WorldWideScience

Sample records for 15n backbone chemical

  1. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  2. 1H, 13C and 15N backbone and side-chain chemical shift assignment of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    Science.gov (United States)

    Huculeci, Radu; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico A J

    2011-10-01

    SH2 domains are interaction modules uniquely dedicated to recognize phosphotyrosine sites, playing a central role in for instance the activation of tyrosine kinases or phosphatases. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of the SH2 domain of the human protein tyrosine kinase Fyn, both in its free state and bound to a high-affinity phosphotyrosine peptide corresponding to a specific sequence in the hamster middle-T antigen. The BMRB accession numbers are 17,368 and 17,369, respectively.

  3. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pan [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xi, Zhaoyong; Wang, Hu [School of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Chaowei [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-11-19

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.

  4. Backbone dynamics of the EIAV-Tat protein from {sup 15}N relaxation studies

    Energy Technology Data Exchange (ETDEWEB)

    Ejchart, A.; Herrmann, F.; Roesch, P.; Sticht, H.; Willbold, D. [Bayreuth Univ., Bayreuth (Germany)

    1994-12-31

    The work investigates the mobility of EIAV-Tat protein backbone by measuring the relaxation parameters of the {sup 15}N nitrogens. High degree of the flexibility, non-typical of rigid, well structured proteins was shown. 3 refs, 2 figs.

  5. Redox-controlled backbone dynamics of human cytochrome c revealed by {sup 15}N NMR relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Koichi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kamiya, Masakatsu [Graduate School of Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Uchida, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kawano, Keiichi [Graduate School of Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Ishimori, Koichiro, E-mail: koichiro@sci.hokudai.ac.jp [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2010-07-23

    Research highlights: {yields} The dynamic parameters for the backbone dynamics in Cyt c were determined. {yields} The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. {yields} The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. {yields} The redox-dependent dynamics are shown in the backbone of Cyt c. {yields} The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D {sup 15}N NMR relaxation experiments. {sup 15}N T{sub 1} and T{sub 2} values and {sup 1}H-{sup 15}N NOEs of uniformly {sup 15}N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S{sup 2}), the effective correlation time for internal motion ({tau}{sub e}), the {sup 15}N exchange broadening contributions (R{sub ex}) for each residue, and the overall correlation time ({tau}{sub m}) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S{sup 2} value was increased from 0.88 {+-} 0.01 to 0.92 {+-} 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S{sup 2} values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  6. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2012-03-21

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  7. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    Science.gov (United States)

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  8. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    Science.gov (United States)

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  9. 15N NMR chemical shifts in papaverine decomposition products

    Science.gov (United States)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  10. Chemical synthesis of glycoproteins with the specific installation of gradient enriched 15N-labeled amino acids for getting insight into glycoprotein behavior.

    Science.gov (United States)

    Kajihara, Yasuhiro; Nguyen, Minh Hien; Izumi, Masayuki; Sato, Hajime; Okamoto, Ryo

    2017-03-09

    We propose a novel partially 15N-labelling method for the amide backbone of a synthetic glycoprotein. By use of a chemical approach utilizing SPPS and NCL, we inserted thirteen 15N-labeled amino acids at specific positions of the protein backbone, while intentionally varying the enrichment of 15N atoms. This idea enables us to discriminate even the same type of amino acid based on the intensities of 1H-15N HSQC signals, thus allowing us to understand the dynamics of the local conformation of a synthetic homogeneous glycoprotein. Results suggested that the attachment of an oligosaccharide of either a bi-antennary complex-type or a high-mannose-type did not disturb protein conformation. However, T1 values suggested that the oligosaccharide influenced dynamics at the local conformation. Temperature-varied CD spectra and T1 values clearly indicated that oligosaccharides appeared to inhibit protein fluctuation or, in other words, stabilize protein structure.

  11. 1H, 15N and 13C backbone resonance assignments of the archetypal serpin α1-antitrypsin.

    Science.gov (United States)

    Nyon, Mun Peak; Kirkpatrick, John; Cabrita, Lisa D; Christodoulou, John; Gooptu, Bibek

    2012-10-01

    Alpha(1)-antitrypsin is a 45-kDa (394-residue) serine protease inhibitor synthesized by hepatocytes, which is released into the circulatory system and protects the lung from the actions of neutrophil elastase via a conformational transition within a dynamic inhibitory mechanism. Relatively common point mutations subvert this transition, causing polymerisation of α(1)-antitrypsin and deficiency of the circulating protein, predisposing carriers to severe lung and liver disease. We have assigned the backbone resonances of α(1)-antitrypsin using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for a detailed solution state characterization of the structural properties of this highly dynamic protein via NMR methods.

  12. Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A. Patricia [University of Washington, Department of Medicinal Chemistry, School of Pharmacy (United States); Spyracopoulos, Leo [Department of Biochemistry (Canada); Irvin, Randall T. [University of Alberta, Department of Medical Microbiology and Immunology (Canada); Sykes, Brian D. [Department of Biochemistry (Canada)

    2000-07-15

    The backbone dynamics of a {sup 15}N-labeled recombinant PAK pilin peptide spanning residues 128-144 in the C-terminal receptor binding domain of Pseudomonas aeruginosa pilin protein strain PAK (Lys{sup 128}-Cys-Thr-Ser-Asp-Gln-Asp-Glu-Gln-Phe-Ile-Pro-Lys-Gly-Cys-Ser-Lys{sup 144}) were probed by measurements of {sup 15}N NMR relaxation. This PAK(128-144) sequence is a target for the design of a synthetic peptide vaccine effective against multiple strains of P. aeruginosa infection. The {sup 15}N longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation rates and the steady-state heteronuclear {l_brace}{sup 1}H{r_brace}-{sup 15}N NOE were measured at three fields (7.04, 11.74 and 14.1 Tesla), five temperatures (5, 10, 15, 20, and 25 deg. C ) and at pH 4.5 and 7.2. Relaxation data was analyzed using both the 'model-free' formalism [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559 and 4559-4570] and the reduced spectral density mapping approach [Farrow, N.A., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153-162]. The relaxation data, spectral densities and order parameters suggest that the type I and type II {beta}-turns spanning residues Asp{sup 134}-Glu-Gln-Phe{sup 137} and Pro{sup 139}-Lys-Gly-Cys{sup 142}, respectively, are the most ordered and structured regions of the peptide. The biological implications of these results will be discussed in relation to the role that backbone motions play in PAK pilin peptide immunogenicity, and within the framework of developing a pilin peptide vaccine capable of conferring broad immunity across P. aeruginosa strains.

  13. (1)H, (15)N, (13)C backbone resonance assignments of human soluble catechol O-methyltransferase in complex with S-adenosyl-L-methionine and 3,5-dinitrocatechol.

    Science.gov (United States)

    Czarnota, Sylwia; Baxter, Nicola J; Cliff, Matthew J; Waltho, Jonathan P; Scrutton, Nigel S; Hay, Sam

    2016-12-15

    Catechol O-methyltransferase (COMT) is an enzyme that plays a major role in catechol neurotransmitter deactivation. Inhibition of COMT can increase neurotransmitter levels, which provides a means of treatment for Parkinson's disease, schizophrenia and depression. COMT exists as two isozymes: a soluble cytoplasmic form (S-COMT), expressed in the liver and kidneys and a membrane-bound form (MB-COMT), found mostly in the brain. Here we report the backbone (1)H, (15)N and (13)C chemical shift assignments of S-COMT in complex with S-adenosyl-L-methionine, 3,5-dinitrocatechol and Mg(2+). Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 97 % of all backbone resonances were assigned in the complex, with 205 out of a possible 215 residues assigned in the (1)H-(15)N TROSY spectrum. Prediction of solution secondary structure from a chemical shift analysis using the TALOS+ webserver is in good agreement with published X-ray crystal structures.

  14. Refined solution structure and backbone dynamics of 15N-labeled C12A-p8MTCP studied by NMR relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Barthe, Philippe; Chiche, Laurent; Declerck, Nathalie; Delsuc, Marc-Andre [Universite de Montpellier I, Faculte de Pharmacie, Centre de Biochimie Structurale, CNRS-UMR 9955, INSERM-U414 (France); Lefevre, Jean-Francois [Universite Louis Pasteur, CNRS UPR-9003, ESBS (France); Malliavin, Therese [Universite de Montpellier I, Faculte de Pharmacie, Centre de Biochimie Structurale, CNRS-UMR 9955, INSERM-U414 (France); Mispelter, Joel [Centre Universitaire Bat 112, INSERM-U350, Institut Curie, Biologie (France); Stern, Marc-Henri [Hopital Saint-Louis, Unite INSERM-U462 (France); Lhoste, Jean-Marc; Roumestand, Christian [Universite de Montpellier I, Faculte de Pharmacie, Centre de Biochimie Structurale, CNRS-UMR 9955, INSERM-U414 (France)

    1999-12-15

    MTCP1 (for Mature-T-Cell Proliferation) was the first gene unequivocally identified in the group of uncommon leukemias with a mature phenotype. The three-dimensional solution structure of the human p8{sup MTCP} protein encoded by the MTCP1 oncogene has been previously determined by homonuclear proton two-dimensional NMR methods at 600 MHz: it consists of an original scaffold comprising three {alpha}-helices, associated with a new cysteine motif. Two of the helices are covalently paired by two disulfide bridges, forming an {alpha}-hairpin which resembles an antiparallel coiled-coil. The third helix is orientated roughly parallel to the plane defined by the {alpha}-antiparallel motif and appears less well defined. In order to gain more insight into the details of this new scaffold, we uniformly labeled with nitrogen-15 a mutant of this protein (C12A-p8{sup MTCP1}) in which the unbound cysteine at position 12 has been replaced by an alanine residue, thus allowing reproducibly high yields of recombinant protein. The refined structure benefits from 211 additional NOEs, extracted from {sup 15}N-edited 3D experiments, and from a nearly complete set of {phi} angular restraints allowing the estimation of the helical content of the structured part of the protein. Moreover, measurements of {sup 15} N spin relaxation times and heteronuclear {sup 15} N{sup 1}HNOEs provided additional insights into the dynamics of the protein backbone. The analysis of the linear correlation between J(0) and J({omega}) was used to interpret relaxation parameters. It appears that the apparent relative disorder seen in helix III is not simply due to a lack of experimental constraints, but associated with substantial contributions of sub-nanosecond motions in this segment.

  15. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  16. Post-translational heterocyclic backbone modifications in the 43-peptide antibiotic microcin B17. Structure elucidation and NMR study of a 13C,15N-labelled gyrase inhibitor.

    Science.gov (United States)

    Bayer, A; Freund, S; Jung, G

    1995-12-01

    Microcin B17 (McB17), the first known gyrase inhibitor of peptidic nature, is produced by ribosomal synthesis and post-translational modification of the 69-residue precursor protein by an Escherichia coli strain. To elucidate the chemical structure of the mature 43-residue peptide antibiotic, fermentation and purification protocols were established and optimized which allowed the isolation and purification of substantial amounts of highly pure McB17 (non-labelled, 15N-labelled and 13C/15N-labelled peptide. By ultraviolet-absorption spectroscopy. HPLC-electrospray mass spectrometry and GC-mass spectrometry, amino acid analysis, protein sequencing, and, in particular, multidimensional NMR, we could demonstrate and unequivocally prove that the enzymic modification of the precursor backbone at Gly-Cys and Gly-Ser segments leads to the formation of 2-aminomethylthiazole-4-carboxylic acid and 2-aminomethyloxazole-4-carboxylic acid, respectively. In addition, two bicyclic modifications 2-(2-aminomethyloxazolyl)thiazole-4-carboxylic acid and 2-(2-aminomethylthiazolyl)oxazole-4-carboxylic acid were found that consist of directly linked thiazole and oxazole rings derived from one Gly-Ser-Cys and one Gly-Cys-Ser segment. Analogous to the thiazole and oxazole rings found in antitumor peptides of microbial and marine origin, these heteroaromatic ring systems of McB17 presumably play an important role in its gyrase-inhibiting activity, e.g. interacting with the DNA to trap the covalent protein-DNA intermediate of the breakage-reunion reaction of the gyrase.

  17. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by {sup 15}N NMR relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Canales-Mayordomo, Angeles; Fayos, Rosa [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain); Angulo, Jesus; Ojeda, Rafael [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Martin-Pastor, Manuel [Unidad de RM y Unidad de RMN de Biomoleculas Asociada al CSIC, Laboratorio de Estructura e Estructura de Biomoleculas Jose Carracido (Spain); Nieto, Pedro M.; Martin-Lomas, Manuel [Instituto de Investigaciones Quimicas, CSIC, Grupo de Carbohidratos (Spain); Lozano, Rosa; Gimenez-Gallego, Guillermo; Jimenez-Barbero, Jesus [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y Funcion de Proteinas (Spain)], E-mail: jjbarbero@cib.csic.es

    2006-08-15

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR)

  18. 1H, 15N and 13C backbone assignments of GDP-bound human H-Ras mutant G12V.

    Science.gov (United States)

    Amin, Nader; Chiarparin, Elisabetta; Coyle, Joe; Nietlispach, Daniel; Williams, Glyn

    2016-04-01

    Harvey Ras (H-Ras) is a membrane-associated GTPase with critical functions in cell proliferation and differentiation. The G12V mutant of H-Ras is one of the most commonly encountered oncoproteins in human cancer. This mutation disrupts the GTPase activity of H-Ras, leading to constitutive activation and aberrant downstream signalling. Here we report the backbone resonance assignments of human H-Ras mutant G12V lacking the C-terminal membrane attachment domain.

  19. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    Science.gov (United States)

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  20. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Science.gov (United States)

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  1. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    Science.gov (United States)

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  3. Essential roles of four-carbon backbone chemicals in the control of metabolism

    Institute of Scientific and Technical Information of China (English)

    Sabrina; Chriett; Luciano; Pirola

    2015-01-01

    The increasing incidence of obesity worldwide and its related cardiometabolic complications is an urgent public health problem. While weight gain results from a negative balance between the energy expenditure and calorie intake, recent research has demonstrated that several small organic molecules containing a four-carbon backbone can modulate this balance by favoring energy expenditure, and alleviating endoplasmic reticulum stress and oxidative stress. Such small molecules include the bacterially produced short chain fatty acid butyric acid, its chemically produced derivative 4-phenylbutyric acid, the main ketone body D-β-hydroxybutyrate- synthesized by the liver- and the recently discovered myokine β-aminoisobutyric acid. Conversely, another butyraterelated molecule, α-hydroxybutyrate, has been found to be an early predictor of insulin resistance and glucose intolerance. In this minireview, we summarize recent advances in the understanding of the mechanism of action of these molecules, and discuss their use as therapeutics to improve metabolic homeostasis or their detection as early biomarkers of incipient insulin resistance.

  4. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy.

    Science.gov (United States)

    Shindo, H; Wooten, J B; Pheiffer, B H; Zimmerman, S B

    1980-02-05

    31P nuclear magnetic resonance of highly oriented DNA fibers has been observed for three different conformations, namely, the A, B, and C forms of DNA. At a parallel orientation of the fiber axis with respect to the magnetic field, DNA fibers in both the A and B forms exhibit a single, abnormally broad resonance; in contrast, fibers in the C form show almost the full span of the chemical shift anisotropy (170 ppm). The spectra of the fibers oriented perpendicular indicate that the DNA molecules undergo a considerable rotational motion about the helical axis, with a rate of greater than 2 x 10(3) s-1 for the B-form DNA. Theoretical considerations indicate that the 31P chemical shift data for the B-form DNA fibers are consistent with the atomic coordinates of the phosphodiester group proposed by Langridge et al. [Langridge, R., Wilson, H. R. Hooper, C. W., Wilkins, M. H. F., & Hamilton, L. D. (1960) J. Mol. Biol. 2, 19--37] but not with the corresponding coordinates proposed by Arnott and Hukins [Arnott, S., & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Coomun. 47, 1504--1509], and also lead to the conclusion that the phosphodiester orientation must vary significantly along the DNA molecule. The latter result suggests that DNA has significant variations in its backbone conformation along the molecule.

  5. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2016-09-01

    Full Text Available Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs. Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  6. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    Science.gov (United States)

    Pomin, Vitor H

    2016-09-07

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.

  7. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    Science.gov (United States)

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  8. Measurement of 15N longitudinal relaxation rates in 15NH4+ spin systems to characterise rotational correlation times and chemical exchange

    Science.gov (United States)

    Hansen, D. Flemming

    2017-06-01

    Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that 15N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of 15N-based spin density operator elements of 15NH4+ spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the 15NH4+ spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the 15NH4+ ion as well as report on chemical exchange events of the 15NH4+ ion. Applications to 15NH4+ in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of 15NH4+ bound to a 41 kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for 15N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems.

  9. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  10. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    Science.gov (United States)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  11. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  12. The impact of the pi-electron conjugation on (15)N, (13)C and (1)H NMR chemical shifts in push-pull benzothiazolium salts. Experimental and theoretical study.

    Science.gov (United States)

    Hrobárik, Peter; Horváth, Branislav; Sigmundová, Ivica; Zahradník, Pavol; Malkina, Olga L

    2007-11-01

    The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data. (c) 2007 John Wiley & Sons, Ltd.

  13. Pseudo 5D HN(C)N Experiment to Facilitate the Assignment of Backbone Resonances in Proteins Exhibiting High Backbone Shift Degeneracy

    CERN Document Server

    Kumar, Dinesh; Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish; Guleria, Anupam

    2014-01-01

    Assignment of protein backbone resonances is most routinely carried out using triple resonance three dimensional NMR experiments involving amide 1H and 15N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high degree of backbone shift degeneracy. In this backdrop, a novel reduced dimensionality (RD) experiment -(5,3)D-hNCO-CANH- is presented to facilitate (and/or to validate) the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide 15N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. HiNi and Hi-1Ni-1) for overlapping amide NH peaks. The experiment -encoding 5D spectral information- leads to a conventional 3D spectrum with significantly reduced spectral crowding and complexity. The impr...

  14. Synthesis of Gemcitabine-13C, 15N2 and Gemcitabine-13C, 15N2 Metabolites

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-gu;YANG Shao-zu;YAN Sheng-wang;FANG Ning-jing;CAI Ding-long;LI Gang

    2014-02-01

    Full Text Available Homemade urea-13C, 15N2 was used to react with 3-methyl acrylonitrile closure to form cytosine-13C, 15N2 (2,which was protected by trimethylsilylation with BSA and condensed with 2-deoxy-2,2-difluoro-D-erythro-pentofuranose-3,5-dibenzoate-1-methanesulfonate at 120 ℃ to afford blocked gemcitabine-13C, 15N2. Hydrolytic removal of the blocking groups of gemcitabine-13C, 15N2 with NaOH gave gemcitabine-13C, 15N2, and its metabolite was obtained by further hydrolytic deamination of gemcitabine-13C, 15N2. The final products were characterized and detected by HPLC, LC-MS and NMR, and confirmed that the chemical purities were higher than 98%, isotopic abundances were 99% 13C, 98% 15N, and they were suitable for drug metabolism studies.

  15. Backbone and sidechain 1H, 13C and 15N resonance assignments of the human brain-type fatty acid binding protein (FABP7) in its apo form and the holo forms binding to DHA, oleic acid, linoleic acid and elaidic acid

    DEFF Research Database (Denmark)

    Oeemig, Jesper S; Jørgensen, Mathilde L; Hansen, Mikka S

    2009-01-01

    In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid.......In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid....

  16. Cross correlations between {sup 13}C-{sup 1}H dipolar interactions and {sup 15}N chemical shift anisotropy in nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranathan, Sapna [Institut de Chimie Moleculaire et Biologique, Ecole Polytechnique Federale de Lausanne, BCH (Switzerland); Kim, Chul-Hyun [University of California, Department of Chemistry (United States); Bodenhausen, Geoffrey [Institut de Chimie Moleculaire et Biologique, Ecole Polytechnique Federale de Lausanne, BCH (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2003-12-15

    Two sets of cross-correlated relaxation rates involving chemical shift anisotropy and dipolar interactions have been measured in an RNA kissing complex. In one case, both the CSA and dipolar interaction tensors are located on the same nucleotide base and are rigidly fixed with respect to each other. In the other case, the CSA tensor is located on the nucleotide base whereas the dipolar interaction is located on the adjoining ribose unit. Analysis of the measured rates in terms of isotropic or anisotropic rotational diffusion has been carried out for both cases. A marked difference between the two models is observed for the cross-correlation rates involving rigidly fixed spin interactions. The influence of internal motions about the glycosidic linkage between the nucleotide base and the ribose unit on cross-correlated relaxation rates has been estimated by applying a model of restricted rotational diffusion. Local motions seem to have a more pronounced effect on cross-correlated relaxation rates when the two spin interactions are not rigidly fixed with respect to each other.

  17. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    Science.gov (United States)

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  18. Testing Backbone.js

    CERN Document Server

    Roemer, Ryan

    2013-01-01

    This book is packed with the step by step tutorial and instructions in recipe format helping you setup test infrastructure and gradually advance your skills to plan, develop, and test your backbone applications.If you are a JavaScript developer looking for recipes to create and implement test support for your backbone application, then this book is ideal for you.

  19. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    OpenAIRE

    2015-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc. 2015, 137, 1404). Hyperpolarization on 15N (an...

  20. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  1. Solvent effects on 15N NMR coordination shifts.

    Science.gov (United States)

    Kleinmaier, Roland; Arenz, Sven; Karim, Alavi; Carlsson, Anna-Carin C; Erdélyi, Máté

    2013-01-01

    (15)N NMR chemical shift became a broadly utilized tool for characterization of complex structures and comparison of their properties. Despite the lack of systematic studies, the influence of solvent on the nitrogen coordination shift, Δ(15)N(coord), was hitherto claimed to be negligible. Herein, we report the dramatic impact of the local environment and in particular that of the interplay between solvent and substituents on Δ(15)N(coord). The comparative study of CDCl(3) and CD(3)CN solutions of silver(I)-bis(pyridine) and silver(I)-bis(pyridylethynyl)benzene complexes revealed the strong solvent dependence of their (15)N NMR chemical shift, with a solvent dependent variation of up to 40 ppm for one and the same complex. The primary influence of the effect of substituent and counter ion on the (15)N NMR chemical shifts is rationalized by corroborating Density-Functional Theory (nor discrete Fourier transform) calculations on the B3LYP/6-311 + G(2d,p)//B3LYP/6-31G(d) level. Cooperative effects have to be taken into account for a comprehensive description of the coordination shift and thus the structure of silver complexes in solution. Our results demonstrate that interpretation of Δ(15)N(coord) in terms of coordination strength must always consider the solvent and counter ion. The comparable magnitude of Δ(15)N(coord) for reported transition metal complexes makes the principal findings most likely general for a broad scale of complexes of nitrogen donor ligands, which are in frequent use in modern organometallic chemistry.

  2. Reduced Dimensionality (4,3)D-hnCOCANH Experiment: An Efficient Backbone Assignment tool for NMR studies of Proteins

    CERN Document Server

    Kumar, Dinesh

    2013-01-01

    Sequence specific resonance assignment and secondary structure determination of proteins form the basis for variety of structural and functional proteomics studies by NMR. In this context, an efficient standalone method for rapid assignment of backbone (1H, 15N, 13Ca and 13C') resonances and secondary structure determination of proteins has been presented here. Compared to currently available strategies used for the purpose, the method employs only a single reduced dimensionality (RD) experiment -(4,3)D-hnCOCANH and exploits the linear combinations of backbone (13Ca and 13C') chemical shifts to achieve a dispersion relatively better compared to those of individual chemical shifts (see the text) for efficient and rapid data analysis. Further, the experiment leads to the spectrum with direct distinction of self (intra-residue) and sequential (inter-residue) carbon correlation peaks; these appear opposite in signs and therefore can easily be discriminated without using an additional complementary experiment. On ...

  3. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory.

    Science.gov (United States)

    Mládek, Arnošt; Krepl, Miroslav; Svozil, Daniel; Cech, Petr; Otyepka, Michal; Banáš, Pavel; Zgarbová, Marie; Jurečka, Petr; Sponer, Jiří

    2013-05-21

    The DNA sugar-phosphate backbone has a substantial influence on the DNA structural dynamics. Structural biology and bioinformatics studies revealed that the DNA backbone in experimental structures samples a wide range of distinct conformational substates, known as rotameric DNA backbone conformational families. Their correct description is essential for methods used to model nucleic acids and is known to be the Achilles heel of force field computations. In this study we report the benchmark database of MP2 calculations extrapolated to the complete basis set of atomic orbitals with aug-cc-pVTZ and aug-cc-pVQZ basis sets, MP2(T,Q), augmented by ΔCCSD(T)/aug-cc-pVDZ corrections. The calculations are performed in the gas phase as well as using a COSMO solvent model. This study includes a complete set of 18 established and biochemically most important families of DNA backbone conformations and several other salient conformations that we identified in experimental structures. We utilize an electronically sufficiently complete DNA sugar-phosphate-sugar (SPS) backbone model system truncated to prevent undesired intramolecular interactions. The calculations are then compared with other QM methods. The BLYP and TPSS functionals supplemented with Grimme's D3(BJ) dispersion term provide the best tradeoff between computational demands and accuracy and can be recommended for preliminary conformational searches as well as calculations on large model systems. Among the tested methods, the best agreement with the benchmark database has been obtained for the double-hybrid DSD-BLYP functional in combination with a quadruple-ζ basis set, which is, however, computationally very demanding. The new hybrid density functionals PW6B95-D3 and MPW1B95-D3 yield outstanding results and even slightly outperform the computationally more demanding PWPB95 double-hybrid functional. B3LYP-D3 is somewhat less accurate compared to the other hybrids. Extrapolated MP2(D,T) calculations are not as

  4. HN-NCA heteronuclear TOCSY-NH experiment for {sup 1}H{sup N} and {sup 15}N sequential correlations in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany)

    2015-10-15

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue ‘i’ with that of residues ‘i−1’ and ‘i+1’ in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of {sup 1}J{sub CαN} and {sup 2}J{sub CαN} couplings to transfer the {sup 15}N{sub x} magnetisation from amino acid residue ‘i’ to adjacent residues via the application of a band-selective {sup 15}N–{sup 13}C{sup α} heteronuclear cross-polarisation sequence of ∼100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.

  5. Synthesis of {sup 15}N isotope labeled alanine; Sintese da alanina enriquecida com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant' Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of {sup 15}N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of {sup 15}N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of {alpha}-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ({sup 15}NH{sub 3} aq) was carried out. In order to avoid eventually losses of {sup 15}NH{sub 3}, special cares were adopted, since the production cost is high. Although the acquisition cost of the {sup 13}N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH{sub 3} (aq) being employed. With the establishment of the system for {sup 15}NH{sub 3} recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  6. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements.

    Science.gov (United States)

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-09-01

    Transverse relaxation rate measurements in magic-angle spinning solid-state nuclear magnetic resonance provide information about molecular motions occurring on nanosecond-to-millisecond (ns-ms) time scales. The measurement of heteronuclear ((13)C, (15)N) relaxation rate constants in the presence of a spin-lock radiofrequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins have been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely, (1) the role of CSA/dipolar cross-correlated relaxation (CCR) and (2) the impact of fast proton spin flips (i.e., proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable and that the CCR rate constant depends on ns-ms motions; it can thus provide insight into dynamics. We find that proton spin diffusion attenuates this CCR due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and this article reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation.

  7. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    Science.gov (United States)

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  8. Chemical synthesis of a polypeptide backbone derived from the primary sequence of the cancer protein NY-ESO-1 enabled by kinetically controlled ligation and pseudoprolines.

    Science.gov (United States)

    Harris, Paul W R; Brimble, Margaret A

    2015-03-01

    The cancer protein NY-ESO-1 has been shown to be one of the most promising vaccine candidates although little is known about its cellular function. Using a chemical protein strategy, the 180 amino acid polypeptide, tagged with an arginine solubilizing tail, was assembled in a convergent manner from four unprotected peptide α-thioester peptide building blocks and one cysteinyl polypeptide, which were in turn prepared by Boc and Fmoc solid phase peptide synthesis (SPPS) respectively. To facilitate the assembly by ligation chemistries, non-native cysteines were introduced as chemical handles into the polypeptide fragments; pseudoproline dipeptides and microwave assisted Fmoc SPPS were crucial techniques to prepare the challenging hydrophobic C-terminal fragment. Three sequential kinetically controlled ligations, which exploited the reactivity between peptide arylthioesters and peptide alkylthioesters, were then used in order to assemble the more tractable N-terminal region of NY-ESO-1. The ensuing 147 residue polypeptide thioester then underwent successful final native chemical ligation with the very hydrophobic C-terminal polypeptide bearing an N-terminal cysteine affording the 186 residue polypeptide as an advanced intermediate en route to the native NY-ESO-1 protein. © 2015 Wiley Periodicals, Inc.

  9. Intrinsic Differences in Backbone Dynamics between Wild Type and DNA-Contact Mutants of the p53 DNA Binding Domain Revealed by Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Rasquinha, Juhi A; Bej, Aritra; Dutta, Shraboni; Mukherjee, Sujoy

    2017-09-07

    Mutations in p53's DNA binding domain (p53DBD) are associated with 50% of all cancers, making it an essential system to investigate and understand the genesis and progression of cancer. In this work, we studied the changes in the structure and dynamics of wild type p53DBD in comparison with two of its "hot-spot" DNA-contact mutants, R248Q and R273H, by analysis of backbone amide chemical shift perturbations and (15)N spin relaxation measurements. The results of amide chemical shift changes indicated significantly more perturbations in the R273H mutant than in wild type and R248Q p53DBD. Analysis of (15)N spin relaxation rates and the resulting nuclear magnetic resonance order parameters suggests that for most parts, the R248Q mutant exhibits limited conformational flexibility and is similar to the wild type protein. In contrast, R273H showed significant backbone dynamics extending up to its β-sandwich scaffold in addition to motions along the DNA binding interface. Furthermore, comparison of rotational correlation times between the mutants suggests that the R273H mutant, with a higher correlation time, forms an enlarged structural fold in comparison to the R248Q mutant and wild type p53DBD. Finally, we identify three regions in these proteins that show conformational flexibility to varying degrees, which suggests that the R273H mutant, in addition to being a DNA-contact mutation, exhibits properties of a conformational mutant.

  10. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A.

    Science.gov (United States)

    Holliday, Michael J; Zhang, Fengli; Isern, Nancy G; Armstrong, Geoffrey S; Eisenmesser, Elan Z

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins (Lee Archiv Pharm Res 33(2): 181-187, 2010), but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover (Eisenmesser et al. Science 295(5559): 1520-1523, 2002; Eisenmesser et al. Nature 438(7064): 117-121, 2005). Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment (Takami et al. Extremophiles 8(5): 351-356, 2004). This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  11. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Michael; Zhang, Fengli; Isern, Nancy G.; Armstrong, Geoffrey S.; Eisenmesser, Elan Z.

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins {Lee, 2010 #1167}, but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover {Eisenmesser, 2002 #20;Eisenmesser, 2005 #203}. Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment {Takami, 2004 #1384}. This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  12. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    Energy Technology Data Exchange (ETDEWEB)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  13. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  14. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  15. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    This thesis - Future High Capacity Backbone Networks - deals with the energy efficiency problems associated with the development of future optical networks. In the first half of the thesis, novel approaches for using multiple/single alternative energy sources for improving energy efficiency...... the context of the integrated control plane structure. Results show improvements of energy efficiency over three types of traffic, while still keeping acceptable QoS levels for high priority traffic....

  16. The C$^{14}$N/C$^{15}$N Ratio in Diffuse Molecular Clouds

    CERN Document Server

    Ritchey, Adam M; Lambert, David L

    2015-01-01

    We report the first detection of C$^{15}$N in diffuse molecular gas from a detailed examination of CN absorption lines in archival VLT/UVES spectra of stars probing local diffuse clouds. Absorption from the C$^{15}$N isotopologue is confidently detected (at $\\gtrsim4\\sigma$) in three out of the four directions studied and appears as a very weak feature between the main $^{12}$CN and $^{13}$CN absorption components. Column densities for each CN isotopologue are determined through profile fitting, after accounting for weak additional line-of-sight components of $^{12}$CN, which are seen in the absorption profiles of CH and CH$^+$ as well. The weighted mean value of C$^{14}$N/C$^{15}$N for the three sight lines with detections of C$^{15}$N is $274\\pm18$. Since the diffuse molecular clouds toward our target stars have relatively high gas kinetic temperatures and relatively low visual extinctions, their C$^{14}$N/C$^{15}$N ratios should not be affected by chemical fractionation. The mean C$^{14}$N/C$^{15}$N ratio ...

  17. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  18. A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein.

    Science.gov (United States)

    Mantsyzov, Alexey B; Maltsev, Alexander S; Ying, Jinfa; Shen, Yang; Hummer, Gerhard; Bax, Ad

    2014-09-01

    α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential H(N) − H(α) and H(N) − H(N) NOEs, values for (3) JHNHα, (1) JHαCα, (2) JCαN, and (1) JCαN, as well as chemical shifts of (15)N, (13)C(α), and (13)C' nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20-30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20-40%) than seen in the database. A generally lower population of the αR region (10-20%) is found. Analysis of (1)H − (1)H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein.

  19. A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein

    Science.gov (United States)

    Mantsyzov, Alexey B; Maltsev, Alexander S; Ying, Jinfa; Shen, Yang; Hummer, Gerhard; Bax, Ad

    2014-01-01

    α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential HN–Hα and HN–HN NOEs, values for 3JHNHα, 1JHαCα, 2JCαN, and 1JCαN, as well as chemical shifts of 15N, 13Cα, and 13C′ nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20–30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20–40%) than seen in the database. A generally lower population of the αR region (10–20%) is found. Analysis of 1H–1H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein. PMID:24976112

  20. Comparison of {sup 15}N- and {sup 13}C-determined parameters of mobility in melittin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lingyang [University Indianapolis, Department of Physics, Indiana University Purdue (United States); Prendergast, Franklyn G. [Mayo Foundation, Department of Pharmacology (United States); Kemple, Marvin D. [University Indianapolis, Department of Physics, Indiana University Purdue (United States)

    1998-07-15

    Backbone and tryptophan side-chain mobilities in the 26-residue, cytolytic peptide melittin (MLT) were investigated by {sup 15}N and {sup 13}C NMR. Specifically, inverse-detected {sup 15}N T{sub 1} and steady-state NOE measurements were made at 30 and 51 MHz on MLT at 22 deg. C enriched with {sup 15}N at six amide positions and in the Trp{sup 19} side chain. Both the disordered MLT monomer (1.2 mM peptide at pH 3.6 in neat water) and {alpha}-helical MLT tetramer (4.0 mM peptide at pH 5.2 in 150 mM phosphate buffer) were examined. The relaxation data were analyzed in terms of the Lipari and Szabo model-free formalism with three parameters: {tau}{sub m}, the correlation time for the overall rotation; S{sup 2}, a site-specific order parameter which is a measure of the amplitude of the internal motion; and {tau}{sub e}, a local, effective correlation time of the internal motion. A comparison was made of motional parameters from the {sup 15}N measurements and from {sup 13}C measurements on MLT, the latter having been made here and previously [Kemple et al. (1997) Biochemistry, 36, 1678-1688]. {tau}{sub m} and {tau}{sub e} values were consistent from data on the two nuclei. In the MLT monomer, S{sup 2} values for the backbone N-H and C{alpha}-H vectors in the same residue were similar in value but in the tetramer the N-H order parameters were about 0.2 units larger than the C{alpha}-H order parameters. The Trp side-chain N-H and C-H order parameters, and {tau}{sub e} values were generally similar in both the monomer and tetramer. Implications of these results regarding the dynamics of MLT are examined.

  1. The role of electrostatic interactions and solvent polarity on the 15N NMR shielding of azines

    Science.gov (United States)

    Modesto-Costa, Lucas; Gester, Rodrigo M.; Manzoni, Vinícius

    2017-10-01

    The nitrogen-15 nuclear magnetic resonance (15N NMR) shielding of azines is very sensitive to the chemical environment. Theoretically, specific interactions are important on the calculation of their spectroscopic properties. However, the choice of the solvent model for the description of NMR shielding constants is still a subject of discussion. In this context, we analyse the role of electrostatic interactions on 15N NMR shielding as function of solvent polarity using the sequential-Quantum Mechanics/Molecular Mechanics approach methodology. Excellent agreement with experimental data of the NMR shielding was obtained without the inclusion of explicit solvent molecules either for polar or non polar solvents.

  2. 15N Fractionation in Star-Forming Regions and Solar System Objects

    Science.gov (United States)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  3. (1)H, (15)N and (13)C resonance assignments for free and IEEVD peptide-bound forms of the tetratricopeptide repeat domain from the human E3 ubiquitin ligase CHIP.

    Science.gov (United States)

    Zhang, Huaqun; McGlone, Cameron; Mannion, Matthew M; Page, Richard C

    2017-04-01

    The ubiquitin ligase CHIP catalyzes covalent attachment of ubiquitin to unfolded proteins chaperoned by the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP interacts with Hsp70/Hsc70 and Hsp90 by binding of a C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to the tetratricopeptide repeat (TPR) domain of CHIP. Although recruitment of heat shock proteins to CHIP via interaction with the CHIP-TPR domain is well established, alterations in structure and dynamics of CHIP upon binding are not well understood. In particular, the absence of a structure for CHIP-TPR in the free form presents a significant limitation upon studies seeking to rationally design inhibitors that may disrupt interactions between CHIP and heat shock proteins. Here we report the (1)H, (13)C, and (15)N backbone and side chain chemical shift assignments for CHIP-TPR in the free form, and backbone chemical shift assignments for CHIP-TPR in the IEEVD-bound form. The NMR resonance assignments will enable further studies examining the roles of dynamics and structure in regulating interactions between CHIP and the heat shock proteins Hsp70/Hsc70 and Hsp90.

  4. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  5. Isolation and measurement of 15N2 from respiratory gases of animals administered 15N-labeled substances.

    Science.gov (United States)

    Springer, D L; Reed, D J; Dost, F N

    1981-01-01

    A method is described for collection of metabolic 15N2 from in vitro preparations or intact rats administered 15N-containing compounds. The methods enables routine collection and mass spectrometric measurement of as little as 10 mumol 15N2 respired by a rat over a 24-h period. A device is described that includes either an animal chamber or a tissue reaction vessel in a closed recycling atmosphere, with automatic O2 replenishment and removal of CO2 and water. It is capable of sustaining moderate vacuum and is coupled to a high-vacuum manifold designed to process the contained atmosphere and respiratory gases. The starting atmosphere is an 80:20 mix of sulfur hexafluoride and O2. Recovery of 15N2 gas from the system without an animal present was 101.3 +/- 5.75%. When 15N2 gas was very slowly infused iv into an animal, recovery was 89.1 +/- 5.38%. Use of the method in studies of the fate of [15N]hydrazine in rats indicated that about 15% of the administered hydrazine is rapidly converted to 15N2, followed by slower conversion of an additional 7-10% over the next several hours.

  6. δ15N value does not reflect fasting in mysticetes.

    Directory of Open Access Journals (Sweden)

    Alex Aguilar

    Full Text Available The finding that tissue δ(15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ(15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle and one that keeps a permanent record of variations in isotopic values (baleen plates. In both tissues δ(15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a individuals migrate between different isotopic isoscapes, b starvation may not trigger significant negative nitrogen balance, and c excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indication of nutritive condition.

  7. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  8. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    Science.gov (United States)

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts.

  9. Structural Dynamics of the Potassium Channel Blocker ShK: SRLS Analysis of (15)N Relaxation.

    Science.gov (United States)

    Meirovitch, Eva; Tchaicheeyan, Oren; Sher, Inbal; Norton, Raymond S; Chill, Jordan H

    2015-12-10

    The 35-residue ShK peptide binds with high affinity to voltage-gated potassium channels. The dynamics of the binding surface was studied recently with (microsecond to millisecond) (15)N relaxation dispersion and (picosecond to nanosecond) (15)N spin relaxation of the N-H bonds. Relaxation dispersion revealed microsecond conformational-exchange-mediated exposure of the functionally important Y23 side chain to the peptide surface. The spin relaxation parameters acquired at 14.1 and 16.45 T have been subjected to model-free (MF) analysis, which yielded a squared generalized order parameter, S(2), of approximately 0.85 for virtually all of the N-H bonds. Only a "rigid backbone" evaluation could be inferred. We ascribe this limited information to the simplicity of MF in the context of challenging data. To improve the analysis, we apply the slowly relaxing local structure (SRLS) approach, which is a generalization of MF. SRLS describes N-H bond dynamics in ShK in terms of a local potential, u, ranging from 10 to 18.5 kBT, and a local diffusion rate, D2, ranging from 4.2 × 10(8) to 2.4 × 10(10) s(-1). This analysis shows that u is outstandingly strong for Y23 and relatively weak for K22, whereas D2 is slow for Y23 and fast for K22. These observations are relevant functionally because of the key role of the K22-Y23 dyad in ShK binding to potassium channels. The disulfide-bond network exhibits a medium-strength potential and an alternating wave-like D2 pattern. This is indicative of moderate structural restraints and motional plasticity, in support of, although not directly correlated with, the microsecond binding-related conformational exchange process detected previously. Thus, new information on functionally important residues in ShK and its overall conformational stability emerged from the SRLS analysis, as compared with the previous MF-based estimate of backbone dynamics as backbone rigidity.

  10. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    Science.gov (United States)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  11. Rapid, storm-induced changes in the natural abundance of 15N in a planktonic ecosystem, Chesapeake Bay, USA

    Science.gov (United States)

    Montoya, J. P.; Korrigan, S. G.; McCarthy, J. J.

    1991-12-01

    Samples of dissolved inorganic nitrogen (DIN), particulate nitrogen (PN) and two species of Zooplankton were collected during two north-south transects of the Chesapeake Bay in the autumn of 1984 (27-28 September and 3-5 October). During the first transect, the natural abundance of 15N ( δ15N) in the major dissolved and planktonic pools of nitrogen suggested that the δ15N of PN was largely determined by isotopic fractionation during uptake of NH 4+ by phytoplankton. Averaged over the transect as a whole, the δ15N of the herbivorous calanoid copepod Acartia tonsa was 4.1‰ higher than that of the PN, while the δ15N of the carnivorous ctenophore Mnemiopsis leidyi was 6.4‰ higher than that of the PN. In the interval between the two transects, storm-induced mixing of the water column resulted in the injection of NH 4+ into the surface layer of the bay. This perturbation in the estuarine nitrogen cycle resulted in marked changes in the δ15N of the major dissolved and planktonic pools of nitrogen in the bay. In combination with ancillary physical, chemical and biological data, these changes in δ15N provided estimates of the isotopic fractionation factor for NH 4+ uptake by phytoplankton ( α = 1.0065 -1.0080) as well as the turnover time of nitrogen in Acartia tonsa (6.0-9.6 days). Despite the changes in δ15N observed during this cruise, the relative distribution of 15N between trophic levels was preserved: during the second transect, the difference in δ15N between Acartia tonsa and PN was 3.6‰ and the difference in δ15N between Mnemiopsis leidyi and PN was 7.3‰. These results demonstrate that the natural abundance of 15N can change dramatically on a time scale of days and that time-series studies of the natural abundance of 15N can be a useful complement to studies using tracer additions of 15N to document nitrogen transformations in planktonic ecosystems.

  12. Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity

    Directory of Open Access Journals (Sweden)

    Marie-Laurence Tremblay

    2016-08-01

    Full Text Available Spider aciniform (wrapping silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units. In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR spectroscopy-based 15N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps–ns timescale in the context of the single W unit (W1 and the two unit concatemer (W2. Unambiguous mapping of backbone dynamics throughout W2 was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W1 and W2 reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre.

  13. 1H, 13C and 15N resonance assignments and second structure information of Fag s 1: Fagales allergen from Fagus sylvatica.

    Science.gov (United States)

    Moraes, A H; Asam, C; Batista, A; Almeida, F C L; Wallner, M; Ferreira, F; Valente, A P

    2016-04-01

    Fagales allergens belonging to the Bet v 1 family account responsible for the majority of spring pollinosis in the temperate climate zones in the Northern hemisphere. Among them, Fag s 1 from beech pollen is an important trigger of Fagales pollen associated allergic reactions. The protein shares high similarity with birch pollen Bet v 1, the best-characterized member of this allergen family. Of note, recent work on Bet v 1 and its homologues found in Fagales pollen demonstrated that not all allergenic members of this family have the capacity to induce allergic sensitization. Fag s 1 was shown to bind pre-existing IgE antibodies most likely primarily directed against other members of this multi-allergen family. Therefore, it is especially interesting to compare the structures of Bet v 1-like pollen allergens, which have the potential to induce allergic sensitization with allergens that are mainly cross-reactive. This in the end will help to identify allergy eliciting molecular pattern on Bet v 1-like allergens. In this work, we report the (1)H, (15)N and (13)C NMR assignment of beech pollen Fag s 1 as well as the secondary structure information based on backbone chemical shifts.

  14. Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study.

    Science.gov (United States)

    Hein, Christopher; Löhr, Frank; Schwarz, Daniel; Dötsch, Volker

    2017-05-01

    Selective labeling with stable isotopes has long been recognized as a valuable tool in protein NMR to alleviate signal overlap and sensitivity limitations. In this study, combinatorial (15) N-, (13) C(α) -, and (13) C'-selective labeling has been used during the backbone assignment of human cyclophilin D to explore binding of an inhibitor molecule. Using a cell-free expression system, a scheme that involves (15) N, 1-(13) C, 2-(13) C, fully (15) N/(13) C, and unlabeled amino acids was optimized to gain a maximum of assignment information from three samples. This scheme was combined with time-shared triple-resonance NMR experiments, which allows a fast and efficient backbone assignment by giving the unambiguous assignment of unique amino acid pairs in the protein, the identity of ambiguous pairs and information about all 19 non-proline amino acid types. It is therefore well suited for binding studies where de novo assignments of amide (1) H and (15) N resonances need to be obtained, even in cases where sensitivity is the limiting factor. © 2016 Wiley Periodicals, Inc.

  15. ~(15)N Isotope Used for Study of Groundwater Nitrogen Pollution in Shijiazhuang City, China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ~(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...

  16. 15N fractionation in infrared-dark cloud cores

    Science.gov (United States)

    Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.

    2017-07-01

    Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http

  17. Reduced Dimensionality tailored HN(C)N Pulse Sequences for Efficient Backbone Resonance Assignment of Proteins through Rapid Identification of Sequential HSQC peaks

    CERN Document Server

    Kumar, Dinesh

    2013-01-01

    Two novel reduced dimensionality (RD) experiments -(4,3)D-hNCOcaNH and (4,3)D-hNcoCANH- have been presented here to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. The experiments basically represent an improvisation of previously reported HN(C)N experiment [Panchal et. al., J. Biomol. NMR. (2002), 20 (2), 135-147] and exploit the simple reduced dimensionality NMR concept [Szyperski et. al. (2002), Proc. Natl. Acad. Sci. U.S.A. 99(12), 8009-8014] to achieve (a) higher dispersion and resolution along the co-evolved F1 dimension and (b) rapid identification of sequential HSQC peaks on its F2(15N)- F3(1H) planes. The current implementation is based on the fact that the linear combination of 15N and 13CO/13Ca chemical shifts offers relatively better dispersion and randomness compared to the individual chemical shifts; thus enables the assignment of crowded HSQC spectra by resolving the ambiguities generally encountered in HNCN based assignment protocol because of ...

  18. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    Energy Technology Data Exchange (ETDEWEB)

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M. [National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  19. Rapid, storm-induced changes in the natural abundance of sup 15 N in a planktonic ecosystem, Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, J.P.; McCarthy, J.J. (Harvard Univ., Cambridge, MA (United States)); Horrigan, S.G. (State Univ. of New York, Stony Brook (United States))

    1991-12-01

    Samples of dissolved inorganic nitrogen (DIN), particulate nitrogen (PN), and two species of zooplankton were collected during two north-south transects of the Chesapeake Bay in the autumn of 1984 (27-28 September and 3-5 October). During the first transect, the natural abundance of {sup 15}N ({delta} {sup 15}N) in the major dissolved and planktonic pools of nitrogen suggested that the {delta}{sup 15}N of PN was largely determined by isotopic fractionation during uptake of NH{sub 4}{sup +} by phytoplankton. Averaged over the transect as a whole, the {delta}{sup 15}N of the herbivorous calanoid copepod Acartia tonsa was 4.1% higher than that of the PN, while the {delta}{sup 15}N of the carnivorous ctenophore Mnemiopsis leidyi was 6.4% higher than that of the PN. In the interval between the two transects, storm-induced mixing of the water column resulted in the injection of NH{sub 4}{sup +} into the surface layer of the bay. In combination with ancillary physical, chemical, and biological data, these changes in {delta}{sup 15}N provided estimates of the isotopic fractionation factor for NH{sub 4}{sup +} uptake by phytoplankton ({alpha} = 1.0065-1.0080) as well as the turnover time of nitrogen in Acartia tonsa (6.0-9.6 days). Despite the changes in {delta}{sup 15}N observed during this cruise, the relative distribution of {sup 15}N between trophic levels was preserved: during the second transect, the difference in {delta}{sup 15}N between Acartia tonsa and PN was 3.6%, and the difference in {delta}{sup 15}N between Mnemiopsis leidyi and PN was 7.3%. These results demonstrate that the natural abundance of {sup 15}N can change dramatically on a time scale of days, and that time-series studies of the natural abundance of {sup 15}N can be a useful complement to studies using tracer additions of {sup 15}N to document nitrogen transformations in planktonic ecosystems.

  20. Kinetic 15N-isotope effects on algal growth

    Science.gov (United States)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  1. Nitrogen and 15N in the Mer Bleue peatland

    Science.gov (United States)

    Moore, Tim

    2017-04-01

    Although much of our attention in peatlands has focussed on carbon, as CO2, CH4 and DOC processing and fluxes, N plays an important role in the functioning of these ecosystems. Here, I present information on the distribution of N and 15N in plant and peat tissues and relate them to the cycling of N. N concentration in foliar tissues, ranged from 0.67 to 1.3% in evergreen shrubs and trees and mosses with little seasonal variation, and with a strong seasonal variation from 0.5 to 3.5% in the deciduous forbs, shrubs and trees, with a strong overall relationship to [chlorophyll]. Although the proportion of shrubs and mosses varied with microtopography the spatial foliar mass of N varied little with water table position, resulting in minor spatial variations in photosynthetic potential. Decomposition of plant tissues through litter to peat resulted in a decrease in the C:N ratio from about 50:1 to about 30:1 at the base of the profile, representing peat about 8000 yr old. This marginally larger loss of N through decomposition (mainly as TDN, 0.4 g N m-2 yr-1) compared to C produced a long-term N accumulation rate of 0.9 g N m-2 yr-1, being smaller in the bog phase, 0.6 N m-2 yr-1, and over past 150 yr, 0.8 g N m-2 yr-1. Although N is 'hard won' through N2 fixation, northern peatlands are significant global sinks of N and have limited N availability. del15N in foliar tissues ranged from -4 to -9 ‰ in evergreen and deciduous shrubs and trees, from -4 to -5 ‰ in mosses and from -1 to +1 ‰ in sedges and forbs. This appears to be a function of the mycorhizzal infection of the shrubs and trees, compared to sedges and forbs and the values for mosses may partially reflect the signature of atmospheric N deposition. There was no strong correlation between foliar [N] and del15N. In peat profiles from bog and fen sections of Mer Bleue, del15N values in peat fell from -5 to -2 ‰ in the top 10 cm to values of -1 to +1 ‰ at a depth of 40 cm and remained close to 0 ‰ below

  2. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    Directory of Open Access Journals (Sweden)

    Frank H Schumann

    2015-04-01

    Full Text Available Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale were found in the N-Src loop and in the adjacent β-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding.

  3. Spectral density function mapping using 15N relaxation data exclusively.

    Science.gov (United States)

    Farrow, N A; Zhang, O; Szabo, A; Torchia, D A; Kay, L E

    1995-09-01

    A method is presented for the determination of values of the spectral density function, J(omega), describing the dynamics of amide bond vectors from 15N relaxation parameters alone. Assuming that the spectral density is given by the sum of Lorentzian functions, the approach allows values of J(omega) to be obtained at omega = 0, omega N and 0.870 omega H, where omega N and omega H are Larmor frequencies of nitrogen and proton nuclei, respectively, from measurements of 15N T1, T2 and 1H-15N steady-state NOE values at a single spectrometer frequency. Alternatively, when measurements are performed at two different spectrometer frequencies of i and j MHz, J(omega) can be mapped at omega = 0, omega iN, omega jN, 0.870 omega iH and 0.870 omega iH, where omega iN, for example, is the 15N Larmor frequency for a spectrometer operating at 1 MHz. Additionally, measurements made at two different spectrometer frequencies enable contributions to transverse relaxation from motions on millisecond-microsecond time scales to be evaluated and permit assessment of whether a description of the internal dynamics is consistent with a correlation function consisting of a sum of exponentials. No assumptions about the specific form of the spectral density function describing the dynamics of the 15N-NH bond vector are necessary, provided that dJ(omega)/d omega is relatively constant between omega = omega H + omega N to omega = omega H - omega N. Simulations demonstrate that the method is accurate for a wide range of protein motions and correlation times, and experimental data establish the validity of the methodology. Results are presented for a folded and an unfolded form of the N-terminal SH3 domain of the protein drk.

  4. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    Science.gov (United States)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  5. Exercise: The Backbone of Spine Treatment

    Medline Plus

    Full Text Available Exercise: The Backbone of Spine Treatment | View Video Back About Video Struggling with Low Back Pain? Many people are surprised to learn that carefully selected exercise can actually reduce back pain. Some exercises can ...

  6. Geomorphic control on the δ15N of mountain forests

    Directory of Open Access Journals (Sweden)

    R. G. Hilton

    2013-03-01

    Full Text Available Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope and climatic (precipitation, temperature characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.

  7. Design and development of a simple laboratory model to detect (15)N enrichment in cyanobacterial biomass and extra cellular ammonia using (15)N gas.

    Science.gov (United States)

    Selvakumar, G; Gopalaswamy, G; Arulmozhiselvan, K

    2007-03-01

    A laboratory scale working model that could detect the (15)N enrichment in cyanobacterial biomass and extracellular ammonia, using (15)N gas under in vitro conditions was designed and fabricated. Using the model, (15)N enrichment of 0.48% atom excess was detected in the cyanobacterial biomass on the 30 d after inoculation. The (15)N enrichment increased linearly in the extracellular ammoniacal fraction from the 20 d onward. The model would prove to be a useful tool to quantify the extent of (15)N enrichment under in vitro conditions using (15)N gas.

  8. Lineshape-based polarimetry of dynamically-polarized (15)N2O in solid-state mixtures.

    Science.gov (United States)

    Kuzma, N N; Håkansson, P; Pourfathi, M; Ghosh, R K; Kara, H; Kadlecek, S J; Pileio, G; Levitt, M H; Rizi, R R

    2013-09-01

    Dynamic nuclear polarization (DNP) of (15)N2O, known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ∼1.5 K and 5 T. Both (15)N polarization and intermolecular dipolar broadening are strongly affected by the sample's thermal history, indicating spontaneous formation of N2O clusters. In situ (15)N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two (15)N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. (15)N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies (10.2±2.2)% polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute (15)N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Comparison of the backbone dynamics of wild-type Hydrogenobacter thermophilus cytochrome c{sub 552} and its b-type variant

    Energy Technology Data Exchange (ETDEWEB)

    Tozawa, Kaeko; Ferguson, Stuart J.; Redfield, Christina, E-mail: christina.redfield@bioch.ox.ac.uk [University of Oxford, Department of Biochemistry (United Kingdom); Smith, Lorna J., E-mail: lorna.smith@chem.ox.ac.uk [University of Oxford, Department of Chemistry (United Kingdom)

    2015-06-15

    Cytochrome c{sub 552} from the thermophilic bacterium Hydrogenobacter thermophilus is a typical c-type cytochrome which binds heme covalently via two thioether bonds between the two heme vinyl groups and two cysteine thiol groups in a CXXCH sequence motif. This protein was converted to a b-type cytochrome by substitution of the two cysteine residues by alanines (Tomlinson and Ferguson in Proc Natl Acad Sci USA 97:5156–5160, 2000a). To probe the significance of the covalent attachment of the heme in the c-type protein, {sup 15}N relaxation and hydrogen exchange studies have been performed for the wild-type and b-type proteins. The two variants share very similar backbone dynamic properties, both proteins showing high {sup 15}N order parameters in the four main helices, with reduced values in an exposed loop region (residues 18–21), and at the C-terminal residue Lys80. Some subtle changes in chemical shift and hydrogen exchange protection are seen between the wild-type and b-type variant proteins, not only for residues at and neighbouring the mutation sites, but also for some residues in the heme binding pocket. Overall, the results suggest that the main role of the covalent linkages between the heme group and the protein chain must be to increase the stability of the protein.

  10. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    Science.gov (United States)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  11. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    Science.gov (United States)

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  12. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  13. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    Science.gov (United States)

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes.

  14. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...... on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define...

  15. (1)H, (13)C, and (15)N resonance assignments for the pro-inflammatory cytokine interleukin-36α.

    Science.gov (United States)

    Goradia, Nishit; Wißbrock, Amelie; Wiedemann, Christoph; Bordusa, Frank; Ramachandran, Ramadurai; Imhof, Diana; Ohlenschläger, Oliver

    2016-10-01

    Interleukin-36α (IL-36α) is a recently characterised member of the interleukin-1 superfamily. It is involved in the pathogenesis of inflammatory arthritis in one third of psoriasis patients. By binding of IL-36α to its receptor IL-36R via the NF-κB pathway other cytokines involved in inflammatory and apoptotic cascade are activated. The efficacy of complex formation is controlled by N-terminal processing. To obtain a more detailed view on the structure function relationship we performed a heteronuclear multidimensional NMR investigation and here report the (1)H, (13)C, and (15)N resonance assignments for the backbone and side chain nuclei of the pro-inflammatory cytokine interleukin-36α.

  16. Addendum to "Determination of $\\gamma$-ray widths in $^{15}$N using nuclear resonance fluorescence''

    CERN Document Server

    Szücs, Tamás

    2015-01-01

    The determination of absolute widths of two observed levels above the proton threshold in $^{15}$N has been improved by a combined analysis of our recent $^{15}$N($\\gamma$,$\\gamma'$)$^{15}$N$^\\ast$ photon scattering data, resonance strengths $\\omega\\gamma$ of the $^{14}$C($p$,$\\gamma$)$^{15}$N reaction, and $\\gamma$-ray branchings $b_{\\gamma,i}$ in $^{15}$N. The revised data are compared to the adopted values, and some inconsistencies in the adopted values are illustrated.

  17. Microsoft Operations Framework implementation for The Backbone

    NARCIS (Netherlands)

    Kienhuis, G.H.

    2007-01-01

    Doel The Backbone ontwerpt, implementeert en beheert IT infrastructuren voor bedrijven en instellingen. Beheer wordt proactief uitgevoerd met behulp van Microsoft Operation Manager (MOM) 2005. MOM is een applicatie die de status en gebeurtenissen van systemen zichtbaar maakt vanuit één locatie. Om

  18. Backbone Assignment of the MALT1 Paracaspase by Solution NMR.

    Science.gov (United States)

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the (15)N/(13)C/(1)H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins.

  19. Backbone Assignment of the MALT1 Paracaspase by Solution NMR.

    Directory of Open Access Journals (Sweden)

    Sofia Unnerståle

    Full Text Available Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1 is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs. ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the (15N/(13C/(1H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3 domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins.

  20. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  1. Heteronuclear 2D-correlations in a uniformly [13C, 15N] labeled membrane-protein complex at ultra-high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Egorova-Zachernyuk, T.A.; Hollander, J. [Gorlaeus Laboratories (Netherlands); Fraser, N. [University of Glasgow, Division of Biochemistry and Molecular Biology (United Kingdom); Gast, P.; Hoff, A.J. [Leiden University, Huygens Laboratories (Netherlands); Cogdell, R. [University of Glasgow, Division of Biochemistry and Molecular Biology (United Kingdom); Groot, H.J.M. de; Baldus, M. [Gorlaeus Laboratories (Netherlands)

    2001-03-15

    One- and two-dimensional solid-state NMR experiments on a uniformly labeled intrinsic membrane-protein complex at ultra-high magnetic fields are presented. Two-dimensional backbone and side-chain correlations for a [U-{sup 13}C,{sup 15}N] labeled version of the LH2 light-harvesting complex indicate significant resolution at low temperatures and under Magic Angle Spinning. Tentative assignments of some of the observed correlations are presented and attributed to the {alpha}-helical segments of the protein, mostly found in the membrane interior.

  2. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Science.gov (United States)

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  3. Constructing backbone network by using tinker algorithm

    Science.gov (United States)

    He, Zhiwei; Zhan, Meng; Wang, Jianxiong; Yao, Chenggui

    2017-01-01

    Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.

  4. Fate of orally administered {sup 15}N-labeled polyamines in rats bearing solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masaki; Samejima, Keijiro; Goda, Hitomi; Niitsu, Masaru [Josai Univ., Sakado, Saitama (Japan). Faculty of Pharmaceutical Sciences; Xu Yongji [Qingdao Univ. of Science and Technology (China). Inst. of Chemical and Molecular Technology; Takahashi, Masakazu [Sasaki Inst., Tokyo (Japan); Hashimoto, Yoshiyuki [Kyoritsu Coll. of Pharmacy, Tokyo (Japan)

    2003-03-01

    We studied absorption, distribution, metabolism, and excretion of polyamines (putrescine, spermidine, and spermine) in the gastrointestinal tract using {sup 15}N-labeled polyamines as tracers and ionspray ionization mass spectrometry (IS-MS). The relatively simple protocol using rats bearing solid tumors provided useful information. Three {sup 15}N-labeled polyamines that were simultaneously administered were absorbed equally from gastrointestinal tract, and distributed within tissues at various concentrations. The uptake of {sup 15}N-spermidine seemed preferential to that of {sup 15}N-spermine since the concentrations of {sup 15}N-spermidine in the liver and tumors were higher, whereas those of {sup 15}N-spermine were higher in the kidney, probably due to the excretion of excess extracellular spermine. Most of the absorbed {sup 15}N-putrescine seemed to be lost, suggesting blood and tissue diamine oxidase degradation. Concentrations of {sup 15}N-spermidine and {sup 15}N-spermine in the tumor were low. We also describe the findings from two rats that were administered with {sup 15}N-spermine. The tissue concentrations of {sup 15}N-spermine were unusually high, and significant levels of {sup 15}N-spermidine were derived from {sup 15}N-spermine in these animals. (author)

  5. Study on Nitrogen Forms in Phenolic Polymers Incorporating Protien by 15N CP—MAS NMR

    Institute of Scientific and Technical Information of China (English)

    CHENGLILI; WENQIXIAO; 等

    1996-01-01

    Phenolic polymers synthesized by reactions by reactions of p-benzoquinone with 15N-labelled protein or (15NH4)2SO4 were studied by using 15N CP-MAS NMR technique in combination with chemical approaches.Results showed that more than 80% of nitrogen in quinone-protein polymers was in the form of amide with some present as aromatic and /or aliphatic amine and less than 10% of nitrogen occurred as heterocyclic N.The nitrogen distribution in the non-hydrolyzable residue of the quinone-protein polymers was basically similar to that of soil humic acid reported in literature with the exception that a higher proportion of N as heterocyclic N and aromatic amine and a lower proportion of N as amide and aliphatic amine were found in the former than in the latter,More than 70% of total nitrogen in quinone-(NH4)2OS4 polymer was acid resistant ,of which about 53% occurred as pyrrole,nitrile and imion type N.The possible roles of the reactions of phenols or quinones with proteins in the formation of humic acid.especially the non-hydrolyzable nitrogen in humicacid,are discussed.

  6. Mimicking floodplain reconnection and disconnection using 15N mesocosm incubations

    Directory of Open Access Journals (Sweden)

    W. Wanek

    2012-04-01

    Full Text Available Floodplain restoration changes the nitrate delivery pattern and dissolved organic matter pool in backwaters but other effects are not yet well known. We performed two mesocosm experiments to quantify the nitrate metabolism in two types of floodplains. Rates of denitrification, dissimilatory nitrate reduction to ammonium (DNRA and anammox were measured using 15N tracer additions in mesocosms containing undisturbed floodplain sediments originating from (1 restored and (2 disconnected sites in the Alluvial Zone National Park on the Danube River downstream of Vienna, Austria. DNRA rates were an order of magnitude lower than denitrification and neither rate was affected by changes in nitrate delivery pattern or organic matter quality. Anammox was not detected at any of the sites. Denitrification was out-competed by assimilation which was estimated to use up to 70% of the available nitrate. Overall, denitrification was higher in the restored sites, with mean rates of 5.7±2.8 mmol N m−2 h−1 compared to the disconnected site (0.6±0.5 mmol N m−1 h−1. In addition, ratios of N2O : N2 were lower in the restored site indicating a more complete denitrification. Nitrate addition did not have any effect on denitrification, nor on the N2O : N2 ratio. However, DOM quality significantly changed the N2O : N2 ratio in both sites. Addition of riverine derived organic matter lowered the N2O : N2 ratio in the disconnected site, whereas addition of floodplain derived organic matter increased the N2O : N2 ratio in the restored site. These results demonstrate that increasing floodplains hydrological connection to the main river channel increases nitrogen retention and decreases nitrous oxide emissions.

  7. NMR backbone dynamics of VEK-30 bound to the human plasminogen kringle 2 domain.

    Science.gov (United States)

    Wang, Min; Prorok, Mary; Castellino, Francis J

    2010-07-07

    To gain insights into the mechanisms for the tight and highly specific interaction of the kringle 2 domain of human plasminogen (K2(Pg)) with a 30-residue internal peptide (VEK-30) from a group A streptococcal M-like protein, the dynamic properties of free and bound K2(Pg) and VEK-30 were investigated using backbone amide (15)N-NMR relaxation measurements. Dynamic parameters, namely the generalized order parameter, S(2), the local correlation time, tau(e), and the conformational exchange contribution, R(ex), were obtained for this complex by Lipari-Szabo model-free analysis. The results show that VEK-30 displays distinctly different dynamic behavior as a consequence of binding to K2(Pg), manifest by decreased backbone flexibility, particularly at the binding region of the peptide. In contrast, the backbone dynamics parameters of K2(Pg) displayed similar patterns in the free and bound forms, but, nonetheless, showed interesting differences. Based on our previous structure-function studies of this interaction, we also made comparisons of the VEK-30/K2(Pg) dynamics results from different kringle modules complexed with small lysine analogs. The differences in dynamics observed for kringles with different ligands provide what we believe to be new insights into the interactions responsible for protein-ligand recognition and a better understanding of the differences in binding affinity and binding specificity of kringle domains with various ligands.

  8. Structure and backbone dynamics of vanadate-bound PRL-3: comparison of 15N nuclear magnetic resonance relaxation profiles of free and vanadate-bound PRL-3.

    Science.gov (United States)

    Jeong, Ki-Woong; Kang, Dong-Il; Lee, Eunjung; Shin, Areum; Jin, Bonghwan; Park, Young-Guen; Lee, Chung-Kyoung; Kim, Eun-Hee; Jeon, Young Ho; Kim, Eunice Eunkyeong; Kim, Yangmee

    2014-07-29

    Phosphatases of regenerating liver (PRLs) constitute a novel class of small, prenylated phosphatases with oncogenic activity. PRL-3 is particularly important in cancer metastasis and represents a potential therapeutic target. The flexibility of the WPD loop as well as the P-loop of protein tyrosine phosphatases is closely related to their catalytic activity. Using nuclear magnetic resonance spectroscopy, we studied the structure of vanadate-bound PRL-3, which was generated by addition of sodium orthovanadate to PRL-3. The WPD loop of free PRL-3 extended outside of the active site, forming an open conformation, whereas that of vanadate-bound PRL-3 was directed into the active site by a large movement, resulting in a closed conformation. We suggest that vanadate binding induced structural changes in the WPD loop, P-loop, helices α4-α6, and the polybasic region. Compared to free PRL-3, vanadate-bound PRL-3 has a longer α4 helix, where the catalytic R110 residue coordinates with vanadate in the active site. In addition, the hydrophobic cavity formed by helices α4-α6 with a depth of 14-15 Å can accommodate a farnesyl chain at the truncated prenylation motif of PRL-3, i.e., from R169 to M173. Conformational exchange data suggested that the WPD loop moves between open and closed conformations with a closing rate constant k(close) of 7 s(-1). This intrinsic loop flexibility of PRL-3 may be related to their catalytic rate and may play a role in substrate recognition.

  9. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Science.gov (United States)

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, d15N of foliage and soil also increases. We measured foliar d15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  10. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    Science.gov (United States)

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  11. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy.

    Science.gov (United States)

    Li, Shenhui; Zhou, Lei; Su, Yongchao; Han, Bin; Deng, Feng

    2013-01-01

    Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by (13)C and (15)N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of (13)C and (15)N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of (13)Cγ, (13)Cδ2, (15)Nδ1, and (15)Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that (1)H, (13)C, and (15) chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the (1)H, (13)C and (15)N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.

  12. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    Science.gov (United States)

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  13. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  14. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    -amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area......Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta...

  15. Pyridoxamine Protects Protein Backbone from Oxidative Fragmentation

    Science.gov (United States)

    Chetyrkin, Sergei; Mathis, Missy; McDonald, W. Hayes; Shackelford, Xavier; Hudson, Billy; Voziyan, Paul

    2011-01-01

    Oxidative damage to proteins is one of the major pathogenic mechanisms in many chronic diseases. Therefore, inhibition of this oxidative damage can be an important part of therapeutic strategies. Pyridoxamine (PM), a prospective drug for treatment of diabetic nephropathy, has been previously shown to inhibit several oxidative and glycoxidative pathways, thus protecting amino acid side chains of the proteins from oxidative damage. Here, we demonstrated that PM can also protect protein backbone from fragmentation induced via different oxidative mechanisms including autoxidation of glucose. This protection was due to hydroxyl radical scavenging by PM and may contribute to PM therapeutic effects shown in clinical trials. PMID:21763683

  16. Instant Backbone.js application development

    CERN Document Server

    Hunter, Thomas

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is a practical, step-by-step tutorial that will teach you to build Backbone.js applications quickly and efficiently.This book is targeted towards developers. It is assumed that you have at least a basic understanding of JavaScript and jQuery selectors. If you are interested in building dynamic Single Page Applications that interact heavily with a backend server, then this is the book for you.

  17. Impact of Backbone Fluorination on π-Conjugated Polymers in Organic Photovoltaic Devices: A Review

    Directory of Open Access Journals (Sweden)

    Nicolas Leclerc

    2016-01-01

    Full Text Available Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties’ evolution trends related to the fluorination of their conjugated backbone.

  18. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  19. Regulation of [15N]urea synthesis from [5-15N]glutamine. Role of pH, hormones, and pyruvate.

    Science.gov (United States)

    Nissim, I; Yudkoff, M; Brosnan, J T

    1996-12-01

    We have utilized both [5-15N]glutamine and [3-13C] pyruvate as metabolic tracers in order to: (i) examine the effect of pH, glucagon (GLU), or insulin on the precursor-product relationship between 15NH3, [15N]citrulline, and, thereby, [15N]urea synthesis and (ii) elucidate the mechanism(s) by which pyruvate stimulates [15N] urea synthesis. Hepatocytes isolated from rat were incubated at pH 6.8, 7.4, or 7.6 with 1 mM [5-15N]glutamine and 0.1 mM 14NH4Cl in the presence or the absence of [3-13C] pyruvate (2 mM). A separate series of experiments was performed at pH 7.4 in the presence of insulin or GLU. 15NH3 enrichment exceeded or was equal to that of [15N]citrulline under all conditions except for pH 7.6, when the 15N enrichment in citrulline exceeded that in ammonia. The formation of [15N]citrulline (atom % excess) was increased with higher pH. Flux through phosphate-dependent glutaminase (PDG) and [15N]urea synthesis were stimulated (p < 0.05) at pH 7.6 or with GLU and decreased (p < 0.05) at pH 6.8. Insulin had no significant effect on flux through PDG or on [15N]urea synthesis. Decreased [15N]urea production at pH 6.8 was associated with depleted aspartate and glutamate levels. Pyruvate attenuated this decrease in the aspartate and glutamate pools and stimulated [15N]urea synthesis. Production of Asp from pyruvate was increased with increasing medium pH. Approximately 80% of Asp was derived from [3-13C]pyruvate regardless of incubation pH or addition of hormone. Furthermore, approximately 20, 40, and 50% of the mitochondrial N-acetylglutamate (NAG) pool was derived from [3-13C]pyruvate at pH 6.8, 7.4, and 7.6, respectively. Both the concentration and formation of [13C]NAG from [3-13C]pyruvate were increased (p < 0.05) with glucagon and decreased (p < 0.05) with insulin or at pH 6.8. The data suggest a correlation between changes in [15N]urea synthesis and alterations in the level and synthesis of [13C]NAG from pyruvate. The current observations suggest that the

  20. 15N and 1H Solid-State NMR Investigation of a Canonical Low-Barrier Hydrogen-Bond Compound: 1,8-bis(dimethylamino) naphthalene

    OpenAIRE

    White, Paul B.; Hong, Mei

    2015-01-01

    Strong or low-barrier hydrogen bonds have been often proposed in proteins to explain enzyme catalysis and proton transfer reactions. So far 1H chemical shifts and scalar couplings have been used as the main NMR spectroscopic signatures for strong H-bonds. In this work, we report simultaneous measurements of 15N and 1H chemical shifts and N-H bond lengths by solid-state NMR in 15N-labeled 1,8-bis(dimethylamino) naphthalene (DMAN), which contains a well known strong NHN H-bond. We complexed DMA...

  1. Extracting the information backbone in online system.

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  2. Sofosbuvir as backbone of interferon free treatments.

    Science.gov (United States)

    Bourlière, Marc; Oules, Valèrie; Ansaldi, Christelle; Adhoute, Xavier; Castellani, Paul

    2014-12-15

    Sofosbuvir is the first-in-class NS5B nucleotide analogues to be launched for hepatitis C virus (HCV) treatment. Its viral potency, pangenotypic activity and high barrier to resistance make it the ideal candidate to become a backbone for several IFN-free regimens. Recent data demonstrated that sofosbuvir either with ribavirin alone or in combination with other direct-acting antivirals (DAAs) as daclatasvir, ledipasvir or simeprevir are able to cure HCV in at least 90% or over of patients. Treatment experienced genotype 3 population may remain the most difficult to treat population, but ongoing DAA combination studies will help to fill this gap. Safety profile of sofosbuvir or combination with other DAAs is good. Resistance to sofosbuvir did not appear as a significant issue. The rationale for using this class of drug and the available clinical data are reviewed.

  3. Extracting the information backbone in online system

    CERN Document Server

    Zhang, Qian-Ming; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers mainly dedicated to improve the recommendation performance (accuracy and diversity) of the algorithms while overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improve both of...

  4. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  5. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    Science.gov (United States)

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Nutrient Status and δ15N Values in Leaves and Soils: A Cross-Biome Comparison

    Science.gov (United States)

    Mayor, J. R.; Schuur, E. A.; Turner, B. L.; Wright, S. J.

    2011-12-01

    Stable nitrogen (N) isotope ratios (δ15N) are often assumed to provide an integrated measure of multiple nitrogen cycling processes. For instance, shifts in the bioavailability of soil N forms are thought to alter plant δ15N values. Demonstrating this relationship is important as ecosystems undergo anthropogenic disturbances. We evaluated patterns and implied mechanisms of the N cycle using ecosystem δ15N values from 16 plots in boreal black spruce (Picea mariana) forest and lowland wet tropical forest. Fertilizer N and phosphorus (P) was applied annually for five and 11 years prior to measurement of ecosystem δ15N values. Full sun canopy foliage and soil extractable nitrate, ammonium, and dissolved organic N (DON) were sampled in fertilized and control plots and analyzed for δ15N. In boreal forest, N fertilization reduced DON concentrations and caused a depletion of δ15N in foliage and fungal sporocarps. Of four species occurring in all plots in the tropical forest, one (Alseis blackiana) had increased foliar δ15N values following N fertilization, one (Tetragastris panamensis) had increased foliar δ15N values following P fertilization, and one (Oenocarpus mapora) had increased foliar δ15N following N+P fertilization. Surprisingly, soil nitrate in the boreal forest became substantially 15N-enriched under P fertilization, whereas nitrate in the tropical forest soil was enriched only under N or N+P fertilization. Collectively, nitrate enrichment is likely due to enhanced rates of soil denitrification as evidenced by elevated resin extractable soil nitrate concentrations and close correlations between δ15N and δ18O values. On average, foliar δ15N in tropical trees corresponded well with δ15N in soil nitrate in control and P fertilized plots, but was 2-3% more enriched than DON under N and N+P fertilization. In boreal forests, N and N+P fertilization increased foliar N concentration and δ15N values indicating substantial use of applied fertilizer. Taken

  7. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Modi, S.; Behere, D.V.; Mitra, S. (Tata Institute of Fundamental Research, Bombay (India))

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  8. Evaluation of impact of backbone outages in IP networks

    Science.gov (United States)

    Kogan, Yaakov; Choudhury, Gagan L.; Tarapore, Percy

    2004-09-01

    Nationwide IP networks typically include nodes in major cities and the following elements: customer equipment, access routers, backbone routers, peering routers, access links connecting customer equipment to access routers, access routers to backbone routers, and backbone links interconnecting backbone routers. The part of this network consisting of backbone routers and related interconnecting links is referred to as the "backbone". We develop a new approach for accurately computing the Availability measure of IP networks by directly simulating each type of backbone outage event and its impact on traffic loss. We use this approach to quantify availability improvement as a result of introducing various technological changes in the network such as IGP tuning, high availability router architecture, MPLS-TE and Fast Reroute. A situation, where operational backbone links do not have enough spare capacity to carry additional traffic during the outage time, is referred to as bandwidth loss. We concentrate on one unidirectional backbone link and derive asymptotic approximations for the expected bandwidth loss in the framework of generalized Erlang and Engset models when the total number of resource units and request arrival rates are proportionally large. Simulation results demonstrate good accuracy of the approximations.

  9. Backbone analysis and algorithm design for the quadratic assignment problem

    Institute of Scientific and Technical Information of China (English)

    JIANG He; ZHANG XianChao; CHEN GuoLiang; LI MingChu

    2008-01-01

    As the hot line in NP-hard problems research in recent years, backbone analysis is crucial for phase transition, hardness, and algorithm design. Whereas theoretical analysis of backbone and its applications in algorithm design are still at a begin-ning state yet, this paper took the quadratic assignment problem (QAP) as a case study and proved by theoretical analysis that it is NP-hard to find the backbone, l.e., no algorithm exists to obtain the backbone of a QAP in polynomial time. Results of this paper showed that it is reasonable to acquire approximate backbone by inter-section of local optimal solutions. Furthermore, with the method of constructing biased instances, this paper proposed a new meta-heuristic - biased instance based approximate backbone (BI-AB), whose basic idea is as follows: firstly, con-struct a new biased instance for every QAP instance (the optimal solution of the new instance is also optimal for the original one); secondly, the approximate backbone is obtained by intersection of multiple local optimal solutions computed by some existing algorithm; finally, search for the optimal solutions in the reduced space by fixing the approximate backbone. Work of the paper enhanced the re-search area of theoretical analysis of backbone. The meta-heuristic proposed in this paper provided a new way for general algorithm design of NP-hard problems as well.

  10. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.

    Science.gov (United States)

    Shen, Yang; Bax, Ad

    2015-01-01

    Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from (1)H, (15)N, and (13)C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-chain χ 1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and (13)C(β) nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations.

  11. Comparison of solid-state dipolar couplings and solution relaxation data provides insight into protein backbone dynamics.

    Science.gov (United States)

    Chevelkov, Veniamin; Xue, Yi; Linser, Rasmus; Skrynnikov, Nikolai R; Reif, Bernd

    2010-04-14

    Analyses of solution (15)N relaxation data and solid-state (1)H(N)-(15)N dipolar couplings from a small globular protein, alpha-spectrin SH3 domain, produce a surprisingly similar pattern of order parameters. This result suggests that there is little or no ns-mus dynamics throughout most of the sequence and, in particular, in the structured portion of the backbone. At the same time, evidence of ns-mus motions is found in the flexible loops and termini. These findings, corroborated by the MD simulations of alpha-spectrin SH3 in a hydrated crystalline environment and in solution, are consistent with the picture of protein dynamics that has recently emerged from the solution studies employing residual dipolar couplings.

  12. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N of Lipids in Marine Animals.

    Directory of Open Access Journals (Sweden)

    Elisabeth Svensson

    Full Text Available Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete, as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰. Importantly, the total lipid extract (TLE was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰. The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰ than the TLE (-7 ‰, possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  13. 1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2-phenylpyridine.

    Science.gov (United States)

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2009-11-01

    (1)H, (13)C, (15)N and (195)Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2')-chelated, deprotonated 2-phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl(2)], trans(N,N)-[Pt(2ppy*)(2ppy)Cl] and trans(S,N)-[Pt(2ppy*)(DMSO-d(6))Cl] (formed in situ upon dissolving [Pt(2ppy*)(micro-Cl)](2) in DMSO-d(6)) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective (1)H, (13)C and (15)N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Delta(1H)(coord) = delta(1H)(complex) - delta(1H)(ligand), Delta(13C)(coord) = delta(13C)(complex) - delta(13C)(ligand), Delta(15N)(coord) = delta(15N)(complex) - delta(15N)(ligand)), as well as (195)Pt chemical shifts and (1)H-(195)Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen-adjacent H(6) protons and metallated C(2') atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds.

  14. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    Science.gov (United States)

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  15. Human dietary δ(15)N intake: representative data for principle food items.

    Science.gov (United States)

    Huelsemann, F; Koehler, K; Braun, H; Schaenzer, W; Flenker, U

    2013-09-01

    Dietary analysis using δ(15)N values of human remains such as bone and hair is usually based on general principles and limited data sets. Even for modern humans, the direct ascertainment of dietary δ(15)N is difficult and laborious, due to the complexity of metabolism and nitrogen fractionation, differing dietary habits and variation of δ(15)N values of food items. The objective of this study was to summarize contemporary regional experimental and global literature data to ascertain mean representative δ(15)N values for distinct food categories. A comprehensive data set of more than 12,000 analyzed food samples was summarized from the literature. Data originated from studies dealing with (1) authenticity tracing or origin control of food items, and (2) effects of fertilization or nutrition on δ(15)N values of plants or animals. Regional German food δ(15)N values revealed no major differences compared with the mean global values derived from the literature. We found that, in contrast to other food categories, historical faunal remains of pig and poultry are significantly enriched in (15)N compared to modern samples. This difference may be due to modern industrialized breeding practices. In some food categories variations in agricultural and feeding regimens cause significant differences in δ(15)N values that may lead to misinterpretations when only limited information is available.

  16. δ(15) N from soil to wine in bulk samples and proline.

    Science.gov (United States)

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd.

  17. A fast method to prepare water samples for 15N analysis

    Institute of Scientific and Technical Information of China (English)

    肖化云; 刘丛强

    2001-01-01

    Automatic element analyser is often used to prepare organic matters tor 15N analysis. It is seldom used to prepare water samples. Water samples are conventionally dealt with by Kjeldahl-Rittenberg technique. But it requires tedious and labor-intensive sample preparation. A fast and reliable method is proposed in this paper to prepare water samples for 15N analysis.

  18. Tracking wind-dispersed seeds using (15)N-isotope enrichment.

    Science.gov (United States)

    Forster, C; Herrmann, J D

    2014-11-01

    Seed dispersal influences a wide range of ecological processes. However, measuring dispersal patterns, particularly long-distance dispersal, has been a difficult task. Marking bird-dispersed seeds with stable (15)N isotopes has been shown to be a user-friendly method to trace seed dispersal. In this study, we determined whether (15)N urea solution could be used to enrich seeds of two common wind-dispersed plants, Eupatorium glaucescens (Asteraceae) and Sericocarpus tortifolius (Asteraceae). We further tested if the water type (distilled versus tap) in (15)N urea solutions influences the level and variability of enrichment of plant seeds, and if increasing spraying frequency per se increases enrichment. Because droughts may lower seed set or kill plants, we wanted to investigate if the additional use of an externally applied anti-transpirant affects the intake of externally applied (15)N into seeds. The results demonstrate that (15)N enrichment of seeds can facilitate dispersal experiments with wind-dispersed plants. The use of distilled water in (15)N urea solutions did not increase (15)N enrichment compared to tap water. Further, enrichment was more efficient at lower spray frequencies. Both the use of tap water and low frequencies could lower time, effort and project costs. The results suggest that species can be protected from drought using an anti-transpirant without decreasing the incorporation of (15)N into seeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. An optimized method for (15)N R(1) relaxation rate measurements in non-deuterated proteins.

    Science.gov (United States)

    Gairí, Margarida; Dyachenko, Andrey; González, M Teresa; Feliz, Miguel; Pons, Miquel; Giralt, Ernest

    2015-06-01

    (15)N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. (15)N CSA/(1)H-(15)N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of (15)N R1 rates through (1)H-(15)N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable (15)N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on (15)N R1 rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during (15)N R1 measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.

  20. Dynamics of amino acid redistribution in the carnivorous Venus flytrap (Dionaea muscipula) after digestion of (13) C/(15) N-labelled prey.

    Science.gov (United States)

    Kruse, J; Gao, P; Eibelmeier, M; Alfarraj, S; Rennenberg, H

    2017-07-20

    Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey-derived carbon backbones of amino acids for the success of Dionaea's carnivorous life-style. The present study aimed at characterizing the metabolic fate of (15) N and (13) C in amino acids acquired from double-labeled insect powder. We tracked changes in plant amino acid pools and their δ(13) C- and δ(15) N-signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non-fed traps and attached petioles of Dionaea). Isotope signatures (i.e., δ(13) C and δ(15) N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen-rich transport compounds (i.e., amides) during peak time of prey digestion increased (15) N- relative to (13) C- abundances in amino acid pools. After completion of prey digestion, (13) C in amino acid pools was progressively exchanged for newly fixed (12) C. The latter process was most evident for non-fed traps and attached petioles of plants that had received ample insect powder. We argue that prey-derived amino acids contribute to respiratory energy gain and loss of (13) CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino-nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding). © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-01-01

    Full Text Available The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C2-symmetric and C1-symmetric NHCs is provided.

  2. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    Science.gov (United States)

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  3. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    Science.gov (United States)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  4. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    Science.gov (United States)

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (pstress-related diseases such as H. pylori infections.

  5. Extracting the information backbone in online system.

    Directory of Open Access Journals (Sweden)

    Qian-Ming Zhang

    Full Text Available Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  6. The Backbone of the Climate Networks

    Science.gov (United States)

    Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.

    2009-12-01

    We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of complex network theory. We show, that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis. Furthermore, we introduce significance tests to quantify the robustness of measured network properties to uncertainties. References: [1] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Complex networks in climate dynamics -- -- Comparing linear and nonlinear network construction methods. European Physical Journal -- Special Topics, 174, 157-179, 2009. [2] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Backbone of the climate network. Europhysics Letters, in press, 2009.

  7. NET amyloidogenic backbone in human activated neutrophils.

    Science.gov (United States)

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role.

  8. Extracting the Information Backbone in Online System

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  9. High Speed Fibre Optic Backbone LAN

    Science.gov (United States)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  10. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.V. (Univ. of New Mexico, Albuquerque (USA))

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  11. Syntheses of 15N-labeled pre-queuosine nucleobase derivatives

    Directory of Open Access Journals (Sweden)

    Jasmin Levic

    2014-08-01

    Full Text Available Pre-queuosine or queuine (preQ1 is a guanine derivative that is involved in the biosynthetic pathway of the hypermodified tRNA nucleoside queuosine (Que. The core structure of preQ1 is represented by 7-(aminomethyl-7-deazaguanine (preQ1 base. Here, we report the synthesis of three preQ1 base derivatives with complementary 15N-labeling patterns, utilizing [15N]-KCN, [15N]-phthalimide, and [15N3]-guanidine as cost-affordable 15N sources. Such derivatives are required to explore the binding process of the preQ1 base to RNA targets using advanced NMR spectroscopic methods. PreQ1 base specifically binds to bacterial mRNA domains and thereby regulates genes that are required for queuosine biosynthesis.

  12. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  13. Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data.

    Science.gov (United States)

    Wong, Leo E; Masse, James E; Jaravine, Victor; Orekhov, Vladislav; Pervushin, Konstantin

    2008-10-01

    The necessity to acquire large multidimensional datasets, a basis for assignment of NMR resonances, results in long data acquisition times during which substantial degradation of a protein sample might occur. Here we propose a method applicable for such a protein for automatic assignment of backbone resonances by direct inspection of multidimensional NMR spectra. In order to establish an optimal balance between completeness of resonance assignment and losses of cross-peaks due to dynamic processes/degradation of protein, assignment of backbone resonances is set as a stirring criterion for dynamically controlled targeted nonlinear NMR data acquisition. The result is demonstrated with the 12 kDa (13)C,(15) N-labeled apo-form of heme chaperone protein CcmE, where hydrolytic cleavage of 29 C-terminal amino acids is detected. For this protein, 90 and 98% of manually assignable resonances are automatically assigned within 10 and 40 h of nonlinear sampling of five 3D NMR spectra, respectively, instead of 600 h needed to complete the full time domain grid. In addition, resonances stemming from degradation products are identified. This study indicates that automatic resonance assignment might serve as a guiding criterion for optimal run-time allocation of NMR resources in applications to proteins prone to degradation.

  14. Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Leo E. [Nanyang Technological University, School of Biological Sciences (Singapore); Masse, James E. [National Institutes of Health (United States); Jaravine, Victor [J. W. Goethe-University Frankfurt, Institute of Biophysical Chemistry (Germany); Orekhov, Vladislav [Gothenburg University, Swedish NMR Centre (Sweden); Pervushin, Konstantin [Nanyang Technological University, School of Biological Sciences (Singapore)], E-mail: kpervushin@ntu.edu.sg

    2008-10-15

    The necessity to acquire large multidimensional datasets, a basis for assignment of NMR resonances, results in long data acquisition times during which substantial degradation of a protein sample might occur. Here we propose a method applicable for such a protein for automatic assignment of backbone resonances by direct inspection of multidimensional NMR spectra. In order to establish an optimal balance between completeness of resonance assignment and losses of cross-peaks due to dynamic processes/degradation of protein, assignment of backbone resonances is set as a stirring criterion for dynamically controlled targeted nonlinear NMR data acquisition. The result is demonstrated with the 12 kDa {sup 13}C,{sup 15} N-labeled apo-form of heme chaperone protein CcmE, where hydrolytic cleavage of 29 C-terminal amino acids is detected. For this protein, 90 and 98% of manually assignable resonances are automatically assigned within 10 and 40 h of nonlinear sampling of five 3D NMR spectra, respectively, instead of 600 h needed to complete the full time domain grid. In addition, resonances stemming from degradation products are identified. This study indicates that automatic resonance assignment might serve as a guiding criterion for optimal run-time allocation of NMR resources in applications to proteins prone to degradation.

  15. Extracting Backbones from Weighted Complex Networks with Incomplete Information

    Directory of Open Access Journals (Sweden)

    Liqiang Qian

    2015-01-01

    Full Text Available The backbone is the natural abstraction of a complex network, which can help people understand a networked system in a more simplified form. Traditional backbone extraction methods tend to include many outliers into the backbone. What is more, they often suffer from the computational inefficiency—the exhaustive search of all nodes or edges is often prohibitively expensive. In this paper, we propose a backbone extraction heuristic with incomplete information (BEHwII to find the backbone in a complex weighted network. First, a strict filtering rule is carefully designed to determine edges to be preserved or discarded. Second, we present a local search model to examine part of edges in an iterative way, which only relies on the local/incomplete knowledge rather than the global view of the network. Experimental results on four real-life networks demonstrate the advantage of BEHwII over the classic disparity filter method by either effectiveness or efficiency validity.

  16. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......-supported SOFC. The cathodes are obtained by infiltrating LSM into a sintered either thick (300 μm) yttria stabilized zirconia (YSZ) backbone or a thin YSZ backbone (10-15 μm) integrated onto a thick (300 μm) porous strontium substituted lanthanum manganite (LSM) and YSZ composite. Fabrication challenges...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...

  17. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    Science.gov (United States)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  18. A 1H, 13C and 15N NMR study in solution and in the solid state of six N-substituted pyrazoles and indazoles.

    Science.gov (United States)

    Claramunt, Rosa M; Santa María, M Dolores; Sanz, Dionisia; Alkorta, Ibon; Elguero, José

    2006-05-01

    Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.

  19. FIRST MEASUREMENTS OF {sup 15}N FRACTIONATION IN N{sub 2}H{sup +} TOWARD HIGH-MASS STAR-FORMING CORES

    Energy Technology Data Exchange (ETDEWEB)

    Fontani, F. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Caselli, P.; Bizzocchi, L. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Palau, A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico); Ceccarelli, C. [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2015-08-01

    We report on the first measurements of the isotopic ratio {sup 14}N/{sup 15}N in N{sub 2}H{sup +} toward a statistically significant sample of high-mass star-forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact H ii regions. Simultaneous measurements of the {sup 14}N/{sup 15}N ratio in CN have been made. The {sup 14}N/{sup 15}N ratios derived from N{sub 2}H{sup +} show a large spread (from ∼180 up to ∼1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (∼270) and that of the proto-solar nebula (∼440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N{sub 2}H{sup +} isotopologues are more than those detected in the CN ones. The {sup 14}N/{sup 15}N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the {sup 14}N/{sup 15}N (as derived from N{sub 2}H{sup +}) and the H/D isotopic ratios. This suggests that {sup 15}N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in {sup 14}N/{sup 15}N, pointing out that some important routes of nitrogen fractionation could be still missing in the models.

  20. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    Science.gov (United States)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  1. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    Science.gov (United States)

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  2. Interpreting δ15N in Soil Profiles: Insights From the N-Isotopes of Amino Acids

    Science.gov (United States)

    Philben, M. J.; Edwards, K. A.; Billings, S. A.; Van Biesen, G.; Podrebarac, F. A.; Ziegler, S. E.

    2016-12-01

    The δ15N of soil organic matter is consistently enriched with depth in soil profiles, although the magnitude of enrichment appears to vary with latitude. This could provide important insights on differences in N cycling among ecosystems, but the mechanism responsible for the depth trend remains controversial. Hypothesized explanations are (1) selective loss of depleted N during decomposition; (2) accumulation of 15N-enriched biomass of decomposers at depth; and (3) transfer of depleted N from depth to the soil surface by mycorrhizal fungi. To constrain these possible mechanisms, we analyzed the δ15N of hydrolyzable amino acids in the L, F, and H soil horizons of 2 boreal forests in southeast Labrador and southwest Newfoundland, Canada, before and after 480-day laboratory incubations of the soils. Most amino acids are both produced and degraded by microbes, but some are not resynthesized. The difference between these groups can be used to isolate the effects of decomposition from other fractionating processes. The amino acid δ15N did not change during the soil incubations, indicating peptide depolymerization does not fractionate N isotopes. This is consistent with a previously conducted fallow experiment in which amino acid δ15N remained unchanged after 68 years of decomposition in the absence of plant inputs. In contrast, the δ15N of most amino acids were enriched by 3-7‰ from the L to the H horizon, similar to the enrichment of bulk δ15N with depth. This pattern suggests these amino acids were resynthesized deeper in the soil profile where the bulk δ15N was more enriched. The δ15N amino acids phenylalanine and hydroxyproline, which are not resynthesized by the microbial community with decomposition, did not change with depth, indicating the depth trend was not due to temporal change in the δ15N of plant inputs to the soil. The enrichment of amino acid δ15N with depth in the soil profiles but not in the incubations or the fallow experiment indicates

  3. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of sa...... of samples with Ni remained in the YSZ structure at high temperatures. All impregnated backbones, presented Rs comparable to a standard screen printed cathode, which proves that LSM nanoparticles forms a pathway for electron conduction....

  4. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    Science.gov (United States)

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes (δ15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  5. Measurement of marine productivity using 15N and 13C tracers: Some methodological aspects

    Indian Academy of Sciences (India)

    Naveen Gandhi; Sanjeev Kumar; S Prakash; R Ramesh; M S Sheshshayee

    2011-02-01

    Various experiments involving the measurement of new, regenerated and total productivity using 15N and 13C tracers were carried out in the Bay of Bengal (BOB) and in the Arabian Sea. Results from 15N tracer experiments indicate that nitrate uptake can be underestimated by experiments with incubation time > 4 hours. Indirect evidence suggests pico- and nano-phytoplankton, on their dominance over microphytoplankton, can also influence the f-ratios. Difference in energy requirement for assimilation of different nitrogen compounds decides the preferred nitrogen source during the early hours of incubation. Variation in light intensity during incubation also plays a significant role in the assimilation of nitrogen. Results from time course experiments with both 15N and 13C tracers suggest that photoinhibition appears significant in BOB and the Arabian Sea during noon. A significant correlation has been found in the productivity values obtained using 15N and 13C tracers.

  6. Gamma-ray width measurements in {sup 15}N at the ELBE nuclear resonance fluorescence setup

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, Tamas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); MTA ATOMKI, Debrecen/Hungary (Hungary); Bemmerer, Daniel; Schwengner, Ronald [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Massarczyk, Ralph; Takacs, Marcell; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); TU Dresden (Germany)

    2014-07-01

    The stable nucleus {sup 15}N is the mirror of the astrophysically important {sup 15}O, compound nucleus of the leading reaction of the Bethe-Weizsaecker cycle of hydrogen burning. Most of the {sup 15}N level widths below the neutron and proton emission thresholds are known from just one nuclear resonance fluorescence (NRF) measurement published more than 30 years ago, with unsatisfactory precision on some cases. A recent experiment with the AGATA demonstrator array aimed to determine level widths with the Doppler Shift Attenuation Method (DSAM) in {sup 15}O and {sup 15}N populated in {sup 14}N + {sup 2}H reaction. In order to set a benchmark value for the upcoming AGATA demonstrator data, the widths of several {sup 15}N levels are being studied using the bremsstrahlung facility γELBE at the electron accelerator of Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The γELBE experiment and its preliminary results are presented.

  7. 15N NMR Spectroscopic Study on Nitrogen Formsin1mmHumic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil, alateritic red soil and a weathered coal and the effect of acidhydrolysis on N structures of soil humic substances were studied byusing {15N cross-polarization magic angle spinning nuclearmagnetic resonance (CPMAS NMR) spectroscopy. Of the detectable15N-signal intensity in the spectra of soil humic substances71%79% may be attributed to amide groups, 10%18%to aromatic/aliphatic amines and 6%11% to indole- andpyrrole-like N. Whereas in the spectrum of the fulvic acid fromweathered coal 46%, at least, of the total 15N-signalintensity might be assigned to pyrrole-like N, 14% toaromatic/aliphatic amines, and the remaining intensities could not beassigned with certainty. Data on nonhydrolyzable residue ofprotein-sugar mixture and a 15N-labelled soil fulvic acidconfirm the formation of nonhydrolyzable heterocyclic N during acidhydrolysis.

  8. Compaction stimulates denitrification in an urban park soil using 15N tracing technique

    DEFF Research Database (Denmark)

    Li, Shun; Deng, Huan; Rensing, Christopher Günther T

    2014-01-01

    Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using 15N labeling method......, no statistical difference in total N losses and 15N-(N2O+N2) flux between the uncompacted soil and the compacted soil was detected. Compaction promoted soil denitrification and may impact urban N biogeochemical cycling....

  9. Determination of gamma-ray widths in $^{15}$N using nuclear resonance fluorescence

    OpenAIRE

    Szücs, T.; Bemmerer, D.; Caciolli, A.; Fülöp, Zs.; Massarczyk, R.; Michelagnoli, C.; Reinhardt, T. P.; Schwengner, R.; Takács, M. P.; Ur, C. A.; Wagner, A.; Wagner, L.

    2015-01-01

    The stable nucleus $^{15}$N is the mirror of $^{15}$O, the bottleneck in the hydrogen burning CNO cycle. Most of the $^{15}$N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler Shift Attenuation Method (DSAM) in $^{15}$O. As a reference and for testing the method, level lifetimes in $^{1...

  10. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    Science.gov (United States)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  11. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    Energy Technology Data Exchange (ETDEWEB)

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  12. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A.

    Science.gov (United States)

    Stanger, Karen; Maurer, Till; Kaluarachchi, Harini; Coons, Mary; Franke, Yvonne; Hannoush, Rami N

    2014-11-28

    Cyclotides belong to the family of cyclic cystine-knot peptides and have shown promise as scaffolds for protein engineering and pharmacological modulation of cellular protein activity. Cyclotides are characterized by a cystine-knotted topology and a head-to-tail cyclic polypeptide backbone. While they are primarily produced in plants, cyclotides have also been obtained by chemical synthesis. However, there is still a need for methods to generate cyclotides in high yields to near homogeneity. Here, we report a biomimetic approach which utilizes an engineered version of the enzyme Sortase A to catalyze amide backbone cyclization of the recombinant cyclotide MCoTI-II, thereby allowing the efficient production of active homogenous species in high yields. Our results provide proof of concept for using engineered Sortase A to produce cyclic MCoTI-II and should be generally applicable to generating other cyclic cystine-knot peptides.

  13. Determination of gamma-ray widths in $^{15}$N using nuclear resonance fluorescence

    CERN Document Server

    Szücs, T; Caciolli, A; Fülöp, Zs; Massarczyk, R; Michelagnoli, C; Reinhardt, T P; Schwengner, R; Takács, M P; Ur, C A; Wagner, A; Wagner, L

    2015-01-01

    The stable nucleus $^{15}$N is the mirror of $^{15}$O, the bottleneck in the hydrogen burning CNO cycle. Most of the $^{15}$N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler Shift Attenuation Method (DSAM) in $^{15}$O. As a reference and for testing the method, level lifetimes in $^{15}$N have also been determined in the same experiment. The latest compilation of $^{15}$N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement in order to enable a comparison to the AGATA demonstrator data. The widths of several $^{15}$N levels have been studied with the NRF method. The solid nitrogen compounds enriched in $^{15}$N have been irradiated with bremsstrahlung. The $\\gamma$-rays following the deexcitation of the excited nuclear levels were dete...

  14. A backbone lever-arm effect enhances polymer mechanochemistry

    Science.gov (United States)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  15. LOAD AWARE ADAPTIVE BACKBONE SYNTHESIS IN WIRELESS MESH NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Zheng Baoyu

    2009-01-01

    Wireless Mesh Networks (WMNs) are envisioned to support the wired backbone with a wireless Backbone Networks (BNet) for providing internet connectivity to large-scale areas.With a wide range of internet-oriented applications with different Quality of Service (QoS) requirement,the large-scale WMNs should have good scalability and large bandwidth.In this paper,a Load Aware Adaptive Backbone Synthesis (LAABS) algorithm is proposed to automatically balance the traffic flow in the WMNs.The BNet will dynamically split into smaller size or merge into bigger one according to statistic load information of Backbone Nodes (BNs).Simulation results show LAABS generates moderate BNet size and converges quickly,thus providing scalable and stable BNet to facilitate traffic flow.

  16. Towards a natural classification and backbone tree for Sordariomycete

    Digital Repository Service at National Institute of Oceanography (India)

    Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Huang, S.-K.; Abdel-Wahab, M.A.; Daranagama, D.A.; Dayarathne, M.; D'souza, M.J.; Goonasekara, I.D.; Hongsanan, S.; Jayawardena, R.S.; Kirk, P.M.; Konta, S.; Liu, J.-K.; Liu, Z.-Y.; Norphanphoun, C.; Pang, K.-L.; Perera, R.H.; Senanayake, I.C.; Shang, Q.; Shenoy, B.D.; Xiao, Y.; Bahkali, A.H.; Kang, J.; Somrothipol, S.; Suetrong, S.; Wen, T.; Xu, J.

    , lichenized or lichenicolous taxa The class includes freshwater, marine and terrestrial taxa and has a worldwide distribution This paper provides an updated outline of the Sordariomycetes and a backbone tree incorporating asexual and sexual genera in the class...

  17. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    Science.gov (United States)

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  18. Backbone topology, access, and the commercial Internet, 1997 - 2000

    OpenAIRE

    Morton E O'Kelly; Grubesic, Tony H.

    2002-01-01

    As the Internet grows in popularity, telecommunications infrastructure in the United States continues to increase in capacity and geographic reach to meet market demand. Important components of this infrastructure include the commercial fiber-optic backbones used to transport digital information between locations. The spatial organization of commercial Internet backbones reflects an increasingly competitive privatized market for service provision, in which certain locations are more accessibl...

  19. On Backbone Structure for a Future Multipurpose Network

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Cuevas, Ruben; Riaz, M. Tahir

    2008-01-01

    Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all the curr......Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all...

  20. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Science.gov (United States)

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species' ecological role in their community will be influenced with consequences for conservation and

  1. True cooking aroma or artefact. {sup 15}N gives the answer; Veritable arome de cuisson ou artefact. {sup 15}N fournit la reponse

    Energy Technology Data Exchange (ETDEWEB)

    Metro, F.; Boudaud, N.; Dumont, J.P. [INRA, 44 - Nantes (France)

    1994-12-31

    In order to determine the respective contributions of the various nitrous precursor families in aroma preparations, the usually added amino acids were substituted with {sup 15}N isotope labelled homologous components. Results concerning isotope ratios for the volatile fraction nitrous components collected from poultry meat aromatic preparations, are presented. Terminal product labelling appears to allow for a better determination of the substrate and functional additive contributions. 4 figs., 6 refs.

  2. Topologia dos backbones de internet no Brasil / Internet backbone topology in Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Paiva da Motta

    2012-04-01

    Full Text Available Este artigo visa reafirmar o papel do espaço no estudo das Novas Tecnologias de Informação e Comunicação (NTICs. Examinamos a topologia dos backbones de internet no Brasil usando as ferramentas matemáticas da teoria dos grafos. Através do cálculo de índices de centralidade (proximidade e intermediação, bem como de outras técnicas quantitativas, as redes físicas que compõem a internet são relacionadas à rede urbana preexistente, mostrando que em suas características gerais o funcionamento não subverte a geografia econômica do país, a despeito do ideário antigeográfico suscitado por parte da literatura sobre os impactos da tecnologia.

  3. Absorption of ammonium sulphate {sup 15}N by coffee plants; Recuperacao do {sup 15}N do sulfato de amonio por plantas de cafe

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: tatiele@cena.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Dourado Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegetal

    2005-07-01

    The objective of this study was to quantify the absorption of ammonium sulphate {sup 15}N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha{sup -1} of {sup 15}N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 {+-} 0,001 atom % {sup 15}N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  4. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    Science.gov (United States)

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions.

  5. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  6. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Science.gov (United States)

    Vokhshoori, Natasha L; McCarthy, Matthew D

    2014-01-01

    We explored δ(15)N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15)N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ(15)N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15)N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2) = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15)N trend is therefore most consistent with a baseline δ(15)N gradient, likely due to the mixing of two source waters: low δ(15)N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with (15)N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15)N values of phenylalanine (δ(15)NPhe), the best AA proxy for baseline δ(15)N values. We hypothesize δ(15)N(Phe) values in intertidal mussels can approximate annual integrated δ(15)N values of coastal phytoplankton primary production. We therefore used δ(15)N(Phe) values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15)N values. We propose that δ(15)N(Phe) isoscapes derived from filter feeders can directly characterize baseline δ(15)N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  7. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  8. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    Science.gov (United States)

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could

  9. Probing platinum azido complexes by 14N and 15N NMR spectroscopy.

    Science.gov (United States)

    Farrer, Nicola J; Gierth, Peter; Sadler, Peter J

    2011-10-17

    Metal azido complexes are of general interest due to their high energetic properties, and platinum azido complexes in particular because of their potential as photoactivatable anticancer prodrugs. However, azido ligands are difficult to probe by NMR spectroscopy due to the quadrupolar nature of (14)N and the lack of scalar (1)H coupling to enhance the sensitivity of the less abundant (15)N by using polarisation transfer. In this work, we report (14)N and (15)N NMR spectroscopic studies of cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))] (1) and trans,trans,trans-[Pt(N(3))(2)(OH)(2)(X)(Y)], where X=Y=NH(3) (2); X=NH(3), Y=py (3) (py=pyridine); X=Y=py (4); and selected Pt(II) precursors. These studies provide the first (15)N NMR data for azido groups in coordination complexes. We discuss one- and three-bond J((15)N,(195)Pt) couplings for azido and am(m)ine ligands. The (14)N(α) (coordinated azido nitrogen) signal in the Pt(IV) azido complexes is extremely broad (W(1/2)≈2124 Hz for 4) in comparison to other metal azido complexes, attributable to a highly asymmetrical electric field gradient at the (14)N(α) atom. Through the use of anti-ringing pulse sequences, the (14)N NMR spectra, which show resolution of the broad (14)N(α) peak, were obtained rapidly (e.g., 1.5 h for 10 mM 4). The linewidths of the (14)N(α) signals correlate with the viscosity of the solvent. For (15) N-enriched samples, it is possible to detect azido (15)N resonances directly, which will allow photoreactions to be followed by 1D (15)N NMR spectroscopy. The T(1) relaxation times for 3 and 4 were in the range 5.7-120 s for (15)N, and 0.9-11.3 ms for (14)N. Analysis of the (1)J((15)N,(195)Pt) coupling constants suggests that an azido ligand has a moderately strong trans influence in octahedral Pt(IV) complexes, within the series 2-picIV)-NH(3) bond to a greater extent than an axial OH(-) ligand. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rivermouth alteration of agricultural impacts on consumer tissue δ(15N.

    Directory of Open Access Journals (Sweden)

    James H Larson

    Full Text Available Terrestrial agricultural activities strongly influence riverine nitrogen (N dynamics, which is reflected in the δ(15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ(15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ(15N. In a previous study, this terrestrial-consumer tissue δ(15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the 'rivermouth effect'. This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ(15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients will require integration of biogeochemical and hydrologic models.

  11. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    Science.gov (United States)

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  12. The {sup 15}N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele A.B. [Universidade Regional de Blumenau, (FURB), SC (Brazil); Reichart, Klaus; Bacchi, Osny O.S.; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)]. E-mail: klaus@cena.usp.br; Dourado-Neto, Durval [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ)

    2007-12-15

    The use of the {sup 15}N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of {sup 15}N labeled fertilizer experiments, using as an example a coffee crop fertilized with {sup 15}N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% {sup 15}N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and {sup 15}N enrichments of plant material by mass-spectrometry. (author)

  13. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs.

    Science.gov (United States)

    Kaldy, James

    2011-08-01

    Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5‰ in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  14. Revision of the 15N(p,{\\gamma})16O reaction rate and oxygen abundance in H-burning zones

    CERN Document Server

    Caciolli, A; Capogrosso, V; Bemmerer, D; Broggini, C; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Marta, M; Menegazzo, R; Palmerini, S; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2011-01-01

    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\\simeq} 30 {\\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures...

  15. Partitioning Residue-derived and Residue-induced Emissions of N2O Using 15N-labelled Crop Residues

    Science.gov (United States)

    Farrell, R. E.; Carverhill, J.; Lemke, R.; Knight, J. D.

    2014-12-01

    Estimates of N2O emissions in Canada indicate that 17% of all agriculture-based emissions are associated with the decomposition of crop residues. However, research specific to the western Canadian prairies (including Saskatchewan) has shown that the N2O emission factor for N sources in this region typically ranges between 0.2 and 0.6%, which is well below the current IPCC default emission factor of 1.0%. Thus, it stands to reason that emissions from crop residues should also be lower than those calculated using the current IPCC emission factor. Current data indicates that residue decomposition, N mineralization and N2O production are affected by a number of factors such as C:N ratio and chemical composition of the residue, soil type, and soil water content; thus, a bench-scale incubation study was conducted to examine the effects of soil type and water content on N2O emissions associated with the decomposition of different crop residues. The study was carried out using soils from the Black, Dark Brown, Brown, and Gray soil zones and was conducted at both 50% and 70% water-filled pore space (WFPS); the soils were amended with 15N-labeled residues of wheat, pea, canola, and flax, or with an equivalent amount of 15N-labeled urea; 15N2O production was monitored using a Picarro G5101-i isotopic N2O analyzer. Crop residue additions to the soils resulted in both direct and indirect emissions of N2O, with residue derived emissions (RDE; measured as 15N2O) generally exceeding residue-induced emissions (RIE) at 50% WFPS—with RDEs ranging from 42% to 88% (mean = 58%) of the total N2O. Conversely, at 70% WFPS, RDEs were generally lower than RIEs—ranging from 21% to 83% (mean = 48%). Whereas both water content and soil type had an impact on N2O production, there was a clear and consistent trend in the emission factors for the residues; i.e., emissions were always greatest for the canola residue and lowest for the wheat residue and urea fertilizer; and intermediate for pea

  16. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    Science.gov (United States)

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  17. Macroalgae δ 15 N values in well-mixed estuaries: indicator of anthropogenic nitrogen input or macroalgae metabolism?

    OpenAIRE

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-01-01

    International audience; Although nitrogen stable isotope ratio (d15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in d15N variability. Simultaneous determinations of d15N of dissolved inorganic nitrogen(DIN) along the landesea continuum, inter-species variability of d15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae d15...

  18. Total N difference method and 15N isotope dilution methode - A comparative study on N-fixation

    OpenAIRE

    2002-01-01

    In the study, the 15N fixation of a number of green manure crops were studied using either the 15N dilution technique, or the simple total N difference method. The results of the two methods were not very different, and the total N difference method seemed to give as good results as the more complicated and expencive 15N dillution method.

  19. Coral skeletal {delta}{sup 15}N reveals isotopic traces of an agricultural revolution

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Guy S. [Department of Biological Sciences, Stanford University, Stanford, CA 94305 (United States)]. E-mail: g.marion@uq.edu.au; Dunbar, Robert B. [Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 (United States); Mucciarone, David A. [Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 (United States); Kremer, James N. [Department of Marine Sciences, University of Connecticut at Avery Point, Groton, CT 06340 (United States); Lansing, J. Stephen [Department of Anthropology, University of Arizona, Tucson, AZ 85721 (United States); Arthawiguna, Alit [Installation for Agricultural Research (IP 2TP), Kotak Pos 3480, Denpasar, Bali (Indonesia)

    2005-09-01

    This study introduces a new method of tracing the history of nutrient loading in coastal oceans via {delta}{sup 15}N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal {delta}{sup 15}N in the agriculturally exposed coral declined from 10.7 {+-} 0.4 per mille in 1970-1971, when synthetic fertilizers (-0.8 per mille {+-} 0.2 per mille ) were introduced to Bali, to a depleted 'anthropogenic' baseline of 3.5 per mille {+-} 0.4% in the mid-1990s. {delta}{sup 15}N values were negatively correlated with rainfall, suggesting that marine {delta}{sup 15}N lowers during flood-born influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3 {+-} 0.4 per mille ), while the offshore core reflected background oceanic signals (6.2 {+-} 0.4 per mille). {delta}{sup 15}N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic {delta}{sup 15}N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs.

  20. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction.

    Science.gov (United States)

    Amsden, Jason J; Kralj, Joel M; Chieffo, Logan R; Wang, Xihua; Erramilli, Shyamsunder; Spudich, Elena N; Spudich, John L; Ziegler, Lawrence D; Rothschild, Kenneth J

    2007-10-11

    Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport.

  1. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2007-01-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5‰ is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification by ±30% or N2 fixation by ±15% produces detectable (>1‰ changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several ‰ that are consistent with sustained N deficit during the deglaciation followed by readjustment

  2. Accurate proteome-wide protein quantification from high-resolution 15N mass spectra.

    Science.gov (United States)

    Khan, Zia; Amini, Sasan; Bloom, Joshua S; Ruse, Cristian; Caudy, Amy A; Kruglyak, Leonid; Singh, Mona; Perlman, David H; Tavazoie, Saeed

    2011-12-19

    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods.

  3. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-02

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  4. Rotational spectrum of deuterated and 15N ethyl cyanides: CH3CHDCN and CH2DCH2CN and of CH3CH2C15N

    CERN Document Server

    Margulès, Laurent; Demyk, Karine; Tercero, Belen; Cernicharo, Jose; Sheng, M; Weidmann, M; Gripp, J; Mäder, H; Demaison, J

    2008-01-01

    Ethyl cyanide is an abundant molecule in hot molecular clouds. Lines from 13C isotopically substituted ethyl cyanide were identified in Orion. To enable the search and the possible detection of other isotopologues of ethyl cyanide in interstellar objects, we have studied the rotational spectrum of deuterated ethyl cyanide: CH2DCH2CN (in-plane and out-of-plane) and CH3CHDCN and the spectrum of15N substituted ethyl cyanide CH3CH2C15N. The rotational spectrum of each species in the ground state was measured in the microwave and millimeter-submillimeter wavelength range using a waveguide Fourier transform spectrometer (8 - 17 GHz) and a source-modulated spectrometer employing backward-wave oscillators (BWOs) (150 - 260 and 580 - 660 GHz). From the fitting procedure, accurate spectroscopic constants were derived for each of the species. These new sets of spectroscopic constants enable us to predict reliably the rotational spectrum (lines frequencies and intensities) in the 4-1000 GHz frequency range and for J and ...

  5. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    CERN Document Server

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  6. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.

    Directory of Open Access Journals (Sweden)

    Kevin Drew

    Full Text Available Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones, oligooxopiperazines, oligo-peptoids, [Formula: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org. This work helps address the peptidomimetic community's need for an automated and expandable

  7. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to address the aforementioned difficulties. Most of the researches on tag clustering are directly using traditional clustering algorithms such as K-means or Hierarchical...

  8. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to address the aforementioned difficulties. Most of the researches on tag clustering are directly using traditional clustering algorithms such as K-means or Hierarchical...

  9. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  10. Determination of level widths in 15N using nuclear resonance fluorescence

    Directory of Open Access Journals (Sweden)

    Szücs T.

    2015-01-01

    Full Text Available Level widths in 15N have been measured with the nuclear resonance fluorescence (NRF technique. Solid nitrogen compounds, bremsstrahlung, and HPGe detectors have been used as target, beam, and detectors, respectively. The preliminarily level widths are in agreement with the literature values, but more precise.

  11. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    Science.gov (United States)

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  12. (15)N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga).

    Science.gov (United States)

    de Freitas, Ana Dolores Santiago; de Sa Barretto Sampaio, Everardo Valadares; Menezes, Romulo Simoes Cezar; Tiessen, Holm

    2010-06-01

    Foliar delta(15)N values are useful to calculate N(2) fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had delta(15)N values of 9.4 and 10.1 per thousand, among the highest already reported, and significantly greater than those (6.5 and 6.3 per thousand) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N(2) fixation. The higher values could result from higher losses of (15)N depleted gases or lower losses of enriched (15)N material.

  13. An improved method for delta 15N measurements in ice cores

    Directory of Open Access Journals (Sweden)

    M. Leuenberger

    2008-02-01

    Full Text Available The use of isotopic ratios of nitrogen gas (δ15N trapped in ice cores as a paleothermometer to characterise abrupt climate changes is becoming a widespread technique. The versatility of the technique could be enhanced, for instance in quantifying small temperature changes during the last glacial period in Antarctic ice cores, by using high precision methods. In this paper, we outline a method for measuring δ15N to a precision of 0.006permil (1σ, n=9 from replicate ice core samples. The high precision results from removing oxygen, carbon dioxide and water vapour from the air extracted from ice cores. The advantage of the technique is that it does not involve correction for isobaric interference due to CO+ ions. We also highlight the importance of oxygen removal from the sample, and how it influences δ15N measurements. The results show that a small amount of oxygen in the sample can be detrimental to achieving an optimum precision in δ15N measurements of atmospheric nitrogen trapped ice core samples.

  14. 15N NMR Spectroscopic Study on Nitrogen Forms in Humic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    WENQIXAIO; ZHUOSUNENG; 等

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil,a lateritic red soil and a weathered cola and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance(CPMAS NMR) spectroscopy,Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups ,10%-18% to aromatic/aliphatic amines and 6%-11% to indole-and pyrrole-like N.Whereas in the spectrum of the fulvic acid from weathered coal 46%,at least,of the total 15N-signal intensity might be assigned to pyrrole-like N,14% to aromatic/aliphatic amines,and the reamining intensities could not be assigned with certainty,Data on nonhydrolyzable reside of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis.

  15. The degree of urbanization across the globe is not reflected in the δ(15)N of seagrass leaves.

    Science.gov (United States)

    Christiaen, Bart; Bernard, Rebecca J; Mortazavi, Behzad; Cebrian, Just; Ortmann, Alice C

    2014-06-30

    Many studies show that seagrass δ(15)N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ(15)N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ(15)N ratios correlate with patterns of population density and fertilizer use within a radius of 10-200 km around the sample locations. Our results show that seagrass δ(15)N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ(15)N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the (15)N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ(15)N and latitude remain unknown.

  16. Araucaria cunninghamii Seedling Response to Different Forms and Rates of 15N-Labelled Fertiliser

    Institute of Scientific and Technical Information of China (English)

    T.J.BLUMFIELD; XU Zhi-Hong

    2006-01-01

    Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using 15Nlabelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg-1 dried soil) of fertilisers on the growth, 15N recovery and carbon isotope composition (δ13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland,Australia. The 15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots,containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage,and then analysed for 15N, total N, δ13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined 15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of 15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg-1 soil gradually increased seedling foliage δ13C over the 12-month period, indicating an increase in seedling water use efficiency.

  17. [Characteristics of urea 15N absorption, allocation, and utilization by sweet-cherry (Prunus avium L.)].

    Science.gov (United States)

    Zhao, Feng-Xia; Jiang, Yuan-Mao; Peng, Fu-Tian; Gao, Xiang-Bin; Liu, Bing-Hua; Wang, Hai-Yun; Zhao, Lin

    2008-03-01

    With five-year old 'Zaodaguo' sweet-cherry (Prunus avium L.) as test material, this paper studied the characteristics of its urea 15N absorption, allocation, and utilization when applied before bud-break. The results showed that the Ndff of different organs increased gradually with time, and was higher in fine roots and storage organs at full-blooming stage. At fruit core-hardening stage, the Ndff of long shoots and leaves increased quickly, reaching to 0.72% and 0.59% , respectively. From fruit core-hardening to harvesting stage, the Ndff of fruit had a rapid increase, with the peak (1.78%) at harvesting stage. After harvest, the Ndff of neonatal organs increased slowly while that of storage organs increased quickly. At full-blooming stage, the absorbed 15N in roots was firstly allocated to storage organs, with the highest allocation rate (54.91%) in large roots. At fruit core-hardening stage, the allocation rate in fine roots and storage organs decreased from 85.43% to 55.11%, while that in neonatal branches and leaves increased to 44.89%. At harvesting stage, the allocation rate in different organs had no significant change, but after harvest, the absorbed 15N had a rapid translocation to storage organs, and the allocation rate in fine roots and storage organs reached the highest (72.26%) at flower bud differentiation stage. The 15N allocation rate in neonatal branches and leaves at flower bud differentiation stage was decreased by 19.31%, compared with that at harvesting stage. From full-blooming to flower bud differentiation stage, the utilization rate of urea 15N was increasing, and reached the peak (16.86%) at flower bud differentiation stage.

  18. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  19. Optimal sink placement in backbone assisted wireless sensor networks

    Directory of Open Access Journals (Sweden)

    I. Snigdh

    2016-07-01

    Full Text Available This article proposes a scheme for selecting the best site for sink placement in WSN applications employing backbone assisted communications. By placing the sink at a specific position, energy scavenging and delay constraints can effectively be controlled. In contrast to the conventional scheme for base station placement at the geographical centre or random placement at the end of the region of interest, the proposed scheme places the base station at either the graph theoretical centre or centroid of the backbone connecting nodes in the region of interest. This strategy shows a considerable reduction in the total number of hops that each packet needs to travel to reach the sink. The proposed scheme is applied on all the families of graphs prevalent in backbone assisted sensor networks to confirm the performance consistency and improvement in network parameters of the communication backbone measured in terms of delay, the carried load and the total energy consumption, eventually affected by the average number of hops for the message to reach the sink.

  20. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    Directory of Open Access Journals (Sweden)

    Tatiele A.B. Fenilli

    2007-12-01

    Full Text Available The use of the 15N label for agronomic research involving nitrogen (N cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.O uso do traçador 15N em pesquisas agronômicas que envolvem o ciclo do nitrogênio (N e o destino do N do fertilizante está bem estabelecido, entretanto, para o caso de experimentação com plantas perenes como citrus, café e seringueira, ainda existem limitações devidas ao porte das plantas, à amostragem, aos níveis de detecção e à interferência no sistema. Este estudo procura contribuir metodologicamente no delineamento experimental e no desenvolvimento desse tipo de experimentação, em condições de campo, fazendo uso, por dois anos, do experimento de uma cultura de café adubada com fertilizante marcado com 15N. O N da planta derivado do fertilizante foi estudado nas diferentes partes da planta de café para determinar sua

  1. Characterization of Humic Fractions in a 15N-labelled Soil by Solid by State-State 13C and 15N NMR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Five humic fractions were obtained from a uniformly 15N-labelled soil by extraction with 0.1 mol L-1 Na4P2O7,0.1 mol L-1 NaOH,and HF/HC1-0.1 mol L-1 NaOH,consecutively,and analyzed by 13C and 15N CPMAS NMR (croas polarization and magic angle spinning nuclear magnetic resonance).Compared with those of native soils humic fractions studied as a whole contained more alkyls,methoxyls and O-alkyls,being 27%~36%,17%~21% and 36%~40%,respectively,but fewer aromatics and carboxyls (being 14%~20% and 13%~90%,respectively).Among those humic fractions,the humic acid (HA) and fulvic acid (FA) extracted by 0.1 mol L-1 Na4P2O7 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L-1 NaOH,and the HA extracted by 0.1 mol L-1 NaOH after treatment with HF/HC1 contained the least aromatics and carboxyls. The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils.More than 75% of total N in each fraction was in amide form,with 9%~13% present as aromatic and/or aliphatic amines and the remainder as heterocyclic N.

  2. Variable δ(15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Directory of Open Access Journals (Sweden)

    Jill A Olin

    Full Text Available The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15N diet-tissue discrimination factors (∆(15N. As ∆(15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15N dietary values. Overall, the most suitable species-specific ∆(15N values decreased with increasing dietary-δ(15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15N = 9‰ whereas a ∆(15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15N = 15‰. These data corroborate the previously reported inverse ∆(15N-dietary δ(15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15N values that reflect the predators' δ(15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species

  3. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    Science.gov (United States)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  4. Backbone, side chain and heme resonance assignments of cytochrome OmcF from Geobacter sulfurreducens.

    Science.gov (United States)

    Dantas, Joana M; Silva E Sousa, Marta; Salgueiro, Carlos A; Bruix, Marta

    2015-10-01

    Gene knockout studies on Geobacter sulfurreducens (Gs) cells showed that the outer membrane cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) citrate and U(VI) oxide. In addition, microarray analysis of OmcF-deficient mutant versus the wild-type strain revealed that many of the genes with decreased transcript level were those whose expression is upregulated in cells grown with a graphite electrode as electron acceptor. This suggests that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electrical current production by Gs in microbial fuel cells. Extracellular electron transfer processes (EET) constitute nowadays the foundations to develop biotechnological applications in biofuel production, bioremediation and bioenergy. Therefore, the structural characterization of OmcF is a fundamental step to understand the mechanisms underlying EET. Here, we report the complete assignment of the heme proton signals together with (1)H, (13)C and (15)N backbone and side chain assignments of the OmcF, excluding the hydrophobic residues of the N-terminal predicted lipid anchor.

  5. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.

    Science.gov (United States)

    Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-07-10

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.

  6. Fertilizer {sup 15}N balance in a coffee cropping system: a case study in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo [Universidade Regional de Blumenau (URB), SC (Brazil). Dept. de Engenharia Florestal]. E-mail: tfenilli@furb.br; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mails: klaus@cena.usp.br; osny@cena.usp.br; Favarin, Jose Laercio [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Producao Vegetal; Silva, Adriana Lucia [Centro de Tecnologia Canavieira (CTC), Piracicaba, SP (Brazil). Fazenda Santo Antonio]. E-mail: adriana.silva@ctc.com.br; Timm, Luis Carlos [Universidade Federal de Pelotas (UFPel), RS (Brazil). Dept. de Engenharia Rural]. E-mail: lcartimm@yahoo.com.br

    2008-07-15

    Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the {sup 15}N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the {sup 15}N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/ 2005, respectively, both of them as ammonium sulfate enriched to a {sup 15}N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and {sup 15}N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH{sub 3} were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and {sup 15}N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of {sup 15}N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0-1.0 m soil profile. Annual leaching and volatilization losses were

  7. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    Science.gov (United States)

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  8. Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Mark; Chénard, Etienne; Hernández-Burgos, Kenneth; Nagarjuna, Gavvalapalli; Assary, Rajeev S.; Hui, Jingshu; Moore, Jeffrey S.; Rodríguez-López, Joaquín

    2016-10-25

    The design of chemically stable and electrochemically reversible redox active polymers (RAPs) is of great interest for energy storage technologies. Particularly, RAPs are new players for flow batteries relying on a size-exclusion based mechanism of electrolyte separation, but few studies have provided detailed molecular understanding of redox polymers in solution. Here, we use a systematic molecular design approach to investigate the impact of linker and redox-pendant electronic interactions on the performance of viologen RAPs. We used scanning electrochemical microscopy, cyclic voltammetry, bulk electrolysis, temperature-dependent absorbance, and spectroelectrochemistry to study the redox properties, charge transfer kinetics, and self-exchange of electrons through redox active dimers and their equivalent polymers. Stark contrast was observed between the electrochemical properties of viologen dimers and their corresponding polymers. Electron self-exchange kinetics in redox active dimers that only differ by their tether length and rigidity influences their charge transfer properties. Predictions from the Marcus Hush theory were consistent with observations in redox active dimers, but they failed to fully capture the behavior of macromolecular systems. For example, polymer bound viologen pendants, if too close in proximity, do not retain chemical reversibility. In contrast to polymer films, small modifications to the backbone structure decisively impact the bulk electrolysis of polymer solutions. This first comprehensive study highlights the careful balance between electronic interactions and backbone rigidity required to design RAPs with superior electrochemical performance.

  9. The structure of the carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-79104.

    Science.gov (United States)

    Vinogradov, Evgeny; Li, Jianjun; Sadovskaya, Irina; Jabbouri, Said; Helander, Ilkka M

    2004-06-22

    The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region.

  10. Fertilizer nitrogen recovery of rice: /sup 15/N field studies (a short review)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.; Katyal, J.C. (Punjab Agricultural Univ., Ludhiana (India). Dept. of Soils)

    1980-12-01

    Reliable quantitative estimates of fertilizer nitrogen recovery by rice are obtained in field investigations with /sup 15/N-labelled materials. Values obtained by conventional 'difference method' of comparing fertilized and unfertilized plots are typically larger than the actual values. Estimating the recovery of fertilizer nitrogen is not a goal in itself. Although it has been an essential component of limited number of /sup 15/N-field experiments conducted with rice so far; these provide little or no information about crop growth stages when fertilizer N is most efficiently utilized by rice plant. Recently, the path coefficient analysis has been used to analyse the effect of N uptake on the development of yield components and their contribution to grain yield. Nitrogen-15 fertilizers along with path coefficient analysis can prove particularly useful in comparing the efficiency of different N fertilizers and in the development of new and more efficient nitrogen sources and management practices.

  11. Fate of 15N and 14C from labelled plant material

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Gjettermann, Birgitte; Eriksen, Jørgen;

    2008-01-01

    strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass......–clover mixture in early spring. The fate of the released 14C and 15N was monitored in harvested biomass, roots, soil, and pore water percolating from the plough layer. No evidence of plant uptake of dual-labelled organic compounds from the dual-labelled residues could be observed. N in pore water from the plough...... water originating from plant residues only constituted 1.5% of the total dissolved N from the plough layer....

  12. Study of organic N transformation in red soils by 15N tracer method

    Institute of Scientific and Technical Information of China (English)

    YeQing-Fu; ZhangQin-Zheng; 等

    1997-01-01

    Uniformly 15N-labelled ryegrass was used to investigate NH4+-production,microbial transformation and humification of organic N in two types of red soils by incubating the soils amended with labelled material.The results showed that there was little significant difference in biomass N transformation in the tested solis between 15N tracer method and conventional method,but the amount of NH4++-N released form the ryegrass in the clayey soil than in the sandy soil at all sampling time .By 120d of incubation,humified N was less than 10% of the amount of the applied N in two types of red soils and the amount of residual N in the clayey red soil was obviously higher than that in the sandy red soil.

  13. Capture cross sections of 15N(n, {\\gamma})16N at astrophysical energies

    CERN Document Server

    Fan, Guang-wei; Sheng, Zong-qiang; Tian, Feng; Wang, Jun; Zhang, Chao

    2016-01-01

    We have reanalyzed reaction cross sections of 16N on 12C target. The nucleon density distribution of 16N, especially surface density distribution, was extracted using the modified Glauber model. On the basis of dilute surface densities, the discussion of 15N(n, {\\gamma})16N reaction was performed within the framework of the direct capture reaction mechanism. The calculations agreed quite well with the experimental data.

  14. Determination of the δ15N of total nitrogen in solids; RSIL lab code 2893

    Science.gov (United States)

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the δ(15N/14N), abbreviated as δ15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.

  15. {sup 15}N uptake from manure and fertilizer sources by three consecutive crops under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga Garza, Hector Mario, E-mail: quiroga.mario@inifap.gob.m [Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias (INIFAP), Coahuila (Mexico); Delgado, Jorge A.; Wong, Jose Antonio Cueto, E-mail: jorge.delgado@ars.usda.go, E-mail: cueto.jose@inifap.gob.m [United States Dept. of Agriculture (USDA), Fort Collins, CO (United States). Agricultural Research Service. Soil Plant Nutrient Research Unit; Lindemann, William C., E-mail: wlindema@nmsu.ed [New Mexico State University (NMST), Las Cruces, NM (United States). Dept. Agronomy and Horticulture

    2009-09-15

    There are several regions of the world where soil N analysis and/or N budgets are not used to determine how much N to apply, resulting in higher than needed N inputs, especially when manure is used. One such region is the North Central 'La Comarca Lagunera', one of the most important dairy production areas of Mexico. We conducted a unique controlled greenhouse study using {sup 15}N fertilizer and {sup 15}N isotopic-labeled manure that was labeled under local conditions to monitor N cycling and recovery under higher N inputs. The manure-N treatment was applied only once and was incorporated in the soil before planting the first forage crop at an equivalent rate of 30, 60 and 120 Mg ha{sup -1} dry manure. The {sup 15}N treatments were equivalent to 120 and 240 kg ha{sup -1} (NH{sub 4}){sub 2}SO{sub 4}-N for each crop. The total N fertilizer for each N fertilized treatment were 360, and 720 kg ha{sup -1} N. We found very low N recoveries: about 9 % from the manure N inputs, lower than the 22 to 25 % from the fertilizer N inputs. The manure N recovered below ground in soil and roots ranged from 82 to 88 %. The low recoveries of N by the aboveground and low soil inorganic nitrate (NO{sup 3}-N) and ammonium (NH{sub 4}-N) content after the third harvested suggested that most of the {sup 15}N recovered below ground was in the soil organic form. The losses from manure N inputs ranged from 3 to 11 %, lower than the 34 to 39 % lost from fertilizer N sources. Our study shows that excessive applications of manure or fertilizer N that are traditionally used in this region will not increase the rate of N uptake by aboveground compartment but will increase the potential for N losses to the environment. (author)

  16. Chemienzymatic synthesis of Uridine. Nucleotides labeled with [15N] and [13C

    DEFF Research Database (Denmark)

    Gilles, Anne-Marie; Cristea, Ioan; Palibroda, Nicolae

    1995-01-01

    +necessary for the oxidation of glucose 6-phosphate and 6-phosphogluconate was recycled by glutamate dehydrogenase and excess of ammonia and a-oxoglutarate. Despite the number and complexity of the enzymatic steps, the synthesis of [15N,13C]UTP is straightforward with an overall yield exceeding 60%. This method, extended...... and diversified to the synthesis of all natural ribonucleotides, is a more economical alternative for obtaining nucleic acids for structural analysis by heteronuclear NMR spectroscopy....

  17. δ15N in the turtle grass from the Mexican Caribbean

    Science.gov (United States)

    Talavera-Saenz, A.; Sanchez, A.; Ortiz-Hernandez, M.

    2013-05-01

    Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development and population to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of high tourism development (Nichupte Lagoon in Cancun, >3 million tourists per year from 2007 to 2011 and 0.7 million of resident population) and decreased towards Bahia Akumal and Tulum (>3 million tourists per year from 2007 to 2011 and 0.15 million of resident population). The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos (about 0.4 million tourists per year in 2007 to 2011 and 0.25 million of resident population) than other the sites. In areas of the lowest development and with tourist activity restricted and small population, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were in much higher enrichment that Mahahual and Puerto Morelos. Therefore is suggested that Mahahual and Puerto Morelos may be used for baseline isotopic monitoring, over environmental pressure on the reef lagoon ecosystem, where tourist activities and population are growing very slow rate. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.

  18. CHEMICALS

    CERN Document Server

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  19. Evaluation of a 15N plot design for estimating plant recovery of fertilizer nitrogen applied to sugar cane

    OpenAIRE

    1994-01-01

    Two experiments were conducted on commercial sugar cane fields cropped with the variety SP70-1143, with the objective of evaluating a single row microplot design to determine plant recovery of 15N fertilizer nitrogen. One of them used 15N-aqua ammonia and 15N-urea applied to two linear meter microplots of a ratoon crop (four replicates). The second used one linear meter microplots (three replicates) which received 15N-aqua ammonia only. The fertilizers were applied on 15cm deep furrows, locat...

  20. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Beatrice Ch. D. Salert

    2012-01-01

    Full Text Available This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter 13 and a small molecule as an additional cohost with wideband gap characteristics (CoH-001. The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

  1. Paleoenvironmental implications of taxonomic variation among δ 15 N values of chloropigments

    Science.gov (United States)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mak A.; Pearson, Ann

    2011-11-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ 15N values of chloropigments of photosynthetic organisms to determine the corresponding δ 15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N 2, NO 3-, and NH 4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ 15N biomass - δ 15N chloropigment) for prokaryotes, with average values for species ranging from -12.2‰ to +11.7‰. We define this difference as ɛpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ɛpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ɛpor for freshwater cyanobacterial species is -9.8 ± 1.8‰, while for marine cyanobacteria it is -0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., ɛpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ɛpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of ɛpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of

  2. Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins.

    Science.gov (United States)

    Bagai, Ireena; Ragsdale, Stephen W; Zuiderweg, Erik R P

    2011-02-01

    The solution NMR resonance assignment of the protein backbone is most commonly carried out using triple resonance experiments that involve (15)N and (1)HN resonances. The assignment becomes problematic when there is resonance overlap of (15)N-(1)HN cross peaks. For such residues, one cannot unambiguously link the "left" side of the NH root to the "right" side, and the residues associated with such overlapping HN resonances remain often unassigned. Here we present a solution to this problem: a hybrid (4d,3d) reduced-dimensionality HN(CO)CA(CON)CA sequence. In this experiment, the Ca(i) resonance is modulated with the frequency of the Ca(i-1) resonance, which helps in resolving the ambiguity involved in connecting the Ca(i) and Ca(i-1) resonances for overlapping NH roots. The experiment has limited sensitivity, and is only suited for small or unfolded proteins. In a companion experiment, (4d,3d) reduced-dimensionality HNCO(N)CA, the Ca(i) resonance is modulated with the frequency of the CO(i-1) resonance, hence resolving the ambiguity existent in pairing up the Ca(i) and CO(i-1) resonances for overlapping NH roots.

  3. Identification of systems containing nonlinear stiffnesses using backbone curves

    Science.gov (United States)

    Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.

    2017-02-01

    This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.

  4. Delta15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status.

    Science.gov (United States)

    Schmidt, S; Stewart, G R

    2003-03-01

    A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N(2)-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6 per thousand ), AM species had mostly intermediate delta(15)N values (average +0.6 per thousand ), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1 per thousand ). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2 per thousand ) and non-mycorrhizal (average +0.8 and +0.3 per thousand ) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N(2) fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4 per thousand ). Soil nitrification and plant NO(3)(-) use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO(3)(-) using taxa associated with NO(3)(-) rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna

  5. The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes The Influence of Seed-borne N in 15N Isotope Dilution Studies with Legumes

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Andersen, A. J.; Thomsen, J. D.

    1985-01-01

    The distriution of seed-borne N in shoot and root of pea and field bean was studied using three methods: 1) determination of the N content in shoot and root of plants grown in sand culture without other N sources. 2) 15N isotope dilution in plants grown in Rhizobium-free medium supplied with 15N...

  6. Backbone decomposition for continuous-state branching processes with immigration

    CERN Document Server

    Ren, A E Kyprianou Y-X

    2011-01-01

    In the spirit of Duqesne and Winkel (2007) and Berestycki et al. (2011) we show that supercritical continuous-state branching process with a general branching mechanism and general immigration mechanism is equal in law to a continuous-time Galton Watson process with immigration with Poissonian dressing. The result also characterises the limiting backbone decomposition which is predictable from the work on consistent growth of Galton-Watson trees with immigration in Cao and Winkel (2010).

  7. Variation of protein backbone amide resonance by electrostatic field

    OpenAIRE

    Sharley, John N.

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance-Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and alpha helix, varying the stability of the secondary structure....

  8. Unusually negative nitrogen isotopic compositions (δ15N of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem

    Directory of Open Access Journals (Sweden)

    I. Romero

    2008-12-01

    Full Text Available Extremes in δ15N values in mangrove tissues and lichens (range =+4 to −22‰ were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6–9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from −12‰ to −2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰. Isotopically depleted ammonia in the atmosphere (δ15N=−19‰ and in rainwater (δ15N=−10‰ were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.

  9. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    Science.gov (United States)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  10. A new organic reference material, L-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Mroczkowski, Stanley J.; Brand, Willi A.; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-01-01

    RationaleThe widely used l-glutamic acid isotopic reference material USGS41, enriched in both 13C and 15N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41.MethodsUSGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in 13C and 15N together with l-glutamic acid of normal isotopic composition. The δ13C and δ15N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ13CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ13CVPDB = −46.6 mUr), and IAEA-N-1 ammonium sulfate (δ15NAir = +0.43 mUr) and USGS32 potassium nitrate (δ15N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry.ResultsUSGS41a is isotopically homogeneous; the reproducibility of δ13C and δ15N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ13C value of +36.55 mUr relative to VPDB and a δ15N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41.ConclusionsThe new isotopic reference material USGS41a can be used with USGS40 (having a δ13CVPDB value of −26.39 mUr and a δ15NAir value of −4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. A new organic reference material, l-glutamic acid, USGS41a, for δ(13) C and δ(15) N measurements - a replacement for USGS41.

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B; Mroczkowski, Stanley J; Brand, Willi A; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-04-15

    The widely used l-glutamic acid isotopic reference material USGS41, enriched in both (13) C and (15) N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41. USGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in (13) C and (15) N together with l-glutamic acid of normal isotopic composition. The δ(13) C and δ(15) N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ(13) CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ(13) CVPDB = -46.6 mUr), and IAEA-N-1 ammonium sulfate (δ(15) NAir = +0.43 mUr) and USGS32 potassium nitrate (δ(15) N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry. USGS41a is isotopically homogeneous; the reproducibility of δ(13) C and δ(15) N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ(13) C value of +36.55 mUr relative to VPDB and a δ(15) N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41. The new isotopic reference material USGS41a can be used with USGS40 (having a δ(13) CVPDB value of -26.39 mUr and a δ(15) NAir value of -4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  12. Extracting the multiscale backbone of complex weighted networks

    Science.gov (United States)

    Serrano, M. Ángeles; Boguñá, Marián; Vespignani, Alessandro

    2009-01-01

    A large number of complex systems find a natural abstraction in the form of weighted networks whose nodes represent the elements of the system and the weighted edges identify the presence of an interaction and its relative strength. In recent years, the study of an increasing number of large-scale networks has highlighted the statistical heterogeneity of their interaction pattern, with degree and weight distributions that vary over many orders of magnitude. These features, along with the large number of elements and links, make the extraction of the truly relevant connections forming the network's backbone a very challenging problem. More specifically, coarse-graining approaches and filtering techniques come into conflict with the multiscale nature of large-scale systems. Here, we define a filtering method that offers a practical procedure to extract the relevant connection backbone in complex multiscale networks, preserving the edges that represent statistically significant deviations with respect to a null model for the local assignment of weights to edges. An important aspect of the method is that it does not belittle small-scale interactions and operates at all scales defined by the weight distribution. We apply our method to real-world network instances and compare the obtained results with alternative backbone extraction techniques. PMID:19357301

  13. Spectroscopic observations of 14N/15N ratios in both NH2 and CN in comet C/2013 US10 (Catalina)

    Science.gov (United States)

    Shinnaka, Yoshiharu; Kawakita, Hideyo

    2016-10-01

    Comet is one of the primordial small bodies in the solar system and probably it has kept the information about the evolution of materials from the pre-solar molecular cloud to the solar nebula.Isotopic ratio in volatiles is one of the primordial properties of comets. A heavier isotopes trend to be captured into a molecule by chemical reactions under very low-temperature conditions (called as fractionation). For instance, D/H ratio of water (HDO/H2O) in comet is enriched in D atom than the elemental abundance ratios of D/H in entire solar system [1]. Based on the observed D/H ratios in cometary water, a presumed temperature is ~20-50 K as the formation temperature of water (most abundant volatiles in cometary nucleus), by assuming water formed in gas-phase chemistry [2].Besides, the nitrogen isotopic ratios (14N/15N) have been determined from CN and HCN (which is believed a dominant "parent" species of CN in the coma) in >20 comets [3,4]. They demonstrated cometary HCN and CN show high 15N-fractionation with respect to the proto-solar value by a factor of ~3 and with a small diversity. Moreover, 14N/15N ratios in NH3 in comets has been determined from intensity ratios of NH2 isotopologues [5,6,7], and both 15N-fractionation as much as HCN in comets and a small diversity are seen in those 14N/15N ratios in NH3. However, there is a few reports about 14N/15N ratios in both HCN and NH3 in the same comets, and discussions about the relationship between these 14N/15N ratios have not been yet.We present 14N/15N ratios in both NH2 and CN in comet C/2013 US10 (Catalina). High-resolution optical spectra of the comet were taken with the HDS spectrograph mounted on the Subaru Telescope (Hawaii) on UT 2016 January 2-3. We will discuss about the origins of these volatiles based on the 14N/15N ratios.This work was supported by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Lis et al., 2013, ApJ 774, L3[2] Millar et al., 1989, ApJ 340, 906[3] Bockelée-Morvan et al

  14. Leaf δ15N as an indicator of arbuscular mycorrhizal nitrogen uptake in a coastal-plain forest (restinga forest) at Southeastern Brazil

    Science.gov (United States)

    Mardegan, S. F.; Valadares, R.; Martinelli, L.

    2013-12-01

    Restinga diversity contrasts with a series of adverse environmental conditions that constrain their development, including nutrient limitation. In this sense, the mutualistic symbiosis between plants and arbuscular mycorrhizal fungi (AMF) may contribute in nutrient acquisition, including nitrogen. However, this association deeply affects plant nitrogen isotopic composition (δ15N), since assimilation processes and biochemical reactions within the fungi may reflect in a delivered product with an isotopic composition about 8 to 10 ‰ lower than that observed at the fungal symbiont per se. Here we assessed if the association with AMF affects δ15N values of plant species from a coastal-plain forest (restinga forest) at Southeastern Brazil. Accordingly, we analyzed the nutritional and isotopic compositions from ecosystem key-compartments (soil, litter and leaves), relating plant δ15N with the colonization rates. The study was carried out in a permanent plot (1 ha) at a coastal-plain forest (restinga forest) at the Serra do Mar State Park, SP, Brazil. Sampled vegetation is characterized by the lack of a well-defined stratification and a rather open canopy. It also comprises trees ranging from 10 to 15-m high. Soils are deep and sandy, being characterized by high acidity, nutrient deficiency and a dense litter cover. We randomly collected five samples (250 mg) from topsoil (0-10 cm) and five to ten leaves from individuals belonging to 16 plant species of high relevance within the site (IVI index). We also collected superficial (0-10 cm depth) fine roots (5 g) and 13 samples (100 g) of fine litter next to the individuals sampled. Soil samples were air-dried, sieved, homogenized and used in the physical-chemical characterization. The remainder was ground to a fine powder to determine nitrogen concentrations and δ15N values. Leaves were dried at 50 °C, finely milled and used for the determination of nitrogen concentrations, C/N ratios and δ15N values. Root samples were

  15. Intestinal renal metabolism of L-citrulline and L-arginine following enteral or parenteral infusion of L-alanyl-L-[2,15N]glutamine or L-[2,15N]glutamine in mice.

    Science.gov (United States)

    Boelens, Petra G; van Leeuwen, Paul A M; Dejong, Cornelis H C; Deutz, Nicolaas E P

    2005-10-01

    Previously, we observed increased plasma arginine (ARG) concentrations after glutamine (GLN)-enriched diets, in combination with clinical benefits. GLN delivers nitrogen for ARG synthesis, and the present study was designed to quantify the interorgan relationship of exogenous L-GLN or GLN dipeptide, by enteral or parenteral route, contributing to intestinal citrulline (CIT) and renal de novo ARG synthesis in mice. To study this, we used a multicatheterized mouse model with Swiss mice (n = 43) in the postabsorptive state. Stable isotopes were infused into the jugular vein or into the duodenum {per group either free L-[2,(15)N]GLN or dipeptide L-ALA-L-[2,(15)N]GLN, all with L-[ureido-(13)C-(2)H(2)]CIT and L-[guanidino-(15)N(2)-(2)H(2)]ARG} to establish renal and intestinal ARG and CIT metabolism. Blood flow was measured using (14)C-para-aminohippuric acid. Net intestinal CIT release, renal uptake of CIT, and net renal ARG efflux was found, as assessed by arteriovenous flux measurements. Quantitatively, more de novo L-[2,(15)N]CIT was produced when free L-[2,(15)N]GLN was given than when L-ALA-L-[2,(15)N]GLN was given, whereas renal de novo L-[2,(15)N]ARG was similar in all groups. In conclusion, the intestinal-renal axis is hereby proven in mice in that L-[2,(15)N]GLN or dipeptide were both converted into de novo renal L-[2,(15)N]ARG; however, not all was derived from intestinal L-[2,(15)N]CIT production. In this model, the feeding route and form of GLN did not influence de novo renal ARG production derived from GLN.

  16. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    Science.gov (United States)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation

  17. Growth and foliar d15N of a Mojave desert shrub in relation to soil hydrological dynamics

    Science.gov (United States)

    Foliar 15N ratios (del15N), % N, and canopy volumes were measured in the two Mojave Desert dominant shrubs, the evergreen Larrea tridentata and drought deciduous Ambrosia dumosa growing across a geomorphically determined soil mosaic. Across three soils with increasingly strong age-dependent surface...

  18. The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters

    Science.gov (United States)

    Sigman, D. M.; Altabet, M. A.; McCorkle, D. C.; Francois, R.; Fischer, G.

    1999-12-01

    We report nitrogen isotope data for nitrate from transects of hydrocast and surface samples collected in the eastern Indian and Pacific sectors of the Southern Ocean, focusing here on the data from the upper water column to study the effect of nitrate consumption by phytoplankton. The δ15N of nitrate increases by 1-2‰ from deep water into the Antarctic summertime surface layer, due to kinetic isotopic fractionation during nitrate uptake. Estimation of the nitrate uptake isotope effect from Antarctic depth profiles yields values in the range of 5-6‰ in east Indian sector and 4-5‰ in the east Pacific sector. Surface transect data from the Pacific sector also yield values of 4-5‰. The major uncertainty in the profile-based estimation of the isotope effect involves the δ15N of nitrate from the temperature minimum layer below the summertime Antarctic surface layer, which deviates significantly from the predictions of simple models of isotope fractionation. For the Subantarctic surface, it is possible to distinguish between nitrate supplied laterally from the surface Antarctic and nitrate supplied vertically from the Subantarctic thermocline because of the distinctive relationships between the δ15N and concentration of nitrate in these two potential sources. Our Subantarctic samples, collected during the summer and fall, indicate that nitrate is supplied to the Subantarctic surface largely by northward transport of Antarctic surface water. Isotopic data from the Pacific sector of the Subantarctic suggest an isotope effect of 4.5‰, indistinguishable from the Antarctic estimates in this sector.

  19. Capture cross sections of 15N(n, γ)16N at astrophysical energies

    Science.gov (United States)

    Fan, Guang-Wei; Ma, Jun-Bing; Sheng, Zong-Qiang; Shi, Guo-Zhu; Tian, Feng; Wang, Jun; Zhang, Chao

    2016-12-01

    We have reanalyzed reaction cross sections of 16N on a 12C target. The nucleon density distribution of 16N, especially surface density distribution, was extracted using the modified Glauber model. On the basis of dilute surface densities, the 15N(n, γ)16N reaction is discussed within the framework of the direct capture reaction mechanism. The calculations agree quite well with the experimental data. Support given by National Natural Science Foundation of China (11447236, 11505002, 11247001) and Foundation of Anhui University of Science and Technology (11130, 12608)

  20. Uptake of stormwater nitrogen in bioretention systems demonstrated from 15N tracer techniques

    Science.gov (United States)

    Houdeshel, D.; Hultine, K. R.; Pomeroy, C. A.

    2012-12-01

    Bioretention stormwater management systems are engineered ecosystems that capture urban stormwater in order to reduce the harmful effects of stormwater pollution on receiving waters. Bioretention systems have been shown to be effective at reducing the volume of runoff, and thereby reduce the nutrient loading to receiving waters from urban areas. However, little work has been done to evaluate the treatment processes that are responsible for reductions in effluent nitrogen (N). We hypothesize that the pulses of inorganic nitrogen associated with urban runoff events are captured in the plat tissues within these systems and not adsorbed to the soil media, thus creating a long-term, sustainable treatment approach to reducing the total nutrient loading to receiving waters. Nitrogen treatment performance was tested on two bioretention systems in Salt Lake City, UT: 1) an upland native community that does not require irrigation in semi-arid climates, and 2) a wetland community that requires 250 l of daily irrigation to offset the relatively high evaporative demand in the region. Each cell is sized to treat a 2.5 cm storm from a 140 m2 impervious surface: the area of the bioretention system is 10 m2. To test the N removal performance of each system, runoff events were simulated to represent an average precipitation regime using a synthetic stormwater blend starting in January, 2012. Effluent was collected from an underdrain and analyzed for total nitrogen (TN); mass removal was calculated for each month by subtracting the TN mass added to the garden minus the TN mass that flowed out of the garden. To test the hypothesis that plants assimilate stormwater N, 4 g of 100 atom% 15N NH4NO3 tracer was used as the N source in the synthetic stormwater during the first 2,000 l synthetic storm event in May. This isotopic label was calculated to enrich the total N pool of each garden to 100‰ 15N/14Nair. New growth was harvested from each plant in both cells and analyzed for 15N

  1. Optical Microscopy Characterization for Borehole U-15n#12 in Support of NCNS Source Physics Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jennifer E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sussman, Aviva Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-22

    Optical microscopy characterization of thin sections from corehole U-15n#12 is part of a larger material characterization effort for the Source Physics Experiment (SPE). The SPE program was conducted in Nevada with a series of explosive tests designed to study the generation and propagation of seismic waves inside Stock quartz monzonite. Optical microscopy analysis includes the following: 1) imaging of full thin sections (scans and mosaic maps); 2) high magnification imaging of petrographic texture (grain size, foliations, fractures, etc.); and 3) measurement of microfracture density.

  2. Effect of estrogens on urinary /sup 15/N balance in girls

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, M.; Kempken, B.; Prader, A. (Zurich Univ. (Switzerland))

    1984-08-01

    While the anabolic and growth-promoting effects of testosterone are known to be important for pubertal growth in boys, the role of estrogens (E) in the female spurt is less certain. Adrenal androgens have been considered to be more important than ovarian E. To study the anabolic effects of E, there has been carried out a pilot study in 9 girls aged 11 to 15 years. Before and 6 days after the start of E treatment, urinary /sup 15/N balance studies were performed, using /sup 15/NH/sub 4/Cl.

  3. Determination of the δ15N of nitrate in solids; RSIL lab code 2894

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2894 is to determine the δ15N of nitrate (NO3-) in solids. The nitrate fraction of the nitrogen species is dissolved by water (called leaching) and can be analyzed by the bacterial method covered in RSIL lab code 2899. After leaching, the δ15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  4. Determination of the δ15N of nitrate in water; RSIL lab code 2899

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2899 is to determine the δ15N of nitrate (NO3-) in water. The δ15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of the NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  5. Visualizing the principal component of {sup 1}H,{sup 15}N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ian M.; Boyko, Robert F.; Sykes, Brian D., E-mail: brian.sykes@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2011-09-15

    Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding {sup 1}H,{sup 15}N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its {sup 1}H,{sup 15}N-HSQC NMR spectrum. We addressed this question with two different approaches. First, we used a semi-automated approach with the program, ORBplus. ORBplus looks for patterns in the chemical shifts and correlates these commonalities to the explicit property of interest. ORBplus ranks resonances based on consistency of the magnitude and direction of the chemical shifts within the database, and the chemical shift correlation of the unknown protein with the database. ORBplus visualizes the results by a histogram and a vector diagram, and provides residue specific predictions on structural similarities with the database. The second method we used was partial least squares (PLS), which is a multivariate statistical technique used to correlate response and predictor variables. We investigated the ability of these methods to predict the tertiary structure of the contractile regulatory protein troponin C. Troponin C undergoes a closed-to-open conformational change, which is coupled to its function in muscle. We found that both ORBplus and PLS were able to identify patterns in the {sup 1}H,{sup 15}N-HSQC NMR data from different states of troponin C that correlated to its conformation.

  6. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    Science.gov (United States)

    Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  7. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    Science.gov (United States)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  8. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  9. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity

    KAUST Repository

    Chen, Mark S.

    2013-10-22

    Controlling solid-state order of π-conjugated polymers through macromolecular design is essential for achieving high electronic device performance; yet, it remains a challenge, especially with respect to polymer-packing orientation. Our work investigates the influence of backbone coplanarity on a polymer\\'s preference to pack face-on or edge-on relative to the substrate. Isoindigo-based polymers were synthesized with increasing planarity by systematically substituting thiophenes for phenyl rings in the acceptor comonomer. This increasing backbone coplanarity, supported by density functional theory (DFT) calculations of representative trimers, leads to the narrowing of polymer band gaps as characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and cyclic voltammetry. Among the polymers studied, regiosymmetric II and TII polymers exhibited the highest hole mobilities in organic field-effect transistors (OFETs), while in organic photovoltaics (OPVs), TBII polymers that display intermediate levels of planarity provided the highest power conversion efficiencies. Upon thin-film analysis by atomic force microscropy (AFM) and grazing-incidence X-ray diffraction (GIXD), we discovered that polymer-packing orientation could be controlled by tuning polymer planarity and solubility. Highly soluble, planar polymers favor face-on orientation in thin films while the less soluble, nonplanar polymers favor an edge-on orientation. This study advances our fundamental understanding of how polymer structure influences nanostructural order and reveals a new synthetic strategy for the design of semiconducting materials with rationally engineered solid-state properties. © 2013 American Chemical Society.

  10. Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes

    KAUST Repository

    Fei, Zhuping

    2015-06-03

    © 2015 American Chemical Society. We report two strategies toward the synthesis of 3-alkyl-4-fluorothiophenes containing straight (hexyl and octyl) and branched (2-ethylhexyl) alkyl groups. We demonstrate that treatment of the dibrominated monomer with 1 equiv of alkyl Grignard reagent leads to the formation of a single regioisomer as a result of the pronounced directing effect of the fluorine group. Polymerization of the resulting species affords highly regioregular poly(3-alkyl-4-fluoro)thiophenes. Comparison of their properties to those of the analogous non-fluorinated polymers shows that backbone fluorination leads to an increase in the polymer ionization potential without a significant change in optical band gap. Fluorination also results in an enhanced tendency to aggregate in solution, which is ascribed to a more co-planar backbone on the basis of Raman and DFT calculations. Average charge carrier mobilities in field-effect transistors are found to increase by up to a factor of 5 for the fluorinated polymers.

  11. Sedimentary records of δ(13)C, δ(15)N and organic matter accumulation in lakes receiving nutrient-rich mine waters.

    Science.gov (United States)

    Widerlund, Anders; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ(15)N and δ(13)C values in (210)Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15-20% and 20-35%, respectively, since ~1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ(15)N~+9‰ to +19‰) were clearly shifted from the primary signal in explosives (δ(15)N-NO3=+3.4±0.3‰; δ(15)N-NH4=-8.0±0.3‰) and NaCN (δ(15)N=+1.1±0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters.

  12. Enrichment of natural (15)N abundance during soil N losses under 20years of continuous cereal cropping.

    Science.gov (United States)

    Jones, Andrew R; Dalal, Ram C

    2017-01-01

    It is generally accepted that the enrichment of natural (15)N abundance in soil over time is reflective of historic N cycling and loss, but this process in cropping soils is not yet clear. In this study, we identified an enrichment gradient of natural (15)N abundance during 20-year chronosequence of cereal cropping on Alfisols in southwest Queensland, Australia, that have no history of fertilisation. We demonstrate that the increase in soil (15)N abundance is explained by isotopic fractionation of (15)N during organic N mineralisation and nitrification, which lead to isotopically heavier ammonium retained in the soil and isotopically lighter soil nitrate taken up and removed by seasonal crops during harvest. Here we present a framework for natural (15)N isotopic fractionation co-occurring with N losses during long-term cultivation.

  13. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  14. Rapid mass spectrometric analysis of 15N-Leu incorporation fidelity during preparation of specifically labeled NMR samples

    DEFF Research Database (Denmark)

    Truhlar, Stephanie M E; Cervantes, Carla F; Torpey, Justin W

    2008-01-01

    Advances in NMR spectroscopy have enabled the study of larger proteins that typically have significant overlap in their spectra. Specific (15)N-amino acid incorporation is a powerful tool for reducing spectral overlap and attaining reliable sequential assignments. However, scrambling of the label...... during protein expression is a common problem. We describe a rapid method to evaluate the fidelity of specific (15)N-amino acid incorporation. The selectively labeled protein is proteolyzed, and the resulting peptides are analyzed using MALDI mass spectrometry. The (15)N incorporation is determined...... by analyzing the isotopic abundance of the peptides in the mass spectra using the program DEX. This analysis determined that expression with a 10-fold excess of unlabeled amino acids relative to the (15)N-amino acid prevents the scrambling of the (15)N label that is observed when equimolar amounts are used...

  15. Using MUSIC and CC(CONH for Backbone Assignment of Two Medium-Sized Proteins Not Fully Accessible to Standard 3D NMR

    Directory of Open Access Journals (Sweden)

    Annette K. Brenner

    2014-06-01

    Full Text Available The backbone assignment of medium-sized proteins is rarely as straightforward as that of small proteins, and thus often requires creative solutions. Here, we describe the application of a combination of standard 3D heteronuclear methods with CC(CONH and a variety of MUltiplicity Selective In-phase Coherence transfer (MUSIC experiments. Both CC(CONH and MUSIC are, in theory, very powerful methods for the backbone assignment of proteins. Due to low sensitivity, their use has usually been linked to small proteins only. However, we found that combining CC(CONH and MUSIC experiments simplified the assignment of two challenging medium-sized proteins of 13 and 19.5 kDa, respectively. These methods are to some extent complementary to each other: CC(CONH acquired with a long isotropic mixing time can identify amino acids with large aliphatic side chains. Whereas the most sensitive MUSIC experiments identify amino acid types that cannot be detected by CC(CONH, comprising the residues with acid and amide groups, and aromatic rings in their side chains. Together these methods provide a means of identifying the majority of peaks in the 2D 15N HSQC spectrum which simplifies the backbone assignment work even for proteins, e.g., small kinases, whose standard spectra resulted in little spectral resolution and low signal intensities.

  16. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    Science.gov (United States)

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  17. The Origin of Nitrogen on Jupiter and Saturn from the $^{15}$N/$^{14}$N Ratio

    CERN Document Server

    Fletcher, Leigh N; Orton, Glenn S; Irwin, Patrick G J; Mousis, Olivier; Sinclair, James A; Giles, Rohini S

    2014-01-01

    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA's Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues ($^{15}$N/$^{14}$N) can reveal insights into the molecular carrier (e.g., as N$_2$ or NH$_3$) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm$^{-1}$) that were relatively clear of terrestrial atmospheric contamination and contained close features of $^{14}$NH$_3$ and $^{15}$NH$_3$, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter's $^{15}$N/$^{14}$N ratio (in the range from $1.4\\times10^{-3}$ to $2.5\\times10^{-3}$), which is consistent...

  18. Growth, development, and fertilizer-{sup 15}N recovery by the coffee plant

    Energy Technology Data Exchange (ETDEWEB)

    Fenilli, Tatiele Anete Bergamo [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil). Dept. de Engenharia Florestal; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: klaus@cena.usp.br; Dourado-Neto, Durval; Favarin, Jose Laercio [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Producao Vegetal; Trivelim, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Costa, Flavio Murilo Pereira da [Ministerio do Desenvolvimento Agrario, Brasilia, DF (Brazil). Secretaria de Assuntos Fundiarios - SEAF

    2007-09-15

    The relationship between growth and fertilizer nitrogen recovery by perennial crops such as coffee is poorly understood and improved understanding of such relations is important for the establishment of rational crop management practices. In order to characterize the growth of a typical coffee crop in Brazil and quantify the recovery of {sup 15}N labeled ammonium sulfate, and improve information for fertilizer management practices this study presents results for two consecutive cropping years, fertilized with 280 and 350 kg ha{sup -1} of N, respectively, applied in four splittings, using five replicates. Shoot dry matter accumulation was evaluated every 60 days, separating plants into branches, leaves and fruits. Labeled sub-plots were used to evaluate N-total and {sup 15}N abundance by mass spectrometry. During the first year the aerial part reached a recovery of 71% of the fertilizer N applied up to February, but this value was reduced to 34% at harvest and 19% at the beginning of the next flowering period due to leaf fall and fruit export. For the second year the aerial part absorbed 36% of the fertilizer N up to March, 47% up to harvest and 19% up to the beginning of the next flowering period. The splitting into four applications of the used fertilizer rates was adequate for the requirements of the crop at these growth stages of the coffee crop. (author)

  19. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    Science.gov (United States)

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press.

  20. Constraining the S factor of 15N(p,g)16O at Astrophysical Energies

    CERN Document Server

    LeBlanc, P J; Goerres, J; Junker, M; Azuma, R; Beard, M; Bemmerer, D; Best, A; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Couder, M; deBoer, R; Elekes, Z; Falahat, S; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Kaeppeler, F; Kontos, A; Kuntz, R; Leiste, H; Lemut, A; Li, Q; Limata, B; Marta, M; Mazzocchi, C; Menegazzo, R; O'Brien, S; Palumbo, A; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Stech, E; Straniero, O; Strieder, F; Tan, W; Terrasi, F; Trautvetter, H P; Uberseder, E; Wiescher, M

    2010-01-01

    The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV and 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.

  1. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.

    Science.gov (United States)

    Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R

    2012-08-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  2. Synthesis of 15N omega-hydroxy-L-arginine and ESR and 15N-NMR studies for the elucidation of the molecular mechanism of enzymic nitric oxide formation from L-arginine.

    Science.gov (United States)

    Clement, B; Schnörwangen, E; Kämpchen, T; Mordvintcev, P; Mülsch, A

    1994-12-01

    N omega-Hydroxy-L-arginine (2) was prepared by a multi-stage synthesis; the key step was the addition of hydroxylamine to the protected cyanamide 8. The presence of N-hydroxyguanidines was confirmed, above all, by 15N-NMR investigations. 15N omega-Hydroxy-L-arginine (2) was converted quantitatively to 15NO by NO synthases from macrophages. 15NO was identified by ESR-spectroscopy. These experiments confirm that 15N omega-hydroxy-L-arginine (2) is an intermediate in the biosynthesis of NO from arginine (1) and that the N-hydroxylated N-atom is present in the NO formed.

  3. Isotopic analysis of bulk, LMW, and HMW DON d15N indicates recycled nitrogen release from marine DON

    Science.gov (United States)

    Knapp, A. N.; Sigman, D. M.; Lipschultz, F.; Kustka, A.; Capone, D. G.

    2010-12-01

    Nitrogen (N) concentration and stable isotope ratio (d15N) measurements were made on bulk and size fractionated surface ocean dissolved organic nitrogen (DON) samples collected in the oligotrophic North Atlantic and Pacific Oceans. The bulk DON concentration in the upper 100 m is similar between the North Atlantic and North Pacific, between 4.5 and 5.0 uM, but the average d15N of bulk DON is significantly different, 3.9 per mil vs. air in the North Atlantic and 4.7 per mil in the North Pacific. The d15N of both bulk and HMW DON from the western tropical North Atlantic are similar to previous measurements, ~4.0 to 4.5 per mil. We report the first measurements of LMW DON d15N, which is consistently lower than HMW DON d15N. Neither the concentration nor d15N of bulk or size-fractionated DON varied with in situ N2 fixation rate, although significant variation in bulk and LMW DON d15N was observed between January and July of the same year in the western tropical North Atlantic. We propose a conceptual model to explain 1) the elevated d15N of bulk DON relative to other surface ocean N pools and fluxes, 2) the elevation of HMW DON d15N relative to LMW DON d15N, and 3) the inter-basin difference in the d15N of bulk DON. In this model, DON is produced from suspended particulate organic nitrogen (PON) without isotope fractionation because the conversion from PON to DON largely does not involve N-bearing bonds. In contrast, deamination and amide hydrolysis, with N isotope effects of 3 to 10 per mil, are major mechanisms by which DON is converted to ammonia and/or to other simple N compounds (e.g., amino acids). Thus these N-specific DON loss reactions result in an elevated d15N of residual DON relative to the parent DON and therefore also to the PON source. Moreover, the ammonium and simple organic N compounds released by microbial DON degradation are efficiently reassimilated back into the PON pool, as an integral part of the regenerated N cycle that further lowers the d15N

  4. {delta}{sup 15}N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M.; Kayanne, H.; Yamano, H

    2003-04-01

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;{>=}1.0 {mu}M) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and {delta}{sup 15}N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical {delta}{sup 15}N values were found in seagrass leaves of several species at each site. The correlations between {delta}{sup 15}N and nutrient concentrations and between {delta}{sup 15}N and molar ratios of nutrients suggested that nutrient availability did not affect the {delta}{sup 15}N value of seagrass leaves by altering the physiological condition of the plants. Increases in {delta}{sup 15}N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that {delta}{sup 15}N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water.

  5. Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    DEFF Research Database (Denmark)

    Pirhofter-Walzl, Karin; Eriksen, Jørgen; Rasmussen, Jim

    2013-01-01

    access to greater amounts of soil 15N compared with a shallow-rooting binary mixture, and if leguminous plants affect herbage yield and soil 15N-access. Methods 15N-enriched ammonium-sulphate was placed at three different soil depths (0.4, 0.8 and 1.2 m) to determine the depth dependent soil 15N...... has greater herbage yields than a shallow-rooting two-species mixture and pure stands, if deep-rooting grassland species are superior in accessing soil 15N from 1.2 m soil depth compared with shallow-rooting plant species and vice versa, if a mixture of deep- and shallow-rooting plant species has....... This positive plant diversity effect could not be explained by complementary soil 15N-access of the different plant species from 0.4, 0.8 and 1.2 m soil depths, even though deep-rooting chicory acquired relatively large amounts of deep soil 15N and shallow-rooting perennial ryegrass when grown in a mixture...

  6. Homogeneity of delta{sup 15}N in needles of Masson pine (Pinus massoniana L.) was altered by air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Yuanwen, E-mail: kuangyw@scbg.ac.c [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Pearl River Delta Research Center of Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou 510650 (China); Wen Dazhi; Li Jiong [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Pearl River Delta Research Center of Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou 510650 (China); Sun Fangfang; Hou Enqing [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Guoyi; Zhang Deqiang [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Huang Longbin [Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, the University of Queensland, QLD 4072 (Australia)

    2010-05-15

    The present study investigated the changes of delta{sup 15}N values in the tip, middle and base section (divided by the proportion to needle length) of current- and previous-year needles of Masson pine (Pinus massoniana L.) from two declining forest stands suffering from air pollution, in comparison with one healthy stand. At the healthy stand, delta{sup 15}N in the three sections of both current- and previous-year needles were found evenly distributed, while at the polluted stands, delta{sup 15}N values in the needles were revealed significantly different from the tip to the base sections. The results implied that the distribution of delta{sup 15}N among different parts or sections in foliages was not always homogeneous and could be affected by air pollution. We suggested that the difference of delta{sup 15}N values among pine needle sections should be reconsidered and should not be primarily ignored when the needle delta{sup 15}N values were used to assess plant responses to air pollution. - Values of delta{sup 15}N in needles of Masson pine (Pinus massoniana L.) were uneven and affected by air pollution.

  7. {sup 15}N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio, E-mail: ambrosano@apta.sp.gov.b [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicapa, SP (Brazil). Polo Rigional Centro Sul; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Cantarella, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Instituto Agronomico de Campinas. Centro de Solos e Recursos Agroambientais; Ambrosano, Glaucia Maria Bovi [Universidade de Campinas (UNICAMP/FOP), Piracicaba, SP (Brazil). Fac. de Odontologia de Piracicaba. Dept. de Odontologia Social, Bioestatistica; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Instituto de Zootecnia; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fertilidade do solo

    2011-05-15

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the {sup 15}N tracer technique. N was added at the rate of 196 and 70 kg ha{sup -1} as {sup 15}N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS{sup 15}N; (III) SH{sup 15}N + AS; (IV) SH{sup 15}N; and (V) AS{sup 15}N + SH. Sugarcane was cultivated for five years and was harvested three times. {sup 15}N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha{sup -1}. (author)

  8. Resistance of Feynman diagrams and the percolation backbone dimension.

    Science.gov (United States)

    Janssen, H K; Stenull, O; Oerding, K

    1999-06-01

    We present an alternative view of Feynman diagrams for the field theory of random resistor networks, in which the diagrams are interpreted as being resistor networks themselves. This simplifies the field theory considerably as we demonstrate by calculating the fractal dimension D(B) of the percolation backbone to three loop order. Using renormalization group methods we obtain D(B)=2+epsilon/21-172epsilon(2)/9261+2epsilon(3)[-74 639+22 680zeta(3)]/4 084 101, where epsilon=6-d with d being the spatial dimension and zeta(3)=1.202 057... .

  9. Application of Multicast-based Video Conference on CERNET Backbone

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Multicast-based video conference is a representative application in advanced network. In multi-point video conference using multicast can get better efficiency facilitated by inner-group broadcast mechanism. In the application, the multicast-based network resources assignment, management and security should be considered together. This paper presents a framework model of multicast-based video conferencing application with three layers. And a practical multicast-based video conferencing is implemented in CERNET(China Education and Research Network) backbone. The practice is valuable for the development of multicast-based video conferencing application in China.

  10. Design of an IPTV Multicast System for Internet Backbone Networks

    OpenAIRE

    T. H. Szymanski; Gilbert, D

    2010-01-01

    The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space) in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decompos...

  11. Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient.

    Science.gov (United States)

    Vallano, Dena M; Sparks, Jed P

    2013-05-01

    Foliar nitrogen isotope (δ(15)N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ(15)N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ(15)N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ(15)N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ(15)N, and mycorrhizae on foliar δ(15)N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ(15)N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ(15)N. There was no correlation between foliar δ(13)C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ(15)N in several dominant species occurring in temperate forest ecosystems.

  12. Diffusion technique for 15N and inorganic N analysis of low-N aqueous solutions and Kjeldahl digests.

    Science.gov (United States)

    Chen, Rui Rui; Dittert, Klaus

    2008-06-01

    Diffusion of ammonia is a common sample preparation method for the stable isotope analysis of inorganic nitrogen in aqueous solution. Classical diffusion methods usually require 6-12 days of diffusion and often focus on (15)N/(14)N analysis only. More recent studies have discussed whether complete N recovery was necessary for the precise analysis of stable N isotope ratios. In this paper we present a newly revised diffusion technique that allows correct and simultaneous determination of total N and (15)N at% from aqueous solutions and Kjeldahl digests, with N concentrations down to sub-0.5-mg N L(-1) levels, and it is tested under different conditions of (15)N isotope labelling. With the modification described, the diffusion time was reduced to 72 h, while the ratios of measured and expected (15)N at% were greater than 99% and the simultaneous recovery of total N was >95%. Analysis of soil microbial biomass N and its (15)N/(14)N ratio is one of the most important applications of this diffusion technique. An experiment with soil extracts spiked with (15)N-labelled yeast showed that predigestion was necessary to prevent serious N loss during Kjeldahl digestion of aqueous samples (i.e. soil extracts). The whole method of soil microbial biomass N preparation for (15)N/(14)N analysis included chloroform fumigation, predigestion, Kjeldahl digestion and diffusion. An experiment with soil spiked with (15)N-labelled yeast was carried out to evaluate the method. Results showed a highly significant correlation of recovered and added N, with the same recovery rate (0.21) of both total N and (15)N. A k(N) value of 0.25 was obtained based on the data. In conclusion, the diffusion method works for soil extracts and microbial biomass N determination and hence could be useful in many types of soil/water studies.

  13. Effects of growth and change of food on the {delta}{sup 15}N in marine fishes

    Energy Technology Data Exchange (ETDEWEB)

    Kasamatsu, Fujio [Marine Ecology Research Inst., Tokyo (Japan); Sato, Rie; Park, Kwang Lai

    1998-06-01

    Information is limited concerning variation of the {delta}{sup 15}N with growth in marine organisms and consequently the effect of growth of marine biota on the {delta}{sup 15}N is not yet well understood. The {delta}{sup 15}N in 26 species of marine fishes taken from Japanese coastal waters together with 4664 stomach contents of these fishes were examined to investigate the effects of food habits and growth on the {delta}{sup 15}N. The mean {delta}{sup 15}N for two species that fed mainly on large-size fishes and six species that fed mainly on small-size fishes were 14.5{+-}1.0per mille and 12.8{+-}0.7per mille, respectively. For five species that fed mainly on decapod crustaceans, two species that fed mainly on zooplankton, and three species that fed mainly on benthos (mainly Polychaeta), the {delta}{sup 15}N were 13.0{+-}0.7, 9.7{+-}0.9, and 12.2{+-}1.2per mille, respectively. The mean {delta}{sup 15}N in the species whose prey were mainly fish or decapod crustaceans was about 3-5per mille higher than the species whose prey was mainly zooplankton. Within the four species that shift their food habits with growth to higher trophic level, the {delta}{sup 15}N significantly increased with growth in one species (Pacific cod), while not significant increase in the {delta}{sup 15}N with growth in the remaining species. (author)

  14. Discrimination against 15N among recombinant inbred lines of Phaseolus vulgaris L. contrasting in phosphorus use efficiency for nitrogen fixation.

    Science.gov (United States)

    Lazali, Mohamed; Bargaz, Adnane; Carlsson, Georg; Ounane, Sidi Mohamed; Drevon, Jean Jacques

    2014-02-15

    Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of (15)N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against (15)N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e. RILs 115, 104, 34 (P deficiency tolerant) and 147, 83, 70 (P deficiency sensitive), were inoculated with Rhizobium tropici CIAT899, and hydroaeroponically grown with P-sufficient (250 μmol P plant(-1) week(-1)) versus P-deficient (75 μmol P plant(-1) week(-1)) supply. Two harvests were done at 15 (before nodule functioning) and 42 (flowering stage) days after transplanting. Nodulation, plant biomass, P and N contents, and the ratios of (15)N over total N content ((15)N/Nt) for shoots, roots and nodules were determined. The results showed lower (15)N/Nt in shoots than in roots, both being much lower than in nodules. P deficiency caused a larger decrease in (15)N/Nt in shoots (-0.18%) than in nodules (-0.11%) for all of the genotypes, and the decrease in shoots was greatest for RILs 34 (-0.33%) and 104 (-0.25%). Nodule (15)N/Nt was significantly related to both the quantity of N2 fixed (R(2)=0.96***) and the P content of nodules (R(2)=0.66*). We conclude that the discrimination against (15)N in the legume N2-fixing symbiosis of common bean with R. tropici CIAT899 is affected by P nutrition and plant genotype, and that the (15)N/Nt in nodules may be used to screen for genotypic variation in P use efficiency for N2 fixation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Unique optimal solution instance and computational complexity of backbone in the graph bi-partitioning problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As an important tool for heuristic design of NP-hard problems, backbone analysis has become a hot spot in theoretical computer science in recent years. Due to the difficulty in the research on computational complexity of the backbone, many researchers analyzed the backbone by statistic ways. Aiming to increase the backbone size which is usually very small by the existing methods, the unique optimal solution instance construction (UOSIC) is proposed for the graph bi-partitioning problem (GBP). Also, we prove by using the UOSIC that it is NP-hard to obtain the backbone, i.e. no algorithm exists to obtain the backbone of a GBP in polynomial time under the assumption that P ( NP. Our work expands the research area of computational complexity of the backbone. And the UOSIC provides a new way for heuristic design of NP-hard problems.

  16. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments

    Science.gov (United States)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mark A.; Pearson, Ann

    2011-01-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass – and by extension, surface waters – the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3−, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7–8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed

  17. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene:  Characterization of Products by 13C and 15N NMR

    Science.gov (United States)

    Thorn, Kevin A.; Thorne, Philip G.; Cox, Larry G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  18. Alkaline hydrolysis/polymerization of 2,4,6-Trinitrotoluene:  Characterization of products by 13C and 15N NMR

    Science.gov (United States)

    Thorn, Kevin A.; Thorne, Philip G.; Cox, Larry G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  19. d15N dynamics of ammonium and particulate nitrogen during the growth season of a eutrophic estuary

    DEFF Research Database (Denmark)

    De Brabandere, Loreto; Brion, N.; Elskens, M.;

    2007-01-01

    We monitored the stable nitrogen isotopic composition (d15N) of suspended matter and ammonium in the freshwater stretch of the Scheldt estuary (Belgium) over a full year to investigate for seasonal evolution and possible co-variation between isotopic signatures. The d15N value of ammonium remained...... rather constant during winter (average = +11.4 pro mille) but increased significantly with the spring and summer bloom, reaching values as high as +70 pro mille. This enrichment of the ammonium pool in 15N coincided with significant ammonium depletion during summer period, suggesting a close causal...

  20. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    Science.gov (United States)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    We used 15N2 gas to trace nitrogen (N) from biological N2-fixation to vascular plant uptake in an Alberta bog in order to determine if neighboring bog plants acquire recently fixed N from diazotrophs associating with Sphagnum mosses. Recent evidence indicates high rates of N2-fixation in Sphagnum mosses of Alberta bogs (Vile et al. 2013). Our previous work has shown that mosses can assimilate fixed N from associated diazotrophs as evidenced by the high N content of mosses despite minimal inputs from atmospheric deposition, retranslocation, and N mineralization. Therefore, the potential exists for vascular plants to obtain N from ';leaky' tissues of live mosses, however, this phenomenon has not been tested previously. Here we document the potential for relatively rapid transfer to vascular plants of N fixed by Sphagnum moss-associated diazotrophs. We utilized the novel approach of incubating mosses in 15N2 to allow the process of diazotrophic N2-fixation to mechanistically provide the 15N label, which is subsequently transferred to Sphagnum mosses. The potential for vascular bog natives to tap this N was assessed by planting the vascular plants in the labeled moss. Sphagnum mosses (upper 3 cm of live plants) were incubated in the presence of 98 atom % 15N2 gas for 48 hours. Two vascular plants common to Alberta bogs; Picea mariana and Vaccinium oxycoccus were then placed in the labeled mosses, where the mosses served as the substrate. Tissue samples from these plants were collected at three time points during the incubation; prior to 15N2 exposure (to determine natural abundance 15N), and at one and two months after 15N2 exposure. Roots and leaves were separated and run separately on a mass spectrometer to determine 15N concentrations. Sphagnum moss capitula obtained N from N2-fixation (δ15N of -2.43 × 0.40, 122.76 × 23.78, 224.92 × 68.37, 143.74 × 54.38 prior to, immediately after, and at 1 and 2 months after exposure to 15N2, respectively). Nitrogen was

  1. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  2. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    Science.gov (United States)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  3. 1H, 13C, and 15N resonance assignments of murine amelogenin, an enamel biomineralization protein.

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Bekhazi, Jacky G.; Cort, John R.; Valentine, Nancy B.; Snead, Malcolm L.; Shaw, Wendy J.

    2008-06-01

    Amelogenin is the predominant matrix protein in developing dental enamel. Making extensive use of residue-specific 15N-labeled amino acids samples, the majority of the main and side chain resonances for murine amelogenin were assigned in 2% aqueous acetic acid at pH 3.0. This research was performed at Pacific Northwest National Laboratory, operated by Battelle for the US-DOE. A large part of this research was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL).

  4. A 115-year δ15N record of cumulative nitrogen pollution in California serpentine grasslands

    Science.gov (United States)

    Vallano, D.; Zavaleta, E. S.

    2010-12-01

    Until the 1980s, California’s biodiverse serpentine grasslands were threatened primarily by development and protected by reserve creation. However, nitrogen (N) fertilization due to increasing fossil fuel emissions in the expanding Bay Area is thought to be contributing to rapid, recent invasion of these ecosystems by exotic annual grasses that are displacing rare and endemic serpentine species. Documenting the cumulative effects of N deposition in this ecosystem can direct policy and management actions to mitigate the role of N deposition in its transformation. Natural abundance stable isotopes of N in vegetation have been increasingly used as bio-indicators of N deposition patterns and subsequent changes to plant N cycling and assimilation. However, the long-term record of atmospheric reactive N enrichment and the resulting changes in ecosystem N dynamics have yet to be adequately reconstructed in many ecosystems. Museum archives of vascular plant tissue are valuable sources of materials to reconstruct temporal and spatial isotopic patterns of N inputs to ecosystems. Here, we present N stable isotope data from archived and current specimens of an endemic California serpentine grassland species, leather oak (Quercus durata), since 1895 across the greater San Francisco Bay region. We measured spatial and temporal trends in stable isotope composition (δ15N and δ13C) and concentration (%N and %C) of historical and current samples of leather oak leaves from sites within the Bay Area, impacted by increasing development, and sites northeast of the Bay Area, with significantly lower rates of urbanization and industrialization. Specifically, we sampled dry museum and fresh leaf specimens from serpentine sites within Lake (n=27) and Santa Clara (n=30) counties dating from 1895 to 2010. Leaf δ15N values were stable from 1895 to the 1950s and then decreased strongly throughout the last 50 years as fossil fuel emissions rapidly increased in the Bay Area, indicating that

  5. 15N-Labelled Fertilizer Recovery by Sweet Sorghum in Mediterranean Climate

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2008-12-01

    Full Text Available A 15N-labelled fertilization trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe with the aim to monitor the efficiency and effectiveness of the N-fertilisation technique under irrigation and different nitrogen fertilization rates, in factorial combination. A rainfed condition was compared with a full irrigation treatment (100% restoration of total crop water consumption, in a similar way, an unfertilized control was tested with respect to N application rates of 60 and 120 Kg ha-1, respectively. The fertilisation efficiency measured directly through the isotope discrimination technique was on average equal to 15%. The aliquot of nitrogen released by the fertiliser into the soil and not absorbed by the plant becomes part of the different components of the soil nitrogen balance, regardless of its origin.

  6. δ15N constraints on long-term nitrogen balances in temperate forests

    Science.gov (United States)

    Perakis, S.S.; Sinkhorn, E.R.; Compton, J.E.

    2011-01-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 − patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

  7. δ15N constraints on long-term nitrogen balances in temperate forests.

    Science.gov (United States)

    Perakis, Steven S; Sinkhorn, Emily R; Compton, Jana E

    2011-11-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ(15)N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha(-1) and carbon (C) ranged from 188 to 460 Mg ha(-1), with highest values near the coast. Ecosystem δ(15)N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96-98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N(2)-fixation, and that were consistent with cycles of post-fire N(2)-fixation by early-successional red alder. Soil water δ(15)NO(3)(-) patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N(2)-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N(2)-fixing vegetation.

  8. Process-based network decomposition reveals backbone motif structure.

    Science.gov (United States)

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-06-08

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated).

  9. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chi Ma

    2007-05-01

    Full Text Available A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS and show that in general the minimum BACDS (MBACDS can achieve longer lifetime than the previous backbone structures. Then we show that finding a MBACDS is NP-hard and give a distributed approximation algorithm to construct the BACDS. The resulting BACDS constructed by our algorithm is at most (8+Δopt size, where Δ is the maximum node degree and opt is the size of an optimal BACDS. Simulation results show that the BACDS can save a significant amount of energy and achieve up to 30% longer network lifetime than previous schemes.

  10. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Yuanyuan

    2007-01-01

    Full Text Available A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS and show that in general the minimum BACDS (MBACDS can achieve longer lifetime than the previous backbone structures. Then we show that finding a MBACDS is NP-hard and give a distributed approximation algorithm to construct the BACDS. The resulting BACDS constructed by our algorithm is at most opt size, where is the maximum node degree and opt is the size of an optimal BACDS. Simulation results show that the BACDS can save a significant amount of energy and achieve up to longer network lifetime than previous schemes.

  11. A combined HNCA/HNCO experiment for {sup 15}N labeled proteins with {sup 13}C at natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Kupce, Eriks [Varian Inc. (United Kingdom); Muhandiram, D.R.; Kay, Lewis E. [University of Toronto, Protein Engineering Network Centers of Excellence and Departments of Medical Genetics, Biochemistry and Chemistry (Canada)], E-mail: kay@pound.med.utoronto.ca

    2003-10-15

    A triple resonance NMR experiment is presented for the simultaneous recording of HNCA and HNCO data sets on {sup 15}N, natural abundance {sup 13}C samples. The experiment exploits the fact that transfers of magnetization from {sup 15}N to {sup 13}CO and from {sup 15}N to {sup 13}C{sup {alpha}} (and back) proceed independently for samples that are not enriched in {sup 13}C. A factor of 2 in measuring time is gained by recording the two data sets simultaneously with no compromise in spectral quality. An application to a 0.5 mM {sup 15}N labeled sample of protein-L is presented with all expected correlations observed in spectra recorded with a cryogenic probe at 500 MHz.

  12. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Wahid, Ahmad Nazrul Abd, E-mail: a-nazrul@nuclearmalaysia.gov.my [Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahim, Sahibin Abd, E-mail: haiyan@ukm.edu.my [Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor (Malaysia); Rahim, Khairuddin Abdul; Harun, Abdul Rahim [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  13. A suite of Mathematica notebooks for the analysis of protein main chain 15N NMR relaxation data.

    Science.gov (United States)

    Spyracopoulos, Leo

    2006-12-01

    A suite of Mathematica notebooks has been designed to ease the analysis of protein main chain 15N NMR relaxation data collected at a single magnetic field strength. Individual notebooks were developed to perform the following tasks: nonlinear fitting of 15N-T1 and -T2 relaxation decays to a two parameter exponential decay, calculation of the principal components of the inertia tensor from protein structural coordinates, nonlinear optimization of the principal components and orientation of the axially symmetric rotational diffusion tensor, model-free analysis of 15N-T1, -T2, and {1H}-15N NOE data, and reduced spectral density analysis of the relaxation data. The principle features of the notebooks include use of a minimal number of input files, integrated notebook data management, ease of use, cross-platform compatibility, automatic visualization of results and generation of high-quality graphics, and output of analyses in text format.

  14. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using 15N isotopic tracer technique

    Science.gov (United States)

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-01

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct 15N isotope tracer method was used in this study, whereby the 15N isotope was utilized as a tracer for nitrogen nutrient uptake. 15N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. 15N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  15. Variability in δ{sup 15}N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: inesgviana@gmail.com; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ{sup 15}N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ{sup 15}N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ{sup 15}N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ{sup 15}N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ{sup 15}N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ{sup 15}N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. - Highlights: • Variability of Fucacean δ{sup 15}N indicates N sources along a salinity gradient. • δ{sup 15}N of Fucaceae and seawater are not correlated at short time scales. • Isotopic fractionation in macroalgal tissue varies at seasonal and at local scale. • Fucacean species are suitable for monitoring chronic N loadings.

  16. An optimized method for {sup 15}N R{sub 1} relaxation rate measurements in non-deuterated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gairí, Margarida, E-mail: mgairi@rmn.ub.edu [University of Barcelona (CCiTUB), NMR Facility, Scientific and Technological Centers (Spain); Dyachenko, Andrey [Institute for Research in Biomedicine (IRB) (Spain); González, M. Teresa; Feliz, Miguel [University of Barcelona (CCiTUB), NMR Facility, Scientific and Technological Centers (Spain); Pons, Miquel [University of Barcelona, Biomolecular NMR Laboratory and Organic Chemistry Department (Spain); Giralt, Ernest, E-mail: ernest.giralt@irbbarcelona.org [Institute for Research in Biomedicine (IRB) (Spain)

    2015-06-15

    {sup 15}N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. {sup 15}N CSA/{sup 1}H–{sup 15}N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of {sup 15}N R{sub 1} rates through {sup 1}H–{sup 15}N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable {sup 15}N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on {sup 15}N R{sub 1} rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during {sup 15}N R{sub 1} measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.

  17. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  18. Leaf δ15N as a temporal integrator of nitrogen-cycling processes at the Mojave Desert FACE experiment

    Science.gov (United States)

    Sonderegger, D.; Koyama, A.; Jin, V.; Billings, S. A.; Ogle, K.; Evans, R. D.

    2011-12-01

    Ecosystem response to elevated carbon dioxide (CO2) in arid environments is regulated primarily by water, which may interact with nitrogen availability. Leaf nitrogen isotope composition (δ15N) can serve as an important indicator of changes in nitrogen dynamics by integrating changes in plant physiology and ecosystem biogeochemical processes. Because of this temporal integration, careful modeling of the antecedent conditions is necessary for understanding the processes driving variation in leaf δ15N. We measured leaf δ15N of Larrea tridentata (creosotebush) over the 10-year lifetime of the Nevada Desert Free-Air CO2 Enrichment (FACE) experiment. Leaf δ15N exhibited two patterns. First, elevated atmospheric CO2 significantly increased Larrea leaf δ15N by approximately 2 to 3 % compared to plants exposed to ambient CO2 concentrations Second, plants in both CO2 treatments exhibited significant seasonal cycles in leaf δ15N, with higher values during the fall and winter seasons. We modeled leaf δ15N using a hierarchical Bayesian framework that incorporated soil moisture, temperature, and the Palmer Drought Severity Index (PDSI) covariates in addition to a CO2 treatment effect and plot random effects. Antecedent moisture effects were modeled by using a combination of the previous season's aggregated conditions and a smoothly varying weighted average of the months or weeks directly preceding the observation. The time lag between the driving antecedent condition and the observed change in leaf δ15N indicates a significant and unobserved process mechanism. Preliminary results suggest a CO2 treatment interaction with the lag effect, indicating a treatment effect on the latent process.

  19. Nuclear Quadrupole Hyperfine Structure in HC14N/H14NC and DC15N/D15NC Isomerization: A Diagnostic Tool for Characterizing Vibrational Localization

    CERN Document Server

    Wong, Bryan M

    2010-01-01

    Large-amplitude molecular motions which occur during isomerization can cause significant changes in electronic structure. These variations in electronic properties can be used to identify vibrationally-excited eigenstates which are localized along the potential energy surface. This work demonstrates that nuclear quadrupole hyperfine interactions can be used as a diagnostic marker of progress along the isomerization path in both the HC14N/H14NC and DC15N/D15NC chemical systems. Ab initio calculations at the CCSD(T)/cc-pCVQZ level indicate that the hyperfine interaction is extremely sensitive to the chemical bonding of the quadrupolar 14N nucleus and can therefore be used to determine in which potential well the vibrational wavefunction is localized. A natural bonding orbital analysis along the isomerization path further demonstrates that hyperfine interactions arise from the asphericity of the electron density at the quadrupolar nucleus. Using the CCSD(T) potential surface, the quadrupole coupling constants of...

  20. 15N Abundance of Nodules as an Indicator of N Metabolism in N2-Fixing Plants 1

    Science.gov (United States)

    Shearer, Georgia; Feldman, Lori; Bryan, Barbara A.; Skeeters, Jerri L.; Kohl, Daniel H.; Amarger, Nöelle; Mariotti, Françoise; Mariotti, André

    1982-01-01

    This paper expands upon previous reports of 15N elevation in nodules (compared to other tissues) of N2-fixing plants. N2-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in 15N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N2-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in 15N. Thus, 15N elevation in nodules of these plants depends on active N2-fixation. Results obtained so far on the generality of 15N enrichment in N2-fixing nodules suggest that only the nodules of plants which actively fix N2 and which transport allantoin or allantoic acid exhibit 15N enrichment. PMID:16662517

  1. Afforestation impacts microbial biomass and its natural (13)C and (15)N abundance in soil aggregates in central China.

    Science.gov (United States)

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Correlation between the synthetic origin of methamphetamine samples and their {sup 15}N and {sup 13}C stable isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Billault, Isabelle [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France)]. E-mail: Isabelle.Billault@univ-nantes.fr; Courant, Frederique [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Pasquereau, Leo [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Derrien, Solene [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Robins, Richard J. [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France); Naulet, Norbert [Laboratoire d' Analyse Isotopique et Electrochimique de Metabolismes, CNRS UMR6006, University of Nantes, BP 92208, 44322 Nantes (France)

    2007-06-12

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The {sup 13}C and {sup 15}N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the {sup 15}N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the {delta} {sup 15}N values of MDMA are strongly influenced by a combination of the {delta} {sup 15}N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the {delta} {sup 15}N values of the synthetic MDMA and of the {delta} {sup 15}N and {delta} {sup 13}C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested.

  3. Correlation between the synthetic origin of methamphetamine samples and their 15N and 13C stable isotope ratios.

    Science.gov (United States)

    Billault, Isabelle; Courant, Frédérique; Pasquereau, Léo; Derrien, Solène; Robins, Richard J; Naulet, Norbert

    2007-06-12

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The 13C and 15N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the 15N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the delta15N values of MDMA are strongly influenced by a combination of the delta15N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the delta15N values of the synthetic MDMA and of the delta15N and delta13C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested.

  4. Elastic and inelastic scattering of {sup 15}N ions by {sup 9}Be at 84 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rudchik, A.T., E-mail: rudchik@kinr.kiev.ua [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Chercas, K.A. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Kemper, K.W. [Physics Department, Florida State University, Tallahassee, FL 32306-4350 (United States); Rusek, K. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Rudchik, A.A.; Herashchenko, O.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Koshchy, E.I. [Kharkiv National University, pl. Svobody 4, 61077 Kharkiv (Ukraine); Pirnak, Val.M. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Piasecki, E.; Trzcińska, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Sakuta, S.B. [Russian Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Siudak, R. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Strojek, I. [National Center for Nuclear Researches, ul. Hoża 69, PL-00-681 Warsaw (Poland); Stolarz, A. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Ilyin, A.P.; Ponkratenko, O.A.; Stepanenko, Yu.M.; Shyrma, Yu.O. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Szczurek, A. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Uleshchenko, V.V. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine)

    2016-03-15

    Angular distributions of the {sup 9}Be + {sup 15}N elastic and inelastic scattering were measured at E{sub lab}({sup 15}N) = 84 MeV (E{sub c.m.} = 31.5 MeV) for the 0–6.76 MeV states of {sup 9}Be and 0–6.32 MeV states of {sup 15}N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of {sup 9}Be in ground and excited states and {sup 15}N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the {sup 9}Be + {sup 15}N optical potential of Woods–Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the {sup 9}Be + {sup 15}N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of {sup 9}Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  5. δ15N Values in Crassostrea virginica Shells Provides Early Direct Evidence for Nitrogen Loading to Chesapeake Bay

    Science.gov (United States)

    Black, H. D.; Andrus, C. F. T.; Lambert, W. J.; Rick, T. C.; Gillikin, D. P.

    2017-01-01

    Crassostrea virginica is one of the most common estuarine bivalves in the United States’ east coast and is frequently found in archaeological sites and sub-fossil deposits. Although there have been several sclerochronological studies on stable carbon and oxygen isotopes in the shells of this species, less is known about δ15N values within their shells, which could be a useful paleoenvironmental proxy to assess estuarine nitrogen dynamics. Modern C. virginica samples were collected in Chesapeake Bay for comparison with archaeological shells from nearby sites ranging in age from ~100 to 3,200 years old. Left valves were sampled by milling the hinge area and the resulting powder was analyzed for %N and δ15N values. Comparison of δ15N values between C. virginica shells shows relatively constant values from ~1250 BC to ~1800 AD. After ~1800 AD, there are rapid increases in 15N enrichment in the shells, which continue to increase in value up to the modern shell values. The increase in δ15N values is evidence of early anthropogenic impact in Chesapeake Bay. These results corroborate the observation that coastal nitrogen pollution occurred earlier than the 19th century and support the use of oyster shell δ15N values as a useful environmental proxy. PMID:28281649

  6. Single Particle Strengths and Mirror States in $^{15}$N$-^{15}$O below 12.0 MeV

    CERN Document Server

    Mertin, C E; Crisp, A M; Keeley, N; Kemper, K W; Momtyuk, O; Roeder, B T; Volya, A

    2014-01-01

    New $^{14}$N(d,p) angular distribution data were taken at a deuteron bombarding energy of 16 MeV to locate all narrow single particle neutron states up to 15 MeV in excitation. A new shell model calculation is able to reproduce all levels in $^{15}$N up to 11.5 MeV and is used to characterize a narrow single particle level at 11.236 MeV and to provide a map of the single particle strengths. The known levels in $^{15}$N are then used to determine their mirrors in the lesser known nucleus $^{15}$O. The 2s$_{1/2}$ and 1d$_{5/2}$ single particle centroid energies are determined for the $^{15}$N$-^{15}$O mirror pair as: $^{15}$N $(\\text{2s}_{1/2}) = 8.08$ MeV, $^{15}$O $(\\text{2s}_{1/2}) = 7.43$ MeV, $^{15}$N $(\\text{1d}_{5/2}) = 7.97$ MeV, and $^{15}$O $(\\text{1d}_{5/2}) = 7.47$ MeV. These results confirm the degeneracy of these orbits and that the $^{15}$N$-^{15}$O nuclei are where the transition between the $\\text{2s}_{1/2}$ lying below the $\\text{1d}_{5/2}$ to lying above it, takes place. The $\\text{1d}_{3/2}$...

  7. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates.

    Science.gov (United States)

    Gront, Dominik; Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-15

    In this contribution, we present an algorithm for protein backbone reconstruction that comprises very high computational efficiency with high accuracy. Reconstruction of the main chain atomic coordinates from the alpha carbon trace is a common task in protein modeling, including de novo structure prediction, comparative modeling, and processing experimental data. The method employed in this work follows the main idea of some earlier approaches to the problem. The details and careful design of the present approach are new and lead to the algorithm that outperforms all commonly used earlier applications. BBQ (Backbone Building from Quadrilaterals) program has been extensively tested both on native structures as well as on near-native decoy models and compared with the different available existing methods. Obtained results provide a comprehensive benchmark of existing tools and evaluate their applicability to a large scale modeling using a reduced representation of protein conformational space. The BBQ package is available for downloading from our website at http://biocomp.chem.uw.edu.pl/services/BBQ/. This webpage also provides a user manual that describes BBQ functions in detail.

  8. Appraisal of {sup 15}N enrichment and {sup 15}N natural abundance methods for estimating N{sub 2} fixation by understorey Acacia leiocalyx and A. disparimma in a native forest of subtropical Australia

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Shahla Hosseini; Xu, Zhihong; Blumfield, Timothy J. [Griffith Univ., Nathan, Brisbane, QLD (Australia). School of Biomolecular and Physical Sciences, Environmental Futures Centre; Sun, Fangfang [Guangdong Academy of Agricultural Sciences, Guangzhou (China). Research Centre for Quality, Safety and Standard of Agricultural Products; Chen, Chengrong [Griffith Univ., Nathan, Brisbane, QLD (Australia). School of Environment, Environmental Futures Centre; Wild, Clyde [Griffith Univ., Gold Coast, QLD (Australia). School of Environment, Environmental Futures Centre

    2012-05-15

    Purpose: It is anticipated that global climate change will increase the frequency of wildfires in native forests of eastern Australia. Understorey legumes such as Acacia species play an important role in maintaining ecosystem nitrogen (N) balance through biological N fixation (BNF). This is particularly important in Australian native forests with soils of low nutrient status and frequent disturbance of the nutrient cycles by fires. This study aimed to examine {sup 15}N enrichment and {sup 15}N natural abundance techniques in terms of their utilisation for evaluation of N{sub 2} fixation of understorey acacias and determine the relationship between species ecophysiological traits and N{sub 2} fixation. Materials and methods: A trial was established at sites 1 and 2 located at Toohey Forest, Queensland, Australia, a eucalypt-dominated native forest, to examine the determination of BNF using {sup 15}N enrichment and {sup 15}N natural abundance methods. Toohey Forest is an urban forest and subjected to frequent fuel reduction burns to protect the adjacent properties. Plant physiological status was measured to determine the relationship between physiological and N{sub 2} fixation activities. Results and discussion: Both {sup 15}N enrichment and {sup 15}N natural abundance techniques may be used to estimate N{sub 2} fixation of acacia tree species. The estimation of BNF using {sup 15}N enrichment was higher than those of the {sup 15}N natural abundance method. A grass reference plant, Themeda triandra, as well as tree reference plants provided an appropriate {delta}{sup 15}N signal. Potential B values for Acacia spp. between -0.3 permille and 1.0 permille provided an acceptable BNF estimation. This suburban forest is located nearby a busy highway leading to N deposition over time with consequent negative {delta}{sup 15}N signal. This N deposition may explain the separation between the {delta}{sup 15}N signal of the acacias and that of the reference plants which led to

  9. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing; Shi, Chaowei [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Yu, Lu [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Zhang, Longhua [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  10. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C.

    Science.gov (United States)

    Krishnamurthy, Harini; Munro, Kim; Yan, Honggao; Vieille, Claire

    2009-03-31

    Backbone conformational dynamics of Thermotoga neapolitana adenylate kinase in the free form (TNAK) and inhibitor-bound form (TNAK*Ap5A) were investigated at 30 degrees C using (15)N NMR relaxation measurements and NMR monitored hydrogen-deuterium exchange. With kinetic parameters identical to those of Escherichia coli AK (ECAK) at 30 degrees C, TNAK is a unique hyperthermophilic enzyme. These catalytic properties make TNAK an interesting and novel model to study the interplay between protein rigidity, stability, and activity. Comparison of fast time scale dynamics (picosecond to nanosecond) in the open and closed states of TNAK and ECAK at 30 degrees C reveals a uniformly higher rigidity across all domains of TNAK. Within this framework of a rigid TNAK structure, several residues located in the AMP-binding domain and in the core-lid hinge regions display high picosecond to nanosecond time scale flexibility. Together with the recent comparison of ECAK dynamics with those of hyperthermophilic Aquifex aeolicus AK (AAAK), our results provide strong evidence for the role of picosecond to nanosecond time scale fluctuations in both stability and activity. In the slow time scales, TNAK's increased rigidity is not uniform but localized in the AMP-binding and lid domains. The core domain amides of ECAK and TNAK in the open and closed states show comparable protection against exchange. Significantly, the hinges framing the lid domain show similar exchange data in ECAK and TNAK open and closed forms. Our NMR relaxation and hydrogen-deuterium exchange studies therefore suggest that TNAK maintains high activity at 30 degrees C by localizing flexibility to the hinge regions that are key to facilitating conformational changes.

  11. Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem

    CERN Document Server

    Zhang, W

    2011-01-01

    In recent years, there has been much interest in phase transitions of combinatorial problems. Phase transitions have been successfully used to analyze combinatorial optimization problems, characterize their typical-case features and locate the hardest problem instances. In this paper, we study phase transitions of the asymmetric Traveling Salesman Problem (ATSP), an NP-hard combinatorial optimization problem that has many real-world applications. Using random instances of up to 1,500 cities in which intercity distances are uniformly distributed, we empirically show that many properties of the problem, including the optimal tour cost and backbone size, experience sharp transitions as the precision of intercity distances increases across a critical value. Our experimental results on the costs of the ATSP tours and assignment problem agree with the theoretical result that the asymptotic cost of assignment problem is pi ^2 /6 the number of cities goes to infinity. In addition, we show that the average computation...

  12. Variation of protein backbone amide resonance by electrostatic field

    CERN Document Server

    Sharley, John N

    2015-01-01

    Amide resonance is found to be sensitive to electrostatic field with component parallel or antiparallel the amide C-N bond. This effect is linear and without threshold in the biologically plausible electrostatic field range -0.005 to 0.005 au. Variation of amide resonance varies Resonance Assisted Hydrogen Bonding such as occurs in the hydrogen bonded chains of backbone amides of protein secondary structures such as beta sheet and non-polyproline helix such as alpha helix, varying the stability of the secondary structure. The electrostatic properties including permittivity of amino acid residue sidegroups influence the electrostatic field component parallel or antiparallel the C-N bond of each amide. The significance of this factor relative to other factors in protein folding depends on the magnitude of electrostatic field component parallel or antiparallel the C-N bond of each amide, and preliminary protein-scale calculations of the magnitude of these components suggest this factor warrants investigation in ...

  13. Backbones of evolutionary history test biodiversity theory for microbes.

    Science.gov (United States)

    O'Dwyer, James P; Kembel, Steven W; Sharpton, Thomas J

    2015-07-07

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities.

  14. Bioactivities of fish protein hydrolysates from defatted salmon backbones

    Directory of Open Access Journals (Sweden)

    Rasa Slizyte

    2016-09-01

    Full Text Available Bioactivities of bulk fish protein hydrolysates (FPH from defatted salmon backbones obtained with eight different commercial enzymes and their combinations were tested. All FPH showed antioxidative activity in vitro. DPPH scavenging activity increased, while iron chelating ability decreased with increasing time of hydrolysis. All FPH showed ACE inhibiting effect which depended on type of enzyme and increased with time of hydrolysis. The highest effect was found for FPH produced with Trypsin. Bromelain + Papain hydrolysates reduced the uptake of radiolabelled glucose into CaCo-2 cells, a model of human enterocytes, indicating a potential antidiabetic effect of FPH. FPH obtained by Trypsin, Bromelain + Papain and Protamex showed the highest ACE inhibitory, cellular glucose transporter (GLUT/SGLT inhibitory and in vitro antioxidative activities, respectively. Correlation was observed between the measured bioactivities, degree of hydrolysis and molecular weight profiles, supporting prolonged hydrolysis to obtain high bioactivities.

  15. Design of an IPTV Multicast System for Internet Backbone Networks

    Directory of Open Access Journals (Sweden)

    T. H. Szymanski

    2010-01-01

    Full Text Available The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decomposition algorithm used to compute near-perfect transmission schedules for each IP router. The IPTV traffic is shaped at the sources using Application-Specific Token Bucker Traffic Shapers, to limit the burstiness of incoming network traffic. The IPTV traffic is shaped at the destinations using Application-Specific Playback Queues, to remove residual network jitter and reconstruct the original bursty IPTV video streams at each destination. All IPTV traffic flows are regenerated at the destinations with essentially zero delay jitter and essentially-perfect QoS. The destination nodes deliver the IPTV streams to the ultimate end users using the same IPTV multicast system over a regional Metropolitan Area Network. It is shown that all IPTV traffic is delivered with essentially-perfect end-to-end QoS, with deterministic bounds on the maximum delay and jitter on each video frame. Detailed simulations of an IPTV distribution system, multicasting several hundred high-definition IPTV video streams over several essentially saturated IP backbone networks are presented.

  16. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10

    Directory of Open Access Journals (Sweden)

    Chengqian Pan

    2016-08-01

    Full Text Available A new verrucosidin derivative, methyl isoverrucosidinol (1, was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL.

  17. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia The potential of 15N metabolic labeling for schizophrenia research

    Directory of Open Access Journals (Sweden)

    Michaela D Filiou

    2012-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.Psychiatric research is in need of non-hypothesis driven approaches to unravel the neurobiological underpinnings and identify molecular biomarkers for psychiatric disorders. Proteomics methodologies constitute a state-of-the-art toolbox for biomarker discovery in psychiatric research. Here we present the principle of in vivo 15N metabolic labeling for quantitative proteomics experiments and applications of this method in animal models of psychiatric phenotypes, with a particular focus on schizophrenia. Additionally we explore the potential of 15N metabolic labeling in different experimental set-ups as well as methodological considerations of 15N metabolic labeling-based quantification studies.

  18. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia The potential of 15N metabolic labeling for schizophrenia research

    Directory of Open Access Journals (Sweden)

    Michaela D. Filiou

    2013-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.Psychiatric research is in need of non-hypothesis driven approaches to unravel the neurobiological underpinnings and identify molecular biomarkers for psychiatric disorders. Proteomics methodologies constitute a state-of-the-art toolbox for biomarker discovery in psychiatric research. Here we present the principle of in vivo 15N metabolic labeling for quantitative proteomics experiments and applications of this method in animal models of psychiatric phenotypes, with a particular focus on schizophrenia. Additionally we explore the potential of 15N metabolic labeling in different experimental set-ups as well as methodological considerations of 15N metabolic labeling-based quantification studies.

  19. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  20. Reconstruction of Protein Backbones from the BriX Collection of Canonical Protein Fragments

    OpenAIRE

    Lies Baeten; Joke Reumers; Vicente Tur; François Stricher; Tom Lenaerts; Luis Serrano; Frederic Rousseau; Joost Schymkowitz

    2008-01-01

    As modeling of changes in backbone conformation still lacks a computationally efficient solution, we developed a discretisation of the conformational states accessible to the protein backbone similar to the successful rotamer approach in side chains. The BriX fragment database, consisting of fragments from 4 to 14 residues long, was realized through identification of recurrent backbone fragments from a non-redundant set of high-resolution protein structures. BriX contains an alphabet of more ...

  1. Tracing sewage water by 15N in a mangrove ecosystem to test its bioremediation ability.

    Science.gov (United States)

    Lambs, Luc; Léopold, Audrey; Zeller, Bernd; Herteman, Mélanie; Fromard, Francois

    2011-10-15

    Mangrove forests could be a simple and effective alternative to conventional sewage treatment, particularly for island communities given its low cost and low maintenance. Due to their high adaptation capacity, these plants are able to tolerate and bioremediate the high levels of nutrients and pollutants found in sewage water. This solution could be applied to small tropical islands with high population density such as Mayotte in the Indian Ocean. This paper reports on a trial by stable isotopic (15)N tracing of such a bioremediation process on pre-treated wastewater near the village of Malamani, in the middle of the large coastal mangrove in the bay near Chirongui. The first results show a boost in the mangrove growth, but a longer period of observation is needed to confirm the beneficial effects, and also to clarify the role of the local crab population, whose engineering activities play an important part in the ecosystem. The exact denitrification process is not yet understood, and the mass balance equation also reveals loss of nitrogen-containing compounds, which needs to be analyzed more closely.

  2. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    Science.gov (United States)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  3. Production of 15N-enriched nitric acid (H15NO3

    Directory of Open Access Journals (Sweden)

    C. R. Sant Ana Filho

    2008-12-01

    Full Text Available Techniques that employ 15N have proved to be an important tool in many areas of the agronomic and biomedical sciences. Nevertheless, their use is limited by methodological difficulties and by the price of compounds in the international market. Nitric compounds (15NO3- have attracted the interest of researchers. However, these compounds are not currently produced in Brazil. Thus, in the present work H15NO3 was obtained from the oxidation of anhydrous 15NH3. The method we used differs from the industrial process in that the absorption tower is replaced with a polytetrafluoroethylene-lined, stainless-steel hydration reactor. The process output was evaluated based on the following parameters: reaction temperature; ratio of reagents; pressure and flow of 15NH3(g through the catalyst (Pt/Rh. The results showed that, at the best conditions (500 ºC; 50 % excess O2; 0.4 MPa; and 3.39 g.min-1 of 15NH3, a conversion percentage (N-15NH3 to N-15NO3- of 62.2 %, an overall nitrogen balance (N-15NH3 + N-15NO3- of 86.8 %, and purity higher than 99 % could be obtained.

  4. Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model

    Science.gov (United States)

    Andresen, Louise C.; Björsne, Anna-Karin; Bodé, Samuel; Klemedtsson, Leif; Boeckx, Pascal; Rütting, Tobias

    2016-09-01

    The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15N tracing model Ntrace, which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of depolymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation.

  5. Effects of 15N application frequency on nitrogen uptake efficiency in citrus trees.

    Science.gov (United States)

    Quiñones, Ana; Bañuls, Josefina; Millo, Eduardo Primo; Legaz, Francisco

    2003-12-01

    Two irrigation systems were used to compare nitrogen uptake efficiency in citrus trees and to evaluate the NO3- runoff in "Navelina" orange trees [Citrus sinensis (L.) Osbeck] on Carrizo citrange rootstock (Citrus sinensis x Poncirus trifoliata Raf.). These were fertilized with 125 g N as labelled K15NO3 and grown outdoors in containers filled with a sand-loamy soil. Two groups of 3 trees received this N dose either in five equally split applications by a flooding irrigation system or in 66 applications by drip. Trees were harvested at the end of the vegetative cycle (December) and the isotopic ratios of 15N/14N were measured in the soil-plant system. The N uptake efficiency of the whole tree was higher with drip irrigation (75%) than with flooding system (64%). In the 0-90 cm soil profile, the N immobilized in the organic fraction was similar for both irrigation methods (around 13 %), whereas the N retained as NO3- was 1% of the N applied under drip and 10% under flooding. In the last case, most of NO3- remained under root system and it could be lost to leaching either by heavy rainfalls or excessive water applications. These results showed that a drip irrigation system was more efficient for improving water use and N uptake from fertilizer, in addition to potentially reduced leaching losses.

  6. A hierarchical virtual backbone construction protocol for mobile ad hoc networks

    Directory of Open Access Journals (Sweden)

    Bharti Sharma

    2016-07-01

    Full Text Available We propose a hierarchical backbone construction protocol for mobile ad hoc networks. Our protocol is based on the idea of using an efficient extrema finding method to create clusters comprising the nodes that are within certain prespecified wireless hop distance. Afterward, we apply our ‘diameter’ algorithm among clusters to identify the dominating nodes that are, finally, connected via multi-hop virtual links to construct the backbone. We present the analytic as well as simulation study of our algorithm and also a method for the dynamic maintenance of constructed backbone. In the end, we illustrate the use of the virtual backbone with the help of an interesting application.

  7. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    Science.gov (United States)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  8. Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    Directory of Open Access Journals (Sweden)

    E. Capron

    2013-05-01

    Full Text Available Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial–interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML – a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas–ice depth offset during the Laschamp event (~41 ka and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model–δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification

  9. STELLAR ORIGINS OF EXTREMELY {sup 13}C- AND {sup 15}N-ENRICHED PRESOLAR SIC GRAINS: NOVAE OR SUPERNOVAE?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Pignatari, Marco [E.A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, HU6 7RX (United Kingdom); José, Jordi [Department de Fisica, EUETIB, Universitat Politécnica de Catalunya, E-08036 Barcelona (Spain); Nguyen, Ann, E-mail: nliu@carnegiescience.edu [Robert M. Walker Laboratory for Space Science, Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058 (United States)

    2016-04-01

    Extreme excesses of {sup 13}C ({sup 12}C/{sup 13}C < 10) and {sup 15}N ({sup 14}N/{sup 15}N < 20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized {sup 13}C- and {sup 15}N-enriched presolar SiC grains ({sup 12}C/{sup 13}C < 16 and {sup 14}N/{sup 15}N < ∼100) from Murchison, and their correlated Mg–Al, S, and Ca–Ti isotope data when available. These grains are enriched in {sup 13}C and {sup 15}N, but with quite diverse Si isotopic signatures. Four grains with {sup 29,30}Si excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with {sup 30}Si excesses and {sup 29}Si depletions show lower-than-solar {sup 34}S/{sup 32}S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also {sup 13}C enriched, but have a range of higher {sup 14}N/{sup 15}N. We found that {sup 15}N-enriched AB grains (∼50 < {sup 14}N/{sup 15}N < ∼100) have distinctive isotopic signatures compared to putative nova grains, such as higher {sup 14}N/{sup 15}N, lower {sup 26}Al/{sup 27}Al, and lack of {sup 30}Si excess, indicating weaker proton-capture nucleosynthetic environments.

  10. Stellar Origins of Extremely $^{\\text{13}}C$- and $^{15}N$-enriched Presolar SiC Grains: Novae or Supernovae?

    CERN Document Server

    Liu, Nan; Alexander, Conel M O'D; Wang, Jianhuan; Pignatari, Marco; Jose, Jordi; Nguyen, Ann

    2016-01-01

    Extreme excesses of $^{13}C$ ($^{12}C$/$^{13}C$<10) and $^{15}N$ ($^{14}N$/$^{15}N$<20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized $^{13}C$- and $^{15}N$-enriched presolar SiC grains ($^{12}C$/$^{13}C$<16 and $^{14}N$/$^{15}N$<~100) from Murchison, and their correlated Mg-Al, S, and Ca-Ti isotope data when available. These grains are enriched in $^{13}C$ and $^{15}N$, but with quite diverse Si isotopic signatures. Four grains with $^{29,30}Si$ excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with $^{30}Si$ e...

  11. Evaluation of a {sup 15} N plot design for estimating plant recovery of fertilizer nitrogen applied to sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Trivelin, P.C.O.; Cabezas, W.A.R.L.; Victoria, R.L.; Reichardt, K. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1994-05-01

    Two experiments were conducted on commercial sugar cene fields cropped with the variety SP70-1143, with the objective of evaluating a single row microplot design to determine plant recovery of {sup 15} N fertilizer nitrogen. One of them used {sup 15} N-aqua ammonia and {sup 15} N-urea applied to two linear meter microplots of a ratoon crop (four replicates.) The second used one linear meter microplots (three replicates) which received {sup 15} N-aqua ammonia only. The fertilizers were applied on 15cm deep furrows, located 25 cm from both sides of the cane row. One linear meter of ratoon cane, inside and outside of the microplot, and on the same and adjacent rows were harvested twelve months after fertilization. The results indicate the feasibility of using single row regments of ratoon cane with {sup 15} N-fertilizer. The main advantages of this microplot design, when compared to the classical 3 contiguous row segments, is that only one third of the labeled fertilizer is needed. (author). 25 refs, 3 figs, 5 tabs.

  12. Probing site-specific 13C/15N-isotope enrichment of spider silk with liquid-state NMR spectroscopy.

    Science.gov (United States)

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2013-05-01

    Solid-state nuclear magnetic resonance (NMR) has been extensively used to elucidate spider silk protein structure and dynamics. In many of these studies, site-specific isotope enrichment is critical for designing particular NMR methods for silk structure determination. The commonly used isotope analysis techniques, isotope-ratio mass spectroscopy and liquid/gas chromatography-mass spectroscopy, are typically not capable of providing the site-specific isotope information for many systems because an appropriate sample derivatization method is not available. In contrast, NMR does not require any sample derivatization or separation prior to analysis. In this article, conventional liquid-state (1)H NMR was implemented to evaluate incorporation of (13)C/(15)N-labeled amino acids in hydrolyzed spider dragline silk. To determine site-specific (13)C and (15)N isotope enrichments, an analysis method was developed to fit the (1)H-(13)C and (1)H-(15)N J-splitting (J CH and J NH) (1)H NMR peak patterns of hydrolyzed silk fiber. This is demonstrated for Nephila clavipes spiders, where [U-(13)C3,(15)N]-Ala and [1-(13)C,(15)N]-Gly were dissolved in their water supplies. Overall, contents for Ala and Gly isotopomers are extracted for these silk samples. The current methodology can be applied to many fields where site-specific tracking of isotopes is of interest.

  13. Evaluation of N sub 2 fixation by applying sup 15 N labeled plant material and ammonium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C.Y.; Yoshida, T.

    1990-06-01

    Effect of different {sup 15}N labeled sources on the estimation of N{sub 2} fixation was investigated. The combination of {sup 15}N labeled ammonium sulfate, {sup 15}N labeled plant material, and {sup 15}N labeled ammonium sulfate with unlabeled plant material, was examined in pot experiments. Two cultivars of soybean (Glycine max) and one of mungbean (Vigna radiata) were used. No significant difference was observed among the treatments for the estimation of N{sub 2} fixation. This was due to the homogeneity and stability of the {sup 15}N abundance in soil which resulted in a similar N uptake from the soil by the N{sub 2} fixing and reference crops. The plant yield, total N uptake and amount of N{sub 2} fixed were higher in the Yellow Soil than in the Andosol. The amount of N{sub 2} fixed was strongly influenced by the plant growth and consequently it affected the plant yield. The slow decomposition of plant material in the Andosol resulted in a low yield in both the N{sub 2} fixing and reference crops. Thus, the artificial decrease of the available N content in soil, by application of plant material, did not stimulate N{sub 2} fixation but suppressed plant growth and N{sub 2} fixation.

  14. 1H, 13C, and 15N NMR Studies of Au(III and Pd(II Chloride Complexes and Organometallics with 2-Acetylpyridine and 2-Benzoylpyridine

    Directory of Open Access Journals (Sweden)

    Daria Niedzielska

    2013-01-01

    Full Text Available Au(III and Pd(II chloride complexes with N(1,O-chelating 2-acetylpyridine (2apy and N(1- monodentately binding 2-benzoylpyridine (2bz′py-[Pd(2apyCl2], [Au(2bz′pyCl3], trans-[Pd(2bz′py2Cl2], as well as Au(III chloride organometallics with monoanionic forms of 2apy or 2bz′py, deprotonated at the acetyl or benzyl side groups (2apy*, 2bz′py*-[Au(2apy*Cl2], [Au(2bz′py*Cl2], were studied by 1H, 13C, and 15N NMR. 1H, 13C, and 15N coordination shifts (i.e., differences between the respective , , and chemical shifts of the same atom in the complex and ligand molecules: , , were discussed in relation to the molecular structures and coordination modes, as well as to the factors potentially influencing nuclear shielding. Analogous NMR measurements were performed for the new (2bz′pyH[AuCl4] salt.

  15. Titanium carbide, nitride and carbonitrides: a 13C, 14N, 15N and 47,49Ti solid-state nuclear magnetic resonance study.

    Science.gov (United States)

    MacKenzie, K J; Meinhold, R H; McGavin, D G; Ripmeester, J A; Moudrakovski, I

    1995-05-01

    The first 47,49Ti, 13C, 14N and 15N solid-state nuclear magnetic resonance (NMR) spectra of titanium carbide, nitride and a series of cubic carbonitrides have been obtained under both static and magic-angle spinning (MAS) conditions. The 15N samples were isotopically enriched by gas-solid exchange at 1000 degrees C in a closed system. The Ti spectra of the carbide and nitride are sharp, reflecting the well defined cubic symmetry of these compounds, but become considerably broadened in the carbonitride series, with the spectra being approximately the sum of TiC and TiN together with some small electric field gradient (EFG) effects. The resonance positions and widths of all the NMR spectra change as carbon is progressively replaced by nitrogen. A relationship is observed between the 13C chemical shift and the nitrogen content of the carbonitrides, suggesting a possible NMR method for estimating the composition of these compounds. Although electron paramagnetic resonance (EPR) spectra of all these compounds show typically metallic behaviour, the NMR spectra show few effects attributable to conduction electrons, probably due to the lack of s-orbital contributions to the conduction band.

  16. delta 15N and non-carbonate delta 13C values for two petroleum source rock reference materials and a marine sediment reference material

    Science.gov (United States)

    Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.

    2006-01-01

    Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.

  17. NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition.

    Science.gov (United States)

    Mukherjee, Munia; Dutta, Kaushik; White, Mark A; Cowburn, David; Fox, Robert O

    2006-06-01

    Flaviviruses cause many human diseases, including dengue fever, yellow fever, West Nile viral encephalitis, and hemorrhagic fevers, and are transmitted to their vertebrate hosts by infected mosquitoes and ticks. Domain III of the envelope protein (E-D3) is considered to be the primary viral determinant involved in the virus-host-cell receptor interaction, and thus represents an excellent target for antiviral drug development. Langat (LGT) virus is a naturally attenuated BSL-2 TBE virus and is a model for the pathogenic BSL-3 and BSL-4 viruses in the serogroup. We have determined the solution structure of LGT-E-D3 using heteronuclear NMR spectroscopy. The backbone dynamics of LGT-E-D3 have been investigated using 15N relaxation measurements. A detailed analysis of the solution structure and dynamics of LGT-E-D3 suggests potential residues that could form a surface for molecular recognition, and thereby represent a target site for antiviral therapeutics design.

  18. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Science.gov (United States)

    Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  19. Nitrate retention and removal in Mediterranean streams with contrasting land uses: a 15N tracer study

    Directory of Open Access Journals (Sweden)

    J. L. Riera

    2008-08-01

    Full Text Available We used 15N-labelled nitrate (NO−3 additions to investigate nitrogen (N cycling at the whole-reach scale in three Mediterranean streams subjected to contrasting land uses (i.e. forested, urban and agricultural. Our aim was to examine: i the magnitude and relative importance of NO−3 retention (i.e. assimilatory uptake, and removal, (i.e. denitrification, ii the relative contribution of the different primary uptake compartments to NO−3 retention, and iii the regeneration, transformation and export pathways of the retained N. The concentration of NO−3 increased and that of dissolved oxygen (DO decreased from the forested to the agricultural stream, with intermediate values in the urban stream. Standing stocks of primary uptake compartments were similar among streams and dominated by detritus compartments (i.e. fine and coarse benthic organic matter. In agreement, metabolism was net heterotrophic in all streams, although the degree of heterotrophy increased from the forested to the agricultural stream. The NO−3 uptake length decreased along this gradient, whereas the NO−3 mass-transfer velocity and the areal NO−3 uptake rate were highest in the urban stream. Denitrification was not detectable in the forested stream, but accounted for 9% and 68% of total NO−3 uptake in the urban and the agricultural stream, respectively. The relative contribution of detritus compartments to NO−3 assimilatory uptake was highest in the forested and lowest in the agricultural stream. In all streams, the retained N was rapidly transferred to higher trophic levels and regenerated back to the water column. Due to a strong coupling between regeneration and nitrification, most retained N was exported from the experimental reaches in the form of NO−3. This study evidences fast N cycling in Mediterranean streams. Moreover, results indicate that permanent NO−3 removal via denitrification may be enhanced over temporary NO−3 retention via assimilatory

  20. 15N-glycine absorption in the colon of the short bowel rats%短肠大鼠结肠对15N-甘氨酸的吸收研究

    Institute of Scientific and Technical Information of China (English)

    靳大勇; 许剑民; 吴海福; 吴肇汉; 夏立均; 王锦华; 胡耀明

    2001-01-01

    Objective To investigate 15N-glycine absorption in the colon of the short bowel rats.Methods Rats undergoing resection of 80% small intestine and were treated by enteral nutrition for 21 days.The concentration of 15N-glycine in perfusate samples was measured by the technique of HPLC.The atom percent enrichment of 15N-glycine in blood plasma was measured by the technique of isotopic dilution method.Results After 3 hours,the colonic water absorption was 1±0.5 ml,15N-glycine absorption was zero,and the atom percent enrichment was near zero in normal group,vs.(2.6±0.82) ml (P<0.05),(4.39±1.2)% (P<0.01),and (0.614±0.517)% (P<0.01) in short bowel rats,respectively.The mucosal thickness,villous height and surface area of the colon in enteral nutrition group were greater than that in controls (P<0.01).Conclusion The short bowel rats had significant colonic amino acids and water absorption adaptation,though not enough to fulfil the need of the body.%目的探讨短肠大鼠的结肠对氨基酸代偿吸收能力。方法切除80%小肠的短肠大鼠,经肠喂养21天后,测定结肠对15N-甘氨酸的吸收率和血15N-甘氨酸丰度及形态学改变。结果正常大鼠3h水吸收为(1±0.5)ml,对15N-甘氨酸无吸收,血中15N-甘氨酸丰度为零。短肠大鼠3h水吸收为(2.6±0.82)ml (P<0.05),15N-甘氨酸为(4.39±1.2)% (P<0.01),血中15N-甘氨酸丰度为(0.614±0.517)% (P<0.01)。形态学检测显示: 喂养组与对照组相比结肠直径差异有显著意义(P<0.05),而结肠壁厚度、粘膜厚度、皱襞高度和皱襞表面积差异有极显著的意义(P<0.01)。结论短肠大鼠结肠对水和15N-甘氨酸有一定代偿性吸收,组织形态学也有一定程度的代偿。

  1. {sup 15}N/{sup 14}N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets

    Energy Technology Data Exchange (ETDEWEB)

    Palhol, Fabien; Lamoureux, Catherine; Chabrillat, Martine; Naulet, Norbert

    2004-05-10

    In this study, the {sup 15}N/{sup 14}N isotopic ratios of 106 samples of 3,4-methylenedioxymethamphetamine (MDMA) extracted from Ecstasy tablets are presented. These ratios, measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), show a large discrimination between samples with a range of {delta}{sup 15}N values between -17 and +19%o, depending on the precursors and the method used in clandestine laboratories. Thus, {delta}{sup 15}N values can be used in a statistical analysis carried out in order to link Ecstasy tablets prepared with the same precursors and synthetic pathway. The similarity index obtained after principal component analysis and hierarchical cluster analysis appears to be an efficient way to group tablets seized in different places.

  2. Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.

    Science.gov (United States)

    Altheimer, Benjamin D; Mehta, Manish A

    2014-04-10

    Porous crystalline dipeptides have gained recent attention for their potential as gas-storage materials. Within this large class is a group of dipeptides containing alanine, valine, and isoleucine with very similar crystal structures. We report the (13)C (carbonyl and Cα) and (15)N (amine and amide) solid-state NMR isotropic chemical shifts in a series of seven such isostructural porous dipeptides as well as shift tensor data for the carbonyl and amide sites. Using their known crystal structures and aided by ab initio quantum chemical calculations for the resonance assignments, we elucidate trends relating local structure, hydrogen-bonding patterns, and chemical shift. We find good correlation between the backbone dihedral angles and the Cα1 and Cα2 shifts. For the C1 shift tensor, the δ11 value shifts downfield as the hydrogen-bond distance increases, δ22 shifts upfield, and δ33 shows little variation. The C2 shift tensor shows no appreciable correlation with structural parameters. For the N2 tensor, δ11 shows little dependence on the hydrogen-bond length, whereas δ22 and δ33 both show a decrease in shielding as the hydrogen bond shortens. Our analysis teases apart some, but not all, structural contributors to the observed differences the solid-state NMR chemical shifts.

  3. Recovery and Leaching of 15N-Labeled Coated Urea in a Lysimeter System in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    LI Gui-Hua; ZHAO Lin-Ping; ZHANG Shu-Xiang; Y. HOSEN; K. YAGI3

    2011-01-01

    The effectiveness of polyolefin-coated urea (Meister-5 and Meister-10; CU) in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system was studied in lysimeter plots located in the North China Plain for three consecutive maize- wheat-maize cropping seasons.An isotopic method was used to compare the fate of CU to that of non-coated urea (NCU),and N application rates of 0,100,150 and 225 kg N ha-1 were evaluated.The results showed that the nitrogen use efficiency (15NUE) of CU was 13.3% 21.4% greater than that of NCU for the first crop.Alternatively,when the difference method was applied (apparent NUE),no significant variations were observed among treatments in all three seasons.Although inorganic N leached from the 1.3 m layer was less than 1% of the total applied N,unidentified losses of 15N (losses of 15N =15N applied as fertilizer - 15N absorbed by crops - 15N remaining in the 0-0.2 m layer 15N leached from the 1.3 m layer)in CU-treated plots were 24.2%-26.5% lower than those of NCU-treated plots.The nitrate concentration in the 0-1.3 m layer of CU plots at the end of the experiment was 53% lower than that of NCU-treated plots.Thus,CU increased crop N uptake from fertilizer and reduced unidentified losses of applied N,which can reduce the risk of groundwater pollution.

  4. Organic vs. conventional grassland management: do (15N and (13C isotopic signatures of hay and soil samples differ?

    Directory of Open Access Journals (Sweden)

    Valentin H Klaus

    Full Text Available Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15N and δ(13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15N (δ(15N plant - δ(15N soil to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13C in hay and δ(15N in both soil and hay between management types, but showed that δ(13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be

  5. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    Science.gov (United States)

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  6. A 15N-Labeling Study of the Capture of Deep Soil Nitrate from Different Plant Systems

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-xin; WANG Jue; DI Hong-jie; ZHANG Li-juan; JU Xiao-tang

    2014-01-01

    The objective of this study was to determine the efifciency of different plant systems in capturing deep soil nitrate (NO3-) to reduce NO3-leaching in a ifeld plot experiment using 15N labelling. The study was conducted on a calcareous alluvial soil on the North China Plains and the plant systems evaluated included alfalfa (Medicago sativa), American black poplar (Populus nigra) and cocksfoot (Dactylis). 15N-labelled N fertilizer was injected to 90 cm depth to determine the recovery of 15N by the plants. With conventional water and nutrient management, the total recovery of 15N-labeled NO3--N was 23.4% by alfalfa after two consecutive growth years. The recovery was signiifcantly higher than those by American black poplar (12.3%) and cocksfoot (11.4%). The highest proportion of soil residual 15N from the labeled fertilizer N (%Ndff) was detected around 90 cm soil depth at the time of the 1st year harvest and at 110-130 cm soil depth at time of the 2nd year harvest. Soil%Ndff in 0-80 cm depth was signiifcantly higher in the alfalfa treatment than those in all the other treatments. The soil%Ndff below 100 cm depth was much lower in the alfalfa than those in all the other treatments. These results indicated that 15N leaching losses in the alfalfa treatment were signiifcantly lower than by those in the black poplar and cocksfoot treatments, due to the higher root density located in nitrate labeling zone of soil proifle. In conclusion, alfalfa may be used as a plant to capture deep soil NO3-left from previous crops to reduce NO3-leaching in high intensity crop cultivation systems of North China Plain.

  7. [Effect of fertilization depth on 15N-urea absorption, utilization and loss in dwarf apple trees].

    Science.gov (United States)

    Ding, Ning; Chen, Qian; Xu, Hai-gang; Ji, Meng-meng; Jiang, Han; Jiang, Yuan-mao

    2015-03-01

    Five-year-old 'Fuji'3/M26/M. hupehensis Rehd. seedlings were treated by 15N tracer to study the effects of fertilization depth (0, 20 and 40 cm) on 15N-urea absorption, distribution, utilization and loss in soil. The results showed that the plant leaf area, chlorophyll content and total N of apple leaves in 20 cm treatment were obviously higher than 0 cm and 40 cm treatments. The 15N derived from fertilizer (Ndff) in different organs of apple plant under different depths were significantly different, and the Ndff was the highest in roots at the full-bloom stage, and then in perennial branches. During the shoot rapid-growing and flower bud differentiation stage, the Ndff of new organs higher than that of the storage organs, and the Ndff of different organs were high level at fruit rapid-expanding stage, and the Ndff of fruit was the highest. The distribution ratio of 15N at fruit maturity stage was significantly different under fertilization depths, and that of the vegetative and repro- ductive organs of 20 cm treatment were obviously higher than 0 cm and 40 cm treatments, but that of the storage organs of 20 cm treatment was lower than 0 cm and 40 cm treatments. At fruit maturity stage, 15N utilization rate of apple plant of 20 cm treatment was 24.0%, which was obviously higher than 0 cm (14.1%) and 40 cm (7.6%) treatments, and 15N loss rate was 54.0%, which was obviously lower than 0 cm (67.8%) and 40 cm (63.5%) treatments. With the increase of fertilization depths, the N residue in soil increased sharply.

  8. Direct measurement of the 15N(p,gamma)16O total cross section at novae energies

    CERN Document Server

    Bemmerer, D; Bonetti, R; Broggini, C; Confortola, F; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Junker, M; Limata, B; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O

    2009-01-01

    The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

  9. Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    Directory of Open Access Journals (Sweden)

    R. Mulvaney

    2012-12-01

    Full Text Available Correct estimate of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice cores studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: output of a firn densification model and measurements of δ15N of N2 in air trapped in ice core. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI and semi coastal (TALDICE and EPICA Dronning Maud Land, EDML Antarctic regions. Combined with available δ15N measurements performed from the EPICA Dome C (EDC site, the studied regions encompass a large range of surface accumulation rate and temperature conditions. While firn densification simulations are able to correctly represent most of the δ15N trends over the last deglaciation measured in the EDC, BI, TALDICE and EDML ice cores, they systematically fail to capture BI and EDML δ15N glacial levels, a mismatch previously seen for Central East Antarctic ice cores. Using empirical constraints of the EDML gas-ice depth offset during the Laschamp event (~ 41 ka, we can rule out the existence of a large convective zone as the explanation of the glacial firn model-δ15N data mismatch for this site. The good match between modelled and measured δ15N at TALDICE as well as the lack of any clear correlation between insoluble dust concentration in snow and δ15N records in the different ice cores suggest that past changes in loads of impurities are not the only main driver of glacial-interglacial changes in firn lock-in depth. We conclude that firn densification dynamics may instead be driven mostly by accumulation rate changes. The mismatch between modelled and measured δ15N may be due to inaccurate reconstruction of past accumulation rate or underestimated influence of accumulation rate in firnification models.

  10. Glacial–interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    OpenAIRE

    2013-01-01

    Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by...

  11. Potential for assessing long-term dynamics in soil nitrogen availability from variations in delta15N of tree rings.

    Science.gov (United States)

    Hart, S C; Classen, A T

    2003-03-01

    Numerous researchers have used the isotopic signatures of C, H, and O in tree rings to provide a long-term record of changes in the physiological status, climate, or water-source use of trees. The frequently limiting element N is also found in tree rings, and variation in its isotopic signature may provide insight into long-term changes in soil N availability of a site. However, research has suggested that N is readily translocated among tree ring of different years; such infidelity between the isotopic compositions of the N taken up from the soil and the N contained in the ring of that growth year would obscure the long-term N isotopic record. We used a 15-year 15N-tracer study to assess the degree of N translocation among tree rings in ponderosa pine (Pinus ponderosa) trees growing in a young, mixed-conifer plantation. We also measured delta13C and delta15N values in unlabeled trees to assess the degree of their covariance in wood tissue, and to explore the potential for a biological linkage between them. We found that the maximum delta15N values in rings from the labeled trees occurred in the ring formed one-year after the 15N was applied to the roots. The delta15N value of rings from labeled trees declined exponentially and bidirectionally from this maximum peak, toward younger and older rings. The unlabeled trees showed considerable interannual variation in the delta15N values of their rings (up to 3 and 5 per thousand), but these values correlated poorly between trees over time and differed by as much as 6 per thousand. Removal of extractives from the wood reduced their delta15N value, but the change was fairly small and consistent among unlabeled trees. The delta13C and delta15N values of tree rings were correlated over time in only one of the unlabeled trees. Across all trees, both delta13C values of tree rings and annual stem wood production were well correlated with annual precipitation, suggesting that soil water balance is an important environmental

  12. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    Science.gov (United States)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  13. Nonpolar nitrous oxide dimer: fundamentals of the mixed 14N2O-15N2O dimer and new combination bands of (14N2O)2 and (15N2O)2 involving the Bu, intermolecular bend.

    Science.gov (United States)

    Dehghany, M; Afshari, Mahin; Abusara, Z; Moazzen-Ahmadi, N

    2009-09-21

    Spectra of the nonpolar nitrous oxide dimer in the region of the N2O v1 fundamental band are observed in a pulsed supersonic slit jet expansion probed with a tunable diode laser. Four bands are analysed: two fundamentals of the mixed 14N2O-15N2O dimer and combination bands involving the intermolecular disrotation of the monomers (Bu intermolecular bend) for both (14N2O)2 and (15N2O)2. Because the determination of this intermolecular frequency relies on the experimentally unknown frequency of the (forbidden) symmetric fundamental, we used previously published ab initio results and their proximity to our experimental values to assign the upper state of the combination bands. The resulting intermolecular disrotation frequencies are 42.3(1.0) and 41.6(1.0) cm(-1) for the (14N2O)2 and (15N2O)2, respectively. This represents the first observation of the mixed 14N2O-15N2O dimer, and the direct determination of a second intermolecular frequency for the nonpolar (N2O)2.

  14. Recovery of {sup 15}N-urea in soil-plant system of tanzania grass pasture; Recuperacao de {sup 15}N-ureia no sistema solo-planta de pastagem de capim-Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Martha Junior, Geraldo Bueno; Vilela, Lourival [EMBRAPA Cerrados, Planaltina, DF (Brazil)], e-mail: gbmartha@cpac.embrapa.br; Corsi, Moacyr [Universidade de Sao Paulo (ESALQ/USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Zootecnica], e-mail: moa@esalq.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis], e-mail: pcotrive@cena.usp.br

    2009-01-15

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea-{sup 15}N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of {sup 15}N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of {sup 15}N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p < 0.05) with increasing urea doses. The amount of {sup 15}N (kg ha{sup -1}) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  15. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones

    NARCIS (Netherlands)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-01-01

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or h

  16. Backbone of complex networks of corporations: The flow of control

    Science.gov (United States)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  17. Data acquisition backbone core DABC release v1.0

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, Joern; Essel, Hans G.; Kurz, Nikolaus; Linev, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    The new experiments at FAIR require new concepts of data acquisition systems for the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a general purpose software framework developed for the implementation of such data acquisition systems. A DABC application consists of functional components like data input, combiner, scheduler, event builder, filter, analysis and storage which can be configured at runtime. Application specific code including the support of all kinds of data channels (front-end systems) is implemented by C++ program plug-ins. DABC is also well suited as environment for various detector and readout components test beds. A set of DABC plug-ins has been developed for the FAIR experiment CBM (Compressed Baryonic Matter) at GSI. This DABC application is used as DAQ system for test beamtimes. Front-end boards equipped with n-XYTER ASICs and ADCs are connected to read-out controller boards (ROC). From there the data is sent over Ethernet (UDP), or over optics and PCIe interface cards into Linux PCs. DABC does the controlling, event building, archiving and data serving. The first release of DABC was published in 2009 and is available under GPL license.

  18. Backbone of complex networks of corporations: the flow of control.

    Science.gov (United States)

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  19. CARBON-RICH PRESOLAR GRAINS FROM MASSIVE STARS: SUBSOLAR {sup 12}C/{sup 13}C AND {sup 14}N/{sup 15}N RATIOS AND THE MYSTERY OF {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Pignatari, M. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklos ut 15-17, H-1121 Budapest (Hungary); Zinner, E. [Laboratory for Space Sciences and Physics Department, Washington University, St. Louis, MO 63130 (United States); Hoppe, P. [Max Planck Institute for Chemistry, D-55128 Mainz (Germany); Jordan, C. J.; Gibson, B. K. [E.A. Milne Centre for Astrophysics, Dept of Physics and Mathematics, University of Hull, HU6 7RX (United Kingdom); Trappitsch, R. [Department of the Geophysical Sciences and Chicago Center for Cosmochemistry, Chicago, IL 60637 (United States); Herwig, F. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Fryer, C. [Computational Physics and Methods (CCS-2), LANL, Los Alamos, NM, 87545 (United States); Hirschi, R. [Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Timmes, F. X. [The Joint Institute for Nuclear Astrophysics, Notre Dame, IN 46556 (United States)

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing {sup 12}C/{sup 13}C and {sup 14}N/{sup 15}N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of {sup 13}C and {sup 15}N. The short-lived radionuclides {sup 22}Na and {sup 26}Al are increased by orders of magnitude. The production of radiogenic {sup 22}Ne from the decay of {sup 22}Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with {sup 14}N/{sup 15}N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of {sup 14}N and {sup 15}N in the Galaxy, helping to produce the {sup 14}N/{sup 15}N ratio in the solar system.

  20. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    Science.gov (United States)

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  1. Sedimentary records of δ{sup 13}C, δ{sup 15}N and organic matter accumulation in lakes receiving nutrient-rich mine waters

    Energy Technology Data Exchange (ETDEWEB)

    Widerlund, Anders, E-mail: Anders.Widerlund@ltu.se; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ{sup 15}N and δ{sup 13}C values in {sup 210}Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15–20% and 20–35%, respectively, since ∼ 1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ{sup 15}N ∼ + 9‰ to + 19‰) were clearly shifted from the primary signal in explosives (δ{sup 15}N–NO{sub 3} = + 3.4 ± 0.3‰; δ{sup 15}N–NH{sub 4} = − 8.0 ± 0.3‰) and NaCN (δ{sup 15}N = + 1.1 ± 0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. - Highlights: • Historical mining-related changes in organic

  2. Hyperpolarized (13) C,(15) N2 -Urea MRI for assessment of the urea gradient in the porcine kidney

    DEFF Research Database (Denmark)

    Hansen, Esben S S; Stewart, Neil J; Wild, Jim M;

    2016-01-01

    function in healthy porcine kidneys resembling the human physiology. METHODS: Five healthy female Danish domestic pigs (weight 30 kg) were scanned at 3 Tesla (T) using a (13) C 3D balanced steady-state MR pulse sequence following injection of hyperpolarized (13) C,(15) N2 -urea via a femoral vein catheter...

  3. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    Energy Technology Data Exchange (ETDEWEB)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  4. Anthropogenic nitrogen input traced by means of delta15N values in macroalgae: results from in-situ incubation experiments.

    Science.gov (United States)

    Deutsch, Barbara; Voss, Maren

    2006-08-01

    The macroalgae species Fucus vesiculosus (Phaeophyta), Polysiphonia sp., and Ceramium rubrum (Rhodophyta) originally grown at an unpolluted brackish site of the southern Baltic Sea were incubated for 10 and 14 days at 12 stations along a salinity gradient in a highly polluted estuary. We have expected an adaptation of the initially low delta15N values to the higher ones within the incubation period. In addition to the macroalgae the delta15N values of NO3(-) were measured to evaluate fractionation processes of the source nitrate. Inside the estuary, delta15N-NO3(-) values were 6.2-9.7 per thousand, indicating anthropogenic nitrogen sources. The red macroalgae adequately reflected the nitrate isotope values in the surrounding waters, whereas for F. vesiculosus the results were not that clear. The reasons were assumed to be higher initial delta15N values of F. vesiculosus and presumably a too slow nitrogen uptake and growth rate. The method of macroalgae incubations seems suitable as a simple monitoring to study the influence of anthropogenic nitrogen loading in an estuarine environment.

  5. The influence of fish cage culture on δ13C and δ15N of filter-feeding Bivalvia (Mollusca).

    Science.gov (United States)

    Benedito, E; Figueroa, L; Takeda, A M; Manetta, G I

    2013-11-01

    The objective of this study was to evaluate the effect of Oreochromis niloticus cage culture promoted variations in the δ13C and δ15N in Corbicula fluminea (Mollusca; Bivalvia) and in the sediment of an aquatic food web. Samples were taken before and after net cage installation in the Rosana Reservoir (Paranapanema River, PR-SP). Samples of specimens of the bivalve filterer C. fluminea and samples of sediment were collected using a modified Petersen grab. All samples were dried in an oven (60 °C) for 72 hours, macerated to obtain homogenous fine powders and sent for carbon (δ13C) and nitrogen (δ15N) isotopic value analysis in a mass spectrometer. There were significant differences in the δ13C and δ15N values of the invertebrate C. fluminea between the beginning and the end of the experiment. There were no differences between the δ13C and δ15N values of sediment. These results indicate that the installation of fish cage culture promoted impacts in the isotopic composition of the aquatic food web organisms, which could exert influence over the native species and the ecosystem.

  6. Contrasting food web linkages for the grazing pathway in 3 temperate forested streams using {sup 15}N as a tracer

    Energy Technology Data Exchange (ETDEWEB)

    Tank, J.L.; Mulholland, P.J.; Meyer, J.L.; Bowden, W.B.; Webster, J.R.; Peterson, B.J.

    1998-11-01

    Nitrogen is a critical element controlling the productivity and dynamics of stream ecosystems and many streams are limited by the supply of biologically available nitrogen. The authors are learning more about the fate of inorganic nitrogen entering streams through {sup 15}N tracer additions. The Lotic Intersite Nitrogen Experiment (LINX) is studying the uptake, cycling, and fate of {sup 15}N-NH{sub 4} in the stream food web of 10 streams draining different biomes. Using the {sup 15}N tracer method and data from 3 sites in the study, the authors can differentiate patterns in the cycling of nitrogen through the grazing pathway (N from the epilithon to grazing macroinvertebrates) for 3 temperate forested streams. Here, they quantify the relationship between the dominant grazer and its proposed food resource, the epilithon, by comparing {sup 15}N levels of grazers with those of the epilithon, as well as the biomass, nitrogen content, and chlorophyll a standing stocks of the epilithon in 3 streams.

  7. Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore

    Science.gov (United States)

    Schillaci, Michael A.; Castellini, J. Margaret; Stricker, Craig A.; Jones-Engel, Lisa; Lee, Benjamin P.Y.-H.

    2014-01-01

    Much of the primatology literature on stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) has focused on African and New World species, with comparatively little research published on Asian primates. Here we present hair δ13C and δ15N isotope values for a sample of 33 long-tailed macaques from Singapore. We evaluate the suggestion by a previous researcher that forest degradation and biodiversity loss in Singapore have led to a decline in macaque trophic level. The results of our analysis indicated significant spatial variability in δ13C but not δ15N. The range of variation in δ13C was consistent with a diet based on C3 resources, with one group exhibiting low values consistent with a closed canopy environment. Relative to other macaque species from Europe and Asia, the macaques from Singapore exhibited a low mean δ13C value but mid-range mean δ15N value. Previous research suggesting a decline in macaque trophic level is not supported by the results of our study.

  8. Analysis of 15N incorporation into D-alanine: a new method for tracing nitrogen uptake by bacteria

    NARCIS (Netherlands)

    Veuger, B.; Middelburg, J.J.; Boschker, H.T.S.; Houtekamer, M.J.

    2005-01-01

    The quantitative contribution of bacteria to total microbial uptake of nitrogenous substrates is an aspect of the aquatic nitrogen cycle that is still largely unclear, mainly because existing methods are generally inadequate. We investigated the feasibility of measuring 15N incorporation into bacter

  9. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Science.gov (United States)

    Ruiz-Cooley, Rocio I; Ballance, Lisa T; McCarthy, Matthew D

    2013-01-01

    Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ(15)N values, a proxy for habitat baseline δ(15)N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15)N values in gladii for squid at small sizes (60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15)N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.

  10. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Directory of Open Access Journals (Sweden)

    Rocio I Ruiz-Cooley

    Full Text Available Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS documents for the first time multiple geographic origins and migration. Phe δ(15N values, a proxy for habitat baseline δ(15N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15N values in gladii for squid at small sizes (60 cm converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.

  11. Insight on RDX degradation mechanism by Rhodococcus strains using 13C and 15N kinetic isotope effects.

    Science.gov (United States)

    Bernstein, Anat; Ronen, Zeev; Gelman, Faina

    2013-01-02

    The explosive Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to be degraded aerobically by various isolates of the Rhodococcus species, with denitration being the key step, mediated by Cytochrome P450. Our study aimed at gaining insight into the RDX degradation mechanism by Rhodococcus species and comparing isotope effects associated with RDX degradation by distinct Rhodococcus strains. For these purposes, enrichment in (13)C and (15)N isotopes throughout RDX denitration was studied for three distinct Rhodococcus strains, isolated from soil and groundwater in an RDX-contaminated site. The observable (15)N enrichment throughout the reaction, together with minor (13)C enrichment, suggests that N-N bond cleavage is likely to be the key rate-limiting step in the reaction. The similarity in the kinetic (15)N isotope effect between the three tested strains suggests that either isotope-masking effects are negligible, or are of a similar extent for all tested strains. The lack of variability in the kinetic (15)N isotope effect allows the interpretation of environmental studies with greater confidence.

  12. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    Science.gov (United States)

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin.

  13. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: application to (15)N relaxations in (15)NH4(+).

    Science.gov (United States)

    Werbeck, Nicolas D; Hansen, D Flemming

    2014-09-01

    The equations that describe the time-evolution of transverse and longitudinal (15)N magnetisations in tetrahedral ammonium ions, (15)NH4(+), are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular (15)N-(1)H and (1)H-(1)H dipole-dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole-dipole cross-correlated relaxation mechanisms between each of the (15)N-(1)H and (1)H-(1)H interactions are explicitly taken into account in the derivations. An application to (15)N-ammonium bound to a 41kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest.

  14. Determination of 15N abundance in nanogram pools of NO3 - and NO2 - by denitrification bioassay and mass spectrometry

    DEFF Research Database (Denmark)

    Højberg, Ole; Johansen, H. S.; Sorensen, J.

    1994-01-01

    Suspensions of two strains of Pseudomonas aeruginosa (ON12 and ON12-1) were used to reduce NO3 - and NO2 -, respectively, to N2O. The evolved N2O was quantified by gas chromatography with electron capture detection, and the 15N abundance was determined by mass spectrometry with a special inlet sy...

  15. Impact of charring on cereal grain characteristics: linking prehistoric manuring practice to 15N signatures in archaeobotanical material

    DEFF Research Database (Denmark)

    Kanstrup, Marie; Thomsen, Ingrid Kaag; Mikkelsen, Peter Hambro

    2012-01-01

    Systematic use of animal manure has been demonstrated to be detectable in the plant δ15N value but evidence of manure affecting isotopic composition is mainly based on studies of fresh plant material. These findings can potentially be applied to archaeobotanical assemblages and thus provide...

  16. Radiocarbon, 13C and 15N analysis of fossil bone: Removal of humates with XAD-2 resin

    Science.gov (United States)

    Stafford, Thomas W., Jr.; Brendel, Klaus; Duhamel, Raymond C.

    1988-09-01

    Humic acids are the predominant source of error in the 14C and stable isotope analysis of fossil bone organic matter. XAD-2 resin will quantitatively remove humates and give the highest yields of protein from bones with variable types of preservation. Decalcified bone, gelatin and base-leached residues can vary up to 5%. for δ 13C and by 1%. on δ 15N relative to XAD-treated fractions. Simultaneous analysis of 14C age, δ 13C and δ 15N is recommended because each isotope value can be independently affected by the bone's diagenetic history. Radiocarbon analysis is the most sensitive and δ 15N is least sensitive for detecting exogenous organic matter. The uncertainty of analyses on the best pretreated protein is ±0.5%. for both δ 13C and δ 15N and is larger than previous estimates. The accuracy for all isotope analyses will be better assessed by using individual amino acids instead of total collagenous residues. Inaccurate 14C dates on severely degraded bone are an indication that this class of fossils may be unsuitable for any isotopic analysis.

  17. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.

    Science.gov (United States)

    Yuwen, Tairan; Skrynnikov, Nikolai R

    2014-04-01

    (15)N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications and weak ligand interactions. However collecting high-quality (15)N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as (15)N spin-lock and CPMG can sample the relaxation decay only to ca. 150ms. This is much shorter than (15)N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample (15)N R2 relaxation decay up to ca. 0.5-1s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for intrinsically disordered proteins the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) (15)N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of (15)N(ε) spins in arginine side chains. We

  18. Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation.

    Science.gov (United States)

    Jia, Gan; Hu, Yingfei; Qian, Qinfeng; Yao, Yingfang; Zhang, Shiying; Li, Zhaosheng; Zou, Zhigang

    2016-06-15

    Active, stable, and cost-effective electrocatalysts are attractive alternatives to the noble metal oxides that have been used in water splitting. The direct nucleation and growth of electrochemically active LDH materials on chemically modified MWCNTs exhibit considerable electrocatalytic activity toward oxygen evolution from water oxidation. CoMn-based and NiMn-based hybrids were synthesized using a facile chemical bath deposition method and the as-synthesized materials exhibited three-dimensional hierarchical configurations with tunable Co/Mn and Ni/Mn ratio. Benefiting from enhanced electrical conductivity with MWCNT backbones and LDH lamellar structure, the Co5Mn-LDH/MWCNT and Ni5Mn-LDH/MWCNT could generated a current density of 10 mA cm(-2) at overpotentials of ∼300 and ∼350 mV, respectively, in 1 M KOH. In addition, the materials also exhibited outstanding long-term electrocatalytic stability.

  19. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  20. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Science.gov (United States)

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  1. A 15N stable isotope semen label to detect mating in the malaria mosquito Anopheles arabiensis Patton

    Directory of Open Access Journals (Sweden)

    Gludovacz Doris

    2008-07-01

    Full Text Available Abstract In previous studies it was determined that the stable isotope 13-carbon can be used as a semen label to detect mating events in the malaria mosquito Anopheles arabiensis. In this paper we describe the use of an additional stable isotope, 15-nitrogen (15N, for that same purpose. Both stable isotopes can be analysed simultaneously in a mass spectrometer, offering the possibility to detect both labels in one sample in order to study complex and difficult-to-detect mating events, such as multiple mating. 15N-glycine was added to larval rearing water and the target enrichment was 5 atom% 15N. Males from these trays were mated with unlabelled virgin females, and spiked spermathecae were analysed for isotopic composition after mating using mass spectrometry. Results showed that spermathecae positive for semen could be distinguished from uninseminated or control samples using the raw δ15N‰ values. The label persisted in spermathecae for up to 5 days after insemination, and males aged 10 days transferred similar amounts of label as males aged 4 days. There were no negative effects of the label on larval survival and male longevity. Enrichment of teneral mosquitoes after emergence was 4.85 ± 0.10 atom% 15N. A threshold value defined as 3 standard deviations above the mean of virgin (i.e. uninseminated spermathecae samples was successful in classifying a large proportion of samples correctly (i.e. on average 95%. We conclude that alongside 13C, 15N can be used to detect mating in Anopheles and the suitability of both labels is briefly discussed.

  2. Bradyrhizobium strain and the {sup 15}N natural abundance quantification of biological N{sub 2} fixation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Ana Paula [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias e Tecnologias Agropecuarias (CCTA). Dept. de Producao Vegetal; Morais, Rafael Fiusa de; Urquiaga, Segundo; Boddey, Robert Michael; Alves, Bruno Jose Rodrigues [EMBRAPA Agrobiologia, Seropedica, RJ (Brazil)]. E-mail: bruno@cnpab.embrapa.br

    2008-09-15

    In commercial plantations of soybean in both the Southern and the Cerrado regions, contributions from biological nitrogen fixation (BNF) are generally proportionately high. When using the {sup 15}N natural abundance technique to quantify BNF inputs, it is essential to determine, with accuracy, the {sup 15}N abundance of the N derived from BNF (the 'B' value). This study aimed to determine the effect of four recommended strains of Bradyrhizobium spp. (two B. japonicum and two B. elkanii) on the 'B' value of soybean grown in pots in an open field using an equation based on the determination of {delta}{sup 15}N natural abundance in a non-labelled soil, and estimate of the contribution of BNF derived from the use of {sup 15}N-isotope dilution in soils enriched with {sup 15}N. To evaluate N{sub 2} fixation by soybean, three non-N{sub 2}-fixing reference crops were grown under the same conditions. Regardless of Bradyrhizobium strain, no differences were observed in dry matter, nodule weight and total N between labelled and non-labelled soil. The N{sub 2} fixation of the soybeans grown in the two soil conditions were similar. The mean 'B' values of the soybeans inoculated with the B. japonicum strains were -1.84 per mille and -0.50 per mille, while those inoculated with B. elkanii were -3.67 per mille and -1.0 per mille, for the shoot tissue and the whole plant, respectively. Finally, the 'B' value for the soybean crop varied considerably in function of the inoculated Bradyrhizobium strain, being most important when only the shoot tissue was utilised to estimate the proportion of N in the plant derived from N{sub 2} fixation. (author)

  3. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  4. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    Science.gov (United States)

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  5. Peptide Backbone Sampling Convergence with the Adaptive Biasing Force Algorithm

    Science.gov (United States)

    Faller, Christina E.; Reilly, Kyle A.; Hills, Ronald D.; Guvench, Olgun

    2013-01-01

    Complete Boltzmann sampling of reaction coordinates in biomolecular systems continues to be a challenge for unbiased molecular dynamics simulations. A growing number of methods have been developed for applying biases to biomolecular systems to enhance sampling while enabling recovery of the unbiased (Boltzmann) distribution of states. The Adaptive Biasing Force (ABF) algorithm is one such method, and works by canceling out the average force along the desired reaction coordinate(s) using an estimate of this force progressively accumulated during the simulation. Upon completion of the simulation, the potential of mean force, and therefore Boltzmann distribution of states, is obtained by integrating this average force. In an effort to characterize the expected performance in applications such as protein loop sampling, ABF was applied to the full ranges of the Ramachandran ϕ/ψ backbone dihedral reaction coordinates for dipeptides of the 20 amino acids using all-atom explicit-water molecular dynamics simulations. Approximately half of the dipeptides exhibited robust and rapid convergence of the potential of mean force as a function of ϕ/ψ in triplicate 50-ns simulations, while the remainder exhibited varying degrees of less complete convergence. The greatest difficulties in achieving converged ABF sampling were seen in the branched-sidechain amino acids threonine and valine, as well as the special case of proline. Proline dipeptide sampling was further complicated by trans-to-cis peptide bond isomerization not observed in unbiased control molecular dynamics simulations. Overall, the ABF method was found to be a robust means of sampling the entire ϕ/ψ reaction coordinate for the 20 amino acids, including high free-energy regions typically inaccessible in standard molecular dynamics simulations. PMID:23215032

  6. Assessing sources of nitrate contamination in the Shiraz urban aquifer (Iran) using the δ(15)N and δ(18)O dual-isotope approach.

    Science.gov (United States)

    Amiri, Haleh; Zare, Mohammad; Widory, David

    2015-01-01

    Nitrate ([Formula: see text]) is one of the major threats to the quality of the drinking water taken from the Shiraz aquifer. This aquifer undergoes high anthropogenic pressures from multiple local urban (including uncontrolled sewage systems), agricultural and industrial activities, resulting in [Formula: see text] concentrations as high as 149 mg L(-1), well above the 50 mg L(-1) guideline defined by the World Health Organisation. We coupled here classical chemical and dual isotope (δ(15)N and δ(18)O of [Formula: see text]) approaches trying to characterize sources and potential processes controlling the budget of this pollutant. Chemical data indicate that nitrate in this aquifer is explained by distinct end-members: while mineral fertilizers isotopically show to have no impact, our isotope approach identifies natural soil nitrification and organic [Formula: see text] (manure and/or septic waste) as the two main contributors. Isotope data suggest that natural denitrification may occur within the aquifer, but this conclusion is not supported by the study of other chemical parameters.

  7. Transporte do 15N e produtividade do tomateiro enxertado irrigado com água carbonatada Transport of 15N and yield of the grafted tomato irrigated with carbonated water

    Directory of Open Access Journals (Sweden)

    Roberto Botelho Ferraz Branco

    2007-03-01

    Full Text Available Verificou-se a ação do dióxido de carbono dissolvido na água de irrigação e da enxertia do tomateiro no transporte de 15N nos tecidos da planta e na produção da cultura. Os tratamentos foram constituídos pela aplicação de CO2, 5 e 10 L min-1, mais a testemunha (dose zero e plantas enxertadas e pés-francos de tomateiro. O experimento foi conduzido no delineamento inteiramente casualizado, em esquema fatorial 3x2, com três repetições. As variáveis analisadas nas folhas e nos frutos da planta foram a produção de massa seca, o nitrogênio total, o excesso de 15N, a quantidade de nitrogênio proveniente do fertilizante e a porcentagem de recuperação do fertilizante e a produção de frutos comerciais. De acordo com os resultados estatísticos não houve diferença significativa entre os tratamentos do experimento em todas as variáveis analisadas. O CO2 dissolvido na água de irrigação e a enxertia do tomateiro não interferiram no transporte de 15N para os tecidos da parte aérea do tomateiro e tampouco em sua produção.We evaluated the action of the carbon dioxide dissolved in the irrigation water and the grafting of the tomato in the transport of 15N in the tissue of the plant and in the production of the culture. The treatments were the CO2 doses (0; 5 and 10 L min-1 and grafted and ungrafted tomato plant. These treatments were arranged in a 3x2 factorial scheme, in completely randomized design, with three replications. The variables analysed in the leaves and fruits were dry mass production, total nitrogen, excess of 15N, amount of nitrogen originated from the fertilizer, percentage of recovery of the fertilizer and commercial fruits production. There was no significant statistical difference among the treatments for any variable. The carbon dioxide dissolved in the irrigation water and the grafting of the tomato did not interfere in the transport of 15N to the shoots tissue neither in the yield.

  8. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-10-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM occluded in micro-structures found in the chemical extraction residue (OM(ER. Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY through Ca2+ interactions. In general, we found the forest soils to contain on average 10% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY and the ratio of soil organic carbon content to soil surface area (SOC/SSA. This indicates that the OM(PY fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition

  9. MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs.

    Science.gov (United States)

    Shin, Inyoung; Kim, Moonseong; Mutka, Matt W; Choo, Hyunseung; Lee, Tae-Jin

    2009-01-01

    We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs). The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD) and Multicluster, Mobile, Multimedia radio network (MMM), consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes) of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime.

  10. Quantitative residue-specific protein backbone torsion angle dynamics from concerted measurement of 3J couplings.

    Science.gov (United States)

    Lee, Jung Ho; Li, Fang; Grishaev, Alexander; Bax, Ad

    2015-02-04

    Three-bond (3)J(C'C') and (3)J(HNHα) couplings in peptides and proteins are functions of the intervening backbone torsion angle ϕ. In well-ordered regions, (3)J(HNHα) is tightly correlated with (3)J(C'C'), but the presence of large ϕ angle fluctuations differentially affects the two types of couplings. Assuming the ϕ angles follow a Gaussian distribution, the width of this distribution can be extracted from (3)J(C'C') and (3)J(HNHα), as demonstrated for the folded proteins ubiquitin and GB3. In intrinsically disordered proteins, slow transverse relaxation permits measurement of (3)J(C'C') and (3)J(HNH) couplings at very high precision, and impact of factors other than the intervening torsion angle on (3)J will be minimal, making these couplings exceptionally valuable structural reporters. Analysis of α-synuclein yields rather homogeneous widths of 69 ± 6° for the ϕ angle distributions and (3)J(C'C') values that agree well with those of a recent maximum entropy analysis of chemical shifts, J couplings, and (1)H-(1)H NOEs. Data are consistent with a modest (≤30%) population of the polyproline II region.

  11. Ion microscopy analysis of the intracellular distribution of {sup 14}C-or {sup 15}N-labelled cytotoxic drugs; Analyse par microscopie ionique de la distribution intracellulaire de drogues cytotoxiques marquees par {sup 14}C ou {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Bisagni, E.; Carrez, D.; Croisy, A.; Favaudon, V.; Guerquin-Kern, J.L.; Nguyen, C.H.; Rivalle, C. [Institut Curie, 91 - Orsay (France); Dennebouy, R.; Slodzian, G. [Paris-11 Univ., 91 - Orsay (France); Galle, P. [Faculte de Medecine, 94 - Creteil (France)

    1994-12-31

    This study has concerned the localization, by the means of ion microscopy of human tumoral cells (in culture), of two synthesized cytostatic compounds: BD40 or Pazelliptine and Intoplicine. These two active compounds (cancer research) have been labelled either with {sup 15}N on the terminal amino dialkyl group of the lateral chain, either, for Intoplicine, with {sup 14}C on the carbon 3 of the aromatic cycle. These two drugs are considered as poisons for topo-isomerases, and they were used to localize these cellular multiplication key-enzymes. Unfortunately, pazelliptine and intoplicine specificity appeared much too low. However, encouraging results were obtained, particularly on {sup 15}N-labelling utilization. 4 figs., 9 refs.

  12. Ruthenium-catalyzed olefin metathesis accelerated by the steric effect of the backbone substituent in cyclic (alkyl)(amino) carbenes.

    Science.gov (United States)

    Zhang, Jun; Song, Shangfei; Wang, Xiao; Jiao, Jiajun; Shi, Min

    2013-10-21

    Three ruthenium complexes bearing backbone-monosubstituted CAACs were prepared and displayed dramatic improvement in catalytic efficiency not only in RCM reaction but also in the ethenolysis of methyl oleate, compared to those bearing backbone-disubstituted CAACs.

  13. Influence of backbone rigidness on single chain conformation of thiophene-based conjugated polymers.

    Science.gov (United States)

    Hu, Zhongjian; Liu, Jianhua; Simón-Bower, Lauren; Zhai, Lei; Gesquiere, Andre J

    2013-04-25

    Structural order of conjugated polymers at different length scales directs the optoelectronic properties of the corresponding materials; thus it is of critical importance to understand and control conjugated polymer morphology for successful application of these materials in organic optoelectronics. Herein, with the aim of probing the dependence of single chain folding properties on the chemical structure and rigidness of the polymer backbones, single molecule fluorescence spectroscopy was applied to four thiophene-based conjugated polymers. These include regioregular poly(3-hexylthiophene) (RR-P3HT), poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-14), poly(2,5-bis(3-tetradecylthiophen-2-yl)thiophene-2-yl)thiophen-2-ylthiazolo[5,4-d]thiazole) (PTzQT-12), and poly(3,3-didodecylquaterthiophene)] (PQT-12). Our previous work has shown that RR-P3HT and PBTTT-14 polymer chains fold in their nanostructures, whereas PQT-12 and PTzQT-12 do not fold in their nanostructures. At the single molecule level, it was found that RR-P3HT single chains almost exclusively fold into loosely and strongly aggregated conformations, analogous to the folding properties in nanostructures. PQT-12 displays significant chain folding as well, but only into loosely aggregated conformations, showing an absence of strongly aggregated polymer chains. PBTTT-14 exhibits a significant fraction of rigid polymer chain. The findings made for single molecules of PQT-12 and PBTTT-14 are thus in contrast with the observations made in their corresponding nanostructures. PTzQT-12 appears to be the most rigid and planar conjugated polymer of these four polymers. However, although the presumably nonfolding polymers PQT-12 and PTzQT-12 exhibit less folding than RR-P3HT, there is still a significant occurrence of chain folding for these polymers at the single molecule level. These results suggest that the folding properties of conjugated polymers can be influenced by the architecture of the

  14. Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone

    Science.gov (United States)

    2017-08-11

    ARL-TR-8093•AUG 2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone by Peng Wang and Brian...2017 US Army Research Laboratory Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone by Peng Wang and Brian Henz Computational...Rev. 8/98)    Prescribed by ANSI Std. Z39.18 August 2017 Technical Report Frequency Assignment for Joint Aerial Layer Network High-Capacity Backbone

  15. Plot-size for {sup 15}N-fertilizer recovery studies by tanzania-grass; Tamanho da parcela para estudos de recuperacao de fertilizante-{sup 15}N por capim-tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Martha Junior, Geraldo Bueno [EMBRAPA Cerrados, Planaltina, DF (Brazil)], e-mail: gbmartha@cpac.embrapa.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis], e-mail: pcotrive@cena.usp.br; Corsi, Moacyr [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia], e-mail: moa@esalq.usp.br

    2009-07-01

    The understanding of the N dynamics in pasture ecosystems can be improved by studies using the {sup 15}N tracer technique. However, in these experiments it must be ensured that the lateral movement of the labeled fertilizer does not interfere with the results. In this study the plot-size requirements for {sup 15}N-fertilizer recovery experiments with irrigated Panicum maximum cv. Tanzania was determined. Three grazing intensities (light, moderate and intensive grazing) in the winter, spring and summer seasons were considered. A 1 m{sup 2} plot-size, with a grass tussock in the center, was adequate, irrespective of the grazing intensity or season of the year. Increasing the distance from the area fertilized with {sup 15}N negatively affected the N derived from fertilizer (Npfm) recovered in herbage.The lowest decline in Npfm values were observed for moderate and light grazing intensities. This fact might be explained by the vigorous growth characteristics of these plants. Increasing the grazing intensity decreased the tussock mass and, the smaller the tussock mass, the greater was the dependence on fertilizer nitrogen. (author)

  16. Simple approach for the preparation of 15-15N2-enriched water for nitrogen fixation assessments: Evaluation, application and recommendations

    Directory of Open Access Journals (Sweden)

    Isabell eKlawonn

    2015-08-01

    Full Text Available Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2 fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15-15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15-15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15-15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥5 min. Optionally, water can be degassed at low-pressure (≥950 mbar for ten minutes prior to the 15-15N2 gas addition to indirectly facilitate the 15-15N2 dissolution. This preparation of 15-15N2-enriched water can be done within one hour using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15-15N2-enriched water. Notably, the addition of 15-15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15-15N2-enriched water with glass, plastic and rubber ware during its preparation. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn increased by up to 0.1 nmol L-1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15-15N2. The 15-15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15-15N2 equilibration. This method achieved a 15N-atom excess of 6.6±1.7% when adding 2 mL 15-15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  17. O potencial da rotulação metabólica de 15N para a pesquisa de esquizofrenia

    Directory of Open Access Journals (Sweden)

    Michaela D. Filiou

    2013-01-01

    Full Text Available Pesquisas em psiquiatria ainda necessitam de estudos não dirigidos por hipóteses para revelar fundamentos neurobiológicos e biomarcadores moleculares para distúrbios psiquiátricos. Metodologias proteômicas disponibilizam uma série de ferramentas para esses fins. Apresentamos o princípio de rotulação metabólica utilizando 15N para proteômica quantitativa e suas aplicações em modelos animais de fenótipos psiquiátricos com um foco particular em esquizofrenia. Exploramos o potencial de rotulação metabólica por 15N em diferentes tipos de experimentos, bem como suas considerações metodológicas.

  18. Application of rate equations to ELDOR and saturation recovery experiments on 14N: 15N spin-label pairs

    Science.gov (United States)

    Yin, Jun-Jie; Hyde, James S.

    Rate equations describing the time dependence of population differences of the five allowed transitions in an 14N 15N spin-label pair problem are set up. Included in the formulation are the three Heisenberg exchange rate constants and different nitrogen nuclear spin-lattice relaxation rates, electron spin-lattice relaxation rates, and populations for the 14N and 15N moieties. Using matrix algebra, stationary and time-dependent solutions are obtained in a unified theoretical framework. The calculations apply to stationary and pulse electron-electron double resonance and to saturation-recovery ESR. Particular emphasis is placed on short pulse initial excitation, where the transverse relaxation processes are sufficiently slow that only the population difference of the irradiated transition departs significantly from Boltzmann equilibrium during the excitation.

  19. Separation Between d$_{5/2}$ and s$_{1/2}$ Neutron Single Particle Strength in $^{15}$N

    CERN Document Server

    Mertin, C E; Crisp, A M; Keeley, N; Kemper, K W; Momotyuk, O; Roeder, B T; Volya, A

    2014-01-01

    The separation between single particle levels in nuclei plays the dominant role in determining the location of the neutron drip line. The separation also provides a test of current crossed shell model interactions if the experimental data is such that multiple shells are involved. The present work uses the $^{14}$N(d, p)$^{15}$N reaction to extract the 2s$_{1/2}$, and 1d$_{5/2}$ total neutron single particle strengths and then compares these results with a shell model calculation using a p-sd crossed shell interaction to identify the J$^\\pi$ of all levels in $^{15}$N up to 12.8 MeV in excitation.

  20. Ratios of 15N/12C and 4He/12C inclusive electroproduction cross sections in the nucleon resonance region

    CERN Document Server

    Bosted, P E; Amarian, M; Anefalos, S; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Beard, K; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Biselli, A S; Bonner, B E; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Cazes, A; Chen, S; Cole, P L; Collins, P; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Credé, V; Cummings, J P; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dragovitsch, P; Dugger, M; Dharmawardane, K V; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Eugenio, P; Fatemi, R; Fedotov, G; Feuerbach, R J; Forest, T A; Fradi, A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, R S; Hardie, J; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Jüngst, H G; Kalantarians, N; Keith, C; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Kramer, L H; Kubarovski, V; Kühn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Ji Li; Lima, A C S; Livingston, K; Lü, H; Lukashin, K; MacCormick, M; Markov, N; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Moteabbed, M; Müller, J; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabati, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Shaw, J; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Suleiman, R; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zana, L; Zhang, J; Zhao, B; Zhao, Z

    2007-01-01

    The ratio of inclusive electron scattering cross sections for 15N/12C was determined in the kinematic range 0.815N than in 12C. Ratios of 4He/12C using 1.6 to 2.5 GeV electrons are in good agreement with the phenomenological model.

  1. Multiple-quantum HCN-CCH-TOCSY experiment for 13C/15N labeled RNA oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weidong; Jiang Licong [Memorial Sloan-Kettering Cancer Center (United States)

    1999-12-15

    A multiple-quantum 3D HCN-CCH-TOCSY experiment is presented for the assignment of RNA ribose resonances. The experiment makes use of the chemical shift dispersion of N1 of pyrimidine and N9 of purine to distinguish the ribose spin systems. It provides an alternative approach for the assignment of ribose resonances to the currently used COSY- and TOCSY-type experiments in which either {sup 13}C or {sup 1}H is utilized to distinguish the different spin systems. Compared to the single-quantum version, the sensitivity of the multiple-quantum HCN-CCH-TOCSY experiment is enhanced on average by a factor of 2 for a 23-mer RNA aptamer complexed with neomycin.

  2. Identifying N fertilizer regime and vegetable production system in tropical Brazil using (15) N natural abundance.

    Science.gov (United States)

    Inácio, Caio T; Urquiaga, Segundo; Chalk, Phillip M; Mata, Maria Gabriela F; Souza, Paulo O

    2015-12-01

    This study was conducted in areas of vegetable production in tropical Brazil, with the objectives of (i) measuring the variation in δ(15)  N in soils, organic N fertilizer sources and lettuce (Lactuca sativa L.) from different farming systems, (ii) measuring whether plant δ(15)  N can differentiate organic versus conventional lettuce and (iii) identifying the factors affecting lettuce δ(15)  N. Samples of soil, lettuce and organic inputs were taken from two organic, one conventional and one hydroponic farm. The two organic farms had different N-sources with δ(15)  N values ranging from 0.0 to +14.9‰ (e.g. leguminous green manure and animal manure compost, respectively), and differed significantly (P fertilization should be considered. Comparisons of δ(15)  N of soil, organic inputs and lettuce allowed a qualitative analysis of the relative importance of different N inputs. © 2015 Society of Chemical Industry.

  3. Structural Determination of Bis-histidinopeptide Zinc Complexes by 15N NMR (HMBC) Spectra

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Cheng-He; Juan F.Miravet; M.Isabel Burguete; Santiago V.Luis; BAI,Xue; YUAN,Yong

    2004-01-01

    @@ Polynitrogen receptors such as bis-histidine peptides possess strong ability to bind metals, which play much important roles in medicinal, bioinorganic, bioorganic, biomimetic and supramolecular chemistry. In order to investigate the interaction of these hosts with a variety of neutral, cationic and anionic guests, several techniques, for example, NMR,potentiometric tirations and monocrystal X-ray diffraction have been employed. Among them NMR is a powerful technique for unraveling the structure of polynitrogen receptors as long as they are in solution where the rapid tumbling of molecules averages out the anisotropies such as chemical shift and dipole-dipole interactions. General 1H NMR approach has been widely used for the study of host-guest interaction, but it is difficult for the accurate measurement in complexes structures, particularly metal complexes structures in which how the polynitrogen receptors bind metal, and which nitrogen binds metal and so on.

  4. The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Nilsson, Lars Ola; Schmidt, Inger Kappel

    2013-01-01

    We investigated the influence of tree species on the natural 15N abundance in forest stands under elevated ambient N deposition.We analysed δ15N in litter, the forest floor and three mineral soil horizons along with ecosystem N status variables at six sites planted three decades ago with five...... European broadleaved tree species and Norway spruce.Litter δ15N and 15N enrichment factor (δ15Nlitter–δ15Nsoil) were positively correlated with N status based on soil and litter N pools, nitrification, subsoil nitrate concentration and forest growth. Tree species differences were also significant...... for these N variables and for the litter δ15N and enrichment factor. Litter from ash and sycamore maple with high N status and low fungal mycelia activity was enriched in 15N (+0.9 delta units) relative to other tree species (European beech, pedunculate oak, lime and Norway spruce) even though the latter...

  5. Determining the source of nitrate pollution in the Niger discontinuous aquifers using the natural {15N }/{14N } ratios

    Science.gov (United States)

    Girard, Pierre; Hillaire-Marcel, Claude

    1997-12-01

    In the semi-arid Niamey area (Niger), more than 10% of the deep wells exploiting the fracture network of the Precambrian aquifer are contaminated by nitrates, with concentrations as high as 10 meq l -1. In order to identify the source(s) of this pollution, nitrate and 15N contents in the polluted wells were monitored over a 20-month period. Potential sources of nitrate contamination were also analyzed for their 15N content. The isotopic compositions of nitrate in polluted waters were > + 12‰ and in rare cases exceeded +17‰. Latrines (˜ + 15‰) may be the major nitrate source for wells showing δ15N values above +15‰. Below this value, waters may be polluted by a combination of nitrates from both latrine and soil sources (˜ + 10‰). In some cases, the soil may account for up to 85% of the groundwater nitrate load. This mode of groundwater pollution is thought to be a consequence of deforestation. Despite their reputation as polluting agents, fertilizers ( +0.5 < δ 15N < + 3.6‰ ) which are used in rice paddies close to the contaminated areas, do not appear to be a significant source of nitrate contamination. Denitrification is probably not a significant process in the study area. Results suggest that nitrate contamination of the aquifer is a consequence of unregulated urbanization (home-made latrines) and deforestation. While latrines are limited to the urban zones, intensive cutting of the forest to meet the city dwellers' wood demand occurs in an ever increasing area around the capital, threatening the local water supply.

  6. The δ15N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior

    Science.gov (United States)

    Sigman, D. M.; Altabet, M. A.; McCorkle, D. C.; Francois, R.; Fischer, G.

    2000-08-01

    We report analyses of the nitrogen isotopic composition of nitrate in the eastern Indian and Pacific sectors of the Southern Ocean. In this paper, we focus on the subsurface data as well as data from the deep waters of other ocean basins. Nitrate δ15N is relatively invariant in much of the abyssal ocean (i.e., below 2.5 km), with a value of 4.8±0.2‰ observed in Lower Circumpolar Deep Water, North Atlantic Deep Water, and central Pacific deep water. The isotopic invariance of deep ocean nitrate stems fundamentally from the completeness of nitrate utilization in most of the global surface ocean, the Southern Ocean surface being an important exception. In the Subantarctic Zone (north of the Polar Frontal Zone) the nitrate δ15N of Upper Circumpolar Deep Water is ˜0.7‰ greater than that of Lower Circumpolar Deep Water. This isotopic enrichment appears to result from denitrification in the low-latitude water masses with which Upper Circumpolar Deep Water communicates. The isotopic enrichment of Upper Circumpolar Deep Water is diminished in the Antarctic, probably because of the remineralization of sinking organic N, which has a low δ15N in the Antarctic. Relative to the other water masses of the Southern Ocean, the Subantarctic thermocline has a very low nitrate δ15N for its nitrate concentration because of exchange with the low-latitude thermocline, where this isotopic signature appears to originate. This signature of the low-latitude thermocline has two probable causes: (1) mixing with low-nitrate surface water and (2) the oxidation of newly fixed N.

  7. Use of a 15N tracer to determine linkages between a mangrove and an upland freshwater swamp

    Science.gov (United States)

    MacKenzie, R. A.; Cormier, N.

    2005-05-01

    Mangrove forests and adjacent upland freshwater swamps are important components of subsistence-based economies of Pacific islands. Mangroves provide valuable firewood (Rhizophora apiculata) and mangrove crabs (Scylla serrata); intact freshwater swamps are often used for agroforestry (e.g., taro cultivation). While these two systems are connected hydrologically via groundwater and surface flows, little information is available on how they may be biogeochemically or ecologically linked. For example, mangrove leaf litter was once thought to be an important food source for resident and transient nekton and invertebrates, but this value may have been overestimated. Instead, nutrients or allochthonous material (e.g., phytoplankton, detritus) delivered via groundwater or surface water from upland freshwater swamps may play a larger role in mangrove food webs. Understanding the linkages between these two ecologically and culturally important ecosystems will help us to understand the potential impacts of hydrological alterations that occur when roads or bridges are constructed through them. We conducted a 15N tracer study in the Yela watershed on the island of Kosrae, Federated States of Micronesia. K15NO3 was continually added at trace levels for 4 weeks to the Yela River in an upland freshwater swamp adjacent to a mangrove forest. Nitrate and ammonium pools, major primary producers, macroinvertebrates, and fish were sampled from stations 5 m upstream (freshwater swamp) and 138, 188, 213, and 313 m downstream (mangrove) from the tracer addition. Samples were collected once a week prior to, during, and after the 15N addition for a total of 6 weeks. Preliminary results revealed no significant enrichment (< 1 ‰) in the 15N isotope composition of either resident shrimp (Macrobrachium sp.) or mudskipper fish (Periophthalmus sp.). However, the 15N signature of ammonium pools was enriched 10-60 ‰ by the end of the third week. These results suggest that the tracer was present

  8. Quantitative study on the fate of residual soil nitrate in winter wheat based on a 15N-labeling method

    Science.gov (United States)

    Zhang, Jing-Ting; Wang, Zhi-Min; Liang, Shuang-Bo; Zhang, Ying-Hua; Lu, Lai-Qing; Wang, Run-Zheng

    2017-01-01

    A considerable amount of surplus nitrogen (N), which primarily takes the form of nitrate, accumulates in the soil profile after harvesting crops from an intensive production system in the North China Plain. The residual soil nitrate (RSN) is a key factor that is included in the N recommendation algorithm. Quantifying the utilization and losses of RSN is a fundamental necessity for optimizing crop N management, improving N use efficiency, and reducing the impact derived from farmland N losses on the environment. In this study, a 15N-labeling method was introduced to study the fate of the RSN quantitatively during the winter wheat growing season by 15N tracer technique combined with a soil column study. A soil column with a 2 m height was vertically divided into 10 20-cm layers, and the RSN in each layer was individually labeled with a 15N tracer before the wheat was sown. The results indicated that approximately 17.68% of the crop N derived from RSN was located in the 0–2 m soil profile prior to wheat sowing. The wheat recovery proportions of RSN at various layers ranged from 0.21% to 33.46%. The percentages that still remained in the soil profile after the wheat harvest ranged from 47.08% to 75.44%, and 19.46–32.64% of the RSN was unaccounted for. Upward and downward movements in the RSN were observed, and the maximum upward and downward distances were 40 cm and 100 cm, respectively. In general, the 15N-labeling method contributes to a deeper understanding of the fates of the RSN. Considering the low crop recovery of the RSN from deep soil layers, water and N saving practices should be adopted during crop production. PMID:28170440

  9. Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (delta13C and delta15N).

    Science.gov (United States)

    Al-Reasi, Hassan A; Ababneh, Fuad A; Lean, David R

    2007-08-01

    Concentrations of total mercury (T-Hg) and methylmercury (MeHg) were measured in zooplankton and 13 fish species from a coastal food web of the Gulf of Oman, an arm of the Arabian Sea between Oman and Iran. Stable isotope ratios (delta13C and delta15N) also were determined to track mercury biomagnification. The average concentration of T-Hg in zooplankton was 21 +/- 8.0 ng g(-1) with MeHg accounting 10% of T-Hg. Total mercury levels in fish species ranged from 3.0 ng g(-1) (Sardinella longiceps) to 760 ng g(-1) (Rhizoprionodon acutus) with relatively lower fraction of MeHg (72%) than that found in other studies. The average trophic difference (Deltadelta13C) between zooplankton and planktivorous fish (Selar crumenopthalmus, Rastrelliger kanagurta, and S. longiceps) was higher (3.4 per thousandth) than expected, suggesting that zooplankton may not be the main diet or direct carbon source for these fish species. However, further sampling would be required to compensate for temporal changes in zooplankton and the influence of their lipid content. Trophic position inferred by delta15N and and slopes of the regression equations (log10[T-Hg] = 0.13[delta15N] - 3.57 and log10[MeHg] = 0.14[delta15N] - 3.90) as estimates of biomagnification indicate that biomagnification of T-Hg and MeHg was lower in this tropical ocean compared to what has been observed in arctic and temperate ecosystems and tropical African lakes. The calculated daily intake of methylmercury in the diet of local people through fish consumption was well below the established World Health Organization (WHO) tolerable daily intake threshold for most of the fish species except Euthynnus affinis, Epinephelus epistictus, R. acutus, and Thunnus tonggol, illustrating safe consumption of the commonly consumed fish species.

  10. Fate of 15N-urea applied to wheat-soybean succession crop Destino de 15N-uréia aplicada em sucessão trigo-soja

    Directory of Open Access Journals (Sweden)

    Antonio Enedi Boaretto

    2004-01-01

    Full Text Available The wheat crop in São Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha-1 depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha-1 of N. The efficiency of 15N-urea utilization ranged from 52% to 85%. The main loss of applied 15N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha-1, was less than 1% of applied 15N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15N applied to wheat at sowing or at tillering stage.No Estado de São Paulo, a cultura do trigo é adubada, além de P e K, com N, cuja dose (0 a 120 kg ha-1 depende do cultivo anterior e da possibilidade de irrigação. A resposta do trigo às doses e épocas de aplicação e o destino do N aplicado foi estudada em dois cultivos de trigo, seguidos pela soja. Também se avaliou a recuperação do N residual pela soja cultivada nas mesmas parcelas após o trigo. A produtividade máxima estimada de grãos seria obtida com a dose de 92 kg.ha-1 de N. A eficiência de absorção 15N-uréia variou de 52% a 85%. A principal perda de N, que variou de 5% a 12%, ocorreu através de volatilização de amônia proveniente da uréia aplicada na superfície do solo. Por lixiviação foi perdido menos que 1% do N aplicado, pois a água da chuva ou da irrigação foi suficiente para molhar somente a camada do solo

  11. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-03-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM stabilized in microstructures found in the chemical extraction residue (OM(ER. Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007 to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰. We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles

  12. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  13. Affordable uniform isotope labeling with {sup 2}H, {sup 13}C and {sup 15}N in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for {sup 15}N and {sup 13}C with yields comparable to expression in full media. For {sup 2}H,{sup 15}N and {sup 2}H,{sup 13}C,{sup 15}N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  14. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose.

    Science.gov (United States)

    Thorn, K A; Kennedy, K R

    2002-09-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  15. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ15N, δ13C)

    Science.gov (United States)

    Struck, Ulrich; Altenbach, Alexander; Gaulke, Maren; Glaw, Frank

    2002-09-01

    In this study, we used analyses of stable isotopes of nitrogen (δ15N) and carbon (δ13C) to determine the trophic ecology of the monitor lizard Varanus mabitang. Stable isotopes from claws, gut contents, and soft tissues were measured from the type specimen. Samples from Varanus olivaceus, Varanus prasinus, Varanus salvator, the herbivorous agamid lizard Hydrosaurus pustulatus, and some plant matter were included for comparison. Our data show a rapid decrease in δ13C (about10‰) from food plants towards gut contents and soft tissues of herbivorous species. For the varanids, we found a significant linear correlation of decreasing δ13C and increasing δ15N from herbivorous towards carnivorous species. In terms of trophic isotope ecology, the type specimen of V. mabitang is a strict herbivore. Thus it differs significantly in its isotopic composition from the morphologically next closest related species V. olivaceus. The most highly carnivorous species is V. salvator, while δ15N values for V. prasinus and V. olivaceus are intermediate. Claws provide very valuable samples for such measurements, because they can be sampled from living animals without harm. Additionally, their range of variability is relatively small in comparison with measurements from soft tissues.

  16. Validating the Incorporation of 13C and 15N in a Shorebird That Consumes an Isotopically Distinct Chemosymbiotic Bivalve.

    Directory of Open Access Journals (Sweden)

    Jan A van Gils

    Full Text Available The wealth of field studies using stable isotopes to make inferences about animal diets require controlled validation experiments to make proper interpretations. Despite several pleas in the literature for such experiments, validation studies are still lagging behind, notably in consumers dwelling in chemosynthesis-based ecosystems. In this paper we present such a validation experiment for the incorporation of 13C and 15N in the blood plasma of a medium-sized shorebird, the red knot (Calidris canutus canutus, consuming a chemosymbiotic lucinid bivalve (Loripes lucinalis. Because this bivalve forms a symbiosis with chemoautotrophic sulphide-oxidizing bacteria living inside its gill, the bivalve is isotopically distinct from 'normal' bivalves whose food has a photosynthetic basis. Here we experimentally tested the hypothesis that isotope discrimination and incorporation dynamics are different when consuming such chemosynthesis-based prey. The experiment showed that neither the isotopic discrimination factor, nor isotopic turnover time, differed between birds consuming the chemosymbiotic lucinid and a control group consuming a photosynthesis-based bivalve. This was true for 13C as well as for 15N. However, in both groups the 15N discrimination factor was much higher than expected, which probably had to do with the birds losing body mass over the course of the experiment.

  17. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    Science.gov (United States)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  18. [Absorption and distribution of nitrogen from 15N labelled urea applied at core-hardening stage in winter jujube].

    Science.gov (United States)

    Zhao, Dengchao; Jiang, Yuanmao; Peng, Futian; Zhang, Jin; Zhang, Xu; Ju, Xiaotang; Zhang, Fusuo

    2006-01-01

    The study with pot experiment showed that at the rapid-swelling stage of winter jujube fruit, the percent of nitrogen derived from fertilizer (Ndff%) was the highest (10.64%) in fine roots, followed by new-growth nutritive organs. The absorbed urea-15N decreased in leaves and deciduous supers, and accumulated preferentially in root systems after harvest. The Ndff% in coarse roots was the highest (3.69%) before budding stage, while that in new-growth organs (new branches, deciduous supers, leaves and flowers) was the highest at full-blooming stage. The urea-15N applied at core-hardening stage mainly allocated in nutritive organs (leaves, deciduous supers, roots) in the first year, with the distribution rate 54.01% in root systems in winter, which was higher than that in branches (45.99%). The 15N stored in main branches changed drastically from post-harvest to budding stage. Main branches could be regarded as the 'target organs' of N storage, while coarse roots were the 'long-term sink' of N storage. The N reserve distributed preferentially in contiguity organs, and the distribution center changed with the growth and development of winter jujube in next spring.

  19. Patterns of δ13 C and δ15 N in wolverine Gulo gulo tissues from the Brooks Range, Alaska

    Institute of Scientific and Technical Information of China (English)

    Fredrik DALERUM; Anders ANGERBJ(O)RN; Kyran KUNKEL; Brad S.SHULTS

    2009-01-01

    Knowledge of carnivore diets is essential to understand hew carnivore populations respond demographically to variations in prey abundance. Analysis of stable isotopes is a useful complement to traditional methods of analyzing carnivore diets. We used data on δ13 C and δ15 N in wolverine tissues to investigate patterns of seasonal and annual diet variation in a wolverine Gulo gulo population in the western Brooks Range, Alaska, USA. The stable isotope ratios in wolverine tissues generally reflected that of terrestrial carnivores, corroborating previous diet studies on wolverines. We also found variation in δ13 C and δ15 N both between muscle samples collected over several years and between tissues with different assimilation rates, even after correcting for isotopic fractionation. This suggests both annual and seasonal diet variation. Our results indicate that data on δ13 C and δ15 N holds promise for qualitative assessments of wolverine diet changes over time. Such temporal variation may be important indicators of ecological responses to environmental perturbations, and we suggest that more refined studies of stable isotopes may be an important tool when studying temporal change in diets of wolverines and similar carnivores.

  20. Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules

    Science.gov (United States)

    Pizzarello, Sandra; Holmes, William

    2009-04-01

    Amino acids, amines and aldehydes were obtained from the water extracts of two CR2 carbonaceous chondrites from Antarctica and analyzed for their molecular and 15N isotopic content. These compounds were found to differ significantly from those of CM chondrites in both overall abundances and molecular distribution. The amino acids suites comprise a preponderant abundance of linear, 2-H amino acids, show rapid non-linear decrease with the compounds' increasing chain length and include protein amino acids never identified in meteorites before, such as threonine, tyrosine and phenylalanine. The presence of tertiary amines as well as a diverse, large abundance of aldehydes and ketones also distinguishes both CR2 organic suites. The δ 15N values determined for CR2 amino acids have a distribution between molecular subgroups that is opposite to the one of their δD values, with 2-H amino acids having higher δ 15N and lower δD values than 2-methyl amino acids, while the opposite is true for 2-methyl amino acids. Based on theoretical data, these isotopic findings would place the formation of the two amino acid groups or their direct precursors at different ISM stages of star formation.

  1. 15N enrichment of ammonium, glutamine-amide and urea, measured via mass isotopomer analysis of hexamethylenetetramine.

    Science.gov (United States)

    Yang, D; Puchowicz, M A; David, F; Powers, L; Halperin, M L; Brunengraber, H

    1999-11-01

    Ammonium is an important intermediate of protein metabolism and is a key component of acid-base balance. Investigations of the metabolism of NH(4)(+) in vivo using isotopic techniques are difficult because of the low concentration of NH(4)(+) in biological fluids and because of frequent artifactual isotopic dilution of the enrichment of NH(4)(+) during the assay. A new gas chromatographic mass spectrometric method was designed to monitor the (15)N enrichment and concentration of NH(4)(+) in vivo. These are both calculated from the mass isotopomer distribution of hexamethylenetetramine (HMT) formed by reacting NH(4)(+) with formaldehyde. The enrichment of NH(4)(+) is amplified four times since the HMT molecule contains four atoms of nitrogen derived from NH(4)(+). This allows the measurement of low (15)N enrichment of NH(4)(+), down to 0.1%. (15)N enrichment of urea and of the amide N of L-glutamine are measured by enzymatic release of NH(4)(+) and conversion of the latter to HMT. These new techniques facilitate in vivo investigations of the metabolism of NH(4)(+) and related compounds.

  2. Individual protein balance strongly influences delta15N and delta13C values in Nile tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    2004-02-01

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing delta(15)N and delta(13)C values. An experiment using Nile tilapia [ Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on delta(15)N and delta(13)C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. delta(15)N and delta(13)C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5 per thousand to 4 per thousand and for C in the lipid-free body from 4 per thousand to 2.5 per thousand. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  3. Fertilizer 15N balance in a coffee cropping system: a case study in Brazil Balanço do 15N do fertilizante em uma cultura de café: um estudo de caso no Brasil

    Directory of Open Access Journals (Sweden)

    Tatiele Anete Bergamo Fenilli

    2008-08-01

    Full Text Available Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0_1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0

  4. A Distributed Virtual Backbone Formation for Wireless Ad Hoc and Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    CAO Yong-tao; HE Chen; JIANG Ling-ge

    2007-01-01

    The virtual backbone is an approach for solving routing problems in wireless ad hoc and sensor networks. A connected dominating set (CDS) was proposed as a virtual backbone to improve the performance of wireless networks. The quality of a virtual backbone is measured not only by approximation factor, which is the ratio of its size to that of minimum CDS, but also time complexity and message complexity. In this paper, a distributed algorithm is presented to construct a minimum CDS for ad hoc and sensor networks. By destroying triangular loops in the virtual backbone, the proposed algorithm can effectively construct a CDS with smaller size. Moreover, our algorithm, which is fully localized, has a constant approximation ratio, linear message and time complexity, and low implementation complexity. The simulation results and theoretical analysis show that our algorithm has better efficiency and performance than conventional approaches.

  5. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness (h

    Directory of Open Access Journals (Sweden)

    Ranjan V. Mannige

    2017-05-01

    Full Text Available The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral angles φ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963. Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function of φ and ψ has not been completely described for both cis and trans backbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing the φ and ψ values of a peptide (e.g., is the regular peptide defined by φ = ψ =  − 100°  left-handed or right-handed?. This report provides a new metric for backbone handedness (h based on interpreting a peptide backbone as a helix with axial displacement d and angular displacement θ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral angles φ, ψ and ω. In particular, h equals sin(θd∕|d|, with range [−1, 1] and negative (or positive values indicating left(or right-handedness. The metric h is used to characterize the handedness of every region of the Ramachandran plot for both cis (ω = 0° and trans (ω = 180° backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ, ψ space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013, this report presents a new plot based on d and θ that serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone

  6. The effects of wildfire on mercury and stable isotopes (δ(15)N, δ(13)C) in water and biota of small boreal, acidic lakes in southern Norway.

    Science.gov (United States)

    Moreno, Clara E; Fjeld, Eirik; Lydersen, Espen

    2016-03-01

    Effects of wildfire on main water chemistry and mercury (Hg) in water and biota were studied during the first 4 post-fire years. After severe water chemical conditions during hydrological events a few months following the wildfire, the major water chemical parameters were close to pre-fire conditions 4 years after the fire. Concentrations of total Hg and methyl Hg in the surface water 4 years after the fire ranged between 1.17-2.63 ng L(-1) and 0.053-0.188 ng L(-1), respectively. Both variables were positive and strongly correlated with total organic carbon (TOC), TOC-related variables (color, UV absorbance), total phosphorous, and total iron. In addition, MeHg was positively correlated with total nitrogen and chlorophyll-a. The concurrence of increased concentrations of nutrients and chlorophyll-a in the lakes, the more enriched δ(15)N-signatures and higher Hg levels in fish 2 years after the fire, might be a result of the wildfire. However, natural factors as year-to-year variations in thermocline depth and suboxic status in the lakes make it difficult to draw any strong conclusions about wildfire effects on Hg in the biota from our investigated lakes.

  7. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Directory of Open Access Journals (Sweden)

    Belén Martínez-Alcántara

    Full Text Available Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L. grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95% ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  8. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds

    Science.gov (United States)

    Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.

    2000-01-01

    We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.

  9. Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models.

    Science.gov (United States)

    Hobbie, Erik A; Jumpponen, Ari; Trappe, Jim

    2005-12-01

    Nitrogen isotopes (15N/14N ratios, expressed as delta15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low delta15N) and increases the 15N/14N of the fungi (high delta15N). Analytical models of 15N distribution would be helpful in interpreting delta15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in delta15N and then decrease, if mycorrhizal colonization were an important factor influencing plant delta15N. As hypothesized, plants with different mycorrhizal habits initially showed similar delta15N values (-4 to -6 per thousand relative to the standard of atmospheric N2 at 0 per thousand), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5-6 per thousand in delta15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (-8 to -11 per thousand) are among the lowest yet observed in vascular plants. In contrast, the delta15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in delta15N (-1 to -3 per thousand), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7

  10. Nitrogen ({sup 15}N) accumulation in corn grains as affected by source of nitrogen in red latosol;Acumulo de nitrogenio ({sup 15}N) pelos graos de milho em funcao da fonte nitrogenada em latossolo vermelho

    Energy Technology Data Exchange (ETDEWEB)

    Duete, Robson Rui Cotrim, E-mail: rrcduete@oi.com.b [Empresa Baiana de Desenvolvimento Agricola S.A. (EBDA), Cruz das Almas, BA (Brazil); Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze; Silva, Edson Cabral da, E-mail: muraoka@cena.usp.b, E-mail: pcotrive@cena.usp.b, E-mail: ecsilva@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Ambrosano, Edmilson Jose, E-mail: ambrosano@aptaregional.sp.gov.b [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicaba, SP (Brazil). Polo Centro Sul

    2009-07-01

    Nitrogen is the most absorbed mineral nutrient by corn crop and most affects grains yield. It is the unique nutrient absorbed by plants as cation (NH{sub 4}{sup +}) or anion (NO{sub 3}{sup -}). The objectives of this work were to investigate the N accumulation by corn grains applied to the soil as NH{sub 4}{sup +} or NO{sub 3}{sup -} in the ammonium nitrate form compared to amidic form of the urea, labeled with {sup 15}N; to determine the corn growth stage with highest fertilizer N utilization by the grains, and to quantify soil nitrogen exported by corn grains. The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwestern Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil, in a Red Latosol. The experimental design was completely randomized blocks, with 13 treatments and four replications, disposed in factorial outline 6x2 + 1 (control, without N application). A nitrogen rate equivalent to 120 kg N ha-1 as urea-{sup 15}N or as ammonium nitrate, labeled in the cation NH{sub 4}{sup +} ({sup 15}NH{sub 4}{sup +}NO{sub 3}{sup -}) or in the anion NO{sub 3}{sup -} (NH{sub 4}{sup +}15N+O{sub 3}{sup -} ), was applied in six fractions of 20 kg N ha-1 each, in different microplots, from seeding to the growth stage 7 (pasty grains). The forms of nitrogen, NH{sub 4}{sup +}-N and N{sub O}{sup 3}--N, were accumulated equitably by corn grains. The corn grains accumulated more N from urea than from ammonium nitrate. The N applied to corn crop at eight expanded leaves stage promoted largest accumulation of this nutrient in the grains. (author)

  11. Poly(meta-phenylene) Derivative with Rigid Twisted Biphenyl Units in Backbone: Synthesis, Structural Characterization,Photophysical Properties and Electroluminescence

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; YANG Bing; ZHANG Hai-quan; LU Ping; SHEN Fang-zhong; LIU Lin-lin; XU Hai; YANG Guang-di; MA Yu-guang

    2007-01-01

    A soluble poly(meta-phenylene) derivative with rigid twisted biphenyl unit was synthesized by the Yamamoto coupling reaction. The polymer is soluble in common organic solvents, and the number-average molecular weight is about 6500. The UV-Vis and quantum chemical calculation indicate that the different conformation segments named "conformers" exist in the polymer backbones; it was also further confirmed by the single crystal X-ray diffraction study of the dimeric model compound. The π-π* transition of biphenyl segments of twisted and planar conformations made the polymer exhibit a strong absorption around 256 nm and a weak absorption at about 300 nm. Furthermore,the polymer exhibits a strong UV photoluminescence at 372 nm when the excitation wavelengths are longer than 300 nm. The ultraviolet-emitting electroluminescence(EL) device with the single layer structure shows EL λmax of the derivative at 370 nm.

  12. Determination of the delta(15N/14N)of Ammonium (NH4+) in Water: RSIL Lab Code 2898

    Science.gov (United States)

    Hannon, Janet E.; Böhlke, John Karl

    2008-01-01

    The purpose of the technique described by Reston Stable Isotope Laboratory (RSIL) lab code 2898 is to determine the N isotopic composition, delta(15N/14N), abbreviated as d15N, of ammonium (NH4+) in water (freshwater and saline water). The procedure involves converting dissolved NH4+ into NH3 gas by raising the pH of the sample to above 9 with MgO and subsequently trapping the gas quantitatively as (NH4)2SO4 on a glass fiber (GF) filter. The GF filter is saturated with NaHSO4 and pressure sealed between two gas-permeable polypropylene filters. The GF filter 'sandwich' floats on the surface of the water sample in a closed bottle. NH3 diffuses from the water through the polypropylene filter and reacts with NaHSO4, forming (NH4)2SO4 on the GF filter. The GF filter containing (NH4)2SO4 is dried and then combusted with a Carlo Erba NC 2500 elemental analyzer (EA), which is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous-flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in ratios of the amounts of the stable isotopes of nitrogen (15N and 14N) of the product N2 gas and a reference N2 gas. The filters containing the samples are compressed in tin capsules and loaded into a Costech Zero-Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a He atmosphere containing an excess of O2 gas. To remove S-O gases produced from the NaHSO4, a plug of Ag-coated Cu wool is inserted at the bottom of the reaction tube. Combustion products are transported by a He carrier through a reduction furnace to remove excess O2, toconvert all nitrogen oxides to N2, and to remove any remaining S-O gases. The gases then pass through a drying tube to remove water. The gas-phase products, mainly N2 and a small amount of background CO2, are separated by a gas chromatograph (GC). The gas is then introduced

  13. The use of 15N-labeled dietary proteins for determining true ileal amino acid digestibilities is limited by their rapid recycling in the endogenous secretions of pigs

    NARCIS (Netherlands)

    Leterme, P.; Théwis, A.; François, E.; Leeuwen, P. van; Wathelet, B.; Huisman, J.

    1996-01-01

    We assessed the use of 15N-labeled dietary proteins as a possible tool for the determination of the true ileal amino acid (AA) digestibility in pigs. The first experiment was designed to study the dietary N excretion pattern at the ileum subsequent to the ingestion of a single