N2O and 15.15N2O (RT = 2. 99 min) to 14.14N2O was observed, indicating N2and N2O production from denitrification by A. Faecalis. This proposed identification procedure, providing isotopic evidence of N2 and/or N2O production based on the marked enrichment in the N isotope ratio, is rapid, sensitive, accurate and precise to indentify and confirm the occurrence of microbial denitrificaiton, especially for new isolated and screened ones. We have confirmed the denitrifying activity by several strains of microorganism screened from the environment using this procedure. This procedure has also been applied in confir-ming the N2 production by nitrifier denitrification under defined conditions.%以好氧反硝化菌-产碱杆菌(Alcaligenes faecalis)在15N-KN03标记反硝化培养下所产气体与培养管中空气的混合气体为分析对象,在样品中N2/O2,CO2,N2O,H2O基线分离的基础上,利用气相色谱-同

  4. Application of (119)Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural (119)Sn Isotope Abundance.

    Science.gov (United States)

    Kolyagin, Yury G; Yakimov, Alexander V; Tolborg, Søren; Vennestrøm, Peter N R; Ivanova, Irina I

    2016-04-01

    (119)Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5-40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders of magnitude in the case of dehydrated Sn-BEA samples as compared to conventional methods. In the latter case, the reconstruction of the quantitative spectrum without the loss of sensitivity is shown to be possible. The method proposed allows obtaining (119)Sn MAS NMR spectra with improved resolution for Sn-BEA zeolites with natural (119)Sn isotope abundance using conventional MAS NMR equipment. PMID:26978430

  5. Changes in Natural Abundance Carbon Stable isotopes of Human Blood and Saliva After 24 Days of Controlled Carbohydrate Supplementation

    Science.gov (United States)

    Kraft, R. A.; Jahren, A. H.; Baer, D. J.; Caballero, B.

    2008-12-01

    the δ13C value of their blood and saliva relative to baseline: blood clot was enriched by 0.27‰; blood serum by 0.50‰ and saliva by 1.12‰. We believe this overall enrichment resulted from a 13C-enriched bulk diet (δ13C = - 20.42‰) relative to the subjects free-living diet. Evidence for this derives from inspection of foods within the bulk diet provided, compared to published profiles of the typical American diet. We will discuss possible complicating factors, such as differential absorption and metabolism of the supplements according to solubility and caloric value. These results are encouraging for the development of a δ13C blood serum biomarker that, in the company of other tests, could be used to indicate a change in carbohydrate intake. Bray, G.A., Nielsen, S.J. and Popkin, B.M., 2004. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 79: 537-543. Havel, P.J., 2005. Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition Reviews, 63(5): 133-157. Tilman D., 1998. The greening of the green revolution. Nature, 396:211-212.

  6. Synthesis of methotrexate-1-15N and methotrexate-4-15NH2

    International Nuclear Information System (INIS)

    This paper describes an application of the pterin synthesis of methotrexate specifically labelled at the N1-ring nitrogen and at the 4-amino group with 99 atom percent 15N. Oximination of ethyl cyanoacetate-15N followed by reduction afforded ethyl 2-aminocyanoacetate-C15N. Condensation with 3-bromopyruvaldoxime and 4-methylamino-benzoic acid afforded 2-amino-3-carbethoxy-5-N-methyl-p-carboxy-anilinomethylpyrazine-1-oxide-2-15NH2. Treatment with ammonium hydroxide at room temperature gave the 3-carboxamide. Reduction of the N-oxide (Pl3), esterification, and dehydration of the amide (POCl3) afforded the 2-amino-3-cyano-pyrazine benzoate ester. Ring closure with guanidine followed by benzoate ester hydrolysis, glutamate coupling and hydrolysis of the glutamate diester yielded methotrexate-1-15N. Animation of the unlabeled 2-amino-3-carbethoxy pyrazine intermediate with 15N-labelled ammonium hydroxide gave the 15N-carboxamide which was carried through the process described above to afford methotrexate-4-15NH2. (author)

  7. The C$^{14}$N/C$^{15}$N Ratio in Diffuse Molecular Clouds

    CERN Document Server

    Ritchey, Adam M; Lambert, David L

    2015-01-01

    We report the first detection of C$^{15}$N in diffuse molecular gas from a detailed examination of CN absorption lines in archival VLT/UVES spectra of stars probing local diffuse clouds. Absorption from the C$^{15}$N isotopologue is confidently detected (at $\\gtrsim4\\sigma$) in three out of the four directions studied and appears as a very weak feature between the main $^{12}$CN and $^{13}$CN absorption components. Column densities for each CN isotopologue are determined through profile fitting, after accounting for weak additional line-of-sight components of $^{12}$CN, which are seen in the absorption profiles of CH and CH$^+$ as well. The weighted mean value of C$^{14}$N/C$^{15}$N for the three sight lines with detections of C$^{15}$N is $274\\pm18$. Since the diffuse molecular clouds toward our target stars have relatively high gas kinetic temperatures and relatively low visual extinctions, their C$^{14}$N/C$^{15}$N ratios should not be affected by chemical fractionation. The mean C$^{14}$N/C$^{15}$N ratio ...

  8. Quantifying below-ground nitrogen of legumes: Optimizing procedures for 15N shoot-labelling

    International Nuclear Information System (INIS)

    Quantifying below-ground nitrogen (N) of legumes is fundamental to understanding their effects on soil mineral N fertility and on the N economies of following or companion crops in legume-based rotations. Methodologies based on 15N-labelling of whole plants with subsequent measurement of 15N in recovered plant parts and in the root-zone soil have proved promising. We report four glasshouse experiments with objectives to develop appropriate protocols for in situ 15N labelling of four pulses, faba bean (Vicia faba), chickpea (Cicer arietinum), mung bean (Vigna radiata) and pigeon pea (Cajanus cajan). Treatments included 15N-urea concentration, feeding technique, leaflet/petiole position, and frequency of feeding. Nitrogen-15-labelling via the leaf-flap was best for faba bean, mung and pigeon pea, whilst petiole feeding was best for chickpea, in all cases using 0.2-mL volumes of 0.5% urea (98 atom% 15N excess). The implications of uneven enrichment of the nodulated roots because of effects of the 15N-depleted nodules when calculating root-derived N in soil are discussed. (author)

  9. Study of the dissolution of uranium nitrides in nitric acid by measuring the isotope ratios, 15N/14N, of the formed products

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the dissolution behavior of nitride fuels in nitric acid. The use of nitride fuels in nuclear reactor has many advantages compared with the oxide fuels. One problem in employing nitrides as fuels is the formation of radio-toxic 14C upon irradiation of natural nitrogen (14N:99.64 pc, 15N:0.36 pc) in a nuclear reactor (14N (n,p) 14C reaction). The use of 15N-enriched fuels avoids these drawbacks. This study was undertaken so as to better understand the mechanisms of the dissolution process and also to follow the distribution of the expensive nitrogen isotope 15N from the point of view of its behaviour during the recycling process. This study is based on previous work, where the evolution of the nitrogen compounds formed during the dissolution was measured as a function of time for different dissolution parameters. Using 15N-enriched uranium nitrides or 15N-enriched nitric acid, two methods were developed to study the influence of the dissolution parameters, nitric acid temperature and concentration, on the 15N/14N ratios of the nitrogen, nitrogen oxides and ammonium ions utilising a coupled gas-chromatograph/mass spectrometer. The main results are: - similar isotopic composition for NH4+ and UN; - mixed 14N/15N composition for N2 and N2O; - similar isotopic composition for NO, NO2 and HNO3; - no influence of the dissolution parameters on the isotopic composition of the products; an exception maybe made for the N2 case, which contains more 15N with increasing acidity and temperature. This work confirms that the first dissolution step is the oxidation of UN with HNO3 to form NH4+ and HNO2 and that HNO2 has a catalytic role in the dissolution to form other products. And we can conclude that to recycle 15N, the ammonium ions must be recycled, at least for the case where nitrides are dissolved directly in HNO3. (author)

  10. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    Science.gov (United States)

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Lena, Rohe

    2013-04-01

    The measurement of denitrification in soils and aquifers is still challenging and often enough associated with considerable experimental effort and high costs. Against this background, the acetylene inhibition technique (AIT) applied in laboratory soil and groundwater denitrification assays is by far the most effective approach. However, this method has been largely criticized, as it is susceptible to underestimate denitrification rates and adds an additional carbon source to the substrates to be investigated. Here we provide evidence that the AIT is not necessarily an inappropriate approach to measure denitrification, that its reliability depends on the drivers governing the process, and that the 15N site preference of N2O (SP) may serve as a tool to assess this reliability. Two laboratory batch experiments were conducted, where sandy aquifer material and a peat soil were incubated as slurries. We established (i) a standard anaerobic treatment by adding KNO3 (10 mg N L-1), (ii) an oxygen treatment by adding KNO3 and O2 (5 mg L-1), and (iii) a glucose treatment by adding KNO3 supplemented with glucose (200 mg C L-1). Both experiments were run under 10 % (v/v) acetylene atmosphere and as 15N tracer treatments using labeled K15NO3 (60 atom % 15N). In the case of the standard anaerobic treatments, we found a very good agreement of denitrification potential obtained by the AIT and 15N tracer methods. SP of N2O of the AIT samples from this treatment ranged between -4.8 and 2.6 ‰ which is indicative for N2O production during bacterial denitrification but not for N2O reduction to N2. In contrast, we observed substantial underestimation of denitrification by AIT for the glucose treatments compared to the 15N method, i.e. denitrification was underestimated by 36 % (sandy aquifer material) and 47 % (peat soil). SP of N2O of the AIT samples from this treatment ranged between 4.5 and 9.6 ‰, which suggests occurrence of bacterial N2O reduction. In the case of the oxygen

  11. True cooking aroma or artefact. {sup 15}N gives the answer; Veritable arome de cuisson ou artefact. {sup 15}N fournit la reponse

    Energy Technology Data Exchange (ETDEWEB)

    Metro, F.; Boudaud, N.; Dumont, J.P. [INRA, 44 - Nantes (France)

    1994-12-31

    In order to determine the respective contributions of the various nitrous precursor families in aroma preparations, the usually added amino acids were substituted with {sup 15}N isotope labelled homologous components. Results concerning isotope ratios for the volatile fraction nitrous components collected from poultry meat aromatic preparations, are presented. Terminal product labelling appears to allow for a better determination of the substrate and functional additive contributions. 4 figs., 6 refs.

  12. Stickstoffausnutzungseffizienz von 15N-markierter Schafsgülle und 15N-markiertem Mineraldünger in biologisch und konventionell bewirtschafteten Anbausystemen

    OpenAIRE

    Bosshard, Christine; Sorensen, Peter; Frossard, Emmanuel; Mayer, Jochen; Mäder, Paul; Nanzer, Simone; Oberson, Astrid

    2009-01-01

    Nitrogen (N) utilisation by crops has to be improved to minimize losses to the environment. We investigated N use efficiency of animal manure and mineral fertiliser and fate of fertiliser N not taken up by crops in a bio-organic (BIOORG) and a conventional (CONMIN) cropping system of a long-term experiment over three vegetation periods (wheat-soybean-maize). Microplots received a single application of 15N-labelled slurries or mineral fertiliser. At the end of each vegetation pe...

  13. Absorption of ammonium sulphate {sup 15}N by coffee plants; Recuperacao do {sup 15}N do sulfato de amonio por plantas de cafe

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: tatiele@cena.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Dourado Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegetal

    2005-07-01

    The objective of this study was to quantify the absorption of ammonium sulphate {sup 15}N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha{sup -1} of {sup 15}N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 {+-} 0,001 atom % {sup 15}N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  14. Soil N and 15N variation with time in a California annual grassland ecosystem

    Science.gov (United States)

    Brenner, D.L.; Amundson, Ronald; Baisden, W. Troy; Kendall, C.; Harden, J.

    2001-01-01

    The %N and ??15N values of soils and plants were measured along a chronosequence spanning 3 to 3000 Ky in a California annual grassland. Total soil N decreased with increasing soil age (1.1 to 0.4 kg N m-2) while the mean ?? 15N values of the soil N increased by several ??? from the youngest to oldest sites (+3.5 to +6.2 ???). The ?? 15N values of plants varied along the gradient, reflecting changing soil N pools and differences in the form of N uptake. The decline in total N storage with time is hypothesized to be due to a shift from N to P limitation with increasing soil age. The general increase in ?? 15N values with time is interpreted using a N mass balance model, and appears to reflect a shift toward an increasing proportional losses of inorganic mineral forms of N (vs. organic forms) with increasing soil age. We develop a quantitative index of this trend (mineral vs. organic forms of N loss) using mass balance considerations and parameters. The %N and ?? 15N values along the California age gradient were compared to the published data for a comparably aged chronosequence in Hawaii. Most striking in this comparison is the observation that the California soil and plant ?? 15N values are several ??? greater than those on comparably aged Hawaiian sites. Multiple explanations are plausible, but assuming the sites have a similar range in ?? 15N values of atmospheric inputs, the isotopic differences suggest that N may be, at least seasonally, in greater excess in the strongly seasonal, semi-arid, California grassland. Copyright ?? 2001 Elsevier Science Ltd.

  15. Barley Benefits from Organic Nitrogen in Plant Residues Applied to Soil using 15N Isotope Dilution

    International Nuclear Information System (INIS)

    The experiment was carried out in pots (sandy soil cultivated with Barley plant) under greenhouse conditions, at Inshas, Egypt. The aim was to evaluate the transformation of nitrogen applied either as mineral form (15NH4)2SO4, or as organic-material-N (plant residues) .Basal recommended doses of P and K were applied. Labeled 15N as(15NH4)2SO4 (5 % a.e) or plant residues (ground leuceana forage, compost, and mixture of them) were applied at a rate of 20 kg N/ ha). 15N technique was used to evaluate N-uptake and fertilizer use efficiency. The treatments were arranged in a completely randomized block design under greenhouse conditions. The obtained results showed that the dry weight of barley shoots was positively affected by reinforcement of mineral- N with organic-N. On the other hand, the highest dry weight was estimated with leuceana either applied alone or reinforced with mineral N. Similar trend was noticed with N uptake but only with organic N, while with treatment received 50% organic-N. plus 50% mineral- N. the best value of N uptake was recorded with mixture of leuceana and compost. The amount of Ndff was lowest where fertilizer 15N was applied alone. Comparing Ndff for the three organic treatments which received a combination of fertilizer-15N+organic-material-N, results showed that the highest Ndff was occurred with mixture of leuceana and compost, whereas the lowest was induced with individual leuceana treatment. 15N recovery in shoots of barley ranged between 22.14 % to 82.16 %. The lowest occurred with application of mineral 15N alone and; the highest occurred where mineral 15N was mixed with compost or leucaena-compost mixture

  16. Rivermouth alteration of agricultural impacts on consumer tissue δ(15N.

    Directory of Open Access Journals (Sweden)

    James H Larson

    Full Text Available Terrestrial agricultural activities strongly influence riverine nitrogen (N dynamics, which is reflected in the δ(15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ(15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ(15N. In a previous study, this terrestrial-consumer tissue δ(15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the 'rivermouth effect'. This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ(15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients will require integration of biogeochemical and hydrologic models.

  17. Quantitative Proteomics: Measuring Protein Synthesis Using 15N Amino Acids Labeling in Pancreas Cancer Cells

    Science.gov (United States)

    Zhao, Yingchun; Lee, Wai-Nang Paul; Lim, Shu; Go, Vay Liang; Xiao, Jing; Cao, Rui; Zhang, Hengwei; Recker, Robert; Xiao, Gary Guishan

    2010-01-01

    Pancreatic cancer MIA PaCa cells were cultured in the presence and absence of 15N amino acids mixture for 72 hours. During protein synthesis, the incorporation of 15N amino acids results in a new mass isotopomer distribution in protein, which is approximated by the concatenation of two binomial distributions of 13C and 15N. Fraction of protein synthesis (FSR) can thus be determined from the relative intensities of the ‘labeled’ (new) and the ‘unlabeled” (old) spectra. Six prominent spots were picked from 2-D gels of proteins from lysates of cells cultured in 0% (control), and 50% and 33% 15N enriched media. These protein spots were digested and analyzed with MALDI-TOF/TOF. The isotopomer distribution of peptides after labeling can be fully accounted for by the labeled (new) and unlabeled (old) peptides. The ratio of the new and old peptide fractions was determined using multiple regression analysis of the observed spectrum as a linear combination of the expected new and the old spectra. The fractional protein synthesis rates calculated from such ratios of same peptide from cells grown in 50% and 33% 15N amino acid enrichments were comparable to each other. The FSR of these six identified proteins ranged between 44–76%. PMID:19072287

  18. Utilization of 15N-labelled urea in laying hens. 5

    International Nuclear Information System (INIS)

    In the series of experiments with labelled urea three colostomized laying hybrids were butchered after a six-day application of 1% urea with 96.06 atom-% 15N excess (15N') in the ration and another 2 days with a supplement of 1% unlabelled urea. Out of the individual samples from crop, gizzard, small intestine, caecum and rectum, the content of the small intestine and the caecum showed the highest labelling with > 1 atom-% 15N'. The TCA soluble fraction of the content of the gizzard was more highly and that of the intestines less labelled than the total nitrogen. The tissue of the gizzard is distinctly less labelled than the 'omasum system' and the small intestine. The atom-% 15N' of the oesophagus with crop and glandular stomach largely showed agreement in the individual hens with that of intestinal tissue and ranged between 0.71 and 0.89 atom-%. 2% of the 15N' supplemented with the urea could be recovered in the content and the tissue of the gastro-intestinal tract. (author)

  19. Fast and high-resolution stereochemical analysis by nonuniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets.

    Science.gov (United States)

    Lafon, Olivier; Hu, Bingwen; Amoureux, Jean-Paul; Lesot, Philippe

    2011-06-01

    Natural abundance deuterium (NAD) 2D NMR spectroscopy using chiral or achiral liquid crystals is an efficient analytical tool for the stereochemical analysis of enantio- or diastereomers by the virtue of proton-to-deuterium substitution. In particular, it allows the measurement of enantiopurity of organic synthetic molecules or the determination of the natural isotopic (1)H/(2)H fractionation in biological molecules, such as fatty acid methyl esters (FAME). So far, the NAD 2D spectra of solutes were acquired by using uniform sampling (US) and processed by conventional 2D Fourier transform (FT), which could result in long measurement times for medium-sized analytes or low solute concentrations. Herein, we demonstrate that this conventional approach can be advantageously replaced by nonuniform sampling (NUS) processed by covariance (Cov) transform. This original spectral reconstruction provides a significant enhancement of spectral resolution, as well as a reduction of measurement times. The application of Cov to NUS data has required the introduction of a regularization procedure in the time domain for the indirect dimension. The analytical potential of combining Cov and NUS is demonstrated by measuring the enantiomeric excess of a scalemic mixture of 2-ethyloxirane and by determining the diastereomeric excess of methyl vernoleate, a natural FAME. These two organic compounds were aligned in a polypeptide (poly(γ-benzyl-L-glutamate)) mesophase. In the case of NAD 2D NMR spectroscopy, we show that Cov and NUS methods allow a decrease in measurement time by a factor of two compared with Cov applied to US data and a factor of four compared with FT applied to US data.

  20. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  1. Coral skeletal δ15N reveals isotopic traces of an agricultural revolution

    International Nuclear Information System (INIS)

    This study introduces a new method of tracing the history of nutrient loading in coastal oceans via δ15N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal δ15N in the agriculturally exposed coral declined from 10.7 ± 0.4 per mille in 1970-1971, when synthetic fertilizers (-0.8 per mille ± 0.2 per mille ) were introduced to Bali, to a depleted 'anthropogenic' baseline of 3.5 per mille ± 0.4% in the mid-1990s. δ15N values were negatively correlated with rainfall, suggesting that marine δ15N lowers during flood-born influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3 ± 0.4 per mille ), while the offshore core reflected background oceanic signals (6.2 ± 0.4 per mille). δ15N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic δ15N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs

  2. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    Science.gov (United States)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  3. Optical $\\Lambda$ transitions and quantum computing in the $^{15}$N-V$^{-}$ Center in Diamond

    OpenAIRE

    González, Gabriel; Leuenberger, Michael N.

    2009-01-01

    We present a thorough derivation of the excited state energy levels of the negatively charged $^{15}$N-V$^{-}$ center in diamond for the strong applied electric field case. We show that in the $^{15}$N-V$^{-}$ center a spin non-conserving two-photon $\\Lambda$ transition exists that is mediated by the hyperfine interaction, which provides the possibility to write quantum information. Using second order perturbation theory we obtain a $\\Lambda$ transition rate of the order of 10 MHz at room tem...

  4. Compaction stimulates denitrification in an urban park soil using 15N tracing technique

    DEFF Research Database (Denmark)

    Li, Shun; Deng, Huan; Rensing, Christopher Günther T;

    2014-01-01

    Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using 15N labeling method......, no statistical difference in total N losses and 15N-(N2O+N2) flux between the uncompacted soil and the compacted soil was detected. Compaction promoted soil denitrification and may impact urban N biogeochemical cycling. © 2013 Springer-Verlag Berlin Heidelberg....

  5. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2007-01-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5‰ is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification by ±30% or N2 fixation by ±15% produces detectable (>1‰ changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several ‰ that are consistent with sustained N deficit during the deglaciation followed by readjustment

  6. 15N Fractionation in Star-Forming Regions and Solar System Objects

    Science.gov (United States)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  7. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2006-07-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5 is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification ±30% or N2 fixation by ±15% produces detectable (>1 changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several that are consistent with sustained N deficit during the deglaciation followed by readjustment and establishment of

  8. Dynamic effects of soil bulk density on denitrification and mineralisation by 15N labelled lettuce residue and paper wastes

    International Nuclear Information System (INIS)

    Two laboratory incubation experiments aimed to study the denitrification and mineralisation influenced by different additives (15N labelled lettuce residue, paper wastes and mixture of both) and soil bulk densities were carried out by means of acetylene inhibition at the constant 15 degree C for 107 and 90 days, respectively. The results showed that the changes of N2O, CO2 emission rates, inorganic nitrogen (NO3- and NH4+), total N and 15N abundance in the soils which were affected by adding lettuce residue, paper wastes and mixture of both were investigated. Soil denitrification rate increased after lettuce residue was added into soil for 8 days. The maximum rate of N2O emission was 15 times higher than that in soil without any additive. However, paper wastes did not increase N2O emission in the first 8 days compared with other treatments, mixed residue and paper wastes could promote soil microbial activity, but N2O emission was lower than that in the soil with lettuce residue added and higher than that with paper wastes, indicating that mixture of residue and paper wastes was benefit to soil nitrogen immobilisation. CO2 emission in all the treatments were declined to the same level on the 107 th day. In the treatment added mixed residues and paper wastes, the released CO2 quantities were higher than those in other treatments every day. Effect of different bulk density on N2O and CO2 emission were response to the change of bulk density, it seems that N2O and CO2 emission increased with bulk density. High bulk density could affect decomposition of paper wastes and NO3-, NH4+ concentration. (30 ref., 10 tabs.)

  9. Ammonium assimilation in rice based on the occurrence of 15N and inhibition of glutamine synthetase activity

    International Nuclear Information System (INIS)

    Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two-week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX) an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots. 15N-labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gin) and glutamic acid (Glu) before being converted to other amino acids through transamination. The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported. Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato, although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves. The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration. Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast-localized GS and GOGAT activities, and the rapid accumulation of free NH4 in GS-deficient mutants under photorespiratory conditions. The present study was initiated to quantify the in vivo amino acid synthesis in rice

  10. Investigation of Solute-Fiber Affinity and Orientational Ordering of Norbornadiene Interacting with Two-Polypeptide Chiral Liquid Crystalline Solvents by Natural Abundance Deuterium (NAD) NMR.

    Science.gov (United States)

    Serhan, Zeinab; Aroulanda, Christie; Lesot, Philippe

    2016-08-01

    A prochiral bridged compound of C2v symmetry, the norbornadiene (NBD), oriented in a chiral liquid crystal composed of various mixtures of poly-γ-benzyl-l-glutamate (PBLG) and poly-ε-carboxy-l-lysine (PCBLL), two chiral homopolypeptides, is investigated using natural abundance deuterium 2D-NMR (NAD 2D-NMR) spectroscopy. In such chiral oriented solvents, enantiotopic directions are spectrally nonequivalent, and two distinct (2)H quadrupolar doublets associated with enantioisotopomeric pairs of NBD are detected. As the two homopolypeptides have the same absolute configuration but distinct chemical functions in their side chains, the variation of residual quadrupolar couplings (RQC's) allows the determination of the relative solute-fiber affinities toward the two polypeptides in these lyotropic bipolymeric systems. Besides the experimental measurement of RQC's and the determination of their signs at each inequivalent (2)H site, the elements of the second-rank order tensor, Sαβ, are calculated by assuming a modeled structure. The variations of RQC's and diagonalized order parameters, Sα'α', are followed versus the relative proportion of two polypeptides in the chiral oriented mixture. The influence of the solute mass fraction in the two-homopolypeptide oriented samples is also examined as well as the case of homogeneous and uniform achiral mesophases "PBG-PCBL" made of two pairs of mirror-image homopolypeptides (PBLG/PBDG and PCBLL/PCBDL). In the latter, the solute ordering is modulated by the proportion of each type of homopolypeptide (chemical nature and absolute configuration), leading to eliminate the enantiodiscrimination mechanisms on the average. In the frame of a model, new insights on the solute-homopolypeptide fiber interactions are discussed. PMID:27383731

  11. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.

    Science.gov (United States)

    Nishiyama, Yusuke

    2016-09-01

    In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.

  12. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (13C/12C) at natural abundance levels have been determined for individual carbon atoms in each of the major phospholipid fatty acids of Escherichia coli grown on glucose as the sole carbon source. Two models were constructed for the isotope effects and carbon flow pathways which must be responsible for the observed isotopic fractionations. Both models incorporate a branch in the carbon flow at which fatty acyl-acyl carrier protein (acyl-ACP) is utilized either for complex lipid synthesis or for elongation by fatty acid synthetase. Depletion of carbon 13 in the carboxyl groups of myristic and palmitoleic acids (relative to carbonyl groups in precursor acyl-ACP's) was observed to occur at this branching site. Only one of the models was consistent both with this observation and with the observation that exogenous fatty acids are incorporated into phospholipids but are not elongated. The successful model has free fatty acid as the intermediate product coupling fatty acid biosynthesis to phospholipid synthesis. Essential to this pathway are those reactions catalyzed by thioesterases I and II as well as acyl-ACP synthetase, enzymes whose roles have previously been unknown in vivo

  13. Natural Abundance 17O, 6Li NMR and Molecular Modeling Studies of the Solvation Structures of Lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane Liquid Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chuan; Hu, Mary Y.; Borodin, Oleg; Qian, Jiangfeng; Qin, Zhaohai; Zhang, Jiguang; Hu, Jian Z.

    2016-03-01

    Natural abundance 17O and 6Li NMR experiments, quantum chemistry and molecular dynamics studies were employed to investigate the solvation structures of Li+ at various concentrations of LiFSI in DME electrolytes in an effort to solve this puzzle. It was found that the chemical shifts of both 17O and 6Li changed with the concentration of LiFSI, indicating the changes of solvation structures with concentration. For the quantum chemistry calculations, the coordinated cluster LiFSI(DME)2 forms at first, and its relative ratio increases with increasing LiFSI concentration to 1 M. Then the solvation structure LiFSI(DME) become the dominant component. As a result, the coordination of forming contact ion pairs between Li+ and FSI- ion increases, but the association between Li+ and DME molecule decreases. Furthermore, at LiFSI concentration of 4 M the solvation structures associated with Li+(FSI-)2(DME), Li+2(FSI-)(DME)4 and (LiFSI)2(DME)3 become the dominant components. For the molecular dynamics simulation, with increasing concentration, the association between DME and Li+ decreases, and the coordinated number of FSI- increases, which is in perfect accord with the DFT results. These results provide more insight on the fundamental mechanism on the very high CE of Li deposition in these electrolytes, especially at high current density conditions.

  14. Feeding on Different Host Plants Alters the Natural Abundances of delta (1)(3)C and delta (1)N in Longidoridae (Nemata).

    Science.gov (United States)

    Neilson, R; Brown, D J

    1999-03-01

    Natural abundances of the stable isotope pairs (1)(3)C/(1)(2)C (delta (1)(3)C) and (1)N/(1)N (delta (1)N) have been used previously to study food sources and trophic relationships in soil invertebrates. In this study, delta (1)(3)C and delta (1)N were measured in five species of Longidoridae to investigate the effect of transferring nematodes from one plant host to another. Longidorus elongatus, Paralongidorus maximus, Xiphinema diversicaudatum, X. index, and X. vuittenezi were cultured initially on Lolium perenne, Petunia hybrida, Rubus ideaus, Ficus carica, and Rubus ideaus, respectively, and subsequently transferred to 4-week-old P. hybrida seedlings. After feeding on P. hybrida for 28 days, whole body delta (1)(3)C and delta (1)N values of the three Xiphinema species were depleted (P = 0.001) and enriched (P = 0.001), respectively, compared to nematode populations that had fed solely on the original plant hosts. Similar changes in L. elongatus and P. maximus whole body delta (1)(3)C and delta (1)N were not detected. Changes in whole body delta (1)(3)C are considered to be indicative of the new plant host (P. hybrida), whereas differences in whole body delta (1)N are probably related to the different feeding strategies used by the longidorid nematodes in this study.

  15. Three-source partitioning of soil respiration by 13C natural abundance and its variation with soil depth in a plantation

    Institute of Scientific and Technical Information of China (English)

    Wenchen Song; Xiaojuan Tong; Jinsong Zhang; Ping Meng

    2016-01-01

    Partitioning soil respiration into three compo-nents is vital to identify CO2 sink or source and can help us better understand soil carbon dynamics. However, knowl-edge about the influences of soil depth and the priming effect on soil respiration components under field has been limited. Three components of soil respiration (root respi-ration, rhizomicrobial respiration and basal respiration) in a plantation in the hilly area of the North China were sepa-rated by the 13C natural abundance method. The results showed that the average proportions of rhizomicrobial respiration, root respiration and basal respiration at the 25–65 cm depths were about 14, 23 and 63%, respec-tively. Three components of soil respiration varied with soil depth, and root respiration was the main component of soil respiration in deeper soil. The priming effect was obvious for the deep soil respiration, especially at the 40–50 cm depth. Thus, depth and priming effect should be taken into account to increase the accuracy of estimations of soil carbon flux.

  16. The use of natural abundance carbon-13 to identify and quantify sources of emitted carbon dioxide in a calcareous southern Ontario Luvisolic soil

    Science.gov (United States)

    Wilton, Meaghan

    Three studies Were conducted at the Elora Research Station (ERS) on a Luvisolic soil to investigate the soil inorganic carbon (SIC) and soil organic carbon (SOC) components contributing to the CO2 flux (FC) using natural 13C abundance. SIC contributed to the FC in intact soil incubations. Soil disruption exacerbated the release of CO2 from both pedogenic and lithogenic carbonates. Field and laboratory techniques to obtain the delta13C of respired CO2 (delta13CR) were compared. Short-term deployment of non flow-through non steady-state chambers and the use of the simple two-ended mass balance approach to derive delta 13CR were found acceptable to apply to the ERS site. The delta13CR from a corn field at ERS with a history of multiple C4 and C3 crop rotations was partitioned into SIC and SOC components using two approaches. Root respiration contributed 2% - 64% and carbonates contribute up to 20% to the FC.

  17. Spatio-temporal isotopic signatures (δ13 C and δ15 N) reveal that two sympatric West African mullet species do not feed on the same basal production sources.

    Science.gov (United States)

    Le Loc'h, F; Durand, J-D; Diop, K; Panfili, J

    2015-04-01

    Potential trophic competition between two sympatric mullet species, Mugil cephalus and Mugil curema, was explored in the hypersaline estuary of the Saloum Delta (Senegal) using δ(13) C and δ(15) N composition of muscle tissues. Between species, δ(15) N compositions were similar, suggesting a similar trophic level, while the difference in δ(13) C compositions indicated that these species did not feed from exactly the same basal production sources or at least not in the same proportions. This result provides the first evidence of isotopic niche segregation between two limno-benthophageous species belonging to the geographically widespread, and often locally abundant, Mugilidae family. PMID:25846862

  18. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    CERN Document Server

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  19. Pathways of nitrogen assimilation in cowpea nodules studied using 15N2 and allopurinol

    International Nuclear Information System (INIS)

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo [3,4-d]pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed [15N]xanthine from 15N2 at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity. Negligible 15N -labeling of asparagine from 15N2 was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery

  20. Determination of level widths in 15N using nuclear resonance fluorescence

    Directory of Open Access Journals (Sweden)

    Szücs T.

    2015-01-01

    Full Text Available Level widths in 15N have been measured with the nuclear resonance fluorescence (NRF technique. Solid nitrogen compounds, bremsstrahlung, and HPGe detectors have been used as target, beam, and detectors, respectively. The preliminarily level widths are in agreement with the literature values, but more precise.

  1. An improved method for delta 15N measurements in ice cores

    Directory of Open Access Journals (Sweden)

    M. Leuenberger

    2008-02-01

    Full Text Available The use of isotopic ratios of nitrogen gas (δ15N trapped in ice cores as a paleothermometer to characterise abrupt climate changes is becoming a widespread technique. The versatility of the technique could be enhanced, for instance in quantifying small temperature changes during the last glacial period in Antarctic ice cores, by using high precision methods. In this paper, we outline a method for measuring δ15N to a precision of 0.006permil (1σ, n=9 from replicate ice core samples. The high precision results from removing oxygen, carbon dioxide and water vapour from the air extracted from ice cores. The advantage of the technique is that it does not involve correction for isobaric interference due to CO+ ions. We also highlight the importance of oxygen removal from the sample, and how it influences δ15N measurements. The results show that a small amount of oxygen in the sample can be detrimental to achieving an optimum precision in δ15N measurements of atmospheric nitrogen trapped ice core samples.

  2. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    Science.gov (United States)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  3. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    Science.gov (United States)

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  4. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    Science.gov (United States)

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  5. Recovery of 15N-urea in soil-plant system of tanzania grass pasture

    International Nuclear Information System (INIS)

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea-15N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of 15N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of 15N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p 15N (kg ha-1) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  6. 15N NMR Spectroscopic Study on Nitrogen Forms in Humic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    WENQIXAIO; ZHUOSUNENG; 等

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil,a lateritic red soil and a weathered cola and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance(CPMAS NMR) spectroscopy,Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups ,10%-18% to aromatic/aliphatic amines and 6%-11% to indole-and pyrrole-like N.Whereas in the spectrum of the fulvic acid from weathered coal 46%,at least,of the total 15N-signal intensity might be assigned to pyrrole-like N,14% to aromatic/aliphatic amines,and the reamining intensities could not be assigned with certainty,Data on nonhydrolyzable reside of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis.

  7. Studies of the endogeneous N metabolism in 15N-labelled pigs. 2

    International Nuclear Information System (INIS)

    4 pigs were labelled with 15N-ammonium salt over a period of 10 days in the feeding of a fishmeal diet (1), a fishmeal diet + partly hydrolyzed straw meal (2), a field bean diet (3) and a field bean diet + partly hydrolyzed straw meal (4). The 14N-amino acids and the 15N-amino acids excreted in feces showed highly significant correlation coefficient with the increasing content of crude fiber in the diets, which amounted to 3.0, 5.3, 10.0 and 12.1% in the dry matter. The following sequence was established for the growth angle of the essential 14N-amino acids: Leu, Lys, Arg, Thr, Phe, Ile, Val, His and of the 15N-amino acids: Lys, Arg, Val, Leu, Ile, Thr, Phe and His. As Lys, His and Thr cannot incorporate 15N in transamination reactions in the intermediate metabolism, their level of labelling was considerable in case of diet 4. Nevertheless, tan α is highest for 15N-Lys and lowest for 15N-His. This means that His in contrast to Lys, parallel to increased synthesis, is also increasingly decomposed in the large intestine. In contrast to this, proline was not labelled with 15N even with the highest content of crude fiber in the diet. Despite this, 14N-proline excretion, next to glutamic acid, increased most with the growing content of crude fiber in the diet. Due to the hydrophilic character of glutamic acid and the increased water influx in the large intestine and the increased content of crude fiber in the diet, a growing proline transport parallel to the increased influx of crude fiber and water must be assumed. If the growth angle tan α for the excretion of 14N-amino acids is ascertained regressively for a crude fiber content of diet of 10 %, one can prove from the proportion of the amino acids and a comparison from literature for fecal bacteria and ileum digesta that the amino acid composition for this measuring point largely corresponds to that of bacterial protein. (author)

  8. Rapid and automated processing of MALDI-FTICR/MS data for 15N-metabolic labeling in a shotgun proteomics analysis

    Science.gov (United States)

    Jing, Li; Amster, I. Jonathan

    2009-10-01

    Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using 15N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a computer program which significantly accelerates the interpretation of 15N-metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the 15N/14N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.

  9. Araucaria cunninghamii Seedling Response to Different Forms and Rates of 15N-Labelled Fertiliser

    Institute of Scientific and Technical Information of China (English)

    T.J.BLUMFIELD; XU Zhi-Hong

    2006-01-01

    Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using 15Nlabelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg-1 dried soil) of fertilisers on the growth, 15N recovery and carbon isotope composition (δ13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland,Australia. The 15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots,containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage,and then analysed for 15N, total N, δ13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined 15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of 15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg-1 soil gradually increased seedling foliage δ13C over the 12-month period, indicating an increase in seedling water use efficiency.

  10. Variable δ(15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Directory of Open Access Journals (Sweden)

    Jill A Olin

    Full Text Available The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15N diet-tissue discrimination factors (∆(15N. As ∆(15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15N dietary values. Overall, the most suitable species-specific ∆(15N values decreased with increasing dietary-δ(15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15N = 9‰ whereas a ∆(15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15N = 15‰. These data corroborate the previously reported inverse ∆(15N-dietary δ(15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15N values that reflect the predators' δ(15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species

  11. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Science.gov (United States)

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species' ecological role in their community will be influenced with consequences for conservation and

  12. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals

    Science.gov (United States)

    Wang, Xingchen T.; Sigman, Daniel M.; Cohen, Anne L.; Sinclair, Daniel J.; Sherrell, Robert M.; Cobb, Kim M.; Erler, Dirk V.; Stolarski, Jarosław; Kitahara, Marcelo V.; Ren, Haojia

    2016-05-01

    The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N inputs to reef environments. However, many coral reefs receive their primary N sources from the open ocean, and the CS-δ15N of these corals may provide information on past changes in the open ocean regional and global N cycle. Using a recently developed persulfate/denitrifier-based method, we measured CS-δ15N in modern shallow-water scleractinian corals from 8 sites proximal to the open ocean. At sites with low open ocean surface nitrate concentrations typical of the subtropics and tropics, measured CS-δ15N variation on seasonal and annual timescales is most often less than 2‰. In contrast, a broad range in CS-δ15N (of ∼10‰) is measured across these sites, with a strong correlation between CS-δ15N and the δ15N of the deep nitrate supply to the surface waters near the reefs. While CS-δ15N can be affected by other N sources as well and can vary in response to local reef conditions as well as coral/symbiont physiological changes, this survey indicates that, when considering corals proximal to the open ocean, the δ15N of the subsurface nitrate supply to surface waters drives most of the CS-δ15N variation across the global ocean. Thus, CS-δ15N is a promising proxy for reconstructing the open ocean N cycle in the past.

  13. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    Science.gov (United States)

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  14. Leaf d15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    Directory of Open Access Journals (Sweden)

    Idoia eAriz

    2015-08-01

    Full Text Available The natural 15N/14N isotope composition (δ15N of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L. plants were subjected to distinct conditions of [CO2] (400 versus 700 mol mol-1, temperature (ambient versus ambient + 4ºC and water availability (fully watered versus water deficiency - WD. As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP contents detected at 700 mol mol-1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g. photosynthesis, TSP, N demand and water transpiration to environmental conditions.

  15. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by δ18O natural abundance

    Science.gov (United States)

    Hoekstra, N. J.; Finn, J. A.; Hofer, D.; Lüscher, A.

    2014-08-01

    Increased incidence of drought, as predicted under climate change, has the potential to negatively affect grassland production. Compared to monocultures, vertical belowground niche complementarity between shallow- and deep-rooting species may be an important mechanism resulting in higher yields and higher resistance to drought in grassland mixtures. However, very little is known about the belowground responses in grassland systems and increased insight into these processes may yield important information both to predict the effect of future climate change and better design agricultural systems to cope with this. This study assessed the effect of a 9-week experimental summer drought on the depth of water uptake of two shallow-rooting species (Lolium perenne L. and Trifolium repens L.) and two deep-rooting species (Cichorium intybus L. and Trifolium pratense L.) in grassland monocultures and four-species mixtures by using the natural abundance δ18O isotope method. We tested the following three hypotheses: (1) drought results in a shift of water uptake to deeper soil layers, (2) deep-rooting species take up a higher proportion of water from deeper soil layers relative to shallow-rooting species, and (3) as a result of interspecific interactions in mixtures, the water uptake of shallow-rooting species becomes shallower when grown together with deep-rooting species and vice versa, resulting in reduced niche overlap. The natural abundance δ18O technique provided novel insights into the depth of water uptake of deep- and shallow- rooting grassland species and revealed large shifts in depth of water uptake in response to drought and interspecific interactions. Compared to control conditions, drought reduced the proportional water uptake from 0-10 cm soil depth (PCWU0-10) of L. perenne, T. repens and C. intybus in monocultures by on average 54%. In contrast, the PCWU0-10 of T. pratense in monoculture increased by 44%, and only when grown in mixture did the PCWU0-10 of T

  16. Carbon-13 natural abundance signatures of long-chain fatty acids to determinate sediment origin: A case study in northeast Austria

    Science.gov (United States)

    Mabit, Lionel; Gibbs, Max; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Swales, Andrew; Alewell, Christine

    2016-04-01

    - Several recently published information from scientific research have highlighted that compound-specific stable isotope (CSSI) signatures of fatty acids (FAs) based on the measurement of carbon-13 natural abundance signatures showed great promises to identify sediment origin. The authors have used this innovative isotopic approach to investigate the sources of sediment in a three hectares Austrian sub-watershed (i.e. Mistelbach). Through a previous study using the Cs-137 technique, Mabit et al. (Geoderma, 2009) reported a local maximum sedimentation rate reaching 20 to 50 t/ha/yr in the lowest part of this watershed. However, this study did not identify the sources. Subsequently, the deposited sediment at its outlet (i.e. the sediment mixture) and representative soil samples from the four main agricultural fields - expected to be the source soils - of the site were investigated. The bulk delta carbon-13 of the samples and two long-chain FAs (i.e. C22:0 and C24:0) allowed the best statistical discrimination. Using two different mixing models (i.e. IsoSource and CSSIAR v1.00) and the organic carbon content of the soil sources and sediment mixture, the contribution of each source has been established. Results suggested that the grassed waterway contributed to at least 50% of the sediment deposited at the watershed outlet. This study, that will require further validation, highlights that CSSI and Cs-137 techniques are complementary as fingerprints and tracers for establishing land sediment redistribution and could provide meaningful information for optimized decision-making by land managers.

  17. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    Science.gov (United States)

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer.

  18. Abundance of Ixodes ricinus and prevalence of Borrelia burgdorferi s.l. in the nature reserve Siebengebirge, Germany, in comparison to three former studies from 1978 onwards

    Directory of Open Access Journals (Sweden)

    Schwarz Alexandra

    2012-11-01

    Full Text Available Abstract Background During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. Methods In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. Results A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5% to 2008 (16.5%, thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%. Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. Conclusions Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained

  19. Simultaneous acquisition of 13Cα–15N and 1H–15N–15N sequential correlations in proteins: application of dual receivers in 3D HNN

    International Nuclear Information System (INIS)

    We describe here, adaptation of the HNN pulse sequence for multiple nuclei detection using two independent receivers by utilizing the detectable 13Cα transverse magnetization which was otherwise dephased out in the conventional HNN experiment. It enables acquisition of 2D 13Cα–15N sequential correlations along with the standard 3D 15N–15N–1H correlations, which provides directionality to sequential walk in HNN, on one hand, and enhances the speed of backbone assignment, on the other. We foresee that the implementation of dual direct detection opens up new avenues for a wide variety of modifications that would further enhance the value and applications of the experiment, and enable derivation of hitherto impossible information.

  20. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  1. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values. PMID:26956399

  2. RIQUEZA Y ABUNDANCIA DE HESPERIOIDEA Y PAPILIONOIDEA (LEPIDOPTERA EN LA RESERVA NATURAL LAS DELICIAS, SANTA MARTA, MAGDALENA, COLOMBIA Species Richness and Abundance of Hesperioidea and Papilionoidea (Lepidoptera in Las Delicias Natural Reserve, Santa Marta, Magdalena, Colombia

    Directory of Open Access Journals (Sweden)

    MARÍA A VARGAS-ZAPATA

    to intervention and specificity in the use of resources. In the present study the changes in richness and abundance of butterflies Hesperioidea Papilionoidea in nature reserve Las Delicias were evaluated. Two sampling sites with different degrees of intervention were selected. The first site is located between 400- 550m over sea level, while the second at 200m. We performed four samples, from April to July 2008, using two networks lepidopterist and 10van Someren Rydon traps baited with macerated fruit and fish. We captured 432 individuals belonging to 66 species, distributed in 52 genera. Nymphalidae were the most rich family (42 and abundance (250; highlighting the species Mechanitis lysimnia Fabricius (41 specimens, typical in forest with very good coverage. Site 2, was the most diverse (48 and abundance (236, because in this place there was a greater stratification and tree coverage, and the presence of water resources during the sampling. With the arrival of rain in June and July, there was greater flowering and fruiting of vegetation in the area, increasing the availability of resources and therefore a greater richness and abundance of Papilionoidea and Hesperioidea in the study area.

  3. An Assessment of Natural Cavity Abundance, Nest Box Use, and Management Recommendations for Birds of the Ohio River Islands National Wildlife Refuge, West Virginia

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this study were to: 1 compare breeding bird abundance and quality of habitat for cavitynesting birds between back channel and navigational channel...

  4. Recovery of 15N-Urea under groundnut-sorghum sequence

    International Nuclear Information System (INIS)

    In 2 field experiments conducted at Agricultural Research Station, Tamil Nadu Agricultural University Farm, Bhavanisagar in red loamy soil (Typic Ustropept), the recovery of added 15N-urea was monitored under groundnut-sorghum cropping sequence. Fertilizer 15N was applied as urea at 5, 10 and 15 kg N/ha levels. The highest pod yield (2.18 t/ha) and haulm yield (13.19 t/ha) were recorded at 10 kg N ha-1 level. Out of 10 kg N applied, 51.86 per cent was recovered by the first crop of groundnut and found distributed as 43.13, 1.70 and 8.03 per cent in haulm, shell and kernel, respectively. The residual N recorded by the second crop of sorghum was only 0.63 per cent. (author). 4 refs., 4 tabs

  5. Study of organic N transformation in red soils by 15N tracer method

    Institute of Scientific and Technical Information of China (English)

    YeQing-Fu; ZhangQin-Zheng; 等

    1997-01-01

    Uniformly 15N-labelled ryegrass was used to investigate NH4+-production,microbial transformation and humification of organic N in two types of red soils by incubating the soils amended with labelled material.The results showed that there was little significant difference in biomass N transformation in the tested solis between 15N tracer method and conventional method,but the amount of NH4++-N released form the ryegrass in the clayey soil than in the sandy soil at all sampling time .By 120d of incubation,humified N was less than 10% of the amount of the applied N in two types of red soils and the amount of residual N in the clayey red soil was obviously higher than that in the sandy red soil.

  6. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    Science.gov (United States)

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry. PMID:15625718

  7. Using delta15N values to characterise the nitrogen nutrient pathways from intensive animal units.

    Science.gov (United States)

    Skinner, R A; Ineson, P; Jones, H; Sleep, D; Rank, R

    2006-01-01

    Previous studies on foliar delta15N values, in certain bryophytes, have indicated signature similarities to source pollutants. The object of this study was to investigate the effect further, by examining the mechanisms whereby isotopic fractionation occurs in systems such as atmospheric ammonia (NH3), throughfall, vegetation and soil. Measurements taken in and around point emission sources will then be used to characterise the various fractionation effects associated with these N transformations, as well as to demonstrate some of the issues associated with using delta15N values as pollution indicators. The atmospheric dispersion model UK-ADMS has also been used to model atmospheric delta15NH3 emissions, with signatures exhibiting marked negative shifts immediately downwind of an agricultural NH3 source. Similar dispersion patterns were mapped for NH3 concentration data illustrating the link between these two forms of measurement.

  8. Study of the giant dipole resonances of 16O and 15N by means of radiative captures

    International Nuclear Information System (INIS)

    The giant dipole resonance in 16O and 15N is studied with reactions 14N(d,γ0)16O, 13C(3He,γ0)16O and 11B(α,γ0)15N. The same energy range is observed with transfert reactions as 12C(7Li,αγ)15N. A comparative study of radiative captures leading to 16O and 15N point out the importance of nsub(p)-nsub(t) configurations. Apparatus and experimental techniques developed are also described

  9. δ15N in the turtle grass from the Mexican Caribbean

    Science.gov (United States)

    Talavera-Saenz, A.; Sanchez, A.; Ortiz-Hernandez, M.

    2013-05-01

    Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development and population to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of high tourism development (Nichupte Lagoon in Cancun, >3 million tourists per year from 2007 to 2011 and 0.7 million of resident population) and decreased towards Bahia Akumal and Tulum (>3 million tourists per year from 2007 to 2011 and 0.15 million of resident population). The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos (about 0.4 million tourists per year in 2007 to 2011 and 0.25 million of resident population) than other the sites. In areas of the lowest development and with tourist activity restricted and small population, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were in much higher enrichment that Mahahual and Puerto Morelos. Therefore is suggested that Mahahual and Puerto Morelos may be used for baseline isotopic monitoring, over environmental pressure on the reef lagoon ecosystem, where tourist activities and population are growing very slow rate. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.

  10. Determination of the δ15N of total nitrogen in solids; RSIL lab code 2893

    Science.gov (United States)

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the δ(15N/14N), abbreviated as δ15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.

  11. Aqua ammonia 15 N obtaining and application with vainness for sugar-cane fertilization

    International Nuclear Information System (INIS)

    Nitrogen compounds marked with the isotope 15 N are continuously being used in agronomic studies and, when associated to the isotopic dilution technique, they constitute an important tool in clarifying the N cycle. At the Centro de Energia Nuclear na Agricultura (CENA/USP), it was obtained ( 15 NH4)2SO4 enhanced at 3,5% of 15 N atoms, by means of the ionic exchange chromatography technique, which made possible to produce aqua ammonia (15 NH3aq). Four repetitions were taken to the aqua ammonia production process to use the nitrogen compound in the field experiment. In each process 150g of ammonium sulfate enhanced at 3,5% of 15 N atoms was used, obtaining 31,0 ± 1,6 g of aqua ammonia on the average (80% yield), with the same enhancement. The incidence of isotopic dilution has not been observed during the procedure, what made the use of such methodology possible. After obtaining the aqua ammonia 15 N through this procedure, it was added to the vinasse (an equivalent to 50 m3 ha-1 ) in doses that corresponded to 70 kg ha-1 of N-NH3aq. The mixture was applied to the sugar-cane straw on the soil's surface, aimed to the crop's fertilization. The compound's isotopic composition was analyzed by means of a spectrometer of masses ANCA-SL Europe Scientific, while the total-N volatilized, by the micro-Kjeldahl. Method. In accordance to the low NH3 (6,4 ± 1,9 kg ha-1 ) volatilization results, it could be concluded that the application of vinasse and aqua ammonia mixture to the straw on the soil's surface was efficient, due to the vinasse's acid character, which allowed the NH3, in presence of the ion H+, to stay in the NH4+ form in solution. (author)

  12. ~(15)N Isotope Used for Study of Groundwater Nitrogen Pollution in Shijiazhuang City, China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ~(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...

  13. Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent

    Science.gov (United States)

    Hadwen, Wade L.; Arthington, Angela H.

    2007-01-01

    Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.

  14. 13N,15N isotope and kinetic evidence against hyponitrite as an intermediate in dentrification.

    Science.gov (United States)

    Hollocher, T C; Garber, E; Cooper, A J; Reiman, R E

    1980-06-10

    13N- and 15N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap [13N]- or [15N,15N]hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mM. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during dentrifucation, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in dentrification. In addition, the assimilation of inorganic nitrogen was studied in P. denitrificans using 13N as tracer. At low concentrations (less than 10(-8) M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N2. Similarly, with 15 mM [13N]nitrate, 5% of the label went into metabolites and 95% to N2. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction. PMID:7372623

  15. Plot-size for 15N-fertilizer recovery studies by tanzania-grass

    International Nuclear Information System (INIS)

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the 15N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for 15N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m2 plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with 15N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  16. Behavior of 15N-labelled amino acids in germinated corn

    International Nuclear Information System (INIS)

    By investigating the rise and fall of 15N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. 15N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. 15N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body. (Kobatake, H.)

  17. Conformational study of C8 diazocine turn mimics using {sup 3}J{sub CH} coupling constants with {sup 13}C in natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Bean, J.W.; Briand, J.; Burgess, J.L.; Callahan, J.F. [SmithKline Beecham Pharmaceuticals, King of Prussia, PA (United States)

    1994-12-01

    The conformations of two diazocine turn mimics, which were later incorporated into GPIIb/IIIa peptide antagonists, were investigated using nuclear magnetic resonance techniques. The two compounds, methyl (2,5-dioxo-3-(S)-(3-{omega}-tosylguanidino-propyl)-4-methyl-octahydro-1,4-dazocin-1-yl)acetate (1) and methyl (2,5-dioxo-3-(S)-(3-{omega}-tosyl-guanidino-propyl)-octahydro-1,5-diazocin-1-yl)acetate (2), differ only in their substituent at the diazocine position 4 nitrogen, yet this substitution results in a marked difference in the affinity of the resulting analogs for the GPIIb/IIIa receptor. It was of interest to determine if the difference observed in the antagonistic potency between these analogs was related to constitutional or, perhaps, conformational differences. The backbone conformations of these two molecules can be determined by measuring vicinal coupling constants along the trimethylene portion of the C8 ring backbone and by measuring interproton NOE intensities between the diazocine methine proton and the protons of the trimethylene group. For compound 1, {sup 3}J{sub HH} values measured from a P.E.COSY spectrum and interproton distances calculated from ROESY buildup curves indicated the presence of a single C8 ring backbone conformation where the trimethylene bridge adopted a staggered conformation and the H{alpha}1 and H{gamma}1 protons of the trimethylene group were 2.2 A from the methine proton. For compound 2, however, partial overlap of the central H{beta}1 and H{beta}2 protons made it impossible to measure {sup 3}J{sub HH} values from the P.E.COSY spectrum. We therefore used a {sup 13}C-filtered TOCSY experiment to measure the {sup 3}J{sub CH} values in both compounds 1 and 2. These heteronuclear vicinal coupling constants measured with {sup 13}C in natural abundance in conjunction with measured interproton NOE intensities indicate that these compounds share a common C8 ring backbone conformation.

  18. The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Andersen, A. J.; Thomsen, J. D.

    1985-01-01

    The distriution of seed-borne N in shoot and root of pea and field bean was studied using three methods: 1) determination of the N content in shoot and root of plants grown in sand culture without other N sources. 2) 15N isotope dilution in plants grown in Rhizobium-free medium supplied with 15N-...

  19. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Science.gov (United States)

    Fogel, M. L.; Wooller, M. J.; Cheeseman, J.; Smallwood, B. J.; Roberts, Q.; Romero, I.; Meyers, M. J.

    2008-12-01

    Extremes in δ15N values in mangrove tissues and lichens (range =+4 to -22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6-9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from -12‰ to -2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰). Isotopically depleted ammonia in the atmosphere (δ15N=-19‰) and in rainwater (δ15N=-10‰) were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  20. Unusually negative nitrogen isotopic compositions (δ15N of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Directory of Open Access Journals (Sweden)

    I. Romero

    2008-12-01

    Full Text Available Extremes in δ15N values in mangrove tissues and lichens (range =+4 to −22‰ were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6–9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from −12‰ to −2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰. Isotopically depleted ammonia in the atmosphere (δ15N=−19‰ and in rainwater (δ15N=−10‰ were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  1. Thousand Year Archives of the Bulk and Compound-Specific δ15N of Export Production From the North Pacific Subtropical Gyre Indicate Increasing Nitrogen Fixation Over the Past 150 Years

    Science.gov (United States)

    Sherwood, O.; Batista, F. C.; Brown, J. T.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Stable nitrogen isotopic analysis of amino acids (δ15N-AA) preserved in proteins has emerged as a powerful new tool to explore trophic levels and nutrient cycling in nature. To date, little has been done to explore δ15N-AA in paleo-studies of the marine nitrogen cycle. We analysed the bulk and AA-specific δ15N in the long-lived, deep-sea, proteinaceous coral Gerardia. By feeding on sinking particulate organic matter, proteinaceous corals integrate the biogeochemical signature of recently exported production within discrete skeletal growth layers. Sub-decadal resolution time-series records spanning the time period 1000 AD to present were generated from specimens of Gerardia collected from the main Hawaiian Islands, Cross Seamount, and French Frigate Shoals in the North Pacific Subtropical Gyre (NPSG). Records of bulk δ15N from the three different locations, geographically separated by up to 1000 km, showed remarkably similar long term trends. Bulk δ15N remained relatively stable from ~1000-1850 years AD, and then decreased by a total of 2 ‰ from ~1850 AD to the present. The δ15N-AA of the "trophic" group of amino acids indicated no significant changes in trophic level or microbial re-synthesis of export production over this time period. The δ15N of "source" amino acids was significantly correlated with corresponding values of bulk δ15N, with the δ15N of phenylalanine decreasing from 4.2 to 2.1‰. The latter value is similar to recent measurements of subsurface nitrate δ15N near Hawaii, suggesting that the δ15N of phenylalanine may be used to quantitatively track changes in the isotopic signature of nitrate at the base of the food web. Using a simple isotopic mass balance between upwelled nitrate and nitrogen fixation we calculate a 30% increase in nitrogen fixation in the NPSG since ~1850. These results provide invaluable long-term context for recent observations, and highlight profound changes in the marine biogeochemical cycling of nitrogen over the

  2. Intestinal renal metabolism of L-citrulline and L-arginine following enteral or parenteral infusion of L-alanyl-L-[2,15N]glutamine or L-[2,15N]glutamine in mice.

    Science.gov (United States)

    Boelens, Petra G; van Leeuwen, Paul A M; Dejong, Cornelis H C; Deutz, Nicolaas E P

    2005-10-01

    Previously, we observed increased plasma arginine (ARG) concentrations after glutamine (GLN)-enriched diets, in combination with clinical benefits. GLN delivers nitrogen for ARG synthesis, and the present study was designed to quantify the interorgan relationship of exogenous L-GLN or GLN dipeptide, by enteral or parenteral route, contributing to intestinal citrulline (CIT) and renal de novo ARG synthesis in mice. To study this, we used a multicatheterized mouse model with Swiss mice (n = 43) in the postabsorptive state. Stable isotopes were infused into the jugular vein or into the duodenum {per group either free L-[2,(15)N]GLN or dipeptide L-ALA-L-[2,(15)N]GLN, all with L-[ureido-(13)C-(2)H(2)]CIT and L-[guanidino-(15)N(2)-(2)H(2)]ARG} to establish renal and intestinal ARG and CIT metabolism. Blood flow was measured using (14)C-para-aminohippuric acid. Net intestinal CIT release, renal uptake of CIT, and net renal ARG efflux was found, as assessed by arteriovenous flux measurements. Quantitatively, more de novo L-[2,(15)N]CIT was produced when free L-[2,(15)N]GLN was given than when L-ALA-L-[2,(15)N]GLN was given, whereas renal de novo L-[2,(15)N]ARG was similar in all groups. In conclusion, the intestinal-renal axis is hereby proven in mice in that L-[2,(15)N]GLN or dipeptide were both converted into de novo renal L-[2,(15)N]ARG; however, not all was derived from intestinal L-[2,(15)N]CIT production. In this model, the feeding route and form of GLN did not influence de novo renal ARG production derived from GLN.

  3. Unusually negative nitrogen isotopic compositions (δ15N of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Directory of Open Access Journals (Sweden)

    I. Romero

    2008-02-01

    Full Text Available Extremes in (δ15N values in mangrove tissues and lichens (range = +4 to −22‰ were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, atmospheric ammonia, mangrove leaves, roots, stems, and wood, and lichens, were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Porewater ammonium concentrations had little to no relationship to N isotopic fractionation in mangrove tissues. The δ15N of fine and coarse roots was 9‰ more positive than leaf tissue from the same tree. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year to a &delta:15N closer to the &delta:15N of porewater ammonium (δ15N=+4‰. Isotopically negative ammonia in the atmosphere (δ15N=−18‰ and in rainwater (δ15N=−9‰ were found on Twin Cays and may be sources of available N for isotopically depleted mangrove trees and lichens. In highly stressed, severely P limited trees, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  4. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    Science.gov (United States)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  5. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  6. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs. PMID:21700869

  7. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    Science.gov (United States)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation

  8. Resonance strengths in the 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions

    CERN Document Server

    Marta, Michele; Bemmerer, Daniel; Beyer, Roland; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Fülöp, Zsolt; Grosse, Eckart; Gyürky, György; Hannaske, Roland; Junghans, Arnd R; Menegazzo, Roberto; Nair, Chithra; Schwengner, Ronald; Szücs, Tamás; Vezzú, Simone; Wagner, Andreas; Yakorev, Dmitry

    2010-01-01

    The 14N(p,gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p,alpha gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p,gamma)15O and at Ep = 897 and 430 keV in 15N(p,alpha gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p,gamma)15O. The new recommended values are \\omega\\gamma = 0.352$\\pm$0.018, 362$\\pm$20, and 22.0$\\pm$0.9\\,eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p,gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resona...

  9. Structure effects in the $^{15}$N($n,\\gamma$)$^{16}$N radiative capture reaction from the Coulomb dissociation of $^{16}$N

    CERN Document Server

    Neelam,; Chatterjee, R

    2015-01-01

    Purpose : The aim of this paper is to calculate the $^{15}$N($n, \\gamma$)$^{16}$N radiative capture cross section and its subsequent reaction rate by an indirect method and in that process investigate the effects of spectroscopic factors of different levels of $^{16}$N to the cross section. Method : A fully quantum mechanical Coulomb breakup theory under the aegis of post-form distorted wave Born approximation is used to calculate the Coulomb breakup of $^{16}$N on Pb at 100 MeV/u. This is then related to the photodisintegration cross section of $^{16}$N($\\gamma, n$)$^{15}$N and subsequently invoking the principle of detailed balance, the $^{15}$N($n, \\gamma$)$^{16}$N capture cross section is calculated. Results : The non-resonant capture cross section is calculated with spectroscopic factors from the shell model and those extracted (including uncertainties) from two recent experiments. The data seems to favor a more single particle nature for the low-lying states of $^{16}$N. The total neutron capture rate i...

  10. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 8

    International Nuclear Information System (INIS)

    Over 4 days 12 colostomized laying hens received, together with the ration, 36 g wheat with 14.37 atom-% 15N excess (15N'). The basic amino acids were nearly equally labelled. Three animals each were butchered after 12 h, 36 h, 60 h, and 108 h, resp., after the last 15N' application. Emission spectrometric determination of 15N' in liver and in amino acids was carried out. In addition, atom-% 15N' was determined in free amino acids and peptides. The labelling in the liver 12 h after the last 15N' application amounted to 1.75 atom-% 15N' and decreased after 108 h to 0.81 atom-% 15N'. The average TCA precipitable 15N' quota in the total 15N' amounted to 81.4% and was nearly identical at all four measuring points. The arginine 15N' amount in the liver was twice as high as that of lysine 15N'. In dependence on the period after the last 15N' application the decrease in the labelling of free arginine is considerable in comparison to free lysine. At the first measuring point (12 h) it was 1.69 atom-% 15N' and at the last one (108 h) 0.57 atom-% 15N'. Based on the results of 15N' labelling of peptides in the liver further, more detailed experiments for studies of peptide metabolism in the liver should be carried out. (author)

  11. Nitrogen (15N) accumulation in corn grains as affected by source of nitrogen in red latosol

    International Nuclear Information System (INIS)

    Nitrogen is the most absorbed mineral nutrient by corn crop and most affects grains yield. It is the unique nutrient absorbed by plants as cation (NH4+) or anion (NO3-). The objectives of this work were to investigate the N accumulation by corn grains applied to the soil as NH4+ or NO3- in the ammonium nitrate form compared to amidic form of the urea, labeled with 15N; to determine the corn growth stage with highest fertilizer N utilization by the grains, and to quantify soil nitrogen exported by corn grains. The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwestern Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil, in a Red Latosol. The experimental design was completely randomized blocks, with 13 treatments and four replications, disposed in factorial outline 6x2 + 1 (control, without N application). A nitrogen rate equivalent to 120 kg N ha-1 as urea-15N or as ammonium nitrate, labeled in the cation NH4+ (15NH4+NO3-) or in the anion NO3- (NH4+15N+O3- ), was applied in six fractions of 20 kg N ha-1 each, in different microplots, from seeding to the growth stage 7 (pasty grains). The forms of nitrogen, NH4+-N and NO3--N, were accumulated equitably by corn grains. The corn grains accumulated more N from urea than from ammonium nitrate. The N applied to corn crop at eight expanded leaves stage promoted largest accumulation of this nutrient in the grains. (author)

  12. Application of 13C natural abundance to elucidate compositional changes of soil organic matter following woodland clearance for maize cultivation in Zimbabwe

    International Nuclear Information System (INIS)

    The 13C natural abundant technique was used to trace the fate woodland soil organic carbon (SOC) following clearance of woodland for maize cultivation, and to estimate the subsequent contribution by the maize to the SOC pool along cultivation chronosequences on three different soil types in Zimbabwe. Differentiation of SOC according to its source is made possible by differences in depletion of the 13C isotope between woodland vegetation (mostly C3) and the maize crop (C4). Plants with a C3 photosynthetic pathway (most herbs and trees) discriminate more strongly against 13CO2 and their δ13C values range from -22 to -32 %, whilst C4 plants (tropical grasses and cereals) are less depleted and have δ13C values ranging between -9 to -17 %. Three sites under subsistence maize production were selected at Mafungautsi under Kalahari sands (clay ∼ 3%), Masvingo under granitic sands (clay ∼ 10%) and Chikwaka under dolerite derived clay soil (clay ∼ 35%). Parallels were drawn with measurements taken at a commercial maize production site in Chikwaka where management involved use of large amount of mineral fertilizers and stover return, to assess the effect of contrasting management on dynamics of SOM derived from different sources. In the Kalahari sand, the δ13C value of SOC remained remarkably constant after woodland clearance, and maize contributed less than 10% of the total SOC even after 55 years. The bulk of the SOC present in the cultivated soils was that derived from the native woodland vegetation. δ13C of soil organic carbon increased slightly with increasing length of smallholder cultivation in the Masvingo granitic sands and Chikwaka clay soil where maize contributed 29% and 35% of the soil organic carbon at equilibrium. Under more productive commercial farming the soil organic carbon derived from maize accounted for 50% of soil organic carbon after 10 years of cultivation and 67% at equilibrium. The small contribution of maize to soil organic matter at the

  13. Effect of estrogens on urinary /sup 15/N balance in girls

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, M.; Kempken, B.; Prader, A. (Zurich Univ. (Switzerland))

    1984-08-01

    While the anabolic and growth-promoting effects of testosterone are known to be important for pubertal growth in boys, the role of estrogens (E) in the female spurt is less certain. Adrenal androgens have been considered to be more important than ovarian E. To study the anabolic effects of E, there has been carried out a pilot study in 9 girls aged 11 to 15 years. Before and 6 days after the start of E treatment, urinary /sup 15/N balance studies were performed, using /sup 15/NH/sub 4/Cl.

  14. Search for antiproton-{sup 15}N bound state in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dexu [Helmholtz Institut Mainz, 55128 Mainz (Germany); Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, 55099 Mainz (Germany); Larionov, Alexei; Mishustin, Igor [Frankfurt Institute for Advanced Studies (FIAS), D-60438 Frankfurt am Main (Germany); National Research Center ' ' Kurchatov Institute' ' , 123182 Moscow (Russian Federation); Ma, Yue [RIKEN, Saitama 351-0198 (Japan); Maas, Frank [Helmholtz Institut Mainz, 55128 Mainz (Germany); Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, 55099 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, GmbH, 64291 Darmstadt (Germany)

    2013-07-01

    In order to study the antiproton-nucleus potential (antimatter-mater potential), and prepare a possible experiment for the PANDA spectrometer at FAIR facility, we carried out a calculation with the Giessen-Boltzman-Uehling-Uhlenbeck(GiBUU) model. The calculation was performed for an antiproton beam energy 1.5 GeV and an {sup 16}O target. The interesting events, which provide information about the antiproton-{sup 15}N potential, are required to have one knocked-out proton in forward direction and two or more pions from the antiproton annihilation at rest. Preliminary results of these studies are presented.

  15. Comparison of {sup 15}N- and {sup 13}C-determined parameters of mobility in melittin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lingyang [University Indianapolis, Department of Physics, Indiana University Purdue (United States); Prendergast, Franklyn G. [Mayo Foundation, Department of Pharmacology (United States); Kemple, Marvin D. [University Indianapolis, Department of Physics, Indiana University Purdue (United States)

    1998-07-15

    Backbone and tryptophan side-chain mobilities in the 26-residue, cytolytic peptide melittin (MLT) were investigated by {sup 15}N and {sup 13}C NMR. Specifically, inverse-detected {sup 15}N T{sub 1} and steady-state NOE measurements were made at 30 and 51 MHz on MLT at 22 deg. C enriched with {sup 15}N at six amide positions and in the Trp{sup 19} side chain. Both the disordered MLT monomer (1.2 mM peptide at pH 3.6 in neat water) and {alpha}-helical MLT tetramer (4.0 mM peptide at pH 5.2 in 150 mM phosphate buffer) were examined. The relaxation data were analyzed in terms of the Lipari and Szabo model-free formalism with three parameters: {tau}{sub m}, the correlation time for the overall rotation; S{sup 2}, a site-specific order parameter which is a measure of the amplitude of the internal motion; and {tau}{sub e}, a local, effective correlation time of the internal motion. A comparison was made of motional parameters from the {sup 15}N measurements and from {sup 13}C measurements on MLT, the latter having been made here and previously [Kemple et al. (1997) Biochemistry, 36, 1678-1688]. {tau}{sub m} and {tau}{sub e} values were consistent from data on the two nuclei. In the MLT monomer, S{sup 2} values for the backbone N-H and C{alpha}-H vectors in the same residue were similar in value but in the tetramer the N-H order parameters were about 0.2 units larger than the C{alpha}-H order parameters. The Trp side-chain N-H and C-H order parameters, and {tau}{sub e} values were generally similar in both the monomer and tetramer. Implications of these results regarding the dynamics of MLT are examined.

  16. Mineralization of 15N-labelled sheep manure in soils of different texture and water contents

    OpenAIRE

    I. K. Thomsen; Schjønning, P.; B. T. Christensen

    2003-01-01

    In order to investigate the effect of soil moisture and texture on C and N mineralization of applied organic matter, sheep faeces was sandwiched between two halves of intact soil cores and incubated at 20°C. The soils contained 10.8 (L1), 22.4 (L3) and 33.7% (L5) clay, respectively, and were drained to seven different matric potentials in the range –15 to –1500 hPa. Evolution of CO2-C was determined during four weeks of incubation. Contents of NO3-N, 15N and microbial biomass N were determine...

  17. Determination of the δ15N of nitrate in water; RSIL lab code 2899

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2899 is to determine the δ15N of nitrate (NO3-) in water. The δ15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of the NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  18. Determination of the δ15N of nitrate in solids; RSIL lab code 2894

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2894 is to determine the δ15N of nitrate (NO3-) in solids. The nitrate fraction of the nitrogen species is dissolved by water (called leaching) and can be analyzed by the bacterial method covered in RSIL lab code 2899. After leaching, the δ15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  19. Renal ischemia and reperfusion assessment with three-dimensional hyperpolarized (13) C,(15) N2-urea

    DEFF Research Database (Denmark)

    Nielsen, Per Mose; Szocska Hansen, Esben Søvsø; Nørlinger, Thomas Stokholm;

    2016-01-01

    . METHODS: Hyperpolarized three-dimensional balanced steady-state (13) C magnetic resonance imaging (MRI) experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements were performed in rats subjected to unilateral renal ischemia for 60-minute and 24-hour......,(15) N2 urea MRI can be used to successfully detect changes in the intrarenal urea gradient post-IRI, thereby enabling in vivo monitoring of the intrarenal functional status in the rat kidney. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine....

  20. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    Science.gov (United States)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  1. Optical Microscopy Characterization for Borehole U-15n#12 in Support of NCNS Source Physics Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jennifer E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sussman, Aviva Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-22

    Optical microscopy characterization of thin sections from corehole U-15n#12 is part of a larger material characterization effort for the Source Physics Experiment (SPE). The SPE program was conducted in Nevada with a series of explosive tests designed to study the generation and propagation of seismic waves inside Stock quartz monzonite. Optical microscopy analysis includes the following: 1) imaging of full thin sections (scans and mosaic maps); 2) high magnification imaging of petrographic texture (grain size, foliations, fractures, etc.); and 3) measurement of microfracture density.

  2. 15N Solid-State NMR as a Probe of Flavin H-bonding

    OpenAIRE

    Cui, Dongtao; Koder, Ronald L.; Dutton, P. Leslie; Miller, Anne-Frances

    2011-01-01

    Flavins mediate a wide variety of different chemical reactions in biology. To learn how one cofactor can be made to execute different reactions in different enzymes, we are developing solid-state NMR (SSNMR) to probe the flavin electronic structure, via the 15N chemical shift tensor principal values (δii). We find that SSNMR has superior responsiveness to H-bonds, compared to solution NMR. H-bonding to a model of the flavodoxin active site produced an increase of 10 ppm in the δ11 of N5 altho...

  3. The $^{15}$N($\\bm\\alpha$,$\\bm\\gamma$)$^{19}$F reaction and nucleosynthesis of $^{19}$F

    OpenAIRE

    Wilmes, S.; Wilmes, V.; Staudt, G.; Mohr, P; Hammer, J. W.

    2002-01-01

    Several resonances in the $^{15}$N($\\alpha$,$\\gamma$)$^{19}$F reaction have been investigated in the energy range between 0.6 MeV and 2.7 MeV. Resonance strengths and branching ratios have been determined. High sensitivity could be obtained by the combination of the {\\sc{dynamitron}} high current accelerator, the windowless gas target system {\\sc{rhinoceros}}, and actively shielded germanium detectors. Two levels of $^{19}$F could be observed for the first time in the ($\\alpha$,$\\gamma$) chan...

  4. Characteristics of the δ ^{15} N_{NO_3 } distribution and its drivers in the Changjiang River estuary and adjacent waters

    Science.gov (United States)

    Wang, Wentao; Yu, Zhiming; Song, Xiuxian; Wu, Zaixing; Yuan, Yongquan; Zhou, Peng; Cao, Xihua

    2016-05-01

    In this study, we conducted investigations in the Changjiang (Yangtze) River estuary and adjacent waters (CREAW) in June and November of 2014. We collected water samples from different depths to analyze the nitrogen isotopic compositions of nitrate, nutrient concentrations (including inorganic N, P, and Si), and other physical and biological parameters, along with the vertical distribution and seasonal variations of these parameters. The compositions of nitrogen isotope in nitrate were measured with the denitrifier method. Results show that the Changjiang River diluted water (CDW) was the main factor aff ecting the shallow waters (above 10 m) of the CREAW, and CDW tended to influence the northern areas in June and the southern areas in November. δ ^{15} N_{NO_3 } values in CDW ranged from 3.21‰-3.55‰. In contrast, the deep waters (below 30 m) were aff ected by the subsurface water of the Kuroshio Current, which intruded into the waters near 31°N in June. The δ ^{15} N_{NO_3 } values of these waters were 6.03‰-7.6‰, slightly higher than the values of the Kuroshio Current. Nitrate assimilation by phytoplankton in the shallow waters of the study area varied seasonally. Because of the favorable temperature and nutrient conditions in June, abundant phytoplankton growth resulted in harmful algae blooms (HABs). Therefore, nitrate assimilation was strong in June and weak in November. The δ ^{15} N_{NO_3 } fractionations caused by assimilation of phytoplankton were 4.57‰ and 4.41‰ in the shallow waters in June and November, respectively. These results are consistent with previous laboratory cultures and in situ investigations. Nitrification processes were observed in some deep waters of the study area, and they were more apparent in November than in June. The fractionation values of nitrification ranged from 24‰-25‰, which agrees with results for Nitrosospira tenuis reported by previous studies.

  5. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  6. Oxygen determination in materials by 18O(p,αγ)15N nuclear reaction

    Science.gov (United States)

    Kumar, Sanjiv; Sunitha, Y.; Reddy, G. L. N.; Sukumar, A. A.; Ramana, J. V.; Sarkar, A.; Verma, Rakesh

    2016-07-01

    The paper presents a proton induced γ-ray emission method based on 18O(p,αγ)15N nuclear reaction to determine bulk oxygen in materials. The determination involves the measurement of 5.27 MeV γ-rays emitted following the de-excitation of 15N nuclei. A description of the energetics of the reaction is given to provide an insight into the origin of 5.27 MeV γ-rays. In addition, thick target γ-ray yields and the limits of detection are measured to ascertain the analytical potential of the reaction. The thick-target γ-ray yields are measured with a high purity germanium detector and a bismuth germanate detector at 0° as well as 90° angles in 3.0-4.2 MeV proton energy region. The best limit of detection of about 1.3 at.% is achieved at 4.2 MeV proton energy for measurements at 0° as well 90° angles with the bismuth germanate detector while the uncertainty in quantitative analysis is methodology is demonstrated by determining oxygen in several oxide as well as non-oxide materials.

  7. Study on Nitrogen Forms in Phenolic Polymers Incorporating Protien by 15N CP—MAS NMR

    Institute of Scientific and Technical Information of China (English)

    CHENGLILI; WENQIXIAO; 等

    1996-01-01

    Phenolic polymers synthesized by reactions by reactions of p-benzoquinone with 15N-labelled protein or (15NH4)2SO4 were studied by using 15N CP-MAS NMR technique in combination with chemical approaches.Results showed that more than 80% of nitrogen in quinone-protein polymers was in the form of amide with some present as aromatic and /or aliphatic amine and less than 10% of nitrogen occurred as heterocyclic N.The nitrogen distribution in the non-hydrolyzable residue of the quinone-protein polymers was basically similar to that of soil humic acid reported in literature with the exception that a higher proportion of N as heterocyclic N and aromatic amine and a lower proportion of N as amide and aliphatic amine were found in the former than in the latter,More than 70% of total nitrogen in quinone-(NH4)2OS4 polymer was acid resistant ,of which about 53% occurred as pyrrole,nitrile and imion type N.The possible roles of the reactions of phenols or quinones with proteins in the formation of humic acid.especially the non-hydrolyzable nitrogen in humicacid,are discussed.

  8. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    Science.gov (United States)

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  9. The Origin of Nitrogen on Jupiter and Saturn from the $^{15}$N/$^{14}$N Ratio

    CERN Document Server

    Fletcher, Leigh N; Orton, Glenn S; Irwin, Patrick G J; Mousis, Olivier; Sinclair, James A; Giles, Rohini S

    2014-01-01

    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA's Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues ($^{15}$N/$^{14}$N) can reveal insights into the molecular carrier (e.g., as N$_2$ or NH$_3$) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm$^{-1}$) that were relatively clear of terrestrial atmospheric contamination and contained close features of $^{14}$NH$_3$ and $^{15}$NH$_3$, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter's $^{15}$N/$^{14}$N ratio (in the range from $1.4\\times10^{-3}$ to $2.5\\times10^{-3}$), which is consistent...

  10. Nutritional status of sugar cane (planted cane) in 15N experiments

    International Nuclear Information System (INIS)

    Studies with stable isotopes are becoming more common due to the increased safety of operation and quality and reliability of results. However, the use of microplots is required to decrease the costs of such studies. Since microplots are small compared to regular plot areas, the purpose of this study was to investigate whether nutritional data based on microplot samples can adequately represent the whole area, in a comparison of the nutritional status of microplot sugar cane plants at their maximum development stage with those of the regular plots in experiments with N rates. Three experiments were set up, with three N rates (40, 80, and 120 kg ha-1 N) and a control, with four repetitions, in a randomized complete block design, in the state of Sao Paulo. Microplots of 3 m2 containing 15N-fertilizer (5.04% atom 15N) were included in the main plots formed by 48 lines of sugar cane spaced 1.5 m apart. At the time of maximum development stage, diagnostic leaves were collected in the main and microplots to evaluate the nutritional status of plants by analyzing the total concentration of macro nutrients. There were no differences in N, P, Ca, Mg, and S concentrations in the diagnostic leaves from the main and microplots, so that the latter can be considered representative of the experimental area. Higher nitrogen fertilizer rates induced increased concentrations of not only N, but also of P, Ca, Mg, and S in the diagnostic leaves. (author)

  11. {delta}{sup 15}N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M.; Kayanne, H.; Yamano, H

    2003-04-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;{>=}1.0 {mu}M) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and {delta}{sup 15}N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical {delta}{sup 15}N values were found in seagrass leaves of several species at each site. The correlations between {delta}{sup 15}N and nutrient concentrations and between {delta}{sup 15}N and molar ratios of nutrients suggested that nutrient availability did not affect the {delta}{sup 15}N value of seagrass leaves by altering the physiological condition of the plants. Increases in {delta}{sup 15}N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that {delta}{sup 15}N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water.

  12. {sup 15}N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio, E-mail: ambrosano@apta.sp.gov.b [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicapa, SP (Brazil). Polo Rigional Centro Sul; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Cantarella, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Instituto Agronomico de Campinas. Centro de Solos e Recursos Agroambientais; Ambrosano, Glaucia Maria Bovi [Universidade de Campinas (UNICAMP/FOP), Piracicaba, SP (Brazil). Fac. de Odontologia de Piracicaba. Dept. de Odontologia Social, Bioestatistica; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Instituto de Zootecnia; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fertilidade do solo

    2011-05-15

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the {sup 15}N tracer technique. N was added at the rate of 196 and 70 kg ha{sup -1} as {sup 15}N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS{sup 15}N; (III) SH{sup 15}N + AS; (IV) SH{sup 15}N; and (V) AS{sup 15}N + SH. Sugarcane was cultivated for five years and was harvested three times. {sup 15}N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha{sup -1}. (author)

  13. Homogeneity of δ15N in needles of Masson pine (Pinus massoniana L.) was altered by air pollution

    International Nuclear Information System (INIS)

    The present study investigated the changes of δ15N values in the tip, middle and base section (divided by the proportion to needle length) of current- and previous-year needles of Masson pine (Pinus massoniana L.) from two declining forest stands suffering from air pollution, in comparison with one healthy stand. At the healthy stand, δ15N in the three sections of both current- and previous-year needles were found evenly distributed, while at the polluted stands, δ15N values in the needles were revealed significantly different from the tip to the base sections. The results implied that the distribution of δ15N among different parts or sections in foliages was not always homogeneous and could be affected by air pollution. We suggested that the difference of δ15N values among pine needle sections should be reconsidered and should not be primarily ignored when the needle δ15N values were used to assess plant responses to air pollution. - Values of δ15N in needles of Masson pine (Pinus massoniana L.) were uneven and affected by air pollution.

  14. Diffusion technique for 15N and inorganic N analysis of low-N aqueous solutions and Kjeldahl digests.

    Science.gov (United States)

    Chen, Rui Rui; Dittert, Klaus

    2008-06-01

    Diffusion of ammonia is a common sample preparation method for the stable isotope analysis of inorganic nitrogen in aqueous solution. Classical diffusion methods usually require 6-12 days of diffusion and often focus on (15)N/(14)N analysis only. More recent studies have discussed whether complete N recovery was necessary for the precise analysis of stable N isotope ratios. In this paper we present a newly revised diffusion technique that allows correct and simultaneous determination of total N and (15)N at% from aqueous solutions and Kjeldahl digests, with N concentrations down to sub-0.5-mg N L(-1) levels, and it is tested under different conditions of (15)N isotope labelling. With the modification described, the diffusion time was reduced to 72 h, while the ratios of measured and expected (15)N at% were greater than 99% and the simultaneous recovery of total N was >95%. Analysis of soil microbial biomass N and its (15)N/(14)N ratio is one of the most important applications of this diffusion technique. An experiment with soil extracts spiked with (15)N-labelled yeast showed that predigestion was necessary to prevent serious N loss during Kjeldahl digestion of aqueous samples (i.e. soil extracts). The whole method of soil microbial biomass N preparation for (15)N/(14)N analysis included chloroform fumigation, predigestion, Kjeldahl digestion and diffusion. An experiment with soil spiked with (15)N-labelled yeast was carried out to evaluate the method. Results showed a highly significant correlation of recovered and added N, with the same recovery rate (0.21) of both total N and (15)N. A k(N) value of 0.25 was obtained based on the data. In conclusion, the diffusion method works for soil extracts and microbial biomass N determination and hence could be useful in many types of soil/water studies.

  15. Distribution of /sup 15/N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, M.A. (Universidad Nacional del Sur, Bahia Blanca (Argentina). Dept. de Ciencas Agrarias)

    1982-01-01

    We examined the distribution of residual /sup 15/N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either /sup 15/N-urea or /sup 15/N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH/sub 4/)/sub 2/SO/sub 4/. Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet.

  16. Medium-term effects of poultry manure on pine N uptake in a 15N labelled burnt soil.

    OpenAIRE

    Castro, A; González Prieto, S. J.; T. Carballas

    2008-01-01

    The effects of poultry manure (PM), used for the reclamation of a 15N-labelled burnt soil, on N nutrition of pine seedlings were evaluated during a year in a pot experiment. Six treatments were used: 15N-labelled soil (LS), 15N-labelled burnt soil (BLS) and BLS+PM at doses equivalent to 1, 2, 4 and 8 Mg ha-1 of dry PM (PM1, PM2, PM4 and PM8, respectively). Either in the whole tree or the different organs, N concentration: a) decreased (P # 0.05) in the order LS > BLS, BLS+PM1, BLS...

  17. Distribution of 15N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    International Nuclear Information System (INIS)

    We examined the distribution of residual 15N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either 15N-urea or 15N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH4)2SO4. Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet. (orig.)

  18. Dynamics of nitrogen in an oxic paleudalf soil with the incorporation of 15N-tagged organic nitrogen (maize straw) and 15N-tagged mineral nitrogen (ammonium sulphate)

    International Nuclear Information System (INIS)

    An experiment, carried out under field conditions in 12 lysimeters, each containing 3.0 ton of Oxic Paleudalf soil with four replicates, is described. This objective is labelling soil organic N. Nitrogen was incorporated into soil as maize straw, non-labelled and labelled with 15N and ammonium sulphate - 15N. The soil was sampled every 15 days in three different depths. N as NH+4, NO-3, total-N and (%)C and (%) moisture was analysed. (M.A.C.)

  19. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Wahid, Ahmad Nazrul Abd, E-mail: a-nazrul@nuclearmalaysia.gov.my [Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahim, Sahibin Abd, E-mail: haiyan@ukm.edu.my [Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor (Malaysia); Rahim, Khairuddin Abdul; Harun, Abdul Rahim [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  20. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    Science.gov (United States)

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-01

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15N isotope tracer method was used in this study, whereby the 15N isotope was utilized as a tracer for nitrogen nutrient uptake. 15N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  1. d15N dynamics of ammonium and particulate nitrogen during the growth season of a eutrophic estuary

    DEFF Research Database (Denmark)

    De Brabandere, Loreto; Brion, N.; Elskens, M.;

    2007-01-01

    We monitored the stable nitrogen isotopic composition (d15N) of suspended matter and ammonium in the freshwater stretch of the Scheldt estuary (Belgium) over a full year to investigate for seasonal evolution and possible co-variation between isotopic signatures. The d15N value of ammonium remained...... rather constant during winter (average = +11.4 pro mille) but increased significantly with the spring and summer bloom, reaching values as high as +70 pro mille. This enrichment of the ammonium pool in 15N coincided with significant ammonium depletion during summer period, suggesting a close causal...... relationship. Based on a semiclosed system approach we deduced an apparent fractionation factor associated with NH4+ utilization (i.e. combining effects of uptake and nitrification) of 18.4 pro mille (SE = 2.0 pro mille), which is similar to values reported in literature. Observed variations of ammonium d15N...

  2. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    International Nuclear Information System (INIS)

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15N isotope tracer method was used in this study, whereby the 15N isotope was utilized as a tracer for nitrogen nutrient uptake. 15N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained

  3. A 15N investigation of mineral fertilizer nitrogen assimilation in apples

    International Nuclear Information System (INIS)

    An experiment was made using six seedlings of the apple cv. Golden Delicious in their second year of growing. The roots of each seedling were divided and planted in two vegetation pots of 1 l capacity. Fertilizer application of 1 g NH4NO3 with 49.1 atom % 15N was effected to three of the plants in one of the pots, while to the remaining three plants in both pots the fertilizer application consisted of 0.5 g 15NH4NO3 for each pot. Isotope analysis of fertilizer N taken up was made and the coefficient of its assimilation was determined. Twenty-one days later the plants had assimilated 18.18-21.95% of the mineral N applied. This amount constituted 17.32-22.13% of the total N assimilated. The percent of assimilation was higher in case the fertilizer was applied to both pots

  4. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    Science.gov (United States)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  5. Bioavailability of nitrogen from sewage sludge using 15N-labelled ammonium sulphate

    International Nuclear Information System (INIS)

    The high nutrient nitrogen and organic matter contents of sewage sludge (SS) make it a potential organic fertilizer for sandy soil. In this study, 15N-labelled ammonium sulphate was used to investigate the availability of nitrogen from irradiated and non-irradiated sewage sludge to tomato plants. The application of sewage sludge to sandy soil increased dry matter production (DMP), nitrogen yield (NY) and nitrogen recovery (NR) over two successive years. A positive relationship was found between sludge application rate and DMP and NY. The increase was significantly higher (P=0.05) in irradiated than non-irradiated sewage sludge. Total nitrogen derived from non-irradiated sewage sludge are : 48.0, 63.7, 73.5, 105.2 Kg/ha, whereas, the total nitrogen derived from irradiated sewage sludge are: 55.1, 72.5, 88.9, 141.4 Kg/ha corresponding to application rates of 10 t/ha, 20 t/ha, 30 t/ha, respectively. This was attributed to higher dry matter production in the later than the former. A highly significant correlation (0.945**) was found between dry matter production and sludge nitrogen yield (i.e. nitrogen derived from sewage sludge). Fertilizer nitrogen yield (total nitrogen derived from fertilizer) was high in treatment receiving mineral fertilizer, however, the 15N recovery by tomato was only 13.8%. Soil did not contribute well towards total nitrogen yield in tomato and most nitrogen was derived from sewage sludge. Percent nitrogen derived from sewage sludge was in the range 88-92%, depending on the application rate

  6. Nitrogen acquisition, transport and metabolism in intact ectomycorrhizal associations studied by 15N stable isotope techniques

    International Nuclear Information System (INIS)

    The focus of this thesis is on the external mycelium and its role in nitrogen uptake, assimilation and translocation. Tree seedlings in association with ectomycorrhizal fungi were grown in observation chambers. The fungal mycelium were fed with 15-N ammonium or 15-N nitrate or a combination of both. The effects of Collembola on the ectomycorrhizal symbiosis were also studied. The results demonstrates an important role of the external mycelium of Paxillus involutus not only in the uptake but also in the assimilation of ammonium into a variety of different amino acids, primarily glutamine but also glutamic acid, aspartic acid, and alanine, immediately after uptake. The results indicate that ammonium is assimilated by GS and GOGAT or GDH in the mycelium at the uptake site. When nitrate was added to the mycelium as the sole nitrogen source nitrate was reduced in the mycelium and the product assimilated into amino acids. When ammonium nitrate was supplied to the fungal mycelium nitrate was taken up the fungus and transferred to the plant, however, apparently no assimilation of nitrate occurred in the external mycelium. Ammonium or an assimilation product, such as glutamine, probably represses nitrate reductase (NR) but not nitrate uptake and transfer in P. involutus. P. involutus nitrogen uptake and transfer to the associated mycorrhizal pine was up to 76% higher when low numbers of the Collembola Onychiurus armatus were present compared to when they were completely absent. This was probably an indirect effect as P. involutus hyphal growth rate and extramatrical biomass increased at a low Collembola density. At high Collembola densities P. involutus hyphal growth rate was retarded. (74 refs.)

  7. An optimized method for {sup 15}N R{sub 1} relaxation rate measurements in non-deuterated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gairí, Margarida, E-mail: mgairi@rmn.ub.edu [University of Barcelona (CCiTUB), NMR Facility, Scientific and Technological Centers (Spain); Dyachenko, Andrey [Institute for Research in Biomedicine (IRB) (Spain); González, M. Teresa; Feliz, Miguel [University of Barcelona (CCiTUB), NMR Facility, Scientific and Technological Centers (Spain); Pons, Miquel [University of Barcelona, Biomolecular NMR Laboratory and Organic Chemistry Department (Spain); Giralt, Ernest, E-mail: ernest.giralt@irbbarcelona.org [Institute for Research in Biomedicine (IRB) (Spain)

    2015-06-15

    {sup 15}N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. {sup 15}N CSA/{sup 1}H–{sup 15}N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of {sup 15}N R{sub 1} rates through {sup 1}H–{sup 15}N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable {sup 15}N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on {sup 15}N R{sub 1} rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during {sup 15}N R{sub 1} measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.

  8. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  9. Correlation between the synthetic origin of methamphetamine samples and their {sup 15}N and {sup 13}C stable isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Billault, Isabelle [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France)]. E-mail: Isabelle.Billault@univ-nantes.fr; Courant, Frederique [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Pasquereau, Leo [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Derrien, Solene [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Robins, Richard J. [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Naulet, Norbert [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France)

    2007-06-12

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The {sup 13}C and {sup 15}N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the {sup 15}N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the {delta} {sup 15}N values of MDMA are strongly influenced by a combination of the {delta} {sup 15}N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the {delta} {sup 15}N values of the synthetic MDMA and of the {delta} {sup 15}N and {delta} {sup 13}C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested.

  10. Single Particle Strengths and Mirror States in $^{15}$N$-^{15}$O below 12.0 MeV

    CERN Document Server

    Mertin, C E; Crisp, A M; Keeley, N; Kemper, K W; Momtyuk, O; Roeder, B T; Volya, A

    2014-01-01

    New $^{14}$N(d,p) angular distribution data were taken at a deuteron bombarding energy of 16 MeV to locate all narrow single particle neutron states up to 15 MeV in excitation. A new shell model calculation is able to reproduce all levels in $^{15}$N up to 11.5 MeV and is used to characterize a narrow single particle level at 11.236 MeV and to provide a map of the single particle strengths. The known levels in $^{15}$N are then used to determine their mirrors in the lesser known nucleus $^{15}$O. The 2s$_{1/2}$ and 1d$_{5/2}$ single particle centroid energies are determined for the $^{15}$N$-^{15}$O mirror pair as: $^{15}$N $(\\text{2s}_{1/2}) = 8.08$ MeV, $^{15}$O $(\\text{2s}_{1/2}) = 7.43$ MeV, $^{15}$N $(\\text{1d}_{5/2}) = 7.97$ MeV, and $^{15}$O $(\\text{1d}_{5/2}) = 7.47$ MeV. These results confirm the degeneracy of these orbits and that the $^{15}$N$-^{15}$O nuclei are where the transition between the $\\text{2s}_{1/2}$ lying below the $\\text{1d}_{5/2}$ to lying above it, takes place. The $\\text{1d}_{3/2}$...

  11. Cyanobacteria-derived nitrogen uptake by benthic invertebrates in Lake Taihu: a mesocosm study using 15N labeling

    Directory of Open Access Journals (Sweden)

    Yu J.

    2014-01-01

    Full Text Available Eutrophication of lakes can lead to dominance by cyanobacteria, which are hardly used by zooplankton due to their low nutrition value. However, sedimented cyanobacterial detritus may be a useful source for benthic invertebrates. We studied the Microcystis-derived nitrogen incorporation in benthic invertebrates in Lake Taihu using stable isotopic nitrogen (15N as a tracer. The δ15N of all organisms increased significantly with time after addition of the labeled Microcystis detritus. δ15N values of POM and periphyton peaked earlier than for benthic invertebrates, and the maximum levels were also higher than bivalves, snails and worms (Limnodrilus spp.. Among benthic invertebrates, Radix swinhoei peaked later than other invertebrates, but the maximum level and the excess 15N of the last sampling day were higher. At the end of the experiment, approximately 70% of the added 15N was retained in the benthic food web, while only a small fraction (less than 1% of the added detritus 15N occurred in the pelagic food web. Our results suggest that nitrogen from cyanobacteria can be incorporated more in benthic than pelagic food webs and cyanobacterial blooms may contribute to the development of benthic animals.

  12. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1991-01-01

    with simulated soil extracts obtained using 50 ml of 2 M potassium chloride solution containing 130-mu-g of NH4+-N (2.3 atom% N-15) and 120-mu-g of NO3--N (natural N-15 abundance). No cross-over in the N-15 abundances of NH4+-N and NO3--N was observed, indicating a quantitative diffusion process (72 h, 25......A novel diffusion method was used for preparation of NH4+- and NO3--N samples from soil extracts for N-15 determination. Ammonium, and nitrate following reduction to ammonia, are allowed to diffuse to an acid-wetted glass filter enclosed in polytetrafluoroethylene tape. The method was evaluated...

  13. Geoecological drivers of cerrado heterogeneity and 13C natural abundance in oxisols after land-use change Fatores geoecológicos das diferentes formações de cerrados - uma hipótese baseada em abundância natural de 13C e fotografia aérea

    Directory of Open Access Journals (Sweden)

    Henry Neufeldt

    2006-10-01

    Full Text Available The 13C natural abundance technique was applied to study C dynamics after land-use change from native savanna to Brachiaria, Pinus, and Eucalyptus in differently textured Cerrado Oxisols. But due to differences in the d13C signatures of subsoils under native savanna and under introduced species, C substitution could only be calculated based on results of cultivated soils nearby. It was estimated that after 20 years, Pinus C had replaced only 5 % of the native C in the 0-1.2 m layer, in which substitution was restricted to the top 0.4 m. Conversely, after 12 years, Brachiaria had replaced 21 % of Cerrado C to a depth of 1.2 m, where substitution decreased only slightly throughout the entire profile. The high d13C values in the subsoils of the cultivated sites led to the hypothesis that the natural vegetation there had been grassland rather than Cerrado sensu stricto, in spite of the comparable soil and site characteristics and the proximity of the studied sites. The hypothesis was tested using aerial photographs of 1964, which showed that the cultivated sites were located on a desiccated runoff head. The vegetation shift to a grass-dominated savanna formation might therefore have occurred in response to waterlogging and reduced soil aeration. A simple model was developed thereof, which ascribes the different Cerrado formations mainly to the plant-available water content and soil aeration. Soil fertility is considered of minor significance only, since at the studied native savanna sites tree density was independent of soil texture or nutrient status.A abundância natural de 13C foi utilizada para estudar a dinâmica de carbono em latossolos de textura média e argilosa após plantação de pastagens (Brachiaria decumbens e reflorestamentos (Pinus caribaea e Eucalyptus citriodora. Considerando as diferenças de d13C nos subsolos das savanas nativas e das espécies introduzidas, pôde-se calcular a substituição de carbono somente para os solos

  14. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 4

    International Nuclear Information System (INIS)

    12 colostomized laying hybrids with an 81% laying performance received 36 g wheat containing a 15N excess (15N') of 14.37 atom-% in a customary ration over 4 days. The wheat lysine contained 13.58 atom-% 15N', histidine 14.38 and arginine 13.63 atom-% 15N'. In the 4-day period of 15N' application 540 mg 15N', 18.1 mg lysine 15N', 21.5 mg histidine 15N' and 47.9 mg arginine 15N' were consumed per hen. Subsequently the animals received the same ration with unlabelled wheat. 12 h, 36 h, 60 h and 108 h after the last 15N' application 3 animals each were butchered. The atom-% 15N' of the lysine was below that of the two other basic and of the non-basic amino acids. The labelling of the amino acids of the egg white decreased rapidly 2 days after 15N' application. The atom-% of the 15N' of the yolk of egg, however, increased after the discontinuation and remained the same for 4 days after the last 15N' application. The 14N and 15N' amounts measured in the complete experiment period are distributed over the 3 basic and the 12 non-basic (excluding thioamino acids) amino acids in the white of egg for 14N as 25.0%:57.6% and for 15N' as 18.2%:57.5%. In the yolk of egg 28.5% 14N for the basic and 56.8% for the non-basic amino acids could be calculated; the corresponding values for 15N' were 17.8% and 55.5%. (author)

  15. Recuperação de 15N-ureia no sistema solo-planta de pastagem de capim-tanzânia Recovery of 15N-urea in soil-plant system of tanzania grass pasture

    Directory of Open Access Journals (Sweden)

    Geraldo Bueno Martha Júnior

    2009-02-01

    Full Text Available O atrativo econômico e o impacto ambiental da adubação nitrogenada em pastagens dependem da eficiência de uso do nitrogênio (N do fertilizante no sistema solo-planta. Entretanto, a recuperação do 15N-ureia em pastagem de Panicum maximum cv. Tanzânia, uma das forrageiras mais utilizadas na intensificação de sistemas pastoris, permanece desconhecida. Este experimento, seguindo um delineamento de blocos completos casualizados, com quatro tratamentos (0, 40, 80 e 120 kg ha-1 de N-ureia e três repetições, foi realizado para determinar a recuperação do 15N-ureia pelo capim-tanzânia. A produção de forragem, o teor de N total e a quantidade de N na planta não foram afetados pelas doses de 15N-ureia, refletindo as elevadas perdas do N aplicado nas condições do experimento. Entretanto, a baixa eficiência agronômica do uso da ureia pode ser explicada pelo decréscimo da recuperação do N do fertilizante no sistema solo-planta com o aumento da dose de 15N-ureia em situações climáticas bastante adversas, que contribuíram para aumentar as perdas de 15N-ureia no sistema solo-planta.The economic attractiveness and negative environmental impact of nitrogen (N fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea-15N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea and three replications, to determine the recovery of 15N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05, reflecting the high losses of applied N under the experimental conditions. The recovery of 15N urea (% of applied N in forage and roots was not affected by fertilization levels (p > 0.05, but decreased exponentially in the soil and soil

  16. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia The potential of 15N metabolic labeling for schizophrenia research

    Directory of Open Access Journals (Sweden)

    Michaela D. Filiou

    2013-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.Psychiatric research is in need of non-hypothesis driven approaches to unravel the neurobiological underpinnings and identify molecular biomarkers for psychiatric disorders. Proteomics methodologies constitute a state-of-the-art toolbox for biomarker discovery in psychiatric research. Here we present the principle of in vivo 15N metabolic labeling for quantitative proteomics experiments and applications of this method in animal models of psychiatric phenotypes, with a particular focus on schizophrenia. Additionally we explore the potential of 15N metabolic labeling in different experimental set-ups as well as methodological considerations of 15N metabolic labeling-based quantification studies.

  17. Nitrogen and water utilization by trickle fertigated garlic using the neutron gauge and 15N technologies

    International Nuclear Information System (INIS)

    The objective of this study was to increase water and fertilizer use efficiency for conventional fertilization and fertigation. The following treatments were included and studied in an RCB design with four replications of each treatment: Zero N, 30, 60 and 90 ppm N in the irrigation water. Additional soil application equivalent to one fertigation treatment was also included. The fertilizers were injected into the irrigation water by means of an injection pump. Garlic was planted in plot with dimensions of 3mx4.5m. Irrigation was applied to replenish 80% of the Class A pan evaporation on a weekly bases. Access tubes for neutron probe reading were mounted in each plot in three replications. The readings were taken before and after each irrigation or rainfall at 15, 30, 45, 60 and 90 cm soil depth. The labelled N fertilizers (15N) were applied to microplots which contained five plants within each plot. At harvest, plant samples were taken from the microplots for the 15N measurements. Plant samples were collected and prepared according to the instructions for sampling for 15N analysis. The yield and its components were obtained from the macroplot. The yield continued to increase with increasing N fertigation rates. The fresh weight per head and per segment showed a similar trend as the yield did. However, the number of segments per head was not affected significantly by the investigated treatments in this study. This may indicate that the zero N treatments produced heads with small segments compared to that produced with N application. The dry weight of shoot, segment and segment membrane responded positively to the rates of N fertigation, reaching the maximum value at the rates of 80 and 120 kg N, irrespective of N fertigation or soil application. The soil application gave a production as high as the best fertigated N rate but lower than the zero N treatment. The percentage of N content in fruits and leaves was the highest with the fertigation treatments where the

  18. Studies on the protein and amino acid metabolism of laying hens using 15N-labelled casein. 8

    International Nuclear Information System (INIS)

    Four colostomized Leghorn hens were fed, during 6 days, 15N-labelled casein as sole protein source. Two animals were slaughtered 48 hours, the other two 144 hours after the last 15N-application. The share of TCE-soluble N in total N averaged 16% for the body parts analysed, i.e. meat, bone, liver, kidneys, oviducts, residual viscera and other. The variation of the lysine, histidine and arginine levels in the body parts ranged from 3.6 to 7.9 g, 1.1 to 3.7 g and 6.4 to 7.4 g in 16.7 g hydrolysate N, respectively. Except for feathers, the analysed body parts contained an excess amount of heavy nitrogen. The degree of labelling was found to depend on the time of slaughtering after the tracer application. In the liver and in the oviduct being metabolically active organs, the 15N-excess in the total N fraction decreased by 45% between the 2nd and the 6th days after 15N-feeding, whilst in the meat it went down by 20%. The decline of the 15N-concentration in the TCE-soluble N compounds was faster than in the total N-fraction. Out of the body samples analysed, the lysine of the liver having 0.26 atom% 15N-excess was found to be more strongly labelled in hens 1 and 2. The amino acid arginine reached about the same level of labelling, the 15N-frequency of histidine being the lowest. (author)

  19. Evaluation of relative isotopic abundance measurements in a quadrupole time-of-flight mass spectrometer for elemental composition determination of natural products in traditional Chinese medicine.

    Science.gov (United States)

    Wu, Zhi-Jun; Huo, Jia-Li; Chen, Jian-Zhong; Li, Na; Fang, Dong-Mei; Chen, Xiao-Zhen; Zhang, Guo-Lin; Wang, Jian-Hua; Xu, Xiao-Ying

    2013-01-01

    The relative isotopic abundance (RIA) measurement errors of a quadrupole time-of-flight (Q-ToF) instrument incorporating analog-to-digital converter detectors were systemically evaluated by stochastically collecting about 200 data in positive ion mass spectrometry (MS) mode. Errors varied with peak intensities at definite spectral acquisition rates but were very close, even if peak intensities changed sharply at different spectral acquisition rates with the same concentration. Intensity thresholds were systematically defined at 1 Hz of spectral acquisition rates. RIA measurement errors were also evaluated using peak area. It seemed that peak area was better adapted for the high-intensity ions while peak intensity was suited for very low-intensity ions. Several known compounds were selected for RIA measurements for product ions in tandem mass spectropmetry (MS/MS) mode. An extract of a representative traditional Chinese medicinal, Paederia scandens was analyzed with high-performance liquid chromatography-electrospray ionization-QToF-MS/MS. The unique elemental compositions of some compounds could not be identified even with exact masses and MS/MS spectra of measured and reference compounds. RIA errors, especially of (M+2)M(-1), provided vital information for determining the elemental composition. PMID:24261081

  20. EFEITO DA COBERTURA VEGETAL DO SOLO SOBRE A ABUNDÂNCIA E DIVERSIDADE DE INIMIGOS NATURAIS DE PRAGAS EM VINHEDOS EFFECTS OF COVER CROPS ON THE ABUNDANCE AND DIVERSITY OF NATURAL ENEMIES OF GRAPEVINE PEST

    Directory of Open Access Journals (Sweden)

    MARCOS ANTÔNIO MATIELLO FADINI

    2001-12-01

    Full Text Available O controle de pragas da videira no Brasil restringe-se basicamente ao uso de inseticidas, devido à inexistência de trabalhos que visem a complementar o manejo de pragas através de controle biológico. Neste trabalho, objetivou-se verificar o efeito de diferentes coberturas vegetais nas entrelinhas de plantio de videira sobre a abundância e diversidade de potenciais inimigos naturais de pragas da videira no município de Caldas, região Sul do Estado de Minas Gerais. Foram testadas sete diferentes coberturas de solo (aveia-preta, aveia-preta e ervilhaca, ervilhaca, cobertura morta, uso de herbicida, capina mecânica e mato roçado. A cobertura vegetal do solo influenciou tanto a diversidade quanto a abundância de inimigos naturais, sendo o consórcio de aveia-preta e ervilhaca, cultivadas simultaneamente, o tratamento que proporcionou maior diversidade e abundância de inimigos naturais. Assim, a cobertura vegetal do solo pode, potencialmente, ser um componente importante em programas de manejo integrado de pragas na cultura da videira.The control of grapevine pests in Brazil is only based in the use of chemical products. It is due to the whole absence of experimental works developed to test and evaluate alternative control systems, like the biological control. The objective of this work was to evaluate the effect of different types of cover crops, placed between the cultivation lines of grapevine, in the abundance and diversity of natural control arthropods of grapevine pests. The experiment was conduced in the EPAMIG, Caldas Research Farm, located in the Minas Gerais State, Brazil. They Were tested seven different systems of soil covering. The presence of vegetal covering was beneficial to improve the diversity as well as the abundance of biological control agents present on the grapevine crop. The cultivation of black oat and pea together, was the treatment that showed the better result to diversity and abundance. Therefore, the cover

  1. Naturally Abundance Vanillin as Starting Material to Synthesizing 4-(4-Hydroxy-3-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one

    OpenAIRE

    Masruri MASRURI; Yuga Adi Pranata

    2015-01-01

    Indonesia is the second biggest producer of natural vanillin. Traditionally it was isolated from the bean of vanilla (Vanilla planifolia Andrews). This paper reports on applying vanillin as starting material for synthesizing a biologically important chemical structure 3,4-dihydropyrimidinone. The reaction was undertaken in one step following multi component reaction (MCR). Products determination was undergone using FTIR and UV-Vis spectrophotometry, and also liquid chromatography-mass spectro...

  2. Changing gull diet in a changing world: a 150-year stable isotope (δ13C, δ15N) record from feathers collected in the Pacific Northwest of North America.

    Science.gov (United States)

    Blight, Louise K; Hobson, Keith A; Kyser, T Kurt; Arcese, Peter

    2015-04-01

    The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long-term human impacts. We used stable isotope (δ(13)C, δ(15)N) analysis of feathers from glaucous-winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long-term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ(13)C and δ(15)N declined since 1860 in both subadult and adult gulls (δ(13)C, ~ 2-6‰; δ(15)N, ~4-5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ(13)C and δ(15)N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage-based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long-term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional

  3. Spin and parity determinations of excited 15N based on polarized and unpolarized 12C(7Li, α)15N reaction data at E lab = 34 MeV

    International Nuclear Information System (INIS)

    From an experiment conducted at the Florida State University Accelerator Laboratory with a 34 MeV polarized 7Li beam bombarding a 12C target, we have obtained angular distributions and analyzing powers for states of 15N up to 20 MeV in excitation energy. This study not only offers the possibility to assign spin and parity to several states in 15N, but also serves to obtain nuclear potential parameters used in Distorted Wave Born (DWBA) and Coupled Channel Born (CCBA) Approximations to generate theoretical angular distributions and vector analyzing powers that give the best description of the experimental data. Under the assumption that the reaction mechanism is a three nucleon transfer, the determination of shell model nucleonic configurations and spectroscopic factors is possible for the 15N states studied

  4. STELLAR ORIGINS OF EXTREMELY {sup 13}C- AND {sup 15}N-ENRICHED PRESOLAR SIC GRAINS: NOVAE OR SUPERNOVAE?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Pignatari, Marco [E.A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, HU6 7RX (United Kingdom); José, Jordi [Department de Fisica, EUETIB, Universitat Politécnica de Catalunya, E-08036 Barcelona (Spain); Nguyen, Ann, E-mail: nliu@carnegiescience.edu [Robert M. Walker Laboratory for Space Science, Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058 (United States)

    2016-04-01

    Extreme excesses of {sup 13}C ({sup 12}C/{sup 13}C < 10) and {sup 15}N ({sup 14}N/{sup 15}N < 20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized {sup 13}C- and {sup 15}N-enriched presolar SiC grains ({sup 12}C/{sup 13}C < 16 and {sup 14}N/{sup 15}N < ∼100) from Murchison, and their correlated Mg–Al, S, and Ca–Ti isotope data when available. These grains are enriched in {sup 13}C and {sup 15}N, but with quite diverse Si isotopic signatures. Four grains with {sup 29,30}Si excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with {sup 30}Si excesses and {sup 29}Si depletions show lower-than-solar {sup 34}S/{sup 32}S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also {sup 13}C enriched, but have a range of higher {sup 14}N/{sup 15}N. We found that {sup 15}N-enriched AB grains (∼50 < {sup 14}N/{sup 15}N < ∼100) have distinctive isotopic signatures compared to putative nova grains, such as higher {sup 14}N/{sup 15}N, lower {sup 26}Al/{sup 27}Al, and lack of {sup 30}Si excess, indicating weaker proton-capture nucleosynthetic environments.

  5. Tracking the incorporation of 15N from labeled beech litter into mineral-organic associations

    Science.gov (United States)

    Kleber, M.; Hatton, P.; Derrien, D.; Lajtha, K.; Zeller, B.

    2008-12-01

    Nitrogen containing organic compounds are thought to have a role in the complex web of processes that control the turnover time of soil organic matter. The sequential density fractionation technique is increasingly used for the purpose of investigating the association of organic materials with the mineral matrix. Organic materials in the denser fractions (>2.0 kg L-1) typically show 13C NMR signals indicative of carbohydrate and aliphatic structures, an absence of lignin and tannin structures and a narrow C:N ratio, suggesting a microbial origin of organic matter in these fractions. Here we take advantage of a labeling experiment conducted at two different sites in Germany and in France to investigate the incorporation of organic nitrogen into physical fractions of increasing density, representing a proximity gradient to mineral surfaces. 15N labeled beech litter was applied to two acidic forest topsoils 8 and 12 years ago. Although there are differences in the distribution patterns between the two soils, and the majority of the organic nitrogen was recovered in fractions representing organic matter of plant origin and not bound to the mineral matrix, our data clearly show that after a decade, significant amounts of the nitrogen had been incorporated in mineral-organic fractions of supposedly slow turnover. It remains to be shown to which extent the N in the densest fractions was incorporated by soil microbiota and associated with mineral surfaces in organic form or adsorbed to mineral surfaces in inorganic form (NH4+).

  6. Bromine recovery in residual solutions generated in the 15 N isotopic determination methodology (Rittenberg, 1946)

    International Nuclear Information System (INIS)

    The isotopic determination of 15 N (Rittenberg, 1946) is a methodology used in the Laboratory of Isotope Stable (CENA/USP). In this procedure, in the oxidation of nitrogen species for N2, solution of Li Br O is used, generating as residue 50 L y-1 of solution contends Li Br and Li Br O. Seeking to recover the bromine contained in that residue, very toxic substance, a special line was built composed by reaction balloons (1 and 2 liters), addition funnel, gas flow regulator and connections in glass. In the system proposed, after the acidification (sulfuric acid) of the alkaline residual solution, the liberated bromine (Br2) it was then dragged by flow of nitrogen and reacted with solution of LiOH. That reaction facilitated the production of Li Br O in solution (Efficiency = 82±2%), that was reused later on same analytic procedure. The high cost of the liquid bromine is another attractiveness that corroborates the employment of the developed procedure. They took place isotopic determinations using the recovered solutions and prepared, and the observed values didn't show statistical difference (T test of Student). The presented procedure is part of the Management Program of Chemical Residues of CENA/USP, which seeks to destine the residues of responsibility of the institution appropriately, forming professionals to the practices of environmental management. (author)

  7. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    Science.gov (United States)

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  8. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    Science.gov (United States)

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  9. Use of 15N in nitrification inhibitor studies with special reference to indigenous materials

    International Nuclear Information System (INIS)

    Non-edible oil seed cakes and their constituents have been advantageously used for increasing the efficiency of fertilizer nitrogen (N) for crop production. The beneficial effects of these materials have been attributed to retardation of nitrification, which lessen the loss of N associated with nitrification by leaching and denitrification in situations where these losses are high. However, it is possible that some of the effects of these materials could be due to immobilization-remineralization of N particularly when the carbonaceous materials are added with fertilizers at high rates. A methodology involving the use of 15N-labelled fertilizers is advanced to sort out whether the beneficial effects of non-edible oil seed cakes and other materials are due to retardation of nitrification and or immobilization-remineralization of fertilizer N. Using the proposed technique it would be possible to make realistic evaluation of the wealth of indigenous products as nitrification inhibitors. Following the proposed approach it would also be possible to widen the scope and depth of research in this area for ultimately better exploitation of indigenous materials as nitrification inhibitors. (author). 18 refs

  10. Partitioning of 15N labelled mineral nitrogen in Acacia and coconut

    International Nuclear Information System (INIS)

    Many of the coconut plantations in Cote d'Ivoire have deteriorated owing to loss of legume ground cover and soil fertility. It has not been possible to restore the ground cover but tree legumes have been proposed as an alternative to rejuvenate the soil and at the same time provide a source of fuel wood. Experiments were undertaken to provide background information that will be needed in evaluating the ability of Acacia trees to increase soil N and contribute N to coconut. Partitioning of N in four-year-old coconut and Acacia trees was measured six months after application of 15N labelled ammonium sulphate to the soil. The results showed that the labelled N was distributed throughout both tree types. The highest concentration of label was located in tissues that were actively growing during the six months after N application but a considerable amount of N was also contained in tissues that were physiologically mature. Approximately half of the dry matter of legume trees was contained in the woody tissue but most of the N was contained in the green portion of the trees. It appears that the legume trees could potentially be used as a source of fuel wood and still be useful in increasing the N and organic matter content of the soil. (author). 9 refs, 5 figs

  11. Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model

    Science.gov (United States)

    Andresen, Louise C.; Björsne, Anna-Karin; Bodé, Samuel; Klemedtsson, Leif; Boeckx, Pascal; Rütting, Tobias

    2016-09-01

    The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15N tracing model Ntrace, which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of depolymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation.

  12. Fate of nitrogen ({sup 15}N) from velvet bean in the soil-plant system

    Energy Technology Data Exchange (ETDEWEB)

    Scivittaro, Walkyria Bueno [Empresa Brasileira de Pesquisa Agropecuaria, Pelotas, RS (Brazil). Clima Temperado; Muraoka, Takashi; Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil). Lab. de Fertilidade do Solo]. E-mail: wbscivit@cpact.embrapa.br

    2004-04-01

    Because of their potential for N{sub 2} biological fixation, legumes are an alternative source of nitrogen to crops, and can even replace or supplement mineral fertilization. A greenhouse experiment was carried out to evaluate temporal patterns of velvet bean (Mucuna aterrima) green manure release of nitrogen to rice plants, and to study the fate of nitrogen from velvet bean in rice cultivation. The isotopic dilution methodology was used. Treatments consisted of a control and 10 incubation periods of soil fertilized with {sup 15}N-labeled velvet bean (0, 20, 40, 60, 90, 120, 150, 180, 210, and 240 days). The plant material was previously chopped, sifted (10 mm mesh sieve) and oven-dried (65 deg C). Incubation of the plant material (2.2 g kg{sup -1} soil) was initiated by the longest period, in order to synchronize the planting of the test crop, rice (Oryza sativa), at time zero for all treatments. Green manure incorporation promoted increases in rice dry matter yield and nitrogen uptake. These variables showed maximum values at incubation periods of 38 and 169 days, respectively. Green manure nitrogen utilization by rice plants was highest at an incubation period corresponding to 151 days. More than 60% of the green manure nitrogen remained in the soil after rice cultivation. The highest green manure nitrogen recovery from the soil-plant system occurred at an incubation period equivalent to 77 days. (author)

  13. Nitrogen fertilizer (15N leaching in a central pivot fertigated coffee crop

    Directory of Open Access Journals (Sweden)

    Rafael Pivotto Bortolotto

    2012-08-01

    Full Text Available Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009 were established: i rainfall + irrigation the full year, ii rainfall only; and iii rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0 with a water table located several meters below soil surface (capillary rise = 0. The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.

  14. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C

    Science.gov (United States)

    Greenwood, N. D. W.; Sweeting, C. J.; Polunin, N. V. C.

    2010-09-01

    Size-related diet shifts are important characteristics of fish trophodynamics. Here, body size-related changes in muscle δ15N and δ13C of four coral reef fishes, Acanthurus nigrofuscus (herbivore), Chaetodon lunulatus (corallivore) , Chromis xanthura (planktivore) and Plectropomus leopardus (piscivore) were investigated at two locations in the Solomon Islands. All four species occupied distinct isotopic niches and the concurrent δ13C' values of C. xanthura and P. leopardus suggested a common planktonic production source. Size-related shifts in δ15N, and thus trophic level, were observed in C. xanthura, C. lunulatus and P. leopardus, and these trends varied between location, indicating spatial differences in trophic ecology. A literature review of tropical fishes revealed that positive δ15N-size trends are common while negative δ15N-size trends are rare. Size-δ15N trends fall into approximately equal groups representing size-based feeding within a food chain, and that associated with a basal resource shift and occurs in conjunction with changes in production source, indicated by δ13C. The review also revealed large scale differences in isotope-size trends and this, combined with small scale location differences noted earlier, highlights a high degree of plasticity in the reef fishes studied. This suggests that trophic size analysis of reef fishes would provide a productive avenue to identify species potentially vulnerable to reef impacts as a result of constrained trophic behaviour.

  15. The use of 15N-labelled dinitrogen in the study of nitrogen fixation by blue-green algae

    International Nuclear Information System (INIS)

    Prior to the development of the acetylene reduction technique 15N was used as the main qualitative and quantitative measure of nitrogen fixation by free-living cyanobacteria in a variety of aquatic and terrestrial habitats. Despite its expense and the technical difficulty, 15N is a major tool in the study of cyanobacteria, for example, incorporation of 15N2 is the definitive test for nitrogen fixation; it is used in the determination of the correct ratio of acetylene reduction to nitrogen fixation, in in situ nitrogen fixation assays, in tracing the formation and fate of extra-cellular nitrogen and in measuring the turnover and grazing rates of cyanobacterial intra-cellular nitrogen. These latter studies show that 15N-labelled extra-cellular nitrogen can serve as nitrogen sources for a variety of bacteria, fungi, algae and higher plants, and that cyanobacteria are graced and digested by a variety of animals. The turnover rates of cyanobacterial 15N-labelled cells are dependent on the type of cell, species, environmental conditions and the availability of degrading organisms. The breakdown products are rapidly mineralised and used as nitrogen sources by higher plants. (author)

  16. Evaluation of a 15 N plot design for estimating plant recovery of fertilizer nitrogen applied to sugar cane

    International Nuclear Information System (INIS)

    Two experiments were conducted on commercial sugar cene fields cropped with the variety SP70-1143, with the objective of evaluating a single row microplot design to determine plant recovery of 15 N fertilizer nitrogen. One of them used 15 N-aqua ammonia and 15 N-urea applied to two linear meter microplots of a ratoon crop (four replicates.) The second used one linear meter microplots (three replicates) which received 15 N-aqua ammonia only. The fertilizers were applied on 15cm deep furrows, located 25 cm from both sides of the cane row. One linear meter of ratoon cane, inside and outside of the microplot, and on the same and adjacent rows were harvested twelve months after fertilization. The results indicate the feasibility of using single row regments of ratoon cane with 15 N-fertilizer. The main advantages of this microplot design, when compared to the classical 3 contiguous row segments, is that only one third of the labeled fertilizer is needed. (author). 25 refs, 3 figs, 5 tabs

  17. Photosynthetic 14CO2 fixation and [15N]-ammonia assimilation during UV-B radiation of Lithodesmium variabile

    International Nuclear Information System (INIS)

    Uptake of [15N]-ammonia was more sensitive to UV-B exposure than the total 14CO2 fixation rate of Lithodesmium variabile Takano. Short-term UV-B radiation (15 min) had practically no effect on the kinetics of [15N]-ammonia, whereas there was an effect on [14C]-bicarbonate uptake rate. A significant reduction was found after 30 and 60 min UV-B stress. The time course of photosynthetic uptake of 15NH4Cl at several wavelengths was markedly depressed at shorter wavelengths (irradiation with WG 280). A short-term (11 min) exposure to ultraviolet radiation had no influence on the [14C]-labeled photosynthetic products. However, the [15N]-label of several amino acids and the ratio of [15N]-glutamine to [15N]-glutamic acid varied after irradiation with different ultraviolet wavebands. The results are discussed with reference to UV damage to the key enzymes of nitrogen metabolism. (author)

  18. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  19. Stellar Origins of Extremely $^{\\text{13}}C$- and $^{15}N$-enriched Presolar SiC Grains: Novae or Supernovae?

    CERN Document Server

    Liu, Nan; Alexander, Conel M O'D; Wang, Jianhuan; Pignatari, Marco; Jose, Jordi; Nguyen, Ann

    2016-01-01

    Extreme excesses of $^{13}C$ ($^{12}C$/$^{13}C$<10) and $^{15}N$ ($^{14}N$/$^{15}N$<20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized $^{13}C$- and $^{15}N$-enriched presolar SiC grains ($^{12}C$/$^{13}C$<16 and $^{14}N$/$^{15}N$<~100) from Murchison, and their correlated Mg-Al, S, and Ca-Ti isotope data when available. These grains are enriched in $^{13}C$ and $^{15}N$, but with quite diverse Si isotopic signatures. Four grains with $^{29,30}Si$ excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with $^{30}Si$ e...

  20. δ 15N Studies of Nitrogen Use by the Red Mangrove, Rhizophora mangle L. in South Florida

    Science.gov (United States)

    Fry, B.; Bern, A. L.; Ross, M. S.; Meeder, J. F.

    2000-02-01

    To help define nitrogen (N) sources and patterns of N processing in mangrove ecosystems, mangrove leaf nitrogen contents and δ 15N values were assayed in three marshes along the south Florida coast. In each marsh, leaf samples were collected from dwarf mangroves at interior locations and taller mangroves at the ocean fringe. Leaf % N and δ 15N values did not differ consistently between dwarf and tall mangroves, even though there were large variations in δ 15N (18‰ range, -5 to +13‰) and % N (1·2% range, 0·9-2·1%). Highest % N and δ 15N values occurred along the western margin of Biscayne Bay where canals draining agricultural lands deliver high-nitrate waters to fringing mangrove marshes. High mangrove δ 15N values may be good biomonitors of anthropogenic N loading to south Florida estuaries. Lower values likely reflect less anthropogenic N entering the mangrove marshes, as well as differences in plant physiology that occur along the fringe-dwarf gradient.

  1. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 5

    International Nuclear Information System (INIS)

    12 colostomized laying hens which received 15N-labelled wheat over 4 days were butchered 12 h, 36 h, and 108 h (3 animals each) after the last 15N application. The intake of 15N exess (15N') from the wheat amounted to 540 mg 15N' during the application period. The 15N' in the blood plasma decreased after the last 15N' application from 0.76 atom-% to 0.55 atom-% after 108 h, the labelling of the corpuscular components at the same measuring points increased from 0.28 to 0.50 atom-% 15N'. 96.6% of the plasma 15N' and 93,8% of that in the corpuscles is precipitable in trichloroacetic acid. The atom-% 15N' of histidine in the total blood remained unchanged in dependence on the butchering time. The 15N amount in lysine and arginine and that in the non-basic amino acids decreased inconsiderably in the period between 12 h and 108 h after the last 15N' wheat feeding. (author)

  2. Tamanho da parcela para estudos de recuperação de fertilizante-15N por capim-tanzânia Plot-size for 15N-fertilizer recovery studies by tanzania-grass

    OpenAIRE

    Geraldo Bueno Martha Júnior; Paulo Cesar Ocheuze Trivelin; Moacyr Corsi

    2009-01-01

    O entendimento da dinâmica do N em ecossistemas de pastagens pode ser melhorado por estudos em que se utilize a técnica do traçador 15N. Nesses experimentos, deve-se assegurar que o movimento lateral do traçador não interfira nos resultados. Neste trabalho foram determinadas as exigências quanto ao tamanho da parcela para experimentos com 15N em pastagem irrigada de Panicum maximum cv. Tanzânia. Foram consideradas três intensidades de pastejo (leniente, moderada e intensa) em três épocas do a...

  3. Structure effects in the 15N(n ,γ )16N radiative capture reaction from the Coulomb dissociation of 16N

    Science.gov (United States)

    Neelam, Shubhchintak, Chatterjee, R.

    2015-10-01

    Background: The 15N(n ,γ )16N reaction plays an important role in red giant stars and also in inhomogeneous big bang nucleosynthesis. However, there are controversies regarding spectroscopic factors of the four low-lying states of 16N, which have direct bearing on the total direct capture cross section and also on the reaction rate. Direct measurements of the capture cross section at low energies are scarce and available only at three energies below 500 keV. Purpose: The aim of this paper is to calculate the 15N(n ,γ )16N radiative capture cross section and its subsequent reaction rate by an indirect method and in that process investigate the effects of spectroscopic factors of different levels of 16N to the cross section. Method: A fully quantum mechanical Coulomb breakup theory under the aegis of post-form distorted wave Born approximation is used to calculate the Coulomb breakup of 16N on Pb at 100 MeV/u . This is then related to the photodisintegration cross section of 16N(γ ,n )15N and subsequently invoking the principle of detailed balance, the 15N(n ,γ )16N capture cross section is calculated. Results: The nonresonant capture cross section is calculated with spectroscopic factors from the shell model and those extracted (including uncertainties) from two recent experiments. The data seem to favor a more single particle nature for the low-lying states of 16N. The total neutron capture rate is also calculated by summing up nonresonant and resonant (significant only at temperatures greater than 1 GK) contributions and comparison is made with other charged particle capture rates. In the typical temperature range of 0.1 -1.2 GK, almost all the contributions to the reaction rate come from capture cross sections below 0.25 MeV. Conclusion: We have attempted to resolve the discrepancy in the spectroscopic factors of low-lying 16N levels and conclude that it would certainly be useful to perform a Coulomb dissociation experiment to find the low energy capture

  4. {sup 15}N/{sup 14}N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets

    Energy Technology Data Exchange (ETDEWEB)

    Palhol, Fabien; Lamoureux, Catherine; Chabrillat, Martine; Naulet, Norbert

    2004-05-10

    In this study, the {sup 15}N/{sup 14}N isotopic ratios of 106 samples of 3,4-methylenedioxymethamphetamine (MDMA) extracted from Ecstasy tablets are presented. These ratios, measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), show a large discrimination between samples with a range of {delta}{sup 15}N values between -17 and +19%o, depending on the precursors and the method used in clandestine laboratories. Thus, {delta}{sup 15}N values can be used in a statistical analysis carried out in order to link Ecstasy tablets prepared with the same precursors and synthetic pathway. The similarity index obtained after principal component analysis and hierarchical cluster analysis appears to be an efficient way to group tablets seized in different places.

  5. Detection of organic sulfur by [sup 15]N and [sup 19]F NMR via formation of iminosulfuranes

    Energy Technology Data Exchange (ETDEWEB)

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of [sup 15]N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using [sup 15]N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique [sup 15]N- or, [sup 19]F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  6. Detection of organic sulfur by {sup 15}N and {sup 19}F NMR via formation of iminosulfuranes

    Energy Technology Data Exchange (ETDEWEB)

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of {sup 15}N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using {sup 15}N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique {sup 15}N- or, {sup 19}F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  7. Seasonal δ13C and δ15N isoscapes of fish populations along a continental shelf trophic gradient

    Science.gov (United States)

    Radabaugh, Kara R.; Hollander, David J.; Peebles, Ernst B.

    2013-10-01

    The West Florida Shelf, located in the eastern Gulf of Mexico, transitions from a eutrophic ecosystem dominated by the Mississippi River plume to mesotrophic and oligotrophic ecosystems off the coast of peninsular Florida. Three extensive trawl surveys in this region were used to acquire samples of fish muscle, benthic algae from sea urchin stomach contents, and filtered particulate organic matter (POM) to create δ13C and δ15N isoscapes. Muscle δ15N from three widely distributed fish species, Synodus foetens (inshore lizardfish), Calamus proridens (littlehead porgy), and Syacium papillosum (dusky flounder), exhibited strong longitudinal correlations (Pearson‧s r=-0.67 to -0.90, pwaters. The δ13C depth gradient and the δ15N longitudinal gradient were consistent between seasons and years, providing a foundation for future stable isotope studies of animal migration in the Gulf of Mexico.

  8. Recovery and Leaching of 15N-Labeled Coated Urea in a Lysimeter System in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    LI Gui-Hua; ZHAO Lin-Ping; ZHANG Shu-Xiang; Y. HOSEN; K. YAGI3

    2011-01-01

    The effectiveness of polyolefin-coated urea (Meister-5 and Meister-10; CU) in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system was studied in lysimeter plots located in the North China Plain for three consecutive maize- wheat-maize cropping seasons.An isotopic method was used to compare the fate of CU to that of non-coated urea (NCU),and N application rates of 0,100,150 and 225 kg N ha-1 were evaluated.The results showed that the nitrogen use efficiency (15NUE) of CU was 13.3% 21.4% greater than that of NCU for the first crop.Alternatively,when the difference method was applied (apparent NUE),no significant variations were observed among treatments in all three seasons.Although inorganic N leached from the 1.3 m layer was less than 1% of the total applied N,unidentified losses of 15N (losses of 15N =15N applied as fertilizer - 15N absorbed by crops - 15N remaining in the 0-0.2 m layer 15N leached from the 1.3 m layer)in CU-treated plots were 24.2%-26.5% lower than those of NCU-treated plots.The nitrate concentration in the 0-1.3 m layer of CU plots at the end of the experiment was 53% lower than that of NCU-treated plots.Thus,CU increased crop N uptake from fertilizer and reduced unidentified losses of applied N,which can reduce the risk of groundwater pollution.

  9. A 15N-Labeling Study of the Capture of Deep Soil Nitrate from Different Plant Systems

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-xin; WANG Jue; DI Hong-jie; ZHANG Li-juan; JU Xiao-tang

    2014-01-01

    The objective of this study was to determine the efifciency of different plant systems in capturing deep soil nitrate (NO3-) to reduce NO3-leaching in a ifeld plot experiment using 15N labelling. The study was conducted on a calcareous alluvial soil on the North China Plains and the plant systems evaluated included alfalfa (Medicago sativa), American black poplar (Populus nigra) and cocksfoot (Dactylis). 15N-labelled N fertilizer was injected to 90 cm depth to determine the recovery of 15N by the plants. With conventional water and nutrient management, the total recovery of 15N-labeled NO3--N was 23.4% by alfalfa after two consecutive growth years. The recovery was signiifcantly higher than those by American black poplar (12.3%) and cocksfoot (11.4%). The highest proportion of soil residual 15N from the labeled fertilizer N (%Ndff) was detected around 90 cm soil depth at the time of the 1st year harvest and at 110-130 cm soil depth at time of the 2nd year harvest. Soil%Ndff in 0-80 cm depth was signiifcantly higher in the alfalfa treatment than those in all the other treatments. The soil%Ndff below 100 cm depth was much lower in the alfalfa than those in all the other treatments. These results indicated that 15N leaching losses in the alfalfa treatment were signiifcantly lower than by those in the black poplar and cocksfoot treatments, due to the higher root density located in nitrate labeling zone of soil proifle. In conclusion, alfalfa may be used as a plant to capture deep soil NO3-left from previous crops to reduce NO3-leaching in high intensity crop cultivation systems of North China Plain.

  10. 15N nitrogen-balance studies in patients with testicular feminization, their relatives, and in normal subjects

    International Nuclear Information System (INIS)

    Fourteen subjects (4 with testicular feminization, 2 mothers, 1 aunt and 1 father of these patients, 2 normal women, 2 normal men and 2 normal prepubertal boys) were given 0.1 to 0.2 g/kg of 50 percent 15N-labeled NH4Cl before and after 6 daily injections of testosterone (T) 15 mg/m2). In 24-hour urine specimens collected on the test days, 15N was calculated from total N (Kjeldahl) and the percentage of 15N (mass spectrometry or 15N-analyzer Isocommerz). In all normal subjects, urinary 15N-balance was influenced positively by T (+31.3 +- 8.4 percent), in prepubertal boys more (+43 to +66 percent) than in women (+20 to +30 percent) and men (+6 to +23). In testicular feminization, 15N-balance not only failed to become more positive, but was even reduced (-24.7 +- 17.6 percent). The father of a patient had only a slight response (+7 percent) as one of the normal males, probably because of higher endogenous T-levels in adult males. One mother and the aunt had no response (-7.4 to + 1.5 percent). In the mother, the balance became slightly positive (+10 percent) on oral contraceptives. The other mother, who was on estrogen treatment prior to and during the test, had a positive but insufficient change of balance (+17 percent). It is concluded that this test allows detection of patients with testicular feminization and possibly also healthy female carriers. In these cases, estrogen treatment appears to positively influence the response to T

  11. Impact of charring on cereal grain characteristics: linking prehistoric manuring practice to 15N signatures in archaeobotanical material

    DEFF Research Database (Denmark)

    Kanstrup, Marie; Thomsen, Ingrid Kaag; Mikkelsen, Peter Hambro;

    2012-01-01

    Systematic use of animal manure has been demonstrated to be detectable in the plant δ15N value but evidence of manure affecting isotopic composition is mainly based on studies of fresh plant material. These findings can potentially be applied to archaeobotanical assemblages and thus provide....... However, despite attempts to deliberately tamper and distort the grain δ15N signature, the changes observed in this study were too small to be of any consequences for the archaeobotanical applicability of the method. Thus the isotope method offers unique evidence about prehistoric manuring practice....

  12. Naturally Abundance Vanillin as Starting Material to Synthesizing 4-(4-Hydroxy-3-methoxyphenyl-6-methyl-3,4-dihydropyrimidin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Masruri MASRURI

    2015-12-01

    Full Text Available Indonesia is the second biggest producer of natural vanillin. Traditionally it was isolated from the bean of vanilla (Vanilla planifolia Andrews. This paper reports on applying vanillin as starting material for synthesizing a biologically important chemical structure 3,4-dihydropyrimidinone. The reaction was undertaken in one step following multi component reaction (MCR. Products determination was undergone using FTIR and UV-Vis spectrophotometry, and also liquid chromatography-mass spectrometry (LCMS. After purification under flash column chromatography in ethyl acetate-hexane, it was found a white solid of 4-(4-hydroxy-3-methoxyphenyl-6-methyl-3,4-dihydropyrimidin-2(1H-one in 67% yield with a few amount of an unreacted vanillin.

  13. Utilization of residual nitrogen (15N) from cover crop and urea by corn

    International Nuclear Information System (INIS)

    The majority of N from mineral fertilizers and cover crops is usually not used by the very next corn crop, but can be absorbed by follow-up crops. The objective of this study was to evaluate the use of residual nitrogen from urea, sunnhemp (Crotalaria juncea) and millet (Pennisetum americanum) labeled with 15N, applied to no-tillage corn in the previous growing season, in a Red Latosol of the Cerrado. The study was conducted in an experimental farm of the Sao Paulo State University (UNESP), Ilha Solteira, in Selviria county (MS), Brazil, in different areas. The experiment had a randomized complete block design, with 15 treatments and four replications. Treatments were applied to corn crop in the 2001/02 and 2003/04 growing seasons. They were distributed in a 3 x 5 factorial layout, representing the combination of three cover crops: sunnhemp, millet and spontaneous vegetation (fallow) and five N rates (as urea): 0, 30, 80, 130, and 180 kg ha-1 of N. After corn harvest, the two areas were followed in the dry season and were followed by corn crop in the 2002/03 (experiment 1) and 2003/04 (experiment 2) growing seasons, using the same fertilizer rate on all plots to distinguish the residual effect of N sources. The average use of residual N from the millet and sunnhemp residues (above-ground part) by corn crop was less than 3.5 and 3 %, respectively, of the initial amount. The corn uptake of residual N from urea increased in a quadratic manner in experiment 1 and linearly in experiment Two as a response to the applied N rates, and the recover was below 3 %. The cover crop type did not affect the use of residual N of urea by corn, and vice-versa. (author)

  14. Studies of the endogeneous N metabolism in 15N-labelled pigs. 3

    International Nuclear Information System (INIS)

    4 pigs were labelled over a period of 10 days with 15N in a fishmeal diet (1), a fishmeal diet + partly hydrolyzed straw meal (2), a horse bean diet (3) and a horse bean diet + partly hydrolyzed straw meal (4). After 24 hours fasting the animals were provided with simple fistulae in the upper part of the small intestine. After a further fasting period of 24 h all four pigs received a 14C-leucine injection and the fistula secretion was collected in the subsequent 24 h. After feeding diets without straw meal (1 and 3) there were distinct differences in the secretion in compared to feeding with straw meal supplements (2 and 4) despite the long fasting period (48-72 h). 14C activity could already detected in the TCA-precipitable fraction of the secretion after 3-6 min of the injection in 1 and 3 but only 20 to 25 min after the 14C leucine injection in 2 and 4. The specific 14C-leucine activity of the TCA-soluble fraction of the secretion was, after straw meal supplementation to the fishmeal diet, 15 times higher 25 min after the 14C-leucine injection, 25 times higher after 70 min, 36 times after 2 h and 1.8 times after 4 h than without straw meal supplementation. For all four diets a specific correlation could be ascertained between the increase of 14C activity/mg N in the TCA-soluble fraction and the increasing crude fiber content in the diet between 25 and 180 min after the injection. Furthermore, a distinctly decreased N secretion/h could be ascertained with the increasing crude fiber content in the diet. The influence of the crude fiber on the parameters mentioned is seen in the changed osmotic conditions in the secretion, which may be caused by the changed regulation by hormones of the gastrointestinal tract. (author)

  15. Nitrate retention and removal in Mediterranean streams with contrasting land uses: a 15N tracer study

    Directory of Open Access Journals (Sweden)

    J. L. Riera

    2008-08-01

    Full Text Available We used 15N-labelled nitrate (NO−3 additions to investigate nitrogen (N cycling at the whole-reach scale in three Mediterranean streams subjected to contrasting land uses (i.e. forested, urban and agricultural. Our aim was to examine: i the magnitude and relative importance of NO−3 retention (i.e. assimilatory uptake, and removal, (i.e. denitrification, ii the relative contribution of the different primary uptake compartments to NO−3 retention, and iii the regeneration, transformation and export pathways of the retained N. The concentration of NO−3 increased and that of dissolved oxygen (DO decreased from the forested to the agricultural stream, with intermediate values in the urban stream. Standing stocks of primary uptake compartments were similar among streams and dominated by detritus compartments (i.e. fine and coarse benthic organic matter. In agreement, metabolism was net heterotrophic in all streams, although the degree of heterotrophy increased from the forested to the agricultural stream. The NO−3 uptake length decreased along this gradient, whereas the NO−3 mass-transfer velocity and the areal NO−3 uptake rate were highest in the urban stream. Denitrification was not detectable in the forested stream, but accounted for 9% and 68% of total NO−3 uptake in the urban and the agricultural stream, respectively. The relative contribution of detritus compartments to NO−3 assimilatory uptake was highest in the forested and lowest in the agricultural stream. In all streams, the retained N was rapidly transferred to higher trophic levels and regenerated back to the water column. Due to a strong coupling between regeneration and nitrification, most retained N was exported from the experimental reaches in the form of NO−3. This study evidences fast N cycling in Mediterranean streams. Moreover, results indicate that permanent NO−3 removal via denitrification may be enhanced over temporary NO−3 retention via assimilatory

  16. Complexity of the food web structure of the Ascophyllum nodosum zone evidenced by a δ13C and δ15N study

    Science.gov (United States)

    Golléty, Claire; Riera, Pascal; Davoult, Dominique

    2010-10-01

    Rocky shores dominated by canopy-forming macroalgae are characterized by complex communities making it difficult to assess whether the most abundant primary producers are at the base of the food web. This difficulty is exacerbated by the seasonal- and regional-scale variations of environmental and biotic factors that can affect the main trophic pathways. The food web structure of the Ascophyllum nodosum zone was studied during three seasons and at two sites separated by several 100s of kilometers by measuring the δ13C and δ15N of the major food sources and the dominant consumers of the zone. Despite the variability in isotopic compositions, both sites underwent similar significant seasonal variations. The main primary producers of the zone, A.nodosum, Fucus vesiculosus and Fucus serratus, were not at the base of the main trophic pathway but part of the diverse number of basal resources supporting the food web. The use of community-wide metric indices allowed further defining the food web structure of the A. nodosum zone as one characterized by trophic redundancy and numerous major trophic pathways. Indeed, grazers were dominated by generalists, filter-feeders utilized both planktonic and benthic organic matter, and predators displayed a high degree of omnivory. The range of values in δ15N showed a high spatiotemporal variability within and an important overlap between trophic groups. This prevented establishing distinctive trophic levels and further emphasized the complexity of the food web structure. The spatiotemporal stability of the relative isotopic composition of the dominant consumers within trophic groups and the low variability of the community-wide indices suggested a stability of the food web structure of the A.nodosum zone at a regional scale.

  17. Recovery of {sup 15}N-urea in soil-plant system of tanzania grass pasture; Recuperacao de {sup 15}N-ureia no sistema solo-planta de pastagem de capim-Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Martha Junior, Geraldo Bueno; Vilela, Lourival [EMBRAPA Cerrados, Planaltina, DF (Brazil)], e-mail: gbmartha@cpac.embrapa.br; Corsi, Moacyr [Universidade de Sao Paulo (ESALQ/USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Zootecnica], e-mail: moa@esalq.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis], e-mail: pcotrive@cena.usp.br

    2009-01-15

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea-{sup 15}N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of {sup 15}N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of {sup 15}N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p < 0.05) with increasing urea doses. The amount of {sup 15}N (kg ha{sup -1}) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  18. Influência do etil-trinexapac no acúmulo, na distribuição de nitrogênio (15N e na massa de grãos de arroz de terras altas Influence of ethyl-trinexapac on 15N accumulation and distribution and on highland rice yield

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2007-12-01

    Full Text Available A garantia de alta produtividade de grãos de arroz no sistema de cultivo irrigado por aspersão tem estimulado a utilização de maiores doses de fertilizantes, principalmente os nitrogenados. Contudo, o manejo inadequado da adubação nitrogenada pode resultar em acamamento das plantas. A aplicação de reguladores vegetais pode carrear fotoassimilados para produção de grãos em detrimento do crescimento vegetativo excessivo. Este trabalho teve por objetivos: avaliar a influência do regulador de crescimento etil-trinexapac nas características de crescimento da planta e no acúmulo e distribuição de N (15N nas partes e na planta inteira de arroz; e verificar a contribuição do N absorvido em diferentes estádios de desenvolvimento na formação da panícula, nos componentes do rendimento e na massa de grãos de arroz. O experimento foi realizado em casa de vegetação, sob condições controladas. Os tratamentos foram constituídos de não-aplicação ou aplicação de regulador de crescimento vegetal (0 e 200 g ha-1 i.a. de etil-trinexapac em quatro estádios de desenvolvimento das plantas (1 - início ao final do perfilhamento, 2 - final do perfilhamento à diferenciação do primórdio da panícula, 3 - diferenciação do primórdio da panícula ao florescimento e 4 - florescimento à maturação fisiológica. Foi utilizado o delineamento experimental de blocos ao acaso, dispostos em esquema fatorial 2 x 4, com três repetições. As plantas foram postas em um grupo de 48 vasos. Em um grupo de 24 vasos, com solução nutritiva e NH4SO4 enriquecido (15N, no início de cada estádio preestabelecido de desenvolvimento da planta ao final de cada um deles, as plantas foram coletadas e separadas em suas partes constituintes. Em outro grupo de vasos (24 vasos, no final de cada estádio, em vez de serem coletadas, as plantas voltavam a se desenvolver em solução nutritiva com NH4SO4 natural, para então serem coletadas no final do ciclo. O

  19. Nature

    OpenAIRE

    Ferretti, Federico; Schmidt Di Friedberg, Marcella

    2012-01-01

    International audience From the ancient times to the present debates on nature and environment, the idea of Nature has been one of the main concepts which interested Geographers. This paper deals with the representations of this idea in the works of thinkers who played a major role in shaping modern Geography, with a special focus on the Mediterranean world. It aims to clarify how Nature was important in defining heuristic strategies of the geographical sciences and their explications of r...

  20. 兴凯湖保护区迁徙季节水禽多样性及种多度关系%Community Diversity and Species Abundance of Waterbirds During Migration Season in Xingkai Lake Nature Re serve

    Institute of Scientific and Technical Information of China (English)

    朱井丽; 吴庆明; 李晓民; 邹红菲; 马建章

    2011-01-01

    Fixed-spot observations were made to study the community diversity and species abundance of waterbirds in Xingkai Lake Nature Reserve by direct count, Shannon-Wiener index and logarithmic normal distribution during migration season from 2009 to 2010. A total of 48 bird species were recorded in Xingkai Lake Nature Reserve, belonging to 12 families of 6 orders. It included wader and swimming birds. Anseriformes and Charadriiformes were dominant (66.66% ), Palaearctic species were the most (64.58% ) , summer resident birds occupied a dominant position (70.83% ), and endangered birds accounted for 33.33%. Species diversity and species uniformity were both lower, which were 1. 172 3 and 0.302 8 respectively. The relation of species abundance exhibited a logarithmic normal distribution. Further analysis revealed that special geographical position and special water environment were the main factors influencing avian community diversity and species abundance in Xingkai Lake Nature Reserve.%2009-2010年采用定点观察法、直数法、Shannon -Wiener指数和对数正态分布对兴凯湖保护区迁徙季节水禽多样性和种多度关系进行了调查分析.结果表明:调查期间,兴凯湖保护区,共记录水禽6目12科48种,包括涉禽和游禽两大生态类群,以雁形目和鸻形目为主(66.66%),古北种最多(64.58%),夏候鸟(70.83%)占绝对优势,濒危保护鸟类较多(33.33%);鸟类群落的多样性和均匀度均较低,分别为1.1723和0.3028;种多度关系呈对教正态分布.进一步分析表明:特殊的地理位置和特有的水域环境是形成该区鸟类多样性和种多度关系的主要因素.

  1. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 10

    International Nuclear Information System (INIS)

    Over a period of 4 days 12 colostomized laying hens daily received 36 g coarse wheat meal containing 14.37 atom-% 15N excess (15N') together with a conventional ration. After the homogenisation of each oviduct N and 15N' were determined. After the precipitation with TCA the 15N' of the amino acids was analysed in both the precipitate and the supernatant. In addition, the free amino acids and the peptides were determined in the TCA soluble fraction. The atom-% 15N' in the total N and in the non-basic amino acid N showed a parallel decrease; it diminshed from 1.75 atom-% 15N' to 0.64. Of the three basic amino acids, lysine shows the lowest labelling at all four measuring points. The quotas of non-basic amino acid 14N and 15N' in the total 14N and 15N' of the oviduct are the same and amount to 53%. In contrast to this, the quota of the 14N of the basic amino acids in the total 14N of the oviduct only amounts to 21.6% and that of 15N' only to 15.4%. The average atom-% 15N' of the free amino acids 12 h after the last 15N application is 1.54 and is considerably above that of the peptides with 1.15 atom-% 15N'. 36 h after the last 15N application the ascertained value of 1.25 is identical in both fractions. The labelling of the free amino acids decreases more quickly than that of the peptides the more time has passed after the last 15N application. (author)

  2. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    Energy Technology Data Exchange (ETDEWEB)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  3. Comparison of five soil organic matter decomposition models using data from a 14C and 15N labeling field experiment

    NARCIS (Netherlands)

    Pansu, M.; Bottner, P.; Sarmiento, L.; Metselaar, K.

    2004-01-01

    Five alternatives of the previously published MOMOS model (MOMOS-2 to -6) are tested to predict the dynamics of carbon (C) and nitrogen (N) in soil during the decomposition of plant necromass. 14C and 15N labeled wheat straw was incubated over 2 years in fallow soils of the high Andean Paramo of Ven

  4. Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore

    Science.gov (United States)

    Schillaci, Michael A.; Castellini, J. Margaret; Stricker, Craig A.; Jones-Engel, Lisa; Lee, Benjamin P.Y.-H.

    2014-01-01

    Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.

  5. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Directory of Open Access Journals (Sweden)

    Rocio I Ruiz-Cooley

    Full Text Available Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS documents for the first time multiple geographic origins and migration. Phe δ(15N values, a proxy for habitat baseline δ(15N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15N values in gladii for squid at small sizes (60 cm converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.

  6. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Science.gov (United States)

    Ruiz-Cooley, Rocio I; Ballance, Lisa T; McCarthy, Matthew D

    2013-01-01

    Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ(15)N values, a proxy for habitat baseline δ(15)N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15)N values in gladii for squid at small sizes (60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15)N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure. PMID:23527242

  7. Using macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs in Skagway, AK

    Science.gov (United States)

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  8. Nutrient dynamics of seagrass ecosystems: 15N evidence for the importance of particulate organic matter and root systems

    NARCIS (Netherlands)

    Evrard, V.P.E.; Kiswara, W.; Bouma, T.J.; Middelburg, J.J.

    2005-01-01

    The availability of nitrogen in sediment phytodetritus to seagrass was investigated in 5 tropical species (Thalassia hemprichii, Halodule uninervis, H. pinifolia, Halophila ovalis/ovata and Syringodium isoetifolium) from Indonesia. 15N-labeled phytodetritus was injected into the sediment and the app

  9. Hyperpolarized (13) C,(15) N2 -Urea MRI for assessment of the urea gradient in the porcine kidney

    DEFF Research Database (Denmark)

    Hansen, Esben S S; Stewart, Neil J; Wild, Jim M;

    2016-01-01

    function in healthy porcine kidneys resembling the human physiology. METHODS: Five healthy female Danish domestic pigs (weight 30 kg) were scanned at 3 Tesla (T) using a (13) C 3D balanced steady-state MR pulse sequence following injection of hyperpolarized (13) C,(15) N2 -urea via a femoral vein catheter...

  10. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    Science.gov (United States)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  11. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Science.gov (United States)

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ??13C and ??15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes-resident and transient - collected across ???25?? of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ??15N values of ???2.5% through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ??15N and ??13C values throughout the remainder of their lives, whereas ??15N values of most (n = 11) increased by ???1.5%, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ??13C and ??15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean. ?? Inter-Research 2009.

  12. A 15N stable isotope semen label to detect mating in the malaria mosquito Anopheles arabiensis Patton

    Directory of Open Access Journals (Sweden)

    Gludovacz Doris

    2008-07-01

    Full Text Available Abstract In previous studies it was determined that the stable isotope 13-carbon can be used as a semen label to detect mating events in the malaria mosquito Anopheles arabiensis. In this paper we describe the use of an additional stable isotope, 15-nitrogen (15N, for that same purpose. Both stable isotopes can be analysed simultaneously in a mass spectrometer, offering the possibility to detect both labels in one sample in order to study complex and difficult-to-detect mating events, such as multiple mating. 15N-glycine was added to larval rearing water and the target enrichment was 5 atom% 15N. Males from these trays were mated with unlabelled virgin females, and spiked spermathecae were analysed for isotopic composition after mating using mass spectrometry. Results showed that spermathecae positive for semen could be distinguished from uninseminated or control samples using the raw δ15N‰ values. The label persisted in spermathecae for up to 5 days after insemination, and males aged 10 days transferred similar amounts of label as males aged 4 days. There were no negative effects of the label on larval survival and male longevity. Enrichment of teneral mosquitoes after emergence was 4.85 ± 0.10 atom% 15N. A threshold value defined as 3 standard deviations above the mean of virgin (i.e. uninseminated spermathecae samples was successful in classifying a large proportion of samples correctly (i.e. on average 95%. We conclude that alongside 13C, 15N can be used to detect mating in Anopheles and the suitability of both labels is briefly discussed.

  13. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Science.gov (United States)

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  14. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  15. Fertilizer 15N Accumulation, Recovery and Distribution in Cotton Plant as Affected by N Rate and Split

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-zheng; CHU Kun-yan; TANG Hao-yue; NIE Yi-chun; ZHANG Xian-long

    2013-01-01

    N fertilization of 300 kg N ha-1 is normally applied to cotton crops in three splits:pre-plant application (PPA, 30%), first bloom application (FBA, 40%) and peak bloom application (PBA, 30%) in the Yangtze River Valley China. However, low fertilizer N plant recovery (NPR) (30-35%) causes problems such as cotton yield stagnation even in higher N rate, low profit margin of cotton production and fertilizer release to the environment. Therefore, it is questioned:Are these three splits the same significance to cotton N uptake and distribution? An outdoor pot trial was conducted with five N rates and 15N labeled urea to determine the recovery and distribution of 15N from different splits in cotton (Gossypium hirsutum L. cv. Huazamian H318) plant. The results showed that, cotton plant absorbed fertilizer 15N during the whole growing period, the majority during flowering for 18-20 d regardless of N rates (150-600 kg ha-1). Fertilizer 15N proportion to the total N accumulated in cotton plant increased with N rates, and it was the highest in reproductive organs (88%averaged across N rates) among all the plant parts. FBA had the highest NPR (70%), the lowest fertilizer N lose (FNL, 19%), and the highest contribution to the fertilizer 15N proportion to the total N (46%) in cotton plant, whereas PPA had the reverse effect. It suggests that FBA should be the most important split for N absorption and yield formation comparatively and allocating more fertilizer N for late application from PPA should improve the benefit from fertilizer.

  16. Nuclear Quadrupole Hyperfine Structure in HC14N/H14NC and DC15N/D15NC Isomerization: A Diagnostic Tool for Characterizing Vibrational Localization

    CERN Document Server

    Wong, Bryan M

    2010-01-01

    Large-amplitude molecular motions which occur during isomerization can cause significant changes in electronic structure. These variations in electronic properties can be used to identify vibrationally-excited eigenstates which are localized along the potential energy surface. This work demonstrates that nuclear quadrupole hyperfine interactions can be used as a diagnostic marker of progress along the isomerization path in both the HC14N/H14NC and DC15N/D15NC chemical systems. Ab initio calculations at the CCSD(T)/cc-pCVQZ level indicate that the hyperfine interaction is extremely sensitive to the chemical bonding of the quadrupolar 14N nucleus and can therefore be used to determine in which potential well the vibrational wavefunction is localized. A natural bonding orbital analysis along the isomerization path further demonstrates that hyperfine interactions arise from the asphericity of the electron density at the quadrupolar nucleus. Using the CCSD(T) potential surface, the quadrupole coupling constants of...

  17. σ-Hole bonding in 15N-labeled N-Benzyl- N-(4-iodo-tetrafluorobenzyl)-amine: Synthesis, crystal structure and solid-state structure calculations

    Science.gov (United States)

    Raouafi, Noureddine; Mayer, Peter; Boujlel, Khaled; Schöllhorn, Bernd

    2011-03-01

    Reductive amination of 4-iodo-tetrafluorobenzaldehyde 2 and 15N-enriched benzylamine yielded the title compound 1. Single crystal X-ray diffraction (XRD) revealed that the product crystallizes in the triclinic system of the P-1 space group. The structure is consisting of infinite one-dimensional chair like chains, based on intermolecular N···I halogen bonding. Only intermolecular weak hydrogen bonds N sbnd H···F and C sbnd H···F are observed. Representative XRD data have been compared to the results of theoretical semi-empirical calculations in the solid-state obtained using the PM6 method. Charges of I, N and F atoms are calculated from Natural Bond Orbital (NBO) and Electrostatic Potential Surface maps have been estimated by applying second-order Møller-Plesset (MP2) perturbation theory, and confirmed clearly the assumption of σ-hole bonding formation.

  18. Tamanho da parcela para estudos de recuperação de fertilizante-15N por capim-tanzânia Plot-size for 15N-fertilizer recovery studies by tanzania-grass

    Directory of Open Access Journals (Sweden)

    Geraldo Bueno Martha Júnior

    2009-04-01

    Full Text Available O entendimento da dinâmica do N em ecossistemas de pastagens pode ser melhorado por estudos em que se utilize a técnica do traçador 15N. Nesses experimentos, deve-se assegurar que o movimento lateral do traçador não interfira nos resultados. Neste trabalho foram determinadas as exigências quanto ao tamanho da parcela para experimentos com 15N em pastagem irrigada de Panicum maximum cv. Tanzânia. Foram consideradas três intensidades de pastejo (leniente, moderada e intensa em três épocas do ano: inverno, primavera e verão. Parcelas de 1 m², com uma touceira do capim ao centro, foram adequadas, independentemente da intensidade de desfolha ou da época do ano. O aumento na distância da área adubada com 15N influenciou negativamente a quantidade de N proveniente do fertilizante (Npfm recuperado na forragem. As menores taxas de declínio nos valores de Npfm foram observadas para as intensidades de pastejo leniente e moderada; esse fato pode ser explicado pelas características de crescimento vigoroso dessas plantas. O aumento na intensidade de pastejo determinou a redução na massa da touceira: quanto menor a touceira, maior a sua dependência do N do fertilizante.The understanding of the N dynamics in pasture ecosystems can be improved by studies using the 15N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for 15N-fertilizer recovery experiments with irrigated Panicum maximum cv.Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing in the winter, spring and summer seasons were considered. A 1 m² plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with 15N negatively affected the N derived from fertilizer (Npfm recovered in herbage

  19. Dynamics of amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 1

    International Nuclear Information System (INIS)

    In a 6-day preliminary period with a pelleted ration 12 colostomized laying hybrids received 15N-labelled wheat protein over 4 days. The labelling of the wheat was 14.37 atom-% 15N excess (15N'). During the 4-day application of 15N-labelled wheat protein each hen consumed 12.08 g N, 3.52 g lysine, 2.12 g histidine, 4.41 g arginine, of which were 540 mg 15N', 18.1 mg lysine 15N', 21.5 mg histidine 15N' and 47.9 mg arginine 15N'. Heavy nitrogen was determined in urine and its uric acid N in the daily urine samples of the individual animals. The average daily urine N excretion was 54% of the total nitrogen consumed with the ration. The labelling of the urine N reached a plateau on the fourth day of the experiment with 3.2 atom-% 15N'. On an average of the total experiment the quota of heavy nitrogen of the uric acid in the total 15N' of the urine was 83.4% and that of uric acid nitrogen in the total urine nitrogen 80.8%. (author)

  20. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 9

    International Nuclear Information System (INIS)

    Over 4 days 12 colostomized laying hens received 36 g coarse wheat meal with a 15N excess (15N') of 14.37 atom-% together with a conventional diet. The labelling of lysine amounted to 13.58 atom-% 15N', that of histidine to 14.38 and of arginine to 13.63 atom-% 15N'. Three animals each were butchered 12 h, 36 h, 60 h and 108 h after the last 15N application. In the two charges of follicles (above and below 25 g) N and 15N' were determined in the individual basic amino acids as well as their sum in the non-basic ones. The atom-% 15N' was determined in the TCA soluble fraction of the free amino acid and peptide fractions. The average atom-% 15N' of the big follicles is 12 and 36 h after the last 15N application lower, and higher at the last two measuring points than that of the medium and small follicles. The atom-% of the total nitrogen and of the non-basic amino acids was significantly higher in both the bigger and the smaller follicles than in the basic amino acids. 70% of the heavy nitrogen in the total 15N' of the big follicles could be detected in amino acids; its quota in the small follicles was 67%. (author)

  1. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 2

    International Nuclear Information System (INIS)

    Over 4 days 12 colostomized laying hens received toghether with a commercial ration labelled wheat with a 15N excess (15N') of 14.37 atom-%. The labelling of the basic amino acids amounted to 13.58 atom-% for lysine, to 14.38 atom-% for histidine and to 13.63 atom-% 15N' for arginine. 3 animals each were butchered 12 h, 36 h, 60 h and 108 h, resp. after the last application of 15N. The heavy nitrogen in the total N and in the N fraction of non-protein origin as well as in the basic amino acids in feces was daily determined for the individual hens in the total experimental period. On average the crude protein of feces contained 5.45% lysine, 2.32% histidine and 3.68% arginine: the protein of feces correspondingly contained 5.43% lysine, 2.32% histidine and 4.07% arginine. The quota of TCA-soluble N in the total N of feces amounts to one third on the 3rd and 4th days of the experiment and that of 15N' to 28%. The average atom-% 15N' of the protein fraction is 3.48 atom-% 15N' and that of the non-protein N fraction of feces 2.93 atom-% 15N'. The apparent digestibility of the 14N of the ration on average amounts to 82.8% and that of the wheat 15N' to 87.5%. The average quota of the basic amino acids in the protein compounds of feces amounts to 70.9% for lysine 15N', 73.7% for histidine 15N' and 70.3% for arginine 15N'. The digestibility of the 15N-labelled amino acids amounts to 80.4% for lysine, 90.8% for histidine and 90.2% for arginine. (author)

  2. Identificação de mudanças florestais por 13C e 15N dos solos da Chapada do Araripe, Ceará Identification of forest changes using 13C and 15N of soils of the Araripe Plateau, Ceará

    Directory of Open Access Journals (Sweden)

    Luiz A. R. Mendonça

    2010-03-01

    Full Text Available A matéria orgânica (MO encontrada no solo pode ser uma ferramenta auxiliar na identificação de uma vegetação remota. Na Floresta Nacional do Araripe e circunvizinhança, na Chapada do Araripe, realizou-se o presente estudo, em que as medidas de d13C e d15N da MO dos solos foram utilizadas para: (i avaliar os valores atuais desses parâmetros; (ii analisar a variabilidade natural do d13C no solo de diferentes formações florestais e (iii indicar o declínio de florestas. Verificou-se que os solos das áreas hoje preservadas e cuja MO na superfície mostra d13C tipo C3, da vegetação atual, e uma mistura C3-C4 em profundidade, correspondem a ecossistemas antropizados no passado por uso agrícola; já os solos que mantiveram o d13C tipo C3 em todo o perfil se referem a ecossistemas antropizados, porém por uso não agrícola. Na caatinga, o perfil do d15N indicou um solo mais mineralizado e com menos MO. As áreas reflorestadas e preservadas apresentaram recuperação da MO.The organic matter (OM of soils can be used as an auxiliary tool for the identification of past vegetation. In the Floresta Nacional do Araripe and its surroundings, on top of the Araripe Plateau, a study was made using measurements of d13C and d15N of soil OM in order to (i assess present day values for these parameters; (ii to analyse natural variations of d13C in soils from different formations of forest; (iii and to indicate forest decline. It was found that soils from (at present protected areas, the OM of which exhibits C3 type d13C of the present vegetation in surface samples but of the C3-C4 type in depth, correspond to ecosystems anthropized in the past through agriculture. Soils maintaining d13C of the C3 type throughout the entire profile refer to ecosystems anthropized through non-agricultural exploitation. "Caatinga" samples exhibit a d15N profile that indicates a soil more mineralized and with less OM, whereas reforested preserved areas show recovery of OM.

  3. Estoque de C e Abundância Natural de 13C em Razão da Conversão de Áreas de Floresta e Pastagem em Bioma Mata Atlântica

    Directory of Open Access Journals (Sweden)

    Denilson Dortzbach

    2015-12-01

    Full Text Available RESUMO Conversões da cobertura vegetal decorrentes do manejo podem alterar o estoque de carbono e a abundância natural de 13C. Objetivou-se avaliar o estoque de C e a abundância natural de 13C em áreas de sucessão de floresta (F e pastagem (P, com diferentes tempos de uso, na Floresta Atlântica no Estado de Santa Catarina. Sete sucessões de uso entre F e P foram definidas por fotografias aéreas tomadas em 1957, 1978 e 2008, entrevistas com moradores e escolha de áreas com florestas em estádio médio de regeneração. As sucessões foram identificadas como FFP, FPF, FFP, FPP, PFF, PPF, PPP, em que a primeira letra se refere ao uso observado em 1957; a segunda, em 1978; e a terceira, em 2008. Foram coletadas amostras de solo nas camadas de 0,00-0,10; 0,10-0,20; 0,20-0,30; 0,30-0,40; 0,40-0,50; 0,50-0,60; 0,60-0,80 e 0,80-1,00 m. Quantificaram-se os teores de carbono orgânico total (COT, abundância de C (δ13C, densidade do solo (Ds e estoque de carbono (ECOT. A conversão de F em P proporcionou aumento da Ds e reduções nos teores de COT e no ECOT do solo. O maior valor de ECOT ocorreu nas áreas atualmente ocupadas por florestas, mesmo tendo sido utilizadas como pasto anteriormente. Áreas de floresta secundária tenderam, em relação aos teores de COT, a um novo equilíbrio, dado que foram verificados teores de COT superiores aos quantificados em áreas de floresta primária. As áreas de floresta e pastagem, com diferentes idades de uso e nas diferentes profundidades de solo avaliadas, evidenciaram respostas na δ13C, resultando em diferentes assinaturas isotópicas, confirmando a mudança de uso de plantas C3 para C4. Em pastagens com 50 anos de uso, na camada de 0,00-0,10 m, 66 % do COT do solo ainda é derivado da floresta original. A análise de componentes principais (ACP indicou que o COT foi o atributo que melhor discriminou as alterações em razão do uso da terra, nas diferentes camadas de solo.

  4. L'isotope stable 15N et le lysimètre, des outils complémentaires pour l'étude de la lixiviation de l'azote dans les sols agricoles

    Directory of Open Access Journals (Sweden)

    Destain JP.

    2010-01-01

    Full Text Available Stable 15N isotope and lysimeter, complementary tools in order to study the nitrogen leaching in agricultural soils. Stable 15N was used in lysimetric trials conducted with the aim to study nitrate leaching of agricultural soils. At Gembloux, a rate of 200 kg N.ha-1 as 15NH4 15NO3 with an isotopic abundance of 2.161 At%15N was applied in two lysimeters before a spinach crop, followed by beans and winter wheat; in the first lysimeter, total recovery by crops was less than 39.8% while in second lysimeter, recovery was 62.2%. Concentrations of N-NO3 - in leached water were always higher in lysimeter 2 than lysimeter 1, probably due to less microbial immobilization of nitrogen. At Remicourt and Omal, a simulated mineral residue of 150 kg N.ha-1 (rate of 15NH4 15NO3 applied in autumn has completely disappeared from the soil profile (0-90 cm already in July of the following year. At Omal, a winter crop has recovered no more than 9% of nitrogen rate applied in autumn. Measurement of N-NO3 - concentration in leached water has shown clearly higher levels at Remicourt (even more than 70 mg N.l-1 probably caused by an application of high rate of compost rich in nitrogen than is Omal. Stable 15N isotope could not be analyzed in leaching water probably due to a leak of sensitiveness of the analytical equipment.

  5. Use of 15N and the neutron probe in evaluating soil organic matter turnover and water management in wheat

    International Nuclear Information System (INIS)

    An experiment was conducted at the experimental station of the Regional Office of Agricultural Development in South Morocco (Errachidia). The soil is a sandy loam, and average rainfall is 50 mm/yr. Temperatures are relatively low in winter (-3 deg. C) and high in summer (45 deg. C). The soil pH was 8.4, with 0.069% N, 0.97% O.M., 5 ppm exchangeable K, 8.8 ppm available P, and 0.25 exchange capacity. Wheat (cv. Massa) was grown on land previously amended with N, P, and K (42, 84, and 42 kg/ha, respectively). Three irrigation treatments were imposed: 20% HCC (soil humidity at 20% of field capacity), 40% HCC, and 60% HCC. Water treatments were maintained by measurement of soil moisture with a neutron probe. Within each watering system, two N treatments were used: 835 g/m2 of wheat residues enriched with 1.711% atom excess 15N (105 mg 15N/m2) at seeding, and 4.10 g N/m2, as ammonium sulphate, a month after seeding; 4.10 g N/m2 ammonium sulphate, enriched with 9.96% atom excess 15N after seeding and another 4.10 g N/m2 enriched in 15N (9.96%) a month later (836 mg 15N/m2). The hydroprobe was calibrated under dry- and humid-soil conditions. Soil samples were taken at various depths (50 cm from the access tubes) to determine soil humidity by drying samples at 105 deg. C for 24 h. Apparent density was determined to calculate soil volumic humidity at the same depths by the cylinders method. Then volumic humidity was correlated with the hydroprobe count ratio (direct count/standard count). Yields and 15N enrichment of seeds, residues, and roots were determined. Soil N and 15N were determined at four depths to determine the fate of residue 15N and fertilizer 15N added to the soil. The results are summarized. A simple mathematical model allowed us to calculate all parameters needed to understand the soil-water relationship with N budget. The use of the neutron probe allowed maintenance of watering levels at particular depths. Water deficit affects wheat yield, and residue

  6. Ion microscopy analysis of the intracellular distribution of {sup 14}C-or {sup 15}N-labelled cytotoxic drugs; Analyse par microscopie ionique de la distribution intracellulaire de drogues cytotoxiques marquees par {sup 14}C ou {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Bisagni, E.; Carrez, D.; Croisy, A.; Favaudon, V.; Guerquin-Kern, J.L.; Nguyen, C.H.; Rivalle, C. [Institut Curie, 91 - Orsay (France); Dennebouy, R.; Slodzian, G. [Paris-11 Univ., 91 - Orsay (France); Galle, P. [Faculte de Medecine, 94 - Creteil (France)

    1994-12-31

    This study has concerned the localization, by the means of ion microscopy of human tumoral cells (in culture), of two synthesized cytostatic compounds: BD40 or Pazelliptine and Intoplicine. These two active compounds (cancer research) have been labelled either with {sup 15}N on the terminal amino dialkyl group of the lateral chain, either, for Intoplicine, with {sup 14}C on the carbon 3 of the aromatic cycle. These two drugs are considered as poisons for topo-isomerases, and they were used to localize these cellular multiplication key-enzymes. Unfortunately, pazelliptine and intoplicine specificity appeared much too low. However, encouraging results were obtained, particularly on {sup 15}N-labelling utilization. 4 figs., 9 refs.

  7. Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Sanjay C.; Bhavesh, Neel S.; Hosur, Ramakrishna V. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2001-06-15

    Two triple resonance experiments, HNN and HN(C)N, are presented which correlate H{sup N} and {sup 15}N resonances sequentially along the polypeptide chain of a doubly ({sup 13}C, {sup 15}N) labeled protein. These incorporate several improvements over the previously published sequences for a similar purpose and have several novel features. The spectral characteristics enable direct identification of certain triplets of residues, which provide many starting points for the sequential assignment procedure. The experiments are sensitive and their utility has been demonstrated with a 22 kDa protein under unfolding conditions where most of the standard triple resonance experiments such as HNCA, CBCANH etc. have limited success because of poor amide, C{sup {alpha}} and C{sup {beta}} chemical shift dispersions.

  8. Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins

    International Nuclear Information System (INIS)

    Two triple resonance experiments, HNN and HN(C)N, are presented which correlate HN and 15N resonances sequentially along the polypeptide chain of a doubly (13C, 15N) labeled protein. These incorporate several improvements over the previously published sequences for a similar purpose and have several novel features. The spectral characteristics enable direct identification of certain triplets of residues, which provide many starting points for the sequential assignment procedure. The experiments are sensitive and their utility has been demonstrated with a 22 kDa protein under unfolding conditions where most of the standard triple resonance experiments such as HNCA, CBCANH etc. have limited success because of poor amide, Cα and Cβ chemical shift dispersions

  9. Simple approach for the preparation of 15-15N2-enriched water for nitrogen fixation assessments: Evaluation, application and recommendations

    Directory of Open Access Journals (Sweden)

    Isabell eKlawonn

    2015-08-01

    Full Text Available Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2 fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15-15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15-15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15-15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥5 min. Optionally, water can be degassed at low-pressure (≥950 mbar for ten minutes prior to the 15-15N2 gas addition to indirectly facilitate the 15-15N2 dissolution. This preparation of 15-15N2-enriched water can be done within one hour using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15-15N2-enriched water. Notably, the addition of 15-15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15-15N2-enriched water with glass, plastic and rubber ware during its preparation. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn increased by up to 0.1 nmol L-1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15-15N2. The 15-15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15-15N2 equilibration. This method achieved a 15N-atom excess of 6.6±1.7% when adding 2 mL 15-15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  10. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

    International Nuclear Information System (INIS)

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 deg. C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (τm) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action

  11. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Sarata C. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India); Bhuyan, Abani K.; Udgaonkar, Jayant B. [University of Agricultural Sciences (UAS), National Centre for Biological Sciences, Tata Institute of Fundamental Research (India); Hosur, R.V. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2000-10-15

    Backbone dynamics of uniformly {sup 15}N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 deg. C, pH 6.6, using {sup 15}N relaxation data obtained from proton-detected 2D {l_brace}{sup 1}H{r_brace}-{sup 15}N NMR spectroscopy. {sup 15}N spin-lattice relaxation rate constants (R{sub 1}), spin-spin relaxation rate constants (R{sub 2}), and steady-state heteronuclear {l_brace}{sup 1}H{r_brace}-{sup 15}N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide {sup 15}N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times ({tau}{sub m}) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface

  12. Precision Chemical Abundance Measurements

    DEFF Research Database (Denmark)

    Yong, David; Grundahl, Frank; Meléndez, Jorge;

    2012-01-01

    This talk covers preliminary work in which we apply a strictly differential line-by-line chemical abundance analysis to high quality UVES spectra of the globular cluster NGC 6752. We achieve extremely high precision in the measurement of relative abundance ratios. Our results indicate that the ob......This talk covers preliminary work in which we apply a strictly differential line-by-line chemical abundance analysis to high quality UVES spectra of the globular cluster NGC 6752. We achieve extremely high precision in the measurement of relative abundance ratios. Our results indicate...... that the observed abundance dispersion exceeds the measurement uncertainties and that many pairs of elements show significant correlations when plotting [X1/H] vs. [X2/H]. Our tentative conclusions are that either NGC 6752 is not chemically homogeneous at the ~=0.03 dex level or the abundance variations...

  13. Plot-size for {sup 15}N-fertilizer recovery studies by tanzania-grass; Tamanho da parcela para estudos de recuperacao de fertilizante-{sup 15}N por capim-tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Martha Junior, Geraldo Bueno [EMBRAPA Cerrados, Planaltina, DF (Brazil)], e-mail: gbmartha@cpac.embrapa.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis], e-mail: pcotrive@cena.usp.br; Corsi, Moacyr [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia], e-mail: moa@esalq.usp.br

    2009-07-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the {sup 15}N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for {sup 15}N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m{sup 2} plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with {sup 15}N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  14. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 11

    International Nuclear Information System (INIS)

    Over a period of 4 days 12 colostomized laying hens daily received 36 g 15N-labelled wheat with 15N excess (15N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15N' 13.63 atom-% 15N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days, resp., after the main period until they were butchered. The total of skeleton muscles, heart and stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15N' and the basic and non-basic amino acids as well as their 15N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half-life so that a slight decrease of atom-% 15N' in the muscles could only be detected after 108 h. The 14N and 15N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50 %. The 14N quota of the basic amino acids is 30% and the 15N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time. (author)

  15. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 3

    International Nuclear Information System (INIS)

    12 colostomized laying hybrids received a ration meeting their requirement of 15N-labelled wheat with a 15N excess (15N') of 14.37 atom-% over 4 days. The 15N' of the total ration amounted to 4.47 atom-%. Each hen consumed 135 mg 15N' per day. On another 4 days the same rations with non-labelled wheat were fed. The 12 hens laid 56 eggs during the 8 days of the experiment. They were divided into egg shell, white and yolk of egg. In addition, the protein of the white and yolk of egg was precipitated with trichloric acetic acid (TCA) and the nitrogen in these fractions was determined. On an average the N quota in the egg shell was 5.3%, in the white of egg 49.1% and in the yolk 45.6%. The atom-% 15N' in the shells of the eggs laid on the first day of the experiment was on an average 0.21, whereas only 0.03 and 0.02 atom-% 15N' resp. could be detected in the white and yolks of the eggs. On the first day after the last 15N application the atom-% 15N' in the egg shell and the white of egg was highest and amounted to 2.33 and 2.43 atom-% resp. The highest value of 1.83 atom-% 15N' in the yolk was ascertained 3 days after the last 15N intake. The mean quota of TCA-precipitable N in the white of egg is 97.6% and in the yolk 94.4% of the respective total N. The atom-% 15N' in the non-protein N compounds was higher than in the protein fractions. (author)

  16. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 6

    International Nuclear Information System (INIS)

    12 colostomized laying hens received, together with a conventional feed ration, 15N-labelled wheat with a 15N excess (15N') of 14.37 atom-% over 4 days. 3 animals each were butchered after 12 h, 36 h, 60 h and 108 h after the last 15N' application and, apart from various organs, the contents and the tissue of the gastrointestinal tract of each hen was divided into 3 fractions. TCA precipitation was carried out with the contents and the tissue of the 3 fractions. Nitrogen and its atom-% 15N' were determined in the supernatant and the precipitate. The 15N' amount in the contents of the crop and the stomachs, the small and large intestines is still considerable 12 h after the last 15N wheat feeding and still clearly detectable 108 h after it. The TCA precipitable amounts of 14N and 15N' of the contents of crop and stomach and that of the small intestine agree well; they are 75% and 50% resp. of the total N. The amount of atom-% 15N' of the contents of the small and large intestines remains the same up to 36 h after the last 15N' application and is higher at the following measuring points in the contents of the large intestine. A close correlation could be ascertained between the atom-% 15N' in the contents and tissue of the small and large intestines. The TCA soluble N quotas of both 14N and 15N' in the pancreas are above 50%. (author)

  17. Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Eriksen, J.; Høgh-Jensen, H.;

    2013-01-01

    Abstract Background and aims We carried out field experiments to investigate if an agricultural grassland mixture comprising shallow- (perennial ryegrass: Lolium perenne L.; white clover: Trifolium repens L.) and deep- (chicory: Cichorium intybus L.; Lucerne: Medicago sativa L.) rooting grassland...... species has greater herbage yields than a shallow-rooting two-species mixture and pure stands, if deep-rooting grassland species are superior in accessing soil 15N from 1.2 m soil depth compared with shallow-rooting plant species and vice versa, if a mixture of deep- and shallow-rooting plant species has......-access of pure stands, two-species and four-species grassland communities. Results Herbage yield and soil 15N-access of the mixture including deep- and shallow-rooting grassland species were generally greater than the pure stands and the two-species mixture, except for herbage yield in pure stand lucerne...

  18. Transfer of organic matter in the deep Arabian Sea zooplankton community: insights from δ15N analysis

    Science.gov (United States)

    Koppelmann, Rolf; Weikert, Horst

    Zooplankton samples were obtained in the central Arabian Sea using a 1 m2-MOCNESS with 333 μm mesh aperture to investigate the nitrogen stable isotopic composition of different mesozooplankton size classes (zone (1000-2500 m) showed an increase in δ15N with increasing depth for all size classes. In April 1997, the size-dependent distribution showed higher values in the larger size classes, indicating higher trophic levels as compared to smaller size classes. Such a size-dependent increase was not evident in February 1998. Below 2500 m, the δ15N values were more or less stable with increasing depth, or even decreased as exemplified by the smallest size class (zone (1000-2500 m) and one to two trophic levels in the lower bathypelagic zone (>2500 m) . The amount of diet needed by the different mesozooplankton size classes to build up the measured biomass is estimated for the deep bathypelagic zone.

  19. Separation Between d$_{5/2}$ and s$_{1/2}$ Neutron Single Particle Strength in $^{15}$N

    CERN Document Server

    Mertin, C E; Crisp, A M; Keeley, N; Kemper, K W; Momotyuk, O; Roeder, B T; Volya, A

    2014-01-01

    The separation between single particle levels in nuclei plays the dominant role in determining the location of the neutron drip line. The separation also provides a test of current crossed shell model interactions if the experimental data is such that multiple shells are involved. The present work uses the $^{14}$N(d, p)$^{15}$N reaction to extract the 2s$_{1/2}$, and 1d$_{5/2}$ total neutron single particle strengths and then compares these results with a shell model calculation using a p-sd crossed shell interaction to identify the J$^\\pi$ of all levels in $^{15}$N up to 12.8 MeV in excitation.

  20. Mercury and stable isotopes (δ15N and δ13C as tracers during the ontogeny of Trichiurus lepturus

    Directory of Open Access Journals (Sweden)

    Ana Paula Madeira Di Beneditto

    2013-03-01

    Full Text Available This study applies total mercury (THg concentration and stable isotope signature (δ15N and δ13C to evaluate the trophic status and feeding ground of Trichiurus lepturus during its ontogeny in northern Rio de Janeiro, south-eastern Brazil. The trophic position of T. lepturus is detected well by THg and δ15N as the sub-adult planktivorous specimens are distinct from the adult carnivorous specimens. The δ13C signatures suggest a feeding ground associated with marine coastal waters that are shared by fish in different ontogenetic phases. The diet tracers indicated that the fish feeding habits do not vary along seasons of the year, probably reflecting the prey availability in the study area. This fish has economic importance and the concentration of THg was compared to World Health Organization limit, showing that the adult specimens of T. lepturus are very close to the tolerable limit for safe regular ingestion.

  1. Alanine flux in obese and healthy humans as evaluated by 15N- and 2H3-labeled alanines

    International Nuclear Information System (INIS)

    Estimates of plasma alanine flux as measured in humans using L-[15N]-alanine or L-[3,3,3-2H3]alanine were compared by simultaneous intravenous infusion of both tracers. Plasma isotope enrichments were measured by chemical ionization gas chromatography-mass spectrometry. In 16 obese women before and during a hypocaloric diet and in 4 normal men in the postabsorptive and fed states, the fluxes were highly correlated (r2 = 0.93) although plasma alanine flux with the 2H tracer was two to three times greater than that obtained with [15N]alanine. The fluxes decreased with the hypocaloric diet in obese subjects and increased during the fed state in healthy adults. Thus, although the estimates of alanine flux differed according to the tracer used, both appear to give equivalent information about changes in alanine kinetics induced by the nutritional conditions examined

  2. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia

    Directory of Open Access Journals (Sweden)

    Michaela D. Filiou

    2013-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.

  3. Bicarbonate as tracer for plant assimilated C and homogeneity of 14C and 15N distribution in ryegrass and white clover tissue by alternative labeling approaches

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Kusliene, Gedrime; Jacobsen, Ole Stig;

    2013-01-01

    parts with high and low 14C activity were separated and analyzed for 15N enrichment. Results Bicarbonate applied by leaf-labeling efficiently introduced 14C into both white clover and ryegrass, although the 14C activity in particular for white clover was found predominantly in the labeled leaf. Using 14...... that 15N also had a heterogeneous distribution (up to two orders of magnitude). Conclusion Bicarbonate can efficiently be used to introduce 14C or 13C into plant via the leaf-labeling method. Both 14C and 15N showed heterogeneous distribution in the plant, although the distribution of 15N was more even...

  4. Use of a 15N tracer to determine linkages between a mangrove and an upland freshwater swamp

    Science.gov (United States)

    MacKenzie, R. A.; Cormier, N.

    2005-05-01

    Mangrove forests and adjacent upland freshwater swamps are important components of subsistence-based economies of Pacific islands. Mangroves provide valuable firewood (Rhizophora apiculata) and mangrove crabs (Scylla serrata); intact freshwater swamps are often used for agroforestry (e.g., taro cultivation). While these two systems are connected hydrologically via groundwater and surface flows, little information is available on how they may be biogeochemically or ecologically linked. For example, mangrove leaf litter was once thought to be an important food source for resident and transient nekton and invertebrates, but this value may have been overestimated. Instead, nutrients or allochthonous material (e.g., phytoplankton, detritus) delivered via groundwater or surface water from upland freshwater swamps may play a larger role in mangrove food webs. Understanding the linkages between these two ecologically and culturally important ecosystems will help us to understand the potential impacts of hydrological alterations that occur when roads or bridges are constructed through them. We conducted a 15N tracer study in the Yela watershed on the island of Kosrae, Federated States of Micronesia. K15NO3 was continually added at trace levels for 4 weeks to the Yela River in an upland freshwater swamp adjacent to a mangrove forest. Nitrate and ammonium pools, major primary producers, macroinvertebrates, and fish were sampled from stations 5 m upstream (freshwater swamp) and 138, 188, 213, and 313 m downstream (mangrove) from the tracer addition. Samples were collected once a week prior to, during, and after the 15N addition for a total of 6 weeks. Preliminary results revealed no significant enrichment (< 1 ‰) in the 15N isotope composition of either resident shrimp (Macrobrachium sp.) or mudskipper fish (Periophthalmus sp.). However, the 15N signature of ammonium pools was enriched 10-60 ‰ by the end of the third week. These results suggest that the tracer was present

  5. Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (delta13C and delta15N).

    Science.gov (United States)

    Al-Reasi, Hassan A; Ababneh, Fuad A; Lean, David R

    2007-08-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) were measured in zooplankton and 13 fish species from a coastal food web of the Gulf of Oman, an arm of the Arabian Sea between Oman and Iran. Stable isotope ratios (delta13C and delta15N) also were determined to track mercury biomagnification. The average concentration of T-Hg in zooplankton was 21 +/- 8.0 ng g(-1) with MeHg accounting 10% of T-Hg. Total mercury levels in fish species ranged from 3.0 ng g(-1) (Sardinella longiceps) to 760 ng g(-1) (Rhizoprionodon acutus) with relatively lower fraction of MeHg (72%) than that found in other studies. The average trophic difference (Deltadelta13C) between zooplankton and planktivorous fish (Selar crumenopthalmus, Rastrelliger kanagurta, and S. longiceps) was higher (3.4 per thousandth) than expected, suggesting that zooplankton may not be the main diet or direct carbon source for these fish species. However, further sampling would be required to compensate for temporal changes in zooplankton and the influence of their lipid content. Trophic position inferred by delta15N and and slopes of the regression equations (log10[T-Hg] = 0.13[delta15N] - 3.57 and log10[MeHg] = 0.14[delta15N] - 3.90) as estimates of biomagnification indicate that biomagnification of T-Hg and MeHg was lower in this tropical ocean compared to what has been observed in arctic and temperate ecosystems and tropical African lakes. The calculated daily intake of methylmercury in the diet of local people through fish consumption was well below the established World Health Organization (WHO) tolerable daily intake threshold for most of the fish species except Euthynnus affinis, Epinephelus epistictus, R. acutus, and Thunnus tonggol, illustrating safe consumption of the commonly consumed fish species. PMID:17702328

  6. Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (delta13C and delta15N).

    Science.gov (United States)

    Al-Reasi, Hassan A; Ababneh, Fuad A; Lean, David R

    2007-08-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) were measured in zooplankton and 13 fish species from a coastal food web of the Gulf of Oman, an arm of the Arabian Sea between Oman and Iran. Stable isotope ratios (delta13C and delta15N) also were determined to track mercury biomagnification. The average concentration of T-Hg in zooplankton was 21 +/- 8.0 ng g(-1) with MeHg accounting 10% of T-Hg. Total mercury levels in fish species ranged from 3.0 ng g(-1) (Sardinella longiceps) to 760 ng g(-1) (Rhizoprionodon acutus) with relatively lower fraction of MeHg (72%) than that found in other studies. The average trophic difference (Deltadelta13C) between zooplankton and planktivorous fish (Selar crumenopthalmus, Rastrelliger kanagurta, and S. longiceps) was higher (3.4 per thousandth) than expected, suggesting that zooplankton may not be the main diet or direct carbon source for these fish species. However, further sampling would be required to compensate for temporal changes in zooplankton and the influence of their lipid content. Trophic position inferred by delta15N and and slopes of the regression equations (log10[T-Hg] = 0.13[delta15N] - 3.57 and log10[MeHg] = 0.14[delta15N] - 3.90) as estimates of biomagnification indicate that biomagnification of T-Hg and MeHg was lower in this tropical ocean compared to what has been observed in arctic and temperate ecosystems and tropical African lakes. The calculated daily intake of methylmercury in the diet of local people through fish consumption was well below the established World Health Organization (WHO) tolerable daily intake threshold for most of the fish species except Euthynnus affinis, Epinephelus epistictus, R. acutus, and Thunnus tonggol, illustrating safe consumption of the commonly consumed fish species.

  7. Fate of 15N-urea applied to wheat-soybean succession crop Destino de 15N-uréia aplicada em sucessão trigo-soja

    Directory of Open Access Journals (Sweden)

    Antonio Enedi Boaretto

    2004-01-01

    Full Text Available The wheat crop in São Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha-1 depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha-1 of N. The efficiency of 15N-urea utilization ranged from 52% to 85%. The main loss of applied 15N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha-1, was less than 1% of applied 15N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15N applied to wheat at sowing or at tillering stage.No Estado de São Paulo, a cultura do trigo é adubada, além de P e K, com N, cuja dose (0 a 120 kg ha-1 depende do cultivo anterior e da possibilidade de irrigação. A resposta do trigo às doses e épocas de aplicação e o destino do N aplicado foi estudada em dois cultivos de trigo, seguidos pela soja. Também se avaliou a recuperação do N residual pela soja cultivada nas mesmas parcelas após o trigo. A produtividade máxima estimada de grãos seria obtida com a dose de 92 kg.ha-1 de N. A eficiência de absorção 15N-uréia variou de 52% a 85%. A principal perda de N, que variou de 5% a 12%, ocorreu através de volatilização de amônia proveniente da uréia aplicada na superfície do solo. Por lixiviação foi perdido menos que 1% do N aplicado, pois a água da chuva ou da irrigação foi suficiente para molhar somente a camada do solo

  8. Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy.

    Science.gov (United States)

    Marthala, V R Reddy; Jiang, Yijiao; Huang, Jun; Wang, Wei; Gläser, Roger; Hunger, Michael

    2006-11-22

    By means of solid-state 15N NMR spectroscopy, evidence for the formation of nitrilium ions as intermediates of the Beckmann rearrangement of 15N-cyclohexanone oxime to epsilon-caprolactam on silicalite-1, H-ZSM-5, and H-[B]ZSM-5 is reported. The zeolites under study are characterized by different acid strengths (silicalite-1 < H-[B]ZSM-5 < H-ZSM-5). Depending on the nature of catalytically active surface OH groups, reactant and product molecules exist in the nonprotonated or protonated state. In addition, formation of byproducts such as 5-cyano-1-pentene and epsilon-aminocapric acid as a result of dehydration and hydrolysis of the reactant and product molecules, respectively, were observed.

  9. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    Science.gov (United States)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  10. /sup 13/N, /sup 15/N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Hollocher, T.C. (Brandeis Univ., Waltham, MA); Garber, E.; Cooper, A.J.L.; Reiman, R.E.

    1980-06-10

    /sup 13/N- and /sup 15/N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap (/sup 13/N)- or (/sup 15/N, /sup 15/N)hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mm. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during denitrification, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in denitrification. In addition, the assimilation of inorganic nitrogen was studied in P. dentrificans using /sup 13/N as tracer. At low concentrations (<10/sup -8/ M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N/sub 2/. Similarly, with 15 mm (/sup 13/N)nitrate, 5% of the label went into metabolites and 95% to N/sub 2/. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction.

  11. The excretion of isotope in urea and ammonia for estimating protein turnover in man with [15N]glycine

    International Nuclear Information System (INIS)

    Four normal adults were given [15N]-glycine in a single dose either orally or intravenously. Rates of whole-body protein turnover were estimated from the excretion of 15N in ammonia and in urea during the following 9 h. The rate derived from urea took account of the [15N]urea retained in body water. In postabsorptive subjects the rates of protein synthesis given by ammonia were equal to those from urea, when the isotope was given orally, but lower when an intravenous dose was given. In subjects receiving equal portions of food every 2 h rates of synthesis calculated from ammonia were much lower than those from urea whether an oral or intravenous isotope was given. Comparison of rates obtained during the postabsorptive and absorptive periods indicated regulation by food intake primarily of synthesis when measurements were made on urea, but regulation primarily of breakdown when measurements were made on ammonia. These inconsistencies suggest that changes in protein metabolism might be assessed better by correlating results given by different end-products, and it is suggested that the mean value given by urea and ammonia will be useful for this purpose. (author)

  12. Affordable uniform isotope labeling with {sup 2}H, {sup 13}C and {sup 15}N in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for {sup 15}N and {sup 13}C with yields comparable to expression in full media. For {sup 2}H,{sup 15}N and {sup 2}H,{sup 13}C,{sup 15}N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  13. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    Science.gov (United States)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  14. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    Science.gov (United States)

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  15. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    Science.gov (United States)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  16. Individual protein balance strongly influences delta15N and delta13C values in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    2004-02-01

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing delta(15)N and delta(13)C values. An experiment using Nile tilapia [ Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on delta(15)N and delta(13)C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. delta(15)N and delta(13)C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5 per thousand to 4 per thousand and for C in the lipid-free body from 4 per thousand to 2.5 per thousand. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  17. 15N tracer application to evaluate nitrogen dynamics of food webs in two subtropical small-scale aquaculture ponds under different managements.

    Science.gov (United States)

    Pucher, Johannes; Mayrhofer, Richard; El-Matbouli, Mansour; Focken, Ulfert

    2014-01-01

    Small, semi-intensively managed aquaculture ponds contribute significantly to the food security of small-scale farmers around the world. However, little is known about nutrient flows within natural food webs in such ponds in which fish production depends on the productivity of natural food resources. (15)N was applied as ammonium at 1.1 and 0.4 % of total nitrogen in a traditionally managed flow-through pond and a semi-intensively managed stagnant pond belonging to small-scale farmers in Northern Vietnam and traced through the natural food resources over 7 days. Small-sized plankton (1-60 μ m) was the dominant pelagic biomass in both ponds with higher biomass in the stagnant pond. This plankton assimilated major portions of the applied tracer and showed a high sedimentation and turnover rate. High re-activation of settled nutrients into the pelagic food web was observed. The tracer was removed more quickly from the flow-through pond than from the stagnant pond. A steady nutrient supply could increase fish production.

  18. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  19. Reconstruction of the oceanic nitrate inventory in the Pliocene Caribbean Sea: Foraminifera-bound δ15N - A new approach

    Science.gov (United States)

    Straub, M.; Haug, G. H.; Sigman, D. M.; Ren, H.

    2010-12-01

    The nitrate budget in the low-latitude surface ocean is mainly controlled by the opposing effects of denitrification and nitrate fixation. The state of the global ocean nitrate inventory highly affects primary production, which allows sequestering CO2 into the deep ocean. This may influence climate variability and control warm and cold periods in Earth history. Studies have shown that nitrogen isotopes reflect the nutrient status of the upper water column and therefore can be used as proxy for the state of the ocean’s ‘biological pump’. The nitrate inventory has mostly been reconstructed based on bulk sedimentary N-isotope measurements, which can be affected by syn- and post-sedimentary processes. Promising approaches to circumvent these potential biases are based on measurements of foraminifera-bound δ15N isotopes. In the subtropical and tropical ocean, planktonic foraminifera are a main component of the sinking particle flux. The organic compounds encapsulated within the foraminiferal tests are protected from sedimentary diagenetic processes and record a pristine signal of the nitrate composition of the upper water column. The novel method used in this study employs denitrifying bacteria (Pseudomonas chlororaphis and Pseudomonas aureofaciens) to produce nitrous oxide (N2O), recovered from the nitrate extracted from the organic matter sheltered within the foraminifera shell. The extracted N2O is analyzed for δ15N with a Gas bench II - IRMS and yields results with reproducible isotopic measurements of samples with nitrate concentrations down to 1 μM. Previous data from the investigated site (ODP Leg 165, Site 999A, Caribbean Sea), spanning the last 30’000 yrs using the same method, indicate a systematic difference between glacial and interglacial values. The glacial state is characterized by high δ15N values around ~ 5 ‰ (suggesting less N-fixation) and the interglacial by low δ15N values around ~ 3 ‰ (N-fixation increase). Pliocene data from

  20. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183