WorldWideScience

Sample records for 15n chemical shifts

  1. 15N NMR chemical shifts in papaverine decomposition products

    Science.gov (United States)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  2. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  3. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  4. Solvent effects on 15N NMR coordination shifts.

    Science.gov (United States)

    Kleinmaier, Roland; Arenz, Sven; Karim, Alavi; Carlsson, Anna-Carin C; Erdélyi, Máté

    2013-01-01

    (15)N NMR chemical shift became a broadly utilized tool for characterization of complex structures and comparison of their properties. Despite the lack of systematic studies, the influence of solvent on the nitrogen coordination shift, Δ(15)N(coord), was hitherto claimed to be negligible. Herein, we report the dramatic impact of the local environment and in particular that of the interplay between solvent and substituents on Δ(15)N(coord). The comparative study of CDCl(3) and CD(3)CN solutions of silver(I)-bis(pyridine) and silver(I)-bis(pyridylethynyl)benzene complexes revealed the strong solvent dependence of their (15)N NMR chemical shift, with a solvent dependent variation of up to 40 ppm for one and the same complex. The primary influence of the effect of substituent and counter ion on the (15)N NMR chemical shifts is rationalized by corroborating Density-Functional Theory (nor discrete Fourier transform) calculations on the B3LYP/6-311 + G(2d,p)//B3LYP/6-31G(d) level. Cooperative effects have to be taken into account for a comprehensive description of the coordination shift and thus the structure of silver complexes in solution. Our results demonstrate that interpretation of Δ(15)N(coord) in terms of coordination strength must always consider the solvent and counter ion. The comparable magnitude of Δ(15)N(coord) for reported transition metal complexes makes the principal findings most likely general for a broad scale of complexes of nitrogen donor ligands, which are in frequent use in modern organometallic chemistry.

  5. 1H, 13C and 15N backbone and side-chain chemical shift assignment of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    Science.gov (United States)

    Huculeci, Radu; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico A J

    2011-10-01

    SH2 domains are interaction modules uniquely dedicated to recognize phosphotyrosine sites, playing a central role in for instance the activation of tyrosine kinases or phosphatases. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of the SH2 domain of the human protein tyrosine kinase Fyn, both in its free state and bound to a high-affinity phosphotyrosine peptide corresponding to a specific sequence in the hamster middle-T antigen. The BMRB accession numbers are 17,368 and 17,369, respectively.

  6. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    Science.gov (United States)

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.

  7. The impact of the pi-electron conjugation on (15)N, (13)C and (1)H NMR chemical shifts in push-pull benzothiazolium salts. Experimental and theoretical study.

    Science.gov (United States)

    Hrobárik, Peter; Horváth, Branislav; Sigmundová, Ivica; Zahradník, Pavol; Malkina, Olga L

    2007-11-01

    The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data. (c) 2007 John Wiley & Sons, Ltd.

  8. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pan [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xi, Zhaoyong; Wang, Hu [School of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Chaowei [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-11-19

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.

  9. Cross correlations between {sup 13}C-{sup 1}H dipolar interactions and {sup 15}N chemical shift anisotropy in nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranathan, Sapna [Institut de Chimie Moleculaire et Biologique, Ecole Polytechnique Federale de Lausanne, BCH (Switzerland); Kim, Chul-Hyun [University of California, Department of Chemistry (United States); Bodenhausen, Geoffrey [Institut de Chimie Moleculaire et Biologique, Ecole Polytechnique Federale de Lausanne, BCH (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2003-12-15

    Two sets of cross-correlated relaxation rates involving chemical shift anisotropy and dipolar interactions have been measured in an RNA kissing complex. In one case, both the CSA and dipolar interaction tensors are located on the same nucleotide base and are rigidly fixed with respect to each other. In the other case, the CSA tensor is located on the nucleotide base whereas the dipolar interaction is located on the adjoining ribose unit. Analysis of the measured rates in terms of isotropic or anisotropic rotational diffusion has been carried out for both cases. A marked difference between the two models is observed for the cross-correlation rates involving rigidly fixed spin interactions. The influence of internal motions about the glycosidic linkage between the nucleotide base and the ribose unit on cross-correlated relaxation rates has been estimated by applying a model of restricted rotational diffusion. Local motions seem to have a more pronounced effect on cross-correlated relaxation rates when the two spin interactions are not rigidly fixed with respect to each other.

  10. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    Science.gov (United States)

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts.

  11. Protein Chemical Shift Prediction

    CERN Document Server

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  12. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Science.gov (United States)

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  13. Chemical shift prediction for denatured proteins

    Energy Technology Data Exchange (ETDEWEB)

    Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu; Sahu, Sarata C.; Nkari, Wendy K.; Morris, Laura C.; Live, David; Gruta, Christian

    2013-02-15

    While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in {sup 1}H-{sup 15}N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report {sup 1}H and {sup 15}N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated.

  14. Real-time pure shift {sup 15}N HSQC of proteins: a real improvement in resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, Peter; Adams, Ralph W.; Paudel, Liladhar; Foroozandeh, Mohammadali [University of Manchester, School of Chemistry (United Kingdom); Aguilar, Juan A. [Durham University, Department of Chemistry (United Kingdom); Timári, István [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Cliff, Matthew J. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Nilsson, Mathias [University of Manchester, School of Chemistry (United Kingdom); Sándor, Péter [Agilent Technologies R& D and Marketing GmbH & Co. KG (Germany); Batta, Gyula [University of Debrecen, Department of Organic Chemistry (Hungary); Waltho, Jonathan P. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Morris, Gareth A., E-mail: g.a.morris@manchester.ac.uk [University of Manchester, School of Chemistry (United Kingdom)

    2015-05-15

    Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t{sub 2}) broadband homodecoupling, suppressing the multiplet structure caused by proton–proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to {sup 15}N, while the former selects a region of the {sup 1}H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.

  15. δ13C and δ15N changes after dietary shift in veliger larvae of the slipper limpet Crepidula fornicata: an experimental evidence

    Science.gov (United States)

    Comtet, T.; Riera, P.

    2006-12-01

    δ13C and δ15N measurements are still poorly conducted in benthic invertebrate larvae. To assess the δ13C and δ15N changes occurring after a dietary shift, experiments were conducted on veliger larvae of Crepidula fornicata fed with two cultured microalgae ( Isochrysis galbana and Pavlova lutheri) of known isotopic composition, 13C-enriched and 15N-depleted compared to the initial values of the larvae. Rapid changes in larval δ13C and δ15N were observed after the dietary shift, with an increase in δ13C and a decrease in δ15N. After 19 days of feeding, isotopic equilibrium was still not reached, a period which is close to the duration of the pelagic life of the larvae. This implies that the isotopic composition measured in field-collected larvae might only partly reflect actual larval feeding but also the parental isotopic signature, especially during the early developmental stages. Isotopic measurements in marine invertebrate larvae should thus be interpreted cautiously. In planktonic food web investigations, the study of field-collected larvae of different size/developmental stage may reduce potential misinterpretations.

  16. Random-coil chemical shifts of phosphorylated amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Bienkiewicz, Ewa A.; Lumb, Kevin J. [Colorado State University, Department of Biochemistry and Molecular Biology (United States)

    1999-11-15

    The {sup 1}H, {sup 13}C, {sup 15}N and {sup 31} P random-coil chemical shifts and phosphate pK{sub a} values of the phosphorylated amino acids pSer, pThr and pTyr in the protected peptide Ac-Gly-Gly-X-Gly-Gly-NH{sub 2} have been obtained in water at 25 deg. C over the pH range 2 to 9. Analysis of ROESY spectra indicates that the peptides are unstructured. Phosphorylation induces changes in random-coil chemical shifts, some of which are comparable to those caused by secondary structure formation, and are therefore significant in structural analyses based on the chemical shift.

  17. Empirical isotropic chemical shift surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Czinki, Eszter; Csaszar, Attila G. [Eoetvoes University, Laboratory of Molecular Spectroscopy, Institute of Chemistry (Hungary)], E-mail: csaszar@chem.elte.hu

    2007-08-15

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles {phi} and {psi} characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS({phi},{psi}) surfaces obtained for the model peptides For-(l-Ala){sub n}-NH{sub 2}, with n = 1, 3, and 5, resulted in so-called empirical ICS({phi},{psi}) surfaces for all major nuclei of the 20 naturally occurring {alpha}-amino acids. Out of the many empirical surfaces determined, it is the 13C{sup {alpha}} ICS({phi},{psi}) surface which seems to be most promising for identifying major secondary structure types, {alpha}-helix, {beta}-strand, left-handed helix ({alpha}{sub D}), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring {alpha}-amino acids. Two-dimensional empirical 13C{sup {alpha}}-{sup 1}H{sup {alpha}} ICS({phi},{psi}) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.

  18. Chemical synthesis of glycoproteins with the specific installation of gradient enriched 15N-labeled amino acids for getting insight into glycoprotein behavior.

    Science.gov (United States)

    Kajihara, Yasuhiro; Nguyen, Minh Hien; Izumi, Masayuki; Sato, Hajime; Okamoto, Ryo

    2017-03-09

    We propose a novel partially 15N-labelling method for the amide backbone of a synthetic glycoprotein. By use of a chemical approach utilizing SPPS and NCL, we inserted thirteen 15N-labeled amino acids at specific positions of the protein backbone, while intentionally varying the enrichment of 15N atoms. This idea enables us to discriminate even the same type of amino acid based on the intensities of 1H-15N HSQC signals, thus allowing us to understand the dynamics of the local conformation of a synthetic homogeneous glycoprotein. Results suggested that the attachment of an oligosaccharide of either a bi-antennary complex-type or a high-mannose-type did not disturb protein conformation. However, T1 values suggested that the oligosaccharide influenced dynamics at the local conformation. Temperature-varied CD spectra and T1 values clearly indicated that oligosaccharides appeared to inhibit protein fluctuation or, in other words, stabilize protein structure.

  19. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...... is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  20. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...

  1. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2016-09-01

    Full Text Available Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs. Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  2. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    Science.gov (United States)

    Pomin, Vitor H

    2016-09-07

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  3. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  4. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  5. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  6. Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.

    Science.gov (United States)

    Altheimer, Benjamin D; Mehta, Manish A

    2014-04-10

    Porous crystalline dipeptides have gained recent attention for their potential as gas-storage materials. Within this large class is a group of dipeptides containing alanine, valine, and isoleucine with very similar crystal structures. We report the (13)C (carbonyl and Cα) and (15)N (amine and amide) solid-state NMR isotropic chemical shifts in a series of seven such isostructural porous dipeptides as well as shift tensor data for the carbonyl and amide sites. Using their known crystal structures and aided by ab initio quantum chemical calculations for the resonance assignments, we elucidate trends relating local structure, hydrogen-bonding patterns, and chemical shift. We find good correlation between the backbone dihedral angles and the Cα1 and Cα2 shifts. For the C1 shift tensor, the δ11 value shifts downfield as the hydrogen-bond distance increases, δ22 shifts upfield, and δ33 shows little variation. The C2 shift tensor shows no appreciable correlation with structural parameters. For the N2 tensor, δ11 shows little dependence on the hydrogen-bond length, whereas δ22 and δ33 both show a decrease in shielding as the hydrogen bond shortens. Our analysis teases apart some, but not all, structural contributors to the observed differences the solid-state NMR chemical shifts.

  7. Measurement of 15N longitudinal relaxation rates in 15NH4+ spin systems to characterise rotational correlation times and chemical exchange

    Science.gov (United States)

    Hansen, D. Flemming

    2017-06-01

    Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that 15N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of 15N-based spin density operator elements of 15NH4+ spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the 15NH4+ spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the 15NH4+ ion as well as report on chemical exchange events of the 15NH4+ ion. Applications to 15NH4+ in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of 15NH4+ bound to a 41 kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for 15N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems.

  8. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  9. Late Holocene Plankton Domain Shifts in the North Pacific Subtropical Gyre Revealed by Amino Acid Specific δ13C and δ15N Records from Proteinaceous Deep-Sea Corals

    Science.gov (United States)

    Sherwood, O.; McMahon, K.; Guilderson, T. P.; Mccarthy, M. D.

    2014-12-01

    Recent observations from station ALOHA have framed a new paradigm about the dynamic nature of subtropical ocean gyres. These vast regions are now known to vary physically and biologically, over a range of timescales, with important implications for the export of carbon to the deep ocean. In the largest of these gyres, the North Pacific subtropical gyre (NPSG), primary production has increased in recent decades despite a reduction in nutrient supply to surface waters. This is thought to be the result of a shift in plankton community structure from mostly eukaryotes to mostly dinitrogen-fixing prokaryotes. It remains uncertain, however, whether the recent plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. To establish historical trends, we analyzed nitrogen (δ15N) and carbon (δ13C) isotopic records preserved in the skeletons of extraordinarily long-lived, proteinaceous deep-sea corals, which feed on, and therefore serve as a proxy for, exported productivity. Specimens of Hawaiian gold coral (Kulamanamana haumeaae) were collected from the Hawaiian archipelago and sampled across the skeletal growth rings to generate high-resolution (5 yr), millennial-length records of "bulk" δ15N and δ13C. After a millennium of relatively minor fluctuation, δ15N decreased by up to 2 per mil between 1850 and the present. Analysis of amino-acid-specific δ15N on a subset of the samples, combined with isotopic mass balance between nitrate and nitrogen fixation, implied a 17 to 27 % increase in nitrogen fixation as the underlying cause for the observed trends. This interpretation is supported by analysis of the δ13C of essential amino acids, which serve as isotopic fingerprints of primary producer origin. Together, these independent lines of evidence describe a domain shift from a dominantly eukaryotic to dinitrogen-fixing prokaryotic plankton community. This shift has been ongoing since the end of the Little Ice Age

  10. The natural abundance of 15N in plant and soil-available N indicates a shift of main plant N resources to NO3(-) from NH4(+) along the N leaching gradient.

    Science.gov (United States)

    Takebayashi, Yu; Koba, Keisuke; Sasaki, Yuji; Fang, Yunting; Yoh, Muneoki

    2010-04-15

    To investigate which of ammonium (NH(4)(+)) or nitrate (NO(3)(-)) is used by plants at gradient sites with different nitrogen (N) availability, we measured the natural abundance of (15)N in foliage and soil extractable N. Hinoki cypress (Chamaecyparis obtusa Endlicher) planted broadly in Japan was selected for use in this study. We estimated the source proportion of foliar N (NH(4)(+) vs. NO(3)(-)) quantitatively using mass balance equations. The results showed that C. obtusa used mainly NH(4)(+) in N-limited forests, although the dependence of C. obtusa on NO(3)(-) was greater in other NO(3)(-)-rich forests. We regarded dissolved organic N (DON) as a potential N source because a previous study demonstrated that C. obtusa can take up glycine. Thus we added DON to our mass balance equations and calculated the source proportion using an isotope-mixing model (IsoSource model). The results still showed a positive correlation between the calculated plant N proportion of NO(3)(-) and the NO(3)(-) pool size in the soil, indicating that high NO(3)(-) availability increases the reliance of C. obtusa on NO(3)(-). Our data suggest the shift of the N source for C. obtusa from NH(4)(+) to NO(3)(-) according to the relative availability of NO(3)(-). They also show the potential of the foliar delta(15)N of C. obtusa as an indicator of the N status in forest ecosystems with the help of the delta(15)N values of soil inorganic and organic N.

  11. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR

    Science.gov (United States)

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

  12. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    Science.gov (United States)

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  13. Is the Lamb shift chemically significant?

    Science.gov (United States)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  14. Improved chemical shift prediction by Rosetta conformational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Tian Ye [Sanford Burnham Medical Research Institute (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford Burnham Medical Research Institute (United States)

    2012-11-15

    Chemical shift frequencies represent a time-average of all the conformational states populated by a protein. Thus, chemical shift prediction programs based on sequence and database analysis yield higher accuracy for rigid rather than flexible protein segments. Here we show that the prediction accuracy can be significantly improved by averaging over an ensemble of structures, predicted solely from amino acid sequence with the Rosetta program. This approach to chemical shift and structure prediction has the potential to be useful for guiding resonance assignments, especially in solid-state NMR structural studies of membrane proteins in proteoliposomes.

  15. Synthesis of Gemcitabine-13C, 15N2 and Gemcitabine-13C, 15N2 Metabolites

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-gu;YANG Shao-zu;YAN Sheng-wang;FANG Ning-jing;CAI Ding-long;LI Gang

    2014-02-01

    Full Text Available Homemade urea-13C, 15N2 was used to react with 3-methyl acrylonitrile closure to form cytosine-13C, 15N2 (2,which was protected by trimethylsilylation with BSA and condensed with 2-deoxy-2,2-difluoro-D-erythro-pentofuranose-3,5-dibenzoate-1-methanesulfonate at 120 ℃ to afford blocked gemcitabine-13C, 15N2. Hydrolytic removal of the blocking groups of gemcitabine-13C, 15N2 with NaOH gave gemcitabine-13C, 15N2, and its metabolite was obtained by further hydrolytic deamination of gemcitabine-13C, 15N2. The final products were characterized and detected by HPLC, LC-MS and NMR, and confirmed that the chemical purities were higher than 98%, isotopic abundances were 99% 13C, 98% 15N, and they were suitable for drug metabolism studies.

  16. Calculations of proton chemical shifts in olefins and aromatics

    CERN Document Server

    Escrihuela, M C

    2000-01-01

    induced reagents on alpha,beta unsaturated ketones has also been investigated in order to deduce molecular structures and to obtain the assignment of the spectra of these molecules. A semi-empirical calculation of the partial atomic charges in organic compounds based on molecular dipole moments (CHARGE3) was developed into a model capable of predicting proton chemical shifts in a wide variety of organic compounds to a reasonable degree of accuracy. The model has been modified to include condensed aromatic hydrocarbons and substituted benzenes, alkenes, halo-monosubstituted benzenes and halo-alkenes. Within the aromatic compounds the influence of the pi electron densities and the ring current have been investigated, along with the alpha, beta and gamma effects. The model gives the first accurate calculation of the proton chemical shifts of condensed aromatic compounds and the proton substituent chemical shifts (SCS) in the benzene ring. For the data set of 55 proton chemical shifts spanning 3 ppm the rms error...

  17. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim

    2015-01-01

    content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain......, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however......Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...

  18. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.

    Science.gov (United States)

    Shen, Yang; Bax, Ad

    2015-01-01

    Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from (1)H, (15)N, and (13)C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-chain χ 1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and (13)C(β) nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations.

  19. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-07-15

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017. Published by Elsevier B.V.

  20. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  1. Counterion influence on chemical shifts in strychnine salts.

    Science.gov (United States)

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Bayesian inference of protein structure from chemical shift data

    Science.gov (United States)

    Bratholm, Lars A.; Christensen, Anders S.; Hamelryck, Thomas

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction. PMID:25825683

  3. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim;

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...... Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term......, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction....

  4. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  5. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    Science.gov (United States)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  6. Predicting the redox state and secondary structure of cysteine residues using multi-dimensional classification analysis of NMR chemical shifts.

    Science.gov (United States)

    Wang, Ching-Cheng; Lai, Wen-Chung; Chuang, Woei-Jer

    2016-09-01

    A tool for predicting the redox state and secondary structure of cysteine residues using multi-dimensional analyses of different combinations of nuclear magnetic resonance (NMR) chemical shifts has been developed. A data set of cysteine [Formula: see text], (13)C(α), (13)C(β), (1)H(α), (1)H(N), and (15)N(H) chemical shifts was created, classified according to redox state and secondary structure, using a library of 540 re-referenced BioMagResBank (BMRB) entries. Multi-dimensional analyses of three, four, five, and six chemical shifts were used to derive rules for predicting the structural states of cysteine residues. The results from 60 BMRB entries containing 122 cysteines showed that four-dimensional analysis of the C(α), C(β), H(α), and N(H) chemical shifts had the highest prediction accuracy of 100 and 95.9 % for the redox state and secondary structure, respectively. The prediction of secondary structure using 3D, 5D, and 6D analyses had the accuracy of ~90 %, suggesting that H(N) and [Formula: see text] chemical shifts may be noisy and made the discrimination worse. A web server (6DCSi) was established to enable users to submit NMR chemical shifts, either in BMRB or key-in formats, for prediction. 6DCSi displays predictions using sets of 3, 4, 5, and 6 chemical shifts, which shows their consistency and allows users to draw their own conclusions. This web-based tool can be used to rapidly obtain structural information regarding cysteine residues directly from experimental NMR data.

  7. Estimation of optical chemical shift in nuclear spin optical rotation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yao, Guo-hua [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); He, Tian-jing [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, Dong-ming, E-mail: dmchen@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Fan-chen, E-mail: fcliu@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-19

    Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed.

  8. Protein secondary structure prediction using NMR chemical shift data.

    Science.gov (United States)

    Zhao, Yuzhong; Alipanahi, Babak; Li, Shuai Cheng; Li, Ming

    2010-10-01

    Accurate determination of protein secondary structure from the chemical shift information is a key step for NMR tertiary structure determination. Relatively few work has been done on this subject. There needs to be a systematic investigation of algorithms that are (a) robust for large datasets; (b) easily extendable to (the dynamic) new databases; and (c) approaching to the limit of accuracy. We introduce new approaches using k-nearest neighbor algorithm to do the basic prediction and use the BCJR algorithm to smooth the predictions and combine different predictions from chemical shifts and based on sequence information only. Our new system, SUCCES, improves the accuracy of all existing methods on a large dataset of 805 proteins (at 86% Q(3) accuracy and at 92.6% accuracy when the boundary residues are ignored), and it is easily extendable to any new dataset without requiring any new training. The software is publicly available at http://monod.uwaterloo.ca/nmr/succes.

  9. Magnetic shift of the chemical freezeout and electric charge fluctuations

    CERN Document Server

    Fukushima, Kenji

    2016-01-01

    We discuss the effect of a strong magnetic field on the chemical freezeout points in the ultra-relativistic heavy-ion collision. As a result of the inverse magnetic catalysis or the magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freezeout. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced especially at high baryon density. The charge conservation partially cancels the enhancement but our calculation shows that the electric charge fluctuation could serve as a magnetometer.

  10. Improving 3D structure prediction from chemical shift data

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  11. Theoretical Modeling of 99 Tc NMR Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.; Chatterjee, Sayandev; Levitskaia, Tatiana G.

    2016-09-06

    Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchange correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.

  12. 15N and 1H Solid-State NMR Investigation of a Canonical Low-Barrier Hydrogen-Bond Compound: 1,8-bis(dimethylamino) naphthalene

    OpenAIRE

    White, Paul B.; Hong, Mei

    2015-01-01

    Strong or low-barrier hydrogen bonds have been often proposed in proteins to explain enzyme catalysis and proton transfer reactions. So far 1H chemical shifts and scalar couplings have been used as the main NMR spectroscopic signatures for strong H-bonds. In this work, we report simultaneous measurements of 15N and 1H chemical shifts and N-H bond lengths by solid-state NMR in 15N-labeled 1,8-bis(dimethylamino) naphthalene (DMAN), which contains a well known strong NHN H-bond. We complexed DMA...

  13. Relationship between chemical shift value and accessible surface area for all amino acid atoms

    Directory of Open Access Journals (Sweden)

    Rieping Wolfgang

    2009-04-01

    Full Text Available Abstract Background Chemical shifts obtained from NMR experiments are an important tool in determining secondary, even tertiary, protein structure. The main repository for chemical shift data is the BioMagResBank, which provides NMR-STAR files with this type of information. However, it is not trivial to link this information to available coordinate data from the PDB for non-backbone atoms due to atom and chain naming differences, as well as sequence numbering changes. Results We here describe the analysis of a consistent set of chemical shift and coordinate data, in which we focus on the relationship between the per-atom solvent accessible surface area (ASA in the reported coordinates and their reported chemical shift value. The data is available online on http://www.ebi.ac.uk/pdbe/docs/NMR/shiftAnalysis/index.html. Conclusion Atoms with zero per-atom ASA have a significantly larger chemical shift dispersion and often have a different chemical shift distribution compared to those that are solvent accessible. With higher per-atom ASA, the chemical shift values also tend towards random coil values. The per-atom ASA, although not the determinant of the chemical shift, thus provides a way to directly correlate chemical shift information to the atomic coordinates.

  14. Applications of Chemical Shift Imaging to Marine Sciences

    Directory of Open Access Journals (Sweden)

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  15. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Farshchian, Nazanin, E-mail: farshchian.n@gmail.com [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Tamari, Saghar; Farshchian, Negin [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Madani, Hamid [Department of Pathology, Imam-Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Rezaie, Mansour [Department of Biostatistics, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Mohammadi-Motlagh, Hamid-Reza, E-mail: mohammadimotlagh@gmail.com [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2011-11-15

    Purpose: Today, distinguishing metastatic lymph nodes from secondary benign inflammatory ones via using non-invasive methods is increasingly favorable. In this study, the diagnostic value of chemical shift artifact (CSA) in magnetic resonance imaging (MRI) was evaluated to distinguish benign lymphadenopathy. Subjects and methods: A prospective intraindividual internal review board-approved study was carried out on 15 men and 15 women having lymphadenopathic lesions in different locations of the body who underwent contrast-enhanced dynamic MR imaging at 1.5 T. Then, the imaging findings were compared with pathology reports, using the statistics analyses. Results: Due to the findings of the CSA existence in MRI, a total of 56.7% of the studied lesions (17 of 30) were identified as benign lesions and the rest were malignant, whereas the pathology reports distinguished twelve malignant and eighteen benign cases. Furthermore, the CSA findings comparing the pathology reports indicated that CSA, with confidence of 79.5%, has a significant diagnostic value to differentiate benign lesions from malignant ones. Conclusion: Our study demonstrated that CSA in MR imaging has a suitable diagnostic potential nearing readiness for clinical trials. Furthermore, CSA seems to be a feasible tool to differentiate benign lymph nodes from malignant ones; however, further studies including larger numbers of patients are required to confirm our results.

  16. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    Science.gov (United States)

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  17. Chemical shifts assignments of the archaeal MC1 protein and a strongly bent 15 base pairs DNA duplex in complex.

    Science.gov (United States)

    Loth, Karine; Landon, Céline; Paquet, Françoise

    2015-04-01

    MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55 in laboratory growth conditions and is structurally unrelated to other DNA-binding proteins. MC1 functions are to shape and to protect DNA against thermal denaturation by binding to it. Therefore, MC1 has a strong affinity for any double-stranded DNA. However, it recognizes and preferentially binds to bent DNA, such as four-way junctions and negatively supercoiled DNA minicircles. Combining NMR data, electron microscopy data, biochemistry, molecular modelisation and docking approaches, we proposed recently a new type of DNA/protein complex, in which the monomeric protein MC1 binds on the concave side of a strongly bent 15 base pairs DNA. We present here the NMR chemical shifts assignments of each partner in the complex, (1)H (15)N MC1 protein and (1)H (13)C (15)N bent duplex DNA, as first step towards the first experimental 3D structure of this new type of DNA/protein complex.

  18. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    OpenAIRE

    2015-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc. 2015, 137, 1404). Hyperpolarization on 15N (an...

  19. A probabilistic model for secondary structure prediction from protein chemical shifts.

    Science.gov (United States)

    Mechelke, Martin; Habeck, Michael

    2013-06-01

    Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first- and second-order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence-based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts.

  20. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    to be negative, indicating transmission via the hydrogen bond. In addition unusual long-range effects are seen. Structures, NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using DFT methods. Two-bond deuterium isotope effects on 13C chemical shifts are correlated......Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found...... with calculated OH stretching frequencies. Isotope effects on chemical shifts are calculated for systems with OH exchanged by OD. Hydrogen bond potentials are discussed. New and more soluble nitro derivatives are synthesized....

  1. Lineshape-based polarimetry of dynamically-polarized (15)N2O in solid-state mixtures.

    Science.gov (United States)

    Kuzma, N N; Håkansson, P; Pourfathi, M; Ghosh, R K; Kara, H; Kadlecek, S J; Pileio, G; Levitt, M H; Rizi, R R

    2013-09-01

    Dynamic nuclear polarization (DNP) of (15)N2O, known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ∼1.5 K and 5 T. Both (15)N polarization and intermolecular dipolar broadening are strongly affected by the sample's thermal history, indicating spontaneous formation of N2O clusters. In situ (15)N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two (15)N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. (15)N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies (10.2±2.2)% polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute (15)N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  3. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  4. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  5. Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wookyung [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of); Lee, Woonghee; Lee, Weontae [Yonsei University, Department of Biochemistry, Structural Biochemistry and Molecular Biophysics Laboratory (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry, Biochemistry and Bio-NMR Laboratory (Korea, Republic of); Chang, Iksoo, E-mail: iksoochang@pusan.ac.kr [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of)

    2011-12-15

    Unravelling the complex correlation between chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms in amino acids of proteins from NMR experiment and local structural environments of amino acids facilitates the assignment of secondary structures of proteins. This is an important impetus for both determining the three-dimensional structure and understanding the biological function of proteins. The previous empirical correlation scores which relate chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms to secondary structures resulted in progresses toward assigning secondary structures of proteins. However, the physical-mathematical framework for these was elusive partly due to both the limited and orthogonal exploration of higher-dimensional chemical shifts of hetero-nucleus and the lack of physical-mathematical understanding underlying those correlation scores. Here we present a simple multi-dimensional hetero-nuclear chemical shift score function (MDHN-CSSF) which captures systematically the salient feature of such complex correlations without any references to a random coil state of proteins. We uncover the symmetry-breaking vector and its reliability order not only for distinguishing different secondary structures of proteins but also for capturing the delicate sensitivity interplayed among chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms simultaneously, which then provides a straightforward framework toward assigning secondary structures of proteins. MDHN-CSSF could correctly assign secondary structures of training (validating) proteins with the favourable (comparable) Q3 scores in comparison with those from the previous correlation scores. MDHN-CSSF provides a simple and robust strategy for the

  6. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  7. Chemical shift as a probe of molecular interfaces: NMR studies of DNA binding by the three amino-terminal zinc finger domains from transcription factor IIIA

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Mark P.; Wuttke, Deborah S.; Clemens, Karen R.; Jahnke, Wolfgang; Radhakrishnan, Ishwar; Tennant, Linda; Reymond, Martine; Chung, John; Wright, Peter E. [Scripps Research Institute, Department of Molecular Biology and Skaggs Institute for Chemical Biology (United States)

    1998-07-15

    We report the NMR resonance assignments for a macromolecular protein/DNA complex containing the three amino-terminal zinc fingers (92 amino acid residues) of Xenopus laevis TFIIIA (termed zf1-3) bound to the physiological DNA target (15 base pairs), and for the free DNA. Comparisons are made of the chemical shifts of protein backbone{sup 1} H{sup N}, {sup 15}N,{sup 13} C{sup {alpha}} and{sup 13} C{sup {beta}} and DNA base and sugar protons of the free and bound species. Chemical shift changes are analyzed in the context of the structures of the zf1-3/DNA complex to assess the utility of chemical shift change as a probe of molecular interfaces. Chemical shift perturbations that occur upon binding in the zf1-3/DNA complex do not correspond directly to the structural interface, but rather arise from a number of direct and indirect structural and dynamic effects.

  8. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  9. A robust algorithm for optimizing protein structures with NMR chemical shifts.

    Science.gov (United States)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S

    2015-11-01

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and "PDB worthy". The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca.

  10. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  11. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    Science.gov (United States)

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  12. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy.

    Science.gov (United States)

    Li, Shenhui; Zhou, Lei; Su, Yongchao; Han, Bin; Deng, Feng

    2013-01-01

    Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by (13)C and (15)N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of (13)C and (15)N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of (13)Cγ, (13)Cδ2, (15)Nδ1, and (15)Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that (1)H, (13)C, and (15) chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the (1)H, (13)C and (15)N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.

  13. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  14. Chemical shift assignments of two oleanane triterpenes from Euonymus hederaceus

    Institute of Scientific and Technical Information of China (English)

    HU He-jiao; WANG Kui-wu; WU Bin; SUN Cui-rong; PAN Yuan-jiang

    2005-01-01

    1H-NMR and 13C-NMR assignments of 12-oleanene-3,11-dione (compound 1) were completely described for the first time through conventional 1D NMR and 2D shift-correlated NMR experiments using 1H-1HCOSY, HMQC, HMBC techniques.Based on its NMR data, the assignments of 28-hydroxyolean-12-ene-3,11-dione (compound 2) were partially revised.

  15. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis.

    Science.gov (United States)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert

    2017-02-01

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H(δ21) and H(ε21), respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  16. 1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2-phenylpyridine.

    Science.gov (United States)

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2009-11-01

    (1)H, (13)C, (15)N and (195)Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2')-chelated, deprotonated 2-phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl(2)], trans(N,N)-[Pt(2ppy*)(2ppy)Cl] and trans(S,N)-[Pt(2ppy*)(DMSO-d(6))Cl] (formed in situ upon dissolving [Pt(2ppy*)(micro-Cl)](2) in DMSO-d(6)) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective (1)H, (13)C and (15)N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Delta(1H)(coord) = delta(1H)(complex) - delta(1H)(ligand), Delta(13C)(coord) = delta(13C)(complex) - delta(13C)(ligand), Delta(15N)(coord) = delta(15N)(complex) - delta(15N)(ligand)), as well as (195)Pt chemical shifts and (1)H-(195)Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen-adjacent H(6) protons and metallated C(2') atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds.

  17. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  18. PPM-One: a static protein structure based chemical shift predictor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dawei; Brüschweiler, Rafael, E-mail: bruschweiler.1@osu.edu [The Ohio State University, Campus Chemical Instrument Center (United States)

    2015-07-15

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.

  19. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  20. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal s...

  1. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  2. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  3. MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters.

    Science.gov (United States)

    Karlo, Christoph A; Donati, Olivio F; Burger, Irene A; Zheng, Junting; Moskowitz, Chaya S; Hricak, Hedvig; Akin, Oguz

    2013-06-01

    To assess qualitative and quantitative chemical shift MRI parameters of renal cortical tumours. A total of 251 consecutive patients underwent 1.5-T MRI before nephrectomy. Two readers (R1, R2) independently evaluated all tumours visually for a decrease in signal intensity (SI) on opposed- compared with in-phase chemical shift images. In addition, SI was measured on in- and opposed-phase images (SI(IP), SI(OP)) and the chemical shift index was calculated as a measure of percentage SI change. Histopathology served as the standard of reference. A visual decrease in SI was identified significantly more often in clear cell renal cell carcinoma (RCCs) (R1, 73 %; R2, 64 %) and angiomyolipomas (both, 80 %) than in oncocytomas (29 %, 12 %), papillary (29 %, 17 %) and chromophobe RCCs (13 %, 9 %; all, P chemical shift index was significantly greater in clear cell RCC and angiomyolipoma than in the other histological subtypes (both, P analysis (concordance correlation coefficient, 0.80). A decrease in SI on opposed-phase chemical shift images is not an identifying feature of clear cell RCCs or angiomyolipomas, but can also be observed in oncocytomas, papillary and chromophobe RCCs. After excluding angiomyolipomas, a decrease in SI of more than 25 % was diagnostic for clear cell RCCs. • Chemical shift MRI offers new information about fat within renal tumours. • Opposed-phase signal decrease can be observed in all renal cortical tumours. • A greater than 25 % decrease in signal appears to be diagnostic for clear cell RCCs.

  4. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  5. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    Directory of Open Access Journals (Sweden)

    Chen eSong

    2015-07-01

    Full Text Available Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2, photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS was expected to allow us to produce samples for solid-state magic-angle spinning (MAS NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive homogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that dehydration indeed leads to motional and electronic structural changes of the bilin chromophore and its binding pocket and is not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in previous MAS NMR and

  6. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly (13)C/(15)N-labeled phycocyanobilin (PCB) chromophore. 2D (13)C-(13)C correlation experiments allowed a complete assignment of (13)C responses of the chromophore. Upon precipitation, (13)C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS (13)C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely

  7. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  8. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  9. Magnetic couplings in the chemical shift of paramagnetic NMR.

    Science.gov (United States)

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case.

  10. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  11. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....... experimental data in the form of chemical shifts, as well as distance restraints obtained either experimentally or from sequence co-evolution. Of notable results, One of the determined structures, aKMT, was not solved experimentally at the time, but was found to match the recently published X-ray structure...

  12. Homonuclear chemical shift correlation in rotating solids via RN{sup {nu}}{sub n} symmetry-based adiabatic RF pulse schemes

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Kerstin; Leppert, Joerg; Haefner, Sabine; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai [Institut fuer Molekulare Biotechnologie, Abteilung Molekulare Biophysik/NMR-Spektroskopie (Germany)], E-mail: raman@imb-jena.de

    2004-12-15

    The efficacy of RN{sup {nu}}{sub n} symmetry-based adiabatic Zero-Quantum (ZQ) dipolar recoupling schemes for obtaining chemical shift correlation data at moderate magic angle spinning frequencies has been evaluated. RN{sub n}{sup {nu}} sequences generally employ basic inversion elements that correspond to a net 180 deg. rotation about the rotating frame x-axis. It is shown here via numerical simulations and experimental measurements that it is also possible to achieve efficient ZQ dipolar recoupling via RN{sub n}{sup {nu}} schemes employing adiabatic pulses. Such an approach was successfully used for obtaining {sup 1}3C chemical shift correlation spectra of a uniformly labelled sample of (CUG){sub 9}7- a triplet repeat expansion RNA that has been implicated in the neuromuscular disease myotonic dystrophy. An analysis of the {sup 1}3C sugar carbon chemical shifts suggests, in agreement with our recent {sup 1}5N MAS-NMR studies, that this RNA adopts an A-helical conformation.

  13. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    Science.gov (United States)

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  14. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    CERN Document Server

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  15. A 1H, 13C and 15N NMR study in solution and in the solid state of six N-substituted pyrazoles and indazoles.

    Science.gov (United States)

    Claramunt, Rosa M; Santa María, M Dolores; Sanz, Dionisia; Alkorta, Ibon; Elguero, José

    2006-05-01

    Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.

  16. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary and primary...... isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  17. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Antoine; Malliavin, Therese E. [Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Theorique, CNRS UPR 9080 (France)], E-mail: therese.malliavin@ibpc.fr; Nicolas, Pierre; Delsuc, Marc-Andre [INRA - Domaine de Vilvert, Unite Mathematique Informatique et Genome (France)

    2004-09-15

    An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP (Grzesiek and Bax, J. Biomol. NMR, 3, 185-204, 1993) RESCUE (Pons and Delsuc, J. Biomol. NMR, 15, 15-26, 1999) and PLATON (Labudde et al., J. Biomol. NMR, 25, 41-53, 2003) and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are C{sub {beta}} and H{sub {beta}}, in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: H{sub {beta}}, C{sub {beta}}, C{sub {alpha}} and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids.

  18. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static......” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...

  19. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    In this thesis, my work involving dierent aspects of protein structure determination by computer modeling is presented. Determination of several protein's native fold were carried out with Markov chain Monte Carlo simulations in the PHAISTOS protein structure simulation framework, utilizing...... to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...

  20. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    Science.gov (United States)

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  1. Synthesis of {sup 15}N isotope labeled alanine; Sintese da alanina enriquecida com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant' Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of {sup 15}N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of {sup 15}N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of {alpha}-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ({sup 15}NH{sub 3} aq) was carried out. In order to avoid eventually losses of {sup 15}NH{sub 3}, special cares were adopted, since the production cost is high. Although the acquisition cost of the {sup 13}N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH{sub 3} (aq) being employed. With the establishment of the system for {sup 15}NH{sub 3} recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  2. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Institute of Scientific and Technical Information of China (English)

    Anthony J.SAVIOLA; David CHISZAR; Stephen P.MACKESSY

    2012-01-01

    Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake.Crotalus viridis viridis (prairie rattlesnake) takes different prey at different life stages,and neonates typically prey on ectotherms,while adults feed almost entirely on small endotherms.We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed,and that this response shifts from one prey type to another as individuals age.To examine if an ontogenetic shift in response to chemical cues occurred,we recorded the rate of tongue flicking for 25 neonate,20 subadult,and 20 adult (average SVL=280.9,552,789.5 mm,respectively) wild-caught C.v.viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard,Sceloporus undulatus,and house gecko,Hemidactylusfrenatus),two endotherms (deer mouse,Peromyscus maniculatus and lab mouse,Mus musculus),and water controls were used.Neonates tongue flicked significantly more to chemical cues of their common prey,S.undulatus,than to all other chemical cues; however,the response to this lizard's chemical cues decreased in adult rattlesnakes.Subadults tongue flicked with a higher rate of tongue flicking to both S.undulatus and P.maniculatus than to all other treatments,and adults tongue flicked significantly more to P.maniculatus than to all other chemical cues.In addition,all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M.musculus and H.frenatus).This shift in chemosensory response correlated with the previously described ontogenetic shifts in C.v.viridis diet.Because many vipers show a similar ontogenetic shift in diet and venom composition,we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid snakes.

  3. Energy gap in tunneling spectroscopy: effect of the chemical potential shift

    Science.gov (United States)

    Fedotov, N. I.; Zaitsev-Zotov, S. V.

    2016-12-01

    We study the effect of a shift of the chemical potential level on the tunneling conductance spectra. In the systems with gapped energy spectra, significant chemical-potential dependent distortions of the differential tunneling conductance curves, dI/dV, arise in the gap region. An expression is derived for the correction of the dI/dV, which in a number of cases was found to be large. The sign of the correction depends on the chemical potential level position with respect to the gap. The correction of the dI/dV associated with the chemical potential shift has a nearly linear dependence on the tip-sample separation z and vanishes at z → 0.

  4. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  5. Database proton NMR chemical shifts for RNA signal assignment and validation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Shawn; Heng Xiao [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce@onemoonscientific.com [University of Maryland, Baltimore County, Department of Chemistry and Biochemistry (United States); Summers, Michael F., E-mail: summers@hhmi.umbc.edu [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States)

    2013-01-15

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4{sup 3} possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA {sup 1}H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  6. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    NARCIS (Netherlands)

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W. A.; Bultinck, Patrick

    2016-01-01

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is us

  7. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Science.gov (United States)

    YongE, Feng; GaoShan, Kou

    2015-01-01

    Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  8. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    Science.gov (United States)

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  9. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    Science.gov (United States)

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  10. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  11. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins

    NARCIS (Netherlands)

    Tamiola, Kamil; Mulder, Frans A. A.

    2012-01-01

    NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are a

  12. The statistical shift of the chemical potential causing anomalous conductivity in hydrogenated microcrystalline silicon

    NARCIS (Netherlands)

    Lof, R.W.; Schropp, R.E.I.

    2010-01-01

    The behavior of the electrical conductivity in hydrogenated microcrystalline silicon (μ c-Si:H) that is frequently observed is explained by considering the statistical shift in the chemical potential as a function of the crystalline fraction (Xc), the dangling bond density (N db), and the doping den

  13. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  14. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    Science.gov (United States)

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  15. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Science.gov (United States)

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

  16. Magnetic Shift of the Chemical Freeze-out and Electric Charge Fluctuations

    Science.gov (United States)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2016-09-01

    We discuss the effect of a strong magnetic field on the chemical freeze-out points in ultrarelativistic heavy-ion collisions. As a result of inverse magnetic catalysis or magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freeze-out. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced, especially at high baryon density. The charge conservation partially cancels the enhancement, but our calculation shows that the electric charge fluctuation could serve as a magnetometer. We find that the fluctuation exhibits a crossover behavior rapidly increased for e B ≳(0.4 GeV )2, while the charge chemical potential has smoother behavior with an increasing magnetic field.

  17. A simple method for measuring signs of {sup 1}H{sup N} chemical shift differences between ground and excited protein states

    Energy Technology Data Exchange (ETDEWEB)

    Bouvignies, Guillaume; Korzhnev, Dmitry M.; Neudecker, Philipp; Hansen, D. Flemming [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada); Cordes, Matthew H. J. [University of Arizona, Department of Chemistry and Biochemistry (United States); Kay, Lewis E., E-mail: kay@pound.med.utoronto.c [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2010-06-15

    NMR relaxation dispersion spectroscopy is a powerful method for studying protein conformational dynamics whereby visible, ground and invisible, excited conformers interconvert on the millisecond time-scale. In addition to providing kinetics and thermodynamics parameters of the exchange process, the CPMG dispersion experiment also allows extraction of the absolute values of the chemical shift differences between interconverting states, |{Delta}{omega}-tilde|, opening the way for structure determination of excited state conformers. Central to the goal of structural analysis is the availability of the chemical shifts of the excited state that can only be obtained once the signs of {Delta}{omega}-tilde are known. Herein we describe a very simple method for determining the signs of {sup 1}H{sup N} {Delta}{omega}-tilde values based on a comparison of peak positions in the directly detected dimensions of a pair of {sup 1}H{sup N}-{sup 15}N correlation maps recorded at different static magnetic fields. The utility of the approach is demonstrated for three proteins that undergo millisecond time-scale conformational rearrangements. Although the method provides fewer signs than previously published techniques it does have a number of strengths: (1) Data sets needed for analysis are typically available from other experiments, such as those required for measuring signs of {sup 15}N {Delta}{omega}-tilde values, thus requiring no additional experimental time, (2) acquisition times in the critical detection dimension can be as long as necessary and (3) the signs obtained can be used to cross-validate those from other approaches.

  18. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent......Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2......) to anisole (1) causes only small positive changes of 1H NMR chemical shifts (Delta delta Hmeta > Hpara, the experimental O-methylation induced shifts in ortho-disubstituted phenols are largest for Hpara, Delta delta equals; 0.19 +/- 0.02 ppm (n = 11...

  19. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Modi, S.; Behere, D.V.; Mitra, S. (Tata Institute of Fundamental Research, Bombay (India))

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  20. PACSY, a relational database management system for protein structure and chemical shift analysis.

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  1. Modeling proteins using a super-secondary structure library and NMR chemical shift information.

    Science.gov (United States)

    Menon, Vilas; Vallat, Brinda K; Dybas, Joseph M; Fiser, Andras

    2013-06-04

    A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build any structure from a combination of existing Smotifs with the help of limited experimental data that are sufficient to relate the backbone conformations of Smotifs between target proteins and known structures. Here, we present a hybrid modeling algorithm that relies on an exhaustive Smotif library and on nuclear magnetic resonance chemical shift patterns without any input of primary sequence information. In a test of 102 proteins, the algorithm delivered 90 homology-model-quality models, among them 24 high-quality ones, and a topologically correct solution for almost all cases. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available.

  2. Two-Dimensional Proton Chemical-Shift Imaging of Human Muscle Metabolites

    Science.gov (United States)

    Hu, Jiani; Willcott, M. Robert; Moore, Gregory J.

    1997-06-01

    Large lipid signals and strong susceptibility gradients introduced by muscle-bone interfaces represent major technical challenges forin vivoproton MRS of human muscle. Here, the demonstration of two-dimensional proton chemical-shift imaging of human muscle metabolites is presented. This technique utilizes a chemical-shift-selective method for water and lipid suppression and automatic shimming for optimal homogeneity of the magnetic field. The 2D1H CSI technique described facilitates the acquisition of high-spatial-resolution spectra, and allows one to acquire data from multiple muscle groups in a single experiment. A preliminary investigation utilizing this technique in healthy adult males (n= 4) revealed a highly significant difference in the ratio of the creatine to trimethylamine resonance between the fast and slow twitch muscle groups examined. The technique is robust, can be implemented on a commercial scanner with relative ease, and should prove to be a useful tool for both clinical and basic investigators.

  3. Chemical shift selective magnetic resonance imaging of the optic nerve in patients with acute optic neuritis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1988-01-01

    of the 16 patients, abnormalities were seen. In one patient with bilateral symptoms, signal hyperintensity and swelling of the right side of the chiasm were found. In another patient the optic nerve was found diffusely enlarged with only a marginally increased signal in the second echo. In the third patient......Optic neuritis is often the first manifestation of multiple sclerosis (MS). Sixteen patients with acute optic neuritis and one patient with benign intracranial hypertension (BIH) were investigated by magnetic resonance imaging, using a chemical shift selective double spin echo sequence. In 3...... an area of signal hyperintensity and swelling was seen in the left optic nerve. In the patient with BIH the subarachnoid space which surrounds the optic nerves was enlarged. Even using this refined pulse sequence, avoiding the major artefact in imaging the optic nerve, the chemical shift artefact, lesions...

  4. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  5. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  6. First-principles calculation of core-level binding energy shift in surface chemical processes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combined with third generation synchrotron radiation light sources, X-ray photoelectron spectroscopy (XPS) with higher energy resolution, brilliance, enhanced surface sensitivity and photoemission cross section in real time found extensive applications in solid-gas interface chemistry. This paper reports the calculation of the core-level binding energy shifts (CLS) using the first-principles density functional theory. The interplay between the CLS calculations and XPS measurements to uncover the structures, adsorption sites and chemical reactions in complex surface chemical processes are highlight. Its application on clean low index (111) and vicinal transition metal surfaces, molecular adsorption in terms of sites and configuration, and reaction kinetics are domonstrated.

  7. Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift

    Indian Academy of Sciences (India)

    M Elango; R Parthasarathi; G Karthik Narayanan; A Md Sabeelullah; U Sarkar; N S Venkatasubramaniyan; V Subramanian; P K Chattaraj

    2005-01-01

    Inter-relationships between the electrophilicity index (), Hammett constant (ó) and nucleusindependent chemical shift (NICS (1) - NICS value one å ngstrom above the ring centre) have been investigated for a series of meta- and para-substituted benzoic acids. Good linear relationships between Hammett constant vs electrophilicity and Hammett constant vs NICS (1) values have been observed. However, the variation of NICS (1) against shows only a low correlation coefficient.

  8. Crime Scene Investigation: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool

    Science.gov (United States)

    2016-02-26

    MDW/SGVU SUBJECT: Professional Presentation Approva l 26 FEB 2016 1. Your paper, entitled Crime Scene Investigation: Clinical Aoolication of...or technical information as a publication/presentation, a new 59 MDW Form 3039 must be submitted for review and approval.] Crime Scene Investiga...tion: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool 1. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED Crime Scene

  9. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  10. Substituent effects in the 13C NMR chemical shifts of alpha-mono-substituted acetonitriles.

    Science.gov (United States)

    Reis, Adriana K C A; Rittner, Roberto

    2007-03-01

    13C chemical shifts empirical calculations, through a very simple additivity relationship, for the alpha-methylene carbon of some alpha-mono-substituted acetonitriles, Y-CH(2)-CN (Y=H, F, Cl, Br, I, OMe, OEt, SMe, SEt, NMe(2), NEt(2), Me and Et), lead to similar, or even better, results in comparison to the reported values obtained through Quantum Mechanics methods. The observed deviations, for some substituents, are very similar for both approaches. This divergence between experimental and calculated, either empirically or theoretically, values are smaller than for the corresponding acetones, amides, acetic acids and methyl esters, which had been named non-additivity effects (or intramolecular interaction chemical shifts, ICS) and attributed to some orbital interactions. Here, these orbital interactions do not seem to be the main reason for the non-additivity effects in the empirical calculations, which must be due solely to the magnetic anisotropy of the heavy atom present in the substituent. These deviations, which were also observed in the theoretical calculations, were attributed in that case to the non-inclusion of relativistic effects and spin-orbit coupling in the Hamiltonian. Some divergence is also observed for the cyano carbon chemical shifts, probably due to the same reasons.

  11. Chemical shift selective magnetic resonance imaging of the optic nerve in patients with acute optic neuritis

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, H.B.W.; Thomsen, C.; Frederiksen, J.; Henriksen, O.; Olesen, J.

    Optic neuritis is often the first manifestion of multiple sclerosis (MS). Sixteen patients with acute optic neuritis and one patient with benign intracranial hypertension (BIH) were investigated by magnetic resonance imaging, using a chemical shift selective double spin echo sequence. In 3 of the 16 patients, abnormalities were seen. In one patient with bilateral symptoms, signal hyperintensity and swelling of the right side of the chiasm were found. In another patient the optic nerve was found diffusely enlarged with only a marginally increased signal in the second echo. In the third patient an area of signal hyperintensity and swelling was seen in the left optic nerve. In the patient with BIH the subarachnoid space which surrounds the optic nerves was enlarged. Even using this refined pulse sequence, avoiding the major artefact in imaging the optic nerve, the chemical shift artefact, lesions were only shown in 3/16 (19%) of the patients with optic neuritis. Nevertheless, the presented chemical shift selective double spin echo sequence may be of great value for detection of retrobulbar lesions.

  12. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    Science.gov (United States)

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  13. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    OpenAIRE

    2015-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ([superscript 13]C–[superscript 13]C, [superscript 15]N–[superscript 13]C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 [superscript 13]C chemical shifts and >3 million chemical...

  14. Nutrient Status and δ15N Values in Leaves and Soils: A Cross-Biome Comparison

    Science.gov (United States)

    Mayor, J. R.; Schuur, E. A.; Turner, B. L.; Wright, S. J.

    2011-12-01

    Stable nitrogen (N) isotope ratios (δ15N) are often assumed to provide an integrated measure of multiple nitrogen cycling processes. For instance, shifts in the bioavailability of soil N forms are thought to alter plant δ15N values. Demonstrating this relationship is important as ecosystems undergo anthropogenic disturbances. We evaluated patterns and implied mechanisms of the N cycle using ecosystem δ15N values from 16 plots in boreal black spruce (Picea mariana) forest and lowland wet tropical forest. Fertilizer N and phosphorus (P) was applied annually for five and 11 years prior to measurement of ecosystem δ15N values. Full sun canopy foliage and soil extractable nitrate, ammonium, and dissolved organic N (DON) were sampled in fertilized and control plots and analyzed for δ15N. In boreal forest, N fertilization reduced DON concentrations and caused a depletion of δ15N in foliage and fungal sporocarps. Of four species occurring in all plots in the tropical forest, one (Alseis blackiana) had increased foliar δ15N values following N fertilization, one (Tetragastris panamensis) had increased foliar δ15N values following P fertilization, and one (Oenocarpus mapora) had increased foliar δ15N following N+P fertilization. Surprisingly, soil nitrate in the boreal forest became substantially 15N-enriched under P fertilization, whereas nitrate in the tropical forest soil was enriched only under N or N+P fertilization. Collectively, nitrate enrichment is likely due to enhanced rates of soil denitrification as evidenced by elevated resin extractable soil nitrate concentrations and close correlations between δ15N and δ18O values. On average, foliar δ15N in tropical trees corresponded well with δ15N in soil nitrate in control and P fertilized plots, but was 2-3% more enriched than DON under N and N+P fertilization. In boreal forests, N and N+P fertilization increased foliar N concentration and δ15N values indicating substantial use of applied fertilizer. Taken

  15. Determination of gamma-ray widths in $^{15}$N using nuclear resonance fluorescence

    OpenAIRE

    Szücs, T.; Bemmerer, D.; Caciolli, A.; Fülöp, Zs.; Massarczyk, R.; Michelagnoli, C.; Reinhardt, T. P.; Schwengner, R.; Takács, M. P.; Ur, C. A.; Wagner, A.; Wagner, L.

    2015-01-01

    The stable nucleus $^{15}$N is the mirror of $^{15}$O, the bottleneck in the hydrogen burning CNO cycle. Most of the $^{15}$N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler Shift Attenuation Method (DSAM) in $^{15}$O. As a reference and for testing the method, level lifetimes in $^{1...

  16. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules.

    Science.gov (United States)

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T(2), which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T(n) with n = 2 and higher.

  17. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  18. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kjaergaard, Magnus; Poulsen, Flemming M., E-mail: fmpoulsen@bio.ku.dk [University of Copenhagen, Department of Biology (Denmark)

    2011-06-15

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues. The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that changes in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict {sup 13}C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve the identification of small populations of transient structure in disordered proteins.

  19. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    Science.gov (United States)

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  20. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    Science.gov (United States)

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  1. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    Directory of Open Access Journals (Sweden)

    Benjamin Görling

    2016-09-01

    Full Text Available Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored.

  2. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Science.gov (United States)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  3. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    Science.gov (United States)

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  4. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate...... results fur the systems investigated, provided that relaxations of the valence electrons upon the core-hole transition are properly accounted for. Therefore, such calculations provide a powerful tool for identification of impurity states based on x-ray fluorescence data. Results for an Al impurity...

  5. Analyzing temperature-induced transitions in disordered proteins by NMR spectroscopy and secondary chemical shift analyses

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. This chapter discusses practical...... aspects of NMR studies of temperature-induced structural changes in disordered proteins using chemical shifts....

  6. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations...

  7. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    Science.gov (United States)

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  8. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    Science.gov (United States)

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.

  9. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy.

    Science.gov (United States)

    Shindo, H; Wooten, J B; Pheiffer, B H; Zimmerman, S B

    1980-02-05

    31P nuclear magnetic resonance of highly oriented DNA fibers has been observed for three different conformations, namely, the A, B, and C forms of DNA. At a parallel orientation of the fiber axis with respect to the magnetic field, DNA fibers in both the A and B forms exhibit a single, abnormally broad resonance; in contrast, fibers in the C form show almost the full span of the chemical shift anisotropy (170 ppm). The spectra of the fibers oriented perpendicular indicate that the DNA molecules undergo a considerable rotational motion about the helical axis, with a rate of greater than 2 x 10(3) s-1 for the B-form DNA. Theoretical considerations indicate that the 31P chemical shift data for the B-form DNA fibers are consistent with the atomic coordinates of the phosphodiester group proposed by Langridge et al. [Langridge, R., Wilson, H. R. Hooper, C. W., Wilkins, M. H. F., & Hamilton, L. D. (1960) J. Mol. Biol. 2, 19--37] but not with the corresponding coordinates proposed by Arnott and Hukins [Arnott, S., & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Coomun. 47, 1504--1509], and also lead to the conclusion that the phosphodiester orientation must vary significantly along the DNA molecule. The latter result suggests that DNA has significant variations in its backbone conformation along the molecule.

  10. Gamma-ray width measurements in {sup 15}N at the ELBE nuclear resonance fluorescence setup

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, Tamas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); MTA ATOMKI, Debrecen/Hungary (Hungary); Bemmerer, Daniel; Schwengner, Ronald [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Massarczyk, Ralph; Takacs, Marcell; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); TU Dresden (Germany)

    2014-07-01

    The stable nucleus {sup 15}N is the mirror of the astrophysically important {sup 15}O, compound nucleus of the leading reaction of the Bethe-Weizsaecker cycle of hydrogen burning. Most of the {sup 15}N level widths below the neutron and proton emission thresholds are known from just one nuclear resonance fluorescence (NRF) measurement published more than 30 years ago, with unsatisfactory precision on some cases. A recent experiment with the AGATA demonstrator array aimed to determine level widths with the Doppler Shift Attenuation Method (DSAM) in {sup 15}O and {sup 15}N populated in {sup 14}N + {sup 2}H reaction. In order to set a benchmark value for the upcoming AGATA demonstrator data, the widths of several {sup 15}N levels are being studied using the bremsstrahlung facility γELBE at the electron accelerator of Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The γELBE experiment and its preliminary results are presented.

  11. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Njegic, Bosiljka [Ames Laboratory; Levin, Evgenii M. [Ames Laboratory; Schmidt-Rohr, Klaus [Ames Laboratory

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  12. 125Te NMR chemical-shift trends in PbTe-GeTe and PbTe-SnTe alloys.

    Science.gov (United States)

    Njegic, B; Levin, E M; Schmidt-Rohr, K

    2013-01-01

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in (125)Te NMR chemical shift due to bonding to dopant or "solute" atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the (125)Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS (125)Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the (125)Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  13. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    Science.gov (United States)

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  14. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  15. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  16. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    and retinoid receptors (ACTR). We find that small differences in the methyl carbon chemical shifts due to the ¿-gauche effect may provide information about the side chain rotamer distributions. However, the effects of neighboring residues on the methyl group chemical shifts obscure the direct observation...... of ¿-gauche effect. To overcome this, we reference the chemical shifts to those in a more disordered state resulting in residue specific random coil chemical shifts. The (13)C secondary chemical shifts of the methyl groups of valine, leucine, and isoleucine show sequence specific effects, which allow...

  17. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    Science.gov (United States)

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-03-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here.

  18. Fully automatic assignment of small molecules' NMR spectra without relying on chemical shift predictions.

    Science.gov (United States)

    Castillo, Andrés M; Bernal, Andrés; Patiny, Luc; Wist, Julien

    2015-08-01

    We present a method for the automatic assignment of small molecules' NMR spectra. The method includes an automatic and novel self-consistent peak-picking routine that validates NMR peaks in each spectrum against peaks in the same or other spectra that are due to the same resonances. The auto-assignment routine used is based on branch-and-bound optimization and relies predominantly on integration and correlation data; chemical shift information may be included when available to fasten the search and shorten the list of viable assignments, but in most cases tested, it is not required in order to find the correct assignment. This automatic assignment method is implemented as a web-based tool that runs without any user input other than the acquired spectra. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    CERN Document Server

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  20. Determination of gamma-ray widths in $^{15}$N using nuclear resonance fluorescence

    CERN Document Server

    Szücs, T; Caciolli, A; Fülöp, Zs; Massarczyk, R; Michelagnoli, C; Reinhardt, T P; Schwengner, R; Takács, M P; Ur, C A; Wagner, A; Wagner, L

    2015-01-01

    The stable nucleus $^{15}$N is the mirror of $^{15}$O, the bottleneck in the hydrogen burning CNO cycle. Most of the $^{15}$N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler Shift Attenuation Method (DSAM) in $^{15}$O. As a reference and for testing the method, level lifetimes in $^{15}$N have also been determined in the same experiment. The latest compilation of $^{15}$N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement in order to enable a comparison to the AGATA demonstrator data. The widths of several $^{15}$N levels have been studied with the NRF method. The solid nitrogen compounds enriched in $^{15}$N have been irradiated with bremsstrahlung. The $\\gamma$-rays following the deexcitation of the excited nuclear levels were dete...

  1. 50 years anniversary of the discovery of the core level chemical shifts. The early years of photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mårtensson, Nils [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Sokolowski, Evelyn [Tvär-Ramsdal 1, 611 99 Tystberga (Sweden); Svensson, Svante, E-mail: Svante.Svensson@fysik.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2014-03-01

    Highlights: • 50 years since the discovery of t the core level chemical shift. • The pioneering years of ESCA. • A critical review of the first core electron chemical shift results. - Abstract: The pioneering years of photoelectron spectroscopy in Uppsala are discussed, especially the work leading to the discovery of the core level chemical shifts. At a very early stage of the project, the pioneering group observed what they described as evidence for chemical shifts in the core level binding energies. However, it can now be seen that the initial observations to a large extent was due to charging of the samples. It is interesting to note that the decisive experiment was realized, not as a result of a systematic study, but was obtained with a large element of serendipity. Only when a chemical binding energy shift was observed between two S2p electron lines in the same molecule, the results were accepted internationally, and the fascinating expansion of modern core level photoelectron spectroscopy could start.

  2. EPR Line Shifts and Line Shape Changes Due to Heisenberg Spin Exchange and Dipole–Dipole Interactions of Nitroxide Free Radicals in Liquids: 9. An Alternative Method to Separate the Effects of the Two Interactions Employing 15N and 14N

    Science.gov (United States)

    2015-01-01

    A method to separate the effects of Heisenberg spin exchange (HSE) and dipole–dipole (DD) interactions on EPR spectra of nitroxide spin probes in solution by employing 15N and 14N nitroxide spin probes in parallel experiments is developed theoretically and tested experimentally. Comprehensive EPR measurements are reported of 4-oxo-2,2,6,6-tetramethylpiperidine-d16;1-15N-1-oxyl (perdeuterated 15N Tempone; 15pDT), in 70 wt % aqueous glycerol as functions of concentration and temperature. The method, termed the relative broadening constant method (RBCM), is demonstrated by using the present results together with those in the literature that employed perdeuterated 14N Tempone (14pDT) under identical conditions. In principle, the separation of DD and HSE is dependent on the model of diffusion and molecular-kinetic parameters; however, within present day experimental uncertainties, the RBCM method turns out to be insensitive to the model. The earlier methods to separate DD and HSE by measuring the dispersion component introduced by the two interactions shows general agreement with the RBCM; however, there are discrepancies larger than estimated uncertainties due to random errors. Thus, further support is found for Salikhov’s recent theory of the effects of DD and HSE on EPR spectra (Appl. Magn. Reson.2010, 38, 237); however, detailed confirmation is still lacking. The RBCM affords a possible approach to separate HSE and DD in spectra complicated by slow motion and/or overlap with other resonance lines, allowing the method to be used in situations more complicated than low-viscosity simple liquids. PMID:25035905

  3. Visualizing the principal component of {sup 1}H,{sup 15}N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ian M.; Boyko, Robert F.; Sykes, Brian D., E-mail: brian.sykes@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2011-09-15

    Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding {sup 1}H,{sup 15}N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its {sup 1}H,{sup 15}N-HSQC NMR spectrum. We addressed this question with two different approaches. First, we used a semi-automated approach with the program, ORBplus. ORBplus looks for patterns in the chemical shifts and correlates these commonalities to the explicit property of interest. ORBplus ranks resonances based on consistency of the magnitude and direction of the chemical shifts within the database, and the chemical shift correlation of the unknown protein with the database. ORBplus visualizes the results by a histogram and a vector diagram, and provides residue specific predictions on structural similarities with the database. The second method we used was partial least squares (PLS), which is a multivariate statistical technique used to correlate response and predictor variables. We investigated the ability of these methods to predict the tertiary structure of the contractile regulatory protein troponin C. Troponin C undergoes a closed-to-open conformational change, which is coupled to its function in muscle. We found that both ORBplus and PLS were able to identify patterns in the {sup 1}H,{sup 15}N-HSQC NMR data from different states of troponin C that correlated to its conformation.

  4. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    CERN Document Server

    Ota, Y; Ohba, I; Yoshida, N; Mikami, Shuji; Ohba, Ichiro; Ota, Yukihiro; Yoshida, Noriyuki

    2006-01-01

    Recently, Yu, Brown, and Chuang [Phys. Rev. A {\\bf 71}, 032341 (2005)] investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave an insight into the role of the entanglement in a liquid-state NMR quantum computer. Moreover, they attempted to reveal the role of mixed-state entanglement in quantum computing. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with the chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by the positive partial transposition (PPT) criterion with respect to any bipartition. We examine the effect of the chemical shifts on the boundary between the separability and the nonseparability, and find it is negligible.

  5. Chemical shift tensor determination using magnetically oriented microcrystal array (MOMA): 13C solid-state CP NMR without MAS

    Science.gov (United States)

    Kusumi, R.; Kimura, F.; Song, G.; Kimura, T.

    2012-10-01

    Chemical shift tensors for the carboxyl and methyl carbons of L-alanine crystals were determined using a magnetically oriented microcrystal array (MOMA) prepared from a microcrystalline powder sample of L-alanine. A MOMA is a single-crystal-like composite in which microcrystals are aligned three-dimensionally in a matrix resin. The single-crystal rotation method was applied to the MOMA to determine the principal values and axes of the chemical shift tensors. The result showed good agreement with the literature data for the single crystal of L-alanine. This demonstrates that the present technique is a powerful tool for determining the chemical shift tensor of a crystal from a microcrystal powder sample.

  6. Chemical shift assignments of zinc finger domain of methionine aminopeptidase 1 (MetAP1) from Homo sapiens.

    Science.gov (United States)

    Rachineni, Kavitha; Arya, Tarun; Singarapu, Kiran Kumar; Addlagatta, Anthony; Bharatam, Jagadeesh

    2015-10-01

    Methionine aminopeptidase Type I (MetAP1) cleaves the initiator methionine from about 70 % of all newly synthesized proteins in almost every living cell. Human MetAP1 is a two domain protein with a zinc finger on the N-terminus and a catalytic domain on the C-terminus. Here, we report the chemical shift assignments of the amino terminal zinc binding domain (ZBD) (1-83 residues) of the human MetAP1 derived by using advanced NMR spectroscopic methods. We were able to assign the chemical shifts of ZBD of MetAP1 nearly complete, which reveal two helical fragments involving residues P44-L49 (α1) and Q59-K82 (α2). The protein structure unfolds upon complex formation with the addition of 2 M excess EDTA, indicated by the appearance of amide resonances in the random coil chemical shift region of (15)NHSQC spectrum.

  7. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    Science.gov (United States)

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  8. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  9. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  10. The influence of sulfur configuration in (1) H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    Science.gov (United States)

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on (1) H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete (1) H and (13) C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging.

    Science.gov (United States)

    Kime, Ryotaro; Kaneko, Yasuhisa; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    Previous studies have reported significant region-dependent differences in the fiber-type composition of human skeletal muscle. It is therefore hypothesized that there is a difference between the deep and superficial parts of muscle energy metabolism during exercise. We hypothesized that the inorganic phosphate (Pi)/phosphocreatine (PCr) ratio of the superficial parts would be higher, compared with the deep parts, as the work rate increases, because the muscle fiber-type composition of the fast-type may be greater in the superficial parts compared with the deep parts. This study used two-dimensional 31Phosphorus Chemical Shift Imaging (31P-CSI) to detect differences between the deep and superficial parts of the human leg muscles during dynamic knee extension exercise. Six healthy men participated in this study (age 27±1 year, height 169.4±4.1 cm, weight 65.9±8.4 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed dynamic one-legged knee extension exercise in the prone position, with the transmit-receive coil placed under the right quadriceps muscles in the magnet. The subjects pulled down an elastic rubber band attached to the ankle at a frequency of 0.25, 0.5 and 1 Hz for 320 s each. The intracellular pH (pHi) was calculated from the median chemical shift of the Pi peak relative to PCr. No significant difference in Pi/PCr was observed between the deep and the superficial parts of the quadriceps muscles at rest. The Pi/PCr of the superficial parts was not significantly increased with increasing work rate. Compared with the superficial areas, the Pi/PCr of the deep parts was significantly higher (p<0.05) at 1 Hz. The pHi showed no significant difference between the two parts. These results suggest that muscle oxidative metabolism is different between deep and superficial parts of quadriceps muscles during dynamic exercise.

  12. The C$^{14}$N/C$^{15}$N Ratio in Diffuse Molecular Clouds

    CERN Document Server

    Ritchey, Adam M; Lambert, David L

    2015-01-01

    We report the first detection of C$^{15}$N in diffuse molecular gas from a detailed examination of CN absorption lines in archival VLT/UVES spectra of stars probing local diffuse clouds. Absorption from the C$^{15}$N isotopologue is confidently detected (at $\\gtrsim4\\sigma$) in three out of the four directions studied and appears as a very weak feature between the main $^{12}$CN and $^{13}$CN absorption components. Column densities for each CN isotopologue are determined through profile fitting, after accounting for weak additional line-of-sight components of $^{12}$CN, which are seen in the absorption profiles of CH and CH$^+$ as well. The weighted mean value of C$^{14}$N/C$^{15}$N for the three sight lines with detections of C$^{15}$N is $274\\pm18$. Since the diffuse molecular clouds toward our target stars have relatively high gas kinetic temperatures and relatively low visual extinctions, their C$^{14}$N/C$^{15}$N ratios should not be affected by chemical fractionation. The mean C$^{14}$N/C$^{15}$N ratio ...

  13. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  14. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated "Safe Sites"?

    Science.gov (United States)

    2011-07-26

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated ‘‘Safe Sites’’? Hortance Manda*, Luana M. Arce... aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant...overall impact. Methods: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated

  15. SUBSTITUENT CHEMICAL SHIFT (SCS) AND THE SEQUENCE STRUCTURE OF ETHYLENE-VINYL ALCOHOL COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zinan; TIAN Wenjing; WU Shengrong; DAI Yingkun; FENG Zhiliu; SHEN Lianfang; YUAN Hanzhen

    1992-01-01

    Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift(SCS) method. The SCS parameters of hydroxy (-OH)in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S1 = 42.77 ± 0.08ppm, S2 = 7.15 ±0.06 ppm,S3(s )=-4.08±0.02ppm, S3(t)=-3.09±0.20ppm,S4=0.48±0.03ppm, S5 =0.26±0.05ppm. In o-dichlorobenzen-d4 S1(s)=44.79±0.61ppm, S2=7.40±0.00ppm, S3 (s)=-4.51±0.17ppm, S3 (t)= -3.13± 0.00 ppm, S4 =0 . 63±0.04ppm, S5=0.36±0.00ppm. Simultaneously the 13CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained.

  16. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Olivier [Children' s Hospital, Paediatric Intensive Care Unit, Bordeaux (France); Chateil, Jean-Francois; Bordessoules, Martine; Brun, Muriel [Children' s Hospital, Radiology Unit, Bordeaux (France)

    2005-10-01

    Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia. (orig.)

  17. Effects of side-chain orientation on the {sup 13}C chemical shifts of antiparallel {beta}-sheet model peptides

    Energy Technology Data Exchange (ETDEWEB)

    Villegas, Myriam E.; Vila, Jorge A. [Facultad de Ciencias Fisico Matematicas y Naturales, Instituto de Matematica Aplicada San Luis, Universidad Nacional de San Luis, CONICET (Argentina); Scheraga, Harold A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)], E-mail: has5@cornell.edu

    2007-02-15

    The dependence of the {sup 13}C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel {beta}-sheet model peptide represented by the amino acid sequence Ac-(Ala){sub 3}-X-(Ala){sub 12}-NH{sub 2} where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel {beta}-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the {sup 13}C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel {beta}-sheet, there is (i) good agreement between computed and observed {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts as a function of {chi}{sup 1} for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed {sup 13}C{sup {alpha}} chemical shifts on {chi}{sup {xi}} (with {xi} {>=} 2) compared to {chi}{sup 1} for eleven out of seventeen residues. Our results suggest that predicted {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts, based only on backbone ({phi},{psi}) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into

  18. Analysis of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Osvaldo A.; Villegas, Myriam E.; Vila, Jorge A. [Universidad Nacional de San Luis, Instituto de Matematica Aplicada San Luis (Argentina); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-03-15

    Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed and computed {sup 13}C{sup {alpha}} chemical shifts of such oxidized cysteines can be attributed to several effects such as: (a) the quality of the NMR-determined models, as evaluated by the conformational-average (ca) rmsd value; (b) the existence of high B-factor or crystal-packing effects for the X-ray-determined structures; (c) the dynamics of the disulfide bonds in solution; and (d) the differences in the experimental conditions under which the observed {sup 13}C{sup {alpha}} chemical shifts and the protein models were determined by either X-ray crystallography or NMR-spectroscopy. These quantum-chemical-based calculations indicate the existence of two, almost non-overlapped, basins for the oxidized and reduced -SH {sup 13}C{sup {beta}}, but not for the {sup 13}C{sup {alpha}}, chemical shifts, in good agreement with the observation of 375 {sup 13}C{sup {alpha}} and 337 {sup 13}C{sup {beta}} resonances from 132 proteins by Sharma and Rajarathnam (2000). Overall, our results indicate that explicit consideration of the disulfide bonds is a necessary condition for an accurate prediction of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteines in cystines.

  19. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    Science.gov (United States)

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  20. The local order of supercooled water in solution with LiCl studied by NMR proton chemical shift

    Science.gov (United States)

    Corsaro, C.; Mallamace, D.; Vasi, S.; Cicero, N.; Dugo, G.; Mallamace, F.

    2016-05-01

    We study by means of Nuclear Magnetic Resonance (NMR) spectroscopy the local order of water molecules in solution with lithium chloride at eutectic concentration. In particular, by measuring the proton chemical shift as a function of the temperature in the interval 203{ K}Widom line for water supporting the liquid-liquid transition hypothesis.

  1. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that changes...

  2. Elucidation of the substitution pattern of 9,10-anthraquinones through the chemical shifts of peri-hydroxyl protons

    DEFF Research Database (Denmark)

    Schripsema, Jan; Danigno, Denise

    1996-01-01

    In 9,10-anthraquinones the chemical shift of a peri-hydroxyl proton is affected by the substituents in the other benzenoid ring. These effects are additive. They are useful for the determination of substitution patterns and have been used to revise the structures of six previously reported anthra...

  3. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Vendruscolo, Michele

    2013-02-21

    Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.

  4. Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    Institute of Scientific and Technical Information of China (English)

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  5. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs.

    Science.gov (United States)

    Kaldy, James

    2011-08-01

    Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5‰ in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  6. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  7. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bueltmann, Eva; Lanfermann, Heinrich [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Naegele, Thomas [University of Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Radiological University Hospital, Tuebingen (Germany); Klose, Uwe [University of Tuebingen, Section of Experimental MR of the CNS, Department of Neuroradiology, Radiological University Hospital, Tuebingen (Germany)

    2017-01-15

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  8. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    Science.gov (United States)

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  9. Utilization of chemical shift MRI in the diagnosis of disorders affecting pediatric bone marrow.

    Science.gov (United States)

    Winfeld, Matthew; Ahlawat, Shivani; Safdar, Nabile

    2016-09-01

    MRI signal intensity of pediatric bone marrow can be difficult to interpret using conventional methods. Chemical shift imaging (CSI), which can quantitatively assess relative fat content, may improve the ability to accurately diagnose bone marrow abnormalities in children. Consecutive pelvis and extremity MRI at a children's hospital over three months were retrospectively reviewed for inclusion of CSI. Medical records were reviewed for final pathological and/or clinical diagnosis. Cases were classified as normal or abnormal, and if abnormal, subclassified as marrow-replacing or non-marrow-replacing entities. Regions of interest (ROI) were then drawn on corresponding in and out-of-phase sequences over the marrow abnormality or over a metaphysis and epiphysis in normal studies. Relative signal intensity ratio for each case was then calculated to determine the degree of fat content in the ROI. In all, 241 MRI were reviewed and 105 met inclusion criteria. Of these, 61 had normal marrow, 37 had non-marrow-replacing entities (osteomyelitis without abscess n = 17, trauma n = 9, bone infarction n = 8, inflammatory arthropathy n = 3), and 7 had marrow-replacing entities (malignant neoplasm n = 4, bone cyst n = 1, fibrous dysplasia n = 1, and Langerhans cell histiocytosis n = 1). RSIR averages were: normal metaphyseal marrow 0.442 (0.352-0.533), normal epiphyseal marrow 0.632 (0.566-698), non-marrow-replacing diagnoses 0.715 (0.630-0.799), and marrow-replacing diagnoses 1.06 (0.867-1.26). RSIR for marrow-replacing entities proved significantly different from all other groups (p < 0.05). ROC analysis demonstrated an AUC of 0.89 for RSIR in distinguishing marrow-replacing entities. CSI techniques can help to differentiate pathologic processes that replace marrow in children from those that do not.

  10. The role of electrostatic interactions and solvent polarity on the 15N NMR shielding of azines

    Science.gov (United States)

    Modesto-Costa, Lucas; Gester, Rodrigo M.; Manzoni, Vinícius

    2017-10-01

    The nitrogen-15 nuclear magnetic resonance (15N NMR) shielding of azines is very sensitive to the chemical environment. Theoretically, specific interactions are important on the calculation of their spectroscopic properties. However, the choice of the solvent model for the description of NMR shielding constants is still a subject of discussion. In this context, we analyse the role of electrostatic interactions on 15N NMR shielding as function of solvent polarity using the sequential-Quantum Mechanics/Molecular Mechanics approach methodology. Excellent agreement with experimental data of the NMR shielding was obtained without the inclusion of explicit solvent molecules either for polar or non polar solvents.

  11. 15N Fractionation in Star-Forming Regions and Solar System Objects

    Science.gov (United States)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  12. Pressure dependence of side chain (13)C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-09-14

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of (13)C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H(N), N and C(α) the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically (13)C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  13. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    Energy Technology Data Exchange (ETDEWEB)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  14. Isolation and measurement of 15N2 from respiratory gases of animals administered 15N-labeled substances.

    Science.gov (United States)

    Springer, D L; Reed, D J; Dost, F N

    1981-01-01

    A method is described for collection of metabolic 15N2 from in vitro preparations or intact rats administered 15N-containing compounds. The methods enables routine collection and mass spectrometric measurement of as little as 10 mumol 15N2 respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O2 replenishment and removal of CO2 and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O2. Recovery of 15N2 gas from the system without an animal present was 101.3 +/- 5.75%. When 15N2 gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of [15N]hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to 15N2, followed by slower conversion of an additional 7-10% over the next several hours.

  15. Evaluation of vertebral bone marrow fat content by chemical-shift MRI in osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan; Mutlu, Fatma Senturk; Yazici, Zeynep; Yildirim, Nalan [Uludag University Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey)

    2011-05-15

    To quantitatively evaluate vertebral bone marrow fat content and investigate its association with osteoporosis with chemical-shift magnetic resonance imaging (CS-MRI). Fifty-six female patients (age range 50-65 years) with varying bone mineral densities as documented with dual x-ray absorptiometry (DXA) were prospectively included in the study. According to the DXA results, the patients were grouped as normal bone density, osteopenic, or osteoporotic. In order to calculate fat content, the lumbar region was visualized in the sagittal plane by CS-MRI sequence. ''Region of interest'' (ROI)s were placed within L3 vertebral bodies and air (our reference point) at different time points by different radiologists. Fat content was calculated through ''signal intensity (SI) suppression rate'' and ''SI Index''. The quantitative values were compared statistically with those obtained from DXA examinations. Kruskal-Wallis, and Mann-Whitney U tests were used for comparisons between groups. The reliability of the measurements performed by two radiologists was evaluated with the ''intraclass correlation coefficient''. This study was approved by an institutional review board and all participants provided informed consent to participate in the study. Eighteen subjects with normal bone density (mean T score, 0.39 {+-} 1.3 [standard deviation]), 20 subjects with osteopenia (mean T score, -1.79 {+-} 0.38), and 18 subjects with osteoporosis (mean T score, -3 {+-} 0.5) were determined according to DXA results. The median age was 55.9 (age range 50-64 years) in the normal group, 55.5 (age range 50-64 years) in the osteopenic group, and 55.1 (age range 50-65 years) in the osteoporotic group (p = 0.872). In the CS-MRI examination, the values of ''SI suppression ratio'' and ''SI Index'' (median [min:max]) were calculated by the first and second reader, independently. There

  16. Proton Chemical Shift Imaging of the Brain in Pediatric and Adult Developmental Stuttering.

    Science.gov (United States)

    O'Neill, Joseph; Dong, Zhengchao; Bansal, Ravi; Ivanov, Iliyan; Hao, Xuejun; Desai, Jay; Pozzi, Elena; Peterson, Bradley S

    2017-01-01

    Developmental stuttering is a neuropsychiatric condition of incompletely understood brain origin. Our recent functional magnetic resonance imaging study indicates a possible partial basis of stuttering in circuits enacting self-regulation of motor activity, attention, and emotion. To further characterize the neurophysiology of stuttering through in vivo assay of neurometabolites in suspect brain regions. Proton chemical shift imaging of the brain was performed in a case-control study of children and adults with and without stuttering. Recruitment, assessment, and magnetic resonance imaging were performed in an academic research setting. Ratios of N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (NAA) to creatine (Cr) and choline compounds (Cho) to Cr in widespread cerebral cortical, white matter, and subcortical regions were analyzed using region of interest and data-driven voxel-based approaches. Forty-seven children and adolescents aged 5 to 17 years (22 with stuttering and 25 without) and 47 adults aged 21 to 51 years (20 with stuttering and 27 without) were recruited between June 2008 and March 2013. The mean (SD) ages of those in the stuttering and control groups were 12.2 (4.2) years and 13.4 (3.2) years, respectively, for the pediatric cohort and 31.4 (7.5) years and 30.5 (9.9) years, respectively, for the adult cohort. Region of interest-based findings included lower group mean NAA:Cr ratio in stuttering than nonstuttering participants in the right inferior frontal cortex (-7.3%; P = .02), inferior frontal white matter (-11.4%; P stuttering sample included higher NAA:Cr and Cho:Cr ratios (regression coefficient, 197.4-275; P stuttering severity (r = 0.40-0.52; P = .001-.02). This spectroscopy study of stuttering demonstrates brainwide neurometabolite alterations, including several regions implicated by other neuroimaging modalities. Prior ascription of a role in stuttering to inferior frontal and superior temporal gyri, caudate, and other

  17. Cuticular hydrocarbon divergence in the jewel wasp Nasonia : evolutionary shifts in chemical communication channels?

    NARCIS (Netherlands)

    Buellesbach, J.; Gadau, J.; Beukeboom, L. W.; Echinger, F.; Raychoudhury, R.; Werren, J. H.; Schmitt, T.

    2013-01-01

    The evolution and maintenance of intraspecific communication channels constitute a key feature of chemical signalling and sexual communication. However, how divergent chemical communication channels evolve while maintaining their integrity for both sender and receiver is poorly understood. In this s

  18. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    Science.gov (United States)

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  19. δ15N value does not reflect fasting in mysticetes.

    Directory of Open Access Journals (Sweden)

    Alex Aguilar

    Full Text Available The finding that tissue δ(15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ(15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle and one that keeps a permanent record of variations in isotopic values (baleen plates. In both tissues δ(15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a individuals migrate between different isotopic isoscapes, b starvation may not trigger significant negative nitrogen balance, and c excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indication of nutritive condition.

  20. Computer programming for nucleic acid studies. II. Total chemical shifts calculation of all protons of double-stranded helices.

    Science.gov (United States)

    Giessner-Prettre, C; Ribas Prado, F; Pullman, B; Kan, L; Kast, J R; Ts'o, P O

    1981-01-01

    A FORTRAN computer program called SHIFTS is described. Through SHIFTS, one can calculate the NMR chemical shifts of the proton resonances of single and double-stranded nucleic acids of known sequences and of predetermined conformations. The program can handle RNA and DNA for an arbitrary sequence of a set of 4 out of the 6 base types A,U,G,C,I and T. Data files for the geometrical parameters are available for A-, A'-, B-, D- and S-conformations. The positions of all the atoms are calculated using a modified version of the SEQ program [1]. Then, based on this defined geometry three chemical shift effects exerted by the atoms of the neighboring nucleotides on the protons of each monomeric unit are calculated separately: the ring current shielding effect: the local atomic magnetic susceptibility effect (including both diamagnetic and paramagnetic terms); and the polarization or electric field effect. Results of the program are compared with experimental results for a gamma (ApApGpCpUpU) 2 helical duplex and with calculated results on this same helix based on model building of A'-form and B-form and on graphical procedure for evaluating the ring current effects.

  1. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.

    Science.gov (United States)

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2014-11-01

    The main factors affecting the accuracy and computational cost of the calculation of (31)P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of (31)P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS-2 or larger, and those of Pople, 6-311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta-zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of (31)P NMR chemical shifts within the 1-2-ppm error. Relativistic corrections to (31)P NMR absolute shielding constants are of major importance reaching about 20-30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1-2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO-DFT-KT2/pcS-3//pcS-2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of (31)P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm.

  2. Measuring {sup 13}C{sup {beta}} chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik [Linkoeping University, Molecular Biotechnology/IFM (Sweden); Lin Hong [Hospital for Sick Children, Molecular Structure and Function (Canada); Kay, Lewis E. [University of Toronto, Department of Medical Genetics (Canada)], E-mail: kay@pound.med.utoronto.ca

    2009-07-15

    A labeling scheme is introduced that facilitates the measurement of accurate {sup 13}C{sup {beta}} chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of {sup 13}C enrichment (30-40%) at C{sup {beta}} side-chain carbon positions for 15 of the amino acids with little {sup 13}C label at positions one bond removed ({approx}5%). A pair of samples are produced using [1-{sup 13}C]-glucose/NaH{sup 12}CO{sub 3} or [2-{sup 13}C]-glucose as carbon sources with isolated and enriched (>30%) {sup 13}C{sup {beta}} positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of {sup 13}C{sup {beta}} chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples.

  3. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation

    Indian Academy of Sciences (India)

    D Joseph; A K Yadav; S N Jha; D Bhattacharyya

    2013-11-01

    Mn and Cr K X-ray absorption edges were measured in various compounds containing Mn in Mn2+, Mn3+ and Mn4+ oxidation states and Cr in Cr3+ and Cr6+ oxidation states. Few compounds possess tetrahedral coordination in the 1st shell surrounding the cation while others possess octahedral coordination. Measurements have been carried out at the energy dispersive EXAFS beamline at INDUS-2 Synchrotron Radiation Source at Raja Ramanna Centre for Advanced Technology, Indore. Energy shifts of ∼8–16 eV were observed for Mn K edge in the Mn-compounds while a shift of 13–20 eV was observed for Cr K edge in Cr-compounds compared to values in elementalMn and Cr, respectively. The different chemical shifts observed for compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds.

  4. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  5. Structural Expression of Chemical Environment and C-13 NMR Chemical Shift for Carbons in Alcohols%脂肪醇分子碳环境结构表征与碳谱化学位移

    Institute of Scientific and Technical Information of China (English)

    刘树深; 徐红

    2000-01-01

    A novel atomic electronegative distance vector (AEDV) has been developed to express the chemical environment of various equivalent carbon in alcohols and four 4-parameter linear relationship between chemical shift and AEDV are created by using multiple linear regression.

  6. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    Science.gov (United States)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  7. Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data.

    Science.gov (United States)

    Kornhaber, Gregory J; Snyder, David; Moseley, Hunter N B; Montelione, Gaetano T

    2006-04-01

    Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom's chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped 13Cbeta chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding 13Calpha chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 13Calpha/13Cbeta shift pairs from 79 proteins with known three-dimensional structures, including 86 13Calpha and 13Cbeta shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statistical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron-sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into the frequency of occurrence of non-cysteine Zn

  8. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. (Monsanto Agricultural Company, St. Louis, MO (USA))

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  9. An atomic electronegative distance vector and carbon-13 nuclear magnetic resonance chemical shifts of alcohols and alkanes

    Institute of Scientific and Technical Information of China (English)

    LIU, Shu-Shea; XIA, Zhi-Ning; CAI, Shao-Xi; LIU, Yan

    2000-01-01

    A novel atomic electronegative distance vector (AEDV) has been developed to express the chemical environment of various chemically equivalent carbon atoms in alcohols and alkanes.Combining AEDV and γ parameter, four five-parameter Iinear relationship equations of chemical shift for four types of carbon atoms are created by using multiple linear regression.Correlation coefficients are R = 0.9887, 0.9972, 0.9978 and 0.9968 and roots of mean square error are RMS = 0.906, 0.821, 1.091and 1.091of four types of carbons, i.e., type1,2, 3, and 4 for primary, secondary, tertiary, and quaternary carbons, respectively. The stability and prediction capacity for external samples of four models have been tested by cross- validation.

  10. Bonding and chemical shifts in aluminosilicate glasses: importance of Madelung effects

    CERN Document Server

    Cruguel, H; Kerjan, O; Bart, F; Gautier-Soyer, M

    2003-01-01

    A detailed study of the XPS binding energy shifts of Si 2p, O 1s and Zr 3d in a series of aluminosilicate glasses (a three oxide glass: SiO sub 2 -Al sub 2 O sub 3 -CaO, three four-oxide glasses: SiO sub 2 -Al sub 2 O sub 3 -CaO-TiO sub 2 , ZrO sub 2 or CeO sub 2 , along with a six-oxide glass SiO sub 2 -Al sub 2 O sub 3 -CaO-TiO sub 2 -ZrO sub 2 -CeO sub 2) is presented. Their composition is such that these glasses have the same mean electronegativity, so that no changes in the atomic charges is expected. The binding energy shifts are interpreted in terms of initial and final state effects, and the balance of charge transfer contribution and electrostatic effects is discussed. Referred to the ternary glass, the binding energy shifts of the Si 2p, O 1s and Zr 3d lines in the complex glasses are due to an initial state effect, as the extraatomic relaxation is similar along the glass series. These shifts originate from electrostatic Madelung effects, likely coming from a structural change induced by the presenc...

  11. Rapid, storm-induced changes in the natural abundance of 15N in a planktonic ecosystem, Chesapeake Bay, USA

    Science.gov (United States)

    Montoya, J. P.; Korrigan, S. G.; McCarthy, J. J.

    1991-12-01

    Samples of dissolved inorganic nitrogen (DIN), particulate nitrogen (PN) and two species of Zooplankton were collected during two north-south transects of the Chesapeake Bay in the autumn of 1984 (27-28 September and 3-5 October). During the first transect, the natural abundance of 15N ( δ15N) in the major dissolved and planktonic pools of nitrogen suggested that the δ15N of PN was largely determined by isotopic fractionation during uptake of NH 4+ by phytoplankton. Averaged over the transect as a whole, the δ15N of the herbivorous calanoid copepod Acartia tonsa was 4.1‰ higher than that of the PN, while the δ15N of the carnivorous ctenophore Mnemiopsis leidyi was 6.4‰ higher than that of the PN. In the interval between the two transects, storm-induced mixing of the water column resulted in the injection of NH 4+ into the surface layer of the bay. This perturbation in the estuarine nitrogen cycle resulted in marked changes in the δ15N of the major dissolved and planktonic pools of nitrogen in the bay. In combination with ancillary physical, chemical and biological data, these changes in δ15N provided estimates of the isotopic fractionation factor for NH 4+ uptake by phytoplankton ( α = 1.0065 -1.0080) as well as the turnover time of nitrogen in Acartia tonsa (6.0-9.6 days). Despite the changes in δ15N observed during this cruise, the relative distribution of 15N between trophic levels was preserved: during the second transect, the difference in δ15N between Acartia tonsa and PN was 3.6‰ and the difference in δ15N between Mnemiopsis leidyi and PN was 7.3‰. These results demonstrate that the natural abundance of 15N can change dramatically on a time scale of days and that time-series studies of the natural abundance of 15N can be a useful complement to studies using tracer additions of 15N to document nitrogen transformations in planktonic ecosystems.

  12. 1H, 13C, and 15N NMR Studies of Au(III and Pd(II Chloride Complexes and Organometallics with 2-Acetylpyridine and 2-Benzoylpyridine

    Directory of Open Access Journals (Sweden)

    Daria Niedzielska

    2013-01-01

    Full Text Available Au(III and Pd(II chloride complexes with N(1,O-chelating 2-acetylpyridine (2apy and N(1- monodentately binding 2-benzoylpyridine (2bz′py-[Pd(2apyCl2], [Au(2bz′pyCl3], trans-[Pd(2bz′py2Cl2], as well as Au(III chloride organometallics with monoanionic forms of 2apy or 2bz′py, deprotonated at the acetyl or benzyl side groups (2apy*, 2bz′py*-[Au(2apy*Cl2], [Au(2bz′py*Cl2], were studied by 1H, 13C, and 15N NMR. 1H, 13C, and 15N coordination shifts (i.e., differences between the respective , , and chemical shifts of the same atom in the complex and ligand molecules: , , were discussed in relation to the molecular structures and coordination modes, as well as to the factors potentially influencing nuclear shielding. Analogous NMR measurements were performed for the new (2bz′pyH[AuCl4] salt.

  13. Effects of growth and change of food on the {delta}{sup 15}N in marine fishes

    Energy Technology Data Exchange (ETDEWEB)

    Kasamatsu, Fujio [Marine Ecology Research Inst., Tokyo (Japan); Sato, Rie; Park, Kwang Lai

    1998-06-01

    Information is limited concerning variation of the {delta}{sup 15}N with growth in marine organisms and consequently the effect of growth of marine biota on the {delta}{sup 15}N is not yet well understood. The {delta}{sup 15}N in 26 species of marine fishes taken from Japanese coastal waters together with 4664 stomach contents of these fishes were examined to investigate the effects of food habits and growth on the {delta}{sup 15}N. The mean {delta}{sup 15}N for two species that fed mainly on large-size fishes and six species that fed mainly on small-size fishes were 14.5{+-}1.0per mille and 12.8{+-}0.7per mille, respectively. For five species that fed mainly on decapod crustaceans, two species that fed mainly on zooplankton, and three species that fed mainly on benthos (mainly Polychaeta), the {delta}{sup 15}N were 13.0{+-}0.7, 9.7{+-}0.9, and 12.2{+-}1.2per mille, respectively. The mean {delta}{sup 15}N in the species whose prey were mainly fish or decapod crustaceans was about 3-5per mille higher than the species whose prey was mainly zooplankton. Within the four species that shift their food habits with growth to higher trophic level, the {delta}{sup 15}N significantly increased with growth in one species (Pacific cod), while not significant increase in the {delta}{sup 15}N with growth in the remaining species. (author)

  14. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Science.gov (United States)

    Chappell, P Dreux; Whitney, Leeann P; Haddock, Traci L; Menden-Deuer, Susanne; Roy, Eric G; Wells, Mark L; Jenkins, Bethany D

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  15. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Phoebe Dreux Chappell

    2013-09-01

    Full Text Available Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a three-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a three-month-old Haida eddy remained largely (>80% similar over a two-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  16. Observed and calculated 1H and 13C chemical shifts induced by the in situ oxidation of model sulfides to sulfoxides and sulfones.

    Science.gov (United States)

    Dracínský, Martin; Pohl, Radek; Slavetínská, Lenka; Budesínský, Milos

    2010-09-01

    A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta-chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed (1)H and (13)C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy-minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the 'cheap' DFT B3LYP/6-31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Delta delta values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (-S-, -SO-, -SO(2)-).

  17. ~(15)N Isotope Used for Study of Groundwater Nitrogen Pollution in Shijiazhuang City, China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ~(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...

  18. HN-NCA heteronuclear TOCSY-NH experiment for {sup 1}H{sup N} and {sup 15}N sequential correlations in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany)

    2015-10-15

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue ‘i’ with that of residues ‘i−1’ and ‘i+1’ in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of {sup 1}J{sub CαN} and {sup 2}J{sub CαN} couplings to transfer the {sup 15}N{sub x} magnetisation from amino acid residue ‘i’ to adjacent residues via the application of a band-selective {sup 15}N–{sup 13}C{sup α} heteronuclear cross-polarisation sequence of ∼100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.

  19. 15N fractionation in infrared-dark cloud cores

    Science.gov (United States)

    Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.

    2017-07-01

    Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http

  20. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  1. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    Science.gov (United States)

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation.

  2. Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R{sub 1{rho}}methods

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Renate [University of Vienna, Department of Structural and Computational Biology, Max F. Perutz Laboratories (Austria); Hansen, D. Flemming; Neudecker, Philipp; Korzhnev, Dmitry M.; Muhandiram, D. Ranjith [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada); Konrat, Robert [University of Vienna, Department of Structural and Computational Biology, Max F. Perutz Laboratories (Austria); Kay, Lewis E., E-mail: kay@pound.med.utoronto.c [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2010-03-15

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond exchange processes between a major, populated ground state and one or more minor, low populated and often invisible 'excited' conformers. Analysis of CPMG data-sets also provides the magnitudes of the chemical shift difference(s) between exchanging states (|{Delta}{omega}|), that inform on the structural properties of the excited state(s). The sign of {Delta}{omega} is, however, not available from CPMG data. Here we present one-dimensional NMR experiments for measuring the signs of {sup 1}H{sup N} and {sup 13}C{sup {alpha} {Delta}{omega}} values using weak off-resonance R{sub 1{rho}} relaxation measurements, extending the spin-lock approach beyond previous applications focusing on the signs of {sup 15}N and {sup 1}H{sup {alpha}}shift differences. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering conditions so that the signs of {Delta}{omega} values obtained from the spin-lock approach can be validated with those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring the signs of chemical shift differences. For the Abp1p and Fyn SH3 domains considered here it is found that while H(S/M)QC measurements provide signs for more residues than the spin-lock data, the two different methodologies are complementary, so that combining both approaches frequently produces signs for more residues than when the H(S/M)QC method is used alone.

  3. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    Science.gov (United States)

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters.

  4. Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively {sup 13}C labeled samples

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik; Hansen, D. Flemming; Kay, Lewis E. [University of Toronto, Department of Medical Genetics (Canada)], E-mail: kay@pound.med.utoronto.ca

    2008-09-15

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon magnetization it is necessary to prepare samples with isolated {sup 13}C spins so that experiments do not suffer from magnetization transfer between coupled carbon spins that would otherwise occur during the CPMG pulse train. In the case of {sup 13}CO experiments however the large separation between {sup 13}CO and {sup 13}C{sup {alpha}} chemical shifts offers hope that robust {sup 13}CO dispersion profiles can be recorded on uniformly {sup 13}C labeled samples, leading to the extraction of accurate {sup 13}CO chemical shifts of the invisible, excited state. Here we compare such chemical shifts recorded on samples that are selectively labeled, prepared using [1-{sup 13}C]-pyruvate and NaH{sup 13}CO{sub 3,} or uniformly labeled, generated from {sup 13}C-glucose. Very similar {sup 13}CO chemical shifts are obtained from analysis of CPMG experiments recorded on both samples, and comparison with chemical shifts measured using a second approach establishes that the shifts measured from relaxation dispersion are very accurate.

  5. Rapid, storm-induced changes in the natural abundance of sup 15 N in a planktonic ecosystem, Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, J.P.; McCarthy, J.J. (Harvard Univ., Cambridge, MA (United States)); Horrigan, S.G. (State Univ. of New York, Stony Brook (United States))

    1991-12-01

    Samples of dissolved inorganic nitrogen (DIN), particulate nitrogen (PN), and two species of zooplankton were collected during two north-south transects of the Chesapeake Bay in the autumn of 1984 (27-28 September and 3-5 October). During the first transect, the natural abundance of {sup 15}N ({delta} {sup 15}N) in the major dissolved and planktonic pools of nitrogen suggested that the {delta}{sup 15}N of PN was largely determined by isotopic fractionation during uptake of NH{sub 4}{sup +} by phytoplankton. Averaged over the transect as a whole, the {delta}{sup 15}N of the herbivorous calanoid copepod Acartia tonsa was 4.1% higher than that of the PN, while the {delta}{sup 15}N of the carnivorous ctenophore Mnemiopsis leidyi was 6.4% higher than that of the PN. In the interval between the two transects, storm-induced mixing of the water column resulted in the injection of NH{sub 4}{sup +} into the surface layer of the bay. In combination with ancillary physical, chemical, and biological data, these changes in {delta}{sup 15}N provided estimates of the isotopic fractionation factor for NH{sub 4}{sup +} uptake by phytoplankton ({alpha} = 1.0065-1.0080) as well as the turnover time of nitrogen in Acartia tonsa (6.0-9.6 days). Despite the changes in {delta}{sup 15}N observed during this cruise, the relative distribution of {sup 15}N between trophic levels was preserved: during the second transect, the difference in {delta}{sup 15}N between Acartia tonsa and PN was 3.6%, and the difference in {delta}{sup 15}N between Mnemiopsis leidyi and PN was 7.3%. These results demonstrate that the natural abundance of {sup 15}N can change dramatically on a time scale of days, and that time-series studies of the natural abundance of {sup 15}N can be a useful complement to studies using tracer additions of {sup 15}N to document nitrogen transformations in planktonic ecosystems.

  6. Halodemetallation of (Z)-1-[2-(Triarylstannyl)vinyl]-cyclooctanol and Correlation of Proton Chemical Shift with Electronegativity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Introduction Organotin compounds have attracted attention as an optimal model for antitumour agents due to the function of the interesting intramolecular O→Sn coordination[1,2]. Our recent concern has been focused on the preparation of (Z)-1-[2-(triarylstannyl)vinyl]-cyclooctanol[3]. In order to find more appropriate compounds used as anticancer agents and explore the effect of the coordinate O→Sn interaction to the antitumor activity, the new compounds were halodemetallated and characterized. During the course of the process, some linear correlations between proton chemical shifts and the sum of the electronegativities of the tin substituents of halogens were found for the first time.

  7. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    OpenAIRE

    Ricardo Infante-Castillo; Samuel P. Hernández-Rivera

    2012-01-01

    This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO) charge and 15N NMR chemical shifts of the nitro groups (15NNitro) as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation re...

  8. Kinetic 15N-isotope effects on algal growth

    Science.gov (United States)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  9. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    Science.gov (United States)

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  10. Nitrogen and 15N in the Mer Bleue peatland

    Science.gov (United States)

    Moore, Tim

    2017-04-01

    Although much of our attention in peatlands has focussed on carbon, as CO2, CH4 and DOC processing and fluxes, N plays an important role in the functioning of these ecosystems. Here, I present information on the distribution of N and 15N in plant and peat tissues and relate them to the cycling of N. N concentration in foliar tissues, ranged from 0.67 to 1.3% in evergreen shrubs and trees and mosses with little seasonal variation, and with a strong seasonal variation from 0.5 to 3.5% in the deciduous forbs, shrubs and trees, with a strong overall relationship to [chlorophyll]. Although the proportion of shrubs and mosses varied with microtopography the spatial foliar mass of N varied little with water table position, resulting in minor spatial variations in photosynthetic potential. Decomposition of plant tissues through litter to peat resulted in a decrease in the C:N ratio from about 50:1 to about 30:1 at the base of the profile, representing peat about 8000 yr old. This marginally larger loss of N through decomposition (mainly as TDN, 0.4 g N m-2 yr-1) compared to C produced a long-term N accumulation rate of 0.9 g N m-2 yr-1, being smaller in the bog phase, 0.6 N m-2 yr-1, and over past 150 yr, 0.8 g N m-2 yr-1. Although N is 'hard won' through N2 fixation, northern peatlands are significant global sinks of N and have limited N availability. del15N in foliar tissues ranged from -4 to -9 ‰ in evergreen and deciduous shrubs and trees, from -4 to -5 ‰ in mosses and from -1 to +1 ‰ in sedges and forbs. This appears to be a function of the mycorhizzal infection of the shrubs and trees, compared to sedges and forbs and the values for mosses may partially reflect the signature of atmospheric N deposition. There was no strong correlation between foliar [N] and del15N. In peat profiles from bog and fen sections of Mer Bleue, del15N values in peat fell from -5 to -2 ‰ in the top 10 cm to values of -1 to +1 ‰ at a depth of 40 cm and remained close to 0 ‰ below

  11. Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting

    CERN Document Server

    Soncini, Alessandro

    2012-01-01

    We derive a general formula for the paramagnetic NMR nuclear shielding tensor of an open-shell molecule in a pure spin state, subject to a zero-field splitting (ZFS). Our findings are in contradiction with a previous proposal. We present a simple application of the newly derived formula to the case of a triplet ground state split by an easy-plane ZFS spin Hamiltonian. When $kT$ is much smaller than the ZFS gap, thus a single non-degenerate level is thermally populated, our approach correctly predicts a temperature-independent paramagnetic shift, while the previous theory leads to a Curie temperature dependence.

  12. Afforestation impacts microbial biomass and its natural (13)C and (15)N abundance in soil aggregates in central China.

    Science.gov (United States)

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Spectral density function mapping using 15N relaxation data exclusively.

    Science.gov (United States)

    Farrow, N A; Zhang, O; Szabo, A; Torchia, D A; Kay, L E

    1995-09-01

    A method is presented for the determination of values of the spectral density function, J(omega), describing the dynamics of amide bond vectors from 15N relaxation parameters alone. Assuming that the spectral density is given by the sum of Lorentzian functions, the approach allows values of J(omega) to be obtained at omega = 0, omega N and 0.870 omega H, where omega N and omega H are Larmor frequencies of nitrogen and proton nuclei, respectively, from measurements of 15N T1, T2 and 1H-15N steady-state NOE values at a single spectrometer frequency. Alternatively, when measurements are performed at two different spectrometer frequencies of i and j MHz, J(omega) can be mapped at omega = 0, omega iN, omega jN, 0.870 omega iH and 0.870 omega iH, where omega iN, for example, is the 15N Larmor frequency for a spectrometer operating at 1 MHz. Additionally, measurements made at two different spectrometer frequencies enable contributions to transverse relaxation from motions on millisecond-microsecond time scales to be evaluated and permit assessment of whether a description of the internal dynamics is consistent with a correlation function consisting of a sum of exponentials. No assumptions about the specific form of the spectral density function describing the dynamics of the 15N-NH bond vector are necessary, provided that dJ(omega)/d omega is relatively constant between omega = omega H + omega N to omega = omega H - omega N. Simulations demonstrate that the method is accurate for a wide range of protein motions and correlation times, and experimental data establish the validity of the methodology. Results are presented for a folded and an unfolded form of the N-terminal SH3 domain of the protein drk.

  14. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    Science.gov (United States)

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  15. Modeling the chemical shift of lanthanide 4f electron binding energies

    NARCIS (Netherlands)

    Dorenbos, P.

    2012-01-01

    Lanthanides in compounds can adopt the tetravalent [Xe]4fn−1 (like Ce4+, Pr4+, Tb4+), the trivalent [Xe]4fn (all lanthanides), or the divalent [Xe]4f n+1 configuration (like Eu2+, Yb2+, Sm2+, Tm2+). The 4f-electron binding energy depends on the charge Q of the lanthanide ion and its chemical environ

  16. NMR chemical shift as analytical derivative of the Helmholtz free energy.

    Science.gov (United States)

    Van den Heuvel, Willem; Soncini, Alessandro

    2013-02-07

    We present a theory for the temperature-dependent nuclear magnetic shielding tensor of molecules with arbitrary electronic structure. The theory is a generalization of Ramsey's theory for closed-shell molecules. The shielding tensor is defined as a second derivative of the Helmholtz free energy of the electron system in equilibrium with the applied magnetic field and the nuclear magnetic moments. This derivative is analytically evaluated and expressed as a sum over states formula. Special consideration is given to a system with an isolated degenerate ground state for which the size of the degeneracy and the composition of the wave functions are arbitrary. In this case, the paramagnetic part of the shielding tensor is expressed in terms of the g and A tensors of the electron paramagnetic resonance spin Hamiltonian of the degenerate state. As an illustration of the proposed theory, we provide an explicit formula for the paramagnetic shift of the central lanthanide ion in endofullerenes Ln@C(60), with Ln = Ce(3+), Nd(3+), Sm(3+), Dy(3+), Er(3+), and Yb(3+), where the ground state can be a strongly spin-orbit coupled icosahedral sextet for which the paramagnetic shift cannot be described by previous theories.

  17. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2012-03-21

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  18. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    Science.gov (United States)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  19. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  20. Theory of NMR chemical shift in an electronic state with arbitrary degeneracy

    CERN Document Server

    Heuvel, Willem Van den

    2012-01-01

    We present a theory of nuclear magnetic resonance (NMR) shielding tensors for electronic states with arbitrary degeneracy. The shieldings are here expressed in terms of generalized Zeeman ($g^{(k)}$) and hyperfine ($A^{(k)}$) tensors, of all ranks $k$ allowed by the size of degeneracy. Contrary to recent proposals [T. O. Pennanen and J. Vaara, Phys. Rev. Lett. 100, 133002 (2008)], our theory is valid in the strong spin-orbit coupling limit. Ab initio calculations for the 4-fold degenerate $\\Gamma_8$ ground state of lanthanide-doped fluorite crystals CaF$_2$:Ln (Ln = Pr$^{2+}$, Nd$^{3+}$, Sm$^{3+}$, and Dy$^{3+}$) show that previously neglected contributions can account for more than 50% of the paramagnetic shift.

  1. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  2. Geomorphic control on the δ15N of mountain forests

    Directory of Open Access Journals (Sweden)

    R. G. Hilton

    2013-03-01

    Full Text Available Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope and climatic (precipitation, temperature characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.

  3. NMR chemical shift as analytical derivative of the Helmholtz free energy

    CERN Document Server

    Heuvel, Willem Van den

    2012-01-01

    We present a theory for the temperature-dependent nuclear magnetic shielding tensor of molecules with arbitrary electronic structure. The theory is a generalization of Ramsey's theory for closed-shell molecules. The shielding tensor is defined as a second derivative of the Helmholtz free energy of the electron system in equilibrium with the applied magnetic field and the nuclear magnetic moments. This derivative is analytically evaluated and expressed as a sum over states formula. Special consideration is given to a system with an isolated degenerate ground state for which the size of the degeneracy and the composition of the wave functions are arbitrary. In this case the paramagnetic part of the shielding tensor is expressed in terms of the $g$ and $A$ tensors of the EPR spin Hamiltonian of the degenerate state. As an illustration of the proposed theory, we provide an explicit formula for the paramagnetic shift of the central lanthanide ion in endofullerenes Ln@C$_{60}$, with Ln=Ce$^{3+}$, Nd$^{3+}$, Sm$^{3+...

  4. Design and development of a simple laboratory model to detect (15)N enrichment in cyanobacterial biomass and extra cellular ammonia using (15)N gas.

    Science.gov (United States)

    Selvakumar, G; Gopalaswamy, G; Arulmozhiselvan, K

    2007-03-01

    A laboratory scale working model that could detect the (15)N enrichment in cyanobacterial biomass and extracellular ammonia, using (15)N gas under in vitro conditions was designed and fabricated. Using the model, (15)N enrichment of 0.48% atom excess was detected in the cyanobacterial biomass on the 30 d after inoculation. The (15)N enrichment increased linearly in the extracellular ammoniacal fraction from the 20 d onward. The model would prove to be a useful tool to quantify the extent of (15)N enrichment under in vitro conditions using (15)N gas.

  5. Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Satkunasingham, Janakan; Besa, Cecilia [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Bane, Octavia [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Shah, Ami [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Oliveira, André de; Gilson, Wesley D.; Kannengiesser, Stephan [Siemens AG, Healthcare Sector, Erlangen (Germany); Taouli, Bachir, E-mail: bachir.taouli@mountsinai.org [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States)

    2015-08-15

    Highlights: • We present a large cohort of patients who underwent dual and triple echo chemical shift imaging against multi-echo T{sub 2} corrected MR spectroscopy (MRS) for liver fat quantification. • Our data suggests that a triple-echo sequence is highly accurate for detection of liver fat, even in the presence of T{sub 2}{sup *} shortening, with minor discrepancies when compared with the advanced fat quantification method. - Abstract: Purpose: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T{sub 2} corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T{sub 2}{sup *} imaging on accuracy of MRI for fat quantification. Materials and methods: Patients who underwent 1.5 T liver MRI that incorporated 2PD, 3PD, multi-echo T{sub 2}{sup *} and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T{sub 2}{sup *}, Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF > 6.25%. Results: 220 MRI studies were identified in 217 patients (mean BMI 28.0 ± 5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF > 6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean ± 1.96 SD: −0.5% ± 4.6%) and weaker agreement between 2PD and MRS (4.7% ± 16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. Conclusion: Our large series study validates the use of 3PD chemical shift sequence for detection of

  6. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    Science.gov (United States)

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds.

  7. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    Science.gov (United States)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  8. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning.

    Science.gov (United States)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  9. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning

    Science.gov (United States)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  10. Titanium carbide, nitride and carbonitrides: a 13C, 14N, 15N and 47,49Ti solid-state nuclear magnetic resonance study.

    Science.gov (United States)

    MacKenzie, K J; Meinhold, R H; McGavin, D G; Ripmeester, J A; Moudrakovski, I

    1995-05-01

    The first 47,49Ti, 13C, 14N and 15N solid-state nuclear magnetic resonance (NMR) spectra of titanium carbide, nitride and a series of cubic carbonitrides have been obtained under both static and magic-angle spinning (MAS) conditions. The 15N samples were isotopically enriched by gas-solid exchange at 1000 degrees C in a closed system. The Ti spectra of the carbide and nitride are sharp, reflecting the well defined cubic symmetry of these compounds, but become considerably broadened in the carbonitride series, with the spectra being approximately the sum of TiC and TiN together with some small electric field gradient (EFG) effects. The resonance positions and widths of all the NMR spectra change as carbon is progressively replaced by nitrogen. A relationship is observed between the 13C chemical shift and the nitrogen content of the carbonitrides, suggesting a possible NMR method for estimating the composition of these compounds. Although electron paramagnetic resonance (EPR) spectra of all these compounds show typically metallic behaviour, the NMR spectra show few effects attributable to conduction electrons, probably due to the lack of s-orbital contributions to the conduction band.

  11. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces.

    Science.gov (United States)

    Conti, Claudia; Botteon, Alessandra; Bertasa, Moira; Colombo, Chiara; Realini, Marco; Sali, Diego

    2016-08-07

    We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools.

  12. Microscopic structures of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate in water probed by the relative chemical shift

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The relative chemical shifts (△δ) △δwere put forward to investigate the microscopic structure of 1-ethyl-3-methyl-imidazolium tetrafluoroborate (EmimBF4) during the dilution process with water.The concentration-dependent △δ(C2)H-(C4)H,△δ(C2)H-(C5)H and △δ(C4)H-(C5)H were analyzed.The results reveal that the variations of the microscopic structures of three aromatic protons are inconsistent.The strength of the H-bond between water and three aromatic protons follows the order:(C2)H···O > (C4)H···O > (C5)H···O.The concentration-dependent △δ(C6)H-(C7)H and △δ(C6)H-(C8)H indicate the formation of the H-bonds of (Calkyl)H···O is impossible,and more water is located around (C6)H than around (C7)H or (C8)H.The concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H both increase rapidly when xwater > 0.9 or so,suggesting the ionic pairs of EmimBF4 are dissociated rapidly.The turning points of concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H indicate that some physical properties of the EmimBF4/water mixtures also change at the corresponding concentration point.The microscopic structures of EmimBF4 in water could be clearly detected by the relative chemical shifts.

  13. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts.

  14. Zero discharge tanning: a shift from chemical to biocatalytic leather processing.

    Science.gov (United States)

    Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2002-10-01

    Beam house processes (Beam house processes generally mean liming-reliming processes, which employ beam.) contribute more than 60% of the total pollution from leather processing. The use of lime and sodium sulfide is of environmental concern (1, 2). Recently, the authors have developed an enzyme-based dehairing assisted with a very low amount of sodium sulfide, which completely avoids the use of lime. However, the dehaired pelt requires opening up of fiber bundles for further processing, where lime is employed to achieve this through osmotic swelling. Huge amounts of lime sludge and total solids are the main drawbacks of lime. An alternative bioprocess, based on alpha-amylase for fiber opening, has been attempted after enzymatic unhairing. This totally eliminates the use of lime in leather processing. This method enables subsequent processes and operations in leather making feasible without a deliming process. A control experiment was run in parallel using conventional liming-reliming processes. It has been found that the extent of opening up of fiber bundles using alpha-amylase is comparable to that of the control. This has been substantiated through scanning electron microscopic, stratigraphic chrome distribution analysis, and softness measurements. Performance of the leathers is shown to be on a par with leathers produced by the conventional process through physical and hand evaluation. Importantly, softness of the leathers is numerically proven to be comparable with that of control. The process also demonstrates reduction in chemical oxygen demand load by 45% and total solids load by 20% compared to the conventional process. The total dry sludge from the beam house processes is brought down from 152 to 8 kg for processing 1 ton of raw hides.

  15. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.

    Science.gov (United States)

    Pierens, Gregory K; Venkatachalam, T K; Reutens, David C

    2016-04-01

    A comparative study of experimental and calculated NMR chemical shifts of six compounds comprising 2-amino and 2-hydroxy phenyl benzoxazoles/benzothiazoles/benzimidazoles in four solvents is reported. The benzimidazoles showed interesting spectral characteristics, which are discussed. The proton and carbon chemical shifts were similar for all solvents. The largest chemical shift deviations were observed in benzene. The chemical shifts were calculated with density functional theory using a suite of four functionals and basis set combinations. The calculated chemical shifts revealed a good match to the experimentally observed values in most of the solvents. The mean absolute error was used as the primary metric. The use of an additional metric is suggested, which is based on the order of chemical shifts. The DP4 probability measures were also used to compare the experimental and calculated chemical shifts for each compound in the four solvents. Copyright © 2015 John Wiley & Sons, Ltd.

  16. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    Science.gov (United States)

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  17. On the use of pseudocontact shifts in the structure determination of metalloproteins.

    Science.gov (United States)

    Jensen, Malene Ringkjøbing; Hansen, D Flemming; Ayna, Umit; Dagil, Robert; Hass, Mathias A S; Christensen, Hans E M; Led, Jens J

    2006-03-01

    The utility of pseudocontact shifts in the structure refinement of metalloproteins has been evaluated using a native, paramagnetic Cu(2+) metalloprotein, plastocyanin from Anabaena variabilis (A.v.), as a model protein. First, the possibility of detecting signals of nuclei spatially close to the paramagnetic metal ion is investigated using the WEFT pulse sequence in combination with the conventional TOCSY and (1)H-(15)N HSQC sequences. Second, the importance of the electrical charge of the metal ion for the determination of correct pseudocontact shifts from the obtained chemical shifts is evaluated. Thus, using both the Cu(+) plastocyanin and Cd(2+)-substituted plastocyanin as the diamagnetic references, it is found that the Cd(2+)-substituted protein with the same electrical charge of the metal ion as the paramagnetic Cu(2+) plastocyanin provides the most appropriate diamagnetic reference signals. Third, it is found that reliable pseudocontact shifts cannot be obtained from the chemical shifts of the (15)N nuclei in plastocyanin, most likely because these shifts are highly dependent on even minor differences in the structure of the paramagnetic and diamagnetic proteins. Finally, the quality of the obtained (1)H pseudocontact shifts, as well as the possibility of improving the accuracy of the obtained structure, is demonstrated by incorporating the shifts as restraints in a refinement of the solution structure of A.v. plastocyanin. It is found that incorporation of the pseudocontact shifts enhances the precision of the structure in regions with only few NOE restraints and improves the accuracy of the overall structure.

  18. High-Frequency (1)H NMR Chemical Shifts of Sn(II) and Pb(II) Hydrides Induced by Relativistic Effects: Quest for Pb(II) Hydrides.

    Science.gov (United States)

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-10-17

    The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.

  19. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    Science.gov (United States)

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes.

  20. Predictions of the fluorine NMR chemical shifts of perfluorinated carboxylic acids, CnF(2n+1)COOH (n = 6-8).

    Science.gov (United States)

    Liu, Zizhong; Goddard, John D

    2009-12-17

    Perfluorinated carboxylic acids (PFCAs) are a class of persistent environmental pollutants. Commercially available PFCAs are mixtures of linear and branched isomers, possibly with impurities. Different isomers have different physical and chemical properties and toxicities. However, little is known about the properties and the finer details of the structures of the individual branched isomers. Full geometry optimizations for the linear n-alkane (C(6)-C(27)) PFCAs indicated that all have helical structures. The helical angle increases slightly with increasing chain length, from 16.3 degrees in C(6)F(13)COOH to 17.0 degrees in C(27)F(55)COOH. This study predicts (19)F NMR parameters for 69 linear and branched isomers of the perfluoro carboxylic acids C(6)F(13)COOH, C(7)F(15)COOH, and C(8)F(17)COOH. B3LYP-GIAO/6-31++G(d,p)//B3LYP/6-31G(d,p) was used for the NMR calculations with analysis of the chemical shifts by the natural bond orbital method. The predictions of the (19)F chemical shifts revealed the differences among the CF(3), CF(2), and CF groups. In general, the absolute values for the chemical shifts for the CF(3) group are smaller than 90 ppm, for the CF larger than 160 ppm, and for the CF(2) between 110 and 130 ppm. The chemical shifts of the branched isomers are smaller in magnitude than the linear ones. The decrease is correlated with the steric hindrance of the CF(3) groups, the more hindered the CF(3), the greater the decrease in the (19)F chemical shifts. The predicted (19)F chemical shifts are similar to those for analogous perfluoro compounds with other terminal functional groups such as -SO(3)H or -SO(3)NH(2)CH(2)CH(3).

  1. Sedimentary records of δ{sup 13}C, δ{sup 15}N and organic matter accumulation in lakes receiving nutrient-rich mine waters

    Energy Technology Data Exchange (ETDEWEB)

    Widerlund, Anders, E-mail: Anders.Widerlund@ltu.se; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ{sup 15}N and δ{sup 13}C values in {sup 210}Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15–20% and 20–35%, respectively, since ∼ 1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ{sup 15}N ∼ + 9‰ to + 19‰) were clearly shifted from the primary signal in explosives (δ{sup 15}N–NO{sub 3} = + 3.4 ± 0.3‰; δ{sup 15}N–NH{sub 4} = − 8.0 ± 0.3‰) and NaCN (δ{sup 15}N = + 1.1 ± 0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. - Highlights: • Historical mining-related changes in organic

  2. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    Science.gov (United States)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  3. Proton NMR Chemical Shift Behavior of Hydrogen-Bonded Amide Proton of Glycine-Containing Peptides and Polypeptides as Studied by ab initio MO Calculation

    Directory of Open Access Journals (Sweden)

    I. Ando

    2002-08-01

    Full Text Available Abstract: NMR chemical shifts of the amide proton of a supermolecule, an Nmethylacetamide hydrogen-bonded with a formamide, were calculated as functions of hydrogen-bond length RN…O and hydrogen-bond angles by FPT-GIAO method within the framework of HF/STO 6-31++G(d,p ab initio MO method. The calculations explained reasonably the experimental data reported previously that the isotropic proton chemical shifts move downfield with a decrease in RN…O. Further, the behavior of proton chemical shift tensor components depending on the hydrogen-bond length and hydrogen-bond angle was discussed.

  4. (1)H, (15)N, (13)C backbone resonance assignments of human soluble catechol O-methyltransferase in complex with S-adenosyl-L-methionine and 3,5-dinitrocatechol.

    Science.gov (United States)

    Czarnota, Sylwia; Baxter, Nicola J; Cliff, Matthew J; Waltho, Jonathan P; Scrutton, Nigel S; Hay, Sam

    2016-12-15

    Catechol O-methyltransferase (COMT) is an enzyme that plays a major role in catechol neurotransmitter deactivation. Inhibition of COMT can increase neurotransmitter levels, which provides a means of treatment for Parkinson's disease, schizophrenia and depression. COMT exists as two isozymes: a soluble cytoplasmic form (S-COMT), expressed in the liver and kidneys and a membrane-bound form (MB-COMT), found mostly in the brain. Here we report the backbone (1)H, (15)N and (13)C chemical shift assignments of S-COMT in complex with S-adenosyl-L-methionine, 3,5-dinitrocatechol and Mg(2+). Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 97 % of all backbone resonances were assigned in the complex, with 205 out of a possible 215 residues assigned in the (1)H-(15)N TROSY spectrum. Prediction of solution secondary structure from a chemical shift analysis using the TALOS+ webserver is in good agreement with published X-ray crystal structures.

  5. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Science.gov (United States)

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique.

  6. Addendum to "Determination of $\\gamma$-ray widths in $^{15}$N using nuclear resonance fluorescence''

    CERN Document Server

    Szücs, Tamás

    2015-01-01

    The determination of absolute widths of two observed levels above the proton threshold in $^{15}$N has been improved by a combined analysis of our recent $^{15}$N($\\gamma$,$\\gamma'$)$^{15}$N$^\\ast$ photon scattering data, resonance strengths $\\omega\\gamma$ of the $^{14}$C($p$,$\\gamma$)$^{15}$N reaction, and $\\gamma$-ray branchings $b_{\\gamma,i}$ in $^{15}$N. The revised data are compared to the adopted values, and some inconsistencies in the adopted values are illustrated.

  7. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    Science.gov (United States)

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  8. Molecular structure and vibrational and chemical shift assignments of 3'-chloro-4-dimethylamino azobenzene by DFT calculations.

    Science.gov (United States)

    Toy, Mehmet; Tanak, Hasan

    2016-01-05

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  9. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    Science.gov (United States)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  10. Molecular structure and vibrational and chemical shift assignments of 3‧-chloro-4-dimethylamino azobenzene by DFT calculations

    Science.gov (United States)

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  11. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.

    Science.gov (United States)

    Jose, K V Jovan; Raghavachari, Krishnan

    2017-03-14

    We present an efficient implementation of the molecules-in-molecules (MIM) fragment-based quantum chemical method for the evaluation of NMR chemical shifts of large biomolecules. Density functional techniques have been employed in conjunction with large basis sets and including the effects of the solvent environment in these calculations. The MIM-NMR method is initially benchmarked on a set of (alanine)10 conformers containing strong intramolecular interactions. The incorporation of a second low level of theory to recover the missing long-range interactions in the primary fragmentation scheme is critical to yield reliable chemical shifts, with a mean absolute deviation (MAD) from direct unfragmented calculations of 0.01 ppm for (1)H chemical shifts and 0.07 ppm for (13)C chemical shifts. In addition, the performance of MIM-NMR has been assessed on two large peptides: the helical portion of ubiquitin ( 1UBQ ) containing 12 residues where the X-ray structure is known, and E6-binding protein of papilloma virus ( 1RIJ ) containing 23 residues where the structure has been derived from solution-phase NMR analysis. The solvation environment is incorporated in these MIM-NMR calculations, either through an explicit, implicit, or a combination of both solvation models. Using an explicit treatment of the solvent molecules within the first solvation sphere (3 Å) and an implicit solvation model for the rest of the interactions, the (1)H and (13)C chemical shifts of ubiquitin show excellent agreement with experiment (mean absolute deviation of 0.31 ppm for (1)H and 1.72 ppm for (13)C), while the larger E6-binding protein yields a mean absolute deviation of 0.34 ppm for (1)H chemical shifts. The proposed MIM-NMR method is computationally cost-effective and provides a substantial speedup relative to conventional full calculations, the largest density functional NMR calculation included in this work involving more than 600 atoms and over 10,000 basis functions. The MIM

  12. Multilinear relations between {sup 13} C NMR chemical shifts of aliphatic halides; Relacoes lineares multiplas entre deslocamentos quimicos em RMN {sup 13} C de haletos alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Doyama, Julio Toshimi [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Quimica e Bioquimica; Tornero, Maria Teresinha Trovarelli [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Bioestatistica; Yoshida, Massayoshi [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    1999-07-01

    The {sup 13} C NMR chemical shifts of the {alpha}, {beta}, {gamma} and {delta} carbons of 17 sets of aliphatic halides (F, Cl, Br and I), including mono, bi and tricyclic compounds, can be reproduced by a linear equation composed with two constants and two variables: {delta}{sub RX} = A{sup *} {delta}{sub R-X2}, where A and B are constants derived from multilinear regression of {sup 13} C chemical shifts observed; {delta}{sub R-X}, the chemical shifts of aliphatic halide (R-X); and {delta}{sub R-X1}, {delta}{sub R-X2} the chemical shifts of other halides. It was observed a better correlation for aliphatic bromides (R-X) by using data of aliphatic fluorides (R-X 1) and aliphatic iodides (R-X 2), resulting R{sup 2} of 0.9989 and average absolute deviation (AVG) of 0.39 ppm. For the chlorides (R-X), the better correlation was observed by using data of bromides (R-X 1) was observed better correlation with data of bromides (R-X 1) and iodides (R-X 2), R{sup 2} of 0.997 and AVG of 1.10 ppm. For the iodides (R-X) was observed better correlation with data of fluorides (R-X 1) and bromides (R-X 2), R{sup 2} of 0.9972 and AVG of 0.60 ppm. (author)

  13. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  14. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Science.gov (United States)

    Ruiz-Cooley, Rocio I; Ballance, Lisa T; McCarthy, Matthew D

    2013-01-01

    Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ(15)N values, a proxy for habitat baseline δ(15)N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15)N values in gladii for squid at small sizes (60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15)N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.

  15. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Directory of Open Access Journals (Sweden)

    Rocio I Ruiz-Cooley

    Full Text Available Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS documents for the first time multiple geographic origins and migration. Phe δ(15N values, a proxy for habitat baseline δ(15N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15N values in gladii for squid at small sizes (60 cm converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.

  16. Fate of orally administered {sup 15}N-labeled polyamines in rats bearing solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masaki; Samejima, Keijiro; Goda, Hitomi; Niitsu, Masaru [Josai Univ., Sakado, Saitama (Japan). Faculty of Pharmaceutical Sciences; Xu Yongji [Qingdao Univ. of Science and Technology (China). Inst. of Chemical and Molecular Technology; Takahashi, Masakazu [Sasaki Inst., Tokyo (Japan); Hashimoto, Yoshiyuki [Kyoritsu Coll. of Pharmacy, Tokyo (Japan)

    2003-03-01

    We studied absorption, distribution, metabolism, and excretion of polyamines (putrescine, spermidine, and spermine) in the gastrointestinal tract using {sup 15}N-labeled polyamines as tracers and ionspray ionization mass spectrometry (IS-MS). The relatively simple protocol using rats bearing solid tumors provided useful information. Three {sup 15}N-labeled polyamines that were simultaneously administered were absorbed equally from gastrointestinal tract, and distributed within tissues at various concentrations. The uptake of {sup 15}N-spermidine seemed preferential to that of {sup 15}N-spermine since the concentrations of {sup 15}N-spermidine in the liver and tumors were higher, whereas those of {sup 15}N-spermine were higher in the kidney, probably due to the excretion of excess extracellular spermine. Most of the absorbed {sup 15}N-putrescine seemed to be lost, suggesting blood and tissue diamine oxidase degradation. Concentrations of {sup 15}N-spermidine and {sup 15}N-spermine in the tumor were low. We also describe the findings from two rats that were administered with {sup 15}N-spermine. The tissue concentrations of {sup 15}N-spermine were unusually high, and significant levels of {sup 15}N-spermidine were derived from {sup 15}N-spermine in these animals. (author)

  17. Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation

    Indian Academy of Sciences (India)

    D Joseph; C Nayak; P Venu Babu; S N Jha; D Bhattacharyya

    2014-05-01

    Uranium L3 X-ray absorption edge was measured in various compounds containing uranium in U4+, U5+ and U6+ oxidation states. The measurements have been carried out at the Energy Dispersive EXAFS beamline (BL-08) at INDUS-2 synchrotron radiation source at RRCAT, Indore. Energy shifts of ∼ 2–3 eV were observed for U L3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on U cation in the above compounds.

  18. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    Science.gov (United States)

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  19. Using chemical-shift MR imaging to quantify fatty degeneration within supraspinatus muscle due to supraspinatus tendon injuries

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan; Yildirim, Nalan; Yazici, Zeynep [Uludag University Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey); Ercan, Ilker [Uludag University Medical Faculty, Department of Biostatistics, Gorukle, Bursa (Turkey)

    2010-12-15

    The objective of this study was to prospectively quantify the fatty degeneration of supraspinatus (SSP) muscle due to SSP tendon injuries by using chemical-shift magnetic resonance imaging (CS-MRI). Forty-one patients with suspected rotator cuff tear or impingement examined with MR arthrography were included in the study. The following images were obtained after injection of diluted gadolinium chelate into glenohumeral joint: fat-saturated T1-weighted spin echo in the coronal, axial, and sagittal-oblique plane; fat-saturated T2-weighted and intermediate-weighted fast spin-echo in the coronal-oblique plane; and T1-weighted spin echo in the sagittal-oblique plane. CS-MRI was performed in the coronal plane using a double-echo fast low-angle shot (FLASH) sequence. SSP tendon changes were classified as normal, tendinosis, and partial and complete tear according to MR arthrography findings. Fatty degeneration was quantified after measurement of signal intensity values within the region of interest (ROI) placed over SSP muscle. Signal intensity (SI) suppression ratio and SI index were calculated with the values obtained. Degrees of fatty degeneration depicted in normal subjects and subjects with rotator cuff injuries were compared. Median (min:max) was used as descriptive values. SI suppression ratio was -3.5% (-15.5:3.03) in normal subjects, whereas it was -13.5% (-28.55:-6.60), -30.7% (-41.5:-20.35), and -43.75% (-62:-24.90) in tendinosis, partial and complete tears, respectively. SI index was 0.75% (-6:11.5) in normal subjects. It was 10% (4.50:27), 26.5% (19.15:35.5), and 41% (23.9:57) in tendinosis, partial and complete tears, respectively. The increase in degree of fatty degeneration parallels the seriousness of tendon pathology. CS-MRI is a useful method for grading fat accumulation within SSP muscle. (orig.)

  20. The recognition of multi-class protein folds by adding average chemical shifts of secondary structure elements.

    Science.gov (United States)

    Feng, Zhenxing; Hu, Xiuzhen; Jiang, Zhuo; Song, Hangyu; Ashraf, Muhammad Aqeel

    2016-03-01

    The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.

  1. Study on Nitrogen Forms in Phenolic Polymers Incorporating Protien by 15N CP—MAS NMR

    Institute of Scientific and Technical Information of China (English)

    CHENGLILI; WENQIXIAO; 等

    1996-01-01

    Phenolic polymers synthesized by reactions by reactions of p-benzoquinone with 15N-labelled protein or (15NH4)2SO4 were studied by using 15N CP-MAS NMR technique in combination with chemical approaches.Results showed that more than 80% of nitrogen in quinone-protein polymers was in the form of amide with some present as aromatic and /or aliphatic amine and less than 10% of nitrogen occurred as heterocyclic N.The nitrogen distribution in the non-hydrolyzable residue of the quinone-protein polymers was basically similar to that of soil humic acid reported in literature with the exception that a higher proportion of N as heterocyclic N and aromatic amine and a lower proportion of N as amide and aliphatic amine were found in the former than in the latter,More than 70% of total nitrogen in quinone-(NH4)2OS4 polymer was acid resistant ,of which about 53% occurred as pyrrole,nitrile and imion type N.The possible roles of the reactions of phenols or quinones with proteins in the formation of humic acid.especially the non-hydrolyzable nitrogen in humicacid,are discussed.

  2. Mimicking floodplain reconnection and disconnection using 15N mesocosm incubations

    Directory of Open Access Journals (Sweden)

    W. Wanek

    2012-04-01

    Full Text Available Floodplain restoration changes the nitrate delivery pattern and dissolved organic matter pool in backwaters but other effects are not yet well known. We performed two mesocosm experiments to quantify the nitrate metabolism in two types of floodplains. Rates of denitrification, dissimilatory nitrate reduction to ammonium (DNRA and anammox were measured using 15N tracer additions in mesocosms containing undisturbed floodplain sediments originating from (1 restored and (2 disconnected sites in the Alluvial Zone National Park on the Danube River downstream of Vienna, Austria. DNRA rates were an order of magnitude lower than denitrification and neither rate was affected by changes in nitrate delivery pattern or organic matter quality. Anammox was not detected at any of the sites. Denitrification was out-competed by assimilation which was estimated to use up to 70% of the available nitrate. Overall, denitrification was higher in the restored sites, with mean rates of 5.7±2.8 mmol N m−2 h−1 compared to the disconnected site (0.6±0.5 mmol N m−1 h−1. In addition, ratios of N2O : N2 were lower in the restored site indicating a more complete denitrification. Nitrate addition did not have any effect on denitrification, nor on the N2O : N2 ratio. However, DOM quality significantly changed the N2O : N2 ratio in both sites. Addition of riverine derived organic matter lowered the N2O : N2 ratio in the disconnected site, whereas addition of floodplain derived organic matter increased the N2O : N2 ratio in the restored site. These results demonstrate that increasing floodplains hydrological connection to the main river channel increases nitrogen retention and decreases nitrous oxide emissions.

  3. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Science.gov (United States)

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, d15N of foliage and soil also increases. We measured foliar d15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  4. Relativistic four-component DFT calculations of 1H NMR chemical shifts in transition-metal hydride complexes: unusual high-field shifts beyond the Buckingham-Stephens model.

    Science.gov (United States)

    Hrobárik, Peter; Hrobáriková, Veronika; Meier, Florian; Repiský, Michal; Komorovský, Stanislav; Kaupp, Martin

    2011-06-09

    State-of-the-art relativistic four-component DFT-GIAO-based calculations of (1)H NMR chemical shifts of a series of 3d, 4d, and 5d transition-metal hydrides have revealed significant spin-orbit-induced heavy atom effects on the hydride shifts, in particular for several 4d and 5d complexes. The spin-orbit (SO) effects provide substantial, in some cases even the dominant, contributions to the well-known characteristic high-field hydride shifts of complexes with a partially filled d-shell, and thereby augment the Buckingham-Stephens model of off-center paramagnetic ring currents. In contrast, complexes with a 4d(10) and 5d(10) configuration exhibit large deshielding SO effects on their hydride (1)H NMR shifts. The differences between the two classes of complexes are attributed to the dominance of π-type d-orbitals for the true transition-metal systems compared to σ-type orbitals for the d(10) systems.

  5. δ15N constraints on long-term nitrogen balances in temperate forests

    Science.gov (United States)

    Perakis, S.S.; Sinkhorn, E.R.; Compton, J.E.

    2011-01-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 − patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

  6. δ15N constraints on long-term nitrogen balances in temperate forests.

    Science.gov (United States)

    Perakis, Steven S; Sinkhorn, Emily R; Compton, Jana E

    2011-11-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ(15)N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha(-1) and carbon (C) ranged from 188 to 460 Mg ha(-1), with highest values near the coast. Ecosystem δ(15)N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96-98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N(2)-fixation, and that were consistent with cycles of post-fire N(2)-fixation by early-successional red alder. Soil water δ(15)NO(3)(-) patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N(2)-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N(2)-fixing vegetation.

  7. Solvent-induced chemical shifts of methoxyl nuclear resonance signals in chalcones by benzene and trifluoroacetic acid

    Science.gov (United States)

    Khurana, Shashi K.; Krishnamoorthy, V.; Parmar, Virinder S.

    The 1H NMR spectra of eight different methoxylated chalcones have separately been recorded, (1) in deuterated chloroform; (2) in a mixture (1:1) of deuterated chloroform and benzene; and (3) in a mixture of deuterated chloroform, benzene and trifluoroacetic acid (2:2:1) and the benzene induced and TFA induced shift values have been assigned to different methoxyl groups. These shift values can serve as a guide in determining the structures of natural or new chalcones. The steric, electronic and conformational factors are discussed to explain the shift values.

  8. Precision Measurement of the Quadrupole Coupling and Chemical Shift Tensors of the Deuterons in α-Calcium Formate

    Science.gov (United States)

    Schmitt, Heike; Zimmermann, H.; Körner, O.; Stumber, M.; Meinel, C.; Haeberlen, U.

    2001-07-01

    Using calcium formate, α-Ca(DCOO)2, as a test sample, we explore how precisely deuteron quadrupole coupling (QC) and chemical shift (CS) tensors Q and σ can currently be measured. The error limits, ±0.09 kHz for the components of Q and ±0.06 ppm for those of σ, are at least three times lower than in any comparable previous experiment. The concept of a new receiver is described. A signal/noise ratio of 100 is realized in single-shot FT spectra. The measurement strategies and a detailed error analysis are presented. The precision of the measurement of Q is limited by the uncertainty of the rotation angles of the sample and that of σ by the uncertainty of the phase correction parameters needed in FT spectroscopy. With a 4-sigma confidence, it is demonstrated for the first time that the unique QC tensor direction of a deuteron attached to a carbon deviates from the bond direction; the deviation found is (1.2±0.3°). Evidence is provided for intermolecular QC contributions. In terms of Q, their size is roughly 4 kHz. The deuteron QC tensors in α-Ca(DCOO)2 (two independent deuteron sites) are remarkable in three respects. For deuterons attached to sp2 carbons, first, the asymmetry factors η and, second, the quadrupole coupling constants CQ, are unusually small, η1=0.018, η2=0.011, and CQ1=(151.27±0.06) kHz, CQ2=(154.09±0.06) kHz. Third, the principal direction associated with the largest negative QC tensor component lies in and not, as usual, perpendicular to the molecular plane. A rationalization is provided for these observations. The CS tensors obtained are in quantitative agreement with the results of an earlier, less precise, line-narrowing multiple-pulse study of α-Ca(HCOO)2. The assignment proposed in that work is confirmed. Finally we argue that a further 10-fold increase of the measurement precision of deuteron QC tensors, and a 2-fold increase of that of CS tensors, should be possible. We indicate the measures that need to be taken.

  9. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.

    Science.gov (United States)

    Vícha, Jan; Patzschke, Michael; Marek, Radek

    2013-05-28

    A methodology for optimizing the geometry and calculating the NMR shielding constants is calibrated for octahedral complexes of Pt(IV) and Ir(III) with modified nucleic acid bases. The performance of seven different functionals (BLYP, B3LYP, BHLYP, BP86, TPSS, PBE, and PBE0) in optimizing the geometry of transition-metal complexes is evaluated using supramolecular clusters derived from X-ray data. The effects of the size of the basis set (ranging from SVP to QZVPP) and the dispersion correction (D3) on the interatomic distances are analyzed. When structural deviations and computational demands are employed as criteria for evaluating the optimizations of these clusters, the PBE0/def2-TZVPP/D3 approach provides excellent results. In the next step, the PBE0/def2-TZVPP approach is used with the continuum-like screening model (COSMO) to optimize the geometry of single molecules for the subsequent calculation of the NMR shielding constants in solution. The two-component zeroth-order regular approximation (SO-ZORA) is used to calculate the NMR shielding constants (PBE0/TZP/COSMO). The amount of exact exchange in the PBE0 functional is validated for the nuclear magnetic shieldings of atoms in the vicinity of heavy transition metals. For the PBE0/TZP/COSMO setup, an exact exchange of 40% is found to accurately reproduce the experimental NMR shielding constants for both types of complexes. Finally, the effect of the amount of exact exchange on the NMR shielding calculations (which is capable of compensating for the structural deficiencies) is analyzed for various molecular geometries (SCS-MP2, BHLYP, and PBE0) and the influence of a trans-substituent on the NMR chemical shift of nitrogen is discussed. The observed dependencies for an iridium complex cannot be rationalized by visualizing the Fermi-contact (FC) induced spin density and probably originate from changes in the d-d transitions that modulate the spin-orbit (SO) part of the SO/FC term.

  10. Detection of chemical vapor with high sensitivity by using the symmetrical metal-cladding waveguide-enhanced Goos-Hänchen shift.

    Science.gov (United States)

    Nie, Yiyou; Li, Yuanhua; Wu, Zhijing; Wang, Xianping; Yuan, Wen; Sang, Minghuang

    2014-04-21

    We present a novel and simple optical structure, i.e., the symmetrical metal-cladding waveguide, in which a polymer layer is added into the guiding layer, for sensitive detection of chemical vapor by using the enhanced Goos-Hänchen (GH) shift (nearly a millimeter scale). Owing to the high sensitivity of the excited ultrahigh-order modes, the vapor-induced effect (swelling effect and refractive index change) in the polymer layer will lead to a dramatic variation of the GH shift. The detected GH shift signal is irrelevant to the power fluctuation of the incident light. The detection limit of 9.5 ppm for toluene and 28.5 ppm for benzene has been achieved.

  11. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D., E-mail: djoseph@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Basu, S.; Jha, S.N.; Bhattacharyya, D. [Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH{sub 3}CO{sub 2}){sub 2}, Cu(CO{sub 3}){sub 2}, and CuSO{sub 4} where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of {approx}4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.

  12. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    Science.gov (United States)

    Joseph, D.; Basu, S.; Jha, S. N.; Bhattacharyya, D.

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH3CO2)2, Cu(CO3)2, and CuSO4 where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of ˜4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.

  13. Chemical shifts of L3 X-ray absorption edges on lead and thallium compounds by DEXAFS using synchrotron radiation source

    Science.gov (United States)

    Kainth, Harpreet Singh; Singh, Ranjit

    2017-09-01

    The L3 absorption edges of 82Pb and 81Tl compounds have been measured using DEXAFS at INDUS-2 Synchrotron radiation source at RRCAT, Indore. The energy shift of ∼(-6 to 2) eV are observed in pre-edge of 82Pb compounds while energy shift varies ∼(-5 to 10) eV in pre-edge and ∼(2-9) eV in post-edge of 81Tl compounds. The chemical effects in both compounds have been described by calculating effective charge using Suchet and Pauling methods. A linear relation is established between chemical effect and effective charge of different compounds for the first time in literature.

  14. Quantification of the push-pull Effect in disubstituted alkynes - Application of occupation quotients π*/π and 13C chemical shift differences ΔδCtbnd C

    Science.gov (United States)

    Kleinpeter, Erich; Klaumünzer, Ute

    2014-09-01

    Structures, 13C chemical shifts, and the occupation quotients of anti-bonding π* and bonding π orbitals of the Ctbnd C triple bond along a series of push-pull alkynes (p)Xsbnd C6H4sbnd C(O)sbnd Ctbnd Csbnd NHsbnd C6H4sbnd Y(p) (X,Y = H, Me, OMe, NMe2, NO2, COMe, COOMe, F, Cl, Br) were computed at the DFT level (B3LYP/6-311G**) of theory. Both the stereochemistry (cis/trans-isomers) by steric twist and the push-pull character by both 13C chemical shift differences (ΔδCtbnd C) and the occupation quotient (π*Ctbnd C/πCtbnd C) were studied; the latter two parameters can be readily employed to precisely quantify the push-pull effect in alkynes.

  15. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. (Fox Chase Cancer Center, Philadelphia, PA (United States))

    1991-08-01

    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  16. Evidence of chemical-potential shift with hole doping in Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8+. delta

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Dessau, D.S.; Wells, B.O. (Stanford Electronics Laboratory, Stanford University, Stanford, California 94305 (United States)); Olson, C.G. (Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)); Mitzi, D.B.; Lombado, L. (Department of Applied Physics, Stanford University, Stanford, California 94305 (United States)); List, R.S.; Arko, A.J. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1991-12-01

    We have performed photoemission studies on high-quality Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} samples with various {delta}. Our results show a clear chemical-potential shift (0.15--0.2 eV) as a function of doping. This result and the existing angle-resolved-photoemission data give a rather standard doping behavior of this compound in its highly doped regime.

  17. Progress in spin dynamics solid-state nuclear magnetic resonance with the application of Floquet-Magnus expansion to chemical shift anisotropy.

    Science.gov (United States)

    Mananga, Eugene Stephane

    2013-01-01

    The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence.

  18. All-atom Molecular Dynamic Simulations Combined with the Chemical Shifts Study on the Weak Interactions of Ethanol-water System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong; LUO San-Lai; WU Wen-Juan

    2008-01-01

    All-atom molecular dynamics(MD)simulation combined with chemical shifts was performed to investigate the interactions over the entire concentration range of the ethanol(EtOH)-water system.The results of the simulation were adopted to explain the NMR experiments by hydrogen bonding analysis.The strong hydrogen bonds and weak C-H…O contacts coexist in the mixtures through the analysis of the radial distribution functions.And the liquid structures in the whole concentration of EtOH-water mixtures can be classified into three regions by the statistic analysis of the hydrogen-bonding network in the MD simulations.Moreover,the chemical shifts of the hydrogen atom are in agreement witb the statistical results of the average number hydrogen bonds in the MD simulations.Interestingly,the excess relative extent Eηrel calculated by the MD simulations and chemical shifts in the EtOH aqueous solutions shows the largest deviation at XEtOH≈0.18.The excess properties present good agreement with the excess enthalpy in the concentration dependence.

  19. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0.

  20. Regulation of [15N]urea synthesis from [5-15N]glutamine. Role of pH, hormones, and pyruvate.

    Science.gov (United States)

    Nissim, I; Yudkoff, M; Brosnan, J T

    1996-12-01

    We have utilized both [5-15N]glutamine and [3-13C] pyruvate as metabolic tracers in order to: (i) examine the effect of pH, glucagon (GLU), or insulin on the precursor-product relationship between 15NH3, [15N]citrulline, and, thereby, [15N]urea synthesis and (ii) elucidate the mechanism(s) by which pyruvate stimulates [15N] urea synthesis. Hepatocytes isolated from rat were incubated at pH 6.8, 7.4, or 7.6 with 1 mM [5-15N]glutamine and 0.1 mM 14NH4Cl in the presence or the absence of [3-13C] pyruvate (2 mM). A separate series of experiments was performed at pH 7.4 in the presence of insulin or GLU. 15NH3 enrichment exceeded or was equal to that of [15N]citrulline under all conditions except for pH 7.6, when the 15N enrichment in citrulline exceeded that in ammonia. The formation of [15N]citrulline (atom % excess) was increased with higher pH. Flux through phosphate-dependent glutaminase (PDG) and [15N]urea synthesis were stimulated (p < 0.05) at pH 7.6 or with GLU and decreased (p < 0.05) at pH 6.8. Insulin had no significant effect on flux through PDG or on [15N]urea synthesis. Decreased [15N]urea production at pH 6.8 was associated with depleted aspartate and glutamate levels. Pyruvate attenuated this decrease in the aspartate and glutamate pools and stimulated [15N]urea synthesis. Production of Asp from pyruvate was increased with increasing medium pH. Approximately 80% of Asp was derived from [3-13C]pyruvate regardless of incubation pH or addition of hormone. Furthermore, approximately 20, 40, and 50% of the mitochondrial N-acetylglutamate (NAG) pool was derived from [3-13C]pyruvate at pH 6.8, 7.4, and 7.6, respectively. Both the concentration and formation of [13C]NAG from [3-13C]pyruvate were increased (p < 0.05) with glucagon and decreased (p < 0.05) with insulin or at pH 6.8. The data suggest a correlation between changes in [15N]urea synthesis and alterations in the level and synthesis of [13C]NAG from pyruvate. The current observations suggest that the

  1. Identification of Zinc-ligated Cysteine Residues Based on {sup 13}C{alpha} and {sup 13}C{beta} Chemical Shift Data

    Energy Technology Data Exchange (ETDEWEB)

    Kornhaber, Gregory J.; Snyder, David; Moseley, Hunter N. B.; Montelione, Gaetano T. [Rutgers University, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry (United States)], E-mail: guy@cabm.rutgers.edu

    2006-04-15

    Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom's chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped {sup 13}C{beta} chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding {sup 13}C{alpha} chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 {sup 13}C{alpha}/{sup 13}C{beta} shift pairs from 79 proteins with known three-dimensional structures, including 86 {sup 13}C{alpha} and{sup 13}C{beta} shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statisical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron-sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into

  2. Association of symmetrical alkane diols with pyridine: DFT/GIAO calculation of (1) H NMR chemical shifts.

    Science.gov (United States)

    Lomas, John S; Joubert, Laurent; Maurel, François

    2016-05-31

    Proton nuclear magnetic resonance (NMR) shifts of the free diol and of its 1 : 1 and 1 : 2 hydrogen-bonded complexes with pyridine have been computed for five symmetrical alkane diols on the basis of density functional theory, by applying the gauge-including atomic orbital method to geometry-optimized conformers. For certain conformers, intramolecular OH···OH interactions, evidenced by high NMR OH proton shifts, are further enhanced on going from the free diol to the corresponding 1 : 1 diol/pyridine complex. This is confirmed by atoms-in-molecules and non-covalent interaction plots. The computed OH and CH proton shifts for the diol and the two complexes correlate well with values obtained by analysing data from the NMR titration of the diols in benzene against pyridine. Shift values for the diols in neat pyridine are calculated by weighting the shifts of the various protons in the three forms (free diol, 1 : 1 and 1 : 2 diol/pyridine complexes) according to the experimentally determined association constants. The results are in good agreement with those observed, and after empirical scaling, the root mean square difference is 0.18 ppm. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose.

    Science.gov (United States)

    Thorn, K A; Kennedy, K R

    2002-09-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  4. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    Science.gov (United States)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  5. Individual protein balance strongly influences delta15N and delta13C values in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    2004-02-01

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing delta(15)N and delta(13)C values. An experiment using Nile tilapia [ Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on delta(15)N and delta(13)C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. delta(15)N and delta(13)C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5 per thousand to 4 per thousand and for C in the lipid-free body from 4 per thousand to 2.5 per thousand. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  6. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order.

  7. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    Science.gov (United States)

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Effects of irritant chemicals on Aedes aegypti resting behavior: is there a simple shift to untreated "safe sites"?

    Directory of Open Access Journals (Sweden)

    Hortance Manda

    2011-07-01

    Full Text Available BACKGROUND: Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated "safe sites" contribute to overall impact. METHODS: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU were evaluated against two material types (cotton and polyester at various dark:light surface area coverage (SAC ratio and contrast configuration (horizontal and vertical under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. RESULTS: Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or "safe sites" in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ≤5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. CONCLUSIONS/SIGNIFICANCE: When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas following contact with the treated material. Instead, they become agitated

  9. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Science.gov (United States)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  10. Hydrogen Atomic Positions of O-H···O Hydrogen Bonds in Solution and in the Solid State: The Synergy of Quantum Chemical Calculations with ¹H-NMR Chemical Shifts and X-ray Diffraction Methods.

    Science.gov (United States)

    Siskos, Michael G; Choudhary, M Iqbal; Gerothanassis, Ioannis P

    2017-03-07

    The exact knowledge of hydrogen atomic positions of O-H···O hydrogen bonds in solution and in the solid state has been a major challenge in structural and physical organic chemistry. The objective of this review article is to summarize recent developments in the refinement of labile hydrogen positions with the use of: (i) density functional theory (DFT) calculations after a structure has been determined by X-ray from single crystals or from powders; (ii) ¹H-NMR chemical shifts as constraints in DFT calculations, and (iii) use of root-mean-square deviation between experimentally determined and DFT calculated ¹H-NMR chemical shifts considering the great sensitivity of ¹H-NMR shielding to hydrogen bonding properties.

  11. 1H, 13C and 15N resonance assignments and second structure information of Fag s 1: Fagales allergen from Fagus sylvatica.

    Science.gov (United States)

    Moraes, A H; Asam, C; Batista, A; Almeida, F C L; Wallner, M; Ferreira, F; Valente, A P

    2016-04-01

    Fagales allergens belonging to the Bet v 1 family account responsible for the majority of spring pollinosis in the temperate climate zones in the Northern hemisphere. Among them, Fag s 1 from beech pollen is an important trigger of Fagales pollen associated allergic reactions. The protein shares high similarity with birch pollen Bet v 1, the best-characterized member of this allergen family. Of note, recent work on Bet v 1 and its homologues found in Fagales pollen demonstrated that not all allergenic members of this family have the capacity to induce allergic sensitization. Fag s 1 was shown to bind pre-existing IgE antibodies most likely primarily directed against other members of this multi-allergen family. Therefore, it is especially interesting to compare the structures of Bet v 1-like pollen allergens, which have the potential to induce allergic sensitization with allergens that are mainly cross-reactive. This in the end will help to identify allergy eliciting molecular pattern on Bet v 1-like allergens. In this work, we report the (1)H, (15)N and (13)C NMR assignment of beech pollen Fag s 1 as well as the secondary structure information based on backbone chemical shifts.

  12. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N of Lipids in Marine Animals.

    Directory of Open Access Journals (Sweden)

    Elisabeth Svensson

    Full Text Available Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete, as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰. Importantly, the total lipid extract (TLE was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰. The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰ than the TLE (-7 ‰, possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  13. Combination of {sup 15}N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE

    Energy Technology Data Exchange (ETDEWEB)

    Banigan, James R.; Gayen, Anindita; Traaseth, Nathaniel J., E-mail: traaseth@nyu.edu [New York University, Department of Chemistry (United States)

    2013-04-15

    Magic-angle-spinning (MAS) solid-state NMR spectroscopy has emerged as a viable method to characterize membrane protein structure and dynamics. Nevertheless, the spectral resolution for uniformly labeled samples is often compromised by redundancy of the primary sequence and the presence of helical secondary structure that results in substantial resonance overlap. The ability to simplify the spectrum in order to obtain unambiguous site-specific assignments is a major bottleneck for structure determination. To address this problem, we used a combination of {sup 15}N reverse labeling, afterglow spectroscopic techniques, and frequency-selective dephasing experiments that dramatically improved the ability to resolve peaks in crowded spectra. This was demonstrated using the polytopic membrane protein EmrE, an efflux pump involved in multidrug resistance. Residues preceding the {sup 15}N reverse labeled amino acid were imaged using a 3D NCOCX afterglow experiment and those following were recorded using a frequency-selective dephasing experiment. Our approach reduced the spectral congestion and provided a sensitive way to obtain chemical shift assignments for a membrane protein where no high-resolution structure is available. This MAS methodology is widely applicable to the study of other polytopic membrane proteins in functional lipid bilayer environments.

  14. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.

    Science.gov (United States)

    Sanders, C R

    1993-01-01

    The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The

  15. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons.

  16. Chemical shift magnetic resonance imaging in differentiation of benign from malignant vertebral collapse in a rural tertiary care hospital in North India

    Science.gov (United States)

    Mittal, Puneet; Gupta, Ranjana; Mittal, Amit; Joshi, Sandeep

    2016-01-01

    Introduction: Magnetic resonance imaging (MRI) is the modality of the first choice for evaluation of vertebral compression/collapse. Many MRI qualitative features help to differentiate benign from malignant collapse. We conducted this study to look for a quantitative difference in chemical shift values in benign and malignant collapse using dual-echo gradient echo in-phase/out-phase imaging. Materials and Methods: MRI examinations of a total of 38 patients were retrospectively included in the study who had vertebral compression/collapse with marrow edema in which final diagnosis was available at the time of imaging/follow-up. Signal intensity value in the region of abnormal marrow signal and adjacent normal vertebra was measured on in phase/out phase images. Signal intensity ratio (SIR) was measured by dividing signal intensity value on opposite phase images to that on in phase images. SIR was compared in normal vertebrae and benign and malignant vertebral collapse. Results: There were 21 males and 17 females with mean age of 52.4 years (range 28–76 years). Out of total 38 patients, 18 were of benign vertebral collapse and 20 of malignant vertebral collapse. SIR in normal vertebrae was 0.30 ± 0.14, 0.67 ± 0.18 in benign vertebral collapse, and 1.20 ± 0.27 in malignant vertebral collapse with significant difference in SIR of normal vertebrae versus benign collapse (P < 0.01) and in benign collapse versus malignant collapse (P < 0.01). Assuming a cutoff of <0.95 for benign collapse and ≥0.95 for malignant collapse, chemical shift imaging had a sensitivity of 90% and specificity of 94.4%. Conclusion: Chemical shift imaging is a rapid and useful sequence in differentiating benign from malignant vertebral collapse with good specificity and sensitivity.

  17. 平衡电负性与烷烃核磁共振碳谱位移%EQUILIBRIUM ELECTRONEGATIVITY AND 13C NMR CHEMICAL SHIFTS OF ALKANES

    Institute of Scientific and Technical Information of China (English)

    聂长明; 文松年

    2001-01-01

    In this paper, the atomic equilibrium electronegativity in a molecule has been defined and the model of 13C NMR chemical shifts of alkanes has been studied with the atomic equilibrium electronegativity and the structural information parameters NiH(i=0,α,β,γ) and NjC(j=α,β,γ). The results indicate that the 13C NMR chemical shifts of alkanes can be described as follows: CS=-1736.776+755.118AEE+5.2539N0H+1.8837NβH-0.2066NγH By the use of the formula the chemical shifts of 99 carbon atoms are predicated, and the standard error is only 0.9861ppm. The average absolute error is 0.78ppm, The calculated values conform very much to the observed values.%定义了烷烃分子中碳原子的平衡电负性(AEE),用平衡电负性和NiH(i=0,α,β,γ)和NjC(j=α,β,γ)结构信息参数研究了烷烃的13C NMR化学位移模型.结果表明,烷烃13C NMR化学位移(CS)可用下式来定量描述: CS=-1736.776+755.118AEE+5.2539N0H+1.8837NβH-0.2066NγH   用上式估算了99个碳原子的化学位移,标准差为0.9861ppm,平均绝对误差0.78ppm,预测值与实验值十分吻合.

  18. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ji Hye [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Young Kon, E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lim, Sanghyeok [Department of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain.

  19. Liver steatosis (LS) evaluated through chemical-shift magnetic resonance imaging liver enzymes in morbid obesity; effect of weight loss obtained with intragastric balloon gastric banding.

    Science.gov (United States)

    Folini, Laura; Veronelli, Annamaria; Benetti, Alberto; Pozzato, Carlo; Cappelletti, Marco; Masci, Enzo; Micheletto, Giancarlo; Pontiroli, Antonio E

    2014-01-01

    The aim of this study was to evaluate in morbid obesity clinical and metabolic effects related to weight loss on liver steatosis (LS), measured through chemical-shift magnetic resonance imaging (MRI) and liver enzymes. Forty obese subjects (8 M/32 W; BMI 42.8 ± 7.12 kg/m(2), mean ± SD) were evaluated for LS through ultrasound (US-LS), chemical-shift MRI (MRI-LS), liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP)], anthropometric parameters [weight, BMI, waist circumference (WC)], lipids, insulin, insulin resistance (HOMA-IR), glycated hemoglobin (HbA1c), oral glucose tolerance test, and body composition [fat mass (FM) and fat-free mass (FFM) at bio-impedance analysis (BIA)]. Anthropometric measures, MRI-LS, BIA, and biochemical parameters were reevaluated 6 months later in 18 subjects undergoing restrictive bariatric approach, i.e., intragastric balloon (BIB, n = 13) or gastric banding (LAGB, n = 5), and in 13 subjects receiving hypocaloric diet. At baseline, US-LS correlates only with MRI-LS, and the latter correlates with ALT, AST, and GGT. After 6 months, subjects undergoing BIB or LAGB had significant changes of BMI, weight, WC, ALT, AST, GGT, ALP, HbA1c, insulin, HOMA-IR, FM, FFM, and MRI-LS. Diet-treated obese subjects had no significant change of any parameter under study; change of BMI, fat mass, and fat-free mass was significantly greater in LAGB/BIB subjects than in diet-treated subjects. Change of MRI-LS showed a significant correlation with changes in weight, BMI, WC, GGT, ALP, and basal MRI-LS. Significant weight loss after BIB or LAGB is associated with decrease in chemical-shift MRI-LS and with reduction in liver enzymes; chemical-shift MRI and liver enzymes allow monitoring of LS in follow-up studies.

  20. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2013-01-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives......). The decreasing electronegativity of the halogen substituent (F, Cl, Br and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions...

  1. Accurate calculation of chemical shifts in highly dynamic H2@C60 through an integrated quantum mechanics/molecular dynamics scheme.

    Science.gov (United States)

    Jiménez-Osés, Gonzalo; García, José I; Corzana, Francisco; Elguero, José

    2011-05-20

    A new protocol combining classical MD simulations and DFT calculations is presented to accurately estimate the (1)H NMR chemical shifts of highly mobile guest-host systems and their thermal dependence. This strategy has been successfully applied for the hydrogen molecule trapped into C(60) fullerene, an unresolved and challenging prototypical case for which experimental values have never been reproduced. The dependence of the final values on the theoretical method and their implications to avoid over interpretation of the obtained results are carefully described.

  2. Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations.

    Science.gov (United States)

    Holland, Gregory P; Mou, Qiushi; Yarger, Jeffery L

    2013-07-28

    Two-dimensional (2D) (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra collected with fast magic angle spinning (MAS) are used in conjunction with density functional theory (DFT) proton chemical shift calculations to determine the hydrogen-bonding strength for ordered β-sheet and disordered 310-helical structures in spider dragline silk. The hydrogen-bond strength is determined to be identical for both structures in spider silk with a 1.83-1.84 Å NH···OC hydrogen-bond distance.

  3. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  4. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    Science.gov (United States)

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  5. Human dietary δ(15)N intake: representative data for principle food items.

    Science.gov (United States)

    Huelsemann, F; Koehler, K; Braun, H; Schaenzer, W; Flenker, U

    2013-09-01

    Dietary analysis using δ(15)N values of human remains such as bone and hair is usually based on general principles and limited data sets. Even for modern humans, the direct ascertainment of dietary δ(15)N is difficult and laborious, due to the complexity of metabolism and nitrogen fractionation, differing dietary habits and variation of δ(15)N values of food items. The objective of this study was to summarize contemporary regional experimental and global literature data to ascertain mean representative δ(15)N values for distinct food categories. A comprehensive data set of more than 12,000 analyzed food samples was summarized from the literature. Data originated from studies dealing with (1) authenticity tracing or origin control of food items, and (2) effects of fertilization or nutrition on δ(15)N values of plants or animals. Regional German food δ(15)N values revealed no major differences compared with the mean global values derived from the literature. We found that, in contrast to other food categories, historical faunal remains of pig and poultry are significantly enriched in (15)N compared to modern samples. This difference may be due to modern industrialized breeding practices. In some food categories variations in agricultural and feeding regimens cause significant differences in δ(15)N values that may lead to misinterpretations when only limited information is available.

  6. δ(15) N from soil to wine in bulk samples and proline.

    Science.gov (United States)

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd.

  7. A fast method to prepare water samples for 15N analysis

    Institute of Scientific and Technical Information of China (English)

    肖化云; 刘丛强

    2001-01-01

    Automatic element analyser is often used to prepare organic matters tor 15N analysis. It is seldom used to prepare water samples. Water samples are conventionally dealt with by Kjeldahl-Rittenberg technique. But it requires tedious and labor-intensive sample preparation. A fast and reliable method is proposed in this paper to prepare water samples for 15N analysis.

  8. Tracking wind-dispersed seeds using (15)N-isotope enrichment.

    Science.gov (United States)

    Forster, C; Herrmann, J D

    2014-11-01

    Seed dispersal influences a wide range of ecological processes. However, measuring dispersal patterns, particularly long-distance dispersal, has been a difficult task. Marking bird-dispersed seeds with stable (15)N isotopes has been shown to be a user-friendly method to trace seed dispersal. In this study, we determined whether (15)N urea solution could be used to enrich seeds of two common wind-dispersed plants, Eupatorium glaucescens (Asteraceae) and Sericocarpus tortifolius (Asteraceae). We further tested if the water type (distilled versus tap) in (15)N urea solutions influences the level and variability of enrichment of plant seeds, and if increasing spraying frequency per se increases enrichment. Because droughts may lower seed set or kill plants, we wanted to investigate if the additional use of an externally applied anti-transpirant affects the intake of externally applied (15)N into seeds. The results demonstrate that (15)N enrichment of seeds can facilitate dispersal experiments with wind-dispersed plants. The use of distilled water in (15)N urea solutions did not increase (15)N enrichment compared to tap water. Further, enrichment was more efficient at lower spray frequencies. Both the use of tap water and low frequencies could lower time, effort and project costs. The results suggest that species can be protected from drought using an anti-transpirant without decreasing the incorporation of (15)N into seeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. An optimized method for (15)N R(1) relaxation rate measurements in non-deuterated proteins.

    Science.gov (United States)

    Gairí, Margarida; Dyachenko, Andrey; González, M Teresa; Feliz, Miguel; Pons, Miquel; Giralt, Ernest

    2015-06-01

    (15)N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. (15)N CSA/(1)H-(15)N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of (15)N R1 rates through (1)H-(15)N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable (15)N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on (15)N R1 rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during (15)N R1 measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.

  10. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    Science.gov (United States)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  11. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    Science.gov (United States)

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (pstress-related diseases such as H. pylori infections.

  12. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.V. (Univ. of New Mexico, Albuquerque (USA))

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  13. Syntheses of 15N-labeled pre-queuosine nucleobase derivatives

    Directory of Open Access Journals (Sweden)

    Jasmin Levic

    2014-08-01

    Full Text Available Pre-queuosine or queuine (preQ1 is a guanine derivative that is involved in the biosynthetic pathway of the hypermodified tRNA nucleoside queuosine (Que. The core structure of preQ1 is represented by 7-(aminomethyl-7-deazaguanine (preQ1 base. Here, we report the synthesis of three preQ1 base derivatives with complementary 15N-labeling patterns, utilizing [15N]-KCN, [15N]-phthalimide, and [15N3]-guanidine as cost-affordable 15N sources. Such derivatives are required to explore the binding process of the preQ1 base to RNA targets using advanced NMR spectroscopic methods. PreQ1 base specifically binds to bacterial mRNA domains and thereby regulates genes that are required for queuosine biosynthesis.

  14. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  15. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees.

    Science.gov (United States)

    Wiggins, Natasha L; Forrister, Dale L; Endara, María-José; Coley, Phyllis D; Kursar, Thomas A

    2016-01-01

    Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.

  16. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical s...

  17. 205Tl Knight and chemical shift in the high- Tc superconductors Tl 2Ba 2CuO 6, Tl 2CaBa 2Cu 2O 8 and Tl 2Ca 2Ba 2Cu 3O 10

    Science.gov (United States)

    Winzek, N.; Hentsch, F.; Mehring, M.; Mattausch, Hj.; Kremer, R.; Simon, A.

    1990-06-01

    We report on the 205Tl NMR (nuclear magnetic resonance) spectra of the title compounds below and above the superconducting transition temperature Tc. The TlO layer NMR spectra are dominated by chemical shifts corresponding to Tl 3+ with a smaller additional positive Knight shift, whereas a “defect line” of Tl replacing Ca in the two and three layer compounds exhibits a large negative Knight shift, which is attributed to O-holes in the CuO 2 layers.

  18. (1)H, (15)N and (13)C resonance assignments for free and IEEVD peptide-bound forms of the tetratricopeptide repeat domain from the human E3 ubiquitin ligase CHIP.

    Science.gov (United States)

    Zhang, Huaqun; McGlone, Cameron; Mannion, Matthew M; Page, Richard C

    2017-04-01

    The ubiquitin ligase CHIP catalyzes covalent attachment of ubiquitin to unfolded proteins chaperoned by the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP interacts with Hsp70/Hsc70 and Hsp90 by binding of a C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to the tetratricopeptide repeat (TPR) domain of CHIP. Although recruitment of heat shock proteins to CHIP via interaction with the CHIP-TPR domain is well established, alterations in structure and dynamics of CHIP upon binding are not well understood. In particular, the absence of a structure for CHIP-TPR in the free form presents a significant limitation upon studies seeking to rationally design inhibitors that may disrupt interactions between CHIP and heat shock proteins. Here we report the (1)H, (13)C, and (15)N backbone and side chain chemical shift assignments for CHIP-TPR in the free form, and backbone chemical shift assignments for CHIP-TPR in the IEEVD-bound form. The NMR resonance assignments will enable further studies examining the roles of dynamics and structure in regulating interactions between CHIP and the heat shock proteins Hsp70/Hsc70 and Hsp90.

  19. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    Science.gov (United States)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  20. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  1. Free variable selection QSPR study to predict (19)F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods.

    Science.gov (United States)

    Goudarzi, Nasser

    2016-04-05

    In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the (19)F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the (19)F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.

  2. Evaluation of a rabbit model for osteomyelitis by high field, high resolution imaging using the chemical-shift-specific-slice-selection technique.

    Science.gov (United States)

    Volk, A; Crémieux, A C; Belmatoug, N; Vallois, J M; Pocidalo, J J; Carbon, C

    1994-01-01

    The rabbit model of osteomyelitis introduced by C.W. Norden, based on injection of an infecting solution (Staphylococcus aureus, sodium morrhuate) into the tibia, was studied at 4.7 Tesla with a time-efficient chemical shift selective imaging technique, Chemical Shift Specific Slice Selection (C4S). The evolution of the disease over several weeks was followed on water-selective, fat-selective, and sum images obtained simultaneously with this imaging sequence. Experiments were performed either on different groups of rabbits at different times after infection with subsequent sacrifice of the animal and microbiological analysis of the infected tibia or on the same group of animals imaged several times after infection. Associated analysis of the water and fat selective images revealed marrow modifications very early (Day 5 after inoculation) demonstrating the high sensitivity of the employed imaging technique. Later on, bone modifications were best identified on the sum images. Additional experiments performed on animals injected with a noninfecting solution containing only sodium morrhuate showed however that the sclerosing agent alone can yield images similar to those produced by infection at early stages after inoculation. Therefore, the Norden model would not be suitable for monitoring quantitatively outcome of therapy by magnetic resonance imaging. It is however well adapted for the evaluation and optimization of MRI techniques or protocols intended to detect early changes of bone marrow produced by septic or aseptic infarct.

  3. Final Technical Report: A Paradigm Shift in Chemical Processing: New Sustainable Chemistries for Low-VOC Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kenneth F.

    2006-07-26

    The project employed new processes to make emulsion polymers from reduced levels of petroleum-derived chemical feedstocks. Most waterborne paints contain spherical, emulsion polymer particles that serve as the film-forming binder phase. Our goal was to make emulsion polymer particles containing 30 percent feedstock that would function as effectively as commercial emulsions made from higher level feedstock. The processes developed yielded particles maintained their film formation capability and binding capacity while preserving the structural integrity of the particles after film formation. Rohm and Haas Company (ROH) and Archer Daniels Midland Company (ADM) worked together to employ novel polymer binders (ROH) and new, non-volatile, biomass-derived coalescing agents (ADM). The University of Minnesota Department of Chemical Engineering and Material Science utilized its unique microscopy capabilities to characterize films made from the New Emulsion Polymers (NEP).

  4. Optical Red shift in ZnO Nanoflowers Fabricated on Non-Seeded Substrates by Soft Wet Chemical Route

    Science.gov (United States)

    Murali, K. V.; Preetha, K. C.; Ragina, A. J.; Deepa, K.; Remadevi, T. L.

    2011-10-01

    Zinc oxide (ZnO) nanoflowers were fabricated on non-seeded glass substrates by successive ionic layer adsorption and reaction (SILAR) method using different complex agents. Influence of complex agents ammonia, lithium hydroxide and hexamine on the optical properties of the as-synthesized and the samples annealed at 400 °C was studied. Optical red shift was observed in ZnO samples and was analyzed with respect to the complex agents. All samples possessed a steep absorption edge in the wavelength range 375-425 nm. ZnO nanostructures except that synthesized using hexamine have low and steady absorbance and show higher transmittance (70-85%) in the entire visible region. SEM, XRD and EDAX studies confirmed the high surface-to-volume ratio, good optical quality, excellent crystalline nature and purity of the formed and annealed ZnO nanostructures.

  5. FIRST MEASUREMENTS OF {sup 15}N FRACTIONATION IN N{sub 2}H{sup +} TOWARD HIGH-MASS STAR-FORMING CORES

    Energy Technology Data Exchange (ETDEWEB)

    Fontani, F. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Caselli, P.; Bizzocchi, L. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Palau, A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico); Ceccarelli, C. [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2015-08-01

    We report on the first measurements of the isotopic ratio {sup 14}N/{sup 15}N in N{sub 2}H{sup +} toward a statistically significant sample of high-mass star-forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact H ii regions. Simultaneous measurements of the {sup 14}N/{sup 15}N ratio in CN have been made. The {sup 14}N/{sup 15}N ratios derived from N{sub 2}H{sup +} show a large spread (from ∼180 up to ∼1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (∼270) and that of the proto-solar nebula (∼440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N{sub 2}H{sup +} isotopologues are more than those detected in the CN ones. The {sup 14}N/{sup 15}N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the {sup 14}N/{sup 15}N (as derived from N{sub 2}H{sup +}) and the H/D isotopic ratios. This suggests that {sup 15}N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in {sup 14}N/{sup 15}N, pointing out that some important routes of nitrogen fractionation could be still missing in the models.

  6. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    Science.gov (United States)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  7. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    Science.gov (United States)

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  8. Interpreting δ15N in Soil Profiles: Insights From the N-Isotopes of Amino Acids

    Science.gov (United States)

    Philben, M. J.; Edwards, K. A.; Billings, S. A.; Van Biesen, G.; Podrebarac, F. A.; Ziegler, S. E.

    2016-12-01

    The δ15N of soil organic matter is consistently enriched with depth in soil profiles, although the magnitude of enrichment appears to vary with latitude. This could provide important insights on differences in N cycling among ecosystems, but the mechanism responsible for the depth trend remains controversial. Hypothesized explanations are (1) selective loss of depleted N during decomposition; (2) accumulation of 15N-enriched biomass of decomposers at depth; and (3) transfer of depleted N from depth to the soil surface by mycorrhizal fungi. To constrain these possible mechanisms, we analyzed the δ15N of hydrolyzable amino acids in the L, F, and H soil horizons of 2 boreal forests in southeast Labrador and southwest Newfoundland, Canada, before and after 480-day laboratory incubations of the soils. Most amino acids are both produced and degraded by microbes, but some are not resynthesized. The difference between these groups can be used to isolate the effects of decomposition from other fractionating processes. The amino acid δ15N did not change during the soil incubations, indicating peptide depolymerization does not fractionate N isotopes. This is consistent with a previously conducted fallow experiment in which amino acid δ15N remained unchanged after 68 years of decomposition in the absence of plant inputs. In contrast, the δ15N of most amino acids were enriched by 3-7‰ from the L to the H horizon, similar to the enrichment of bulk δ15N with depth. This pattern suggests these amino acids were resynthesized deeper in the soil profile where the bulk δ15N was more enriched. The δ15N amino acids phenylalanine and hydroxyproline, which are not resynthesized by the microbial community with decomposition, did not change with depth, indicating the depth trend was not due to temporal change in the δ15N of plant inputs to the soil. The enrichment of amino acid δ15N with depth in the soil profiles but not in the incubations or the fallow experiment indicates

  9. Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa.

    Science.gov (United States)

    McCue, Marshall D

    2008-01-01

    Since DeNiro and Epstein's discovery that the (13)C and (15)N isotopic signatures of animals approximate those of their respective diets, the measurement of stable isotope signatures has become an important tool for ecologists studying the diets of wild animals. This study used Madagascar hissing cockroaches (Gromphadorhina portentosa) to examine several preexisting hypotheses about the relationship between the isotopic composition of an animal and its diet. Contrary to my predictions, the results revealed that the tissues of adult cockroaches raised for two generations on a diet of known isotopic composition did not demonstrate enrichment of heavy stable isotopes. Moreover, the (15)N signatures of cockroaches were neither influenced by periods of rapid growth (i.e., 300-fold increase in dry body mass over 120 d) nor by imposed periods of starvation lasting up to 80 d. The offspring born to mothers raised on known diets were enriched in (15)N. Diet-switching experiments showed that turnover times of (13)C were highly correlated with age and ranged from 9 to 10 d to 60 to 75 d in subadults and adults, respectively. Adults subjected to diet switches differed from the subadults in that the adults achieved equilibrated isotopic signatures that were shifted approximately 1.0 per thousand toward their respective original diets. Lipid fractions of adult cockroaches averaged 2.9 per thousand more depleted in (13)C than in lipid-free fractions, but no changes in (13)C were observed in aging adults. Exposure to reduced ambient temperature from 33 degrees C to 23 degrees C over 120 d did not influence isotopic signatures of tissues. Overall, the results of this study reveal that different endogenous and exogenous factors can influence the isotopic signatures of cockroaches. These findings reinforce the need to conduct controlled studies to further examine environmental factors that influence the relationships between the isotopic signatures of animals and their diets.

  10. The agricultural history of human-nitrogen interactions as recorded in ice core δ15N-NO3-

    Science.gov (United States)

    Felix, J. David; Elliott, Emily M.

    2013-04-01

    The advent and industrialization of the Haber Bosch process in the early twentieth century ushered in a new era of reactive nitrogen distributions on Earth. Since the appearance of the first commercial scale Haber Bosch fertilizer plants, fertilizer application rates have greatly increased in the U.S. While the contributions of fertilizer runoff to eutrophication and anoxic dead zones in coastal regions have been well-documented, the potential influences of increased fertilizer applications on air quality and precipitation chemistry are poorly constrained. Here we combine a 255-year record of precipitation nitrate isotopes preserved in a Greenland ice core, historical reconstructions of fertilizer application rates, and field characterization of the isotopic composition of nitrogen oxides produced biogenically in soils, to provide new constraints on the contributions of biogenic emissions to North American NOx inventories. Our results indicate that increases in twentieth century commercial fertilizer use led to large increases in soil NO, a byproduct released during nitrification and denitrification reactions. These large shifts in soil NO production are evidenced by sharp declines in ice core δ15N-NO3- values. Further, these results suggest that biogenic NOx emissions are underestimated by two to four fold in the U.S. NOx emission inventories used to construct global reactive nitrogen budgets. These results demonstrate that nitrate isotopes in ice cores, coupled with newly constrained δ15N-NOx values for NOx emission sources, provide a novel means for estimating contemporary and historic contributions from individual NOx emission sources to deposition.

  11. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    Science.gov (United States)

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes (δ15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  12. Measurement of marine productivity using 15N and 13C tracers: Some methodological aspects

    Indian Academy of Sciences (India)

    Naveen Gandhi; Sanjeev Kumar; S Prakash; R Ramesh; M S Sheshshayee

    2011-02-01

    Various experiments involving the measurement of new, regenerated and total productivity using 15N and 13C tracers were carried out in the Bay of Bengal (BOB) and in the Arabian Sea. Results from 15N tracer experiments indicate that nitrate uptake can be underestimated by experiments with incubation time > 4 hours. Indirect evidence suggests pico- and nano-phytoplankton, on their dominance over microphytoplankton, can also influence the f-ratios. Difference in energy requirement for assimilation of different nitrogen compounds decides the preferred nitrogen source during the early hours of incubation. Variation in light intensity during incubation also plays a significant role in the assimilation of nitrogen. Results from time course experiments with both 15N and 13C tracers suggest that photoinhibition appears significant in BOB and the Arabian Sea during noon. A significant correlation has been found in the productivity values obtained using 15N and 13C tracers.

  13. 15N NMR Spectroscopic Study on Nitrogen Formsin1mmHumic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil, alateritic red soil and a weathered coal and the effect of acidhydrolysis on N structures of soil humic substances were studied byusing {15N cross-polarization magic angle spinning nuclearmagnetic resonance (CPMAS NMR) spectroscopy. Of the detectable15N-signal intensity in the spectra of soil humic substances71%79% may be attributed to amide groups, 10%18%to aromatic/aliphatic amines and 6%11% to indole- andpyrrole-like N. Whereas in the spectrum of the fulvic acid fromweathered coal 46%, at least, of the total 15N-signalintensity might be assigned to pyrrole-like N, 14% toaromatic/aliphatic amines, and the remaining intensities could not beassigned with certainty. Data on nonhydrolyzable residue ofprotein-sugar mixture and a 15N-labelled soil fulvic acidconfirm the formation of nonhydrolyzable heterocyclic N during acidhydrolysis.

  14. Compaction stimulates denitrification in an urban park soil using 15N tracing technique

    DEFF Research Database (Denmark)

    Li, Shun; Deng, Huan; Rensing, Christopher Günther T

    2014-01-01

    Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using 15N labeling method......, no statistical difference in total N losses and 15N-(N2O+N2) flux between the uncompacted soil and the compacted soil was detected. Compaction promoted soil denitrification and may impact urban N biogeochemical cycling....

  15. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    Science.gov (United States)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  16. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    Science.gov (United States)

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  17. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    Directory of Open Access Journals (Sweden)

    Humberto J. Domínguez

    2014-01-01

    Full Text Available Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory calculations to predict the correct stereoisomer has been studied.

  18. Assigning the stereochemistry of syn and anti β-trimethylsiloxy-α-trimethylsilyl alkanoic acid silyl esters using GIAO 1H NMR chemical shift calculations

    Science.gov (United States)

    Hadj Mohamed, Slim; Trabelsi, Mahmoud; Champagne, Benoît

    2017-08-01

    The stereostructure of β-trimethylsiloxy-α-trimethylsilyl alkanoic acid silyl esters synthesized by Bellassoued et al. [J. Org. Chem. 2001, 66, 5054-5057] using Mukaiyama aldol reaction has been reassigned using density functional theory NMR 1H chemical shifts calculations. It is now concluded that the major diastereoisomer is syn and the minor is anti. Within this assignment, for all silyl esters, δHa(anti) > δHa(syn), δHb(anti) 3JHa-Hb (syn). Since the experimental assignment was based on the stereostructure (E/Z) of the cinnamic acid obtained by elimination of trimethylsilyl 3-phenyl-3-(trimethylsiloxy)-2-(trimethylsilyl)propanoate in the presence of TiCl4 and on the assumption that this elimination is anti stereospecific in acidic medium, one arrives at the conclusion that the elimination of syn and anti β-trimethylsiloxy-α-trimethylsilyl alkanoic acid silyl esters is not anti stereospecific.

  19. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Science.gov (United States)

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species' ecological role in their community will be influenced with consequences for conservation and

  20. Examination of anticipated chemical shift and shape distortion effect on materials commonly used in prosthetic socket fabrication when measured using MRI: a validation study.

    Science.gov (United States)

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2013-01-01

    The quality of lower-limb prosthetic socket fit is influenced by shape and volume consistency during the residual limb shape-capturing process (i.e., casting). Casting can be quantified with magnetic resonance imaging (MRI) technology. However, chemical shift artifact and image distortion may influence the accuracy of MRI when common socket/casting materials are used. We used a purpose-designed rig to examine seven different materials commonly used in socket fabrication during exposure to MRI. The rig incorporated glass marker tubes filled with water doped with 1 g/L copper sulfate (CS) and 9 plastic sample vials (film containers) to hold the specific material specimens. The specimens were scanned 9 times in different configurations. The absolute mean difference of the glass marker tube length was 1.39 mm (2.98%) (minimum = 0.13 mm [0.30%], maximum = 5.47 mm [14.03%], standard deviation = 0.89 mm). The absolute shift for all materials was <1.7 mm. This was less than the measurement tolerance of +/-2.18 mm based on voxel (three-dimensional pixel) dimensions. The results show that MRI is an accurate and repeatable method for dimensional measurement when using matter containing water. Additionally, silicone and plaster of paris plus 1 g/L CS do not show a significant shape distortion nor do they interfere with the MRI image of the residual limb.

  1. Examination of anticipated chemical shift and shape distortion effect on materials commonly used in prosthetic socket fabrication when measured using MRI: A validation study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safari, PhD

    2013-02-01

    Full Text Available The quality of lower-limb prosthetic socket fit is influenced by shape and volume consistency during the residual limb shape-capturing process (i.e., casting. Casting can be quantified with magnetic resonance imaging (MRI technology. However, chemical shift artifact and image distortion may influence the accuracy of MRI when common socket/casting materials are used. We used a purpose-designed rig to examine seven different materials commonly used in socket fabrication during exposure to MRI. The rig incorporated glass marker tubes filled with water doped with 1 g/L copper sulfate (CS and 9 plastic sample vials (film containers to hold the specific material specimens. The specimens were scanned 9 times in different configurations. The absolute mean difference of the glass marker tube length was 1.39 mm (2.98% (minimum = 0.13 mm [0.30%], maximum = 5.47 mm [14.03%], standard deviation = 0.89 mm. The absolute shift for all materials was <1.7 mm. This was less than the measurement tolerance of +/–2.18 mm based on voxel (three-dimensional pixel dimensions. The results show that MRI is an accurate and repeatable method for dimensional measurement when using matter containing water. Additionally, silicone and plaster of paris plus 1 g/L CS do not show a significant shape distortion nor do they interfere with the MRI image of the residual limb.

  2. True cooking aroma or artefact. {sup 15}N gives the answer; Veritable arome de cuisson ou artefact. {sup 15}N fournit la reponse

    Energy Technology Data Exchange (ETDEWEB)

    Metro, F.; Boudaud, N.; Dumont, J.P. [INRA, 44 - Nantes (France)

    1994-12-31

    In order to determine the respective contributions of the various nitrous precursor families in aroma preparations, the usually added amino acids were substituted with {sup 15}N isotope labelled homologous components. Results concerning isotope ratios for the volatile fraction nitrous components collected from poultry meat aromatic preparations, are presented. Terminal product labelling appears to allow for a better determination of the substrate and functional additive contributions. 4 figs., 6 refs.

  3. Comparison of CT and chemical-shift MRI for differentiating thymoma from non-thymomatous conditions in myasthenia gravis: value of qualitative and quantitative assessment.

    Science.gov (United States)

    Priola, A M; Priola, S M; Gned, D; Giraudo, M T; Fornari, A; Veltri, A

    2016-03-01

    To evaluate the usefulness of computed tomography (CT) and chemical-shift magnetic resonance imaging (MRI) in patients with myasthenia gravis (MG) for differentiating thymoma (THY) from thymic lymphoid hyperplasia (TLH) and normal thymus (NT), and to determine which technique is more accurate. Eighty-three patients with generalised MG who underwent surgery were divided into the TLH/NT group (A; 65 patients) and THY group (B; 24 patients). Differences in qualitative characteristics and quantitative data (CT: radiodensity in Hounsfield units; MRI: signal intensity index [SII]) between groups were tested using Fisher's exact test and Student's t-test. Logistic regression models were estimated for both qualitative and quantitative analyses. At quantitative analysis, discrimination abilities were determined according to the area under the receiver operating characteristic (ROC) curve (AUROC) with computation of optimal cut-off points. The diagnostic accuracies of CT and MRI were compared using McNemar's test. At qualitative assessment, MRI had higher accuracy than CT (96.4%, 80/83 and 86.7%, 72/83, respectively). At quantitative analysis, both the radiodensity and SII were significantly different between groups (pquantitative assessment, the AUROC of the radiodensity in discriminating between groups was 0.904 (optimal cut-off point, 20 HU) with an accuracy of 77.1% (64/83). For MRI, the AUROC of the SII was 0.989 (optimal cut-off point, 7.766%) with an accuracy of 96.4% (80/83), which was significantly higher than CT (pqualitative assessment, accuracy improved both for CT (89.2%, 74/83) and MRI (97.6%, 81/83). Quantitative analysis is useful in evaluating patients with MG and improves the diagnostic accuracy of CT and MRI based on qualitative assessment. Chemical-shift MRI is more reliable than CT in differentiating THYs from non-thymomatous conditions. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. A Solid-State 11B NMR and Computational Study of Boron Electric Field Gradient and Chemical Shift Tensors in Boronic Acids and Boronic Esters

    Science.gov (United States)

    2010-01-01

    The results of a solid-state 11B NMR study of a series of 10 boronic acids and boronic esters with aromatic substituents are reported. Boron-11 electric field gradient (EFG) and chemical shift (CS) tensors obtained from analyses of spectra acquired in magnetic fields of 9.4 and 21.1 T are demonstrated to be useful for gaining insight into the molecular and electronic structure about the boron nucleus. Data collected at 21.1 T clearly show the effects of chemical shift anisotropy (CSA), with tensor spans (Ω) on the order of 10−40 ppm. Signal enhancements of up to 2.95 were achieved with a DFS-modified QCPMG pulse sequence. To understand the relationship between the measured tensors and the local structure better, calculations of the 11B EFG and magnetic shielding tensors for these compounds were conducted. The best agreement was found between experimental results and those obtained from GGA revPBE DFT calculations. A positive correlation was found between Ω and the dihedral angle (ϕCCBO), which describes the orientation of the boronic acid/ester functional group relative to an aromatic system bound to boron. The small boron CSA is discussed in terms of paramagnetic shielding contributions as well as diamagnetic shielding contributions. Although there is a region of overlap, both Ω and the 11B quadrupolar coupling constants tend to be larger for boronic acids than for the esters. We conclude that the span is generally the most characteristic boron NMR parameter of the molecular and electronic environment for boronic acids and esters, and show that the values result from a delicate interplay of several competing factors, including hydrogen bonding, the value of ϕCCBO, and the electron-donating or withdrawing substituents bound to the aromatic ring. PMID:20337440

  5. Effects of lipid and urea extraction on δ15N values of deep-sea sharks and hagfish: Can mathematical correction factors be generated?

    Science.gov (United States)

    Churchill, Diana A.; Heithaus, Michael R.; Dean Grubbs, R.

    2015-05-01

    Stable isotope analysis is broadly employed to investigate diverse ecological questions. In order to make appropriate comparisons among multiple taxa, however, it is necessary to standardize values to account for interspecific differences in factors that affect isotopic ratios. For example, varying concentrations of soluble nitrogen compounds, such as urea or trimethylamine oxide, can affect the analysis and interpretation of δ15N values of sharks or hagfish. The goal of this study was to assess the effects of a standard chloroform/methanol extraction on the stable isotope values of muscle tissue obtained from 10 species of sharks and three species of hagfish collected from poorly-known deep-water (>200 m) communities. We detected significant differences in δ15N, %N, and C:N values as a result of extractions in 8 of 10 shark and all three hagfish species. We observed increased δ15N values, but shifts in %N and C:N values were not unidirectional. Mathematical normalizations for δ15N values were successfully created for four shark and two hagfish species. However, they were not successful for two shark species. Therefore, performing extractions of all samples is recommended.

  6. Absorption of ammonium sulphate {sup 15}N by coffee plants; Recuperacao do {sup 15}N do sulfato de amonio por plantas de cafe

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: tatiele@cena.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Dourado Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegetal

    2005-07-01

    The objective of this study was to quantify the absorption of ammonium sulphate {sup 15}N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha{sup -1} of {sup 15}N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 {+-} 0,001 atom % {sup 15}N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  7. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Science.gov (United States)

    Vokhshoori, Natasha L; McCarthy, Matthew D

    2014-01-01

    We explored δ(15)N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15)N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ(15)N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15)N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2) = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15)N trend is therefore most consistent with a baseline δ(15)N gradient, likely due to the mixing of two source waters: low δ(15)N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with (15)N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15)N values of phenylalanine (δ(15)NPhe), the best AA proxy for baseline δ(15)N values. We hypothesize δ(15)N(Phe) values in intertidal mussels can approximate annual integrated δ(15)N values of coastal phytoplankton primary production. We therefore used δ(15)N(Phe) values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15)N values. We propose that δ(15)N(Phe) isoscapes derived from filter feeders can directly characterize baseline δ(15)N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  8. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  9. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    Science.gov (United States)

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could

  10. Probing platinum azido complexes by 14N and 15N NMR spectroscopy.

    Science.gov (United States)

    Farrer, Nicola J; Gierth, Peter; Sadler, Peter J

    2011-10-17

    Metal azido complexes are of general interest due to their high energetic properties, and platinum azido complexes in particular because of their potential as photoactivatable anticancer prodrugs. However, azido ligands are difficult to probe by NMR spectroscopy due to the quadrupolar nature of (14)N and the lack of scalar (1)H coupling to enhance the sensitivity of the less abundant (15)N by using polarisation transfer. In this work, we report (14)N and (15)N NMR spectroscopic studies of cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))] (1) and trans,trans,trans-[Pt(N(3))(2)(OH)(2)(X)(Y)], where X=Y=NH(3) (2); X=NH(3), Y=py (3) (py=pyridine); X=Y=py (4); and selected Pt(II) precursors. These studies provide the first (15)N NMR data for azido groups in coordination complexes. We discuss one- and three-bond J((15)N,(195)Pt) couplings for azido and am(m)ine ligands. The (14)N(α) (coordinated azido nitrogen) signal in the Pt(IV) azido complexes is extremely broad (W(1/2)≈2124 Hz for 4) in comparison to other metal azido complexes, attributable to a highly asymmetrical electric field gradient at the (14)N(α) atom. Through the use of anti-ringing pulse sequences, the (14)N NMR spectra, which show resolution of the broad (14)N(α) peak, were obtained rapidly (e.g., 1.5 h for 10 mM 4). The linewidths of the (14)N(α) signals correlate with the viscosity of the solvent. For (15) N-enriched samples, it is possible to detect azido (15)N resonances directly, which will allow photoreactions to be followed by 1D (15)N NMR spectroscopy. The T(1) relaxation times for 3 and 4 were in the range 5.7-120 s for (15)N, and 0.9-11.3 ms for (14)N. Analysis of the (1)J((15)N,(195)Pt) coupling constants suggests that an azido ligand has a moderately strong trans influence in octahedral Pt(IV) complexes, within the series 2-picIV)-NH(3) bond to a greater extent than an axial OH(-) ligand. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rivermouth alteration of agricultural impacts on consumer tissue δ(15N.

    Directory of Open Access Journals (Sweden)

    James H Larson

    Full Text Available Terrestrial agricultural activities strongly influence riverine nitrogen (N dynamics, which is reflected in the δ(15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ(15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ(15N. In a previous study, this terrestrial-consumer tissue δ(15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the 'rivermouth effect'. This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ(15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients will require integration of biogeochemical and hydrologic models.

  12. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    Science.gov (United States)

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  13. The {sup 15}N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele A.B. [Universidade Regional de Blumenau, (FURB), SC (Brazil); Reichart, Klaus; Bacchi, Osny O.S.; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)]. E-mail: klaus@cena.usp.br; Dourado-Neto, Durval [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ)

    2007-12-15

    The use of the {sup 15}N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of {sup 15}N labeled fertilizer experiments, using as an example a coffee crop fertilized with {sup 15}N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% {sup 15}N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and {sup 15}N enrichments of plant material by mass-spectrometry. (author)

  14. Revision of the 15N(p,{\\gamma})16O reaction rate and oxygen abundance in H-burning zones

    CERN Document Server

    Caciolli, A; Capogrosso, V; Bemmerer, D; Broggini, C; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Marta, M; Menegazzo, R; Palmerini, S; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2011-01-01

    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\\simeq} 30 {\\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures...

  15. Partitioning Residue-derived and Residue-induced Emissions of N2O Using 15N-labelled Crop Residues

    Science.gov (United States)

    Farrell, R. E.; Carverhill, J.; Lemke, R.; Knight, J. D.

    2014-12-01

    Estimates of N2O emissions in Canada indicate that 17% of all agriculture-based emissions are associated with the decomposition of crop residues. However, research specific to the western Canadian prairies (including Saskatchewan) has shown that the N2O emission factor for N sources in this region typically ranges between 0.2 and 0.6%, which is well below the current IPCC default emission factor of 1.0%. Thus, it stands to reason that emissions from crop residues should also be lower than those calculated using the current IPCC emission factor. Current data indicates that residue decomposition, N mineralization and N2O production are affected by a number of factors such as C:N ratio and chemical composition of the residue, soil type, and soil water content; thus, a bench-scale incubation study was conducted to examine the effects of soil type and water content on N2O emissions associated with the decomposition of different crop residues. The study was carried out using soils from the Black, Dark Brown, Brown, and Gray soil zones and was conducted at both 50% and 70% water-filled pore space (WFPS); the soils were amended with 15N-labeled residues of wheat, pea, canola, and flax, or with an equivalent amount of 15N-labeled urea; 15N2O production was monitored using a Picarro G5101-i isotopic N2O analyzer. Crop residue additions to the soils resulted in both direct and indirect emissions of N2O, with residue derived emissions (RDE; measured as 15N2O) generally exceeding residue-induced emissions (RIE) at 50% WFPS—with RDEs ranging from 42% to 88% (mean = 58%) of the total N2O. Conversely, at 70% WFPS, RDEs were generally lower than RIEs—ranging from 21% to 83% (mean = 48%). Whereas both water content and soil type had an impact on N2O production, there was a clear and consistent trend in the emission factors for the residues; i.e., emissions were always greatest for the canola residue and lowest for the wheat residue and urea fertilizer; and intermediate for pea

  16. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    Science.gov (United States)

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  17. Macroalgae δ 15 N values in well-mixed estuaries: indicator of anthropogenic nitrogen input or macroalgae metabolism?

    OpenAIRE

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-01-01

    International audience; Although nitrogen stable isotope ratio (d15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in d15N variability. Simultaneous determinations of d15N of dissolved inorganic nitrogen(DIN) along the landesea continuum, inter-species variability of d15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae d15...

  18. Measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons with the 2D-SUPER technique and dipolar dephasing (DD-SUPER)

    Science.gov (United States)

    Liu, Wei; Wang, Wei D.; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2010-09-01

    A modified 2D-SUPER technique is demonstrated to allow independent measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons. The insertion of a dipolar-dephasing period into the sequence causes loss of signal from protonated carbons. The spectrum obtained with this modification allows one to determine the principal values of the unprotonated carbons with high precision. Subsequent fitting of the usual 2D-SUPER spectrum, with the chemical-shift parameters of the unprotonated carbons fixed, gives the parameters of the overlapped resonances of the protonated carbons. As an example, we report the determination of the 13C chemical-shift parameters of the carbons of form II of piroxicam. The experimental results are compared with those obtained from calculations using the DFT/GIAO method. Potential applications of this method are discussed.

  19. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  20. Total N difference method and 15N isotope dilution methode - A comparative study on N-fixation

    OpenAIRE

    2002-01-01

    In the study, the 15N fixation of a number of green manure crops were studied using either the 15N dilution technique, or the simple total N difference method. The results of the two methods were not very different, and the total N difference method seemed to give as good results as the more complicated and expencive 15N dillution method.

  1. Multiple-quantum HCN-CCH-TOCSY experiment for 13C/15N labeled RNA oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weidong; Jiang Licong [Memorial Sloan-Kettering Cancer Center (United States)

    1999-12-15

    A multiple-quantum 3D HCN-CCH-TOCSY experiment is presented for the assignment of RNA ribose resonances. The experiment makes use of the chemical shift dispersion of N1 of pyrimidine and N9 of purine to distinguish the ribose spin systems. It provides an alternative approach for the assignment of ribose resonances to the currently used COSY- and TOCSY-type experiments in which either {sup 13}C or {sup 1}H is utilized to distinguish the different spin systems. Compared to the single-quantum version, the sensitivity of the multiple-quantum HCN-CCH-TOCSY experiment is enhanced on average by a factor of 2 for a 23-mer RNA aptamer complexed with neomycin.

  2. Structural Determination of Bis-histidinopeptide Zinc Complexes by 15N NMR (HMBC) Spectra

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Cheng-He; Juan F.Miravet; M.Isabel Burguete; Santiago V.Luis; BAI,Xue; YUAN,Yong

    2004-01-01

    @@ Polynitrogen receptors such as bis-histidine peptides possess strong ability to bind metals, which play much important roles in medicinal, bioinorganic, bioorganic, biomimetic and supramolecular chemistry. In order to investigate the interaction of these hosts with a variety of neutral, cationic and anionic guests, several techniques, for example, NMR,potentiometric tirations and monocrystal X-ray diffraction have been employed. Among them NMR is a powerful technique for unraveling the structure of polynitrogen receptors as long as they are in solution where the rapid tumbling of molecules averages out the anisotropies such as chemical shift and dipole-dipole interactions. General 1H NMR approach has been widely used for the study of host-guest interaction, but it is difficult for the accurate measurement in complexes structures, particularly metal complexes structures in which how the polynitrogen receptors bind metal, and which nitrogen binds metal and so on.

  3. Coral skeletal {delta}{sup 15}N reveals isotopic traces of an agricultural revolution

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Guy S. [Department of Biological Sciences, Stanford University, Stanford, CA 94305 (United States)]. E-mail: g.marion@uq.edu.au; Dunbar, Robert B. [Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 (United States); Mucciarone, David A. [Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 (United States); Kremer, James N. [Department of Marine Sciences, University of Connecticut at Avery Point, Groton, CT 06340 (United States); Lansing, J. Stephen [Department of Anthropology, University of Arizona, Tucson, AZ 85721 (United States); Arthawiguna, Alit [Installation for Agricultural Research (IP 2TP), Kotak Pos 3480, Denpasar, Bali (Indonesia)

    2005-09-01

    This study introduces a new method of tracing the history of nutrient loading in coastal oceans via {delta}{sup 15}N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal {delta}{sup 15}N in the agriculturally exposed coral declined from 10.7 {+-} 0.4 per mille in 1970-1971, when synthetic fertilizers (-0.8 per mille {+-} 0.2 per mille ) were introduced to Bali, to a depleted 'anthropogenic' baseline of 3.5 per mille {+-} 0.4% in the mid-1990s. {delta}{sup 15}N values were negatively correlated with rainfall, suggesting that marine {delta}{sup 15}N lowers during flood-born influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3 {+-} 0.4 per mille ), while the offshore core reflected background oceanic signals (6.2 {+-} 0.4 per mille). {delta}{sup 15}N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic {delta}{sup 15}N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs.

  4. Deuterium isotope shifts for backbone ¹H, ¹⁵N and ¹³C nuclei in intrinsically disordered protein α-synuclein.

    Science.gov (United States)

    Maltsev, Alexander S; Ying, Jinfa; Bax, Ad

    2012-10-01

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise (2)H isotope shift measurements for (13)C(α), (13)C(β), (13)C', (15)N, and (1)H(N) have been obtained by using a mixed sample of protonated and uniformly perdeuterated α-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil (2)H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  5. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    Science.gov (United States)

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  6. The effects of librations on the 13C chemical shift and 2H electric field gradient tensors in β-calcium formate

    Science.gov (United States)

    Hallock, Kevin J.; Lee, Dong Kuk; Ramamoorthy, A.

    2000-12-01

    The magnitudes and orientations of the principal elements of the 13C chemical shift anisotropy (CSA) tensor in the molecular frame of the formate ion in β-calcium formate is determined using one-dimensional dipolar-shift spectroscopy. The magnitudes of the principal elements of the 13C CSA tensor are σ11C=104 ppm, σ22C=179 ppm, and σ33C=233 ppm. The least shielding element of the 13C CSA tensor, σ33C, is found to be collinear with the C-H bond. The temperature dependence of the 13C CSA and the 2H quadrupole coupling tensors in β-calcium formate are analyzed for a wide range of temperature (173-373 K). It was found that the span of the 13C CSA and the magnitude of the 2H quadrupole coupling interactions are averaged with the increasing temperature. The experimental results also show that the 2H quadrupole coupling tensor becomes more asymmetric with increasing temperature. A librational motion about the σ22C axis of the 13C CSA tensor is used to model the temperature dependence of the 13C CSA tensor. The temperature dependence of the mean-square amplitude of the librational motion is found to be =2.6×10-4(T) rad2 K-1. The same librational motion also accounts for the temperature-dependence of the 2H quadrupole coupling tensor after the relative orientation of the 13C CSA and 2H electric field gradient tensors are taken into account. Reconsideration of the results of a previous study found that the librational motion, not the vibrational motion, accounts for an asymmetry in the 1H-13C dipolar coupling tensor of α-calcium formate at room temperature.

  7. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  8. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2007-01-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5‰ is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification by ±30% or N2 fixation by ±15% produces detectable (>1‰ changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several ‰ that are consistent with sustained N deficit during the deglaciation followed by readjustment

  9. Accurate proteome-wide protein quantification from high-resolution 15N mass spectra.

    Science.gov (United States)

    Khan, Zia; Amini, Sasan; Bloom, Joshua S; Ruse, Cristian; Caudy, Amy A; Kruglyak, Leonid; Singh, Mona; Perlman, David H; Tavazoie, Saeed

    2011-12-19

    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods.

  10. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0

  11. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-02

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  12. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: {sup 1}H and {sup 13}C chemical shift assignments; Constituintes quimicos de Ottonia corcovadensis Miq. da floresta Amazonica - atribuicao dos deslocamentos quimicos dos atomos de hidrogenio e carbono

    Energy Technology Data Exchange (ETDEWEB)

    Facundo, Valdir A. [Rondonia Univ., Porto Velho, RO (Brazil). Dept. de Quimica; Morais, Selene M. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica e Fisica; Braz Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas. Setor de Quimica de Produtos Naturais]. E-mail: braz@uenf.br

    2004-02-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete {sup 1}H and {sup 13}C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  13. Pseudo 5D HN(C)N Experiment to Facilitate the Assignment of Backbone Resonances in Proteins Exhibiting High Backbone Shift Degeneracy

    CERN Document Server

    Kumar, Dinesh; Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish; Guleria, Anupam

    2014-01-01

    Assignment of protein backbone resonances is most routinely carried out using triple resonance three dimensional NMR experiments involving amide 1H and 15N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high degree of backbone shift degeneracy. In this backdrop, a novel reduced dimensionality (RD) experiment -(5,3)D-hNCO-CANH- is presented to facilitate (and/or to validate) the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide 15N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. HiNi and Hi-1Ni-1) for overlapping amide NH peaks. The experiment -encoding 5D spectral information- leads to a conventional 3D spectrum with significantly reduced spectral crowding and complexity. The impr...

  14. Rotational spectrum of deuterated and 15N ethyl cyanides: CH3CHDCN and CH2DCH2CN and of CH3CH2C15N

    CERN Document Server

    Margulès, Laurent; Demyk, Karine; Tercero, Belen; Cernicharo, Jose; Sheng, M; Weidmann, M; Gripp, J; Mäder, H; Demaison, J

    2008-01-01

    Ethyl cyanide is an abundant molecule in hot molecular clouds. Lines from 13C isotopically substituted ethyl cyanide were identified in Orion. To enable the search and the possible detection of other isotopologues of ethyl cyanide in interstellar objects, we have studied the rotational spectrum of deuterated ethyl cyanide: CH2DCH2CN (in-plane and out-of-plane) and CH3CHDCN and the spectrum of15N substituted ethyl cyanide CH3CH2C15N. The rotational spectrum of each species in the ground state was measured in the microwave and millimeter-submillimeter wavelength range using a waveguide Fourier transform spectrometer (8 - 17 GHz) and a source-modulated spectrometer employing backward-wave oscillators (BWOs) (150 - 260 and 580 - 660 GHz). From the fitting procedure, accurate spectroscopic constants were derived for each of the species. These new sets of spectroscopic constants enable us to predict reliably the rotational spectrum (lines frequencies and intensities) in the 4-1000 GHz frequency range and for J and ...

  15. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    CERN Document Server

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  16. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  17. Determination of level widths in 15N using nuclear resonance fluorescence

    Directory of Open Access Journals (Sweden)

    Szücs T.

    2015-01-01

    Full Text Available Level widths in 15N have been measured with the nuclear resonance fluorescence (NRF technique. Solid nitrogen compounds, bremsstrahlung, and HPGe detectors have been used as target, beam, and detectors, respectively. The preliminarily level widths are in agreement with the literature values, but more precise.

  18. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    Science.gov (United States)

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  19. Backbone dynamics of the EIAV-Tat protein from {sup 15}N relaxation studies

    Energy Technology Data Exchange (ETDEWEB)

    Ejchart, A.; Herrmann, F.; Roesch, P.; Sticht, H.; Willbold, D. [Bayreuth Univ., Bayreuth (Germany)

    1994-12-31

    The work investigates the mobility of EIAV-Tat protein backbone by measuring the relaxation parameters of the {sup 15}N nitrogens. High degree of the flexibility, non-typical of rigid, well structured proteins was shown. 3 refs, 2 figs.

  20. (15)N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga).

    Science.gov (United States)

    de Freitas, Ana Dolores Santiago; de Sa Barretto Sampaio, Everardo Valadares; Menezes, Romulo Simoes Cezar; Tiessen, Holm

    2010-06-01

    Foliar delta(15)N values are useful to calculate N(2) fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had delta(15)N values of 9.4 and 10.1 per thousand, among the highest already reported, and significantly greater than those (6.5 and 6.3 per thousand) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N(2) fixation. The higher values could result from higher losses of (15)N depleted gases or lower losses of enriched (15)N material.

  1. An improved method for delta 15N measurements in ice cores

    Directory of Open Access Journals (Sweden)

    M. Leuenberger

    2008-02-01

    Full Text Available The use of isotopic ratios of nitrogen gas (δ15N trapped in ice cores as a paleothermometer to characterise abrupt climate changes is becoming a widespread technique. The versatility of the technique could be enhanced, for instance in quantifying small temperature changes during the last glacial period in Antarctic ice cores, by using high precision methods. In this paper, we outline a method for measuring δ15N to a precision of 0.006permil (1σ, n=9 from replicate ice core samples. The high precision results from removing oxygen, carbon dioxide and water vapour from the air extracted from ice cores. The advantage of the technique is that it does not involve correction for isobaric interference due to CO+ ions. We also highlight the importance of oxygen removal from the sample, and how it influences δ15N measurements. The results show that a small amount of oxygen in the sample can be detrimental to achieving an optimum precision in δ15N measurements of atmospheric nitrogen trapped ice core samples.

  2. 15N NMR Spectroscopic Study on Nitrogen Forms in Humic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    WENQIXAIO; ZHUOSUNENG; 等

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil,a lateritic red soil and a weathered cola and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance(CPMAS NMR) spectroscopy,Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups ,10%-18% to aromatic/aliphatic amines and 6%-11% to indole-and pyrrole-like N.Whereas in the spectrum of the fulvic acid from weathered coal 46%,at least,of the total 15N-signal intensity might be assigned to pyrrole-like N,14% to aromatic/aliphatic amines,and the reamining intensities could not be assigned with certainty,Data on nonhydrolyzable reside of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis.

  3. The degree of urbanization across the globe is not reflected in the δ(15)N of seagrass leaves.

    Science.gov (United States)

    Christiaen, Bart; Bernard, Rebecca J; Mortazavi, Behzad; Cebrian, Just; Ortmann, Alice C

    2014-06-30

    Many studies show that seagrass δ(15)N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ(15)N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ(15)N ratios correlate with patterns of population density and fertilizer use within a radius of 10-200 km around the sample locations. Our results show that seagrass δ(15)N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ(15)N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the (15)N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ(15)N and latitude remain unknown.

  4. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  5. Reproducibility of Intra- and Inter-scanner Measurements of Liver Fat Using Complex Confounder-corrected Chemical Shift Encoded MRI at 3.0 Tesla

    Science.gov (United States)

    Wu, Bing; Han, Wei; Li, Zhenhong; Zhao, Yonghua; Ge, Mingmei; Guo, Xueqing; Wu, Xinhuai

    2016-01-01

    The purpose of this study was to prospectively evaluate the reproducibility of the proton density fat-fraction (PDFF) of the liver using the IDEAL algorithm, a quantitative confounder-corrected chemical-shift-encoded MRI method. Data were obtained from 15 volunteers on four different days. The first and the third examinations were conducted on scanner one with one-week intervals, while the second and the fourth tests were performed on scanner two with same time interval. For each test, two MR scans were performed, one before and one after a meal. Regions-of-interest measurements were manually calculated to estimate the PDFF in the right and left lobes on the PDFF images. Reproducibility was measured using the intra-class correlation coefficient (ICC). The ICCs of the PDFF in the right and left lobes were 0.935 and 0.878, respectively. The intra-scanner ICCs of the right lobe before and after a meal or at a one-week interval were 0.924 and 0.953, respectively. The inter-scanner ICCs of PDFF the next day and at a one-week interval were 0.920 and 0.864, respectively. The PDFF of liver derived from IDEAL demonstrated high intra- and inter-scanner measurement reproducibility. The PDFF of the right lobe before a meal was more reproducible than after-meal measurements. PMID:26763303

  6. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  7. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    Science.gov (United States)

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  8. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent.

    Science.gov (United States)

    Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal

    2013-08-15

    The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. Copyright © 2013 Wiley Periodicals, Inc.

  9. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  10. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  11. Araucaria cunninghamii Seedling Response to Different Forms and Rates of 15N-Labelled Fertiliser

    Institute of Scientific and Technical Information of China (English)

    T.J.BLUMFIELD; XU Zhi-Hong

    2006-01-01

    Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using 15Nlabelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg-1 dried soil) of fertilisers on the growth, 15N recovery and carbon isotope composition (δ13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland,Australia. The 15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots,containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage,and then analysed for 15N, total N, δ13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined 15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of 15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg-1 soil gradually increased seedling foliage δ13C over the 12-month period, indicating an increase in seedling water use efficiency.

  12. [Characteristics of urea 15N absorption, allocation, and utilization by sweet-cherry (Prunus avium L.)].

    Science.gov (United States)

    Zhao, Feng-Xia; Jiang, Yuan-Mao; Peng, Fu-Tian; Gao, Xiang-Bin; Liu, Bing-Hua; Wang, Hai-Yun; Zhao, Lin

    2008-03-01

    With five-year old 'Zaodaguo' sweet-cherry (Prunus avium L.) as test material, this paper studied the characteristics of its urea 15N absorption, allocation, and utilization when applied before bud-break. The results showed that the Ndff of different organs increased gradually with time, and was higher in fine roots and storage organs at full-blooming stage. At fruit core-hardening stage, the Ndff of long shoots and leaves increased quickly, reaching to 0.72% and 0.59% , respectively. From fruit core-hardening to harvesting stage, the Ndff of fruit had a rapid increase, with the peak (1.78%) at harvesting stage. After harvest, the Ndff of neonatal organs increased slowly while that of storage organs increased quickly. At full-blooming stage, the absorbed 15N in roots was firstly allocated to storage organs, with the highest allocation rate (54.91%) in large roots. At fruit core-hardening stage, the allocation rate in fine roots and storage organs decreased from 85.43% to 55.11%, while that in neonatal branches and leaves increased to 44.89%. At harvesting stage, the allocation rate in different organs had no significant change, but after harvest, the absorbed 15N had a rapid translocation to storage organs, and the allocation rate in fine roots and storage organs reached the highest (72.26%) at flower bud differentiation stage. The 15N allocation rate in neonatal branches and leaves at flower bud differentiation stage was decreased by 19.31%, compared with that at harvesting stage. From full-blooming to flower bud differentiation stage, the utilization rate of urea 15N was increasing, and reached the peak (16.86%) at flower bud differentiation stage.

  13. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in th...

  14. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    Directory of Open Access Journals (Sweden)

    Tatiele A.B. Fenilli

    2007-12-01

    Full Text Available The use of the 15N label for agronomic research involving nitrogen (N cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.O uso do traçador 15N em pesquisas agronômicas que envolvem o ciclo do nitrogênio (N e o destino do N do fertilizante está bem estabelecido, entretanto, para o caso de experimentação com plantas perenes como citrus, café e seringueira, ainda existem limitações devidas ao porte das plantas, à amostragem, aos níveis de detecção e à interferência no sistema. Este estudo procura contribuir metodologicamente no delineamento experimental e no desenvolvimento desse tipo de experimentação, em condições de campo, fazendo uso, por dois anos, do experimento de uma cultura de café adubada com fertilizante marcado com 15N. O N da planta derivado do fertilizante foi estudado nas diferentes partes da planta de café para determinar sua

  15. Characterization of Humic Fractions in a 15N-labelled Soil by Solid by State-State 13C and 15N NMR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P2O7,0.1 mol L-1 NaOH,and HF/HC1-0.1 mol L-1 NaOH,consecutively,and analyzed by 13C and 15N CPMAS NMR (croas polarization and magic angle spinning nuclear magnetic resonance).Compared with those of native soils humic fractions studied as a whole contained more alkyls,methoxyls and O-alkyls,being 27%~36%,17%~21% and 36%~40%,respectively,but fewer aromatics and carboxyls (being 14%~20% and 13%~90%,respectively).Among those humic fractions,the humic acid (HA) and fulvic acid (FA) extracted by 0.1 mol L-1 Na4P2O7 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L-1 NaOH,and the HA extracted by 0.1 mol L-1 NaOH after treatment with HF/HC1 contained the least aromatics and carboxyls. The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils.More than 75% of total N in each fraction was in amide form,with 9%~13% present as aromatic and/or aliphatic amines and the remainder as heterocyclic N.

  16. Variable δ(15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Directory of Open Access Journals (Sweden)

    Jill A Olin

    Full Text Available The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15N diet-tissue discrimination factors (∆(15N. As ∆(15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15N dietary values. Overall, the most suitable species-specific ∆(15N values decreased with increasing dietary-δ(15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15N = 9‰ whereas a ∆(15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15N = 15‰. These data corroborate the previously reported inverse ∆(15N-dietary δ(15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15N values that reflect the predators' δ(15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species

  17. Fertilizer {sup 15}N balance in a coffee cropping system: a case study in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo [Universidade Regional de Blumenau (URB), SC (Brazil). Dept. de Engenharia Florestal]. E-mail: tfenilli@furb.br; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mails: klaus@cena.usp.br; osny@cena.usp.br; Favarin, Jose Laercio [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Producao Vegetal; Silva, Adriana Lucia [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil). Fazenda Santo Antonio]. E-mail: adriana.silva@ctc.com.br; Timm, Luis Carlos [Universidade Federal de Pelotas (UFPel), RS (Brazil). Dept. de Engenharia Rural]. E-mail: lcartimm@yahoo.com.br

    2008-07-15

    Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the {sup 15}N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the {sup 15}N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/ 2005, respectively, both of them as ammonium sulfate enriched to a {sup 15}N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and {sup 15}N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH{sub 3} were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and {sup 15}N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of {sup 15}N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0-1.0 m soil profile. Annual leaching and volatilization losses were

  18. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    Science.gov (United States)

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  19. Fertilizer nitrogen recovery of rice: /sup 15/N field studies (a short review)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.; Katyal, J.C. (Punjab Agricultural Univ., Ludhiana (India). Dept. of Soils)

    1980-12-01

    Reliable quantitative estimates of fertilizer nitrogen recovery by rice are obtained in field investigations with /sup 15/N-labelled materials. Values obtained by conventional 'difference method' of comparing fertilized and unfertilized plots are typically larger than the actual values. Estimating the recovery of fertilizer nitrogen is not a goal in itself. Although it has been an essential component of limited number of /sup 15/N-field experiments conducted with rice so far; these provide little or no information about crop growth stages when fertilizer N is most efficiently utilized by rice plant. Recently, the path coefficient analysis has been used to analyse the effect of N uptake on the development of yield components and their contribution to grain yield. Nitrogen-15 fertilizers along with path coefficient analysis can prove particularly useful in comparing the efficiency of different N fertilizers and in the development of new and more efficient nitrogen sources and management practices.

  20. Fate of 15N and 14C from labelled plant material

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Gjettermann, Birgitte; Eriksen, Jørgen;

    2008-01-01

    strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass......–clover mixture in early spring. The fate of the released 14C and 15N was monitored in harvested biomass, roots, soil, and pore water percolating from the plough layer. No evidence of plant uptake of dual-labelled organic compounds from the dual-labelled residues could be observed. N in pore water from the plough...... water originating from plant residues only constituted 1.5% of the total dissolved N from the plough layer....

  1. Study of organic N transformation in red soils by 15N tracer method

    Institute of Scientific and Technical Information of China (English)

    YeQing-Fu; ZhangQin-Zheng; 等

    1997-01-01

    Uniformly 15N-labelled ryegrass was used to investigate NH4+-production,microbial transformation and humification of organic N in two types of red soils by incubating the soils amended with labelled material.The results showed that there was little significant difference in biomass N transformation in the tested solis between 15N tracer method and conventional method,but the amount of NH4++-N released form the ryegrass in the clayey soil than in the sandy soil at all sampling time .By 120d of incubation,humified N was less than 10% of the amount of the applied N in two types of red soils and the amount of residual N in the clayey red soil was obviously higher than that in the sandy red soil.

  2. The use of chemical shift temperature gradients to establish the paramagnetic susceptibility tensor orientation: Implication for structure determination/refinement in paramagnetic metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Xia Zhicheng; Nguyen, Bao D.; La Mar, Gerd N. [University of California, Department of Chemistry (United States)

    2000-06-15

    The use of dipolar shifts as important constraints in refining molecular structure of paramagnetic metalloproteins by solution NMR is now well established. A crucial initial step in this procedure is the determination of the orientation of the anisotropic paramagnetic susceptibility tensor in the molecular frame which is generated interactively with the structure refinement. The use of dipolar shifts as constraints demands knowledge of the diamagnetic shift, which, however, is very often not directly and easily accessible. We demonstrate that temperature gradients of dipolar shifts can serve as alternative constraints for determining the orientation of the magnetic axes, thereby eliminating the need to estimate the diamagnetic shifts. This approach is tested on low-spin, ferric sperm whale cyanometmyoglobin by determining the orientation, anisotropies and anisotropy temperature gradients by the alternate routes of using dipolar shifts and dipolar shift gradients as constraints. The alternate routes ultimately lead to very similar orientation of the magnetic axes, magnetic anisotropies and magnetic anisotropy temperature gradients which, by inference, would lead to an equally valid description of the molecular structure. It is expected that the use of the dipolar shift temperature gradients, rather than the dipolar shifts directly, as constraints will provide an accurate shortcut in a solution structure determination of a paramagnetic metalloprotein.

  3. Shifting Attention

    Science.gov (United States)

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  4. Shifting Attention

    Science.gov (United States)

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  5. Tough Shift

    DEFF Research Database (Denmark)

    Brewer, Robert S.; Verdezoto, Nervo; Holst, Thomas;

    2015-01-01

    in a student dormitory and found that players did not shift their electricity use, because they were unwilling to change their schedules and found it easier to focus on reducing electricity use. Based on our findings, we discuss the implications for encouraging shifting, and also the challenges of integrating...

  6. Millennial scale oscillations in bulk δ15N and δ13C over the Mid- to Late Holocene seen in proteinaceous corals from the North Pacific Subtropical Gyre

    Science.gov (United States)

    Glynn, D. S.; Mccarthy, M. D.; McMahon, K.; Guilderson, T. P.

    2014-12-01

    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on this planet and is an important regulator of biogeochemical cycling and carbon sequestration. With evidence of its expansion in a warming climate, it is necessary to develop a more complete understanding of the variability in productivity and nutrient dynamics in this important ecosystem through time. We constructed a long-term, high resolution record of bulk record of stable nitrogen (δ15N) and carbon isotopes (δ13C) from multiple proteinaceous deep sea corals around Hawaii extending back ~5300 years with few gaps. Our data confirms the decreasing trend in δ15N since the Little Ice Age (1850s), which matches previously published results in part attributed to anthropogenic climate change (e.g. Sherwood et al. 2014). However, while the rate of change since the Little Ice Age (δ15N declines ~1‰ over ~150yrs) remains by far the most rapid throughout the longer record, there also appear to be longer-term (near-millennial scale) climatic oscillations of even greater magnitude (δ15N shifts ~1.5-2‰ over ~1000yrs). After removal of the Seuss Effect, δ13C values also declined ~1.5‰ since the Little Ice Age. Furthermore, there also appear to be oscillations in δ13C of ~1-2‰ over millennial timescales. These results reveal the existence of previously unrecognized long-term oscillations in NPSG biogeochemical cycles, which are likely linked to changes in phytoplankton species composition, food web dynamics, and/or variability in source nutrients and productivity possibly caused by changes in climate. This study provides insight into nutrient dynamics in the NPSG over the past five millennia, and offers a historical baseline to better analyze the effects of current anthropogenic climate forcing.

  7. Capture cross sections of 15N(n, {\\gamma})16N at astrophysical energies

    CERN Document Server

    Fan, Guang-wei; Sheng, Zong-qiang; Tian, Feng; Wang, Jun; Zhang, Chao

    2016-01-01

    We have reanalyzed reaction cross sections of 16N on 12C target. The nucleon density distribution of 16N, especially surface density distribution, was extracted using the modified Glauber model. On the basis of dilute surface densities, the discussion of 15N(n, {\\gamma})16N reaction was performed within the framework of the direct capture reaction mechanism. The calculations agreed quite well with the experimental data.

  8. Determination of the δ15N of total nitrogen in solids; RSIL lab code 2893

    Science.gov (United States)

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the δ(15N/14N), abbreviated as δ15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.

  9. {sup 15}N uptake from manure and fertilizer sources by three consecutive crops under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga Garza, Hector Mario, E-mail: quiroga.mario@inifap.gob.m [Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias (INIFAP), Coahuila (Mexico); Delgado, Jorge A.; Wong, Jose Antonio Cueto, E-mail: jorge.delgado@ars.usda.go, E-mail: cueto.jose@inifap.gob.m [United States Dept. of Agriculture (USDA), Fort Collins, CO (United States). Agricultural Research Service. Soil Plant Nutrient Research Unit; Lindemann, William C., E-mail: wlindema@nmsu.ed [New Mexico State University (NMST), Las Cruces, NM (United States). Dept. Agronomy and Horticulture

    2009-09-15

    There are several regions of the world where soil N analysis and/or N budgets are not used to determine how much N to apply, resulting in higher than needed N inputs, especially when manure is used. One such region is the North Central 'La Comarca Lagunera', one of the most important dairy production areas of Mexico. We conducted a unique controlled greenhouse study using {sup 15}N fertilizer and {sup 15}N isotopic-labeled manure that was labeled under local conditions to monitor N cycling and recovery under higher N inputs. The manure-N treatment was applied only once and was incorporated in the soil before planting the first forage crop at an equivalent rate of 30, 60 and 120 Mg ha{sup -1} dry manure. The {sup 15}N treatments were equivalent to 120 and 240 kg ha{sup -1} (NH{sub 4}){sub 2}SO{sub 4}-N for each crop. The total N fertilizer for each N fertilized treatment were 360, and 720 kg ha{sup -1} N. We found very low N recoveries: about 9 % from the manure N inputs, lower than the 22 to 25 % from the fertilizer N inputs. The manure N recovered below ground in soil and roots ranged from 82 to 88 %. The low recoveries of N by the aboveground and low soil inorganic nitrate (NO{sup 3}-N) and ammonium (NH{sub 4}-N) content after the third harvested suggested that most of the {sup 15}N recovered below ground was in the soil organic form. The losses from manure N inputs ranged from 3 to 11 %, lower than the 34 to 39 % lost from fertilizer N sources. Our study shows that excessive applications of manure or fertilizer N that are traditionally used in this region will not increase the rate of N uptake by aboveground compartment but will increase the potential for N losses to the environment. (author)

  10. Chemienzymatic synthesis of Uridine. Nucleotides labeled with [15N] and [13C

    DEFF Research Database (Denmark)

    Gilles, Anne-Marie; Cristea, Ioan; Palibroda, Nicolae

    1995-01-01

    +necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and a-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N,13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended...... and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy....

  11. δ15N in the turtle grass from the Mexican Caribbean

    Science.gov (United States)

    Talavera-Saenz, A.; Sanchez, A.; Ortiz-Hernandez, M.

    2013-05-01

    Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development and population to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of high tourism development (Nichupte Lagoon in Cancun, >3 million tourists per year from 2007 to 2011 and 0.7 million of resident population) and decreased towards Bahia Akumal and Tulum (>3 million tourists per year from 2007 to 2011 and 0.15 million of resident population). The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos (about 0.4 million tourists per year in 2007 to 2011 and 0.25 million of resident population) than other the sites. In areas of the lowest development and with tourist activity restricted and small population, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were in much higher enrichment that Mahahual and Puerto Morelos. Therefore is suggested that Mahahual and Puerto Morelos may be used for baseline isotopic monitoring, over environmental pressure on the reef lagoon ecosystem, where tourist activities and population are growing very slow rate. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.

  12. CHEMICALS

    CERN Document Server

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  13. Fate of leaf-litter N in forest and grassland along a pedo-climatic gradient in south-western Siberia: an in situ 15N-labelling experiment

    Science.gov (United States)

    Brédoire, Félix; Zeller, Bernd; Nikitich, Polina; Barsukov, Pavel A.; Rusalimova, Olga; Bakker, Mark R.; Legout, Arnaud; Bashuk, Alexander; Kayler, Zachary E.; Derrien, Delphine

    2017-04-01

    The suitability of Siberia for agriculture is expected to increase in the next decades due to strong and rapid climatic changes, but little is known on the environmental drivers of soil fertility there, especially nitrogen (N). Plant-available N is mainly derived from litter decomposition. South-western (SW) Siberia is located on the transition between several bioclimatic zones that are predicted to shift and extend along with climate change (steppe, forest-steppe, sub-taiga). The soils of this region are formed on a common loess deposit but they are submitted to different climatic conditions and vegetation cover. In the south of the region, typically in steppe/forest-steppe, soil freezes over winter because of a relatively shallow snow-pack, and water shortages are frequent in summer. In the north, typically in sub-taiga, the soil is barely frozen in winter due to a thick snow-pack and sufficient soil moisture in summer. In this study, we characterized the dynamics of leaf litter decomposition and the transfer of N from leaf litter to the soil and back to plants. Four sites were chosen along a climate gradient (temperature, precipitation and snow depth). At each site, we applied 15N-labelled leaf litter on the soil surface in experimental plots in an aspen (Populus tremula L.) forest and in a grassland. Twice a year during three years, we tracked the 15N derived from the decomposing labelled-litter in the organic layers, in the first 15 cm of the soil, and in above-ground vegetation. Soil temperature and moisture were monitored at a daily timestep over three years and soil water budgets were simulated (BILJOU model, Granier et al. 1999). We observed contrasting patterns in the fate of litter-derived 15N between bioclimatic zones. Over three years, along with faster decay rates, the release of leaf litter-N was faster in sub-taiga than in forest-steppe. As such, higher quantities of 15N were transferred into the soil in sub-taiga. The transfer was also deeper there

  14. Evaluation of a 15N plot design for estimating plant recovery of fertilizer nitrogen applied to sugar cane

    OpenAIRE

    1994-01-01

    Two experiments were conducted on commercial sugar cane fields cropped with the variety SP70-1143, with the objective of evaluating a single row microplot design to determine plant recovery of 15N fertilizer nitrogen. One of them used 15N-aqua ammonia and 15N-urea applied to two linear meter microplots of a ratoon crop (four replicates). The second used one linear meter microplots (three replicates) which received 15N-aqua ammonia only. The fertilizers were applied on 15cm deep furrows, locat...

  15. (1) H NMR Spectra. Part 28: Proton chemical shifts and couplings in three-membered rings. A ring current model for cyclopropane and a novel dihedral angle dependence for (3) J(HH) couplings involving the epoxy proton.

    Science.gov (United States)

    Abraham, Raymond J; Leonard, Paul; Tormena, Cláudio F

    2012-04-01

    The (1) H chemical shifts of selected three-membered ring compounds in CDCl(3) solvent were obtained. This allowed the determination of the substituent chemical shifts of the substituents in the three-membered rings and the long-range effect of these rings on the distant protons. The substituent chemical shifts of common substituents in the cyclopropane ring differ considerably from the same substituents in acyclic fragments and in cyclohexane and were modelled in terms of a three-bond (γ)-effect. For long-range protons (more than three bonds removed), the substituent effects of the cyclopropane ring were analysed in terms of the cyclopropane magnetic anisotropy and steric effect. The cyclopropane magnetic anisotropy (ring current) shift was modelled by (a) a single equivalent dipole perpendicular to and at the centre of the cyclopropane ring and (b) by three identical equivalent dipoles perpendicular to the ring placed at each carbon atom. Model (b) gave a more accurate description of the (1) H chemical shifts and was the selected model. After parameterization, the overall root mean square error for the dataset of 289 entries was 0.068 ppm. The anisotropic effects are significant for the cyclopropane protons (ca 1 ppm) but decrease rapidly with distance. The heterocyclic rings of oxirane, thiirane and aziridine do not possess a ring current. (3) J(HH) couplings of the epoxy ring proton with side-chain protons were obtained and shown to be dependent on both the H-C-C-H and H-C-C-O orientations. Both density functional theory calculations and a simple Karplus-type equation gave general agreement with the observed couplings (root mean square error 0.5 Hz over a 10-Hz range).

  16. Paleoenvironmental implications of taxonomic variation among δ 15 N values of chloropigments

    Science.gov (United States)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mak A.; Pearson, Ann

    2011-11-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ 15N values of chloropigments of photosynthetic organisms to determine the corresponding δ 15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N 2, NO 3-, and NH 4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ 15N biomass - δ 15N chloropigment) for prokaryotes, with average values for species ranging from -12.2‰ to +11.7‰. We define this difference as ɛpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ɛpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ɛpor for freshwater cyanobacterial species is -9.8 ± 1.8‰, while for marine cyanobacteria it is -0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., ɛpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ɛpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of ɛpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of

  17. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L; Broer, R; Broer-Braam, H.B.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the obse

  18. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L.; Broer, R.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the

  19. Utility of chemical-shift MR imaging in detecting small amounts of fat in extrahepatic abdominal tumors; Utilidad de la tecnica de desplazamiento quimico den RM para la deteccion de pequenas cantidades de grasa en tumores abdominales extrahepaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.; Falco, J.; Puig, J.; Donoso, L. [Unidad de Diagnostico por Imagen de Alta Tecnologia (UDIAT). Sabadell (Spain)

    1999-07-01

    To determine the utility of the chemical shift technique in magnetic resonance imaging (MRI) to confirm small amounts of fat in extrahepatic intraabdominal tumours. 7 extrahepatic abdominal tumours that are suspected to have fat as seen in the axial computed tomography (TC) are analysed retrospectively. In order to confirm the fat content, the chemical displacement technique with gradient echo sequences (GE) in phase (P) and in opposite phase (OP) was used with MRI 1 T equipment. The tumours corresponded to renal angiomyolipoma (AML) (n=4), intraperitoneal liposarcoma (n=1), retroperitoneal liposarcoma (n=1) and intraabdominal extramedular hematopoiesis (n=1). To confirm the existence of fat in the tumours, we used a quantitative percentage variation parameter of the intensity of the signals (VIS) between the images in P and OP, according to the formula: IS{sub (}p)-IS({sub o}p)x100/IS{sub (}op), where IS is the intensity of the signal. The chemical shift technique showed fat in the seven tumours. Upon visual inspection, all the tumoral areas that were suspected to have fat showed a notable difference in the signal intensity, being hypointense in OP and hyperintense in P. In these areas the average VIS percentage was 170% while in the rest of the tumour the average VIS percentage was 3%. The chemical shift technique with RG sequences can be easily used in MRI equipment and allows us to confirm if a specific abdominal tumour has fat, even if there is only a small quantity. (Author) 13 refs.

  20. Delta15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status.

    Science.gov (United States)

    Schmidt, S; Stewart, G R

    2003-03-01

    A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N(2)-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6 per thousand ), AM species had mostly intermediate delta(15)N values (average +0.6 per thousand ), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1 per thousand ). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2 per thousand ) and non-mycorrhizal (average +0.8 and +0.3 per thousand ) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N(2) fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4 per thousand ). Soil nitrification and plant NO(3)(-) use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO(3)(-) using taxa associated with NO(3)(-) rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna

  1. The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Andersen, A. J.; Thomsen, J. D.

    1985-01-01

    The distriution of seed-borne N in shoot and root of pea and field bean was studied using three methods: 1) determination of the N content in shoot and root of plants grown in sand culture without other N sources. 2) 15N isotope dilution in plants grown in Rhizobium-free medium supplied with 15N...

  2. Unusually negative nitrogen isotopic compositions (δ15N of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Directory of Open Access Journals (Sweden)

    I. Romero

    2008-12-01

    Full Text Available Extremes in δ15N values in mangrove tissues and lichens (range =+4 to −22‰ were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6–9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from −12‰ to −2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰. Isotopically depleted ammonia in the atmosphere (δ15N=−19‰ and in rainwater (δ15N=−10‰ were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  3. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    Science.gov (United States)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  4. A new organic reference material, L-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Mroczkowski, Stanley J.; Brand, Willi A.; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-01-01

    RationaleThe widely used l-glutamic acid isotopic reference material USGS41, enriched in both 13C and 15N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41.MethodsUSGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in 13C and 15N together with l-glutamic acid of normal isotopic composition. The δ13C and δ15N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ13CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ13CVPDB = −46.6 mUr), and IAEA-N-1 ammonium sulfate (δ15NAir = +0.43 mUr) and USGS32 potassium nitrate (δ15N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry.ResultsUSGS41a is isotopically homogeneous; the reproducibility of δ13C and δ15N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ13C value of +36.55 mUr relative to VPDB and a δ15N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41.ConclusionsThe new isotopic reference material USGS41a can be used with USGS40 (having a δ13CVPDB value of −26.39 mUr and a δ15NAir value of −4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. A new organic reference material, l-glutamic acid, USGS41a, for δ(13) C and δ(15) N measurements - a replacement for USGS41.

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B; Mroczkowski, Stanley J; Brand, Willi A; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-04-15

    The widely used l-glutamic acid isotopic reference material USGS41, enriched in both (13) C and (15) N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41. USGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in (13) C and (15) N together with l-glutamic acid of normal isotopic composition. The δ(13) C and δ(15) N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ(13) CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ(13) CVPDB = -46.6 mUr), and IAEA-N-1 ammonium sulfate (δ(15) NAir = +0.43 mUr) and USGS32 potassium nitrate (δ(15) N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry. USGS41a is isotopically homogeneous; the reproducibility of δ(13) C and δ(15) N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ(13) C value of +36.55 mUr relative to VPDB and a δ(15) N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41. The new isotopic reference material USGS41a can be used with USGS40 (having a δ(13) CVPDB value of -26.39 mUr and a δ(15) NAir value of -4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. Spectroscopic observations of 14N/15N ratios in both NH2 and CN in comet C/2013 US10 (Catalina)

    Science.gov (United States)

    Shinnaka, Yoshiharu; Kawakita, Hideyo

    2016-10-01

    Comet is one of the primordial small bodies in the solar system and probably it has kept the information about the evolution of materials from the pre-solar molecular cloud to the solar nebula.Isotopic ratio in volatiles is one of the primordial properties of comets. A heavier isotopes trend to be captured into a molecule by chemical reactions under very low-temperature conditions (called as fractionation). For instance, D/H ratio of water (HDO/H2O) in comet is enriched in D atom than the elemental abundance ratios of D/H in entire solar system [1]. Based on the observed D/H ratios in cometary water, a presumed temperature is ~20-50 K as the formation temperature of water (most abundant volatiles in cometary nucleus), by assuming water formed in gas-phase chemistry [2].Besides, the nitrogen isotopic ratios (14N/15N) have been determined from CN and HCN (which is believed a dominant "parent" species of CN in the coma) in >20 comets [3,4]. They demonstrated cometary HCN and CN show high 15N-fractionation with respect to the proto-solar value by a factor of ~3 and with a small diversity. Moreover, 14N/15N ratios in NH3 in comets has been determined from intensity ratios of NH2 isotopologues [5,6,7], and both 15N-fractionation as much as HCN in comets and a small diversity are seen in those 14N/15N ratios in NH3. However, there is a few reports about 14N/15N ratios in both HCN and NH3 in the same comets, and discussions about the relationship between these 14N/15N ratios have not been yet.We present 14N/15N ratios in both NH2 and CN in comet C/2013 US10 (Catalina). High-resolution optical spectra of the comet were taken with the HDS spectrograph mounted on the Subaru Telescope (Hawaii) on UT 2016 January 2-3. We will discuss about the origins of these volatiles based on the 14N/15N ratios.This work was supported by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Lis et al., 2013, ApJ 774, L3[2] Millar et al., 1989, ApJ 340, 906[3] Bockelée-Morvan et al

  7. Leaf δ15N as an indicator of arbuscular mycorrhizal nitrogen uptake in a coastal-plain forest (restinga forest) at Southeastern Brazil

    Science.gov (United States)

    Mardegan, S. F.; Valadares, R.; Martinelli, L.

    2013-12-01

    Restinga diversity contrasts with a series of adverse environmental conditions that constrain their development, including nutrient limitation. In this sense, the mutualistic symbiosis between plants and arbuscular mycorrhizal fungi (AMF) may contribute in nutrient acquisition, including nitrogen. However, this association deeply affects plant nitrogen isotopic composition (δ15N), since assimilation processes and biochemical reactions within the fungi may reflect in a delivered product with an isotopic composition about 8 to 10 ‰ lower than that observed at the fungal symbiont per se. Here we assessed if the association with AMF affects δ15N values of plant species from a coastal-plain forest (restinga forest) at Southeastern Brazil. Accordingly, we analyzed the nutritional and isotopic compositions from ecosystem key-compartments (soil, litter and leaves), relating plant δ15N with the colonization rates. The study was carried out in a permanent plot (1 ha) at a coastal-plain forest (restinga forest) at the Serra do Mar State Park, SP, Brazil. Sampled vegetation is characterized by the lack of a well-defined stratification and a rather open canopy. It also comprises trees ranging from 10 to 15-m high. Soils are deep and sandy, being characterized by high acidity, nutrient deficiency and a dense litter cover. We randomly collected five samples (250 mg) from topsoil (0-10 cm) and five to ten leaves from individuals belonging to 16 plant species of high relevance within the site (IVI index). We also collected superficial (0-10 cm depth) fine roots (5 g) and 13 samples (100 g) of fine litter next to the individuals sampled. Soil samples were air-dried, sieved, homogenized and used in the physical-chemical characterization. The remainder was ground to a fine powder to determine nitrogen concentrations and δ15N values. Leaves were dried at 50 °C, finely milled and used for the determination of nitrogen concentrations, C/N ratios and δ15N values. Root samples were

  8. Intestinal renal metabolism of L-citrulline and L-arginine following enteral or parenteral infusion of L-alanyl-L-[2,15N]glutamine or L-[2,15N]glutamine in mice.

    Science.gov (United States)

    Boelens, Petra G; van Leeuwen, Paul A M; Dejong, Cornelis H C; Deutz, Nicolaas E P

    2005-10-01

    Previously, we observed increased plasma arginine (ARG) concentrations after glutamine (GLN)-enriched diets, in combination with clinical benefits. GLN delivers nitrogen for ARG synthesis, and the present study was designed to quantify the interorgan relationship of exogenous L-GLN or GLN dipeptide, by enteral or parenteral route, contributing to intestinal citrulline (CIT) and renal de novo ARG synthesis in mice. To study this, we used a multicatheterized mouse model with Swiss mice (n = 43) in the postabsorptive state. Stable isotopes were infused into the jugular vein or into the duodenum {per group either free L-[2,(15)N]GLN or dipeptide L-ALA-L-[2,(15)N]GLN, all with L-[ureido-(13)C-(2)H(2)]CIT and L-[guanidino-(15)N(2)-(2)H(2)]ARG} to establish renal and intestinal ARG and CIT metabolism. Blood flow was measured using (14)C-para-aminohippuric acid. Net intestinal CIT release, renal uptake of CIT, and net renal ARG efflux was found, as assessed by arteriovenous flux measurements. Quantitatively, more de novo L-[2,(15)N]CIT was produced when free L-[2,(15)N]GLN was given than when L-ALA-L-[2,(15)N]GLN was given, whereas renal de novo L-[2,(15)N]ARG was similar in all groups. In conclusion, the intestinal-renal axis is hereby proven in mice in that L-[2,(15)N]GLN or dipeptide were both converted into de novo renal L-[2,(15)N]ARG; however, not all was derived from intestinal L-[2,(15)N]CIT production. In this model, the feeding route and form of GLN did not influence de novo renal ARG production derived from GLN.

  9. Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferré, R., E-mail: kn638@yahoo.fr [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Cornelis, F. [Department of Radiology, Pellegrin Hospital, Place Amélie Raba Léon, 33076 Bordeaux (France); Verkarre, V. [Department of Pathology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Eiss, D.; Correas, J.M. [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Grenier, N. [Department of Radiology, Pellegrin Hospital, Place Amélie Raba Léon, 33076 Bordeaux (France); Hélénon, O. [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France)

    2015-03-15

    Highlights: •Diagnosis of AMLs with minimal fat (mfAMLs) is still challenging with MRI. •Drop of signal on opposed-phase MR imaging is not specific of mfAMLs. •Double-echo gradient-echo sequences cannot accurately differentiate renal mfAMLs from other renal tumors. -- Abstract: Objectives: The purpose of this retrospective study was to evaluate the diagnostic performance of double-echo gradient chemical shift (GRE) magnetic resonance (MR) imaging for the differentiation of angiomyolipomas with minimal fat (mfAML) from other homogeneous solid renal tumors. Methods: Between 2005 and 2010 in two institutions, all histologically proven homogenous solid renal tumors imaged with computed tomography and MR imaging, including GRE sequences, have been retrospectively selected. A total of 118 patients (mean age: 61 years; range: 20–87) with 119 tumors were included. Two readers measured independently the signal intensity (SI) on GRE images and calculated SI index (SII) and tumor-to-spleen ratio (TSR) on in-phase and opposed-phase images. Intra- and interreader agreement was obtained. Cut-off values were derived from the receiver operating characteristic (ROC) curve analysis. Results: Twelve mfAMLs in 11 patients were identified (mean size: 2.8 cm; range: 1.2–3.5), and 107 non-AML tumors (3.2 cm; 1–7.8) in 107 patients. The intraobserver reproducibility of SII and TSR was excellent with an intraclass correlation coefficient equal to 0.99 [0.98–0.99]. The coefficient of correlation between the readers was 0.99. The mean values of TSR for mfAMLs and non-mfAMLs were −7.0 ± 22.8 versus −8.2 ± 21.2 for reader 1 and −6.7 ± 22.8 versus −8.4 ± 20.9 for reader 2 respectively. No significant difference was noticed between the two groups for SII (p = 0.98) and TSR (p = 0.86). Only 1 out of 12 mfAMLs and 11 of 107 non-AML tumors presented with a TSR inferior to −30% (p = 0.83). Conclusion: In a routine practice, GRE sequences cannot be a confident tool to

  10. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    Science.gov (United States)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation

  11. Growth and foliar d15N of a Mojave desert shrub in relation to soil hydrological dynamics

    Science.gov (United States)

    Foliar 15N ratios (del15N), % N, and canopy volumes were measured in the two Mojave Desert dominant shrubs, the evergreen Larrea tridentata and drought deciduous Ambrosia dumosa growing across a geomorphically determined soil mosaic. Across three soils with increasingly strong age-dependent surface...

  12. The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters

    Science.gov (United States)

    Sigman, D. M.; Altabet, M. A.; McCorkle, D. C.; Francois, R.; Fischer, G.

    1999-12-01

    We report nitrogen isotope data for nitrate from transects of hydrocast and surface samples collected in the eastern Indian and Pacific sectors of the Southern Ocean, focusing here on the data from the upper water column to study the effect of nitrate consumption by phytoplankton. The δ15N of nitrate increases by 1-2‰ from deep water into the Antarctic summertime surface layer, due to kinetic isotopic fractionation during nitrate uptake. Estimation of the nitrate uptake isotope effect from Antarctic depth profiles yields values in the range of 5-6‰ in east Indian sector and 4-5‰ in the east Pacific sector. Surface transect data from the Pacific sector also yield values of 4-5‰. The major uncertainty in the profile-based estimation of the isotope effect involves the δ15N of nitrate from the temperature minimum layer below the summertime Antarctic surface layer, which deviates significantly from the predictions of simple models of isotope fractionation. For the Subantarctic surface, it is possible to distinguish between nitrate supplied laterally from the surface Antarctic and nitrate supplied vertically from the Subantarctic thermocline because of the distinctive relationships between the δ15N and concentration of nitrate in these two potential sources. Our Subantarctic samples, collected during the summer and fall, indicate that nitrate is supplied to the Subantarctic surface largely by northward transport of Antarctic surface water. Isotopic data from the Pacific sector of the Subantarctic suggest an isotope effect of 4.5‰, indistinguishable from the Antarctic estimates in this sector.

  13. Determination of pKa values of tenoxicam from 1H NMR chemical shifts and of oxicams from electrophoretic mobilities (CZE) with the aid of programs SQUAD and HYPNMR.

    Science.gov (United States)

    Rodríguez-Barrientos, Damaris; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Moya-Hernández, Rosario; Gómez-Balderas, Rodolfo; Ramírez-Silva, María Teresa

    2009-12-15

    In this work it is explained, by the first time, the application of programs SQUAD and HYPNMR to refine equilibrium constant values through the fit of electrophoretic mobilities determined by capillary zone electrophoresis experiments, due to the mathematical isomorphism of UV-vis absorptivity coefficients, NMR chemical shifts and electrophoretic mobilities as a function of pH. Then, the pK(a) values of tenoxicam in H(2)O/DMSO 1:4 (v/v) have been obtained from (1)H NMR chemical shifts, as well as of oxicams in aqueous solution from electrophoretic mobilities determined by CZE, at 25 degrees C. These values are in very good agreement with those reported by spectrophotometric and potentiometric measurements.

  14. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds

    Science.gov (United States)

    Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.

    2000-01-01

    We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.

  15. Capture cross sections of 15N(n, γ)16N at astrophysical energies

    Science.gov (United States)

    Fan, Guang-Wei; Ma, Jun-Bing; Sheng, Zong-Qiang; Shi, Guo-Zhu; Tian, Feng; Wang, Jun; Zhang, Chao

    2016-12-01

    We have reanalyzed reaction cross sections of 16N on a 12C target. The nucleon density distribution of 16N, especially surface density distribution, was extracted using the modified Glauber model. On the basis of dilute surface densities, the 15N(n, γ)16N reaction is discussed within the framework of the direct capture reaction mechanism. The calculations agree quite well with the experimental data. Support given by National Natural Science Foundation of China (11447236, 11505002, 11247001) and Foundation of Anhui University of Science and Technology (11130, 12608)

  16. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    Science.gov (United States)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  17. Optical Microscopy Characterization for Borehole U-15n#12 in Support of NCNS Source Physics Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jennifer E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sussman, Aviva Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-22

    Optical microscopy characterization of thin sections from corehole U-15n#12 is part of a larger material characterization effort for the Source Physics Experiment (SPE). The SPE program was conducted in Nevada with a series of explosive tests designed to study the generation and propagation of seismic waves inside Stock quartz monzonite. Optical microscopy analysis includes the following: 1) imaging of full thin sections (scans and mosaic maps); 2) high magnification imaging of petrographic texture (grain size, foliations, fractures, etc.); and 3) measurement of microfracture density.

  18. Effect of estrogens on urinary /sup 15/N balance in girls

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, M.; Kempken, B.; Prader, A. (Zurich Univ. (Switzerland))

    1984-08-01

    While the anabolic and growth-promoting effects of testosterone are known to be important for pubertal growth in boys, the role of estrogens (E) in the female spurt is less certain. Adrenal androgens have been considered to be more important than ovarian E. To study the anabolic effects of E, there has been carried out a pilot study in 9 girls aged 11 to 15 years. Before and 6 days after the start of E treatment, urinary /sup 15/N balance studies were performed, using /sup 15/NH/sub 4/Cl.