WorldWideScience

Sample records for 15-prostaglandin dehydrogenase expression

  1. 15-prostaglandin dehydrogenase expression alone or in combination with ACSM1 defines a subgroup of the apocrine molecular subtype of breast carcinoma

    DEFF Research Database (Denmark)

    Celis, J.E.; Gromov, P.; Cabezon, T.

    2008-01-01

    , papillary, medullary, metaplastic, and apocrine breast carcinomas. Molecular profiling technologies, on the other hand, subdivide breast tumors into five subtypes, basal-like, luminal A, luminal B, normal breast tissue-like, and ERBB2-positive, that have different prognostic characteristics. An additional...

  2. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki

    2006-05-01

    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  3. Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhang, Wangluo; Chen, Shuai; Liao, Yuanping; Wang, Dingli; Ding, Jianfeng; Wang, Yingming; Ran, Xiaoyuan; Lu, Daru; Zhu, Huaxing

    2013-12-01

    As a member of zinc-containing medium-chain alcohol dehydrogenase family, formaldehyde dehydrogenase (FDH) can oxidize toxic formaldehyde to less active formate with NAD(+) as a cofactor and exists in both prokaryotes and eukaryotes. Most FDHs are well known to be glutathione-dependent in the catalysis of formaldehyde oxidation, but the enzyme from Pseudomonas putida is an exception, which is independent of glutathione. To identify novel glutathione-independent FDHs from other bacterial strains and facilitate the corresponding structural and enzymatic studies, high-level soluble expression and efficient purification of these enzymes need to be achieved. Here, we present molecular cloning, expression, and purification of the FDH from Pseudomonas aeruginosa, which is a Gram-negative pathogenic bacterium causing opportunistic human infection. The FDH of P. aeruginosa shows high sequence identity (87.97%) with that of P. putida. Our results indicated that coexpression with molecular chaperones GroES, GroEL, and Tig has significantly attenuated inclusion body formation and improved the solubility of the recombinant FDH in Escherichiacoli cells. A purification protocol including three chromatographic steps was also established to isolate the recombinant FDH to homogeneity with a yield of ∼3.2 mg from 1L of cell culture. The recombinant P. aeruginosa FDH was properly folded and biologically functional, as demonstrated by the mass spectrometric, crystallographic, and enzymatic characterizations of the purified proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma.

    Science.gov (United States)

    Hua, Yibo; Liang, Chao; Zhu, Jundong; Miao, Chenkui; Yu, Yajie; Xu, Aimin; Zhang, Jianzhong; Li, Pu; Li, Shuang; Bao, Meiling; Yang, Jie; Qin, Chao; Wang, Zengjun

    2017-03-01

    Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.

  5. The expression of succinate dehydrogenase in breast phyllodes tumor.

    Science.gov (United States)

    Choi, Junjeong; Kim, Do Hee; Jung, WooHee; Koo, Ja Seung

    2014-10-01

    The purpose of this study is to investigate the expression of succinate dehydrogenase (SDH)A, SDHB, and HIF-1α in phyllodes tumors and the association with clinic-pathologic factors. Using tissue microarray (TMA) for 206 phyllodes tumor cases, we performed immunohistochemical stains for SDHA, SDHB, and HIF-1α and analyzed their expression in regard to clinicopathologic parameters of each case. The cases were comprised of 156 benign, 34 borderline, and 16 malignant phyllodes tumors. The expression of stromal SDHA and epithelial- and stromal- SDHB increased as the tumor progressed from benign to malignant (P⟨0.001). There were five stromal SDHA-negative cases and 31 stromal SDHB-negative cases. SDHB negativity was associated with a lower histologic grade (P=0.054) and lower stromal atypia (P=0.048). Univariate analysis revealed that a shorter disease free survival (DFS) was associated with stromal SDHB high-positivity (P=0.013) and a shorter overall survival (OS) was associated with high-positivity of stromal SDHA and SDHB (P⟨0.001 and P⟨0.001, respectively). The multivariate Cox analysis with the variables stromal cellularity, stromal atypia, stromal mitosis, stromal overgrowth, tumor margin, stromal SDHA expression, and stromal SDHB expression revealed that stromal overgrowth was associated with a shorter DFS (hazard ratio: 24.78, 95% CI: 3.126-196.5, P=0.002) and a shorter OS (hazard ratio: 176.7, 95% CI: 8.466-3691, P=0.001). In conclusion, Tumor grade is positively correlated with SDHA and SDHB expression in the tumor stroma in phyllodes tumors of the breast. This result may be attributed to the increased metabolic demand in high grade tumors.

  6. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  7. Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins.

    Science.gov (United States)

    Periyasamy, Sankar; Govindappa, Nagaraj; Sreenivas, Suma; Sastry, Kedarnath

    2013-11-01

    Sorbitol is used as a non-repressive carbon source to develop fermentation process for Mut(s) recombinant clones obtained using the AOX1 promoter in Pichia pastoris. Sorbitol dehydrogenase is an enzyme in the carbohydrate metabolism that catalyzes reduction of D-fructose into D-sorbitol in the presence of NADH. The small stretch of 211bps upstream region of sorbitol dehydrogenase coding gene has all the promoter elements like CAAT box, GC box, etc. It is able to promote protein production under repressive as well as non-repressive carbon sources. In this study, the strength of the sorbitol dehydrogenase promoter was evaluated by expression of two heterologous proteins: human serum albumin and erythrina trypsin inhibitor. Sorbitol dehydrogenase promoter allowed constitutive expression of recombinant proteins in all carbon sources that were tested to grow P. pastoris and showed activity similar to GAP promoter. The sorbitol dehydrogenase promoter was active in all the growth phases of the P. pastoris.

  8. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    Science.gov (United States)

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene

  9. Expression, crystallization and preliminary X-ray crystallographic analysis of alcohol dehydrogenase (ADH) from Kangiella koreensis.

    Science.gov (United States)

    Ngo, Ho-Phuong-Thuy; Hong, Seung-Hye; Hong, Myoung-Ki; Pham, Tan-Viet; Oh, Deok-Kun; Kang, Lin-Woo

    2013-09-01

    Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Å resolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, β = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.

  10. Expression of aldehyde dehydrogenase 1 in colon cancer.

    Science.gov (United States)

    Hou, Yi; Liu, Yi-Yi; Zhao, Xiao-Kun

    2013-07-01

    To study the expression of ALDH1 in colon cancer and its clinical significance. The expression of ALDH1 was examined in 98 surgical specimens of primary colonic carcinoma and 15 normal colon tissues with immunohistochemistry method. The correlations of the expression with clinicopathological parameters and prognosis of colon cancer were analyzed. The positive rate of expression of ALDH1 was 76.5% (75/98) in the cancer tissues and 13.3% (2/15) in normal colon tissues. There were an obvious statistical difference (PTNM stages and lymph node metastasis in colon cancer (Pcolon cancer, the ALDH1 may be a valuable marker to predict the biological behavior and trend of metastasis of colon cancer. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  11. Expression of aldehyde dehydrogenase 1 in colon cancer

    Institute of Scientific and Technical Information of China (English)

    Yi Hou; Yi-Yi Liu; Xiao-Kun Zhao

    2013-01-01

    Objective: To study the expression of ALDH1 in colon cancer and its clinical significance. Methods: The expression of ALDH1 was examined in 98 surgical specimens of primary colonic carcinoma and 15 normal colon tissues with immunohistochemistry method. The correlations of the expression with clinicopathological parameters and prognosis of colon cancer were analyzed.Results:The positive rate of expression of ALDH1 was 76.5% (75/98) in the cancer tissues and 13.3% (2/15) in normal colon tissues. There were an obvious statistical difference (P<0.05) between the two groups. The ALDH1 expression was significantly correlated with the histological grade, TNM stages and lymph node metastasis in colon cancer (P<0.05). It was also related with patients’ survival time, those with positive expressions had a poor prognosis (P<0.05). Conclusions: The results suggeste that the overexpression of ALDH1 plays important roles in proliferation and progression in colon cancer, the ALDH1 may be a valuable marker to predict the biological behavior and trend of metastasis of colon cancer.

  12. Study on soluble expression of glutamate dehydrogenase from tea ...

    African Journals Online (AJOL)

    Yomi

    2012-03-20

    Mar 20, 2012 ... expressed with several different N-terminal fusion tags in E. coli, such as B1 immunoglobulin binding .... Isolation of the full-length cDNA of CsGDH2 ... E. coli. MG1655 genomic DNA with primers MBP-NdeI/MBP-BamHI and.

  13. Expression in Escherichia coli of active human alcohol dehydrogenase lacking N-terminal acetylation.

    Science.gov (United States)

    Höög, J O; Weis, M; Zeppezauer, M; Jörnvall, H; von Bahr-Lindström, H

    1987-12-01

    Human alcohol dehydrogenase (ADH, beta beta isozyme of class I) was expressed in Escherichia coli, purified to homogeneity, and characterized regarding N-terminal processing. The expression system was obtained by ligation of a cDNA fragment corresponding to the beta-subunit of human liver alcohol dehydrogenase into the vector pKK 223-3 containing the tac promoter. The enzyme, detected by Western-blot analysis and ethanol oxidizing activity, constituted up to 3% of the total amount of protein. Recombinant ADH was separated from E. coli ADH by ion-exchange chromatography and the isolated enzyme was essentially pure as judged by SDS-polyacrylamide gel electrophoresis and sequence analysis. The N-terminal sequence was identical to that of the authentic beta-subunit except that the N-terminus was non-acetylated, indicating a correct removal of the initiator methionine, but lack of further processing.

  14. Molecular mechanism of null expression of aldehyde dehydrogenase-1 in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Yoshida, Akira [Institute of the City of Hope, Duarte, CA (United States); Yanagawa, Yuchio [Tokohu Univ., Sendai (Japan)

    1996-04-01

    In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5{prime}-promoter region of human, marmoset, and mouse ALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5{prime} promoter region of the human ALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver. 16 refs., 3 figs.

  15. Expression, Purification, Crystallization And Preliminary X-Ray Studies of Histamine Dehydrogenase From Nocardioides Simplex

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.M.; Hirakawa, H.; Mure, M.; Scott, E.E.; Limburg, J.

    2009-05-21

    Histamine dehydrogenase (HADH) from Nocardioides simplex catalyzes the oxidative deamination of histamine to produce imidazole acetaldehyde and an ammonium ion. HADH is functionally related to trimethylamine dehydrogenase (TMADH), but HADH has strict substrate specificity towards histamine. HADH is a homodimer, with each 76 kDa subunit containing two redox cofactors: a [4Fe-4S] cluster and an unusual covalently bound flavin mononucleotide, 6-S-cysteinyl-FMN. In order to understand the substrate specificity of HADH, it was sought to determine its structure by X-ray crystallography. This enzyme has been expressed recombinantly in Escherichia coli and successfully crystallized in two forms. Diffraction data were collected to 2.7 {angstrom} resolution at the SSRL synchrotron with 99.7% completeness. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 101.14, b = 107.03, c = 153.35 {angstrom}.

  16. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  17. Expression of lactate dehydrogenases A and B during chicken spermatogenesis: characterization of testis specific transcripts.

    Science.gov (United States)

    Arias, W M; Mezquita, C; Mezquita, J

    2000-07-19

    The substrates required for glycolysis change markedly at successive stages of spermatogenesis suggesting a considerable plasticity in the expression of glycolytic enzymes. Lactate dehydrogenase (LDH) isoenzymes, LDH-A and LDH-B, are expressed in premeiotic, meiotic cells, and early spermatids, both in avian and mammalian spermatogenesis. Highly polyadenylated forms, particularly of LDH-A, were detected in chicken testis. While mammals and columbid birds express the testis specific LDH-C gene in meiotic and postmeiotic cells, several LDH-B testis specific transcripts were detected in the corresponding cells during chicken spermatogenesis. These testis specific transcripts and the mRNA of mammalian LDH-C show several properties in common, such as temporal correlation of expression, mRNA stability, and repression of premature translation. These observations suggest that the testis specific transcripts could perform during chicken spermatogenesis the functions of the LDH-C mRNA in mammalian testis. Copyright 2000 Wiley-Liss, Inc.

  18. Several novel transcripts of glyceraldehyde-3-phosphate dehydrogenase expressed in adult chicken testis.

    Science.gov (United States)

    Mezquita, J; Pau, M; Mezquita, C

    1998-10-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in addition to being a classic glycolytic enzyme, is a multifunctional protein involved in relevant cell functions such as DNA replication, DNA repair, translational control of gene expression, and apoptosis. Although the multifunctional nature of GAPDH suggests versatility in the mechanisms regulating its expression, no major qualitative changes and few quantitative changes in the GAPDH transcripts have been reported. While studying the expression of GAPDH during spermatogenesis, we detected alternative initiations to TATA box and alternative splicings in the 5' region of the pre-mRNA, resulting in at least six different types of mRNAs. The amount and the polyadenylation of the GAPDH transcripts increased in mature testis in relation to immature testis and further increased when cell suspensions from mature testis were exposed to heat shock. These results suggest that alternative initiation, alternative splicing, and polyadenylation could provide the necessary versatility to the regulation of the expression of this multifunctional protein during spermatogenesis.

  19. Cloning, characterization and functional expression of Taenia solium 17 beta-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Aceves-Ramos, A; de la Torre, P; Hinojosa, L; Ponce, A; García-Villegas, R; Laclette, J P; Bobes, R J; Romano, M C

    2014-07-01

    The 17β-hydroxysteroid dehydrogenases (17β-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17β-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17β-HSD although significant similarities were also found with other invertebrate and vertebrate 17β-HSD sequences. The T. solium Tsol-17βHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17β-HSD induced expression of Tsol17β-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17β-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species.

  20. 20 alpha-hydroxysteroid dehydrogenase expression in a murine virus-induced myeloproliferative syndrome.

    Science.gov (United States)

    Marcovistz, R; Le Bousse-Kerdiles, M C; Maillere, B; Smadja-Joffe, F; Poirrier, V; Jasmin, C

    1991-11-01

    The myeloproliferative sarcoma virus (MPSV) infection in DBA/2 mice leads to important quantitative and qualitative changes in their hemopoiesis. These findings suggest a disturbance in the production and action of a certain hemopoietic factor similar to IL3. Here, we show that the level of the 20 alpha-hydroxysteroid dehydrogenase (20 alpha-SDH) expression, which can be induced by IL3, is dramatically increased in spleen and thymus of MPSV-infected mice. Our results suggest that quantification of 20 alpha-SDH activity can be used to indicate abnormal production of a growth factor similar to IL3 in hemopoietic system diseases.

  1. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    DEFF Research Database (Denmark)

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens;

    2009-01-01

    unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. METHODS: MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS......) and dihydropyrimidine dehydrogenase (DPD) expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. RESULTS: MSI was found in 43 (13.8%) tumors...... ratio (HR) = 0.3; 95% CI: 0.2-0.7; P = 0.0007) and death (HR = 0.4; 95% CI: 0.2-0.9; P = 0.02) independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001) was found, while there was no significant association with DPD intensity (P = 0.1). CONCLUSION...

  2. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    Science.gov (United States)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  3. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.R.; Markova, N.G.; Compton, J.G. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1997-01-15

    Mutations in the fatty aldehyde dehydrogenase (FALDH) gene cause Sjoegren-Larsson syndrome (SLS) - a disease characterized by mental retardation, spasticity, and congenital ichthyosis. To facilitate mutation analysis in SLS and to study the pathogenesis of FALDH deficiency, we have determined the structural organization and characterized expression of the FALDH (proposed designation ALDH10) gene. The gene consists of 10 exons spanning about 30.5 kb. A TATA-less promoter is associated with the major transcription initiation site found to be 258 hp upstream of the ATG codon. The G4C-rich sequences surrounding the transcription initiation site encompassed regulatory elements that interacted with proteins in HeLa nuclear extracts and were able to promote transcription in vitro. FALDH is widely expressed as three transcripts of 2, 3.8, and 4.0 kb, which originate from multiple polyadenylation signals in the 3{prime} UTR. An alternatively spliced mRNA was detected that contains an extra exon and encodes an enzyme that is likely to have altered membrane-binding properties. The FALDH gene lies only 50-85 kb from ALDH3, an aldehyde dehydrogenase gene that has homologous sequence and intron/exon structure. 25 refs., 4 figs., 1 tab.

  4. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production.

    Science.gov (United States)

    Dave, Khyati K; Punekar, Narayan S

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.

  5. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    Directory of Open Access Journals (Sweden)

    Kruhøffer Mogens

    2009-01-01

    Full Text Available Abstract Background Microsatellite instability (MSI refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR. Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression in colorectal cancer were evaluated. Methods MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2, thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. Results MSI was found in 43 (13.8% tumors. Absence of repair protein expression was assessed in 52 (17.0% tumors, which had primarily lost hMLH1 in 39 (12.7%, hMSH2 in 5 (1.6%, and hMSH6 in 8 (2.6% tumors. In multivariate analysis MSI (instable compared to MSS (stable tumors were significantly associated with lower risk of recurrence (hazard ratio (HR = 0.3; 95% CI: 0.2–0.7; P = 0.0007 and death (HR = 0.4; 95% CI: 0.2–0.9; P = 0.02 independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001 was found, while there was no significant association with DPD intensity (P = 0.1. Conclusion The favourable outcome of MSI colorectal carcinomas is ascribed mainly to the tumor biology and to a lesser extent to antitumor response to 5-fluorouracil therapy. There is no evidence that differential TS or DPD expression may account for these outcome characteristics.

  6. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase.

    Science.gov (United States)

    Park, Hyun Joo; Jung, Jihye; Choi, Hyejeong; Uhm, Ki-Nam; Kim, Hyung Kwoun

    2010-09-01

    Ethyl (R, S)-4-chloro-3-hydroxybutanoate (ECHB) is a useful chiral building block for the synthesis of L-carnitine and hypercholesterolemia drugs. The yeast reductase, YOL151W (GenBank locus tag), exhibits an enantioselective reduction activity, converting ethyl-4-chlorooxobutanoate (ECOB) exclusively into (R)-ECHB. YOL151W was generated in Escherichia coli cells and purified via Ni- NTA and desalting column chromatography. It evidenced an optimum temperature of 45 degrees C and an optimum pH of 6.5-7.5. Bacillus subtilis glucose dehydrogenase (GDH) was also expressed in Escherichia coli, and was used for the recycling of NADPH, required for the reduction reaction. Thereafter, Escherichia coli cells co-expressing YOL151W and GDH were constructed. After permeablization treatment, the Escherichia coli whole cells were utilized for ECHB synthesis. Through the use of this system, the 30 mM ECOB substrate could be converted to (R)-ECHB.

  7. The human L-threonine 3-dehydrogenase gene is an expressed pseudogene

    Directory of Open Access Journals (Sweden)

    Edgar Alasdair J

    2002-10-01

    Full Text Available Abstract Background L-threonine is an indispensable amino acid. One of the major L-threonine degradation pathways is the conversion of L-threonine via 2-amino-3-ketobutyrate to glycine. L-threonine dehydrogenase (EC 1.1.1.103 is the first enzyme in the pathway and catalyses the reaction: L-threonine + NAD+ = 2-amino-3-ketobutyrate + NADH. The murine and porcine L-threonine dehydrogenase genes (TDH have been identified previously, but the human gene has not been identified. Results The human TDH gene is located at 8p23-22 and has 8 exons spanning 10 kb that would have been expected to encode a 369 residue ORF. However, 2 cDNA TDH transcripts encode truncated proteins of 157 and 230 residues. These truncated proteins are the result of 3 mutations within the gene. There is a SNP, A to G, present in the genomic DNA sequence of some individuals which results in the loss of the acceptor splice site preceding exon 4. The acceptor splice site preceding exon 6 was lost in all 23 individuals genotyped and there is an in-frame stop codon in exon 6 (CGA to TGA resulting in arginine-214 being replaced by a stop codon. These truncated proteins would be non-functional since they have lost part of the NAD+ binding motif and the COOH terminal domain that is thought to be involved in binding L-threonine. TDH mRNA was present in all tissues examined. Conclusions The human L-threonine 3-dehydrogenase gene is an expressed pseudogene having lost the splice acceptor site preceding exon 6 and codon arginine-214 (CGA is mutated to a stop codon (TGA.

  8. Cloning, expression, functional validation and modeling of cinnamyl alcohol dehydrogenase isolated from xylem of Leucaena leucocephala.

    Science.gov (United States)

    Pandey, Brijesh; Pandey, Veda Prakash; Dwivedi, Upendra Nath

    2011-10-01

    A cDNA encoding cinnamyl alcohol dehydrogenase (CAD), catalyzing conversion of cinnamyl aldehydes to corresponding cinnamyl alcohols, was cloned from secondary xylem of Leucaena leucocephala. The cloned cDNA was expressed in Escherichia coli BL21 (DE3) pLysS cells. Temperature and Zn(2+) ion played crucial role in expression and activity of enzyme, such that, at 18°C and at 2 mM Zn(2+) the CAD was maximally expressed as active enzyme in soluble fraction. The expressed protein was purified 14.78-folds to homogeneity on Ni-NTA agarose column with specific activity of 346 nkat/mg protein. The purified enzyme exhibited lowest Km with cinnamyl alcohol (12.2 μM) followed by coniferyl (18.1 μM) and sinapyl alcohol (23.8 μM). Enzyme exhibited high substrate inhibition with cinnamyl (beyond 20 μM) and coniferyl (beyond 100 μM) alcohols. The in silico analysis of CAD protein exhibited four characteristic consensus sequences, GHEXXGXXXXXGXXV; C(100), C(103), C(106), C(114); GXGXXG and C(47), S(49), H(69), L(95), C(163), I(300) involved in catalytic Zn(2+) binding, structural Zn(2+) binding, NADP(+) binding and substrate binding, respectively. Tertiary structure, generated using Modeller 9v5, exhibited a trilobed structure with bulged out structural Zn(2+) binding domain. The catalytic Zn(2+) binding, substrate binding and NADP(+) binding domains formed a pocket protected by two major lobes. The enzyme catalysis, sequence homology and 3-D model, all supported that the cloned CAD belongs to alcohol dehydrogenase family of plants.

  9. Expression, purification and crystallization of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with orotate

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro; Shimizu, Hironari [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nara, Takeshi; Aoki, Takashi [Department of Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Harada, Shigeharu [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Kita, Kiyoshi, E-mail: kitak@m.u-tokyo.ac.jp [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-10-01

    The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Å resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.

  10. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    Science.gov (United States)

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  11. Succinate Dehydrogenase B Subunit Immunohistochemical Expression Predicts Aggressiveness in Well Differentiated Neuroendocrine Tumors of the Ileum

    Energy Technology Data Exchange (ETDEWEB)

    Milione, Massimo [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pusceddu, Sara [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Gasparini, Patrizia [Molecular Cytogenetics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Melotti, Flavia [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Maisonneuve, Patrick [Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan 20141 (Italy); Mazzaferro, Vincenzo [Division of Gastrointestinal Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Braud, Filippo G. de [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pelosi, Giuseppe, E-mail: giuseppe.pelosi@unimi.it [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Department of Medicine, Surgery and Dentistry, Università degli Studi, Facoltà di Medicina, Milan 20122 (Italy)

    2012-08-16

    Immunohistochemical loss of the succinate dehydrogenase subunit B (SDHB) has recently been reported as a surrogate biomarker of malignancy in sporadic and familial pheocromocytomas and paragangliomas through the activation of hypoxia pathways. However, data on the prevalence and the clinical implications of SDHB immunoreactivity in ileal neuroendocrine tumors are still lacking. Thirty-one consecutive, advanced primary midgut neuroendocrine tumors and related lymph node or liver metastases from 24 males and seven females were immunohistochemically assessed for SDHB. All patients were G1 tumors (Ki-67 labeling index ≤2%). SDHB immunohistochemistry results were expressed as immunostaining intensity and scored as low or strong according to the internal control represented by normal intestinal cells. Strong positivity for SDHB, with granular cytoplasmatic reactivity, was found in 77% of primary tumors (T), whilst low SDHB expression was detected in 90% of metastases (M). The combined analysis (T+M) confirmed the loss of SDHB expression in 82% of metastases compared to 18% of primary tumors. SDHB expression was inversely correlated with Ki-67 labeling index, which accounted for 1.54% in metastastic sites and 0.7% in primary tumors. A correlation between SDHB expression loss, increased Ki-67 labeling index and biological aggressiveness was shown in advanced midgut neuroendocrine tumors, suggesting a role of tumor suppressor gene.

  12. Testis-specific lactate dehydrogenase is expressed in somatic tissues of plateau pikas☆

    Science.gov (United States)

    Wang, Duowei; Wei, Lian; Wei, Dengbang; Rao, Xinfeng; Qi, Xinzhang; Wang, Xiaojun; Ma, Benyuan

    2013-01-01

    LDH-C4 is a lactate dehydrogenase that catalyzes the interconversion of pyruvate with lactate. In mammals the, Ldh-c gene was originally thought to be expressed only in testis and spermatozoa. Plateau pika (Ochotona curzoniae), belonging to the genus Ochotona of the Ochotonidea family, is a hypoxia tolerant mammal living at 3000–5000 m above sea levelon the Qinghai-Tibet Plateau. We found that the expression pattern of six LDH isoenzymes in the somatic tissues of female and male plateau pikas to be the same as those in testis and sperm, suggesting that LDH-C4 was expressed in somatic tissues of plateau pika. Here we report the detection of LDHC in the somatic tissues of plateau pika using RT-PCR, Western blotting and immunohistochemistry. Our results indicate that Ldh-c mRNA is transcribed in the heart, liver, lung, kidney, brain, skeletal muscle and testis. In somatic tissues LDHC was translated in the cytoplasm, while in testis it was expressed in both cytoplasm and mitochondria. The third band from cathode to anode in LDH isoenzymes was identified as LDH-C4. The finding that Ldh-c is expressed in both somatic tissues and testis of plateau pika provides important implications for more in-depth research into the Ldh-c function in mammals. PMID:23772382

  13. Androgen-stimulated UDP-glucose dehydrogenase expression limits prostate androgen availability without impacting hyaluronan levels

    Science.gov (United States)

    Wei, Qin; Galbenus, Robert; Raza, Ashraf; Cerny, Ronald L.; Simpson, Melanie A.

    2009-01-01

    UDP-glucose dehydrogenase (UGDH) oxidizes UDP-glucose to UDP-glucuronate, an essential precursor for production of hyaluronan (HA), proteoglycans, and xenobiotic glucuronides. High levels of HA turnover in prostate cancer are correlated with aggressive progression. UGDH expression is high in the normal prostate even though HA accumulation is virtually undetectable. Thus, its normal role in the prostate may be to provide precursors for glucuronosyltransferase enzymes, which inactivate and solubilize androgens by glucuronidation. In this report, we quantified androgen dependence of UGDH, glucuronosyltransferase, and HA synthase expression. Androgen dependent and independent human prostate cancer cell lines were used to test the effects of UGDH manipulation on tumor cell growth, HA production and androgen glucuronidation. Dihydrotestosterone (DHT) increased UGDH expression ≈2.5-fold in androgen dependent cells. However, upregulation of UGDH did not affect HA synthase expression or enhance HA production. Mass spectrometric analysis showed that DHT was converted to a glucuronide, DHT-G, at a six-fold higher level in androgen dependent cells relative to androgen independent cells. The increased solubilization and elimination of DHT corresponded to slower cellular growth kinetics, which could be reversed in androgen dependent cells by treatment with a UDP-glucuronate scavenger. Collectively, these results suggest that dysregulated expression of UGDH could promote the development of androgen independent tumor cell growth by increasing available levels of intracellular androgen. PMID:19244115

  14. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism.

    Science.gov (United States)

    Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R

    2015-02-01

    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants

    Institute of Scientific and Technical Information of China (English)

    郭岩; 张莉; 肖岗; 曹守云; 谷冬梅; 田文忠; 陈受宜

    1997-01-01

    Betaine as one of osmolytes plays an important role in osmoregulation of most high plants. Betaine aldehyde dehydrogenase C BADH) is the second enzyme involved in betaine biosynthesis. The BADH gene from a halophite, Atriplex hortensis, was transformed into rice cultivars by bombarment method. Totally 192 transgenic rice plants were obtained and most of them had higher salt tolerance than controls. Among transgenic plants transplanted in the saline pool containing 0.5% NaCl in a greenhouse, 22 survived, 13 of which set seeds, and the frequency of seed setting was very low, only 10% . But the controls could not grow under the same condition. The results of BADH ac-tivity assay and Northern blot showed that the BADH gene was integrated into chromosomes of transgenic plants and expressed.

  16. Neurospora NADP-glutamate dehydrogenases and its expression in E. coli and transgenic plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genes of NADP-glutamate dehydrogenase (NADP-GDH) were cloned from Neurospora intermedia (Ni), N. crassa (Nc), and N. sitophila (Ns). The sequences showed a high degree of homology at the cDNA and protein level. The three GDH genes were cloned into pET30a and expressed in E. coli. The activity assay of purified GDH showed that the Ni-GDH had a higher activity and affinity to ammonia than Ns-GDH, and Nc-GDH. The Km value of Ni-GDH ranges from 0.3 to 0.45 mmol/L. Ni-gdh gene was transformed to Nicotiana bethamiana plants. The transformed plants grew much better in low nitrogen media than the only ROKII vector transformed control.

  17. Distinct prognostic values of alcohol dehydrogenase mRNA expression in pancreatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Liao X

    2017-07-01

    Full Text Available Xiwen Liao,1,* Rui Huang,2,* Xiaoguang Liu,1,3 Chuangye Han,1 Long Yu,1,4 Shijun Wang,5 Na Sun,2 Bopei Li,6 Xin Ning,7 Tao Peng1 1Department of Hepatobiliary Surgery, 2Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 3Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 4Department of Hepatobiliary and Pancreatic Surgery, 5Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 6Department of Gastrointestinal Surgery, 7Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China *These authors contributed equally to this work Background: Alcohol dehydrogenase (ADH isoenzymes have been reported as a potential diagnostic marker for pancreatic cancer, but their prognostic value in pancreatic cancer remains unclear. The aim of this investigation was to identify the prognostic value of ADH genes in human patients with pancreatic adenocarcinoma (PAAD.Materials and methods: An RNA sequencing dataset and corresponding survival profiles of PAAD were obtained from The Cancer Genome Atlas. Survival analysis and gene set enrichment analysis were used to investigate the prediction value and potential mechanism of ADH genes in PAAD prognosis.Results: Survival analysis of ADH genes suggests that a high expression of ADH1A (adjusted P=0.037, adjusted hazard ratio [HR] =0.627, 95% CI =0.404–0.972 and ADH6 (adjusted P=0.018, adjusted HR =0.588, 95% CI =0.378–0.914 were associated with a significantly decreased risk of death, while a high expression of ADH5 was associated with a significantly increased risk of death (adjusted P=0.043, adjusted HR =1.564, 95% CI =1.013–2.414. Joint effects analysis of three ADH gene prognostic markers suggests that the prognosis difference for any marker combination was more significant than that for any

  18. Decreased expression of pyruvate dehydrogenase A1 predicts an unfavorable prognosis in ovarian carcinoma

    Science.gov (United States)

    Li, Yaqing; Huang, Ruixia; Li, Xiaoli; Li, Xiaoran; Yu, Dandan; Zhang, Mingzhi; Wen, Jianguo; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Pyruvate dehydrogenase A1 (PDHA1) serves as a gate-keeper enzyme link between glycolysis and the mitochondrial citric acid cycle. The inhibition of PDHA1 in cancer cells can result in an increased Warburg effect and a more aggressive phenotype in cancer cells. This study was conducted to investigate the expression of PDHA1 in ovarian cancer and the correlation between PDHA1 expression and the prognosis of patients. The PDHA1 protein expression in 3 ovarian cancer cell lines (OVCAR-3, SKOV-3 and ES-2) and 248 surgically removed ovarian carcinoma samples was immunocytochemically examined. Statistical analyses were performed to evaluate the correlations between PDHA1 expression and the clinicopathological characteristics of the patients as well as the predictive value of PDHA1. The results showed the presence of variable expression of PDHA1 in the three ovarian cancer cell lines. Of the 248 ovarian cancer tissue specimens, 45 cases (18.1%) were negative in tumor cells for PDHA1, 162 cases (65.3%) displayed a low expression level, and 41 cases (16.5%) had a relatively high PDHA1 staining. The expression of PDHA1 was associated with the histological subtype (P=0.004) and FIGO stage (P=0.002). The median OS time in the PDHA1 negative group, low expression group and high expression group were 0.939 years, 1.443 years and 9.900 years, respectively. The median PFS time in the above three groups were 0.287 years, 0.586 years and 9.900 years, respectively. Furthermore, the high expression of PDHA1 in ovarian carcinoma cells was significantly associated with better OS and PFS by statistical analyses. Multivariate analyses showed that PDHA1 expression was also an independent prognostic factor for higher OS in ovarian cancer patients (HR=0.705, 95% CI 0.541-0.918, P=0.01). Our study indicated that the decreased expression of PDHA1 might be an independent prognostic factor in unfavorable outcomes. PMID:27725912

  19. Monoterpene Metabolism. Cloning, Expression, and Characterization of (−)-Isopiperitenol/(−)-Carveol Dehydrogenase of Peppermint and Spearmint1

    Science.gov (United States)

    Ringer, Kerry L.; Davis, Edward M.; Croteau, Rodney

    2005-01-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (−)-trans-isopiperitenol to (−)-isopiperitenone in peppermint and (−)-trans-carveol to (−)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (−)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (−)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (−)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5′-truncated cDNA encoding the spearmint homolog, (−)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5′-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (−)-trans-isopiperitenol and (−)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13

  20. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    Science.gov (United States)

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease.

  1. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Directory of Open Access Journals (Sweden)

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  2. Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2011-01-01

    Full Text Available Alcohol dehydrogenases (ADH are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD or nicotinamide adenine dinucleotide phosphate (NADP, as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5'-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+. The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3, and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD+, thereby indicating ethanol as one of the substrates of BmADH.

  3. Betaine Aldehyde Dehydrogenase expression during physiological cardiac hypertrophy induced by pregnancy.

    Science.gov (United States)

    Rosas-Rodríguez, Jesús Alfredo; Soñanez-Organis, José Guadalupe; Godoy-Lugo, José Arquimides; Espinoza-Salazar, Juan Alberto; López-Jacobo, Cesar Jeravy; Stephens-Camacho, Norma Aurora; González-Ochoa, Guadalupe

    2017-08-26

    Betaine Aldehyde Dehydrogenase (betaine aldehyde: NAD(P)(+) oxidoreductase, (E.C. 1.2.1.8; BADH) catalyze the irreversible oxidation of betaine aldehyde (BA) to glycine betaine (GB) and is essential for polyamine catabolism, γ-aminobutyric acid synthesis, and carnitine biosynthesis. GB is an important osmolyte that regulates the homocysteine levels, contributing to a vascular risk factor reduction. In this sense, distinct investigations describe the physiological roles of GB, but there is a lack of information about the GB novo synthesis process and regulation during cardiac hypertrophy induced by pregnancy. In this work, the BADH mRNA expression, protein level, and activity were quantified in the left ventricle before, during, and after pregnancy. The mRNA expression, protein content and enzyme activity along with GB content of BADH increased 2.41, 1.95 and 1.65-fold respectively during late pregnancy compared to not pregnancy, and returned to basal levels at postpartum. Besides, the GB levels increased 1.53-fold during pregnancy and remain at postpartum. Our results demonstrate that physiological cardiac hypertrophy induced BADH mRNA expression and activity along with GB production, suggesting that BADH participates in the adaptation process of physiological cardiac hypertrophy during pregnancy, according to the described GB role in cellular osmoregulation, osmoprotection and reduction of vascular risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Heterologous expression of the Bacillus subtilis (natto) alanine dehydrogenase in Escherichia coli and Lactococcus lactis.

    Science.gov (United States)

    Ye, Wei; Huo, Guicheng; Chen, Junliang; Liu, Fei; Yin, Jingyuan; Yang, Lijie; Ma, Xiaolong

    2010-05-30

    The major objective of the present study is to change the alanine production of Lactic acid bacteria by expression of Bacillus subtilis (natto) alanine dehydrogenase (AlaDH), the gene that is not present in Lactic acid. B. subtilis AlaDH gene (ald) was cloned into a pGEX6p-1 and expressed in E. coli JM109. Its enzyme activity was 48.3U/mg at 30 degrees C and 45.2U/mg at 42 degrees C. This ald gene was then cloned into a vector pNZ8148 to generate a vector pNZ8148/ald. The same ald gene was placed downstream of the ldh promoter from Streptococcus thermophilus to generate pNZ273/ldhp/ald. The pNZ8148/ald and pNZ273/ldhp/ald were introduced separately in Lactococcus lactis NZ9000. As a result of over-expressed ald, the production of alanine detected by HPLC in L. lactis NZ9000 carrying pNZ273/ldhp/ald reached 52mug/ml, an approximately 26-fold increase compared to the parent strain L. lactis NZ9000, but not in L. lactis NZ9000 carrying pNZ8148/ald. This study would help strain improvement to be used in dairy fermentation for developing healthy yogurts with sweet taste or other fermented dairy foods. Copyright 2009 Elsevier GmbH. All rights reserved.

  5. Aldehyde dehydrogenase expression in Metaphire posthuma as a bioindicator to monitor heavy metal pollution in soil.

    Science.gov (United States)

    Panday, Raju; Bhatt, Padam Shekhar; Bhattarai, Tribikram; Shakya, Kumudini; Sreerama, Lakshmaiah

    2016-11-21

    Soil contamination and associated pollution plays a detrimental role in soil flora and fauna. Soil is processed and remodeled by subterranean earthworms, accordingly are referred to as soil chemical engineers. These worms, besides processing carbon and nitrogen, serve as minors for processing metals. In heavy metal contaminated soils, they accumulate heavy metals, which in turn cause altered gene expression, including aldehyde dehydrogenase (ALDH) enzymes. This study explores the possibility of ALDH expression in earthworms as a novel biomarker for the heavy metal contamination of soil. Earthworms cultured in contaminated soils accumulated significantly higher levels of Pb and Cd. Similarly, significantly higher levels of ALDH enzyme activities were observed in earthworms cultured in soils contaminated with Pb and Cd. The ALDH activity was found to be highest in worms cultured in 5 ppm heavy metal contaminated soils. Although, ALDH activities decreased as the heavy metal concentration in soil increased, they were significantly higher when compared to control worms cultured in uncontaminated soils. The accumulation of heavy metal in earthworms measured after 28 days decreased as the heavy metal concentration in soil increased. Levels of ALDH expression correlated with total Pb and Cd concentration in the earthworm tissue. This study showed that the ALDH activity in earthworms could potentially be used as a biomarker to show heavy metal pollution in soil.

  6. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  7. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes

    Directory of Open Access Journals (Sweden)

    Bey Mathieu

    2011-12-01

    Full Text Available Abstract Background Cellobiose dehydrogenase (CDH is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. Results First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat straw was observed with (i the production of a large amount of gluconic acid, (ii increased hemicellulose degradation, and (iii increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the recombinant CDH (rCDH expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-binding module (CBM. Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results observed with P. cinnabarinus secretome. Conclusions We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to gluconic acid production from raw lignocellulosic material.

  8. Expression patterns of members of the isocitrate dehydrogenase gene family in murine inner ear.

    Science.gov (United States)

    Kim, Y-R; Kim, K-H; Lee, S; Oh, S-K; Park, J-W; Lee, K-Y; Baek, J-I; Kim, U-K

    2017-09-19

    Age-related hearing loss (ARHL) is characterized by an age-dependent decline of auditory function characterized by with loss of sensory hair cells, spiral ganglion neurons, and stria vascularis (SV) cells in the cochlea of the inner ear. Aging and age-related diseases result from accumulated oxidative damage caused by reactive oxygen species (ROS) generated by mitochondria. The isocitrate dehydrogenase (IDH) family includes three enzymes in human cells: IDH1, IDH2, and IDH3. Although all three enzymes catalyze the same enzymatic reaction, that is, oxidative decarboxylation of isocitrate to produce α-ketoglutarate, each IDH enzyme has unique features. We identified and characterized IDH expression in the cochlea and vestibule of the murine inner ear. We examined the mRNA expression levels of Idh family members in the cochlea and vestibule using reverse transcription-PCR (RT-PCR) and detected expression of IDH family members in both tissues. We also used immunohistochemistry to localize IDH family members within the cochlea and vestibule of the adult mouse inner ear. IDH1 was detected throughout the cochlea. IDH2 was expressed specifically in the hair cells, spiral ganglion, and stria vascularis. IDH3α was found in the cell bodies of neurons of the spiral ganglion, the stria vascularis, and in types II, IV, and V cells of the spiral ligament in a pattern that resembled the location of the Na(+), K(+)-ATPase ion channel. We postulate that the IDH family participates in transporting K(+) ions in the cochlea. In the vestibule, all IDH family members were detected in both hair cells and the vestibular ganglion. We hypothesize that IDH1, IDH2, and IDH3 function to protect proteins in the inner ear from oxidative stress during K(+) recycling.

  9. Organ-specific expression of glutamate dehydrogenase (GDH) subunits in yellow lupine.

    Science.gov (United States)

    Lehmann, Teresa; Dabert, Mirosława; Nowak, Witold

    2011-07-01

    Glutamate dehydrogenase (GDH, EC 1.4.2-4) is present in yellow lupine (Lupinus luteus cv. Juno) in many isoforms. The number and banding pattern of isoenzymes varies with respect to plant organ and developmental stage. To better understand the complex nature of GDH regulation in plants, the levels of GDH transcripts, enzyme activity and isoenzyme patterns in germinating seeds and roots of yellow lupine were examined. The analysis of GDH cDNA sequences in lupine revealed three mRNA types, of which two encoded the β-GDH subunit and one encoded the α-GDH subunit (corresponding to the GDH1(GDH3) and GDH2 genes, respectively). The relative expression of GDH1 and GDH2 genes was analyzed in various lupine organs by using quantitative real-time PCR. Our results indicate that different mRNA types were differently regulated depending on organ type. Although both genes appeared to be ubiquitously expressed in all lupine tissues, the GDH1 transcripts evidently predominated over those of GDH2. Immunochemical analyses confirmed that, during embryo development, varied expression of two GDH subunits takes place. The α-GDH subunit (43kDa) predominated in the early stages of germinating seeds, while the β-GDH subunit (44kDa) was the only GDH polypeptide present in lupine roots. These results firmly support the hypothesis that isoenzyme variability of GDH in yellow lupine is associated with the varied expression of α and β subunits into the complexes of hexameric GDH forms. The presence of several isogenes of GDH in yellow lupine may explain the high number (over 20) of its molecular forms in germinating lupine. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  11. The cinnamyl alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns.

    Science.gov (United States)

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2014-01-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be one of the key residues in the catalytic mechanism. The phylogenetic tree revealed seven groups of CAD and melon CAD genes fell into four main groups. CmCAD1 and CmCAD2 belonged to the bona fide CAD group, in which these CAD genes, as representative from angiosperms, were involved in lignin synthesis. Other CmCADs were distributed in group II, V and VII, respectively. Semi-quantitative PCR and real time qPCR revealed differential expression of CmCADs, and CmCAD5 was expressed in different vegetative tissues except mature leaves, with the highest expression in flower, while CmCAD2 and CmCAD5 were strongly expressed in flesh during development. Promoter analysis revealed several motifs of CAD genes involved in the gene expression modulated by various hormones. Treatment of abscisic acid (ABA) elevated the expression of CmCADs in flesh, whereas the transcript levels of CmCAD1 and CmCAD5 were induced by auxin (IAA); Ethylene induced the expression of CmCADs, while 1-MCP repressed the effect, apart from CmCAD4. Taken together, these data suggested that CmCAD4 may be a pseudogene and that all other CmCADs may be involved in the lignin biosynthesis induced by both abiotic and biotic stresses and in tissue-specific developmental lignification through a CAD genes family network, and CmCAD2 may be the main CAD enzymes for lignification of melon flesh and CmCAD5 may also function in flower development.

  12. Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells.

    Science.gov (United States)

    Spanaki, Cleanthe; Zaganas, Ioannis; Kleopa, Kleopas A; Plaitakis, Andreas

    2010-05-28

    Mammalian glutamate dehydrogenase (GDH) is an allosterically regulated enzyme that is expressed widely. Its activity is potently inhibited by GTP and thought to be controlled by the need of the cell for ATP. In addition to this housekeeping human (h) GDH1, humans have acquired (via a duplication event) a highly homologous isoenzyme (hGDH2) that is resistant to GTP. Although transcripts of GLUD2, the gene encoding hGDH2, have been detected in human neural and testicular tissues, data on the endogenous protein are lacking. Here, we developed an antibody specific for hGDH2 and used it to study human tissues. Western blot analyses revealed, to our surprise, that endogenous hGDH2 is more densely expressed in testis than in brain. At the subcellular level, hGDH2 localized to mitochondria. Study of testicular tissue using immunocytochemical and immunofluorescence methods revealed that the Sertoli cells were strongly labeled by our anti-hGDH2 antibody. In human cerebral cortex, a robust labeling of astrocytes was detected, with neurons showing faint hGDH2 immunoreactivity. Astrocytes and Sertoli cells are known to support neurons and germ cells, respectively, providing them with lactate that largely derives from the tricarboxylic acid cycle via conversion of glutamate to alpha-ketoglutarate (GDH reaction). As hGDH2 is not subject to GTP control, the enzyme is able to metabolize glutamate even when the tricarboxylic acid cycle generates GTP amounts sufficient to inactivate the housekeeping hGDH1 protein. Hence, the selective expression of hGDH2 by astrocytes and Sertoli cells may provide a significant biological advantage by facilitating metabolic recycling processes essential to the supportive role of these cells.

  13. Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680.

    Science.gov (United States)

    Wang, Zong-Da; Wang, Bao-Juan; Ge, Ya-Dong; Pan, Wei; Wang, Jie; Xu, Lei; Liu, Ai-Min; Zhu, Guo-Ping

    2011-03-01

    A malate dehydrogenase (MDH) from Streptomyces avermitilis MA-4680 (SaMDH) has been expressed and purified as a fusion protein. The molecular mass of SaMDH is about 35 kDa determined by SDS-PAGE. The recombinant SaMDH has a maximum activity at pH 8.0. The enzyme shows the optimal temperature around 42 °C and displays a half-life (t(1/2)) of 160 min at 50°C which is more thermostable than reported MDHs from most bacteria and fungi. The k(cat) value of SaMDH is about 240-fold of that for malate oxidation. In addition, the k(cat)/K(m) ratio shows that SaMDH has about 1,246-fold preference for oxaloacetate (OAA) reduction over L-malate oxidation. The recombinant SaMDH may also use NADPH as a cofactor although it is a highly NAD(H)-specific enzyme. There was no activity detected when malate and NADP(+) were used as substrates. Substrate inhibition studies show that SaMDH activity is strongly inhibited by excess OAA with NADH, but is not sensitive to excess L-malate. Enzymatic activity is enhanced by the addition of Na(+), NH(4)(+), Ca(2+), Cu(2+) and Mg(2+) and inhibited by addition of Hg(2+) and Zn(2+). MDH is widely used in coenzyme regeneration, antigen immunoassays and bioreactors. The enzymatic analysis could provide the important basic knowledge for its utilizations.

  14. Gene clone,expression and enzyme activity assay of a cytosolic malate dehydrogenase from apple fruits

    Institute of Scientific and Technical Information of China (English)

    Yuxin YAO; Yujin HAO; Ming LI; Mingli PANG; Zhi LIU; Heng ZHAI

    2008-01-01

    Malate dehydrogenase (MDH) ubiquitously exists in animals,plants and microoganisms,and catalyzes the interconversion from oxaloacetate to malate.Cytosolic NAD-dependent MDH gene (cyMDH)encodes a key enzyme crucial for malic acid synthesis in the cytosol which has not been extensively characterized in plants.In this study,a full-length cDNA of cyMDH was isolated from apple fruits with RT-PCR as well as 3' and 5' rapid amplification of cDNA ends,and designated as Mal-cyMDH (GenBank accession No.DQ221207).It contained a 996-bp ORF and its sequence analysis shows a high similarity to other plant cyMDHs.Phylogenetic analysis indicated that almost all the cyMDHs could be clustered into the same group and it was likely to represent the original MDH.A roughly 37-kDa fused protein was obtained by the recombinant prokaryotic expression and its enzyme activity assay showed that it mainly catalyzed oxaloacetate to malate.It was also discovered that the enzyme activity of cyMDH exhibited remarkable difference between the high- and low-acid apple germplasm.

  15. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase.

    Science.gov (United States)

    Berzin, Vel; Tyurin, Michael; Kiriukhin, Michael

    2013-02-01

    Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H₂ in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.

  16. Diversity in expression of glucose-6-phosphate dehydrogenase deficiency in females.

    Science.gov (United States)

    Abdulrazzaq, Y M; Micallef, R; Qureshi, M; Dawodu, A; Ahmed, I; Khidr, A; Bastaki, S M; Al-Khayat, A; Bayoumi, R A

    1999-01-01

    The aims of this study were to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the United Arab Emirates (UAE), to describe the different mutations in the population, to determine its prevalence, and to study inheritance patterns in families of G6PD-deficient individuals. All infants born at Tawam Hospital, Al-Ain, UAE from January 1994 to September 1996 were screened at birth for their G6PD status. In addition, those attending well-baby clinics during the period were also screened for the disorder. Families of 40 known G6PD-deficient individuals, selected randomly from the records of three hospitals in the country, were assessed for G6PD deficiency. Where appropriate, this was followed by definition of G6PD mutations. Of 8198 infants, 746 (9.1%), comprising 15% of males and 5% of females tested, were found to be G6PD deficient. A total of 27 families were further assessed: of these, all but one family had the nt563 Mediterranean mutation. In one family, two individuals had the nt202 African mutation. The high manifestation of G6PD deficiency in women may be due to the preferential expression of the G6PD-deficient gene and X-inactivation of the normal gene, and/or to the presence of an 'enhancer' gene that makes the expression of the G6PD deficiency more likely. The high level of consanguinity which, theoretically, should result in a high proportion of homozygotes and consequently a higher proportion of females with the deficiency, was not found to be a significant factor.

  17. Expression, characterization and mutagenesis of an FAD-dependent glucose dehydrogenase from Aspergillus terreus.

    Science.gov (United States)

    Yang, Yufeng; Huang, Lei; Wang, Jufang; Xu, Zhinan

    2015-01-01

    An FAD-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus terreus NIH2624 was expressed in Escherichia coli with a yield of 228±16U/L of culture. Co-expression with chaperones DnaK/DnaJ/GrpE and osmotic stress induced by simple carbon sources enhanced productivity significantly, improving the yield to 23883±563U/L after optimization. FAD-GDH was purified in two steps with the specific activity of 604U/mg. Using d-glucose as substrate, the optimal pH and temperature for FAD-GDH were determined to be 7.5 and 50°C, respectively. Activity was stable across the pH range 3.5-9.0, and the half-life was 52min at 42°C. Km and Vmax were calculated as 86.7±5.3mM and 928±35U/mg, and the molecular weight was approximately 65.6kDa based on size exclusion chromatography, indicating a monomeric structure. The 3D structure of FAD-GDH was simulated by homology modelling using the structure of A. niger glucose oxidase (GOD) as template. From the model, His551, His508, Asn506 and Arg504 were identified as key residues, and their importance was verified by site-directed mutagenesis. Furthermore, three additional mutants (Arg84Ala, Tyr340Phe and Tyr406Phe) were generated and all exhibited a higher degree of substrate specificity than the native enzyme. These results extend our understanding of the structure and function of FAD-GDH, and could assist potential commercial applications.

  18. Molecular cloning, co-expression, and characterization of glycerol dehydratase and 1,3-propanediol dehydrogenase from Citrobacter freundii.

    Science.gov (United States)

    Qi, Xianghui; Deng, Wenying; Wang, Fei; Guo, Qi; Chen, Huayou; Wang, Liang; He, Xiang; Huang, Ribo

    2013-06-01

    1,3-Propanediol (1,3-PD), an important material for chemical industry, is biologically synthesized by glycerol dehydratase (GDHt) and 1,3-propanediol dehydrogenase (PDOR). In present study, the dhaBCE and dhaT genes encoding glycerol dehydratase and 1,3-propanediol dehydrogenase respectively were cloned from Citrobacter freundii and co-expressed in E. coli. Sequence analysis revealed that the cloned genes were 85 and 77 % identical to corresponding gene of C. freundii DSM 30040 (GenBank No. U09771), respectively. The over-expressed recombinant enzymes were purified by nickel-chelate chromatography combined with gel filtration, and recombinant GDHt and PDOR were characterized by activity assay, kinetic analysis, pH, and temperature optimization. This research may form a basis for the future work on biological synthesis of 1,3-PD.

  19. Relationship between the Expression of Thymidylate Synthase,Thymidine Phosphorylase and Dihydropyrimidine Dehydrogenase and Survival in Epithelial Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    王常玉; 翁艳洁; 王鸿雁; 石英; 马丁

    2010-01-01

    The mRNA and protein expression of thymidylate synthase (TS), thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) and their relationship with prognosis were investigated. Real-time quantitative RT-PCR (Taqman) was used to detect the mRNA expression of TS, TP and DPD in formalin-fixed and paraffin-embedded 106 samples of epithelial ovarian cancer and 29 normal ovaries. A TATA box-binding protein (TBP) was used as an endogenous reference gene. A relationship between TS, TP, DPD expression a...

  20. Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production.

    Science.gov (United States)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Wu, Xi; Xing, Xin-Hui

    2009-10-01

    An expression system for NAD(+)-dependent formate dehydrogenase gene (fdh1), from Candida boidinii, was constructed and cloned into Enterobacter aerogenes IAM1183. With the fdh1 expression, the total H(2) yield was attributed to a decrease in activity of the lactate pathway and an increase of the formate pathway flux due to the NADH regeneration. Analysis of the redox state balance and ethanol-to-acetate ratio in the fdhl-expressed strain showed that increased reducing power arose from the reconstruction of NADH regeneration pathway from formate thereby contributing to the improved H(2) production.

  1. Expression and characterization of Pantoea CO dehydrogenase to utilize CO-containing industrial waste gas for expanding the versatility of CO dehydrogenase

    Science.gov (United States)

    Choi, Eun Sil; Min, Kyoungseon; Kim, Geun-Joong; Kwon, Inchan; Kim, Yong Hwan

    2017-03-01

    Although aerobic CO dehydrogenases (CODHs) might be applicable in various fields, their practical applications have been hampered by low activity and no heterologous expression. We, for the first time, could functionally express recombinant PsCODH in E. coli and obtained a highly concentrated recombinant enzyme using an easy and convenient method. Its electron acceptor spectra, optimum conditions (pH 6.5 and 30 °C), and kinetic parameters (kcat of 12.97 s-1, Km of 0.065 mM, and specific activity of 0.86 Umg-1) were examined. Blast furnace gas (BFG) containing 20% CO, which is a waste gas from the steel-making process, was tested as a substrate for PsCODH. Even with BFG, the recombinant PsCODH retained 88.2% and 108.4% activity compared with those of pure CO and 20% CO, respectively. The results provide not only a promising strategy to utilize CO-containing industrial waste gases as cheap, abundant, and renewable resources but also significant information for further studies about cascade reactions producing value-added chemicals via CO2 as an intermediate produced by a CODH-based CO-utilization system, which would ultimately expand the versatility of CODH.

  2. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues.

    Science.gov (United States)

    Hirota, Takeshi; Date, Yuko; Nishibatake, Yu; Takane, Hiroshi; Fukuoka, Yasushi; Taniguchi, Yuuji; Burioka, Naoto; Shimizu, Eiji; Nakamura, Hiroshige; Otsubo, Kenji; Ieiri, Ichiro

    2012-07-01

    Dihydropyrimidine dehydrogenase (DPD) is important to the antitumor effect of 5-fluorouracil (5-FU). DPD gene (DPYD) expression in tumors is correlated with sensitivity to 5-FU. Because the 5-FU accumulated in cancer cells is also rapidly converted into inactivated metabolites through catabolic pathways mediated by DPD, high DPD activity in cancer cells is an important determinant of the response to 5-FU. DPD activity is highly variable and reduced activity causes a high risk of 5-FU toxicity. Genetic variation in DPYD has been proposed as the main factor responsible for the variation in DPD activity. However, only a small proportion of the activity of DPD can be explained by DPYD mutations. In this study, we found that DPYD is a target of the following microRNAs (miRNA): miR-27a, miR-27b, miR-134, and miR-582-5p. In luciferase assays with HepG2 cells, the overexpression of these miRNAs was associated with significantly decreased reporter activity in a plasmid containing the 3'-UTR of DYPD mRNA. The level of DPD protein in MIAPaca-2 cells was also significantly decreased by the overexpression of these four miRNAs. The results suggest that miR-27a, miR-27b, miR-134, and miR-582-5p post-transcriptionally regulate DPD protein expression. The levels of miRNAs in normal lung tissue and lung tumors were compared; miR-27b and miR-134 levels were significantly lower in the tumors than normal tissue (3.64 ± 4.02 versus 9.75 ± 6.58 and 0.64 ± 0.75 versus 1.48 ± 1.39). DPD protein levels were significantly higher in the tumors. Thus, the decreased expression of miR-27b would be responsible for the high levels of DPD protein. This study is the first to show that miRNAs regulate the DPD protein, and provides new insight into 5-FU-based chemotherapy.

  3. Expression of novel cytosolic malate dehydrogenases (cMDH) in Lupinus angustifolius nodules during phosphorus starvation.

    Science.gov (United States)

    Le Roux, Marcellous; Phiri, Ethel; Khan, Wesaal; Sakiroğlu, Muhammet; Valentine, Alex; Khan, Sehaam

    2014-11-01

    During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (-P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to -P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency.

  4. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme.

    Science.gov (United States)

    Knecht, W; Bergjohann, U; Gonski, S; Kirschbaum, B; Löffler, M

    1996-08-15

    Human mitochondrial dihydroorotate dehydrogenase (the fourth enzyme of pyrimidine de novo synthesis) has been overproduced by means of a recombinant baculovirus that contained the human cDNA fragment for this protein. After virus infection and protein expression in Trichoplusia ni cells (BTI-Tn-5B1-4), the subcellular distribution of the recombinant dihydroorotate dehydrogenase was determined by two distinct enzyme-activity assays and by Western blot analysis with anti-(dihydroorotate dehydrogenase) Ig. The targeting of the recombinant protein to the mitochondria of the insect cells was verified. The activity of the recombinant enzyme in the mitochondria of infected cells was about 740-fold above the level of dihydroorotate dehydrogenase in human liver mitochondria. In a three-step procedure, dihydroorotate dehydrogenase was purified to a specific activity of greater than 50 U/mg. Size-exclusion chromatography showed a molecular mass of 42 kDa and confirmed the existence of the fully active enzyme as a monomeric species. Fluorimetric cofactor analysis revealed the presence of FMN in recombinant dihydroorotate dehydrogenase. By kinetics analysis, Km values for dihydroorotate and ubiquinone-50 were found to be 4 microM and 9.9 microM, respectively, while Km values for dihydroorotate and decylubiquinone were 9.4 microM and 13.7 microM, respectively. The applied expression system will allow preparation of large quantities of the enzyme for structure and function studies. Purified recombinant human dihytdroorotate dehydrogenase was tested for its sensitivity to a reported inhibitor A77 1726 (2-hydroxyethyliden-cyanoacetic acid 4-trifluoromethyl anilide), which is the active metabolite of the isoxazole derivative leflunomide [5-methyl-N-(4-trifluoromethyl-phenyl)-4-isoxazole carboximide]. An IC50 value of 1 microM was determined for A77 1726. Detailed kinetics experiments revealed uncompetitive inhibition with respect to dihydroorotate (Kiu = 0.94 microM) and non

  5. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    Science.gov (United States)

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  6. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    Science.gov (United States)

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile.

  7. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene.

    Science.gov (United States)

    Koivuranta, Kari T; Ilmén, Marja; Wiebe, Marilyn G; Ruohonen, Laura; Suominen, Pirkko; Penttilä, Merja

    2014-08-08

    Bioplastics, like polylactic acid (PLA), are renewable alternatives for petroleum-based plastics. Lactic acid, the monomer of PLA, has traditionally been produced biotechnologically with bacteria. With genetic engineering, yeast have the potential to replace bacteria in biotechnological lactic acid production, with the benefits of being acid tolerant and having simple nutritional requirements. Lactate dehydrogenase genes have been introduced to various yeast to demonstrate this potential. Importantly, an industrial lactic acid producing process utilising yeast has already been implemented. Utilisation of D-xylose in addition to D-glucose in production of biochemicals such as lactic acid by microbial fermentation would be beneficial, as it would allow lignocellulosic raw materials to be utilised in the production processes. The yeast Candida sonorensis, which naturally metabolises D-xylose, was genetically modified to produce L-lactic acid from D-xylose by integrating the gene encoding L-lactic acid dehydrogenase (ldhL) from Lactobacillus helveticus into its genome. In microaerobic, CaCO3-buffered conditions a C. sonorensis ldhL transformant having two copies of the ldhL gene produced 31 g l-1 lactic acid from 50 g l-1 D-xylose free of ethanol.Anaerobic production of lactic acid from D-xylose was assessed after introducing an alternative pathway of D-xylose metabolism, i.e. by adding a xylose isomerase encoded by XYLA from Piromyces sp. alone or together with the xylulokinase encoding gene XKS1 from Saccharomyces cerevisiae. Strains were further modified by deletion of the endogenous xylose reductase encoding gene, alone or together with the xylitol dehydrogenase encoding gene. Strains of C. sonorensis expressing xylose isomerase produced L-lactic acid from D-xylose in anaerobic conditions. The highest anaerobic L-lactic acid production (8.5 g l-1) was observed in strains in which both the xylose reductase and xylitol dehydrogenase encoding genes had been

  8. Cloning and expression in Escherichia coli of a gene coding for a secondary alcohol dehydrogenase from Candida parapsilosis.

    Science.gov (United States)

    Yamamoto, H; Kawada, N; Matsuyama, A; Kobayashi, Y

    1999-06-01

    A gene encoding a stereo-specific secondary alcohol dehydrogenase (CpSADH) that catalyzed the oxidation of (S)-1,3-BDO to 4-hydroxy-2-butanone was cloned from Candida parapsilosis. This CpSADH-gene consisted of 1,009 nucleotides coding for a protein with M(r) 35,964. A recombinant Escherichia coli JM109 strain harboring the expression plasmid, pKK-CPA1, produced (R)-1,3-BDO (93.5% ee., 94.7% yield) from the racemate without any additive to regenerate NAD+ from NADH.

  9. Testosterone stimulates adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 expression in a depot-specific manner in children.

    Science.gov (United States)

    Zhu, Lijun; Hou, Miao; Sun, Bin; Burén, Jonas; Zhang, Li; Yi, Jun; Hernell, Olle; Li, Xiaonan

    2010-07-01

    Activation of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in adipose tissue results in the production of excess tissue glucocorticoids and the induction of adiposity and visceral obesity in particular. Androgens may affect body fat distribution by regulating the local metabolism of cortisol. Our objective was to study 11beta-HSD1 mRNA expression in abdominal sc and omental (om) adipose tissue in children after in vitro testosterone and cortisol treatment. Paired fat biopsies (sc and om) were obtained from 19 boys (age 6-14 yr, body mass index 14.6-25.3 kg/m(2), BMI sd score SDS -1.6-3.1) undergoing open abdominal surgery. Pieces of adipose tissue were incubated with testosterone, cortisol, or both hormones for 24 h, whereupon mRNA expression of 11beta-HSD1 and hexose-6-phosphate dehydrogenase (H6PDH) were measured by real-time PCR, and 11beta-HSD1 enzyme activity was determined. Testosterone treatment up-regulated 11beta-HSD1 mRNA expression compared with control incubations in the absence of testosterone (P tissue. Testosterone and cortisol both increased 11beta-HSD1 mRNA expression in om but not sc adipose tissue in a depot-specific manner by 2.5- and 2.9-fold, respectively (P effect of the two hormones. 11beta-HSD1 enzyme activity correlated positively to mRNA expression (r = 0.610; P = 0.001). Adipose tissue mRNA expression of H6PDH was affected in a similar fashion to 11beta-HSD1 after hormonal treatment. Testosterone and cortisol stimulated 11beta-HSD1 and H6PDH mRNA expression and 11beta-HSD1 activity in om but not in sc adipose tissue. This suggests that these hormones may contribute to fat distribution and accumulation during childhood.

  10. Cloning and Expression of a Xylitol-4-Dehydrogenase Gene from Pantoea ananatis

    Science.gov (United States)

    Aarnikunnas, J. S.; Pihlajaniemi, A.; Palva, A.; Leisola, M.; Nyyssölä, A.

    2006-01-01

    The Pantoea ananatis ATCC 43072 mutant strain is capable of growing with xylitol as the sole carbon source. The xylitol-4-dehydrogenase (XDH) catalyzing the oxidation of xylitol to l-xylulose was isolated from the cell extract of this strain. The N-terminal amino acid sequence of the purified protein was determined, and an oligonucleotide deduced from this peptide sequence was used to isolate the xylitol-4-dehydrogenase gene (xdh) from a P. ananatis gene library. Nucleotide sequence analysis revealed an open reading frame of 795 bp, encoding the xylitol-4-dehydrogenase, followed by a 5′ region of another open reading frame encoding an unknown protein. Results from a Northern analysis of total RNA isolated from P. ananatis ATCC 43072 suggested that xdh is transcribed as part of a polycistronic mRNA. Reverse transcription-PCR analysis of the transcript confirmed the operon structure and suggested that xdh was the first gene of the operon. Homology searches revealed that the predicted amino acid sequence of the P. ananatis XDH shared significant identity (38 to 51%) with members of the short-chain dehydrogenase/reductase family. The P. ananatis xdh gene was successfully overexpressed in Escherichia coli, XDH was purified to homogeneity, and some of its enzymatic properties were determined. The enzyme had a preference for NAD+ as the cosubstrate, and in contrast to previous reports, the enzyme also showed a side activity for the d-form of xylulose. Xylitol was converted to l-xylulose with a high yield (>80%) by the resting recombinant cells, and the l-xylulose was secreted into the medium. No evidence of d-xylulose being synthesized by the recombinant cells was found. PMID:16391066

  11. FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression.

    Science.gov (United States)

    Gopal, Keshav; Saleme, Bruno; Al Batran, Rami; Aburasayn, Hanin; Eshreif, Amina; Ho, Kim L; Ma, Wayne K; Almutairi, Malak; Eaton, Farah; Gandhi, Manoj; Park, Edwards A; Sutendra, Gopinath; Ussher, John R

    2017-09-01

    Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation and a critical regulator of metabolic flexibility during the fasting to feeding transition. PDH is regulated via both PDH kinases (PDHK) and PDH phosphatases, which phosphorylate/inactivate and dephosphorylate/activate PDH, respectively. Our goal was to determine whether the transcription factor forkhead box O1 (FoxO1) regulates PDH activity and glucose oxidation in the heart via increasing the expression of Pdk4, the gene encoding PDHK4. To address this question, we differentiated H9c2 myoblasts into cardiac myocytes and modulated FoxO1 activity, after which Pdk4/PDHK4 expression and PDH phosphorylation/activity were assessed. We assessed binding of FoxO1 to the Pdk4 promoter in cardiac myocytes in conjunction with measuring the role of FoxO1 on glucose oxidation in the isolated working heart. Both pharmacological (1 µM AS1842856) and genetic (siRNA mediated) inhibition of FoxO1 decreased Pdk4/PDHK4 expression and subsequent PDH phosphorylation in H9c2 cardiac myocytes, whereas 10 µM dexamethasone-induced Pdk4/PDHK4 expression was abolished via pretreatment with 1 µM AS1842856. Furthermore, transfection of H9c2 cardiac myocytes with a vector expressing FoxO1 increased luciferase activity driven by a Pdk4 promoter construct containing the FoxO1 DNA-binding element region, but not in a Pdk4 promoter construct lacking this region. Finally, AS1842856 treatment in fasted mice enhanced glucose oxidation rates during aerobic isolated working heart perfusions. Taken together, FoxO1 directly regulates Pdk4 transcription in the heart, thereby controlling PDH activity and subsequent glucose oxidation rates.NEW & NOTEWORTHY Although studies have shown an association between FoxO1 activity and pyruvate dehydrogenase kinase 4 expression, our study demonstrated that pyruvate dehydrogenase kinase 4 is a direct transcriptional target of FoxO1 (but not FoxO3/FoxO4) in the heart. Furthermore, we report

  12. Cloning, sequencing and functional expression of cytosolic malate dehydrogenase from Taenia solium: Purification and characterization of the recombinant enzyme.

    Science.gov (United States)

    Nava, Gabriela; Laclette, Juan P; Bobes, Raúl; Carrero, Julio C; Reyes-Vivas, Horacio; Enriquez-Flores, Sergio; Mendoza-Hernández, Guillermo; Plancarte, Agustín

    2011-07-01

    We report herein the complete coding sequence of a Taenia solium cytosolic malate dehydrogenase (TscMDH). The cDNA fragment, identified from the T. solium genome project database, encodes a protein of 332 amino acid residues with an estimated molecular weight of 36517Da. For recombinant expression, the full length coding sequence was cloned into pET23a. After successful expression and enzyme purification, isoelectrofocusing gel electrophoresis allowed to confirm the calculated pI value at 8.1, as deduced from the amino acid sequence. The recombinant protein (r-TscMDH) showed MDH activity of 409U/mg in the reduction of oxaloacetate, with neither lactate dehydrogenase activity nor NADPH selectivity. Optimum pH for enzyme activity was 7.6 for oxaloacetate reduction and 9.6 for malate oxidation. K(cat) values for oxaloacetate, malate, NAD, and NADH were 665, 47, 385, and 962s(-1), respectively. Additionally, a partial characterization of TsMDH gene structure after analysis of a 1.56Kb genomic contig assembly is also reported.

  13. Transcription analysis of pyranose dehydrogenase from the basidiomycete Agaricus bisporus and characterization of the recombinantly expressed enzyme.

    Science.gov (United States)

    Gonaus, Christoph; Kittl, Roman; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens

    2016-03-01

    Agaricus bisporus is a litter degrading basidiomycete commonly found in humic-rich environments. It is used as model organism and cultivated in large scale for food industry. Due to its ecological niche it produces a variety of enzymes for detoxification and degradation of humified plant litter. One of these, pyranose dehydrogenase, is thought to play a role in detoxification and lignocellulose degradation. It is a member of the glucose-methanol-choline family of flavin-dependent enzymes and oxidizes a wide range of sugars with concomitant reduction of electron acceptors like quinones. In this work, transcription of pdh in A. bisporus was investigated with real-time PCR revealing influence of the carbon source on pdh expression levels. The gene was isolated and heterologously expressed in Pichia pastoris. Characterization of the recombinant enzyme showed a higher affinity towards disaccharides compared to other tested pyranose dehydrogenases from related Agariceae. Homology modeling and sequence alignments indicated that two loops of high sequence variability at substrate access site could play an important role in modulating these substrate specificities.

  14. Age-related changes in the expression of 11beta-hydroxysteroid dehydrogenase type 2 in rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva

    2009-12-01

    Full Text Available Previous studies in rats have shown that the ability of Leydig cells (LCs to produce testosterone significantly declines with age. To address the possible mechanisms by which aging LCs lose their steroidogenic function, we determined the effect of aging on the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD type 2. The enzyme plays a protective role in blunting the suppressive effects of glucocorticoids on LCs steroidogenesis. Our immunohistochemical analysis revealed progressive decline in 11beta-HDS type 2 expression in LCs of the 18 months of age rats and the most significant reduction in 11beta-HSD2 immunoreactivity was evident in the testicular interstitium of 24- month-old rats. The decrease in the 11beta-HDS type 2 immunostaining in LCs during aging coincided with decline in insulin-like 3/relaxin-like factor (INSL3/RLF expression, an independent marker for LCs differentiation status. Concomitant with the age-related decrease of 11beta-HDS type 2 immunoreactivity in the LCs population, the immunoexpression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD, marker for LCs steroidogenic activity, was greatly reduced at 24 months compared to 3-month-old control. Similar pattern of expression exhibited also androgen receptor (AR which is localized in the nuclei of Sertoli cells (SCs, LCs, and peritubular cells. During ages we observed progressive decrease in the immunoreactivity for AR in the testicular types and there was a loss of stage specificity in SCs at age of 24 months. It now seems evident that a variety of factors are likely to be involved in age-related decreases in LCs steroidogenesis, including 11beta-HSD type 2. The observed reduction in 11beta-HSD type 2 expression in aging LCs reflects the decline in their protection ability, opposing the suppressive effect of glucocorticoids on testosterone production.

  15. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  16. Class-Specific Histone Deacetylase Inhibitors Promote 11-Beta Hydroxysteroid Dehydrogenase Type 2 Expression in JEG-3 Cells

    Directory of Open Access Journals (Sweden)

    Katie L. Togher

    2017-01-01

    Full Text Available Exposure to maternal cortisol plays a crucial role in fetal organogenesis. However, fetal overexposure to cortisol has been linked to a range of short- and long-term adverse outcomes. Normally, this is prevented by the expression of an enzyme in the placenta called 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2 which converts active cortisol to its inactive metabolite cortisone. Placental 11β-HSD2 is known to be reduced in a number of adverse pregnancy complications, possibly through an epigenetic mechanism. As a result, a number of pan-HDAC inhibitors have been examined for their ability to promote 11β-HSD2 expression. However, it is not known if the effects of pan-HDAC inhibition are a general phenomenon or if the effects are dependent upon a specific class of HDACs. Here, we examined the ability of pan- and class-specific HDAC inhibitors to regulate 11β-HSD2 expression in JEG3 cells. We find that pan-, class I, or class IIa HDAC inhibition promoted 11β-HSD2 expression and prevented cortisol or interleukin-1β-induced decrease in its expression. These results demonstrate that targeting a specific class of HDACs can promote 11β-HSD2 expression in JEG3 cells. This adds to the growing body of evidence suggesting that HDACs may be crucial in maintaining normal fetal development.

  17. Reduced expression of 15-hydroxy prostaglandin dehydrogenase in chorion during labor is associated with decreased PRB and increased PRA and GR expression.

    Science.gov (United States)

    Li, Yuan; He, Ping; Sun, Qianqian; Liu, Jie; Gao, Lu; You, Xingji; Gu, Hang; Ni, Xin

    2013-05-01

    The chorion laeve controls the levels of active prostaglandins within the uterus by NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH). The expression of PGDH in chorion is modulated by glucocorticoids and progesterone. In this study, we investigated glucocorticoid receptor (GR) and progesterone receptor A and B (PRA and PRB) in the regulation of PGDH expression in chorion, and we determined whether reduced PGDH expression in chorion during labor is associated with the changes in GR and PR expression by real-time RT-PCR and Western blot analysis. Dexamethasone (DEX) inhibited PGDH expression whereas progesterone stimulated PGDH expression in chorionic trophoblasts. DEX suppressed PGDH expression in GR overexpression and PR knockdown cells. The inhibitory effect of DEX did not occur in GR knockdown cells. Progesterone inhibited PGDH in GR overexpression and PR knockdown cells and it stimulated PGDH in PRB overexpression cells whereas it suppressed PGDH in PRA overexpression cells. Knockdown of c-Jun resulted in a loss of progesterone- and DEX-induced effects. PGDH was down-regulated in chorion tissues during labor. PRB was decreased whereas PRA and GR were increased in chorion during labor. Glucocorticoids inhibit PGDH expression via GR in chorionic trophoblasts. Progesterone enhances PGDH expression through PRB, whereas it inhibits PGDH expression via GR and PRA. Decreased PGDH expression is associated with increased GR and PRA, although decreased PRB, in chorion during labor.

  18. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions.

    Science.gov (United States)

    Sung, Chang-Keun; Kim, Seung-Mi; Oh, Chang-Jin; Yang, Sun-A; Han, Byung-Hee; Mo, Eun-Kyoung

    2012-07-01

    The present study, taraxerone (d-friedoolean-14-en-3-one) was isolated from Sedum sarmentosum with purity 96.383%, and its enhancing effects on alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were determined: EC(50) values were 512.42 ± 3.12 and 500.16 ± 3.23 μM for ADH and ALDH, respectively. In order to obtain more information on taraxerone related with the alcohol metabolism, 40% ethanol (5 mL/kg body weight) with 0.5-1mM of taraxerone were administered to mice. The plasma alcohol and acetaldehyde concentrations of taraxerone-treated groups were significantly lowered than those of the control group (palcohol and acetaldehyde, respectively. Compare to the control group, the ADH and ALDH expressions in the liver tissues were abruptly increased in the taraxerone-treated groups after ethanol exposure. In addition, taraxerone prevented catalase, superoxide dismutase, and reduced glutathione concentrations from the decrease induced by ethanol administration with the concentration dependent manner. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Engineering a hydroxysteroid dehydrogenase to improve its soluble expression for the asymmetric reduction of cortisone to 11β-hydrocortisone.

    Science.gov (United States)

    Zhang, Dalong; Zhang, Rui; Zhang, Jie; Chen, Liying; Zhao, Chunxia; Dong, Wenyue; Zhao, Qing; Wu, Qiaqing; Zhu, Dunming

    2014-11-01

    11β-Hydrocortisone (11β-HC) is an important anti-inflammatory drug and intermediate for the synthesis of other steroids. One of the methods for the synthesis of 11β-HC is the asymmetric reduction of cortisone catalyzed by a highly regioselective and stereoselective 11β-hydroxysteroid dehydrogenase (11β-HSDH). However, this process has been prohibited by the poor soluble expression of the membrane-anchoring protein 11β-HSDH in prokaryotes. To overcome this obstacle, a mutant III-1G1 (Phe80Leu/Thr105Ser/Ala260Thr/Tyr274Stop) truncated at position 274 with improved yield of soluble protein was stepwise obtained from the 11β-HSDH from guinea pig by random mutagenesis combining with structural complementation assay and C-terminal truncating library screening. The improved 11β-HSDH mutant and glucose dehydrogenase (GDH) from Bacillus subtilis were coexpressed in Escherichia coli. The resulting whole-cell biocatalyst catalyzed the reduction of cortisone to 11β-HC with 98 % conversion in 20 h, laying foundation for the development of an asymmetric reduction process for the production of 11β-HC.

  20. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  1. The Regulatory Network Controlling Ethanol-Induced Expression of Alcohol Dehydrogenase in the Endophyte Azoarcus sp. Strain BH72.

    Science.gov (United States)

    Krause, Andrea; Julich, Henrike; Mankar, Manasee; Reinhold-Hurek, Barbara

    2017-10-01

    The habitat of the nitrogen-fixing endophyte Azoarcus sp. strain BH72 is grass roots grown under waterlogged conditions that produce, under these conditions, ethanol. Strain BH72 is well equipped to metabolize ethanol, with eight alcohol dehydrogenases (ADHs), of which ExaA2 and ExaA3 are the most relevant ones. exaA2 and exaA3 cluster and are surrounded by genes encoding two-component regulatory systems (TCSs) termed ExaS-ExaR and ElmS-GacA. Functional genomic analyses revealed that i) expression of the corresponding genes was induced by ethanol, ii) the genes were also expressed in the rhizoplane or even inside of rice roots, iii) both TCSs were indispensable for growth on ethanol, and iv) they were important for competitiveness during rice root colonization. Both TCSs form a hierarchically organized ethanol-responsive signal transduction cascade with ExaS-ExaR as the highest level, essential for effective expression of the ethanol oxidation system based on ExaA2. Transcript and expression levels of exaA3 increased in tcs deletion mutants, suggesting no direct influence of both TCSs on its ethanol-induced expression. In conclusion, this underscores the importance of ethanol for the endophytic lifestyle of Azoarcus sp. strain BH72 and indicates a tight regulation of the ethanol oxidation system during root colonization.

  2. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    M. R. Aquino-Silva

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  3. Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase.

    Science.gov (United States)

    Cardi, Manuela; Chibani, Kamel; Cafasso, Donata; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2011-07-01

    Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants.

  4. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes

    Directory of Open Access Journals (Sweden)

    Aquino-Silva M. R.

    2003-01-01

    Full Text Available Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2 and B isoforms had similar optima pH (7.5-8.0. While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  5. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production.

    Science.gov (United States)

    Lee, Jae Won; In, Jung Hoon; Park, Joon-Bum; Shin, Jonghyeok; Park, Jin Hwan; Sung, Bong Hyun; Sohn, Jung-Hoon; Seo, Jin-Ho; Park, Jin-Byoung; Kim, Soo Rin; Kweon, Dae-Hyuk

    2017-01-10

    Lactic acid (LA) is a versatile compound used in the food, pharmaceutical, textile, leather, and chemical industries. Biological production of LA is possible by yeast strains expressing a bacterial gene encoding l-lactate dehydrogenase (LDH). Kluyveromyces marxianus is an emerging non-conventional yeast with various phenotypes of industrial interest. However, it has not been extensively studied for LA production. In this study, K. marxianus was engineered to express and co-express various heterologous LDH enzymes that were reported to have different pH optimums. Specifically, three LDH enzymes originating from Staphylococcus epidermidis (SeLDH; optimal at pH 5.6), Lactobacillus acidophilus (LaLDH; optimal at pH 5.3), and Bos taurus (BtLDH; optimal at pH 9.8) were functionally expressed individually and in combination in K. marxianus, and the resulting strains were compared in terms of LA production. A strain co-expressing SeLDH and LaLDH (KM5 La+SeLDH) produced 16.0g/L LA, whereas the strains expressing those enzymes individually produced only 8.4 and 6.8g/L, respectively. This co-expressing strain produced 24.0g/L LA with a yield of 0.48g/g glucose in the presence of CaCO3. Our results suggest that co-expression of LDH enzymes with different pH optimums provides sufficient LDH activity under dynamic intracellular pH conditions, leading to enhanced production of LA compared to individual expression of the LDH enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  7. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    Science.gov (United States)

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  8. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    Science.gov (United States)

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    Directory of Open Access Journals (Sweden)

    Tahereh Esmaeilpour

    2014-01-01

    Full Text Available Background: Application of follicular fluid (FF and platelet-activating factor (PAF in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase chain reaction (q-RT PCR and western blotting after it was treated with optimized concentrations of FF and PAF in twenty asthenozoospermic samples. Also, LDH-C expression was evaluated in five normozoospermic samples. Results: Samples with 75% FF and 100 nM of PAF had an increase in their percentages of progressive and slowly motile sperms and a decrease in their percentages of non-progressive and non-motile sperms. Moreover, LDH-C mRNA transcripts were not changed following PAF and FF treatment, and LDH-C protein was detected in highly progressive motile specimens treated with FF in the asthenozoospermic samples. Furthermore, LDH-C expression was more detectable in the normal sperms. Conclusion: Our results indicated that PAF had more beneficial effects than FF on sperm motility in the asthenozoospermic samples (P=0.0001, although the LDH-C expressions of the sperms were not changed significantly in both groups. We found no association between LDH-C expression and sperm motility after FF and PAF actions. This finding, however, requires further investigation. The fact that LDH-C protein was detected in the normozoospermic, but not asthenozoospermic, samples could be cited as a reason for the infertility in these patients.

  10. Cloning, sequencing and expression of the Schwanniomyces occidentalis NADP-dependent glutamate dehydrogenase gene.

    Science.gov (United States)

    De Zoysa, P A; Connerton, I F; Watson, D C; Johnston, J R

    1991-08-01

    The cloned NADP-specific glutamate dehydrogenase (GDH) genes of Aspergillus nidulans (gdhA) and Neurospora crassa (am) have been shown to hybridize under reduced stringency conditions to genomic sequences of the yeast Schwanniomyces occidentalis. Using 5' and 3' gene-specific probes, a unique 5.1 kb BclI restriction fragment that encompasses the entire Schwanniomyces sequence has been identified. A recombinant clone bearing the unique BclI fragment has been isolated from a pool of enriched clones in the yeast/E. coli shuttle vector pWH5 by colony hybridization. The identity of the plasmid clone was confirmed by functional complementation of the Saccharomyces cerevisiae gdh-1 mutation. The nucleotide sequence of the Schw. occidentalis GDH gene, which consists of 1380 nucleotides in a continuous reading frame of 459 amino acids, has been determined. The predicted amino acid sequence shows considerable homology with GDH proteins from other fungi and significant homology with all other available GDH sequences.

  11. CLONING, SEQUENCING AND EXPRESSION STUDIES OF THE GENES ENCODING AMICYANIN AND THE BETA-SUBUNIT OF METHYLAMINE DEHYDROGENASE FROM THIOBACILLUS-VERSUTUS

    NARCIS (Netherlands)

    UBBINK, M; VANKLEEF, MAG; KLEINJAN, DJ; HOITINK, CWG; HUITEMA, F; BEINTEMA, JJ; DUINE, JA; CANTERS, GW

    1991-01-01

    The genes encoding amicyanin and the beta-subunit of methylamine dehydrogenase (MADH) from Thiobacillus versutus have been cloned and sequenced. The organization of these genes makes it likely that they are coordinately expressed and it supports earlier findings that the blue copper protein amicyani

  12. Molecular cloning and expression of phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthetic pathway from Acanthamoeba castellanii.

    Science.gov (United States)

    Deng, Yihong; Wu, Duo; Tachibana, Hiroshi; Cheng, Xunjia

    2015-04-01

    Free-living amoebae of the genus Acanthamoeba are widespread protozoans that can cause serious infectious diseases. This study characterised phosphoglycerate dehydrogenase (PGDH) and phosphoserine aminotransferase (PSAT) in the phosphorylated serine biosynthetic pathway of Acanthamoeba castellanii. The PGDH gene encodes a protein of 442 amino acids with a calculated molecular weight of 47.7 kDa and an isoelectric point (pI) of 7.64. Meanwhile, the PSAT gene encodes a protein of 394 amino acids with a calculated molecular weight of 43.8 kDa and a pI of 5.80. Confocal microscopy suggests that PGDH is mainly diffused in the cytoplasm, whereas PSAT is located in the inner part of the cell membrane. The messenger RNA (mRNA) expression levels of PGDH and PSAT vary depending on growth state under consecutive culture conditions. No significant changes in the mRNA expression levels of both PGDH and PSAT occur after the incubation of L-serine with Acanthamoeba. This result indicates that exogenous serine exerts no influence on the expression of these genes and that the so-called feedback inhibition of both PGDH and PSAT in Acanthamoeba differs from that in bacteria or other organisms. We propose that the enzymes in the phosphorylated serine biosynthetic pathway function in amoeba growth and proliferation.

  13. Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue.

    Directory of Open Access Journals (Sweden)

    Christelle Veyrat-Durebex

    Full Text Available Glucocorticoids (GCs are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1. We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.

  14. Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum.

    Science.gov (United States)

    Lü, Jun; Gao, Xiaorong; Dong, Zhimin; Yi, Jun; An, Lijia

    2012-01-01

    Phosphorus (P) is an essential nutrient for plant growth and development, but is generally unavailable and inaccessible in soil, since applied P is mostly fixed to aluminium (Al) and ferrum (Fe) in acidic soils and to calcium (Ca) in alkaline soils. Increased organic acid excretion is thought to be one mechanism by which plants use to enhance P uptake. In this study, we overexpressed a mitochondrial malate dehydrogenase (MDH) gene from the mycorrhizal fungi Penicillium oxalicum in tobacco. The MDH activity of transgenic lines was significantly increased compared to that of wild type. Malate content in root exudation of transgenic lines induced in response to P deficiency was 1.3- to 2.9-fold greater than that of wild type under the same condition. Among the transgenic lines that were selected for analysis, one line (M1) showed the highest level of MDH activity and malate exudate. M1 showed a significant increase in growth over wild type, with 149.0, 128.5, and 127.9% increases in biomass, when grown in Al-phosphate, Fe-phosphate, and Ca-phosphate media, respectively. M1 also had better P uptake compared to wild type, with total P content increased by 287.3, 243.5, and 223.4% when grown in Al-phosphate, Fe-phosphate, and Ca-phosphate media, respectively. To our knowledge, this is the first study on improving the ability of a plant to utilize P from Al-phosphate, Fe-phosphate, and Ca-phosphate by manipulating the organic acid metabolism of the plant through genetic engineering.

  15. Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis.

    Science.gov (United States)

    Turano, F J; Thakkar, S S; Fang, T; Weisemann, J M

    1997-04-01

    Two distinct cDNA clones encoding NAD(H)-dependent glutamate dehydrogenase (NAD[H]-GDH) in Arabidopsis thaliana were identified and sequenced. The genes corresponding to these cDNA clones were designated GDH1 and GDH2. Analysis of the deduced amino acid sequences suggest that both gene products contain putative mitochondrial transit polypeptides and NAD(H)- and alpha-ketoglutarate-binding domains. Subcellular fractionation confirmed the mitochondrial location of the NAD(H)-GDH isoenzymes. In addition, a putative EF-hand loop, shown to be associated with Ca2+ binding, was identified in the GDH2 gene product but not in the GDH1 gene product. GDH1 encodes a 43.0-kD polypeptide, designated alpha, and GDH2 encodes a 42.5-kD polypeptide, designated beta. The two subunits combine in different ratios to form seven NAD(H)-GDH isoenzymes. The slowest-migrating isoenzyme in a native gel, GDH1, is a homohexamer composed of alpha subunits, and the fastest-migrating isoenzyme, GDH7, is a homohexamer composed of beta subunits. GDH isoenzymes 2 through 6 are heterohexamers composed of different ratios of alpha and beta subunits. NAD(H)-GDH isoenzyme patterns varied among different plant organs and in leaves of plants irrigated with different nitrogen sources or subjected to darkness for 4 d. Conversely, there were little or no measurable changes in isoenzyme patterns in roots of plants treated with different nitrogen sources. In most instances, changes in isoenzyme patterns were correlated with relative differences in the level of alpha and beta subunits. Likewise, the relative difference in the level of alpha or beta subunits was correlated with changes in the level of GDH1 or GDH2 transcript detected in each sample, suggesting that NAD(H)-GDH activity is controlled at least in part at the transcriptional level.

  16. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression.

    Science.gov (United States)

    Macková, Hana; Hronková, Marie; Dobrá, Jana; Turečková, Veronika; Novák, Ondřej; Lubovská, Zuzana; Motyka, Václav; Haisel, Daniel; Hájek, Tomáš; Prášil, Ilja Tom; Gaudinová, Alena; Štorchová, Helena; Ge, Eva; Werner, Tomáš; Schmülling, Thomas; Vanková, Radomíra

    2013-07-01

    Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.

  17. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors.

    Science.gov (United States)

    Celestino, Ricardo; Lima, Jorge; Faustino, Alexandra; Vinagre, João; Máximo, Valdemar; Gouveia, António; Soares, Paula; Lopes, José Manuel

    2013-05-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney-Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney-Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney-Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred.

  18. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    Science.gov (United States)

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  19. PCR-based amplification and heterologous expression of Pseudomonas alcohol dehydrogenase genes from the soil metagenome for biocatalysis.

    Science.gov (United States)

    Itoh, Nobuya; Isotani, Kentaro; Makino, Yoshihide; Kato, Masaki; Kitayama, Kouta; Ishimota, Tuyoshi

    2014-02-05

    The amplification of useful genes from metagenomes offers great biotechnological potential. We employed this approach to isolate alcohol dehydrogenase (adh) genes from Pseudomonas to aid in the synthesis of optically pure alcohols from various ketones. A PCR primer combination synthesized by reference to the adh sequences of known Pseudomonas genes was used to amplify full-length adh genes directly from 17 samples of DNA extracted from soil. Three such adh preparations were used to construct Escherichia coli plasmid libraries. Of the approximately 2800 colonies obtained, 240 putative adh-positive clones were identified by colony-PCR. Next, 23 functional adh genes named using the descriptors HBadh and HPadh were analyzed. The adh genes obtained via this metagenomic approach varied in their DNA and amino acid sequences. Expression of the gene products in E. coli indicated varying substrate specificity. Two representative genes, HBadh-1 and HPadh-24, expressed in E. coli and Pseudomonas putida, respectively, were purified and characterized in detail. The enzyme products of these genes were confirmed to be useful for producing anti-Prelog chiral alcohols.

  20. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield.

    Science.gov (United States)

    Nölke, Greta; Houdelet, Marcel; Kreuzaler, Fritz; Peterhänsel, Christoph; Schillberg, Stefan

    2014-08-01

    We have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in E. coli and was able to complement mutants deficient for the D, E and F subunits. Transgenic plants accumulated DEFp in the plastids, and the recombinant protein was active in planta, reducing photorespiration and improving CO2 uptake with a significant impact on carbon metabolism. Transgenic lines with the highest DEFp levels and GlcDH activity produced significantly higher levels of glucose (5.8-fold), fructose (3.8-fold), sucrose (1.6-fold) and transitory starch (threefold), resulting in a substantial increase in shoot and leaf biomass. The higher carbohydrate levels produced in potato leaves were utilized by the sink capacity of the tubers, increasing the tuber yield by 2.3-fold. This novel approach therefore has the potential to increase the biomass and yield of diverse crops.

  1. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer.

    Science.gov (United States)

    Carpentino, Joseph E; Hynes, Mark J; Appelman, Henry D; Zheng, Tong; Steindler, Dennis A; Scott, Edward W; Huang, Emina H

    2009-10-15

    Patients with chronic ulcerative colitis are at increased risk of developing colorectal cancer. Although current hypotheses suggest that sporadic colorectal cancer is due to inability to control cancer stem cells, the cancer stem cell hypothesis has not yet been validated in colitis-associated cancer. Furthermore, the identification of the colitis to cancer transition is challenging. We recently showed that epithelial cells with the increased expression of aldehyde dehydrogenase in sporadic colon cancer correlate closely with tumor-initiating ability. We sought to determine whether ALDH can be used as a marker to isolate tumor-initiating populations from patients with chronic ulcerative colitis. We used fluorescence-activated cell sorting to identify precursor colon cancer stem cells from colitis patients and report both their transition to cancerous stem cells in xenografting studies as well as their ability to generate spheres in vitro. Similar to sporadic colon cancer, these colitis-derived tumors were capable of propagation as sphere cultures. However, unlike the origins of sporadic colon cancer, the primary colitic tissues did not express any histologic evidence of dysplasia. To elucidate a potential mechanism for our findings, we compared the stroma of these different environments and determined that at least one paracrine factor is up-regulated in the inflammatory and malignant stroma compared with resting, normal stroma. These data link colitis and cancer identifying potential tumor-initiating cells from colitic patients, suggesting that sphere and/or xenograft formation will be useful to survey colitic patients at risk of developing cancer.

  2. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    Science.gov (United States)

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  3. Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1,4-lactone dehydrogenase

    DEFF Research Database (Denmark)

    Pateraki, Irene; Sanmartin, Maite; Kalamaki, Mary S.

    2004-01-01

    The last step of ascorbic acid (AA) biosynthesis is catalysed by the enzyme L-galactono-1,4-lactone dehydrogenase (GalLDH, EC 1.3.2.3), located on the inner mitochondrial membrane. The enzyme converts L-galactono-1,4-lactone to ascorbic acid (AA). In this work, the cloning and characterization...... of a GalLDH full-length cDNA from melon (Cucumis melo L.) are described. Melon genomic DNA Southern analysis indicated that CmGalLDH was encoded by a single gene. CmGalLDH mRNA accumulation was detected in all tissues studied, but differentially expressed during fruit development and seed germination......GalLDH expression is regulated by light. Finally, various stresses and growth regulators resulted in no significant change in steady state levels of CmGalLDH mRNA in 20-d-old melon seedlings. To the authors' knowledge, this is the first report of GalLDH transcript induction in seed germination and differential gene...

  4. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    Science.gov (United States)

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.)

  5. Impact of probiotic-supplemented diet on the expression level of lactate dehydrogenase in the leukocytes of rabbits.

    Science.gov (United States)

    Ghoneim, Magdy A E; Moselhy, Said S

    2014-04-01

    Probiotics are known as living, nonpathogenic microorganisms that colonize the intestine and provide benefit to the host. The present study aims to measure one important energy metabolism-related enzyme activity in blood of rabbits fed on probiotics of recommended concentration. In addition, it also aims for the evaluation of the expression level of lactate dehydrogenase (LDH) enzyme using reverse transcriptase-polymerase chain reaction (RT-PCR) technique. Two groups of rabbits are used: control group receiving normal standardized diet and the other probiotic-supplemented group receiving the same diet containing probiotic, namely, Mega acidophilus (200 million cfu/kg body weight/day) for 4 weeks. The obtained results revealed that the rabbits supplemented with probiotics showed a significant decrease in the levels of serum total cholesterol (TC), triacylglycerol, high-density lipoprotein cholesterol (HDL-c) and low-density lipoprotein cholesterol (LDL-c) when compared with control group. Risk factors detected by measuring TC/HDL-c and LDL-c/HDL-c ratios showed statistically significant decrease in probiotic-supplemented rabbits when compared with control group. In addition, blood glucose and total LDH activity were elevated in probiotic-supplemented rabbits when compared with control group. RT-PCR products of LDH-M gene produced two specific amplicons. One amplicon has the expected size of 243 bp from all samples of rabbits as revealed by GelPro software. The level of LDH-M expression was found to be increased in the probiotic-supplemented group. However, unexpected amplicons are produced at 586 bp in all the samples, which may be a dimeric form of the amplified region. It was concluded that this probiotic blend is beneficiary for the metabolic reactions of lipids in the body. Moreover, LDH expression level can be considered as a biomarker for the effect of probiotic and hence monitoring the metabolic changes as reflected from its administration.

  6. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Taowei Yang

    Full Text Available BACKGROUND: Previously, a safe strain, Bacillus amyloliquefaciens B10-127 was identified as an excellent candidate for industrial-scale microbial fermentation of 2,3-butanediol (2,3-BD. However, B. amyloliquefaciens fermentation yields large quantities of acetoin, lactate and succinate as by-products, and the 2,3-BD yield remains prohibitively low for commercial production. METHODOLOGY/PRINCIPAL FINDINGS: In the 2,3-butanediol metabolic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH catalyzes the conversion of 3-phosphate glyceraldehyde to 1,3-bisphosphoglycerate, with concomitant reduction of NAD(+ to NADH. In the same pathway, 2,3-BD dehydrogenase (BDH catalyzes the conversion of acetoin to 2,3-BD with concomitant oxidation of NADH to NAD(+. In this study, to improve 2,3-BD production, we first over-produced NAD(+-dependent GAPDH and NADH-dependent BDH in B. amyloliquefaciens. Excess GAPDH reduced the fermentation time, increased the 2,3-BD yield by 12.7%, and decreased the acetoin titer by 44.3%. However, the process also enhanced lactate and succinate production. Excess BDH increased the 2,3-BD yield by 16.6% while decreasing acetoin, lactate and succinate production, but prolonged the fermentation time. When BDH and GAPDH were co-overproduced in B. amyloliquefaciens, the fermentation time was reduced. Furthermore, in the NADH-dependent pathways, the molar yield of 2,3-BD was increased by 22.7%, while those of acetoin, lactate and succinate were reduced by 80.8%, 33.3% and 39.5%, relative to the parent strain. In fed-batch fermentations, the 2,3-BD concentration was maximized at 132.9 g/l after 45 h, with a productivity of 2.95 g/l·h. CONCLUSIONS/SIGNIFICANCE: Co-overexpression of bdh and gapA genes proved an effective method for enhancing 2,3-BD production and inhibiting the accumulation of unwanted by-products (acetoin, lactate and succinate. To our knowledge, we have attained the highest 2,3-BD fermentation yield thus far

  7. Component co-expression and purification of recombinant human pyruvate dehydrogenase complex from baculovirus infected SF9 cells.

    Science.gov (United States)

    Jiang, Yong; Wang, Juan; Zhang, Guofeng; Oza, Khyati; Myers, Linda; Holbert, Marc A; Sweitzer, Sharon

    2014-05-01

    The mammalian pyruvate dehydrogenase complex (PDC) is a multi-component mitochondrial enzyme that plays a key role in the conversion of pyruvate to acetyl-CoA connecting glycolysis to the citric acid cycle. Recent studies indicate that targeting the regulation of PDC enzymatic activity might offer therapeutic opportunities by inhibiting cancer cell metabolism. To facilitate drug discovery in this area, a well defined PDC sample is needed. Here, we report a new method of producing functional, recombinant, high quality human PDC complex. All five components were co-expressed in the cytoplasm of baculovirus-infected SF9 cells by deletion of the mitochondrial localization signal sequences of all the components and E1a was FLAG-tagged to facilitate purification. The protein FLAG tagged E1a complex was purified using FLAG-M2 affinity resin, followed by Superdex 200 sizing chromatography. The E2 and E3BP components were then Lipoylated using an enzyme based in vitro process. The resulting PDC is over 90% pure and homogenous. This non-phosphorylated, lipoylated human PDC was demonstrated to produce a robust detection window when used to develop an enzyme coupled assay of PDHK.

  8. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    Science.gov (United States)

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  9. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.

    Science.gov (United States)

    Zhang, Liaoyuan; Xu, Quanming; Peng, Xiaoqian; Xu, Boheng; Wu, Yuehao; Yang, Yulong; Sun, Shujing; Hu, Kaihui; Shen, Yaling

    2014-09-01

    The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K m value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60 °C in the oxidation-reduction reactions. Over 60 % of maximum activity was retained at 70 °C. Additionally, the GDH activity was significantly enhanced for meso-2,3-BD oxidation in the presence of Fe(2+) and for (3S/3R)-acetoin reduction in the presence of Mn(2+), while several cations inhibited its activity, particularly Fe(2+) and Fe(3+) for (3S/3R)-acetoin reduction. The properties provided potential application for single configuration production of acetoin and 2,3-butanediol .

  10. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction.

    Science.gov (United States)

    Shams, M; Kilby, M D; Somerset, D A; Howie, A J; Gupta, A; Wood, P J; Afnan, M; Stewart, P M

    1998-04-01

    The type 2 isoform of 11beta-hydroxysteroid dehydrogenase (11beta-HSD2), which inactivates cortisol (F) to cortisone (E), has been suggested to play a role in the ontogeny of the fetal pituitary-adrenal axis and also protect the developing fetus from the deleterious effects of circulating maternal glucocorticoids. The abundance of 11beta-HSD2 in the placenta and other fetal tissues was inferred from the F/E ratio in 17 term deliveries in both umbilical arterial (1.73 +/- 0.24, mean +/- SE) and umbilical venous blood (1.16 +/- 0.14) compared with adult peripheral venous blood (7.76 +/- 0.57, n = 70). Using sensitive assays for 11beta-HSD2 and an in-house human 11beta-HSD2 antibody, the expression and activity of this enzyme in fresh frozen human placenta increased progressively from first (8-12 weeks, n = 16) and second (13-20 weeks, n = 9) to third trimester (term) pregnancies (39-40 weeks, n = 50). Placental 11beta-HSD2 activity was significantly reduced in deliveries complicated by intrauterine growth restriction (IUGR) [25-36 weeks, n = 12, activity 380 pmol/mg/h median (225-671; 95% confidence interval)], compared with the term deliveries [888 (725-1362)] and with appropriately grown pre-term deliveries [27-36 weeks, n = 14, activity 810 (585-1269)], P < 0.05. In human pregnancy placental 11beta-HSD2 activity increases markedly in the third trimester of pregnancy at a time when maternal circulating levels of glucocorticoid are rising. The finding of attenuated placental 11beta-HSD2 activity in IUGR suggests that glucocorticoids may, in part, contribute to impaired fetal growth and that this is closely controlled in normal gestation through placental 11beta-HSD2 expression.

  11. Saturated fatty acids in human visceral adipose tissue are associated with increased 11- β-hydroxysteroid-dehydrogenase type 1 expression.

    Science.gov (United States)

    Petrus, Paul; Rosqvist, Fredrik; Edholm, David; Mejhert, Niklas; Arner, Peter; Dahlman, Ingrid; Rydén, Mikael; Sundbom, Magnus; Risérus, Ulf

    2015-05-02

    Visceral fat accumulation is associated with metabolic disease. It is therefore relevant to study factors that regulate adipose tissue distribution. Recent data shows that overeating saturated fatty acids promotes greater visceral fat storage than overeating unsaturated fatty acids. Visceral adiposity is observed in states of hypercortisolism, and the enzyme 11-β-hydroxysteroid-dehydrogenase type 1 (11β-hsd1) is a major regulator of cortisol activity by converting inactive cortisone to cortisol in adipose tissue. We hypothesized that tissue fatty acid composition regulates body fat distribution through local effects on the expression of 11β-hsd1 and its corresponding gene (HSD11B1) resulting in altered cortisol activity. Visceral- and subcutaneous adipose tissue biopsies were collected during Roux-en-Y gastric bypass surgery from 45 obese women (BMI; 41±4 kg/m2). The fatty acid composition of each biopsy was measured and correlated to the mRNA levels of HSD11B1. 11β-hsd1 protein levels were determined in a subgroup (n=12) by western blot analysis. Our main finding was that tissue saturated fatty acids (e.g. palmitate) were associated with increased 11β-hsd1 gene- and protein-expression in visceral but not subcutaneous adipose tissue. The present study proposes a link between HSD11B1 and saturated fatty acids in visceral, but not subcutaneous adipose tissue. Nutritional regulation of visceral fat mass through HSD11B1 is of interest for the modulation of metabolic risk and warrants further investigation.

  12. Regulation of hexokinase and glucose-6-phosphate dehydrogenase genes expression at norm and pathology

    Directory of Open Access Journals (Sweden)

    Marunych R. Yu.

    2013-03-01

    Full Text Available The increasing of glycolysis in tumors under aerobic conditions is known as Warburg phenomenon; the activity of the pentose phosphate pathway increases also significantly. The pentose phosphate pathway and glycolysis, especially their first steps, and the regulatory enzyme 6-phosphofrukto-2-kinase/fructose-2,6-bisphosphatase are influenced by cell signaling systems such as the system of circadian clock, the system of hypoxia-inducible factor and unfolded protein response system, that allow malignant cells to adapt to stress factors such as hypoxia, ischemia and influence of low molecular agents. The review enlightens the impact of signaling systems on the key enzymes of glycolysis and the pentose phosphate pathway gene expression in normal cells and in malignant cells, and their importance for survival of malignant cells under stress conditions.

  13. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  14. Widening Spectrum of Cellular and Subcellular Expression of Human GLUD1 and GLUD2 Glutamate Dehydrogenases Suggests Novel Functions.

    Science.gov (United States)

    Spanaki, Cleanthe; Kotzamani, Dimitra; Plaitakis, Andreas

    2017-01-01

    Mammalian glutamate dehydrogenase1 (GDH1) (E.C. 1.4.1.3) is a mitochondrial enzyme that catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate and ammonia while reducing NAD+ and/or NADP+ to NADH and/or NADPH. It links amino acid with carbohydrate metabolism, contributing to Krebs cycle anaplerosis, energy production, ammonia handling and redox homeostasis. Although GDH1 was one of the first major metabolic enzymes to be studied decades ago, its role in cell biology is still incompletely understood. There is however growing interest in a novel GDH2 isoenzyme that emerged via duplication in primates and underwent rapid evolutionary selection concomitant with prefrontal human cortex expansion. Also, the anaplerotic function of GDH1 and GDH2 is currently under sharp focus as this relates to the biology of glial tumors and other neoplasias. Here we used antibodies specific for human GDH1 (hGDH1) and human GDH2 (hGDH2) to study the expression of these isoenzymes in human tissues. Results revealed that both hGDH1 and hGDH2 are expressed in human brain, kidney, testis and steroidogenic organs. However, distinct hGDH1 and hGDH2 expression patterns emerged. Thus, while the Sertoli cells of human testis were strongly positive for hGDH2, they were negative for hGDH1. Conversely, hGDH1 showed very high levels of expression in human liver, but hepatocytes were virtually devoid of hGDH2. In human adrenals, both hGDHs were densely expressed in steroid-producing cells, with hGDH2 expression pattern matching that of the cholesterol side chain cleavage system involved in steroid synthesis. Similarly in human ovaries and placenta, both hGDH1 and hGDH2 were densely expressed in estrogen producing cells. In addition, hGDH1, being a housekeeping enzyme, was also expressed in cells that lack endocrine function. Regarding human brain, study of cortical sections using immunofluorescence (IF) with confocal microscopy revealed that hGDH1 and hGDH2 were both expressed

  15. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-02

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  16. Succinate Dehydrogenase Subunit B (SDHB Is Expressed in Neurofibromatosis 1-Associated Gastrointestinal Stromal Tumors (Gists: Implications for the SDHB Expression Based Classification of Gists

    Directory of Open Access Journals (Sweden)

    Jeanny H. Wang, Jerzy Lasota, Markku Miettinen

    2011-01-01

    Full Text Available Gastrointestinal Stromal Tumor (GIST is the most common mesenchymal tumor of the digestive tract. GISTs develop with relatively high incidence in patients with Neurofibromatosis-1 syndrome (NF1. Mutational activation of KIT or PDGFRA is believed to be a driving force in the pathogenesis of familial and sporadic GISTs. Unlike those tumors, NF1-associated GISTs do not have KIT or PGDFRA mutations. Similarly, no mutational activation of KIT or PDGFRA has been identified in pediatric GISTs and in GISTs associated with Carney Triad and Carney-Stratakis Syndrome. KIT and PDGFRA-wild type tumors are expected to have lesser response to imatinib treatment. Recently, Carney Triad and Carney-Stratakis Syndrome -associated GISTs and pediatric GISTs have been shown to have a loss of expression of succinate dehydrogenase subunit B (SDHB, a Krebs cycle/electron transport chain interface protein. It was proposed that GISTs can be divided into SDHB- positive (type 1, and SDHB-negative (type 2 tumors because of similarities in clinical features and response to imatinib treatment. In this study, SDHB expression was examined immunohistochemically in 22 well-characterized NF1-associated GISTs. All analyzed tumors expressed SDHB. Based on SDHB-expression status, NF1-associated GISTs belong to type 1 category; however, similarly to SDHB type 2 tumors, they do not respond well to imatinib treatment. Therefore, a simple categorization of GISTs into SDHB-positive and-negative seems to be incomplete. A classification based on both SDHB expression status and KIT and PDGFRA mutation status characterize GISTs more accurately and allow subdivision of SDHB-positive tumors into different clinico-genetic categories.

  17. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases.

    Science.gov (United States)

    Ilmén, Marja; Koivuranta, Kari; Ruohonen, Laura; Rajgarhia, Vineet; Suominen, Pirkko; Penttilä, Merja

    2013-05-25

    Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding L-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway. Each LDH strain produced substantial amounts of lactate, but the properties of the heterologous LDH affected the distribution of carbon between lactate and by-products significantly, which was reflected in extra-and intracellular metabolite concentrations. Under neutralizing conditions C. sonorensis expressing L. helveticus LDH accumulated lactate up to 92 g/l at a yield of 0.94 g/g glucose, free of ethanol, in minimal medium containing 5 g/l dry cell weight. In rich medium with a final pH of 3.8, 49 g/l lactate was produced. The fermentation pathway was modified in some of the strains studied by deleting either one or both of the pyruvate decarboxylase encoding genes, PDC1 and PDC2. The deletion of both PDC genes together abolished ethanol production and did not result in significantly reduced growth characteristic to Saccharomyces cerevisiae deleted of PDC1 and PDC5. We developed an organism without previous record of genetic engineering to produce L-lactic acid to a high concentration, introducing a novel host for the production of an industrially important metabolite, and opening the way for exploiting C. sonorensis in additional biotechnological applications. Comparison of metabolite production, growth, and enzyme activities in a representative set of transformed strains expressing different LDH genes in the presence and absence of a functional

  18. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  19. Expansion of Umbilical Cord Blood Aldehyde Dehydrogenase Expressing Cells Generates Myeloid Progenitor Cells that Stimulate Limb Revascularization.

    Science.gov (United States)

    Putman, David M; Cooper, Tyler T; Sherman, Stephen E; Seneviratne, Ayesh K; Hewitt, Mark; Bell, Gillian I; Hess, David A

    2017-07-01

    Uncompromised by chronic disease-related comorbidities, human umbilical cord blood (UCB) progenitor cells with high aldehyde dehydrogenase activity (ALDH(hi) cells) stimulate blood vessel regeneration after intra-muscular transplantation. However, implementation of cellular therapies using UCB ALDH(hi) cells for critical limb ischemia, the most severe form of severe peripheral artery disease, is limited by the rarity (18-fold over 6-days under serum-free conditions. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, only 15.1% ± 1.3% of progeny maintained high ALDH-activity after culture. However, compared to fresh UCB cells, expansion increased the total number of ALDH(hi) cells (2.7-fold), CD34(+) /CD133(+) cells (2.8-fold), and hematopoietic colony forming cells (7.7-fold). Remarkably, injection of expanded progeny accelerated recovery of perfusion and improved limb usage in immunodeficient mice with femoral artery ligation-induced limb ischemia. At 7 or 28 days post-transplantation, mice transplanted with expanded ALDH(hi) cells showed augmented endothelial cell proliferation and increased capillary density compared to controls. Expanded cells maintained pro-angiogenic mRNA expression and secreted angiogenesis-associated growth factors, chemokines, and matrix modifying proteins. Coculture with expanded cells augmented human microvascular endothelial cell survival and tubule formation under serum-starved, growth factor-reduced conditions. Expanded UCB-derived ALDH(hi) cells represent an alternative to autologous bone marrow as an accessible source of pro-angiogenic hematopoietic progenitor cells for the refinement of vascular regeneration-inductive therapies. Stem Cells Translational Medicine 2017;6:1607-1619. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. Thermal adaptation of cytoplasmic malate dehydrogenases of eastern Pacific barracuda (Sphyraena spp): the role of differential isoenzyme expression

    Science.gov (United States)

    Lin; Somero

    1995-01-01

    Kinetic properties, electrophoretic patterns and thermal stabilities of cytoplasmic malate dehydrogenases (cMDHs) were compared in Eastern Pacific barracuda (Sphyraena spp) from different latitudes. All tissues of the tropical species S. ensis contained only a single, thermostable form of cMDH. Subtropical (S. lucasana) as well as north (S. argentea) and south (S. idiastes) temperate barracuda contained both thermostable and thermolabile cMDHs, the pattern characteristic of most teleosts. Kinetic studies using unfractioned cMDHs showed that the apparent Michaelis­Menten constant (Km) of cofactor (NADH) increased with temperature, but at the physiological temperatures of the four species, Km of NADH was conserved within a narrow range (20­23 µmol l-1). Thermostable and thermolabile cMDHs were chromatographically separated and compared. Thermolabile cMDHs had higher Km values for NADH at all measurement temperatures than did thermostable cMDHs. Thermolabile cMDHs isolated from congeneric barracuda exhibited similar kinetic properties (Km versus temperature, optimal pH, optimal substrate and cofactor concentrations). Thermostable cMDHs, likewise, were similar among the barracuda. Conservation of Km in the differently thermally adapted barracudas is, therefore, apparently due to adjustments in the ratio of expression of the thermostable and thermolabile isoforms, rather than to temperature-adaptive differences among orthologous homologues, as is commonly found for enzymes encoded by a single gene locus. The effects of temperature on the Km of NADH for isolated thermostable and thermolabile cMDHs of a eurythermal goby, Gillichthys mirabilis, however, were consistent with adaptive change in orthologous homologues of cMDH. The selective basis for the absence of thermolabile cMDH in warm-adapted ectotherms, mammals and birds is discussed.

  1. Dynamic expression of the retinoic acid-synthesizing enzyme retinol dehydrogenase 10 (rdh10) in the developing mouse brain and sensory organs.

    Science.gov (United States)

    Romand, Raymond; Kondo, Takako; Cammas, Laura; Hashino, Eri; Dollé, Pascal

    2008-06-20

    Organs develop through many tissue interactions during embryogenesis, involving numerous signaling cascades and gene products. One of these signaling molecules is retinoic acid (RA), an active vitamin A derivative, which in mammalian embryos is synthesized from maternal retinol by two oxidative reactions involving alcohol/retinol dehydrogenases (ADH/RDHs) and retinaldehyde dehydrogenases (RALDHs), respectively. The activity of RALDHs is known to be crucial for RA synthesis; however, recently a retinol dehydrogenase (RDH10) has been shown to represent a new limiting factor in this synthesis. We investigated the spatiotemporal distribution of Rdh10 gene transcripts by in situ hybridization and quantitative polymerase chain reaction (PCR) during development of the brain and sensory organs. Although Rdh10 relative mRNA levels decline throughout brain development, we show a strong and lasting expression in the meninges and choroid plexuses. Rdh10 expression is also specifically seen in the striatum, a known site of retinoid signaling. In the eye, regional expression is observed both in the prospective pigmented epithelium and neural retina. In the inner ear Rdh10 expression is specific to the endolymphatic system and later the stria vascularis, both organs being involved in endolymph homeostasis. Furthermore, in the peripheral olfactory system and the vibrissae follicles, expression is present from early stages in regions where sensory receptors appear and mesenchymal/epithelial interactions take place. The distribution of Rdh10 transcripts during brain and sensory organ development is consistent with a role of this enzyme in generating region-specific pools of retinaldehyde that will be used by the various RALDHs to refine the patterns of RA synthesis.

  2. A potato tuber-expressed mNRA with homology to steroid dehydrogenases affects gibberellin levels and plant development

    NARCIS (Netherlands)

    Bachem, C.W.B.; Horvath, B.M.; Trindade, L.M.; Claassens, M.M.J.; Davelaar, E.; Jordi, W.J.R.M.; Visser, R.G.F.

    2001-01-01

    Using cDNA-AFLP RNA fingerprinting throughout potato tuber development, we have isolated a transcript-derived fragment (TDF511) with strong homology to plant steroid dehydrogenases. During in vitro tuberization, the abundance profile of the TDF shows close correlation to the process of tuber formati

  3. A potato tuber-expressed mNRA with homology to steroid dehydrogenases affects gibberellin levels and plant development

    NARCIS (Netherlands)

    Bachem, C.W.B.; Horvath, B.M.; Trindade, L.M.; Claassens, M.M.J.; Davelaar, E.; Jordi, W.J.R.M.; Visser, R.G.F.

    2001-01-01

    Using cDNA-AFLP RNA fingerprinting throughout potato tuber development, we have isolated a transcript-derived fragment (TDF511) with strong homology to plant steroid dehydrogenases. During in vitro tuberization, the abundance profile of the TDF shows close correlation to the process of tuber

  4. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    Science.gov (United States)

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (Peffects of PCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (Pcortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  5. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage.

    Science.gov (United States)

    Sivapragasam, Smitha; Grove, Anne

    2016-05-01

    The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand.

  6. 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression.

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (-) mating-type-specific enzyme in the pathway from beta-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (-) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (-) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation.

  7. The cinnamyl alcohol dehydrogenase (CAD gene family in flax (Linum usitatissimum L.: Insight from expression profiling of cads induced by elicitors in cultured flax cells

    Directory of Open Access Journals (Sweden)

    Eom Hee Seung

    2016-01-01

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD is a key enzyme in the biosynthesis of lignin and lignans as it catalyzes the final step of monolignol biosynthesis, using NADPH as a cofactor. In higher plants, CAD is encoded by a multigene family consisting of three major classes. Based on the recently released flax (Linum usitatissimum L. whole-genome sequences, in this study we identified six CAD family genes that contain an ADH_N domain and an ADH_zinc_N domain, which suggests that the putative flax CADs (LuCADs are zinc-dependent alcohol dehydrogenases and members of the plant CAD family. In addition, expression analysis using quantitative real-time PCR revealed spatial variations in the expression of LuCADs in different organs. Comparative analysis between LuCAD enzymatic activity and LuCAD transcripts indicates that the variation of LuCAD enzymatic activities by elicitors is reflected by transcription of LuCADs in flax suspension-cultured cells. Taken together, our genome-wide analysis of CAD genes and the expression profiling of these genes provide valuable information for understanding the function of CADs, and will assist future studies on the physiological role of monolignols associated with plant defense.

  8. Delta1-pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilis ssp. natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline.

    Science.gov (United States)

    Huang, Tzou-Chi; Huang, Yi-Wen; Hung, Hui-Ju; Ho, Chi-Tang; Wu, Mei-Li

    2007-06-27

    Proline dehydrogenase (PRODH) catalyzes the biosynthesis of Delta1-pyrroline-5-carboxylic acid (P5C). The Bacillus subtilis subsp. natto gene for the proline dehydrogenase (BnPRODH) was cloned and expressed in Escherichia coli. Nucleotide sequence analysis of the clone revealed an open-reading frame that encodes 302 amino acid polypeptide with a calculated molecular mass of 34.5 kDa. The deduced amino acid sequence showed sequence similarity to bacterial PRODH and PutA of E. coli. The BnPRODH gene was cloned into pET21b and was expressed at a high level in E. coli BL21(DE3). The expressed protein was purified by using nickel ion affinity column chromatography to homogeneity before characterization. The purified recombinant BnPRODH was used to produce P5C. Model system composed of P5C and methylglyoxal was set up to study the formation of 2-acetyl-1-pyrroline. Our data showed that P5C, derived from the conversion of l-proline by the purified recombinant PRODH, might react directly with methylglyoxal to form 2-AP. P5C/methylglyoxal pathway represents the first report of a biological mechanism by which 2-AP may be synthesized in vitro by PRODH.

  9. Alcohol dehydrogenaseexpression correlates with CDR1, CDR2 and FLU1 expression in Candida albicans from patients with vulvovaginal candidiasis

    Institute of Scientific and Technical Information of China (English)

    GUO Hui; ZHANG Xiao-li; GAO Lai-qiang; LI Shui-xiu; SONG Yan-jun; ZHANG Hong

    2013-01-01

    Background The most critical mechanism governing drug resistance in Candida albicans (C.albicans) involves efflux pumps,the functionality of which largely depends on energy metabolism.Alcohol dehydrogenase Ⅰ (ADH1) plays an important role in intracellular energy metabolism.The aim of this study was to explore the relationship between ADH1 and drug resistance in C.albicans.Methods Twenty clinical C.albicans samples isolated from individual patients diagnosed with vulvovaginal candidiasis,and two C.albicans strains obtained from a single parental source (the fluconazole (FLC)-sensitive strain CA-1S and the FLC-resistant strain CA-16R) were included in our study.In accordance with the Clinical and Laboratory Standards Institute (CLSI) M27-A3 guidelines,we used the microdilution method to examine the FLC minimum inhibitory concentrations (MICs) and real-time reverse transcription polymerase chain reaction (RT-PCR) to measure the mRNA expression levels of ADH1 and the azole resistance genes CDR1,CDR2,MDR1,FLU1 and ERG11 in all the isolates.Results A highly significant positive correlation between the mRNA levels of ADH1 and the MICs (rs =0.921,P=0.000),as well as positive correlations between the mRNA level of ADH1 and those of CDR1,CDR2 and FLU1 (rs of 0.704,0.772 and 0.779,respectively,P <0.01),were observed in the 20 clinical C.albicans samples.The relative expression of ADH1 was upregulated 10.63-to 17.61-fold in all of the drug-resistant isolates.No correlations were found between the mRNA levels of ADH1 and those of MDR1 or ERG11 (P >0.05).The mRNA levels of the examined drug resistance genes were higher in the CA-16R strain than in CA-1S,and the mRNA levels of ADH1 in CA-16R were 11.64-fold higher than those in CA-1S (P <0.05).Conclusions These results suggest that high levels of ADH1 transcription are implicated in FLC resistance in C.albicans and that the mRNA expression levels of ADH1 are positively correlated with those of CDR1,CDR2 and FLU1.

  10. Functional characterization and expression analysis of rice δ(1)-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism.

    Science.gov (United States)

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar

    2015-01-01

    While intracellular proline accumulation in response to various stress conditions has been investigated in great detail, the biochemistry and physiological relevance of proline degradation in plants is much less understood. Moreover, the second and last step in proline catabolism, the oxidation of δ(1)-pyrroline-5-carboxylic acid (P5C) to glutamate, is shared with arginine catabolism. Little information is available to date concerning the regulatory mechanisms coordinating these two pathways. Expression of the gene coding for P5C dehydrogenase was analyzed in rice by real-time PCR either following the exogenous supply of amino acids of the glutamate family, or under hyperosmotic stress conditions. The rice enzyme was heterologously expressed in E. coli, and the affinity-purified protein was thoroughly characterized with respect to structural and functional properties. A tetrameric oligomerization state was observed in size exclusion chromatography, which suggests a structure of the plant enzyme different from that shown for the bacterial P5C dehydrogenases structurally characterized to date. Kinetic analysis accounted for a preferential use of NAD(+) as the electron acceptor. Cations were found to modulate enzyme activity, whereas anion effects were negligible. Several metal ions were inhibitory in the micromolar range. Interestingly, arginine also inhibited the enzyme at higher concentrations, with a mechanism of uncompetitive type with respect to P5C. This implies that millimolar levels of arginine would increase the affinity of P5C dehydrogenase toward its specific substrate. Results are discussed in view of the involvement of the enzyme in either proline or arginine catabolism.

  11. Dehydroepiandrosterone affects the expression of multiple genes in rat liver including 11 beta-hydroxysteroid dehydrogenase type 1: a cDNA array analysis.

    Science.gov (United States)

    Gu, Shi; Ripp, Sharon L; Prough, Russell A; Geoghegan, Thomas E

    2003-03-01

    Dehydroepiandrosterone (DHEA) is a C-19 adrenal steroid precursor to the gonadal steroids. In humans, circulating levels of DHEA, as its sulfated conjugate, are high at puberty and throughout early adulthood but decline with age. Dietary supplementation to maintain high levels of DHEA purportedly has beneficial effects on cognitive memory, the immune system, and fat and carbohydrate metabolism. In rodents, DHEA is a peroxisome proliferator that induces genes for the classical peroxisomal and microsomal enzymes associated with this response. These effects are mediated through activation of peroxisome proliferator-activated receptor alpha (PPAR alpha). However, DHEA can affect the expression of genes independently of PPAR alpha, including the gene for the major inducible drug and xenobiotic metabolizing enzyme, cytochrome P450 3A23. To elucidate the biochemistry associated with DHEA treatment, we employed a cDNA gene expression array using liver RNA from rats treated with DHEA or the classic peroxisome proliferator nafenopin. Principal components analysis identified 30 to 35 genes whose expression was affected by DHEA and/or nafenopin. Some were genes previously identified as PPAR-responsive genes. Changes in expression of several affected genes were verified by quantitative reverse transcriptase-polymerase chain reaction. These included aquaporin 3, which was induced by DHEA and to a lesser extent nafenopin, nuclear tyrosine phosphatase, which was induced by both agents, and 11 beta-hydroxysteroid dehydrogenase 1, which was decreased by treatment with DHEA in a dose-dependent fashion. Regulation of 11 beta-hydroxysteroid dehydrogenase 1 expression is important since the enzyme is believed to amplify local glucocorticoid signaling, and its repression may cause some of the metabolic effects associated with DHEA.

  12. Hemizygous Expression of Glucose-6-Phosphate Dehydrogenase in Erythrocytes of Heterozygotes for the Lesch-Nyhan Syndrome*

    Science.gov (United States)

    Nyhan, William L.; Bakay, Bohdan; Connor, James D.; Marks, James F.; Keele, Doman K.

    1970-01-01

    In women heterozygous for hypoxanthine guanine phosphoribosyl trasferase deficiency, the activity of this enzyme in the erythrocyte is usually normal. In a key kindred two such obligate heterozygotes were also heterozygous for glucose-6-phosphate dehydrogenase types A and B. The AB genotype was confirmed in one by assay of skin fibroblasts. Erythrocytes were exclusively of type B. These observations suggest the clonal origin of the hematopoietic system in these women from a primordial cell line with a single active X chromosome. Images PMID:5263751

  13. cDNA Fragment Cloning of L-Galactono-1,4-Lactone Dehydrogenase and It's Expression in Different Organs of R.roxburghii Tratt

    Institute of Scientific and Technical Information of China (English)

    AN Hua-ming; CHEN Li-geng; FAN Wei-guo

    2004-01-01

    A 855 bp cDNA encoding L-galactono-1,4-lactone dehydrogenase (GalLDH) fragment was cloned from fruit of R. roxburghii Tratt by the method of RT-PCR, on the basis of the homologous genes of Arabidopsis thaliana, cauliflower, sweet potato, strawberry, etc. in GenBank. Sequence analysis showed 79-92% identity in nucleotide sequence and 75-87%identity in amino acid sequence to that of strawberry and Arabidopsis thaliana, etc.Northern blot showed that the expression of GalLDH was significantly different in different organs. The transcription level of GalLDH in fruit was significantly higher than that in leaf, stem and root respectively. Furthermore, this expression mode was highly correlated with AsA levels.

  14. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767

    Directory of Open Access Journals (Sweden)

    Yang Dong-Dong

    2012-06-01

    Full Text Available Abstract Background The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme. Results We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM compared to that of NADPH (39 μM. The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP + at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction. Conclusions In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.

  15. Abiotic Stress Generates ROS That Signal Expression of Anionic Glutamate Dehydrogenases to Form Glutamate for Proline Synthesis in Tobacco and Grapevine[W

    Science.gov (United States)

    Skopelitis, Damianos S.; Paranychianakis, Nikolaos V.; Paschalidis, Konstantinos A.; Pliakonis, Eleni D.; Delis, Ioannis D.; Yakoumakis, Dimitris I.; Kouvarakis, Antonios; Papadakis, Anastasia K.; Stephanou, Euripides G.; Roubelakis-Angelakis, Kalliopi A.

    2006-01-01

    Glutamate dehydrogenase (GDH) may be a stress-responsive enzyme, as GDH exhibits considerable thermal stability, and de novo synthesis of the α-GDH subunit is induced by exogenous ammonium and senescence. NaCl treatment induces reactive oxygen species (ROS), intracellular ammonia, expression of tobacco (Nicotiana tabacum cv Xanthi) gdh-NAD;A1 encoding the α-subunit of GDH, increase in immunoreactive α-polypeptide, assembly of the anionic isoenzymes, and in vitro GDH aminating activity in tissues from hypergeous plant organs. In vivo aminating GDH activity was confirmed by gas chromatorgraphy–mass spectrometry monitoring of 15N-Glu, 15N-Gln, and 15N-Pro in the presence of methionine sulfoximine and amino oxyacetic acid, inhibitors of Gln synthetase and transaminases, respectively. Along with upregulation of α-GDH by NaCl, isocitrate dehydrogenase genes, which provide 2-oxoglutarate, are also induced. Treatment with menadione also elicits a severalfold increase in ROS and immunoreactive α-polypeptide and GDH activity. This suggests that ROS participate in the signaling pathway for GDH expression and protease activation, which contribute to intracellular hyperammonia. Ammonium ions also mimic the effects of salinity in induction of gdh-NAD;A1 expression. These results, confirmed in tobacco and grape (Vitis vinifera cv Sultanina) tissues, support the hypothesis that the salinity-generated ROS signal induces α-GDH subunit expression, and the anionic iso-GDHs assimilate ammonia, acting as antistress enzymes in ammonia detoxification and production of Glu for Pro synthesis. PMID:17041150

  16. Clinical significance of the thymidylate synthase, dihydropyrimidine dehydrogenase, and thymidine phosphorylase mRNA expressions in hepatocellular carcinoma patients receiving 5-fluorouracil-based transarterial chemoembolization treatment

    Directory of Open Access Journals (Sweden)

    Zhao H

    2013-07-01

    Full Text Available Hongyun Zhao,1,* Yuanyuan Zhao,2,* Ying Guo,1 Yan Huang,2 Suxia Lin,3 Cong Xue,2 Fei Xu,2 Yang Zhang,1 Liping Zhao,2 Zhihuang Hu,2 Li Zhang1,2 1State Key Laboratory of Oncology in South China and National Anti-Cancer Drug Clinical Research Centre, 2State Key Laboratory of Oncology in South China and Department of Medical Oncology, 3Department of Pathological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China*These authors contributed equally to this workPurpose: To determine whether 5-fluorouracil (5-FU sensitivity is associated with the mRNA expressions of thymidylate synthase (TS, dihydropyrimidine dehydrogenase (DPD, and thymidine phosphorylase (TP in patients with hepatocellular carcinoma (HCC treated with 5-FU-based transarterial chemoembolization (TACE.Methods: Formalin-fixed, paraffin-embedded tumor specimens from 40 patients treated with 5-FU-based TACE were selected for the examination of TS, DPD, and TP expression level by a quantitative real-time reverse transcription- polymerase chain reaction (PCR technique. Patients were categorized into high and low expression groups according to the median expression level of each enzyme. Associations between the mRNA expression levels of TS, DPD, and TP and clinical parameters including treatment efficacies, clinicopathological factors, and prognosis were assessed.Results: High DPD expression was associated with worse treatment outcome, including intrahepatic disease progression rate (hazard ratio [HR] for high DPD versus low DPD, 2.212; 95% confidence interval [CI], 1.030–4.753; P = 0.042, extrahepatic disease progression rate (HR for high versus low DPD, 3.171; 95% CI, 1.003–10.023; P = 0.049, and progression-free survival (HR for high versus low DPD, 2.308; 95% CI, 1.102–4.836; P = 0.027. No correlation was found between the mRNA expression of TS/TP and treatment outcome.Conclusion: DPD mRNA expression level was negatively correlated with the clinical

  17. Stereoselective synthesis of (R)-phenylephrine using recombinant Escherichia coli cells expressing a novel short-chain dehydrogenase/reductase gene from Serratia marcescens BCRC 10948.

    Science.gov (United States)

    Peng, Guan-Jhih; Kuan, Yi-Chia; Chou, Hsiao-Yi; Fu, Tze-Kai; Lin, Jia-Shin; Hsu, Wen-Hwei; Yang, Ming-Te

    2014-01-20

    (R)-Phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist and is widely used as a nasal decongestant to treat the common cold without the side effects of other ephedrine adrenergic drugs. We identified a short-chain dehydrogenase/reductase (SM_SDR) from Serratia marcescens BCRC 10948 that was able to convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) into (R)-PE. The SM_SDR used NADPH and NADH as cofactors with specific activities of 17.35±0.71 and 5.57±0.07mU/mg protein, respectively, at 30°C and pH 7.0, thereby indicating that this enzyme could be categorized as an NADPH-preferring short-chain dehydrogenase/reductase. Escherichia coli strain BL21 (DE3) expressing SM_SDR could convert HPMAE into (R)-PE with more than 99% enantiomeric excess. The productivity and conversion yield were 0.57mmolPE/lh and 51.06%, respectively, using 10mM HPMAE. Fructose was the most effective carbon source for the conversion of HPMAE to (R)-PE.

  18. Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteriod dehydrogenase-1 expression in diabetic rat.

    Science.gov (United States)

    Ghazali, Nur Amalina; Elmy, Azree; Yuen, Lee Chee; Sani, Nurul Zaidah; Das, Srijit; Suhaimi, Farihah; Yusof, Rafizul; Yusoff, Nurul Huda; Thent, Zar Chi

    Increased oxidative stress and stress enzyme 11β hydroxysteriod dehydrogenase-1 (11β HSD-1) served as the major contributing factors for delayed wound healing in diabetes mellitus (DM). Piper betel (PB) leaves are reported to possess anti-diabetic, anti-oxidant and anti-microbial properties. The objective was to investigate the effectiveness of topical application of PB leaves extract on oxidative stress and 11β hydroxysteriod dehydrogenase-1 (11β HSD-1) expression in diabetic wounds. A total 64 male Sprague-Dawley rats were randomly chosen. The experimental rats received a single intramuscular injection of streptozotocin (45 mg/kg). Four full thickness (6 mm) wounds were created on the dorsum of each rat. The animals were equally divided (n = 8) into four groups based on the days of treatment (i.e. days 3 and 7): Control (Ctrl), diabetic untreated (DM-Ctrl), diabetic treated with 1% silver nitrate cream (DM-SN) and diabetic treated with 50 mg/kg of P. betel leaves extract (DM-PB). The rats were sacrificed on day 3 and 7 of post wound creations. Following day 7 wound creation, topical application of PB extract showed significant increase in hydroxyproline content, superoxide dismutase (SOD) level and decreased malondialdehyde (MDA) level, 11β-HSD-1 enzyme expression in the diabetic wounds compared to untreated diabetic wounds. The results were supported by the observations based on histological and ultrastructural features of the wound tissue applied with PB extract. PB leaves extract improved the delayed wound healing in diabetes mellitus by decreasing the oxidative stress markers and 11β HSD-1 expression. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  19. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus 39E in Clostridium thermocellum 1313 results in increased hydroxymethylfurfural resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ki; Groom, Joseph; Chung, Daehwan; Elkins, James; Westpheling, Janet

    2017-03-15

    Resistance to deconstruction is a major limitation to the use of lignocellulosic biomass as a substrate for the production of fuels and chemicals. Consolidated bioprocessing (CBP), the use of microbes for the simultaneous hydrolysis of lignocellulose into soluble sugars and fermentation of the resulting sugars to products of interest, is a potential solution to this obstacle. The pretreatment of plant biomass, however, releases compounds that are inhibitory to the growth of microbes used for CBP. Heterologous expression of the Thermoanaerobacter pseudethanolicus 39E bdhA gene, that encodes an alcohol dehydrogenase, in Clostridium thermocellum significantly increased resistance to furan derivatives at concentrations found in acid-pretreated biomass. The mechanism of detoxification of hydroxymethylfurfural was shown to be primarily reduction using NADPH as the cofactor. In addition, we report the construction of new expression vectors for homologous and heterologous expression in C. thermocellum. These vectors use regulatory signals from both C. bescii (the S-layer promoter) and C. thermocellum (the enolase promoter) shown to efficiently drive expression of the BdhA enzyme. Toxic compounds present in lignocellulose hydrolysates that inhibit cell growth and product formation are obstacles to the commercialization of fuels and chemicals from biomass. Expression of genes that reduce the effect of these inhibitors, such as furan derivatives, will serve to enable commercial processes using plant biomass for the production of fuels and chemicals.

  20. RNA expression and chromosomal location of the mouse long-chain acyl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Hinsdale, M.E.; Farmer, S.C.; Hamm, D.A.; Tolwani, R.J.; Wood, P.A. [Univ. of Alabama, Birmingham, AL (United States)] [and others

    1995-07-20

    The cDNA for mouse long-chain acyl-CoA dehydrogenase (Acadl, gene symbol; LCAD, enzyme) was cloned and characterized. The cDNA was obtained by library screening and reverse transcription-polymerase chain reaction (RT-PCR). The deduced amino acid sequence showed a high degree of homology to both the rat and the human LCAD sequence. Northern analysis of multiple tissues using the mouse Acadl cDNA as a probe showed two bands in all tissues examined. We found a total of three distinct mRNAs for Acadl. These three mRNAs were encoded by a single gene that we mapped to mouse chromosome 1. The three transcripts differed in the 3{prime} untranslated region due to use of alternative polyadenylation sites. Quantitative evaluation of a multitissue Northern blot showed a varied ratio of the larger transcript as compared with the smaller transcripts. 40 refs., 6 figs., 1 tab.

  1. Expression of the succinate dehydrogenase genes (sdhCAB) from the facultatively anaerobic paenibacillus macerans during aerobic growth

    Science.gov (United States)

    Schirawski; Hankeln; Unden

    1998-10-01

    Paenibacillus (formerly Bacillus) macerans is capable of succinate oxidation under oxic conditions and fumarate reduction under anoxic conditions. The reactions are catalyzed by different enzymes, succinate dehydrogenase (Sdh) and fumarate reductase (Frd). The genes encoding Sdh (sdhCAB) were analyzed. The gene products of sdhA and sdhB were similar to the subunits of known Sdh and Frd enzymes. The hydrophobic subunit SdhC showed close sequence similarity to the class of Sdh/Frd enzymes containing diheme cytochrome b. From the sdhCAB gene cluster two transcripts were produced, one comprising sdhCAB, the other sdhAB. The transcripts were found only during aerobic growth, and the amount was directly proportional to Sdh activity, but inversely proportional to Frd activity.

  2. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [(3) H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of (13) C and (14) C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488.

  3. Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne

    2017-01-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate involving the coenzyme NAD(+) . Part of the foundation for the proposed shuttling of lactate from astrocytes to neurons during brain activation is the differential distribution of LDH isoenzymes between the two cell...... types. In this short review, we outline the basic kinetic properties of the LDH isoenzymes expressed in neurons and astrocytes, and argue that the distribution of LDH isoenzymes does not in any way govern directional flow of lactate between the two cellular compartments. The two main points...... which cells are producing and which are consuming lactate. Second, the thermodynamic equilibrium of the reaction is toward the reduced substrate (i.e., lactate), which is reflected in the concentrations measured in brain tissue, suggesting that the reaction is at near-equilibrium at steady state...

  4. Upregulation of metallothionein and glucose-6-phosphate dehydrogenase expression in silver sea bream, Sparus sarba exposed to sublethal levels of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Man, Angel K.Y. [Department of Biology, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Woo, Norman Y.S. [Department of Biology, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)], E-mail: normanwoo@cuhk.edu.hk

    2008-09-29

    In this study, the induction of metallothionein (MT) and glucose-6-phosphate dehydrogenase (G6PDH) gene expression in response to exposure to cadmium (Cd{sup 2+}) was investigated in silver sea bream (Sparus sarba) in vivo. In addition, a primary hepatocyte culture has been developed from silver sea bream liver in order to assess the changes in gene expression of MT and G6PDH in hepatocytes directly exposed to Cd{sup 2+} in vitro. The sea bream metallothionein gene was cloned and characterized for the development of real-time PCR assays for quantification of MT transcript abundance. G6PDH gene expression was quantified using a real-time PCR assay developed using sequence information from a previously cloned silver sea bream G6PDH gene. In both in vivo and in vitro experiments, MT mRNA was highly inducible following Cd{sup 2+} treatment. In addition, Cd{sup 2+} exposure caused the upregulation of G6PDH mRNA expression and this suggests the possibility of the involvement of G6PDH in the defense against Cd{sup 2+}-induced oxidative stress in cells. It is likely that the defense system of silver sea bream to Cd{sup 2+} stress includes upregulation of G6PDH in addition to metallothionein.

  5. Divergent effects of retinoic acids on the expression of ERalpha and 17beta-hydroxysteroid dehydrogenase type 2 in endometrial carcinoma cells (RL 95-2).

    Science.gov (United States)

    Li, Xiao-Hong; Li, Hui; Xiao, Zhi-Jie; Piao, Yun-Shang

    2002-02-01

    The effects of E2 are dependent on ERs and local E2 concentration in target cells. Modulation of intracellular E2 concentration involves the action of 17beta-hydroxysteroid dehydrogenase (17HSD) type 2, the enzyme converting E2 to estrone. In the present study, the influence of RAs on the growth of endometrial cancer cell line RL 95-2 as well as the expression of ERs and 17HSD type 2 have been investigated. It was found that RAs repress the growth of RL 95-2 cells, which express all subtypes of RXR and RAR, as examined by RT-PCR. Also, quantitative RT-PCR analysis showed that both ERalpha and ERbeta are present in RL 95-2 cells, and Western blot assay further revealed that ERalpha expression was decreased by all trans-RA treatment. In contrast, RAs induced 17HSD type 2 mRNA expression in a dose- and time-dependent fashion. This stimulatory effect was also detected at the level of in vivo oxidative 17HSD activity in cultured cells. On the other hand, the abundance of 17HSD type 2 mRNA was not altered by RAs in cultured normal epithelial cells isolated from human early- and late-secretory endometrium. The data indicate that RAs have an inhibitory effect on the growth of RL 95-2 cells and a cross-talk with the estrogen pathway in estrogen-responsive endometrial cancer cells.

  6. The NADP-dependent glutamate dehydrogenase gene from the astaxanthin producer Xanthophyllomyces dendrorhous: use of Its promoter for controlled gene expression.

    Science.gov (United States)

    Rodríguez-Sáiz, Marta; Godio, Ramiro P; Alvarez, Vanessa; de la Fuente, Juan Luis; Martín, Juan F; Barredo, José Luis

    2009-02-01

    The gdhA gene encoding the NADP-dependent glutamate dehydrogenase (GDH) activity from Xanthophyllomyces dendrorhous has been cloned and characterized, and its promoter used for controlled gene expression in this red-pigmented heterobasidiomycetous yeast. We determined the nucleotide sequence of a 4701 bp DNA genomic fragment, showing an open reading frame of 1871 bp interrupted by five introns with fungal consensus splice-site junctions. The predicted protein (455 amino acids; 49 kDa) revealed high identity to GDHs, especially to those from the fungi Cryptococcus neoformans (70%), Sclerotinia sclerotiorum (66%), and several species of Aspergillus (66-67%). Gene phylogenies support the grouping of X. dendrorhous GDH close to those from the majority of the filamentous fungi. The promoter region of the gdhA gene (PgdhA) contains a TATA-like box and two large pyrimidine stretches. The use of PgdhA for gene expression was validated by electrotransformation of X. dendrorhous using an in-frame fusion with the hygromycin resistance gene (hygR) as a reporter. X. dendrorhous transformants were able to grow in YEME complex medium and in Czapek minimal medium supplemented with 50 microg/ml hygromycin, but gene expression in Czapek medium was repressed when using ammonium acetate as a nitrogen source. PgdhA is a valuable tool for controlled gene expression in Basidiomycetes.

  7. Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells.

    Science.gov (United States)

    Rossi, Soledad P; Windschüttl, Stefanie; Matzkin, María E; Rey-Ares, Verónica; Terradas, Claudio; Ponzio, Roberto; Puigdomenech, Elisa; Levalle, Oscar; Calandra, Ricardo S; Mayerhofer, Artur; Frungieri, Mónica B

    2016-10-15

    Reactive oxygen species (ROS) regulate testicular function in health and disease. We previously described a prostaglandin D2 (PGD2) system in Sertoli cells. Now, we found that PGD2 increases ROS and hydrogen peroxide (H2O2) generation in murine TM4 Sertoli cells, and also induces antioxidant enzymes expression suggesting that defense systems are triggered as an adaptive stress mechanism that guarantees cell survival. ROS and specially H2O2 may act as second messengers regulating signal transduction pathways and gene expression. We describe a stimulatory effect of PGD2 on lactate dehydrogenase (LDH) expression via DP1/DP2 receptors, which is prevented by the antioxidant N-acetyl-L-cysteine and the PI3K/Akt pathway inhibitor LY 294002. PGD2 also enhances Akt and CREB/ATF-1 phosphorylation. Our results provide evidence for a role of PGD2 in the regulation of the oxidant/antioxidant status in Sertoli cells and, more importantly, in the modulation of LDH expression which takes place through ROS generation and the Akt-CREB/ATF-1 pathway.

  8. Efficient expression, purification, and characterization of a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris.

    Science.gov (United States)

    Yang, Yufeng; Huang, Lei; Wang, Jufang; Wang, Xiaoning; Xu, Zhinan

    2014-11-28

    Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) can utilize a variety of external electron acceptors and also has stricter substrate specificity than any other glucose oxidoreductases, which makes it the ideal diagnostic enzyme in the field of glucose biosensors. A gene coding for a hypothetical protein, similar to glucose oxidase and derived from Aspergillus terreus NIH2624, was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 260,000 U/l in the culture supernatant after fed-batch cultivation for 84 h. After a three-step purification protocol that included isopropanol precipitation, affinity chromatography, and a second isopropanol precipitation, recombinant FAD-GDH was purified with a recovery of 65%. This is the first time that isopropanol precipitation has been used to concentrate a fermentation supernatant and exchange buffers after affinity chromatography purification. The purified FAD-GDH exhibited a broad and diffuse band between 83 and 150 kDa. The recombinant FAD-GDH was stable across a wide pH range (3.5 to 9.0) with maximum activity at pH 7.5 and 55°C. In addition, it displayed very high thermal stability, with a half-life of 82 min at 60°C. These characteristics indicate that FAD-GDH will be useful in the field of glucose biosensors.

  9. Repeated maternal dexamethasone treatments in late gestation increases 11beta-hydroxysteroid dehydrogenase type 1 expression in the hippocampus of the newborn rat.

    Science.gov (United States)

    Wan, Shunlun; Hao, Rusong; Sun, Kang

    This study was designed to investigate the effect of repeated maternal injections of dexamethasone in late gestation on the expression of newborn hippocampal 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), the enzyme amplifying glucocorticoids' action by converting biologically inactive 11-ketone metabolites into active glucocorticoids. Daily dexamethasone treatments (0.10 mg/kg body weight) in the last week of gestation were carried out in the pregnant rat. The expression of 11beta-HSD1 in the newborn hippocampal tissue was analyzed with Western blot and real-time polymerase chain reaction (PCR). The effect of corticosterone on the expression of 11beta-HSD1 was studied in cultured hippocampal neurons derived from newborn offspring received prenatal dexamethasone treatments. Both body and brain weights of the offspring were reduced significantly by repeated dexamethasone treatments in the last week of gestation. Western blot and real-time PCR analysis showed that both 11beta-HSD1 protein and mRNA expressions were increased significantly in the hippocampus of the newborn offspring on the first and seventh days after birth. Corticosterone could induce 11beta-HSD1 expression in cultured hippocampal neurons prepared from newborns received prenatal dexamethasone treatments, which was blocked by glucocorticoid receptor antagonist RU38486. The above findings suggest that repeated prenatal dexamethasone treatments at the end of gestation increase 11beta-HSD1 expression in the hippocampal tissue of the offspring, which may trigger a positive feedback pathway for the generation of biologically active glucocorticoids in the hippocampal tissue of the newborns.

  10. Expression of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptors in reproductive tissue of male horses at different stages of sexual maturity.

    Science.gov (United States)

    Herrera-Luna, C V; Budik, S; Helmreich, M; Walter, I; Aurich, C

    2013-04-01

    Glucocorticoids (GCs) as mediators of the stress response may affect Leydig cell function by inhibiting either luteinizing hormone receptor expression or testosterone biosynthesis. The isozymes 11β-hydroxysteroid dehydrogenase (11βHSD) 1 and 11βHSD2 control the intracellular cortisol levels. Little is known about the effects of stress on fertility in the equine. The objective of the present study was to determine the presence and cellular localization of glucocorticoid receptors (GCR) and glucocorticoid-metabolizing enzymes (11βHSD1 and 11βHSD2) in equine epididymal and testicular tissue with special regard to sexual maturation. Testicular and epididymal tissue was collected from 21 healthy stallions, and four age groups were designed: pre-pubertal, young, mature and older horses. Immunohistochemistry (IHC) analysis and quantitative real-time PCR (qRT-PCR) were used. Pre-pubertal horses showed higher testicular gene expression of 11βHSD1, 11βHSD2 and GCR than horses of all other groups (p horses. In mature stallions, expression of 11βHSD enzymes and the oxidative 11βHSD activity in Leydig cells and epididymal basal and principal cells suggest a protective role on these tissues contributing to physiological intracellular glucocorticoid concentrations.

  11. Upregulation of adipose 11-beta-hydroxysteroid dehydrogenase type 1 expression in ovariectomized rats is due to obesity rather than lack of estrogen.

    Science.gov (United States)

    Paulsen, Søren K; Nielsen, Maria P; Richelsen, Bjørn; Bruun, Jens M; Flyvbjerg, Allan; Pedersen, Steen B

    2008-04-01

    Increased tissue activity of cortisol induced by the activation of inert cortisone to active cortisol through 11-beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) may play a role in the metabolic syndrome. We recently found that 11beta-HSD1 in subcutaneous adipose tissue (AT) was lower in lean women compared with lean men. Estrogen suppresses hepatic and renal 11beta-HSD1 in rats; hence we investigated the in vitro effect of estrogen on human and rat AT, and the in vivo effects on rat AT 11beta-HSD1 expression. Wistar rats were divided into four groups of eight animals. One group was sham-operated (controls) and others were ovariectomized (OVX). One OVX group was left untreated (OVX-E), another (OVX+E) received estrogen treatment, and one received a hypo-caloric diet (OVX-E+D), matching the weight gain of the control group. AT from women undergoing liposuction or surgery and from killed male and female rats were incubated with estrogen alone or in the presence of IL-1beta. Gene expressions were determined by real-time reverse transcriptase PCR. Ovariectomy resulted in a 280% increase in adipose 11beta-HSD1 expression P effect of estrogen on adipose 11beta-HSD1 was found. The upregulation of 11beta-HSD1 in ovariectomized rats was most likely due to changes in body composition rather than lack of estrogen.

  12. Transcriptional Regulation of Expression of the Maize Aldehyde Dehydrogenase 7 Gene (ZmALDH7B6) in Response to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    GU Ri-liang

    2014-01-01

    Aldehyde dehydrogenases (ALDHs) represent a large protein family, which includes several members that catalyze the oxidation of an aldehyde to its corresponding carboxylic acid in plants. Genes encoding members of theALDH7 subfamily have been suggested to play important roles in various stress adaptations in plants. In this study, quantitative RT-PCR analysis revealed that a maizeALDH7 subfamily member (ZmALDH7B6) was constitutively expressed in various organs, including roots, leaves, immature ears, tassels, and developing seeds. The abundance ofZmALDH7B6 mRNA transcripts in maize roots was increased by ammonium, NaCl, and mannitol treatments. To further analyze tissue-speciifc and stress-induced expression patterns, the 1.5-kb 5´-lfankingZmALDH7B6 promoter region was fused to the β-glucuronidase (GUS) reporter gene and introduced into maize plants. In roots of independent transgenic lines, there was signiifcant induction of GUS activity in response to ammonium supply, conifrming ammonium-dependent expression ofZmALDH7B6 at the transcript level. Histochemical staining showed that GUS activity driven by theZmALDH7B6 promoter was mainly localized in the vascular tissues of maize roots. These results suggested thatZmALDH7B6 is induced by multiple environmental stresses in maize roots, and may play a role in detoxifying aldehydes, particularly in vascular tissue.

  13. Cloning and Expression Analysis of Malate Dehydrogenase Gene from Cassava%木薯苹果酸脱氢酶基因克隆和表达分析

    Institute of Scientific and Technical Information of China (English)

    尹奇; 仝征; 贺庭琪; 王力敏; 黄启星; 郭运玲; 孔华; 王旭初; 郭安平

    2013-01-01

    为从木薯块根中获得苹果酸脱氢酶(MDH)基因,并研究其在转录水平的表达变化规律,利用RACE技术从木薯“华南8号”块根中克隆得到了苹果酸脱氢酶基因,其cDNA全长1 175 bp,包含999 bp的开放阅读框,共编码332个氨基酸.从木薯“华南8号”中获得的MDH氨基酸序列,与其它物种的该序列相似度达84%~94%,包含细胞质苹果酸脱氢酶中高度保守的NAD结合基元“TGAAGQI”和催化基元“IWGNH”.木薯MDH基因与块根淀粉合成相关,在块根发育前期表达量较低,膨大期表达量较高,膨大后期表达量逐渐降低.%A 1 175 bp cDNA sequence of MDH with a 999 bp open reading frame,encoding a protein with 332 amino acids,was obtained from cassava SC8 roots by RACE (rapid-amplification of cDNA ends) to study the expressional pattern of malate dehydrogenase (MDH) mRNA.The MDH shared 84%~94% of amino acid sequence identities with MDH from other species,and contained a typical NAD+ binding motif (TGAAGQI) and a catalytic motif (IWGNH),suggesting it was a cytosolic molate dehydrogenase (cyMDH) gene.MDH was perhaps involved in the process of starch accumulation in cassava,the expression of cassava MDH was up regulated during storage root thinckening.

  14. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  15. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α.

    Science.gov (United States)

    Ryan, V H; Trayhurn, P; Hunter, L; Morris, P J; German, A J

    2011-10-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone

  16. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  17. Expression of 3β-hydroxysteroid dehydrogenase in ovarian and uterine tissue during diestrus and open cervix cystic endometrial hyperplasia-pyometra in the bitch.

    Science.gov (United States)

    Gultiken, Nilgun; Yarim, Murat; Yarim, Gul Fatma; Gacar, Ayhan; Mason, James Ian

    2016-07-15

    The purpose of this study was to compare the expression of 3β-hydroxystreroid dehydrogenase (3β-HSD) in the uterus and ovary of healthy dogs and those with cystic endometrial hyperplasia and/or pyometra complex (CEH-pyometra). Eighteen female dogs were included in the study. Eleven bitches with open cervix CEH-pyometra were included in the CEH-pyometra group and seven diestrus bitches in the control group. For immunostaining a rabbit polyclonal, one raised against recombinant human type 2 (adrenal/gonadal) 3β-HSD was used. Progesterone (P4) concentrations were not statistically different between the groups. Strongly stained large interstitial cell groups in the ovarian medulla were observed particularly in CEH-pyometra group although these cells in the control group were weakly or moderately stained and existed singly or paired. The expressions of 3β-HSD in luminal epithelium (42.40 ± 22.40% vs. 18.42 ± 13.15%, P pyometra group than those in the control group. The expression of 3β-HSD in CL was higher (29.38 ± 9.58% vs. 22.94 ± 4.97%) in CEH-pyometra group than that of control group although the differences were not significant (P > 0.05). Similarly, the significant increase in the expression of 3β-HSD in ovarian interstitial cells (33.86 ± 29.44 vs. 1.13 ± 2.97, P pyometra group compared to the control group. The study revealed that 3β-HSD expression in the endometrium of canine CEH-pyometra was significantly high. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. High Level Expression of Glucose-6-phosphate Dehydrogenase Gene PsG6PDH from Populus suaveolens in E. coli

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding region of PsG6PDH gene, was established. The recombinant was identified by lawn-PCR and double enzyme digestion and then transformed into expression host XA90 and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 100 kD polypeptide of G6PDH fusion protein. The results showed that the expressed amount of the fusion protein culminated after 1 mmol·L-1 IPTG treatment for 4 h and that pET-G product was predominately soluble and not extra-cellular secreting.

  19. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna

    2015-01-01

    by placing it in strains with different ability to reoxidise NADH, and applying different environmental conditions. Flow cytometric analysis of reporter strains expressing green fluorescent protein (GFP) under the control of the GPD2 promoter was used to determine the promoter activity at the single...... mapping revealed conditions where the GPD2 promoter was either completely inactive or hyperactive, which has implications for its implementation in future biotechnological applications such as for process control of heterologous gene expression....

  20. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system.

    Directory of Open Access Journals (Sweden)

    Payam Ghiaci

    Full Text Available 2-Butanol and its chemical precursor butanone (methyl ethyl ketone--MEK are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuteri, which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp. able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions.

  1. Osmotic Regulation of Betaine Content in Leymus chinensis Under Saline-alkali Stress and Cloning and Expression of Betaine Aldehyde Dehydrogenase(BADH)Gene

    Institute of Scientific and Technical Information of China (English)

    CUI Xi-yan; WANG Yong; GUO Ji-xun

    2008-01-01

    The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations.The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BADH:EC 1.2.1.8) activities have a direct relation with increased stressing time in the same treatment;both exhibit a single peak with increasing the concentration of saline-alkali solution,and number V shows the highest value.The BADH gene of Leymus chinensis Was cloned by RT-PCR and RACE technology and Was designated as LcBADH.The cDNA sequence of LcBADH Was 1774bp including the open reading frame(ORF)of 1521bp(coding 506 amino acids).The vector of prokaryotic expression was constructed by inserting the LcBADH gene fragment into pET30a(+)and transformed into E. coli BL21(DE3).The result of SDS-PAGE shows that the idio-protein with a molecular mass of 56.78 kDa was effectively expressed in the recombinant bacteria induced by isopropyl β-D-thiogalactoside(IPTG).

  2. Expression of aldehyde dehydrogenase family 1 member A1 and high mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time.

    Science.gov (United States)

    Qian, Xu; Coordes, Annekatrin; Kaufmann, Andreas M; Albers, Andreas E

    2016-11-01

    Despite the development of novel multimodal treatment combinations in advanced oropharyngeal squamous cell carcinoma (OSCC), outcomes remain poor. The identification of specifically validated biomarkers is required to understand the underlying molecular mechanisms, to evaluate treatment efficiency and to develop novel therapeutic targets. The present study, therefore, examined the presence of aldehyde dehydrogenase family 1 member A1 (ALDH1A1) and high mobility group box 1 (HMGB1) expression in primary OSCC and analyzed the impact on survival time. In 59 patients with OSCC, the expression of ALDH1A1, p16 and HMGB1, and their clinicopathological data were analyzed. HMGB1 positivity was significantly increased in patients with T1-2 stage disease compared with T3-4 stage disease (P<0.001), whereas ALDH1A1 positivity was not. ALDH1A1(+) tumors showed significantly lower differentiation than ALDH1A1(-) tumors (P=0.018). Multivariate analysis showed that ALDH1A1 positivity (P=0.041) and nodal status (N2-3) (P=0.036) predicted a poor prognosis. In this patient cohort, ALDH1A1 and nodal status were identified as independent predictors of a shorter overall survival time. The study results, therefore, provide evidence of the prognostic value of ALDH1A1 as a marker for cancer stem cells and nodal status in OSCC patients.

  3. Cloning and Expression of S-mandelate Dehydrogenase Gene%S-扁桃酸脱氢酶基因的克隆及表达

    Institute of Scientific and Technical Information of China (English)

    曾贞; 杨军方; 杨成丽; 王鹏; 李大力

    2012-01-01

    S-mandelate dehydrogenase ( SMDH) can catalyze S-mandelic acid to benzoylformic acid. The SMDH nucleotide gene (mdlA) was cloned from DNA of Pseudomonas putida NUST by PCR, and the amplicon was inserted into prokaryotic expression vector pET-30a ( + ). This recombinant was transformed into E. Coli BL21 (DE3) and then highly expressed by induction of IPTG. The result of SDS-PAGE showed that the molecular weight of cloned SMDH was about 43kDa. The recombinant strain could catalyze S-mandelate to benzoylformic acid.%S-扁桃酸脱氢酶能够选择性催化S-扁桃酸生成苯甲酰甲酸.通过PCR扩增获得Pseudomonas putida NUST的S-扁桃酸脱氢酶全长基因(mdlA),并构建了表达载体pET30a(+)-mdlA,转化大肠杆菌E coli BL21 (DE3)后,经异丙基-β-D-硫代吡喃半乳糖苷(IPTG)诱导获得表达,SDS-PAGE结果显示表达蛋白为43kDa.所以工程菌细胞具有转化S-扁桃酸生成苯甲酰甲酸能力.

  4. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals.

    Science.gov (United States)

    Zhang, Yingying; Wang, Qing; Ji, Yinglu; Zhang, Qian; Wu, Huifeng; Xie, Jia; Zhao, Jianmin

    2014-05-01

    17β-Hydroxysteroid dehydrogenases (17β-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17β-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17β-HSD type 10 and 17β-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.

  5. Efficient expression of codon-adapted human acetaldehyde dehydrogenase 2 cDNA with 6×His tag in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    ZHAO YuFeng; LEI MingKe; WU YuanXin; ZHANG ZiSheng; WANG CunWen

    2009-01-01

    Human mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) catalyzes the oxidation of acetaldehyde to acetic acid. Therefore, ALDH2 has therapeutic potential in detoxification of acetaldehyde. Furthermore, ALDH2 catalyzes nitroglycerin to nitrate and 1, 2-glyceryldinitrate during therapy for angina pectoris, myocardial infarction, and heart failure. Large quantities of ALDH2 will be needed for potential clinical practice. In this study, Pichia pastoris was used as a platform for expression of human ALDH2.Based on the ALDH2~*1 cDNA sequence, we designed ALDH2 cDNA by choosing the P. pastoris preferred codons and by decreasing the G + C content level. The sequence was synthesized using the overlap extension PCR method. The cDNA and 6×His tags were subcloned into the plasmid pPIC9K.The recombinant protein was expressed in P. pastoris GS115 and purified using Ni~(2+)-Sepharose affinity chromatography. The amount of secreted protein in the culture was 80 mg/L in shake-flask cultivation and 260 mglL in high-density bioreactor fermentation. Secreted ALDH2 was easily purified from the culture supernatant by using Ni2+-Sepharose affinity chromatography. After purification of the fermentation supernatant, the enzyme had a specific activity of 1.2 U/mg protein. The yield was about 16 mg/L in a shake flask culture of P. pastoris GS115 which contained the original human ALDH2~*1 cDNA.

  6. Efficient expression of codon-adapted human acetaldehyde dehydrogenase 2 cDNA with 6×His tag in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Human mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) catalyzes the oxidation of acetaldehyde to acetic acid. Therefore, ALDH2 has therapeutic potential in detoxification of acetaldehyde. Further-more, ALDH2 catalyzes nitroglycerin to nitrate and 1, 2-glyceryldinitrate during therapy for angina pectoris, myocardial infarction, and heart failure. Large quantities of ALDH2 will be needed for potential clinical practice. In this study, Pichia pastoris was used as a platform for expression of human ALDH2. Based on the ALDH2*1 cDNA sequence, we designed ALDH2 cDNA by choosing the P. pastoris preferred codons and by decreasing the G + C content level. The sequence was synthesized using the overlap extension PCR method. The cDNA and 6×His tags were subcloned into the plasmid pPIC9K. The recombinant protein was expressed in P. pastoris GS115 and purified using Ni2+-Sepharose affinity chromatography. The amount of secreted protein in the culture was 80 mg/L in shake-flask cultivation and 260 mg/L in high-density bioreactor fermentation. Secreted ALDH2 was easily purified from the culture supernatant by using Ni2+-Sepharose affinity chromatography. After purification of the fermentation supernatant, the enzyme had a specific activity of 1.2 U/mg protein. The yield was about 16 mg/L in a shake flask culture of P. pastoris GS115 which contained the original human ALDH2*1 cDNA.

  7. Folic acid supplementation during pregnancy induces sex-specific changes in methylation and expression of placental 11β-hydroxysteroid dehydrogenase 2 in rats.

    Directory of Open Access Journals (Sweden)

    Reyna Penailillo

    Full Text Available In the placenta, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2 limits fetal glucocorticoid exposure and its inhibition has been associated to low birth weight. Its expression, encoded by the HSD11B2 gene is regulated by DNA methylation. We hypothesized that maternal diets supplemented with folic acid (FA during pregnancy modify the expression of placental HSD11B2 through gene methylation. Wistar rats were fed with high (8 mg/kg or normal low (1mg/kg, control levels of FA during pregnancy. Concentrations of mRNA and protein in placentas were determined by qRT-PCR and Western blot respectively. Methylation in five CpG sites of the placental HSD11B2 promoter (-378 to -275 was analyzed by bacterial cloning and subsequent sequencing. In the FA-supplemented group, mRNA and protein levels of 11β-HSD2 decreased by 58% and increased by 89%, respectively, only in placentas attached to males. In controls, most CpG sites were not methylated except for the CpG2 site which was 80% methylated. CpG2 methylation level increased under the FA treatment; however, only in placentas attached to females was this increase significant (113%. This change was not related to HSD11B2 expression. Fetal weight of females from FA- supplemented mothers was 6% higher than females from control mothers. In conclusion, this is the first study reporting that FA over supplementation during pregnancy modifies the placental HSD11B2 gene expression and methylation in a sex-dependent manner, suggesting that maternal diets with high content of FA can induce early sex-specific responses, which may lead to long-term consequences for the offspring.

  8. Insulin, CCAAT/Enhancer-Binding Proteins and Lactate Regulate the Human 11β-Hydroxysteroid Dehydrogenase Type 2 Gene Expression in Colon Cancer Cell Lines

    Science.gov (United States)

    Alikhani-Koupaei, Rasoul; Ignatova, Irena D.; Guettinger, Andreas; Frey, Felix J.; Frey, Brigitte M.

    2014-01-01

    11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon. PMID:25133511

  9. Insulin, CCAAT/enhancer-binding proteins and lactate regulate the human 11β-hydroxysteroid dehydrogenase type 2 gene expression in colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Thomas Andrieu

    Full Text Available 11β-Hydroxysteroid dehydrogenases (11beta-HSD modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29 at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.

  10. Folic acid supplementation during pregnancy induces sex-specific changes in methylation and expression of placental 11β-hydroxysteroid dehydrogenase 2 in rats.

    Science.gov (United States)

    Penailillo, Reyna; Guajardo, Angelica; Llanos, Miguel; Hirsch, Sandra; Ronco, Ana Maria

    2015-01-01

    In the placenta, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) limits fetal glucocorticoid exposure and its inhibition has been associated to low birth weight. Its expression, encoded by the HSD11B2 gene is regulated by DNA methylation. We hypothesized that maternal diets supplemented with folic acid (FA) during pregnancy modify the expression of placental HSD11B2 through gene methylation. Wistar rats were fed with high (8 mg/kg) or normal low (1mg/kg, control) levels of FA during pregnancy. Concentrations of mRNA and protein in placentas were determined by qRT-PCR and Western blot respectively. Methylation in five CpG sites of the placental HSD11B2 promoter (-378 to -275) was analyzed by bacterial cloning and subsequent sequencing. In the FA-supplemented group, mRNA and protein levels of 11β-HSD2 decreased by 58% and increased by 89%, respectively, only in placentas attached to males. In controls, most CpG sites were not methylated except for the CpG2 site which was 80% methylated. CpG2 methylation level increased under the FA treatment; however, only in placentas attached to females was this increase significant (113%). This change was not related to HSD11B2 expression. Fetal weight of females from FA- supplemented mothers was 6% higher than females from control mothers. In conclusion, this is the first study reporting that FA over supplementation during pregnancy modifies the placental HSD11B2 gene expression and methylation in a sex-dependent manner, suggesting that maternal diets with high content of FA can induce early sex-specific responses, which may lead to long-term consequences for the offspring.

  11. The Role of Sugar-related Regulation in the Light-dependent Alterations of Arabidopsis Glutamate Dehydrogenase Genes Expression

    Directory of Open Access Journals (Sweden)

    E.Yu. Garnik

    2014-12-01

    Full Text Available Expression of gdh1 and gdh2 genes of Arabidopsis thaliana increases in the dark and decreases in the light. The reason of such alteration seems to be a glucose rising in photosynthetic cell in the light, but this hypothesis needs to be confirmed. In this work we investigate the role of glucose and hexokinase 1 in the light-dependent regulation of the gdh1 and gdh2 expression. A comparison of expression profiles of apl3, gdh1, gdh2 genes in presenсe of exogenous sucrose in the dark and in the light has demonstrated that sugar-related repression of gdh1 and gdh2 genes is insufficient to provide the high decrease of their transcripts in the light. Using Arabidopsis mutant gin2-1 with a defect in hxk1 gene we demonstrated that such a decrease is not depended on the regulatory function of hexokinase 1. We presume that light- dependent alterations of gdh1 and gdh2 expression are mediated by some chloroplast-to-nucleus regulatory signals.

  12. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  13. Lactate dehydrogenase test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  14. Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer.

    Science.gov (United States)

    Li, Huihui; Ma, Fei; Wang, Haijuan; Lin, Chen; Fan, Ying; Zhang, Xueyan; Qian, Haili; Xu, Binghe

    2013-12-17

    The stem cell marker ALDH1 has been of particular interest to scientists since it has been successfully used as a marker to isolate cancer stem cells from breast cancers. However, little is known, especially in Chinese breast cancer patients, on whether ALDH1 enrichment is prevalent in certain subtypes of breast cancer. In this study, we performed flow cytometry and immunohistochemistry to measure the expression of ALDH1 in 10 breast cancer cell lines and in a set of tissue microarrays consisting of 101 breast cancer tissues from the Chinese population. The 101 breast cancer tissues included 4 cancer subtypes defined on bases of their ER, PR, and HER2 statuses: triple-negative (25 cases), luminal A (33 cases), luminal B (16 cases) and HER2-overexpressing (HER2-OE, 27 cases). We found that ALDH1 was expressed in 25 of the 101 cases of breast cancer tissues. When the analysis was stratified, we found that the expression of ALDH1 varied significantly among the 4 subtypes, with a higher expression in triple-negative breast cancer (TNBC, p=0.003) than in the other 3 subtypes. In a series of breast cancer cell lines, we also confirmed that ALDH1 activity was mainly found in TNBC cell lines compared with non-TNBC ones (15.6% ± 2.45% vs 5.5% ± 2.58%, p=0.026). These data support the concept that the expression of ALDH1 is higher in TNBC than non-TNBC, which may be clinically meaningful for a better understanding of the poor prognosis of TNBC patients.

  15. Diabetes and Insulin Injection Modalities: Effects on Hepatic and Hippocampal Expression of 11β-Hydroxysteroid Dehydrogenase Type 1 in Juvenile Diabetic Male Rats.

    Science.gov (United States)

    Rougeon, Véronica; Moisan, Marie-Pierre; Barthe, Nicole; Beauvieux, Marie-Christine; Helbling, Jean-Christophe; Pallet, Véronique; Marissal-Arvy, Nathalie; Barat, Pascal

    2017-01-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is often encountered in diabetes, leading to several clinical complications. Our recent results showing an elevated tetrahydrocortisol/tetrahydrocorticosterone ratio in morning urine of diabetic children compared to that of controls suggest an increased nocturnal activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in the former. We hypothesized that these observations could be explained by a reduced inhibition of hepatic 11β-HSD1 activity by exogenous insulin owing to its subcutaneous (SC) administration and absence of first hepatic passage. Additionally, we hypothesized that hippocampal 11β-HSD1 activity might also be impaired by diabetes. We therefore measured HPA axis activity and 11β-HSD1 expression and activity in liver and hippocampus in streptozotocin-induced diabetic juvenile rats treated with SC or intraperitoneal (IP) insulin. Plasma corticosterone levels were elevated in untreated diabetic rats during the resting phase and restored by both types of insulin treatment. The mRNA expression and activity of 11β-HSD1 were increased in the untreated diabetic group in liver. Although diabetes was controlled equally whatever the route of insulin administration, liver 11β-HSD1 gene expression and activity was decreased only in the IP group, suggesting that a first hepatic pass is needed for 11β-HSD1 hepatic inhibition. In hippocampus, 11β-HSD1 activity was elevated in the untreated diabetic group but restored by both types of insulin treatment. Thus, these data extend our findings in diabetic children by showing impairment of hippocampal 11β-HSD1 in diabetes and by demonstrating that IP is preferable to SC insulin administration to restore 11β-HSD1 activity in liver.

  16. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    Science.gov (United States)

    Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain

    2011-03-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  17. Cloning, expression and protective immunity evaluation of the full-length cDNA encoding succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum

    Institute of Scientific and Technical Information of China (English)

    YU JunLong; WANG ShiPing; LI WenKai; DAI Gan; XU ShaoRui; HE Zhuo; PENG XianChu; ZHOU SongHua; LIU XueQin

    2007-01-01

    1071-bp fragment was obtained from the Schistosoma japonicum (Chinese strain) adult cDNA library after the 3' and 5' ends of the incomplete expression sequence tag (EST) of succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum (SjSDISP) were amplified by the anchored PCR with 2pairs of primers designed according to the EST of SjSDISP and the sequence of multiclone sites of the library vector. Sequence analysis indicated that the fragment was a full-length cDNA with a complete open reading frame (ORF), encoding 278 amino acid residues. The fragment was cloned into prokaryotic expression vector pQE30, and subsequently sequenced and expressed in Escherichia coll.SDS-PAGE and Western-blot analyses showed that the recombinant protein was about 32 kD and could be recognized by the polyclonal antisera from rabbits immunized with Schistosoma japonicum adult worm antigen. Compared with the FCA controls, mice vaccinated with rSjSDISP (test) or rSjGST (positive control) all revealed high levels of specific antibody and significant reduction in worm burden, liver eggs per gram (LEPG), fecal eggs per gram (FEPG) and intrauterine eggs. These results suggest that SjSDISP may be a novel and partially protective vaccine candidate against schistosomiasis. In contrast to the worm burden reduction rate, the higher degree of egg reduction rate in the test group also suggested that SjSDISP vaccine may primarily play a role in anti-embryonation or anti-fecundity immunity.

  18. Cloning, expression and protective immunity evalua- tion of the full-length cDNA encoding succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1071-bp fragment was obtained from the Schistosoma japonicum (Chinese strain) adult cDNA library after the 3′ and 5′ ends of the incomplete expression sequence tag (EST) of succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum (SjSDISP) were amplified by the anchored PCR with 2 pairs of primers designed according to the EST of SjSDISP and the sequence of multiclone sites of the library vector. Sequence analysis indicated that the fragment was a full-length cDNA with a complete open reading frame (ORF), encoding 278 amino acid residues. The fragment was cloned into prokary- otic expression vector pQE30, and subsequently sequenced and expressed in Escherichia coli. SDS-PAGE and Western-blot analyses showed that the recombinant protein was about 32 kD and could be recognized by the polyclonal antisera from rabbits immunized with Schistosoma japonicum adult worm antigen. Compared with the FCA controls, mice vaccinated with rSjSDISP (test) or rSjGST (posi- tive control) all revealed high levels of specific antibody and significant reduction in worm burden, liver eggs per gram (LEPG), fecal eggs per gram (FEPG) and intrauterine eggs. These results suggest that SjSDISP may be a novel and partially protective vaccine candidate against schistosomiasis. In contrast to the worm burden reduction rate, the higher degree of egg reduction rate in the test group also sug- gested that SjSDISP vaccine may primarily play a role in anti-embryonation or anti-fecundity immunity.

  19. Glutamate dehydrogenase and Na+-K+ ATPase expression and growth response of Litopenaeus vannamei to different salinities and dietary protein levels

    Institute of Scientific and Technical Information of China (English)

    LI Erchao; Leticia ARENA; Gabriel LIZAMA; Gabriela GAXIOLA; Gerard CUZON; Carlos ROSAS; CHEN Liqiao; Alain VAN WORMHOUD

    2011-01-01

    Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp (L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40~/5, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control.Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control.Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index,which increased in the first week and then recovered to a relatively normal level, as in the control,after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregnlation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.

  20. A calcium-deficient diet in rat dams during gestation and nursing affects hepatic 11β-hydroxysteroid dehydrogenase-1 expression in the offspring.

    Directory of Open Access Journals (Sweden)

    Junji Takaya

    Full Text Available BACKGROUND: Prenatal malnutrition can affect the phenotype of offspring by changing epigenetic regulation of specific genes. Several lines of evidence demonstrate that calcium (Ca plays an important role in the pathogenesis of insulin resistance syndrome. We hypothesized that pregnant female rats fed a Ca-deficient diet would have offspring with altered hepatic glucocorticoid-related gene expression and that lactation would modify these alterations. METHODOLOGY: We determined the effects of Ca deficiency during pregnancy and/or lactation on hepatic 11β-hydroxysteroid dehydrogenase-1 (Hsd11b1 expression in offspring. Female Wistar rats consumed either a Ca-deficient (D: 0.008% Ca or control (C: 0.90% Ca diet ad libitum from 3 weeks preconception to 21 days postparturition. On postnatal day 1, pups were cross-fostered to the same or opposite dams and divided into the following four groups: CC, DD, CD, and DC (first letter: original mother's diet; second letter: nursing mother's diet. All offspring were fed a control diet beginning at weaning (day 21 and were killed on day 200 ± 7. Serum insulin and adipokines in offspring were measured using ELISA kits. PRINCIPAL FINDINGS: In males, mean levels of insulin, glucose, and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR were higher in the DD and DC groups than in the CC group. We found no difference in HOMA-IR between the CC and CD groups in either males or females. Expression of Hsd11b1 was lower in male DD rats than in CC rats. Hsd11b1 expression in male offspring nursed by cross-fostered dams was higher than that in those nursed by dams fed the same diet; CC vs. CD and DD vs. DC. In females, Hsd11b1 expression in DC rats was higher than that in CC rats. CONCLUSIONS: These findings indicated that maternal Ca restriction during pregnancy and/or lactation alters postnatal growth, Hsd11b1 expression, and insulin resistance in a sex-specific manner.

  1. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Bross, P

    1992-01-01

    An effective EBV-based expression system for eucaryotic cells has been developed and used for the study of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). 1325 bp of PCR-generated MCAD cDNA, containing the entire coding region, was placed between the SV40 early promoter...... and polyadenylation signals in the EBV-based vector. Both wild-type MCAD cDNA and cDNA containing the prevalent disease-causing mutation A to G at position 985 of the MCAD cDNA were tested. In transfected COS-7 cells, the steady state amount of mutant MCAD protein was consistently lower than the amount of wild......-type human enzyme. The enzyme activity in extracts from cells harbouring the wild-type MCAD cDNA was dramatically higher than in the controls (harbouring the vector without the MCAD gene) while only a slightly higher activity was measured with the mutant MCAD. The mutant MCAD present behaves like wild...

  2. Cloning, expression, and biochemical characterization of a novel NADP(+)-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids.

    Science.gov (United States)

    Bakonyi, Daniel; Hummel, Werner

    2017-04-01

    A gene encoding a novel 7α-specific NADP(+)-dependent hydroxysteroid dehydrogenase from Clostridium difficile was cloned and heterologously expressed in Escherichia coli. The enzyme was purified using an N-terminal hexa-his-tag and biochemically characterized. The optimum temperature is at 60°C, but the enzyme is inactivated at this temperature with a half-life time of 5min. Contrary to other known 7α-HSDHs, for example from Clostridium sardiniense or E. coli, the enzyme from C. difficile does not display a substrate inhibition. In order to demonstrate the applicability of this enzyme, a small-scale biotransformation of the bile acid chenodeoxycholic acid (CDCA) into 7-ketolithocholic acid (7-KLCA) was carried out with simultaneous regeneration of NADP(+) using an NADPH oxidase that resulted in a complete conversion (<99%). Furthermore, by a structure-based site-directed mutagenesis, cofactor specificity of the 7α-HSDH from Clostridium difficile was altered to accept NAD(H). This mutant was biochemically characterized and compared to the wild-type.

  3. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue.

    Science.gov (United States)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Fisker, Sanne; Christiansen, Jens Sandahl; Flyvbjerg, Allan; Richelsen, Bjørn

    2006-03-01

    Local tissue activity of glucocorticoids is in part determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) and 11beta-HSD2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a central role in the features of GH deficiency and the metabolic syndrome. We investigated the effects of GH treatment on adipose tissue 11beta-HSD mRNA. A randomized placebo-controlled double-blind study design was used. Twenty-three GH-deficient patients (16 males and seven females) were randomized to 4 months of GH treatment (2 IU/m2) (n = 11) or placebo treatment (n = 12). Adipose tissue biopsies and blood samples were obtained before and after treatment. Biopsies were obtained from the abdominal sc depot at the level of the umbilicus and do not necessarily reflect the metabolically more important visceral adipose tissue. Gene expressions were determined by real-time RT-PCR. GH treatment decreased 11beta-HSD1 mRNA 66% [95% confidence interval (CI), 23-107%; P adipose tissue. Serum IGF-I and IGF-I mRNA increased in the GH-treated group by 187% (95% CI, 122-250%; P cortisol in adipose tissue.

  4. Three highly similar formate dehydrogenase genes located in the vicinity of the B4 resistance gene cluster are differentially expressed under biotic and abiotic stresses in Phaseolus vulgaris.

    Science.gov (United States)

    David, Perrine; des Francs-Small, Catherine Colas; Sévignac, Mireille; Thareau, Vincent; Macadré, Catherine; Langin, Thierry; Geffroy, Valérie

    2010-06-01

    In higher plants, formate dehydrogenase (FDH, EC1.2.1.2.) catalyzes the NAD-linked oxidation of formate to CO(2), and FDH transcript accumulation has been reported after various abiotic stresses. By sequencing a Phaseolus vulgaris BAC clone encompassing a CC-NBS-LRR gene rich region of the B4 resistance gene cluster, we identified three FDH-encoding genes. FDH is present as a single copy gene in the Arabidopsis thaliana genome, and public database searches confirm that FDH is a low copy gene in plant genomes, since only 33 FDH homologs were identified from 27 plant species. Three independent prediction programs (Predotar, TargetP and Mitoprot) used on this large subset of 33 plant FDHs, revealed that mitochondrial localization of FDH might be the rule in higher plants. A phylogenetic analysis suggests a scenario of local FDH gene duplication in an ancestor of the Phaseoleae followed by another more recent duplication event after bean/soybean divergence. The expression levels of two common bean FDH genes under different treatments were investigated by quantitative RT-PCR analysis. FDH genes are differentially up-regulated after biotic and abiotic stresses (infection with the fungus Colletotrichum lindemuthianum, and dark treatment, respectively). The present study provides the first report of FDH transcript accumulation after biotic stress, suggesting the involvement of FDH in the pathogen resistance process.

  5. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

    Science.gov (United States)

    Jeon, Hyunwoo; Durairaj, Pradeepraj; Lee, Dowoo; Ahsan, Md Murshidul; Yun, Hyungdon

    2016-12-28

    Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

  6. Ovarian expression of inhibin-subunits, 3β-hydroxysteroid dehydrogenase, and cytochrome P450 aromatase during the estrous cycle and pregnancy of shiba goats (Capra hircus).

    Science.gov (United States)

    Kandiel, Mohamed M M; Watanabe, Gen; Taya, Kazuyoshi

    2010-01-01

    The cellular localization of the inhibin subunits (α, β(A), and β (B)), steroidogenic enzymes (3β-hydroxysteroid dehydrogenase (3βHSD) and cytochrome P450 aromatase (P450arom) were evaluated in the ovaries of cyclic (n=6) and pregnant (n=2) Shiba goats (Capra Hircus). The immunointensity of inhibin α and β(A) subunits showed an increase in the granulosa cells (GC) of developing follicles. Inhibin β(B) subunit and P450arom showed high expression in GC of antral follicles. 3βHSD immunoreactivity was uniform in preantral and antral follicles. In follicular phase and late pregnancy, there was a strong expression of inhibin α subunit in GC of antral follicles. Although in mid pregnancy, antral follicles GC showed moderate immunostaining of inhibin β subunits, the immunoreactivity of inhibin β(A) and β(B) subunits was high during the follicular and luteal stages, respectively. While, immunoreactivity of GC to P450arom was moderate during all studied stages, and 3βHSD immunoreactivity was plentiful in antral follicles during the luteal phase. The immunoreactivity to inhibin α subunit and P450arom was abundant during mid pregnancy in the luteal tissues. Immunoreaction to inhibin β subunits was faint-to-moderate in cyclic and pregnancy corpora lutea. Immunoexpression of 3βHSD was maximal in late pregnancy corpora lutea. The present results suggest that, in goats, the GC of antral follicles are the main source of dimeric inhibins and that corpora lutea may partially participate in the secretion of inhibin. Changes in ovarian hormonal levels might depend on the synthesizing capacity of hormones in the follicles and corpora lutea to regulate the goat's reproductive stages.

  7. Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk for colorectal cancer.

    Science.gov (United States)

    Jiang, Yan; Turgeon, Danielle K; Wright, Benjamin D; Sidahmed, Elkhansa; Ruffin, Mack T; Brenner, Dean E; Sen, Ananda; Zick, Suzanna M

    2013-09-01

    Elevated tissue levels of prostaglandin E2, produced by cyclooxygenase (COX), are an early event in colorectal cancer (CRC). Data suggest the efficacy of nonsteroidal anti-inflammatory drugs, such as cancer preventives, in the inhibition of COX activity; however, side effects of nonsteroidal anti-inflammatory pose unacceptable limitations. Ginger has been reported to have anti-inflammatory activities with significant CRC preventive potential. We investigated whether consumption of 2.0 g ginger daily regulated the level of two key enzymes that control prostaglandin E2 production, COX-1 and NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Thirty participants at normal and 20 participants at increased risk for CRC were randomized and given 2.0 g/day ginger or placebo for 28 days. Flexible sigmoidoscopy was used to obtain colon biopsies at baseline and the end of the study. Tissue levels of COX-1 and 15-PGDH were assessed using western blotting. After ginger consumption, participants at increased risk for CRC had a significantly reduced colonic COX-1 protein level (23.8±41%) compared with the placebo group (18.9±52%; P=0.03). Protein levels of 15-PGDH in the colon were unchanged. In participants who were at normal risk for CRC, neither protein levels of COX-1 nor 15-PGDH in the colon were altered by ginger consumption. Ginger significantly lowered COX-1 protein expression in participants at increased risk for CRC but not in those at normal risk for CRC. Ginger did not alter 15-PGDH protein expression in either increased or normal-risk participants. Further investigation, in larger studies with a longer ginger intervention, is needed to examine the ability of ginger to impact tissue levels of prostaglandin.

  8. 11beta-hydroxysteroid dehydrogenase type 2 expression in the newly formed Leydig cells after ethane dimethanesulphonate treatment of adult rats.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva

    2008-01-01

    Full Text Available The enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD catalyzes the reversible conversion of physiologically active corticosterone to the biologically inert 11beta-dehydrocorticosterone in rat testis and protect the Leydig cells (LCs against the suppressive effect of glucocorticoids. The developmental pathway of the adult LCs population is accompanied with an increase in the 11beta-HDS activity. Thus, 11beta-HDS together with its role in controlling the toxicological effect of glucocorticoids on LCs can be used as a marker for their functional maturity. Ethane 1,2-dimethanesulphonate (EDS treatment of adult rats become unique appropriate model, which enable to answer many questions related to the differentiation of adult LCs in the prepubertal rat testis. The aim of the present study was to investigate the specific changes in the 11beta-HDS type 2 immunoreactivity in tandem with the expression of androgen receptor (AR during renewal of LCs population after EDS treatment. In the present study, we observed the first appearance of immunostaining for 11beta-HSD2 in new LCs population on day 14 after EDS administration when the progenitor LCs were detected. Our immunohistochemical analysis revealed progressive increases in the 11beta-HSD2 reaction intensity on 21 days after EDS treatment and reached a maximum on day 35. AR immunoexpression was found in new LCs on day 14 and 21 after EDS injection with an increasing curve of intensity. The most prominent AR immunostaining in new population LCs was evident by 35 days after EDS and that coincided with the increased number of LCs and restoration of adult LCs population. Our results demonstrated similar pattern of immunoreactivity for 11beta-HSD2 and AR in new LCs population after EDS treatment and suggested that the changes in 11beta-HSD2 expression can be used for evaluation of adult LCs differentiation in rat testis.

  9. [The expression of the sperm-specific lactate dehydrogenase gene Ldh-c in plateau pika (Ochotona curzoniae) cardiac muscle and its effect on the anaerobic glycolysis].

    Science.gov (United States)

    Li, Xiao; Wei, Lian; Wang, Yang; Xu, Li-Na; Wei, Lin-Na; Wei, Deng-Bang

    2015-06-25

    The plateau pika (Ochotona curzoniae) has a strong adaptability to hypoxic plateau environment. We found that the sperm-specific lactate dehydrogenase (LDH-C4) gene Ldh-c expressed in plateau pika cardiac muscle. In order to shed light on the effect of LDH-C4 on the anaerobic glycolysis in plateau pika cardiac muscle, 20 pikas were randomly divided into the inhibitor group and the control group, and the sample size of each group was 10. The pikas of inhibitor group were injected with 1 mL 1 mol/L N-isopropyl oxamate, a specific LDH-C4 inhibitor, in biceps femoris muscle of hind legs, each leg with 500 μL. The pikas of control group were injected with the same volume of normal saline (0.9% NaCl). The mRNA and protein expression levels of Ldh-c gene in plateau pika cardiac muscle were determined by real-time PCR and Western blot. The activities of LDH, and the contents of lactate (LD) and ATP in cardiac muscle were compared between the inhibitor group and the control group. The results showed that 1) the expression levels of Ldh-c mRNA and protein were 0.47 ± 0.06 and 0.68 ± 0.08, respectively; 2) 30 min after injection of 1 mL 1 mol/L N-isopropyl oxamate in biceps femoris muscle, the concentration of N-isopropyl oxamate in blood was 0.08 mmol/L; 3) in cardiac muscle of the inhibitor group and the control group, the LDH activities were (6.18 ± 0.48) U/mg and (9.08 ± 0.58) U/mg, the contents of LD were (0.21 ± 0.03) mmol/g and (0.26 ± 0.04) mmol/g, and the contents of ATP were (4.40 ± 0.69) nmol/mg and (6.18 ± 0.73) nmol/mg (P < 0.01); 5) the inhibition rates of N-isopropyl oxamate to LDH, LD and ATP were 31.98%, 20.90% and 28.70%, respectively. The results suggest that Ldh-c expresses in cardiac muscle of plateau pika, and the pika cardiac muscle may get at least 28% ATP for its activities by LDH-C4 catalyzed anaerobic glycolysis, which reduces the dependence on oxygen and enhances the adaptation to the hypoxic environments.

  10. Caffeine reduces 11β-hydroxysteroid dehydrogenase type 2 expression in human trophoblast cells through the adenosine A(2B receptor.

    Directory of Open Access Journals (Sweden)

    Saina Sharmin

    Full Text Available Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2 is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1 both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2 this inhibitory effect was mediated by the adenosine A(2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3 forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2 abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A(2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development.

  11. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Mädje Katharina

    2012-01-01

    Full Text Available Abstract Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(PH. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH, presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S-1-(2-chlorophenylethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3 that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by

  12. Proliferative responses to altered 17beta-hydroxysteroid dehydrogenase (17HSD) type 2 expression in human breast cancer cells are dependent on endogenous expression of 17HSD type 1 and the oestradiol receptors.

    Science.gov (United States)

    Jansson, A; Gunnarsson, C; Stål, O

    2006-09-01

    The primary source of oestrogen in premenopausal women is the ovary but, after menopause, oestrogen biosynthesis in peripheral tissue is the exclusive site of formation. An enzyme group that affects the availability of active oestrogens is the 17beta-hydroxysteroid dehydrogenase (17HSD) family. In breast cancer, 17HSD type 1 and type 2 have been mostly investigated and seem to be the principal 17HSD enzymes involved thus far. The question whether 17HSD type 1 or type 2 is of greatest importance in breast tumour development is still not clear. The aim of this study was to investigate how the loss of 17HSD type 2 expression, using siRNA in the non-tumour breast epithelial cells HMEC (human mammal epithelial cells) and MCF10A, and gain of 17HSD type 2 expression, using transient transfection in the breast cancer derived cell lines MCF7 and T47D, affect oestradiol conversion and proliferation rate measured as S-phase fraction. We further investigated how this was related to the endogenous expression of 17HSD type 1 and oestradiol receptors in the examined cell lines. The oestradiol level in the medium changed significantly in the MCF7 transfected cells and the siRNA-treated HMEC cells, but not in T47D or MCF10A. The S-phase fraction decreased in the 17HSD type 2-transfected MCF7 cells and the siRNA-treated HMEC cells. The results seemed to be dependent on the endogenous expression of 17HSD type 1 and the oestradiol receptors. In conclusion, we found that high or low levels of 17HSD type 2 affected the oestradiol concentration significantly. However, the response was dependent on the endogenous expression of 17HSD type 1. Expression of 17HSD type 1 seems to be dominant to 17HSD type 2. Therefore, it may be important to investigate a ratio between 17HSD type 1 and 17HSD type 2.

  13. Tumor necrosis factor-alpha upregulates 11beta-hydroxysteroid dehydrogenase type 1 expression by CCAAT/enhancer binding protein-beta in HepG2 cells.

    Science.gov (United States)

    Ignatova, Irena D; Kostadinova, Radina M; Goldring, Christopher E; Nawrocki, Andrea R; Frey, Felix J; Frey, Brigitte M

    2009-02-01

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.

  14. Expression of ghrelin and the ghrelin receptor in different stages of porcine corpus luteum development and the inhibitory effects of ghrelin on progesterone secretion, 3β-hydroxysteroid dehydrogenase (3β-honestly significant difference (HSD)) activity and protein expression.

    Science.gov (United States)

    Rak-Mardyła, A; Gregoraszczuk, E L; Karpeta, A; Duda, M

    2012-05-01

    Recent studies have suggested that ghrelin plays a direct role in controlling female reproduction. The aim of the present study was to investigate the mRNA and protein expression of ghrelin and its receptor (via real time PCR, Western blot and immunohistochemistry analysis, respectively) in porcine corpora lutea (CL) collected during early (CL1: 1-2 days after ovulation), middle (CL2: 7-10 after ovulation), and late luteal phase (CL3: 13-15 after ovulation). Ghrelin expression and concentration of both acylated and unacylated forms of ghrelin significantly increased during CL development. Immunohistochemistry analysis shown localization of ghrelin protein in the cytoplasm of large luteal cells. No changes in the expression of the ghrelin receptor were observed. Direct in vitro effects of ghrelin on progesterone (P4) secretion and 3-beta-hydroxysteroid dehydrogenase (3β-honestly significant difference (HSD)) activity, which were measured by the conversion of pregnenolone (P5) to P4, and 3β-HSD protein expression were then analyzed. To assess 3β-HSD activities, mature luteal cells were first cultured for 24 h with ghrelin at 100, 250, 500 and 1000 pg/mL with P5, or with aminoglutethimide (AMG). AMG is an inhibitor of CYP11A1-mediated hydroxylation; an addition of AMG and P5 enabled P4 production to serve as an index of 3β-HSD activity. Inhibitory effects of ghrelin on P4 secretion, 3β-HSD activity and protein expression were observed. In conclusion, the presence of ghrelin and its receptor in porcine corpora lutea and the direct inhibitory effects of ghrelin on luteal P4 secretion and 3β-HSD suggest potential auto/paracrine regulation by ghrelin in the luteal phase of ovary function.

  15. Expression of Retinaldehyde Dehydrogenase Enzymes in Mucosal Dendritic Cells and Gut-Draining Lymph Node Stromal Cells Is Controlled by Dietary Vitamin A

    NARCIS (Netherlands)

    R. Molenaar; M. van Knippenberg; G. Goverse; B.J. Olivier; A.F. de Vos; T. O'Toole; R.E. Mebius

    2011-01-01

    The vitamin A metabolite retinoic acid (RA) plays a crucial role in mucosal immune responses. We demonstrate in this study that RA-producing retinaldehyde dehydrogenase (RALDH) enzymes are postnatally induced in mesenteric lymph node (MLN) dendritic cells (DCs) and MLN stromal cells. RALDH enzyme ac

  16. Weight loss after gastric bypass surgery in women is followed by a metabolically favorable decrease in 11beta-hydroxysteroid dehydrogenase 1 expression in subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Simonyte, Kotryna; Olsson, Tommy; Näslund, Ingmar;

    2010-01-01

    The role of 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in the pathogenesis of obesity has been elucidated in humans and in various rodent models. Obesity is accompanied by disturbances in glucocorticoid metabolism, circulating adipokine levels, and fatty acid (FA) reesterification. This ...

  17. 假坚强芽孢杆菌丙氨酸脱氢酶的原核表达纯化与结晶%Prokaryotic Expression,Purification and Crystallization of Alanine Dehydrogenase in Bacillus pseudofirmus

    Institute of Scientific and Technical Information of China (English)

    唐昭娜; 张翠英; 胡平雄; 易秋分; 杨江丽; 董辉

    2015-01-01

    丙氨酸脱氢酶(alanine dehydrogenase,Ald)是一种NAD+依赖性的氨基酸脱氢酶,能可逆地催化丙氨酸氧化脱氨生成丙酮酸和氨.实验以假坚强芽孢杆菌的丙氨酸脱氢酶为研究对象,将目的基因克隆到 pET-22,b(+)原核表达载体上,并在大肠杆菌中完成蛋白的高效表达.通过镍离子亲和层析、离子交换层析和凝胶过滤层析等纯化方法,得到了高纯度的目的蛋白.利用气相扩散法对目的蛋白进行结晶,最终得到分辨率为0.31,nm的蛋白晶体.%Alanine dehydrogenase(Ald)is a NAD+-dependent amino acid dehydrogenase. It catalyzes the reversible oxida-tive deamination of L-alanine to pyruvate and ammonia. An Ald gene from Bacillus pseudofirmus was cloned into the pro-karyotic expression vector pET-22,b(+)and the Ald protein was overexpressed inEscherichia coli. The Ald protein was purified by Ni2+-chelating affinity chromatography,anion-exchange chromatography and gel filtration chromatography. Crystals were grown with the vapour-diffusion method and diffracted to 0.31,nm resolution.

  18. (R,R)-Butane-2,3-diol dehydrogenase from Bacillus clausii DSM 8716(T): Cloning and expression of the bdhA-gene, and initial characterization of enzyme.

    Science.gov (United States)

    Muschallik, Lukas; Molinnus, Denise; Bongaerts, Johannes; Pohl, Martina; Wagner, Torsten; Schöning, Michael J; Siegert, Petra; Selmer, Thorsten

    2017-09-20

    The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716(T) was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12U/mg and 23U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD(+) was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Copyright © 2017. Published by Elsevier B.V.

  19. Transforming growth factor-β1 and epidermal growth factor decrease the expression of 17β(-hydroxysteroid dehy-drogenase type 2 in endo-metrial carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Estradiol (E2) is the major molecular form of estrogens. Its biological effects are determined by estrogen receptors and intracellular E2 concentration in target cells. Regulation of intracellular E2 concentration involves the action of 17β(-hydroxysteroid dehydrogenase (17HSD) type 2, the enzyme inactivating E2 to estrone. It has been demonstrated that 17HSD type 2 is expressed in normal endometrial epithelia and emdometrial carcinoma cells (RL 95-2). However, the regulatory mechanism of 17HSD type 2 expression in emdometrial cancer cells remains unknown. In the present study, the effects of transforming growth factor-(1 (TGF-β1) and epidermal growth factor (EGF) on 17HSD type 2 expression in RL 95-2 cells have been investigated using enzyme activity assay and Northern blot analysis. After stimulation with TGF-β1 or EGF, the in vivo oxidative 17HSD activity in RL 95-2 cells was significantly decreased. It appeared that the inhibitory effect of TGF-β1 and EGF on the enzyme activity of 17HSD type 2 is dose- and time-dependent. Northern blot analysis further revealed that treatment of cells for 48 h with 10 ng/mL TGF-1β And 50 ng/mL EGF reduced the expression 17HSD type 2 mRNA to 30% and 20% of the control level, respectively. The data demonstrate that 17HSD type 2 expression in endometrial carcinoma cells is down-regulated by certain growth factors.

  20. Isolation of human umbilical cord blood aldehyde dehydrogenase-expressing progenitor cells that modulate vascular regenerative functions in vitro and in vivo.

    Science.gov (United States)

    Putman, David M; Hess, David A

    2013-01-01

    This unit describes the isolation and application of human umbilical cord blood progenitor cells to modulate vascular regenerative functions using in vitro co-culture systems and in vivo transplantation models. Using aldehyde dehydrogenase as a marker of stem cell function, blood-derived progenitors can be efficiently purified form human umbilical cord blood using flow cytometry. We describe in vitro approaches to measure cell-mediated effects on the survival, proliferation, and tube-forming function of endothelial cells using growth-rate assays and Matrigel tube-forming assays. Additionally, we provide a detailed protocol for inducing acute unilateral hindlimb ischemia in immune-deficient mice to assess progenitor cell-modulated effects on vascular regeneration by tracking the recovery of blood flow using noninvasive laser Doppler perfusion imaging. Collectively, we present combined in vitro and in vivo transplantation strategies for the pre-clinical assessment of human progenitor cell-based therapies to treat ischemic disease.

  1. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  2. Metabolomic comparison between cells over-expressing isocitrate dehydrogenase 1 and 2 mutants and the effects of an inhibitor on the metabolism.

    Science.gov (United States)

    Wen, He; Cho, Hye Rim; Yun, Taeho; Kim, Hyeonjin; Park, Chul-Kee; Lee, Se-Hoon; Choi, Seung Hong; Park, Sunghyouk

    2015-01-01

    The R132H and R172K mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have neomorphic activity of generating 2-hydroxyglutarate (2-HG) which has been implicated in the oncogenesis. Although similarities in structure and enzyme activity for the two isotypic mutations have been suggested, the difference in their cellular localization and biochemical properties suggests differential effects on the metabolic oncogenesis. Using U87 cells transfected with either wild-type (WT) and mutant (MT) IDH genes, the MT-IDH1 and MT-IDH2 cells were compared with NMR-based metabolomics. When normalized with the respective WT-IDH cells, the general metabolic shifts of MT-IDH1 and IDH2 were almost opposite. Subsequent analysis with LC-MS and metabolic pathway mapping showed that key metabolites in pentose phosphate pathway and tricarboxylic acid cycle are disproportionately altered in the two mutants, suggesting different activities in the key metabolic pathways. Notably, lactate level was lower in MT-IDH2 cells which produced more 2-HG than MT-IDH1 cells, indicating that the Warburg effects can be overridden by the production of 2-HG. We also found that the effect of a mutant enzyme inhibitor is mainly reduction of the 2-HG level rather than general metabolic normalization. Overall, the metabolic alterations in the MT-IDH1 and 2 can be different and seem to be commensurate with the degree of 2-HG production. The R132H and R172K mutations of isocitrate dehydrogenase 1 and 2, respectively, (IDH1 and IDH2) have neomorphic activity of generating 2-hydroxyglutarate (2-HG) which has been implicated in oncogenesis. The mutant cell's metabolic shifts from the respective wild type cells were almost opposite, with lactate level being lower in the IDH2 mutant only, implicating an overridden Warburg effect. The metabolic effect of an IDH1 mutant inhibitor was limited to 2-HG lowering.

  3. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum.

    Science.gov (United States)

    Carlson, Ellinor D; Papoutsakis, Eleftherios T

    2017-08-15

    With recent advances in synthetic biology, CO2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO2, and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum, which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms.IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum, which is natively incapable of CO2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl

  4. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  5. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  6. Thymidylate synthase, dihydropyrimidine dehydrogenase, ERCC1, and thymidine phosphorylase gene expression in primary and metastatic gastrointestinal adenocarcinoma tissue in patients treated on a phase I trial of oxaliplatin and capecitabine

    Directory of Open Access Journals (Sweden)

    Danenberg Kathleen D

    2008-12-01

    Full Text Available Abstract Background Over-expression of thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD in tumor tissue is associated with insensitivity to 5-fluorouracil (5-FU. Over-expression of ERCC1 correlates with insensitivity to oxaliplatin (OX therapy, while high thymidine phosphorylase (TP levels predict for increased sensitivity to capecitabine (Xel. Methods Biopsies of metastatic tumor were taken before OX (130 mg/m2 day 1 given with Xel (1200–3000 mg/m2 in two divided doses days 1–5 and 8–12 every 3-weeks. Micro-dissected metastatic and primary tumors were analyzed for relative gene expression by real-time quantitative polymerase chain reaction. The clinical protocol prospectively identified the molecular targets of interest that would be tested. Endpoints for the molecular analyses were correlation of median, first and third quartiles for relative gene expression of each target with response, time to treatment failure (TTF, and survival. Results Among 91 patients participating in this trial; 97% had colorectal cancer. The median number of prior chemotherapy regimens was 2, and most had prior 5-FU and irinotecan. In paired samples, median mRNA levels were significantly higher in metastatic versus primary tumor (-fold: TS (1.9, DPD (3.8, ERCC1 (2.1 and TP (1.6. A strong positive correlation was noted between DPD and TP mRNA levels in both primary (r = 0.693, p Conclusion Target gene expression in primary tumor was significantly lower than that in paired metastatic tissue. High ERCC1 mRNA levels in metastatic tumor was associated with a shorter TTF. Lower expression of TS mRNA correlated with a lower chance of early PD with XelOX therapy and improved overall survival.

  7. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    Science.gov (United States)

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  8. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw

    2016-01-01

    including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused...... a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic...

  9. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr.

    Science.gov (United States)

    Carlini, D B; Chen, Y; Stephan, W

    2001-01-01

    To gain insights into the relationship between codon bias, mRNA secondary structure, third-codon position nucleotide distribution, and gene expression, we predicted secondary structures in two related drosophilid genes, Adh and Adhr, which differ in degree of codon bias and level of gene expression. Individual structural elements (helices) were inferred using the comparative method. For each gene, four types of randomization simulations were performed to maintain/remove codon bias and/or to maintain or alter third-codon position nucleotide composition (N3). In the weakly expressed, weakly biased gene Adhr, the potential for secondary structure formation was found to be much stronger than in the highly expressed, highly biased gene Adh. This is consistent with the observation of approximately equal G and C percentages in Adhr ( approximately 31% across species), whereas in Adh the N3 distribution is shifted toward C (42% across species). Perturbing the N3 distribution to approximately equal amounts of A, G, C, and T increases the potential for secondary structure formation in Adh, but decreases it in Adhr. On the other hand, simulations that reduce codon bias without changing N3 content indicate that codon bias per se has only a weak effect on the formation of secondary structures. These results suggest that, for these two drosophilid genes, secondary structure is a relatively independent, negative regulator of gene expression. Whereas the degree of codon bias is positively correlated with level of gene expression, strong individual secondary structural elements may be selected for to retard mRNA translation and to decrease gene expression. PMID:11606539

  10. 酮古龙酸菌山梨醇脱氢酶的原核表达及活性检测%Prokaryotic Expression and Enzyme Activity Analysis of a D-Sorbi-tol Dehydrogenase of Ketogulonigenium vulgare

    Institute of Scientific and Technical Information of China (English)

    赵楠; 熊向华; 葛欣; 汪建华; 夏焕章; 张惟材

    2013-01-01

    Objective: To clone a D-sorbitol dehydrogenase(SLDH) gene sldh from Ketogulonigenium vulgare Y25 and investigate its expression and biological activity in E.coli. Methods: The sldh gene was amplified from K.vul-gare Y25 genome, then constructed into the pTIG vector. After the expression bacteria strain E.coli BL21(DE3) transformed with the recombinant plasmid was induced by IPTG, the whole cell, the supernatant and pellet of the cellular lysate were examined by SDS-PAGE. Using D-sorbitol as a substrate, the biological activity of the expres-sion product was analyzed by Native-PAGE, the bioconversion in vitro and resting cells assay. Results: The length of amplified fragment was 1740 bp as expected and the expression plasmid pTIG-sldh was successfully con-structed. It was revealed that the molecular weight of soluble expression protein band was about 58 kD by SDS-PAGE analysis. The result of Native-PAGE demonstrated that the expression product possesses dehydrogenase activity. In the bioconversion in vitro and resting cell experiment, L-sorbose was detected through the TLC assay. Conclusion: SLDH from K.vulgare was successfully solubly expressed in E.coli BL21(DE3) and transform D-sorbi-tol to L-sorbose by dehydrogenation.%目的:克隆酮古龙酸菌Y25的山梨醇脱氢酶基因sldh,在大肠杆菌中进行表达并检测表达产物的活性。方法:以酮古龙酸菌Y25基因组DNA为模板,PCR扩增sldh基因,连接到表达载体pTIG,转入大肠杆菌BL21(DE3), IPTG诱导表达;取表达菌体、菌体裂解上清和沉淀进行SDS-PAGE分析;以山梨醇为底物,通过活性电泳、体外转化及休止细胞转化进行sldh基因表达产物的活性检测。结果:扩增得到1740 bp的山梨醇脱氢酶基因,构建了表达质粒pTIG-sldh并在大肠杆菌中获得表达,SDS-PAGE结果显示表达产物为可溶性形式,相对分子质量约58×103;活性电泳结果说明表达产物在以山

  11. 殊异韦荣菌中乳酸脱氢酶重组蛋白的表达、纯化及活性分析%The recombinant expression, purification and activity analysis of lactate dehydrogenase in Veillonella dispar

    Institute of Scientific and Technical Information of China (English)

    何钟勤; 钟丞; 高心; 薛莹; 孙晓宇; 刘晓红

    2012-01-01

    Objective To determine dependence lactate dehydrogenase activity in Veillonella dispar.Methods Transformed the recombinant plasmid pET-28a-LDH in BL21 (DE3) and Rosetta(DE3).Recombinant lactate dehydrogenase(LDH) protein was induced at different conditions.Induction condition was optimized to obtain proper yield of recombinant protein.After purification by HisTRAP FF column,the protein activity was determined with LDH reactive kit.Results Sodium dodecylsulfate-polyacrylamide gel electrophoresis showed that the best protein expression conditions were isopropylthio-β-D-galactoside (IPTG)end for 0.4 mmol/L concentration in 30 degrees to induce 8 hours,or IPTG end for 0.4 mmol/L concentration in 30 degrees to induce 6 hours.Through the analysis of BandScan 5.0,the expression in BL21 (DE3) was 9.0%,higher than 6.1% in Rosetta(DE3).After purification by HisTRAP FF column,the protein active value of 13.79.Conclusions Recombinant LDH protein could be induced by IPTG with an optimal condition.%目的 进一步测定殊异韦荣菌中依赖性乳酸脱氢酶(lactate dehydrogenase,LDH)的活性,以期为研究该酶的具体功能及作用机制奠定基础,并为龋病预防和治疗提供新的思路.方法 重组质粒转入大肠杆菌BL21(DE3)和Rosetta(DE3)中,采用不同时间及6种不同浓度的异丙基硫代-β-D-半乳糖苷(isopropyhhio-β-D-galactoside,IPTG)诱导乳酸脱氢酶蛋白表达,选择最佳条件诱导LDH蛋白表达.并经His-标记蛋白纯化柱(HisTRAP FF柱)提纯,用LDH活性试剂盒测定蛋白活性.结果 pET-28a-LDH转入BL21(DE3)和Rosetta(DE3)中十二烷基硫酸钠-聚丙烯酰胺凝胶电泳显示最适表达条件分别为IPTG终浓度0.4 mmol/L、30℃诱导8h,IPTG终浓度0.4 mmol/L、30 ℃诱导6h.经BandScan 5.0软件分析,pET-28a-LDH质粒转化BL21(DE3)表达相对含量为9.0%,高于Rosetta(DE3)的6.1%;LDH活性试剂盒测定的蛋白活性值为13.79.结论 本项研究获得了LDH蛋白的最适诱导条

  12. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions lactate dehydrogenase deficiency lactate dehydrogenase deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lactate dehydrogenase deficiency is a condition that affects how the ...

  13. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Svendsen, P F; Madsbad, S; Nilas, L

    2009-01-01

    controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model......beta-HSD1 mRNA. The subgroups LP and OC had increased 11beta-HSD1 and 11beta-HSD2 mRNA expression compared with LC (Pfat...

  14. Differential Expression of Malate Dehydrogenase and Isocitrate Dehydrogenase in Diapaused Ladybird, Coccinella septempunctata L%苹果酸脱氢酶与异柠檬酸脱氢酶在滞育七星瓢虫中的差异表达

    Institute of Scientific and Technical Information of China (English)

    刘遥; 张礼生; 陈红印; 黄凤霞; 蒋莎; 任小云

    2014-01-01

    To analyze the categories and functions of the diapause related proteins in ladybird, Coccinella septempunctata, proteomics methods, such as two-dimensional electrophoresis, ESI-QUAD-TOF and bioinformatics, were used to identify the proteins with more than 2 folds of expression quantity. Mascot database search determined two matching proteins which showed different expression and are associated with the Krebs cycle, malate dehydrogenase (gi|212508346) and isocitrate dehydrogenase (gi|21392222), which were up-regulated and down-regulated, respectively. We analyzed the possible reasons and provided a theoretical basis for the diapauses environmental regulation at the protein level.%为分析七星瓢虫滞育相关蛋白质的类别和功能,在滞育调控及滞育后生物学研究的基础上,应用双向电泳、质谱分析(ESI-QUAD-TOF)、生物信息学等蛋白质组学方法,对表达量存在2倍及以上差异且差异显著的蛋白点进行鉴定。应用 Mascot 软件进行数据库检索,根据数据的匹配程度鉴定蛋白质。所得蛋白质中,参与三羧酸循环的两种关键酶呈现差异性表达,其中苹果酸脱氢酶(gi|212508346)呈上调表达,异柠檬酸脱氢酶(gi|21392222)则呈下调表达。苹果酸脱氢酶的增加,推测与滞育状态下的生理需求相关:一方面与昆虫对 NAD 的合成和利用有关,另一方面或是七星瓢虫应对滞育环境条件的一种应激方式,与正常个体的代谢通路相比,滞育个体开启了另外的代谢通路以适应环境条件的改变。异柠檬酸脱氢酶作为三羧酸循环中起关键调节作用的限速酶,在滞育个体中下调表达,或反映了三羧酸循环整体速率的降低,表现在滞育七星瓢虫体内维持了低水平的能量代谢。本文的研究结果,为从蛋白质水平深入揭示七星瓢虫滞育调控及其机理提供一定的参考。

  15. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1976-01-01

    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  16. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions.

    Science.gov (United States)

    Fapyane, Deby; Lee, Soo-Jin; Kang, Seo-Hee; Lim, Du-Hyun; Cho, Kwon-Koo; Nam, Tae-hyun; Ahn, Jae-Pyoung; Ahn, Jou-Hyeon; Kim, Seon-Won; Chang, In Seop

    2013-06-28

    FAD-dependent glucose dehydrogenase (FAD-GDH) of Burkholderia cepacia was successfully expressed in Escherichia coli and subsequently purified in order to use it as an anode catalyst for enzyme fuel cells. The purified enzyme has a low Km value (high affinity) towards glucose, which is 463.8 μM, up to 2-fold exponential range lower compared to glucose oxidase. The heterogeneous electron transfer coefficient (Ks) of FAD-GDH-menadione on a glassy carbon electrode was 10.73 s(-1), which is 3-fold higher than that of GOX-menadione, 3.68 s(-1). FAD-GDH was able to maintain its native glucose affinity during immobilization in the carbon nanotube and operation of enzyme fuel cells. FAD-GDH-menadione showed 3-fold higher power density, 799.4 ± 51.44 μW cm(-2), than the GOX-menadione system, 308.03 ± 17.93 μW cm(-2), under low glucose concentration, 5 mM, which is the concentration in normal physiological fluid.

  17. Expression of 17?-hydroxysteroid dehydrogenase and the effects of LH, FSH and prolactin on oestrone and 17?-oestradiol secretion in the endometrium of pigs during early pregnancy and the oestrous cycle.

    Science.gov (United States)

    Wojciechowicz, B; Kotwica, G; Zglejc, K; Waszkiewicz, E; Franczak, A

    2016-03-07

    The endometrium of pregnant and cyclic pigs is a source of oestrone (E1) and 17β-oestradiol (E2). However, the roles of LH, FSH and prolactin (PRL) as regulators of endometrial steroidogenesis, and the presence of 17β-hydroxysteroid dehydrogenase (17β-HSD) in the porcine endometrium, remain unknown. Therefore, in the present study we examined 17β-HSD expression and the effects of LH, FSH and PRL on E1 and E2 release in vitro in endometrial explants harvested from gravid pigs on Days 10-11 (embryo migration within the uterus), 12-13 (maternal recognition of pregnancy) and 15-16 (beginning of implantation) and compared them with results obtained in non-gravid pigs. The results show that: (1) endometrial 17β-HSD activity was decreased on Days 15-16 in pregnant and cyclic pigs compared with the preceding days; (2) LH, FSH and PRL increased endometrial E1 secretion on Days 10-11 and 15-16 of pregnancy and on Days 12-13 and 15-16 of the oestrous cycle; and (3) LH, FSH and PRL increased endometrial E2 secretion on Days 15-16 of pregnancy and during the days studied in the oestrous cycle. In conclusion, data suggest that LH, FSH and PRL affect endometrial secretion of estrogens in pigs.

  18. Expression of glucocorticoid receptor, mineralocorticoid receptor, and 11beta-hydroxysteroid dehydrogenase 1 and 2 in the fetal and postnatal ovine hippocampus: ontogeny and effects of prenatal glucocorticoid exposure.

    Science.gov (United States)

    Sloboda, Deborah M; Moss, Timothy J M; Li, Shaofu; Matthews, Stephen G; Challis, John R G; Newnham, John P

    2008-05-01

    To determine the expression of glucocorticoid metabolizing and action genes in the hippocampus of fetal, neonatal, and adult sheep. Pregnant ewes (or their fetuses) received intramuscular injections of saline or betamethasone (BETA, 0-5 mg/kg) at 104, 111, 118, and/or 125 days of gestation (dG). Hippocampal tissue was collected prior to (75, 84, and 101 dG), during (109 and 116 dG), or after (121, 132, and 146 dG; 6 and 12 postnatal weeks; 3.5 years of age) saline or BETA injections. Hippocampal glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and 11beta-hydroxysteroid dehydrogenase (11betaHSD)1 and 11betaHSD2 mRNA levels were determined using qRT-PCR. Control animals late in gestation demonstrated a decrease in mRNA encoding GR and 11betaHSD1, whereas 11betaHSD2 was undetectable, consistent with a damping of the negative feedback influence of circulating or locally produced cortisol on the hypothalamic-pituitary-adrenal (HPA) axis. BETA-administration had transient effects on fetal GR and MR, and early in postnatal life (12 weeks of age) 11betaHSD1 mRNA was increased. Hippocampal MR mRNA was elevated in adult offspring exposed to either one or four doses of maternal BETA (Pglucocorticoid negative feedback, facilitating increased preterm HPA activity and parturition. Adult offspring of BETA-treated mothers demonstrated increased MR and 11betaHSD2 mRNA, therefore it appears that exposure of fetus to high levels of synthetic glucocorticoids may have long-lasting effects on the hippocampal expression of HPA-related genes into adulthood.

  19. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase......Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...

  20. 乙醇脱氢酶Ⅰ类基因全长cDNA的克隆与表达%Cloning and Expression of the Full-length cDNAs Encoding Human Class Ⅰ Alcohol Dehydrogenases

    Institute of Scientific and Technical Information of China (English)

    周文婷; 李景鹏; 崔羽; 张永红; 李世荣

    2007-01-01

    Background & Objective:Background &Objective: The class Ⅰ Alcohol Dehydrogenases (ADH) play a key role in hepatic alcohol catabolism. Human ADH is encoded by at least seven genes, and three class Ⅰ ADH genes-ADH1, ADH2 and ADH3, which encode the α, β, and γ subunit respectively, had been isolated and mapped on chromosome 4q21-q25. This experiment tends to clone the human class Ⅰ ADH and investigate its role in the hepatic alcohol catabolism. Methods: A pair of primers were designed and the full-length cDNAs encoding human Class Ⅰ ADH were cloned at one time. Class Ⅰ ADH cDNAs were amplified with RT-PCR from total RNA extracted from fetal human liver and kidney, and cloned into pGEM-T vector. To identify cDNA segments, a pair of differential primers was designed. By using them, a portion of the ADHs which encodes the segment from -4 to 296 was cloned. These cDNA segments then were detected directly when being digested with Kpn Ⅰ and Pst Ⅰ, respectively. Then all the full-length cDNAs were subcloned in the plasmid pTYB11 and expressed in E. Coli. Stably. Alcohol Dehydrogenase activity of catalyzing alcohol were monitored at 340 nm. Results: Here we had successfully the human class Ⅰ ADH cloned and the full-length cDNAs expressed in E.col.I stably. The relative activity of recombinant enzymes metabolizing ethanol was 0.81 ~1.31 U/mg,0.09 ~0.15 U/mg and 0.76~1.11 U/mg, respectively. Conclusions: In the paper, the full-length cDNAs encoding human class Ⅰ AD H were successfully cloned and expressed and the recombinant enzymes showed the activities similar to the ones isolated from liver.%目的:克隆编码人Ⅰ类乙醇脱氢酶基因,并探讨Ⅰ类乙醇脱氢酶(ADH)在乙醇的肝代谢中的作用.方法:从胎儿肝,肾提取的总RNA;经RT-PCR扩增得到cDNA并克隆至pGEM-T载体.cDNA序列用Kpn Ⅰ和Pst Ⅰ酶切鉴定,并检测其在大肠杆菌中表达活性.通过吸光法检测酶的活性.结果:成功克隆了人Ⅰ类乙

  1. Lactate dehydrogenase-elevating virus

    Science.gov (United States)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  2. Effects of iodonium-class flavin dehydrogenase inhibitors on growth, reactive oxygen production, cell cycle progression, NADPH oxidase 1 levels, and gene expression in human colon cancer cells and xenografts.

    Science.gov (United States)

    Doroshow, James H; Gaur, Shikha; Markel, Susan; Lu, Jiamo; van Balgooy, Josephus; Synold, Timothy W; Xi, Bixin; Wu, Xiwei; Juhasz, Agnes

    2013-04-01

    Iodonium-class flavoprotein dehydrogenase inhibitors have been demonstrated to possess antiproliferative potential and to inhibit reactive oxygen production in human tumor cells, although the mechanism(s) that explains the relationship between altered cell growth and the generation of reactive oxygen species (ROS) remains an area of active investigation. Because of the ability of these compounds to inhibit the activity of flavoprotein-containing epithelial NADPH oxidases, we chose to examine the effects of several iodonium-class flavoprotein inhibitors on human colon cancer cell lines that express high, functional levels of a single such oxidase (NADPH oxidase 1, or Nox1). We found that diphenyleneiodonium (DPI), di-2-thienyliodonium (DTI), and iodonium diphenyl inhibited the growth of Caco2, HT-29, and LS-174T colon cancer cells at concentrations (10-250nM for DPI, 0.5-2.5μM for DTI, and 155nM to 10μM for iodonium diphenyl) substantially lower than needed for DU145 human prostate cancer cells, which do not possess functional NADPH oxidase activity. Drug treatment was associated with decreased H2O2 production and diminished intracellular ROS levels, lasting up to 24h, after short-term (1-h) exposure to the iodonium analogs. Decreased tumor cell proliferation was caused, in part, by a profound block in cell cycle progression at the G1/S interface in both LS-174T and HT-29 cells exposed to either DPI or DTI; and the G1 block was produced, for LS-174T cells, by upregulation of p27 and a drug concentration-related decrease in the expression of cyclins D1, A, and E that was partially prevented by exogenous H2O2. Not only did DPI and DTI decrease intracellular ROS, they both also significantly decreased the mRNA expression levels of Nox1, potentially contributing to the prolonged reduction in tumor cell reactive oxygen levels. We also found that DPI and DTI significantly decreased the growth of both HT-29 and LS-174T human tumor xenografts, at dose levels that produced

  3. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Teng Bao

    Full Text Available Acetoin (3-hydroxy-2-butanone, an extensively-used food spice and bio-based platform chemical, is usually produced by chemical synthesis methods. With increasingly requirement of food security and environmental protection, bio-fermentation of acetoin by microorganisms has a great promising market. However, through metabolic engineering strategies, the mixed acid-butanediol fermentation metabolizes a certain portion of substrate to the by-products of organic acids such as lactic acid and acetic acid, which causes energy cost and increases the difficulty of product purification in downstream processes. In this work, due to the high efficiency of enzymatic reaction and excellent selectivity, a strategy for efficiently converting 2,3-butandiol to acetoin using whole-cell biocatalyst by engineered Bacillus subtilis is proposed. In this process, NAD+ plays a significant role on 2,3-butanediol and acetoin distribution, so the NADH oxidase and 2,3-butanediol dehydrogenase both from B. subtilis are co-expressed in B. subtilis 168 to construct an NAD+ regeneration system, which forces dramatic decrease of the intracellular NADH concentration (1.6 fold and NADH/NAD+ ratio (2.2 fold. By optimization of the enzymatic reaction and applying repeated batch conversion, the whole-cell biocatalyst efficiently produced 91.8 g/L acetoin with a productivity of 2.30 g/(L·h, which was the highest record ever reported by biocatalysis. This work indicated that manipulation of the intracellular cofactor levels was more effective than the strategy of enhancing enzyme activity, and the bioprocess for NAD+ regeneration may also be a useful way for improving the productivity of NAD+-dependent chemistry-based products.

  4. Equating salivary lactate dehydrogenase (LDH) with LDH-5 expression in patients with oral squamous cell carcinoma: An insight into metabolic reprogramming of cancer cell as a predictor of aggressive phenotype.

    Science.gov (United States)

    Saluja, Tajindra Singh; Spadigam, Anita; Dhupar, Anita; Syed, Shaheen

    2016-04-01

    Oral squamous cell carcinoma (OSCC) is the sixth most common human malignancy. According to World Health Organization, oral cancer has been reported to have the highest morbidity and mortality and a survival rate of approximately 50 % at 5 years from diagnosis. This is attributed to the subjectivity in TNM staging and histological grading which may result in less than optimum treatment outcomes including tumour recurrence. One of the hallmarks of cancer is aerobic glycolysis also known as the Warburg effect. This glycolytic phenotype (hypoxic state) not only confers immortality to cancer cells, but also correlates with the belligerent behaviour of various malignancies and is reflected as an increase in the expression of lactate dehydrogenase 5 (LDH-5), the main isoform of LDH catalysing the conversion of pyruvate to lactate during glycolysis. The diagnostic role of salivary LDH in assessing the metabolic phenotype of oral cancer has not been studied. Since salivary LDH is mainly sourced from oral epithelial cells, any pathological changes in the epithelium should reflect diagnostically in saliva. Thus in our current research, we made an attempt to ascertain the biological behaviour and aggressiveness of OSCC by appraising its metabolic phenotype as indirectly reflected in salivary LDH activity. We found that salivary LDH can be used to assess the aggressiveness of different histological grades of OSCC. For the first time, an evidence of differing metabolic behaviour in similar histologic tumour grade is presented. Taken together, our study examines the inclusion of salivary LDH as potential diagnostic parameter and therapeutic index in OSCC.

  5. Cloning and expression of 6-phosphogluconate dehydrogenase alternative splicing in Volvariella volvacea%草菇6-磷酸葡萄糖酸脱氢酶基因可变剪接体克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    陈志宏; 傅梅萍; 李远峰; 陶永新; 江玉姬; 谢宝贵

    2014-01-01

    6-磷酸葡萄糖酸脱氢酶(6PGDH)是磷酸戊糖途径的限速酶,影响着细胞生命活动所需要的NADPH的产生.为揭示草菇菌丝生长的分子基础,通过克隆草菇6-磷酸葡萄糖酸脱氢酶编码基因(6gpdh)的可变剪接体,测序后进行生物信息学分析,利用表达谱和qPCR测定了它们在同核体和异核体菌株的表达量.结果显示,草菇6gpdh序列全长2 315bp,含10个内含子,第6个内含子存在内含子保留的可变剪接.在同核体和异核体菌株中,内含子保留的可变剪接体表达量低,且菌株间没显著差异,而内含子被剪接的剪接体表达量高,且异核体菌株高于同核体菌株.两种可变剪接体具有6-磷酸葡萄糖酸脱氢酶保守结构域和相似的三维结构.因此,初步分析两个可变剪切体是同工酶,内含子保留是组成型表达,表达量与菌丝生长快慢无关,内含子剪接是主效剪接方式,菌丝生长快的菌株表达量高,生长慢的菌株表达量低.%6-phosphogluconate dehydrogenase (6PGDH),one of the key enzymes in pentose phosphate pathway (PPP),is essential for research of molecular basis about the growth of mycelium in Volvariella volvacea.This paper aimed to study the role of 6PGDH in the growth of mycelium.We cloned and sequenced variants of 6gpdh gene with RT-PCR technique and performed bioinformatic analysis.The expression levels of 6gpdh in both monokaryons and heterokaryon were detected by digital gene expression profiling and qPCR.The results showed that 6gpdh gene with ten introns had two types of alternative splicing variants (6pgdhIR exhibiting 6th intron retention and 6pgdhID exhibiting 6th intron deletion).Both digital gene expression profile and qPCR showed a higher expression level of 6gpdh in heterokaryon than in any monokaryon.Nevertheless,the expression level of 6pgdhIR was low in three mycelia with little differences.Both variants could encode 6PGDH protein with conserved domain and similar tertiary

  6. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    Directory of Open Access Journals (Sweden)

    Ji Yun Jeong

    2012-10-01

    Full Text Available The pyruvate dehydrogenase complex (PDC activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.

  7. 脑胶质瘤中核干细胞因子表达与IDH1基因突变分析%Analysis of expression of nucleostemin and mutations of ;isocitrate dehydrogenase 1 gene in glioma tissues

    Institute of Scientific and Technical Information of China (English)

    寿记新; 管海博; 程森

    2014-01-01

    Objective To analyze the characteristic of expression of NS and isocitrate dehydrogenase (IDH1) gene muta-tions in gliomas ,as to provide theoretical basis for the diagnosis and treatment of glioma. Methods Fifty-eight human glioma samples were analyzed. The protein expression levels of NS were measured by IHC. The polymorphisms change of IDH1 gene was detected by real-time quantitative PCR.Results Upshots immuno-histochemistry manifested that the positive expression rate of NS in high level gloma tissue was higher than that in low level glioma. Gene sequencing manifested that IDH1 gene mu-tations were observed in 16 samples having gliomas(55.2% ) ,and the mutation appeared as R132H type. By the SPSS analy-sis ,IDH1 gene mutation rate had a certain correlation with glioma pathology classification.Conclusion As the increase of path-ological level ,the expression of NS and IDH1 gene mutations rate are increased in glioma. It can provide strong evidence for the diagnosis of glioma and opened up a new research way in gene therapy for gliomas.%目的:分析胶质瘤中核干细胞因子(NS)表达和异柠檬酸脱氢酶1(IDHI)基因突变的特点,为胶质瘤的诊断、治疗提供理论依据。方法对58例原发性胶质瘤存档蜡块分析,采用免疫组织化学法检测 NS 蛋白的表达情况,应用 PCR技术检测标本中IDH1基因多态性变化。结果免疫组织化学法检测显示,在高级别胶质瘤标本中NS蛋白表达率高于低级别。经基因直接测序,16例(55.2%)出现IDH1突变,突变位点均为R132型。经统计学分析,IDH1基因突变率与胶质瘤病理分级呈正相关。结论在胶质瘤中核干细胞因子表达和ID H l基因突变率随病理级别的增加而增加,可为胶质瘤的诊断提供有力的证据,并为胶质瘤在基因治疗方面指出了新的研究方向。

  8. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a

  9. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s

  10. 大肠杆菌苹果酸脱氢酶基因mdh的克隆、高效表达及酶学性质%Cloning,Expression,and Characterization of a Malate Dehydrogenase Gene from Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    李倩; 徐美娟; 夏海锋; 饶志明

    2011-01-01

    Malate dehydrogenase (MDH) gene was amplified via PCR from the chromosome of Escherichia coli in this manuscript.The PCR product was cloned into the expression vector pET28a (+).The resulted recombinant plasmid was transformed into E.coli BL21 (DE3).Induced by 0.5 mmol/L IPTG, MDH, a 36KDa protein, was successfully expressed in E.coli BL21 (DE3).An active MDH was purified by Ni-NTA column affinity Chromatography, with the specific activity of 112.5 U/mg,the purification multiple of 2.62, and the recovery rate of 59%.In a preliminary study, the enzymatic properties of the purified His-tagged enzyme were characterized.It was found to have pH and temperature optima of 37 ℃ and 6.0, respectively.The enzyme was stable when pH and temperature kept in the range of 2.0 to 6.0 and blow 42 ℃, respectively.Its activity was activated by K+ dramatically, inhibited by Cu2+ , seriously inhibited by Zn2+ and Hg2+.Although alcohols have little effect on this enzyme, glycerol could dramatically improve the thermal stability of MDH.When oxaloacetic acid was used as substrate, the enzyme kinetic constants of Km and Vmax was 0.235 mmol/L and 0.47 μmol/(L · min), respectively.%以大肠杆菌基因组DNA为模板,扩增得到苹果酸脱氢酶(mdh)编码基因mdh,构建了重组菌pET-28a-mdh/BL21并成功表达了mdh,大小约36 000.选用Ni柱亲和层析法纯化具有活性的苹果酸脱氢酶(mdh),纯化后比酶活达到112.5 U/mg,纯化倍数达2.62倍,回收率为59%.并对该酶的酶学性质进行了初步研究,其中反应最适PH值为6.0,在PH值2.0~6.0范围内稳定;反应最适温度为37℃,在42℃以下酶的稳定性较好.K+对酶有明显的激活作用,Cu2+对酶有抑制作用,Hg2+和Zn2+对酶有很强的抑制作用.醇类对酶的活力影响不大,丙三醇可显著提高酶的热稳定性.酶动力学参数以草酰乙酸为底物的Km为0.235 mmol/L,Vmax为0.47 μmol/(L·min).

  11. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii.

    Science.gov (United States)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel.

  12. Gene Cloning and mRNA Expression of Glutamate Dehydrogenase in the Liver, Brain, and Intestine of the Swamp Eel, Monopterus albus (Zuiew), Exposed to Freshwater, Terrestrial Conditions, Environmental Ammonia, or Salinity Stress

    OpenAIRE

    Tok, Chia Y.; Shit F Chew; Yuen K Ip

    2011-01-01

    The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can undergo long period of emersion, has high environmental and tissue ammonia tolerance, and can survive in brackish water. We obtained a cDNA sequence of glutamate dehydrogenase (gdh), which consisted of a 133-bp 5′ UTR, a complete coding sequence region spanning 1629 bp and a 3′ UTR of approximately 717 bp, from the liver, intestine, and brain of M. albus. The translated Gdh amino acid sequence had 542 residues, ...

  13. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    DEFF Research Database (Denmark)

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...... and internal rotenone-insensitive NADH dehydrogenase activity are also light dependent. These findings suggest that NDA has a role in photorespiration and might be identical to the previously unidentified internal rotenone-insensitive NADH dehydrogenase....

  14. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer. © 2015 The Protein Society.

  15. Overproduction and substrate specificity of 3-isopropylmalate dehydrogenase from Thiobacillus ferrooxidans.

    Science.gov (United States)

    Matsunami, H; Kawaguchi, H; Inagaki, K; Eguchi, T; Kakinuma, K; Tanaka, H

    1998-02-01

    We constructed an overexpression system in Escherichia coli of the leuB gene coding for 3-isopropylmalate dehydrogenase in Thiobacillus ferrooxidans. E. coli harboring the plasmid we constructed, pKK leuB1, produced 17-fold the enzyme protein of the expression system previously used for purification. The substrate specificity of the enzyme was analyzed with synthetic (2R, 3S)-3-alkylmalates. The 3-isopropylmalate dehydrogenase of Thiobacillus ferrooxidans had broad specificity toward the alkylmalates.

  16. Direct Enzymatic Assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in Colonies of Hansenula polymorpha

    OpenAIRE

    Eggeling, L; Sahm, H

    1980-01-01

    A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.

  17. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    Science.gov (United States)

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  18. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    Science.gov (United States)

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  19. 猪带绦虫苹果酸脱氢酶基因的克隆表达及免疫学分析%Expression and purification of malate dehydrogenase gene in Taenia solium and immunologic analysis of the recombinant proteins

    Institute of Scientific and Technical Information of China (English)

    江楠; 席晓兰; 王杰; 戴佳琳; 廖兴江; 黄江

    2011-01-01

    目的 对猪带绦虫苹果酸脱氢酶基因(malate dehydrogenase,MDH)进行克隆,表达及免疫学特性的初步研究.方法 将猪带绦虫MDH基因克隆到原核表达质粒pET-28a(+)中,在大肠埃希菌BL21/DE3中用异丙基-β-D-半乳糖苷(IPTG)诱导表达,表达产物通过十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)进行鉴定,用镍离子金属螯合剂亲和层析柱进行纯化,纯化的重组蛋白用蛋白印迹(Western Blot)进行免疫学分析.结果 成功构建pET-28a(+)-MDH重组质粒,并获得高纯度蛋白,该重组蛋白可被其免疫SD大鼠血清识别,同时也能被感染猪带绦虫的病人及猪、感染牛带绦虫病人及感染亚带绦虫病人血清所识别.结论 猪带绦虫苹果酸脱氢酶基因可在原核表达系统中获得具有免疫学活性的高效表达,为进一步研究该蛋白的功能奠定了基础.%The objective of this study was to clone and express the gene named as malate dehydrogenase gene (MDH) in Taenia Solium, and to analyze the immunogenicity of its recombinant protein. The coding region of MDH was amplified with PCR, cloned into the prokaryotic expression vector pET-28a(+) and expressed in E. coli BL21/DE3 with IPTG induction. In addition, the immunogenicity of the purified recombinant proteins was analyzed by Western blotting. PCR, double enzyme digestion and DNA sequencing confirmed that the recombinant expression plasmid was successfully constructed. The expression products were obtained and purified by His-Ni2+ affinity chromatography. Western blotting analysis of MDH recombinant protein testified that these proteins could be recognized by sera of the patients infected with T. asiatica and T. rhynchus saginatus. Results suggested that the MDH gene of T. solium has been cloned and expressed, and the purified protein has been confirmed with immunogenicity.

  20. The Clone and Expression of 3-Ketosteroid-1-dehydrogenase from Mycobacterium Neoaurum NwlB-01%分枝杆菌Mycobacterium Neoaurum NwIB-013-甾酮-Δ1-脱氢酶基因的克隆表达

    Institute of Scientific and Technical Information of China (English)

    张成刚; 王风清; 魏东芝

    2011-01-01

    The primers were designed through analyzing the genome sequence of two known 3-ketosteroid-△1 -dehydrogenase in Mycobacterium, and the conservative region was obtained with Mycobacterium neoaurum NwIB-01 as the template. Through genome walking, the sequence after the conservative region about 1500 bp long was got. Then pTQ002 was constructed as the expression vector, and the kstD was expressed in E. Coli DH5α. The 3-ketosteroid-△1 -dehydrogenase activity of Mycobacterium neoaurum NwIB-01 was (0. 37±0. 05)U ? mL-1, about half of the former one.%通过分析已知两种分枝杆菌的3-甾酮-△1-脱氢酶(kstD)碱基保守序列,设计简并引物,以甾醇降解菌株Mycobacterium neoaurum NwIB-01的DNA作模板,得到一个kstD基因片段,通过染色体走读,得到其完整的阅读框.以pUC18为异源表达载体,构建pTQ002表达质粒,在E.coli DH5α中对kstD进行了胞内活性表达,测定Mycobacterium neoaurum NwIB-01 kstD酶活为(0.37±0.05)U·mL-1,约为原酶活的一半,为构建高效转化生成3-酮基-1,4-二烯类固醇的基因工程菌奠定了基础.

  1. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Science.gov (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  2. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Energy Technology Data Exchange (ETDEWEB)

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  3. 柳蚕异柠檬酸脱氢酶基因cDNA的克隆与表达分析%Cloning and Expression Analysis of Isocitrate Dehydrogenase Gene From Actias selene Hubner

    Institute of Scientific and Technical Information of China (English)

    吴祥; 曹甲; 刘朝良; 朱保建; 魏国清; 王在贵; 姚立虎; 钱岑; 汤良文; 周炎

    2009-01-01

    异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)是生物体内一种重要的氧化还原酶.根据已报道的烟酰胺腺嘌呤二核苷酸磷酸异柠檬酸脱氢酶(NADP-IDH)基因的保守性序列设计引物,以柳蚕(Actias selene Hubner)蛹脂肪体cDNA为模板,经PCR扩增获得了柳蚕IDH基因的部分序列.该序列长1 269 bp,编码412个氨基酸,与家蚕IDH基因的cDNA序列同源性达82.5%.柳蚕IDH与果蝇、赤拟谷盗、斑马鱼、人、大鼠、库蚊、人体虱、恶性疟原虫IDH的氨基酸序列同源性在70%左右,具有较高的保守性.半定量PCR检测结果表明,柳蚕IDH基因在蛹期不同组织中均有表达,且表达量没有显著差异.

  4. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  5. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2016-11-01

    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  6. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  7. Heterologous Expression and Sequence Analysis of Isocitrate Dehydrogenase from Streptomyces lividans TK54%变铅青链霉菌异柠檬酸脱氢酶的异源表达及序列分析

    Institute of Scientific and Technical Information of China (English)

    张贝贝; 徐琴; 黄恩启; 刘爱民; 郝家胜; 朱国萍

    2009-01-01

    通过同源性引物成功扩增和克隆了变铅青链霉菌(Streptomyces lividans)TK54的异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH) (简称SlIDH)基因icd (GenBank登录号为EU661252).icd的起始密码子为GTG,GC含量为69.55 %,显示了链霉菌基因的高GC含量特征,实现了SlIDH在E.coli中的异源高效表达.0.5 mmol/L的IPTG为最佳诱导条件.SlIDH的分子量约为80 kD.在Mn~(2+)或Mg~(2+)条件下,SlIDH以NADP~+为辅酶时的活性分别为7.94 U/mg及4.00 U/mg,以NAD~+为辅酶时的活性分别为0.58 U/mg及0.27 U/mg,SlIDH更偏爱以NADP~+为辅酶.与不同种属单体IDH的氨基酸序列比对显示,SlIDH与单体IDH的序列一致性均在60 %以上.因此本工作首次以实验性证据初步鉴定了SlIDH为NADP-依赖型单体IDH.本工作为进一步探索单体IDH的结构与功能以及单体IDH与同源二聚体IDH的进化关系奠定了基础.

  8. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  9. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase...

  10. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  11. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  12. Isocitrate dehydrogenase mutations in gliomas.

    Science.gov (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  13. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain and intestine of the swamp eel, Monopterus albus, exposed to freshwater, terrestrial conditions, environmental ammonia or salinity stress

    OpenAIRE

    C Y Toh; S F Chew; Ip, Alex Y.K.

    2011-01-01

    The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can survive long period of emersion, has high environmental and tissue ammonia tolerance, and acclimate from fresh to brackish water. This study was undertaken to clone and sequence gdh expressed in the liver, intestine and brain of M. albus, to verify whether more than one form of gdh were expressed, and to examine the gdh mRNA expressions in these three organs in fish exposed to various adverse conditions using qu...

  14. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress

    OpenAIRE

    Huang, Jinxian; Xu, Lipeng; Huang, Qiuju; Luo, Jiani; Liu, Peiqing; Chen, Shaorui; Yuan, Xi; Lu, Yao; Wang, Ping; Zhou, Sigui

    2015-01-01

    This study was designed to investigate the expression of short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time-dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hyp...

  15. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Science.gov (United States)

    Basner, Alexander; Antranikian, Garabed

    2014-01-01

    Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  16. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.

    Directory of Open Access Journals (Sweden)

    Alexander Basner

    Full Text Available Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P, the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.

  17. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain and intestine of the swamp eel, Monopterus albus, exposed to freshwater, terrestrial conditions, environmental ammonia or salinity stress

    Directory of Open Access Journals (Sweden)

    C Y Toh

    2011-12-01

    Full Text Available The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can survive long period of emersion, has high environmental and tissue ammonia tolerance, and acclimate from fresh to brackish water. This study was undertaken to clone and sequence gdh expressed in the liver, intestine and brain of M. albus, to verify whether more than one form of gdh were expressed, and to examine the gdh mRNA expressions in these three organs in fish exposed to various adverse conditions using quantitative real-time PCR. Only one gdh gene sequence, consisted of a 133 bp 5’ UTR, a CDS region spanning 1629 bp and a 3’ UTR of approximately 717 bp, was obtained from the liver, intestine and brain of M. albus. The translated Gdh amino acid sequence from the liver of M. albus had 542 residues and was confirmed to be Gdh1a. It had sequence identity of >90% with Oncorhynchus mykiss Gdh1a, Salmo salar Gdh1a1, Bostrychus sinensis Gdh1a and Tribolodon hakonensis Gdh1a, and formed a monophyletic clade with B. sinensis Gdh1a, Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2 and O. mykiss Gdh1a. An increase in mRNA expression of gdh1a could be essential for increased glutamate production in support of increases in glutamine synthesis under certain environmental condition. Indeed, exposure of M. albus to 1 day of terrestrial conditions or 75 mmol l-1 NH4Cl, but not brackish water, resulted in a significant increase in gdh1a mRNA expression in the liver. However, exposure to brackish water, but not terrestrial conditions or 75 mmol l-1 NH4Cl, lead to a significant increase in the intestinal mRNA expression of gdh1a. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus. Our results indicate for the first time that gdh mRNA expression was differentially up-regulated in the liver and intestine of M. albus, in responses to ammonia toxicity and

  18. 杜氏盐藻甘油醛-3-磷酸脱氢酶基因启动子驱动氯霉素乙酰转移酶基因的表达及其活性检测%Expression and activity detection of chloramphenicol acetyltransferase gene driven by the glyceraldehyde-3-phosphate dehydrogenase gene of Dunaliella salina

    Institute of Scientific and Technical Information of China (English)

    张小毅; 刘巨源; 邱乐乐; 贾岩龙

    2012-01-01

    目的 为建立稳定高效的盐藻生物反应器寻找合适的内源性启动子驱动表达外源基因.方法 克隆鉴定了盐藻甘油醛-3-磷酸脱氢酶(GAPDH)基因5 ′上游区序列并成功构建由盐藻GAPDH基因启动子驱动的氯霉素乙酰转移酶(CAT)基因表达载体pUC-Gcat.利用构建的表达载体电击转化盐藻并在含有氯霉素的培养基中筛选转化藻株.随机挑选稳定转化的盐藻藻株进行CAT酶联免疫吸附测定分析.结果 获得3株稳定转化的盐藻藻株.聚合酶链式反应鉴定和CAT酶联免疫吸附测定分析结果表明,CAT基因已整合到了转化的盐藻基因组中.结论 本研究所克隆的内源性盐藻GAPDH基因启动子能够驱动CAT基因在盐藻中表达.%Objective To explore expression of foreign gene driven by a strong endogenous promoter in order to construct stable and high-performance bioreactors in Dunaliella salina. Methods In the present study, the upstream sequence of glyceraldehyde phosphate dehydrogenase of Dunaliella salina was cloned and identificated. Using electroporation, the alga was transformed with a plasmid pUC-Ccat containing giyceraldehyde-3-phosphate dehydrogenase ( GAPDH) gene promoter of Du-naliella salina and chloramphenicol acetyltransferase ( CAT) gene as a seletable gene. Using the expression vector, the Dunaliella salina cell was translated and the transformational strain was screened in nutrient medium containing chloramphenicol. The stable transformational strain was selected randomly to undertake CAT enzyme linked immunosorbent assay (ELISA). Results Three stable transformational strain were obtained. The results of polymerase chain reaction and CAT ELISA indicated that the CAT gene had been transferred to the alga. Conclusion The results of this paper suggest that the GAPDH gene promoter can work for genetic transformation of Dunaliella salina.

  19. 棉花 GhMDH 基因的克隆及其蛋白诱导和酶活性分析%Cloning and Protein Expression of Malate Dehydrogenase Gene of Gossypium hirsuturm L.and Its Enzyme Activity Analysis

    Institute of Scientific and Technical Information of China (English)

    李青; 张宁; 司怀军; 吴家和

    2013-01-01

    According to the salt stress-related EST sequences of Gossypium hirsuturm L.,a malate dehydrogen-ase ( MDH) gene was isolated by the 3′,5′-RACE technology ,named GhMDH.The full-length cDNA of GhMDH is 1 130 bp,containing a 1 014 bp ORF which encodes 338 amino acids.The relative molecular weight of GhMDH protein is 35.495 kDa,and its isoelectric point (pI) is 8.94.The GhMDH ORF had been subcloned into pET23b vector for generating a His-tag fusion recombinant protein .The inducible conditions of recombinant protein expres-sion was optimized ,including IPTG contend ,temperature and time .The results showed that the target protein was packaged in inclusion body expressed under 37 ℃,1 mmol/L IPTG and 4 hrs induction conditions .The soluble re-combinant protein can only receive in less than 28 ℃and 12 hrs induction .The urea denatured protein from inclu-sion body had been purified by Ni +column .The purified protein was then renatured through ladder contend dialysis from high to low.The recombinant protein ,GhMDH,exhibited high malate dehydrogenase activates via enzymatic as-say .The results is pivotal to investigate GhMDH fuction in cell redox homeostasis and biotic and abiotic stress resist -ance in cotton .%分析棉花盐胁迫相关的EST文库,设计特异性引物,利用RACE技术从棉花中克隆出苹果酸脱氢酶( Malate dehydrogenase ,MDH)基因,命名为GhMDH。基因全长1130 bp,最大开放阅读框1014 bp,编码338个氨基酸,分子量为35.495 kDa,等电点pI=8.94。将该基因编码区插入到原核表达载体pET23b中,获得pET23b-GhMDH重组载体。利用IPTG诱导表达目标蛋白,发现通常条件下获得的重组蛋白以包涵体的形式存在。对诱导时间、IPTG浓度和温度等条件进行优化,结果表明,除了在28℃低温以下诱导的蛋白有少量为可溶,其他条件诱导的蛋白均以包涵体形式存在。为了得到足够的重组蛋白,对GhMDH包涵体蛋

  20. Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum

    NARCIS (Netherlands)

    Wrenger, Carsten; Mueller, Ingrid B.; Butzloff, Sabine; Jordanova, Rositsa; Lunev, Sergey; Groves, Matthew R.

    2012-01-01

    The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to

  1. The role of Δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation

    DEFF Research Database (Denmark)

    Deuschle, Karen; Funck, Dietmar; Forlani, Giuseppe

    2004-01-01

    In response to stress, plants accumulate Pro, requiring degradation after release from adverse conditions. Delta1-Pyrroline-5-carboxylate dehydrogenase (P5CDH), the second enzyme for Pro degradation, is encoded by a single gene expressed ubiquitously. To study the physiological function of P5CDH,...

  2. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha

    NARCIS (Netherlands)

    Klei, I.J. van der; Faber, K.N.; Keizer-Gunnink, I.; Gietl, C.; Harder, W.; Veenhuis, M.

    1993-01-01

    We have studied the fate of the watermelon (Citrullus vulgaris Schrad.) glyoxysomal enzyme, malate dehydrogenase (gMDH), after synthesis in the methylotrophic yeast, Hansenula polymorpha. The gene encoding the precursor form of gMDH (pre-gMDH) was cloned in an H. polymorpha expression vector downstr

  3. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Álvaro D. Fernández-Fernández

    2016-01-01

    Full Text Available NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2 and nitric oxide (NO. NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH. Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS, while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

  4. Effect of palm oil (Elaeis guineensis) tocotrienols on mesenteric adipose tissue deposition and the expression of 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1) in adrenalectomized rats treated with dexamethasone.

    Science.gov (United States)

    Azwan, K; Farihah, H S; Fairus, A; Elvy, M R

    2015-01-01

    A study was done to investigate the effect of palm oil (Elaeis guineensis) tocotrienols on (1) rats mesenteric adipose tissue deposition (2) and 11β-HSD1 enzyme expression in mesenteric adipocyte. There is a necessity to find an inhibitor for the 11β-HSD1 enzyme which enhances the proliferation of mesenteric adipocyte tissue therefore curbing the onset of metabolic syndrome. A total of 35 male Spraque Dawley rats were divided into 5 different groups, i.e., a baseline control group (n=7), a sham operated group (n=7) and three experimental adrenalectomised groups (ADR) (n=21). Each of the experimental ADR group was given intramuscular dexamethasone (Dexa) with a dose of 120 μg/kg after 2 weeks post adrenalectomy and were divided into adrenalectomised control (n=7), Glycyrrhizic acid (GCA) treated (dose=120 mg/kg/day; n=7) and Palm Tocotrienol treated (dose=60 mg/kg/day; n=7) groups. These various treatments were given 6 days a week for 8 weeks via gastric gavage (following 2 weeks of adrenalectomy). Data is expressed as mean ± standard error mean (SEM), compared to each other using one-way analysis-of-variance (ANOVA) followed by Tukey's post hoc test and then a t-test. The results show that palm tocotrienol tend to slightly increase mesenteric adipose tissue deposition in rats. However, palm tocotrienol was also found to have potential in inhibiting the expression of 11β-HSD1 enzyme in mesenteric adipocytes. This study suggests palm tocotrienol inhibits 11β-HSD1 enzyme expression and activity.

  5. 大肠杆菌葡萄糖脱氢酶基因的克隆与原核表达%Cloning and prokaryotic expression of glucose dehydrogenase from Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    韩增叶; 孙继国; 葛喜珍; 田平芳

    2012-01-01

    克隆出大肠杆菌编码葡萄糖脱氢酶(PQQGDH)的gcd基因,构建了诱导型表达载体pET28a-gcd,转化大肠杆菌E.coli BL21后获得阳性克隆菌株BL21/pET28 a-gcd.IPTG诱导后,经SDS-PAGE分析表明,该工程菌PQQG-DH的表达量约为对照菌的18倍,约为18.2 mg/L,实现了高表达.此外,研究发现添加MgCl2能提高PQQGDH的表达量.%The gcd gene-encoding pyrroloquinoline quinine ( PQQGDH) has been cloned using the polymeraae chain reaction (PCR) from E. Coli BL21, and an inducible expression vector pET28a-gcd was constructed and transformed into E. Coli BL21. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed a high expression of PQQGDH upon isopropyl β-D-1 -thiogalactopyranoside (IPTG) induction (18.2 mg/ L) , corresponding to a 18-fold increase compared with that in control strain. Addition of MgC12 further enhanced the expression of PQQGDH.

  6. Detection of Recombinant Protein Expression of Formate Dehydrogenase in Single Living Escherichia Coli Cell by Laser Tweezers Raman Spectroscopy%单细胞激光拉曼光谱检测重组大肠杆菌细胞表达甲酸脱氢酶

    Institute of Scientific and Technical Information of China (English)

    卢明倩; 董蓉; 温顺华; 张韦; 王巧贞; 黄庶识; 陈丽梅

    2012-01-01

    甲酸脱氢酶(FDH,EC1.2.1.2)在工业生产中有重要的应用价值,工业上应用的FDH可以通过构建高水平表达重组FDH蛋白的基因工程菌生产,用分子生物学的方法检测重组蛋白的高效表达和积累操作繁杂,耗时耗力且需要破碎细胞.为了寻找一种简单快速,不需破碎细胞,且能实时检测FDH重组蛋白在基因工程菌中表达情况的方法,本研究应用单细胞激光拉曼光谱分析技术(LTRS),研究IPTG诱导不同时间后甲酸脱氢酶重组蛋白(FDH)在大肠杆菌细胞中的表达水平.结果表明,FDH的特征峰1004,1355,1455和1667 cm-1随着IPTG诱导时间的延长而增强,说明在诱导培养过程中FDH重组蛋白在重组大肠杆菌细胞中表达并积累,这4个峰强的增加值所反映的FDH表达量与SDS-PAGE电泳分析结果一致.实验结果证明,LTRS是快速有效检测单个大肠杆菌活细胞体内重组FDH实时表达的一种非入侵方法.%The detection of the expression of formate dehydrogenase (FDH) recombination proteins in E. coli by molecular methods is time-consuming and hard-working and needs to destruct E. coli cells. To explore a simple and rapid method without cell destruction to detect the real-time expression of FDH recombination proteins in E. coli, Laser Tweezers Raman spectroscopy (LTRS) was used to investigate the recombinant protein expression of formate dehydrogenase (FDH) in the single living E. coli cell at different culture times following the induction with isopropyl thiogalactoside (IPTG). The result showed that the characteristic peaks corresponding to the recombinant FDH protein were gradually enhanced with an in increase in IPTG induction time, indicating the expression and the accumulation of FDH protein in recombinant E. coli cells. This result is consistent with that obtained by the analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This evidence confirms that LTRS is an effectively method

  7. (2R,3R)-丁二醇脱氢酶的体外重组表达%Recombinant Expression of(2R,3R)-Butanediol Dehydrogenase in Vitro

    Institute of Scientific and Technical Information of China (English)

    罗雅婧; 严陶陶

    2015-01-01

    ObjectiveTo establish how 2,3-BDH possesse differential stereo specificities.Methods The gene of(2R,3R)-BDH amplified from the genome of Bacillus subtilis,and was inserted into pMD18-T vector for sequencing. The constructed recombinant expression vector was sequenced, and the result of this experiment was compared with the known sequence to construct evolutionary tree.ResultsSoluble expression of the recombinant plasmid was obtained in the recombinant bacteria.Conclusion (2R,3R)-BDH was obtained by induced expression in recombinant bacteria.%目的:明确2,3-丁二醇脱氢酶(2,3-BDH)如何具有不同的立体定向性。方法从枯草芽孢杆菌中克隆出(2R,3R)-丁二醇脱氢酶基因,将克隆的目的基因导入pMD18-T载体中,构建的重组质粒经测序后,将本实验序列和已发表序列进行比对分析,构建进化树。结果重组质粒可在重组菌中获得可溶性表达。结论利用重组菌株诱导表达获得了(2R,3R)-丁二醇脱氢酶。

  8. 日本结缕草ZjADH基因的克隆及表达分析%Cloning and Expression of an Alcohol Dehydrogenase Gene (Zj ADH)from Zoysia j aponica

    Institute of Scientific and Technical Information of China (English)

    滕珂; 李俊; 张兰; 郭蔚尔; 许立新; 晁跃辉

    2016-01-01

    采用 RACE 技术从日本结缕草中克隆出1个乙醇脱氢酶基因,命名为 Zj ADH (GenBank 登录号为KT596065)。Zj ADH 与甘蔗、美洲蒺藜草和沟叶结缕草等 ADH 基因同源性均在90%以上,进化分析表明其与沟叶结缕草亲缘关系最近。亚细胞定位结果显示,Zj ADH 定位于细胞质。实时荧光定量分析结果表明,Zj ADH 在日本结缕草根中表达量最高,Zj ADH 可响应 ABA、MeJA 和 SA 的诱导,在低温、干旱和高盐胁迫中发挥重要作用。%The AD H gene,Zj AD H ,was isolated from Zoysia j aponica by RACE method and then submitted to the GenBank (Accession number KT596065 ). Zj AD H shared a high level of similarity (more than 90% homology)with other AD H genes in Saccharum hybrid ,Cenchrus americanus and Zoy-sia matrella. Phylogenetic analysis showed that ZjADHis was the closest to ZmADH. Subcellular locali-zation of ZjADH was performed by Agrobacterium-mediated transient expression assay in N. benthami-ana. The results demonstrated that ZjADHis localized in the cytoplasm. Quantitative real time PCR was carried out to investigate the expression pattern of Zj AD H. The expression level of Zj AD H was much higher in root,and could be strongly induced by cold,drought or NaCl stresses. Exogenous ABA,MeJA or SA treatment could also up-regulate the expression of Zj AD H as well. Taken together,Zj AD H is a valuable gene in the study of abiotic stresses tolerance of Zoysia j aponica. This study paves the way to further study the Zj AD H in Zoysia j aponica.

  9. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  10. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  11. Serum lactic dehydrogenase isoenzymes and serum hydroxy butyric dehydrogenase in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kanekar D

    1979-01-01

    Full Text Available Total serum lactate dehydrogenase activity in cases of myocar-dial infarct is difficult to interpret as abnormal values can occur in diseases of liver, kidney and skeletal muscle. The estimation of its isoenzymes is of better diagnostic help because of its tissue specificity. Serum LDH isoenzymes were studied in patients o f myocardial infarction and results are quantitated by densitometry. As LDH 1 represents serum hydroxybutyric dehydrogenase when 2-oxylbutyrate is used as substrate, serum hydroxybutyric dehydro-genase was also estimated in above patients. Greater specificity in diagnosis is achieved with SHBDH because of its myocardial nature and lower incidence of false positive results.

  12. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  13. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  14. Binding of small molecules to lipoamide dehydrogenase

    NARCIS (Netherlands)

    Muiswinkel-Voetberg, van H.

    1972-01-01

    The existence of a monomer-dimer equilibrium with lipoamide dehydrogenase is demonstrated. The equilibrium can be shifted to the monomer side at low ionic strength and low pH by removing the phosphate ions by extensive dialysis. At low ionic strength, I : 0.01 and 0.02, the enzyme

  15. Alcohol dehydrogenase – physiological and diagnostic Importance

    Directory of Open Access Journals (Sweden)

    Magdalena Łaniewska-Dunaj

    2013-08-01

    Full Text Available Alcohol dehydrogenase (ADH is a polymorphic enzyme, existing in multiple isoenzymes divided into several classes and localized in different organs. ADH plays a significant role in the metabolism of many biologically important substances, catalyzing the oxidation or reduction of a wide spectrum of specific substrates. The best characterized function of ADH is protection against excess of ethanol and some other exogenous xenobiotics and products of lipid peroxidation. The isoenzymes of alcohol dehydrogenase also participate in the metabolism of retinol and serotonin. The total alcohol dehydrogenase activity is significantly higher in cancer tissues than in healthy organs (e.g. liver, stomach, colorectum. The changes in activity of particular ADH isoenzymes in the sera of patients with different cancers (especially of the digestive system seem to be caused by release of these isoenzymes from cancer cells, and may play a potential role as markers of this cancer. The particular isoenzymes of ADH present in the serum may indicate the cancer localization. Alcohol dehydrogenase may also be useful for diagnostics of non-cancerous liver diseases (e.g. viral hepatitis, non-alcoholic cirrhosis.

  16. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    Science.gov (United States)

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  17. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.

    OpenAIRE

    Lorowitz, W; Clark, D.

    1982-01-01

    Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.

  18. Calculations of hydrogen tunnelling and enzyme catalysis: a comparison of liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase

    Science.gov (United States)

    Tresadern, Gary; McNamara, Jonathan P.; Mohr, Matthias; Wang, Hong; Burton, Neil A.; Hillier, Ian H.

    2002-06-01

    Although the potential energy barrier for hydrogen transfer is similar for the enzymes liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase, the degree of tunnelling is predicted to differ greatly, and is reflected by their primary kinetic isotope effects.

  19. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs.

    Science.gov (United States)

    Laganà, G; Bellocco, E; Mannucci, C; Leuzzi, U; Tellone, E; Kotyk, A; Galtieri, A

    2006-01-01

    Lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) electrophoretic tissue patterns of two different orders of Elasmobranchii: Carchariniformes (Galeus melanostomus and Prionace glauca) and Squaliformes (Etmopterus spinax and Scymnorinus licha) were studied. The number of loci expressed for these enzymes was the same of other elasmobranch species. Differences in tissue distribution were noted in LDH from G. melanostomus due to the presence of an additional heterotetramer in the eye tissue. There were also differences in MDH. In fact, all the tissues of E. spinax and G. melanostomus showed two mitochondrial bands. Major differences were noted in the number of isozymes detected in the four compared elasmobranchs. The highest polymorphism was observed in E. spinax and G. melanostomus, two species that live in changeable environmental conditions. The resistance of isozymes after urea treatment was examined; the resulting patterns showed a quite good resistance of the enzymes, higher for LDH than MDH, also at urea concentration much greater than physiological one. These results indicated that the total isozyme resistance can be considered higher in urea accumulators (such as elasmobranchs) than in the non-accumulators (such as teleosts).

  20. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Directory of Open Access Journals (Sweden)

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  1. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  2. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli.

    Science.gov (United States)

    Lewicka, Aleksandra J; Lyczakowski, Jan J; Blackhurst, Gavin; Pashkuleva, Christiana; Rothschild-Mancinelli, Kyle; Tautvaišas, Dainius; Thornton, Harry; Villanueva, Hugo; Xiao, Weike; Slikas, Justinas; Horsfall, Louise; Elfick, Alistair; French, Christopher

    2014-12-19

    Ethanol is an important biofuel. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) increases ethanol production in Escherichia coli. A fusion of PDC and ADH was generated and expressed in E. coli. The fusion enzyme was demonstrated to possess both activities. AdhB activity was significantly lower when fused to PDC than when the two enzymes were expressed separately. However, cells expressing the fusion protein generated ethanol more rapidly and to higher levels than cells coexpressing Pdc and AdhB, suggesting a specific rate enhancement due to the fusion of the two enzymes.

  3. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Isolation and Expression Analysis of Plastidic Glucose-6-phosphate Dehydrogenase Gene from Rice (Oryza sativa L.)%水稻质体葡萄糖-6-磷酸脱氢酶基因的克隆与表达研究

    Institute of Scientific and Technical Information of China (English)

    侯夫云; 黄骥; 陆驹飞; 王州飞; 张红生

    2006-01-01

    Glucose-6-phosphate dehydrogenase is a rate-limiting enzyme of pentose phosphate pathway, existing in cytosolic and plastidic compartments of higher plants. A novel gene encoding plastidic glucose-6-phosphate dehydrogenase was isolated from rice (Oryza sativa L.) and designated OsG6PDH2 in this article. Through semiquantitative RT-PCR approach it was found that OsG6PDH2 mRNA was weakly expressed in rice leaves, stems, immature spikes or flowered spikes, and a little higher in roots.However, the expression of OsG6PDH2 in rice seedlings was significantly induced by dark treatment. The complete opening reading frame (ORF) of OsG6PDH2 was inserted into pET30a (+), and expressed in Escherichia coli strain BL21 (DE3). The enzyme activity assay of transformed bacterial cells indicated that OsG6PDH2 encoding product had a typical function of glucose-6-phosphate dehydrogenase.%戊糖磷酸途径是高等植物中重要的代谢途径,主要生理功能是产生NADPH以及供核酸代谢的磷酸戊糖.葡萄糖-6-磷酸脱氢酶(G6PDH)是戊糖磷酸途径的关键酶,广泛存在于高等植物细胞的细胞质和质体中.本研究首次从水稻(Oryzasativa L.)幼苗中分离了核编码的质体G6PDH基因OsG6PDH2,序列分析表明OsG6PDH2编码一个具有588个氨基酸残基的多肽,等电点为8.5,分子量66 kDa.OsG6PDH2的N端有1个70个氨基酸的信号肽,推测的裂解位点为Gly55和Val56,表明OsG6PDH2编码产物可能定位于质体.多序列比较的结果表明OsG6PDH2与拟南芥、烟草、马铃薯质体G6PDH的一致性分别达81%、87%、83%.进化关系说明水稻OsG6PDH2与拟南芥(AtG6PDH3)、马铃薯(StG6PDH1)处于高等植物P2型质体G6PDH分支上,暗示了OsG6PDH2可能是一个P2型的质体蛋白.Matinspector程序分析表明,OsG6PDH2在起始密码子上游含有一个bZIP转录因子识别位点、一个ABA应答元件、一个CRT/DRE元件和1个W-box元件.半定量RT-PCR分析表明,OsG6PDH2在水稻根、茎、叶和幼

  5. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Science.gov (United States)

    Domínguez-Martín, María Agustina; López-Lozano, Antonio; Diez, Jesús; Gómez-Baena, Guadalupe; Rangel-Zúñiga, Oriol Alberto; García-Fernández, José Manuel

    2014-01-01

    The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  6. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Directory of Open Access Journals (Sweden)

    María Agustina Domínguez-Martín

    Full Text Available The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42 catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  7. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    Science.gov (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  8. Purification of arogenate dehydrogenase from Phenylobacterium immobile.

    Science.gov (United States)

    Mayer, E; Waldner-Sander, S; Keller, B; Keller, E; Lingens, F

    1985-01-07

    Phenylobacterium immobile, a bacterium which is able to degrade the herbicide chloridazon, utilizes for L-tyrosine synthesis arogenate as an obligatory intermediate which is converted in the final biosynthetic step by a dehydrogenase to tyrosine. This enzyme, the arogenate dehydrogenase, has been purified for the first time in a 5-step procedure to homogeneity as confirmed by electrophoresis. The Mr of the enzyme that consists of two identical subunits amounts to 69000 as established by gel electrophoresis after cross-linking the enzyme with dimethylsuberimidate. The Km values were 0.09 mM for arogenate and 0.02 mM for NAD+. The enzyme has a high specificity with respect to its substrate arogenate.

  9. Hybridizability of gamma-irradiated lactic dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.

    1976-03-01

    The hybridizabilities of the gamma-irradiated chicken heart and pig muscle lactic dehydrogenases were estimated by hybridizing the irradiated enzymes with the unirradiated pig heart lactic dehydrogenase. The disc gel electrophoretic patterns of the inter- and intraspecific hybrids showed that the LDH activity of the pig heart isozyme band increased as a function of dose. This observation was analyzed upon the binomial redistribution pattern of the recombined subunits. The result shows that the hybridizabilities of both the chicken heart and pig muscle isozymes decreased along with the loss of catalytic activity and the release from substrate inhibition. The titration of free SH groups of the irradiated chicken isozyme suggested that the unfolding of the peptide chain destroyed the specific tertiary structure needed for the binding of subunits. (auth)

  10. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    Science.gov (United States)

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases.

  11. Expression of isocitrate dehydrogenase 1 gene R132H and its diagnostic application in glioma%IDH1R132H在中枢神经系统胶质瘤中的表达及其鉴别诊断意义

    Institute of Scientific and Technical Information of China (English)

    朴月善; 卢德宏; 张晓娟; 汤国才; 杨虹

    2011-01-01

    Objective To investigate the immunohistochemical expression of isocitrate dehydrogenase 1 gene ( IDH1 ) R132H in glioma and its diagnostic utility. Methods Immunohistochemical study of IDH1R132H expression was performed on formalin-fixed paraffin-embedded tissue samples of 75 gliomas, including 33 cases of grade Ⅱ , 20 cases of grade Ⅲ and 22 cases of grade Ⅳ tumors. Six cases of pilocytic astrocytoma and 12 cases of gliosis were used as controls. Results Nineteen in 33 cases of grade Ⅱ (57.6%), 8 in 20 cases of grade Ⅲ (40. 0% ), 6 in 22 cases of grade Ⅳ (27. 3% ) showed positive cytoplasmic staining of IDH1R132H. Scattered invasive glioma cells at the tumor periphery also expressed IDH1R132H. Gliomas involving the frontal lobe showed more strong IDH1R132H staining. In contrast, none of the pilocytic astrocytomas and gliosis showed IDH1R132H staining. Moreover, the rate of p53 immunopositivities were 42. 4% ( 14/33 ) in grade Ⅱ , 65.0% (13/20) in grade Ⅲ and 77.3% (17/22) in grade Ⅳ gliomas. There were no statistic correlations between expression of IDH1R132H and p53.Conclusion IDH1R132H tends to express preferentially in low-grade gliomas, and it thus may serve as a valuable marker in distinguishing low grade gliomas from gliosis.%目的 探讨异柠檬酸盐脱氢酶1基因(isocitrate dehydrogenase 1 gene,IDH1)突变的表达产物IDH1R132H在人中枢神经系统胶质瘤中的表达及其在鉴别诊断中的意义.方法 应用免疫组织化学EnVision法检测不同级别胶质瘤75例(包括WHOⅡ级33例,Ⅲ级20例和Ⅳ级22例)与各种原因造成的胶质增生性脑组织中IDH1R132H的表达情况,并与p53的表达情况进行比较分析.结果 IDH1R132H在WHOⅡ级、Ⅲ级和Ⅳ级胶质瘤的表达阳性率分别为57.6%(19/33)、40.0%(8/20)和27.3%(6/22),差异有统计学意义(P=0.024).IDH1R132H的具体表达部位在胶质瘤细胞的胞质、突起以及部分细胞核.除肿瘤主体部分密集增生的肿瘤细胞

  12. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy

    OpenAIRE

    Park, Sungwoo; Choi, Seon-Guk; Yoo, Seung-Min; Son, Jin H.; Jung, Yong-Keun

    2014-01-01

    CHDH (choline dehydrogenase) is an enzyme catalyzing the dehydrogenation of choline to betaine aldehyde in mitochondria. Apart from this well-known activity, we report here a pivotal role of CHDH in mitophagy. Knockdown of CHDH expression impairs CCCP-induced mitophagy and PARK2/parkin-mediated clearance of mitochondria in mammalian cells, including HeLa cells and SN4741 dopaminergic neuronal cells. Conversely, overexpression of CHDH accelerates PARK2-mediated mitophagy. CHDH is found on both...

  13. Isolation and Biochemical Characterization of a Glucose Dehydrogenase from a Hay Infusion Metagenome

    OpenAIRE

    Alexander Basner; Garabed Antranikian

    2014-01-01

    Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate ex...

  14. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.

    OpenAIRE

    1989-01-01

    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylma...

  15. Malate dehydrogenase: a model for structure, evolution, and catalysis.

    OpenAIRE

    1994-01-01

    Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid s...

  16. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  17. Placental glucose dehydrogenase polymorphism in Koreans.

    Science.gov (United States)

    Kim, Y J; Paik, S G; Park, H Y

    1994-12-01

    The genetic polymorphism of placental glucose dehydrogenase (GDH) was investigated in 300 Korean placentae using horizontal starch gel electrophoresis. The allele frequencies for GDH1, GDH2 and GDH3 were 0.537, 0.440 and 0.005, respectively, which were similar to those in Japanese. We also observed an anodal allele which was similar to the GDH4 originally reported in Chinese populations at a low frequency of 0.015. An additional new cathodal allele (named GDH6) was observed in the present study with a very low frequency of 0.003.

  18. Activity and Expression Changes of Sorbitol Dehydrogenase in Developing Bagging 'Red Fuji' Apple Fruit%套袋‘红富士’苹果果实山梨醇脱氢酶的活性变化及其表达

    Institute of Scientific and Technical Information of China (English)

    袁梅; 叶成荣; 刘更森; 刘成连; 原永兵; 王永章

    2012-01-01

    以‘红富士’苹果为试材,通过酶活性测定和Western印迹技术,研究了套袋‘红富士’苹果果实山梨醇脱氢酶(SDH)的活性及其表达变化.结果表明,在整个发育过程中,套袋‘红富士’苹果果实的山梨醇含量及SDH活性的变化动态与对照果实基本一致.与对照相比,套袋苹果果实的SDH活性较低,山梨醇含量较高,由此表明套袋影响苹果果实山梨醇代谢.Western blotting结果显示,苹果果实SDH的亚基构成为40 kDa,随着苹果果实的发育,SDH的免疫信号强度逐渐增强.在同一取样时期,套袋苹果果实SDH的免疫信号强度与对照果实相比差异不显著,由此推断,SDH的活性变化可能存在翻译后水平上的调控.%The changes of sorbitol content, sorbitol dehydrogenase (SDH) activity and protein expression in bagging 'Red Fuji' apple fruit were studied through enzyme determination and Western blotting technique.The results showed that the sorbitol content and SDH activity in bagging ' Red Fuji' apple fruit almost had the same dynamic changes as control fruit during the whole developing period.Moreover, the relative lower SDH activity and higher sorbitol content were found in bagging apple fruit compared with control.Therefore, fruit bagging influenced sorbitol metabolism in some extent.On the other hand, Western blotting assay of SDH detected the presence of 40 kDa peptide and the intensity of immune signal in apple fruit increased gradually with fruit developing.However, few significant differences of immune signal existed in bagging and control fruit at the same sampling period.So it was concluded that the changes of SDH activity was regulated at post-translational level.

  19. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site...

  20. Identity of the subunits and the stoicheiometry of prosthetic groups in trimethylamine dehydrogenase and dimethylamine dehydrogenase.

    Science.gov (United States)

    Kasprzak, A A; Papas, E J; Steenkamp, D J

    1983-01-01

    Trimethylamine dehydrogenases from bacterium W3A1 and Hyphomicrobium X and the dimethylamine dehydrogenase from Hyphomicrobium X were found to contain only one kind of subunit. The millimolar absorption coefficient of a single [4Fe-4S] cluster in trimethylamine dehydrogenase from bacterium W3A1 was estimated to be 14.8 mM-1 . cm-1 at 443 nm. From this value a 1:1 stoicheiometry of the prosthetic groups, 6-S-cysteinyl-FMN and the [4Fe-4S] cluster, was established. Millimolar absorption coefficients of the three enzymes were in the range 49.4-58.7 mM-1 . cm-1 at approx. 440 nm. This range of values is consistent with the presence of two [4Fe-4S] clusters and two flavin residues, for which the millimolar absorption coefficient had earlier been found to be 12.3 mM-1 . cm-1 at 437 nm. The N-terminal amino acid was alanine in each of the three enzymes. Sequence analysis of the first 15 residues from the N-terminus of dimethylamine dehydrogenase indicated a single unique sequence. Two identical subunits, each containing covalently bound 6-S-cysteinyl-FMN and a [4Fe-4S] cluster, in each of the enzymes are therefore indicated. Images Fig. 1. PMID:6882357

  1. Cloning and Expression of Pyruvate Dehydrogenase E 1-α Subunit Gene (pdha) in Mycoplasma ovipneumoniae and Its Immunologic Activity Evaluation%绵羊肺炎支原体(Mycoplasma ovipneumoniae)丙酮酸脱氢酶E1-α亚单位基因(pdha)的克隆、表达及其免疫学活性测定

    Institute of Scientific and Technical Information of China (English)

    许健; 储岳峰; 高鹏程; 赵萍; 贺英; 剡根强; 逯忠新

    2012-01-01

    丙酮酸脱氢酶α-亚单位(PDHA)在病原体丙酮酸脱氢酶的催化过程中发挥着重要作用.为表达绵羊肺炎支原体(Mycoplasma ovipneumoniae)PDHA蛋白并测定其免疫学活性,应用PCR方法扩增出绵羊肺炎支原体pdha基因并对其序列进行分析,将pdha基因中色氨酸密码子TGA优化为TGG后进行全基因合成,插入到pET32-a(+)载体上,构建了pET3 2-a(+ )-pdha重组质粒,将重组质粒转化到大肠杆菌(Escherichia coli)BL21中诱导表达PDHA蛋白,并通过免疫印迹及小鼠(Mus musculus)免疫试验对其免疫学活性进行测定.结果pdha基因全长1 125 bp,编码375 aa,(G+C)%为34.76%,第304~306位、379~381位、586~588位、592~594位、625~627位、811~813位、889~891位及964~966位TGA在支原体中编码色氨酸而不是作为终止密码子;基因序列比对及进化树分析显示,绵羊肺炎支原体pdha基因与10种支原体的pdha基因序列同源性为32.6%~85.3%,氨基酸序列同源性为39.3%~90.6%,基因序列和氨基酸序列均与猪肺炎支原体(M.hyopneumoniae)有同源性,分别为85.3%和90.6%;绵羊肺炎支原体pdha基因在33℃、IPTG 0.25 mmol/L诱导6h的表达条件下,表达量最高;重组的PDHA蛋白可与绵羊肺炎支原体高免血清具有免疫印迹条带,在免疫小鼠后血清抗体效价与对照组相比,均显著升高(P<0.05).本实验首次成功克隆表达了绵羊肺炎支原体pdha基因,并证明其重组PDHA蛋白具有较好的免疫学活性.为绵羊支原体肺炎基因工程疫苗及诊断研究提供候选靶标.%Pyruvate dehydrogenase El-a subunit (PDHA) plays an important role in the catalytic activity of pyruvate dehydrogenase of pathogens. In order to characterize the immunologic activity of the PDHA of Mycoplasma ovipneumoniae, we amplified and sequenced the pdha gene of M. Ovipneumoniae. After optimized with TGG instead of TGA for coding the amino acid of tryptophane, the pdha gene

  2. 内参基因GAPDH在3T3-L1脂肪细胞分化中的表达变化%Change of reference gene glyceraldehyde-3-phosphate dehydrogenase expression during 3T3-L1 adipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    张娟; 唐红菊; 王晓; 王宁; 邓儒元; 建方方; 刘赟; 李凤英; 周丽斌

    2012-01-01

    目的 观察甘油醛-3-磷酸脱氢酶(GAPDH)在3T3-L1脂肪细胞分化过程中表达水平是否存在变化,并与其他常用的内参基因相比较.方法 以实时定量PCR检测3T3-L1脂肪细胞分化0、1、3、5、7d几种不同常见内参基因的表达是否存在变化,并以Western印迹方法进行证实.结果 (1)内参基因GAPDH和转铁蛋白受体(TFRC)在脂肪细胞分化过程中基因表达水平逐渐明显升高,其中GAPDH mRNA 在脂肪细胞分化1、3、5、7d分别增加5.7、7.6、22.0和24.5倍(均P<0.01),β-actin、α-微管蛋白(α-tubulin)、肽酰脯氨酰异构酶(PIPA)和18S mRNA表达水平未见明显改变;采用实时定量PCR检测脂肪细胞分化的关键转录因子PPARγ2、CCAAT/增强结合蛋白(C/EBP)α和C/EBPβ的表达时,以GAPDH作内参明显低估他们的表达变化;GAPDH蛋白表达也随着脂肪细胞分化逐渐增加,β-actin、α-tubulin蛋白表达未见明显变化;(2)小檗碱明显抑制脂肪细胞分化过程中GAPDH mRNA和蛋白的表达,在脂肪细胞分化5、7d时GAPDH mRNA表达水平分别降低68.1%和66.3%(P<0.05或P<0.01),但小檗碱对其他内参基因的表达无明显改变.结论 GAPDH在3T3-L1脂肪细胞分化过程中表达增加,不适合作为内参.%Objective To observe the change of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression during 3T3-L1 adipocyte differentiation as well as other reference gene expressions.Methods The mRNA expressions of several common reference genes were detected by real time-PCR on day 0,1,3,5,and 7 of 3T3-L1 adipocyte differentiation.Western blot was used to confirm the protein expressions of three common reference genes.Results (1) GAPDH and transferrin receptor(TFRC) mRNA expressions were significantly increased during adipocyte differentiation.GAPDH mRNA level was increased by 5.7,7.6,22.0,and 24.5 folds on day 1,3,5,and 7 after induction of adipocyte differentiation,but no apparent changes of

  3. Construction of differentially expressed cDNA libraries of aldehyde dehydrogenase with high and low activity from tongue squamous carcinoma Tca8113 cell line%基于舌鳞癌Tca8113细胞醛脱氢酶活性不同构建差异表达基因cDNA文库

    Institute of Scientific and Technical Information of China (English)

    孙守娟; 季平; 邓诚; 李颖; 邹波; 漆小娟

    2012-01-01

    Objective To construct the differentially expressed cDNA libraries of aldehyde dehydro genase with high and low activity (ALDHhigh/ALDHlow) from tongue squamous carcinoma Tca8113 cell line. Methods Expression of stem cell marker ALDH was detected, and ALDHhighand ALDHlow cells were collected by Aldefluor assay combined with flow cytometry. Differentially expressed genes of total RNA that was extracted from the two cell subpopulations by Trizol were screened and amplified by suppressing subtractive hybridization ( SSH) , and the PCR products were connected with pMD18-T vector and then transfected into E. Coli DH5a for amplification. Enzyme digestion, gene sequencing and homology analysis were performed in 24 positive clones that were randomly picked from each library. Results Two subproportions of ALDHhigh and ALDHlowwere " screened out, and ALDHhigh cells in Tca8113 cells accounted for 2. 5%. RNA D(260)/D(280) of ALDHhigh and ALDHlow were 1. 93 and 1. 92, respectively. Two-directional subtractive cDNA libraries of ALDHhigh and ALDHlow were constructed, and each library comprised 500 clones. PCR analysis of 24 clones randomly picked from each library showed that insert-fragments distributed in 200 - 700 bp, and no false positive clones were detected. Gene sequencing result that was analyzed and indexed by PubMed showed that cancer related genes included SLC25A13, KLHL2, NPC1, WAPL, BARD1, Notch2 and EEF2K. Conclusion Two-directional subtractive cDNA libraries of ALDHhigh and ALDHlow cells were successfully constructed.%目的 构建舌鳞癌Tca8113细胞系中高、低醛脱氢酶活性(high/low aldehyde dehydrogenase activity,ALDHhigh/ALDHlow)细胞差异表达基因cDNA文库.方法 用流式细胞仪检测ALDEFLUOR(R)染色的Tca8113细胞中干细胞标志物ALDH的表达,并收集ALDHhigh和ALDHlow细胞;用Trizol分别提取两亚群细胞的总RNA;用抑制性消减杂交(SSH)对2组RNA进行差异基因筛选和扩增,扩增产物与pMD18-T载体

  4. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  5. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    Directory of Open Access Journals (Sweden)

    Michelle M Giffin

    Full Text Available Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation.

  6. Biological function analysis of differentially expressed genes of primary glioblastomas of isocitrate dehydrogenase 1 mutation%异柠檬酸脱氢酶1突变的原发性胶质母细胞瘤差异表达基因的生物学功能分析

    Institute of Scientific and Technical Information of China (English)

    胡慧敏; 王政; 江涛

    2016-01-01

    Objective To investigate the biological function of differentially expressed genes of primary glioblastomas of isocitrate dehydrogenase 1 (IDH1) mutation.Methods A total of 69 patients with primary glioblastoma from Chinese Glioma Genome Atlas who received surgical resection and then received radiotherapy and alkylating chemotherapy between January 2005 and December 2009 were collected.After the extraction of tissue RNA,the whole genome microarray analysis was performed ; after the extraction of tissue DNA,pyrosequencing was performed in order to detect the status of IDH1 gene mutation.The tissue samples were divided into either an IDH1 gene mutation type or an IDH1 wild type according to whether there was a point mutation or not.The RNA expression profile data of the samples were analyzed by using the BRB Array Tools.The differentially expressed genes were obtained between the 2 groups.Omics analysis software OmicsBean was used to conduct the biological function annotation and protein-protein interaction network analysis for differentially expressed genes of mutant wild-type IDH1 in two groups of cases.Results In the 2 groups of samples of the IDH1 gene mutation type and the IDH1 wild type,there were significant differences in a total of 525 gene expressions.The 148 genes up-regulated in the expression level in the IDH1 gene mutation type primary glioblastomas mainly reflected the alterations of energy metabolism and protein metabolism after IDH1 mutation (such as tricarboxylic acid cycle and multiple amino acid metabolism),whereas the 377 genes down-regulated in the expression level were mainly involved in the cell adhesion,the interaction of extracellular matrix and receptors and other biological processes.Conclusion IDH1 mutation caused the changes in biological processes including energy metabolism,protein metabolism,and the expression levels of some cancer-related genes in gliomas.%目的 探讨异柠檬酸脱氢酶1(IDH1)突变的原发性胶质母细胞瘤

  7. Glutamate dehydrogenase 1 and SIRT4 regulate glial development.

    Science.gov (United States)

    Komlos, Daniel; Mann, Kara D; Zhuo, Yue; Ricupero, Christopher L; Hart, Ronald P; Liu, Alice Y-C; Firestein, Bonnie L

    2013-03-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological defects may be attributed to hypoglycemia, some characteristics cannot be ascribed to low glucose and as hyperammonemia is generally mild and asymptomatic, there exists the possibility that altered GDH1 activity within the brain leads to some clinical changes. GDH1 is allosterically regulated by many factors, and has been shown to be inhibited by the ADP-ribosyltransferase sirtuin 4 (SIRT4), a mitochondrially localized sirtuin. Here we show that SIRT4 is localized to mitochondria within the brain. SIRT4 is highly expressed in glial cells, specifically astrocytes, in the postnatal brain and in radial glia during embryogenesis. Furthermore, SIRT4 protein decreases in expression during development. We show that factors known to allosterically regulate GDH1 alter gliogenesis in CTX8 cells, a novel radial glial cell line. We find that SIRT4 and GDH1 overexpression play antagonistic roles in regulating gliogenesis and that a mutant variant of GDH1 found in HI/HA patients accelerates the development of glia from cultured radial glia cells.

  8. The role of glutamate dehydrogenase in mammalian ammonia metabolism.

    Science.gov (United States)

    Spanaki, Cleanthe; Plaitakis, Andreas

    2012-01-01

    Glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia. High levels of GDH activity is found in mammalian liver, kidney, brain, and pancreas. In the liver, GDH reaction appears to be close-to-equilibrium, providing the appropriate ratio of ammonia and amino acids for urea synthesis in periportal hepatocytes. In addition, GDH produces glutamate for glutamine synthesis in a small rim of pericentral hepatocytes. Hence, hepatic GDH can be either a source for ammonia or an ammonia scavenger. In the kidney, GDH function produces ammonia from glutamate to control acidosis. In the human, the presence of two differentially regulated isoforms (hGDH1 and hGDH2) suggests a complex role for GDH in ammonia homeostasis. Whereas hGDH1 is sensitive to GTP inhibition, hGDH2 has dissociated its function from GTP control. Furthermore, hGDH2 shows a lower optimal pH than hGDH1. The hGDH2 enzyme is selectively expressed in human astrocytes and Sertoli cells, probably facilitating metabolic recycling processes essential for their supportive role. Here, we report that hGDH2 is also expressed in the epithelial cells lining the convoluted tubules of the renal cortex. As hGDH2 functions more efficiently under acidotic conditions without the operation of the GTP energy switch, its presence in the kidney may increase the efficacy of the organ to maintain acid base equilibrium.

  9. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Science.gov (United States)

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Crystallization and preliminary X-ray diffraction analysis of L-threonine dehydrogenase (TDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis.

    Science.gov (United States)

    Bowyer, A; Mikolajek, H; Wright, J N; Coker, A; Erskine, P T; Cooper, J B; Bashir, Q; Rashid, N; Jamil, F; Akhtar, M

    2008-09-01

    The enzyme L-threonine dehydrogenase catalyses the NAD(+)-dependent conversion of L-threonine to 2-amino-3-ketobutyrate, which is the first reaction of a two-step biochemical pathway involved in the metabolism of threonine to glycine. Here, the crystallization and preliminary crystallographic analysis of L-threonine dehydrogenase (Tk-TDH) from the hyperthermophilic organism Thermococcus kodakaraensis KOD1 is reported. This threonine dehydrogenase consists of 350 amino acids, with a molecular weight of 38 kDa, and was prepared using an Escherichia coli expression system. The purified native protein was crystallized using the hanging-drop vapour-diffusion method and crystals grew in the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 124.5, c = 271.1 A. Diffraction data were collected to 2.6 A resolution and preliminary analysis indicates that there are four molecules in the asymmetric unit of the crystal.

  11. 对称性肢端角化病皮损中脂肪酸结合蛋白5及二氢硫辛酰胺脱氢酶表达%Expressions of fatty acid binding-protein 5 and dihydrolipoamide dehydrogenase in skin lesions of symmetrical acrokeratoderma

    Institute of Scientific and Technical Information of China (English)

    杨珮珮; 彭晶; 于作忠; 施歌; 黎兆军; 张国学; 樊翌明

    2015-01-01

    Objective To investigate the expressions of fatty acid-binding protein 5 (FABP5)and dihydroli-poamide dehydrogenase(DLD)in skin lesions of symmetrical acrokeratoderma(SAK), and to explore their significance. Methods Biopsy specimens were obtained from skin lesions on the wrists and perilesional skin of 9 patients with SAK, and from normal skin in the wrists of 9 healthy volunteers (control group). Reverse transcription PCR (RT-PCR)and immunohistochemical staining were performed to measure the expressions of FABP5 and DLD in these specimens. Results RT-PCR showed no significant differences in the mRNA expressions of FABP5 or DLD between lesional, perilesional and normal control skin specimens(both P > 0.05). Immunohistochemically, there was a significant increase in the extent and intensity of staining for FABP5 in SAK lesions. Concretely speaking, FABP5 was strongly expressed in the stratum corneum, granular and spinous layers in SAK lesions, but weakly expressed in the stratum corneum, granular and spinous layers in perilesional skin, and only in spinous and basal layers in normal control skin. The expression of DLD decreased in SAK lesions, and was observed only in the stratum corneum and spinous layer in a few cases of SAK. However, the full-thickness epidermis stained positive for DLD in perilesional skin, with the nuclei and cytoplasm both stained deep brown. Conclusion The overexpression of FABP5 in SAK lesions may participate in dysdifferentiation of keratinocytes, while the down-regulation of DLD expression suggests an imbalance in energy metabolism.%目的:探讨脂肪酸结合蛋白5(FABP5)及二氢硫辛酰胺脱氢酶(DLD)在对称性肢端角化病中的表达和意义。方法收集9例对称性肢端角化病患者腕部皮损及其周围皮肤活检标本,9例健康人腕部皮肤为对照,用逆转录 PCR(RT-PCR)及免疫组化法检测 FABP5及 DLD 表达水平。结果 RT-PCR 显示,FABP5 mRNA 及 DLD mRNA 表达在对称性

  12. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    Science.gov (United States)

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  13. Escherichia coli D-malate dehydrogenase, a generalist enzyme active in the leucine biosynthesis pathway.

    Science.gov (United States)

    Vorobieva, Anastassia A; Khan, Mohammad Shahneawz; Soumillion, Patrice

    2014-10-17

    The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of D-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on D-malate as a carbon source, the D-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB(-) strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (L(+)-tartrate, D-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.

  14. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  15. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  16. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  17. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析%Cloning, Expression, and Enzymatic Characteristics of Betaine Aldehyde De-hydrogenase Gene inSesuvium portulacastrum L.

    Institute of Scientific and Technical Information of China (English)

    喻时周; 杨成龙; 郭建春; 段瑞军

    2016-01-01

    在许多渗透调节剂中,甜菜碱是最理想的有机小分子渗透调节物质。甜菜碱在植物体内大量积累不会带来危害,同时能提高植物对环境胁迫的抗性。将海马齿中克隆到的甜菜碱醛脱氢酶基因构建到表达载体pET-28a(+)上,获得重组载体pET-SpBADH并将其成功地转化到BL21(DE3)中得到重组工程菌,经IPTG诱导能高效表达55 kD目的蛋白,表达量可以达到301µg mL–1。酶学特征分析表明,该蛋白最适pH值为7.2,在偏碱条件下能维持较高的催化活性; SpBADH蛋白对高温敏感,且温度对催化活性影响较大,超过55℃时酶活性只有20%,最适酶催化活性温度为37℃;而有机小分子醇类对酶的催化活性有保护作用,可以通过自身特征维持酶催化活性的微环境。%Among many osmotic materials, glycine betaine is a best organic micro-molecular, and functionally works for osmotic regulation in plants, which is non-toxic to plant growth. A lot of glycine betaine accumulatedin plant can enhance the resistance of plants to environmental stresses. In the study, a full-length sequence of betaine aldehyde dehydrogenase gene fromSesuvium portulacastrum was ligated with the vector pET-[28a](+), named pET-SpBADH, and successfully transformed into BL21(DE3) to obtain the corresponding recombinant engineering bacteria, which could highly express 55 kD protein induced by IPTG, with the expression level to 301 µg mL–1. The purified protein was obtained, showing the optimum pH value of 7.2, and maintain high catalytic activity the enzyme under slightly alkaline conditions. SpBADH protein very sensitive to high temperature effected the enzyme activity, with the optimum temperature to 37℃. The enzyme activity was only 20% when temperature was over 55℃. The small organic molecules of the reveral compounds of alcohol had a protective effect on the catalytic activity of the enzyme. The microenvironment of catalytic activity could be

  18. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis.

    Science.gov (United States)

    Yao, Yu-Xin; Li, Ming; Zhai, Heng; You, Chun-Xiang; Hao, Yu-Jin

    2011-03-15

    Cytosolic NAD-dependent malate dehydrogenase (cyMDH) is an enzyme crucial for malate synthesis in the cytosol. The apple MdcyMDH gene (GenBank Accession No. DQ221207) encoding the cyMDH enzyme in apple was cloned and functionally characterized. The protein was subcellularly localized to the cytoplasm and plasma membrane. Based on kinetic parameters, it mainly catalyzes the reaction from oxalacetic acid (OAA) to malate in vitro. The expression level of MdcyMDH was positively correlated with malate dehydrogenase (MDH) activity throughout fruit development, but not with malate content, especially in the ripening apple fruit. MdcyMDH overexpression contributed to malate accumulation in the apple callus and tomato. Taken together, our results support the involvement of MdcyMDH directly in malate synthesis and indirectly in malate accumulation through the regulation of genes/enzymes associated with malate degradation and transportation, gluconeogenesis and the tricarboxylic acid cycle.

  19. Biochemical and molecular characterization of the NAD(+)-dependent isocitrate dehydrogenase from the chemolithotroph Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Inoue, Hiroyuki; Tamura, Takashi; Ehara, Nagisa; Nishito, Akira; Nakayama, Yumi; Maekawa, Makiko; Imada, Katsumi; Tanaka, Hidehiko; Inagaki, Kenji

    2002-08-27

    An isocitrate dehydrogenase (ICDH) with an unique coenzyme specificity from Acidithiobacillus thiooxidans was purified and characterized, and its gene was cloned. The native enzyme was homodimeric with a subunit of M(r) 45000 and showed a 78-fold preference for NAD(+) over NADP(+). The cloned ICDH gene (icd) was expressed in an icd-deficient strain of Escherichia coli EB106; the activity was found in the cell extract. The gene encodes a 429-amino acid polypeptide and is located between open reading frames encoding a putative aconitase gene (upstream of icd) and a putative succinyl-CoA synthase beta-subunit gene (downstream of icd). A. thiooxidans ICDH showed high sequence similarity to bacterial NADP(+)-dependent ICDH rather than eukaryotic NAD(+)-dependent ICDH, but the NAD(+)-preference of the enzyme was suggested due to residues conserved in the coenzyme binding site of the NAD(+)-dependent decarboxylating dehydrogenase.

  20. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  1. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.

    Science.gov (United States)

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J; Ströher, Elke; Smith, Steven M; Gardeström, Per; Millar, A Harvey

    2010-11-01

    Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms

  2. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  3. Fast internal dynamics in alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.; Richter, D. [Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ollivier, J. [Institut Laue-Langevin, CS 20156, 38042 Grenoble (France); Zamponi, M. [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  4. Fast internal dynamics in alcohol dehydrogenase

    Science.gov (United States)

    Monkenbusch, M.; Stadler, A.; Biehl, R.; Ollivier, J.; Zamponi, M.; Richter, D.

    2015-08-01

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  5. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  6. Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise.

    Science.gov (United States)

    Pilegaard, Henriette; Neufer, P Darrell

    2004-05-01

    The pyruvate dehydrogenase complex (PDC) has a key position in skeletal muscle metabolism as it represents the entry of carbohydrate-derived fuel into the mitochondria for oxidation. PDC is regulated by a phosphorylation-dephosphorylation cycle, in which the pyruvate dehydrogenase kinase (PDK) phosphorylates and inactivates the complex. PDK exists in four isoforms, of which the PDK4 isoform is predominantly expressed in skeletal and heart muscle. PDK4 transcription and PDK4 mRNA are markedly increased in human skeletal muscle during prolonged exercise and after both short-term high-intensity and prolonged low-intensity exercise. The exercise-induced transcriptional response of PDK4 is enhanced when muscle glycogen is lowered before the exercise, and intake of a low-carbohydrate high-fat diet during recovery from exercise results in increased transcription and mRNA content of PDK4 when compared with intake of a high-carbohydrate diet. The activity of pyruvate dehydrogenase (PDH) is increased during the first 2 h of low-intensity exercise, followed by a decrease towards resting levels, which is in line with the possibility that the increased PDK4 expressed influences the PDH activity already during prolonged exercise. PDK4 expression is also increased in response to fasting and a high-fat diet. Thus, increased PDK4 expression when carbohydrate availability is low seems to contribute to the sparing of carbohydrates by preventing carbohydrate oxidation. The impact of substrate availability on PDK4 expression during recovery from exercise also underlines the high metabolic priority given to replenishing muscle glycogen stores and re-establishing intracellular homeostasis after exercise.

  7. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O' Neal

    2017-08-29

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  8. The expressions and correlation of isocitrate dehydrogenase 1 and matrix metalloproteinase-2 in human glioma%脑胶质瘤异柠檬酸脱氢酶1基因突变与基质金属蛋白酶2表达的研究

    Institute of Scientific and Technical Information of China (English)

    寿记新; 高海东; 刘菲菲; 付旭东; 王酩; 管海博; 王建业; 周少龙; 郭利刚

    2016-01-01

    目的 探讨异柠檬酸脱氢酶1(IDH1)基因突变和基质金属蛋白酶-2(MMP-2)在脑胶质瘤中的表达特性和相关性.方法 用反转录-聚合酶链反应(RT-PCR)法测序IDH1基因在胶质瘤中的序列变化;链霉菌抗生物素蛋白-过氧化物酶(SP)法分析50例原发性脑胶质瘤和10例对照组中MMP-2蛋白的表达.结果 (1)经基因直接测序IDH1基因在M及M1组共50例脑胶质细胞瘤组织中突变率较10例正常脑组织明显上升(总体上升率为56.35%,P<0.05),序列变化位点多为R132,IDH1基因片段变异性与其恶性分级无明显相关(P>0.05);(2)M及M1组共50例脑胶质细胞瘤组织中MMP-2表达比10例正常脑组织显著增强(总体增强率为57.95%,P<0.05),MMP-2表达率与胶质瘤恶性分级呈正相关(r=0.712,P<0.01);(3)所有10例脑室造瘘患者即对照组标本中均未见明显IDH1基因突变及MMP-2过表达.结论 (1)IDH1基因突变与胶质瘤进展关系密切,对于评判预后有积极意义;(2) MMP-2蛋白的表达与胶质瘤的恶性分级关系密切,呈正相关;(3)IDH1基因、MMP-2蛋白联合检测有助于分析胶质瘤恶性程度及预后.%Objective To investigate the isocitrate dehydrogenase 1 (IDH1) gene mutation and the matrix metalloproteinase (MMP)-2 protein in human ghoma.Methods The expressions of MMP-2 in 60 cases of gliomas were detected by using the two-step immunohistochemical staining method.The gauging of IDH1 gene mutation were using by the reverse transcriptase-polymerase chain reaction (RT-PCR).The relationship between that of IDH1 and MMP-2 expression was analyzed by statistical method.Results (1) The expression of MMP-2 and IDH1 genes in 50 cases human gliomas were significant higher than that in 10 cases normal brain tissues (the rate is 56.35%,P < 0.05),What' s more,most of IDH1 genes mutation appeared as R132 type.(2) MMP-2 have a high expression in high grade than low grade in different human glioma (the rate is 57.95

  9. Correlation between mutations of glioma isocitrate dehydrogenase 1 gene and expression of glioma stem cell-related gene%胶质瘤IDH1基因突变与胶质瘤干细胞相关基因表达的相关性研究

    Institute of Scientific and Technical Information of China (English)

    王继超; 郑勇; 杨小朋; 吴永刚; 吴红星; 杨乐; 张诚

    2012-01-01

    目的 研究原发性、原位复发性胶质瘤中异柠檬酸脱氢酶1(IDHI)基因突变情况,分析胶质瘤干细胞相关基因的变化情况与IDH1基因突变的相关性. 方法 选取新疆自治区人民医院神经外科自2010年8月至2011年8月间手术切除并经病理证实的人脑胶质瘤标本43例,其中原发30例,复发13例,应用PCR检测标本中IDH1基因多态性,流式细胞术检测肿瘤组织中CD133、nestin的表达. 结果 基因测序显示原发胶质瘤中17例(56.67%)发生IDH1突变,复发胶质瘤中13例(53.85%)发生IDHl突变,突变类型均为R132H型.流式细胞仪检测显示原发、复发胶质瘤标本中nestin、CD133的阳性表达率与肿瘤的病理分级均成正相关关系(P<0.05).伴IDHl突变的胶质瘤标本nestin、CD133阳性表达率较IDH1野生型胶质瘤增多,差异有统计学意义(P<0.05).与原发肿瘤比较,复发肿瘤中nestin、CD133阳性细胞表达率明显增高,差异有统计学意义(P<0.05). 结论 IDH1突变在原发、复发性胶质瘤中发生频率均很高,可上调干细胞相关基因Nestin和CD133的表达.复发肿瘤中升高的干细胞相关基因与肿瘤发生及复发密切相关.%Objective To study the distribution of isocitrate dehydrogenase (IDH1) gene mutations in primary and recurrent gliomas, and their correlation with expression of glioma stem cell-related gene. Methods Forty-three human glioma specimens,collected during the resection in our hospital from August 2010 to August 2011 and confirmed by pathology, were chosen, including 30 having primary gliomas and 13 having recurrent gliomas. The polymorphisms of IDH1 gene were detected by real-time quantitative PCR; the protein expression levels ofnestin and CD133 were measured by flow cytometry. Results Gene sequencing indicated that IDH1 gene mutations were observed in 17 specimens having primary gliomas (56.67%) and 7 specimens having recurrent gliomas (53.85%); and the mutation

  10. cDNA Cloning and Expression Analysis of Glutamate Dehydrogenase in Chinese Shrimp (Fenneropenaeus chinensis) Exposed to Ambient Ammonia%氨氮胁迫下中国明对虾(Fenneropenaeus chinensis)谷氨酸脱氢酶基因的表达分析

    Institute of Scientific and Technical Information of China (English)

    何玉英; 李少飞; 王清印; 李健

    2016-01-01

    Chinese shrimp (Fenneropenaeus chinensis) is an ecologically and economically important shrimp species. During the culture, F. chinensis were exposed to a series of stressors that adversely affect biological activities including growth rate. Ammonia, a product of protein degradation and bacterial activity, is a strong stressor in shrimp aquaculture. Glutamate dehydrogenase (GDH) is an abundant and ubiquitous mitochondrial enzyme that catalyzes reversible amination of glutamate. cDNA of GDH from F. chinensis (FcGDH) was cloned by rapid amplification of cDNA ends (RACE). The FcGDH cDNA was 1779 bp in size, and it included a 1659-bp open reading frame (ORF) that encoded a 522 amino-acid polypeptide of which the isoelectric point (pI) was 6.54 and the molecular mass was 61.3 kDa. Homology analysis revealed that the amino acid sequence of FcGDH was highly conserved with its homologs in other arthropod. The similarities between FcGDH and GDHs of Litopenaeus vannamei and Eriocheir sinensis were 98% and 89% respectively. Phylogenetic analysis showed that FcGDH was in the same branch with that of L. vannamei and then in the same branches with those of E. sinensis, Drosophila melanogaster, and Aedes aegypti in order. The tissue expression analysis showed that FcGDH was detected in all tested tissues including muscle, gill, hepatopancreas, stomach, intestine, lymph, and hemocytes. The highest expression of FcGDH was in the muscle that was an amino acid pool and the major tissue for protein deposition. After exposure to ambient ammonia, the expression of FcGDH gene was up-regulated significantly in muscles compared to the control group (P<0.01). The expression level of FcGDH in hepatopancreas was down-regulated significantly at 3 h (P<0.05), and was then stabilized up to 24 h. The expression of FcGDH was increased significantly after 48 h and reached the maximum at 72 h compared to the control group (P<0.01). These results implied that FcGDH might play an important role in the

  11. Expression of 11β-hydroxysteroid dehydrogenase type 1 on hippocampus of rat with chronic unpredictable mild stress%11β-羟基类固醇脱氢酶-1在慢性温和应激抑郁大鼠海马组织中的表达

    Institute of Scientific and Technical Information of China (English)

    程世翔; 涂悦; 张赛; 文立; 刘晓智

    2012-01-01

    Objective To investigate the roles of 11 β-hydroxysteroid dehydrogenase type 1 ( 11 β-HSD1 )on hippocampus of rat with chronic unpredictable mild stress (CUMS).Methods Twenty-four male SpragueDawley rats were randomly divided into control group and depressive model group. Chronic unpredictable mild stress (CUMS) was used to make up depressive animal model.Behavioral changes were recorded by body weight measuring,sucrose consumption test (SCT) and open field test (OFT),respectively.The mRNA transcription of 11β-HSD1 in hippocampus tissues of the rats were detected by real-time RT-PCR,and the protein expression of 11β-HSD1 were detected by western blot and immunofluorescence.Results Bcforc starting CUMS protocol,the rats exhibited equivalent weight and sucrose consumption.Twenty-eight days after CUMS protocol,behavior parameters such as body weight,sucrose consumption,nunber of crossing,and number of rearing were significantly decreased in rats exposed to CUMS group compared with control group (P < 0.05,P < 0.01 ).Correspondingly,realtime RT-PCR assays showed the mRNA expression of 11 β-HSD1 in the hippocampus of CUMS group,which was (31 ±9) % lower than that of control group.Meanwhile,the protein expression of it in CUMS group was lower than that of control group (P < 0.05 ).Inmunofluorescence revealed that the number of positive 11 3-HSD1 cells was high (223 ± 13) in the control group,while the number was decreased prominently (92 ± 11 ) in the CUMS group (P < 0.01 ).Conclusion Depressive behavior of rats is induced and the expression of 11 β-HSD1 in the hippocampus is decreased prominently by CUMS,the mechanism of which is at least related to the low expression of 11β-HSD1 and disturbance of glucocorticoid metabolism caused by CUMS.%目的 应用慢性温和不可预知刺激( CUMS)建立抑郁症动物模型,探讨大鼠海马组织中11β-羟基类固醇脱氢酶-1(11β-HSD1)蛋白表达以及抑郁症的发病机制.方法 将24只Sprague

  12. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.

    Science.gov (United States)

    Boles, E; Lehnert, W; Zimmermann, F K

    1993-10-01

    Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.

  13. The Changes of Hepatic,Muscle Glycogen and Succinate Dehydrogenase 3mRNA Expression in Skeletal Muscle of Sport Low Hemoglobin Rats%运动性低血色素大鼠骨骼肌有氧氧化能量代谢系统的变化研究

    Institute of Scientific and Technical Information of China (English)

    张毅

    2011-01-01

    To observe the changes of hepatic,muscle glycogen and succinate dehydrogenase 3mRNA expression in skeletal muscle of sport low hemoglobin rats and to provide a reference for further study on the recovery of the skeletal muscle motor capacity with sports anemia.Method:20 Wister rats were divided into two groups: silent control group(n=10) and training group(n=10).After seven weeks increase mental treadmill exercise,the model of sports anemia was built up.All rats were killed during 24H after training.The Glycogen in liver and skeletal muscle,SDH activity and expression of UCP3mRNA were to be detected and observed.Results:1)Compared with silent control group,the RBC,Hb and HCT of training group decreased significantly(P0.05),so the model was successful;2)There was no significant change in the recovery of the muscle and hepatic glycogen in sports anemia rats(P0.05);3)In sports anemia status,the SDH activity decreased highly significantly(P0.01);4)Expression of UCP3mRNA were increased significantly in sports anemia rats(P0.01).Conclusions: 7 weeks increasing treadmill exercise can make rats appear symptoms of low hemoglobin;Sport low hemoglobin did not affect recovery speed of muscle and hepatic glycogen;the activity of SDH significantly reduce,and increased expression of UCP3mRNA.This may be the reasons that sport low hemoglobin can decrease the rate of athletic aerobic oxidation.%为进一步研究改善贫血状况和采用恢复手段促进骨骼肌的快速恢复打下基础。方法:将20只Wistar大鼠随机分为安静对照组(n=10)和运动组(n=10)。采用7周递增负荷跑台运动建立运动性低血色素大鼠模型,建模成功后第二天宰杀大鼠,取骨骼肌和肝脏测定肌糖原、肝糖原含量,并测定骨骼肌的SDH活性和UCP3mRNA表达。结果:1)7周递增负荷跑台运动导致了运动大鼠红细胞计数、血红蛋白、红细胞压积显著降低(P〈0.05

  14. Cell wall-associated malate dehydrogenase activity from maize roots.

    Science.gov (United States)

    Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Vučinić, Zeljko

    2011-10-01

    Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn(2+) and Cu(2+) in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn(2+) and Cu(2+) in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.

  15. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.

    Science.gov (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa

    2014-09-01

    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii.

  16. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica.

    Science.gov (United States)

    Kabran, Philomène; Rossignol, Tristan; Gaillardin, Claude; Nicaud, Jean-Marc; Neuvéglise, Cécile

    2012-06-01

    Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.

  17. Human choline dehydrogenase: medical promises and biochemical challenges.

    Science.gov (United States)

    Salvi, Francesca; Gadda, Giovanni

    2013-09-15

    Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.

  18. Regulation of L-threonine dehydrogenase in somatic cell reprogramming.

    Science.gov (United States)

    Han, Chuanchun; Gu, Hao; Wang, Jiaxu; Lu, Weiguang; Mei, Yide; Wu, Mian

    2013-05-01

    Increasing evidence suggests that metabolic remodeling plays an important role in the regulation of somatic cell reprogramming. Threonine catabolism mediated by L-threonine dehydrogenase (TDH) has been recognized as a specific metabolic trait of mouse embryonic stem cells. However, it remains unknown whether TDH-mediated threonine catabolism could regulate reprogramming. Here, we report TDH as a novel regulator of somatic cell reprogramming. Knockdown of TDH inhibits, whereas induction of TDH enhances reprogramming efficiency. Moreover, microRNA-9 post-transcriptionally regulates the expression of TDH and thereby inhibits reprogramming efficiency. Furthermore, protein arginine methyltransferase (PRMT5) interacts with TDH and mediates its post-translational arginine methylation. PRMT5 appears to regulate TDH enzyme activity through both methyltransferase-dependent and -independent mechanisms. Functionally, TDH-facilitated reprogramming efficiency is further enhanced by PRMT5. These results suggest that TDH-mediated threonine catabolism controls somatic cell reprogramming and indicate the importance of post-transcriptional and post-translational regulation of TDH.

  19. Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae.

    Science.gov (United States)

    DeLuna, Alexander; Quezada, Héctor; Gómez-Puyou, Armando; González, Alicia

    2005-03-25

    The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.

  20. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Adam L Orr

    Full Text Available Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5 were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC₅₀ and K(i values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.

  1. Novel Inhibitors of Mitochondrial sn-Glycerol 3-phosphate Dehydrogenase

    Science.gov (United States)

    Orr, Adam L.; Ashok, Deepthi; Sarantos, Melissa R.; Ng, Ryan; Shi, Tong; Gerencser, Akos A.; Hughes, Robert E.; Brand, Martin D.

    2014-01-01

    Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD+ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP) discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5) were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC50 and Ki values between ∼1–15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems. PMID:24587137

  2. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Felicia Stefania Falvella

    2015-04-01

    Full Text Available Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD, a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T, fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C, conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.

  3. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  4. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  5. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  6. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    from Geobacillus. It is selected from SEQ ID NO. 1-17. Sequences not defined here may be found at ftp://ftp.wipo.int/pub/publishedpctsequences/publication. The heterologous gene encoding glycerol dehydrogenase has been incorporated into the chromosome of the bacterium, or is inserted into a lactate...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... selected from glycerol dehydrogenase (E.C 1.1.1.6); glycerol dehydrogenase (NADP(+)) (E.C. 1.1.1.72); glycerol 2-dehydrogenase (NADP(+)) (E.C. 1.1.1.156); and glycerol dehydrogenase (acceptor) (E.C. 1.1.99.22). The heterologous gene encoding a glycerol dehydrogenase is derived from Thermotoga or is derived...

  7. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    Directory of Open Access Journals (Sweden)

    Aldo Franco De Rose

    2016-10-01

    Full Text Available Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  8. Pcal_1699, an extremely thermostable malate dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis.

    Science.gov (United States)

    Gharib, Ghazaleh; Rashid, Naeem; Bashir, Qamar; Gardner, Qura-Tul Ann Afza; Akhtar, Muhammad; Imanaka, Tadayuki

    2016-01-01

    Two malate dehydrogenase homologs, Pcal_0564 and Pcal_1699, have been found in the genome of Pyrobaculum calidifontis. The gene encoding Pcal_1699 consisted of 927 nucleotides corresponding to a polypeptide of 309 amino acids. To examine the properties of Pcal_1699, the structural gene was cloned, expressed in Escherichia coli and the purified gene product was characterized. Pcal_1699 was NADH specific enzyme exhibiting a high malate dehydrogenase activity (886 U/mg) at optimal pH (10) and temperature (90 °C). Unfolding studies suggested that urea could not induce complete unfolding and inactivation of Pcal_1699 even at a final concentration of 8 M; however, in the presence of 4 M guanidine hydrochloride enzyme structure was unfolded with complete loss of enzyme activity. Thermostability experiments revealed that Pcal_1699 is the most thermostable malate dehydrogenase, reported to date, retaining more than 90 % residual activity even after heating for 6 h in boiling water.

  9. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion.

    Science.gov (United States)

    Ainscow, E K; Zhao, C; Rutter, G A

    2000-07-01

    Islet beta-cells express low levels of lactate dehydrogenase and have high glycerol phosphate dehydrogenase activity. To determine whether this configuration favors oxidative glucose metabolism via mitochondria in the beta-cell and is important for beta-cell metabolic signal transduction, we have determined the effects on glucose metabolism and insulin secretion of acute overexpression of the skeletal muscle isoform of lactate dehydrogenase (LDH)-A. Monitored in single MIN6 beta-cells, LDH hyperexpression (achieved by intranuclear cDNA microinjection or adenoviral infection) diminished the response to glucose of both phases of increases in mitochondrial NAD(P)H, as well as increases in mitochondrial membrane potential, cytosolic free ATP, and cystolic free Ca2+. These effects were observed at all glucose concentrations, but were most pronounced at submaximal glucose levels. Correspondingly, adenoviral vector-mediated LDH-A overexpression reduced insulin secretion stimulated by 11 mmol/l glucose and the subsequent response to stimulation with 30 mmol/l glucose, but it was without significant effect when the concentration of glucose was raised acutely from 3 to 30 mmol/l. Thus, overexpression of LDH activity interferes with normal glucose metabolism and insulin secretion in the islet beta-cell type, and it may therefore be directly responsible for insulin secretory defects in some forms of type 2 diabetes. The results also reinforce the view that glucose-derived pyruvate metabolism in the mitochondrion is critical for glucose-stimulated insulin secretion in the beta-cell.

  10. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  11. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  12. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  13. Cloning and functions analysis of a pyruvate dehydrogenase kinase in Brassica napus.

    Science.gov (United States)

    Li, Rong-Jun; Hu, Zhi-Yong; Zhang, Hua-Shan; Zhan, Gao-Miao; Wang, Han-Zhong; Hua, Wei

    2011-08-01

    Pyruvate dehydrogenase kinase (PDK) is a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), which plays a key role in intermediary metabolism. In this study, a 1,490-bp PDK in Brassica napus (BnPDK1) was isolated and cloned from Brassica cDNA library. BnPDK1 has an 1,104 open reading frame encoding 367 amino acids. Genomic DNA gel blot analysis result indicated that BnPDK1 is a multi-copy gene. RNA gel blot analysis and RNA in situ hybridization were used to determine the expression of BnPDK1 in different organs. BnPDK1 gene was ubiquitously expressed in almost all the tissues tested, having the highest expression in the stamen and the young silique. Over-expression of BnPDK1 in transgenic Arabidopsis lines would repress the PDC activity, and resulted in the decrease of seed oil content and leaf photosynthesis. These results implied that BnPDK1 was involved in the regulation of fatty acid biosynthesis in developing seeds.

  14. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ma YM

    2016-04-01

    Full Text Available Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1 activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR 1.53 (1.14–2.07, P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08, P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00, P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients. Keywords: ALDH1, cancer stem cell, prognosis, KM plotter, hazard ratio

  15. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.

    OpenAIRE

    1984-01-01

    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  16. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.

    OpenAIRE

    Tang, J C; Forage, R G; Lin, E C

    1982-01-01

    An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.

  17. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... enzyme is involved in the normal processing of carbohydrates. It also protects red blood cells from the ... of glucose-6-phosphate dehydrogenase or alter its structure, this enzyme can no longer play its protective ...

  18. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  19. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... for studies that investigated G6PD deficiency in Indian population. If any author studied .... analyses, (2) case reports, and (3) reviews and editorials. 2.3. ..... Beutler E, editors. Glucose-6-phosphate dehydrogenase. Orlando,.

  20. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    Science.gov (United States)

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  1. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase.

    Science.gov (United States)

    Lessmeier, Lennart; Hoefener, Michael; Wendisch, Volker F

    2013-12-01

    Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking ald and fadH could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, C. glutamicum ΔaldΔfadH did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from C. glutamicum was purified from recombinant Escherichia coli and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed Km values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a Vmax of 7.7 U mg(-1). FadH from C. glutamicum also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (Km = 330 mM, Vmax = 9.6 U mg(-1)), 1-propanol (Km = 150 mM, Vmax = 5 U mg(-1)) and 1-butanol (Km = 50 mM, Vmax = 0.8 U mg(-1)). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of C. glutamicum to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

  2. Resurrecting ancestral alcohol dehydrogenases from yeast.

    Science.gov (United States)

    Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; De Kee, Danny W; Li, Tang; Aris, John P; Benner, Steven A

    2005-06-01

    Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.

  3. Lactic dehydrogenase and cancer: an overview.

    Science.gov (United States)

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio

    2015-01-01

    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.

  4. Liver alcohol dehydrogenase immobilized on polyvinylidene difluoride.

    Science.gov (United States)

    Roig, M G; Bello, J F; Moreno de Vega, M A; Cachaza, J M; Kennedy, J F

    1990-01-01

    A physical method for immobilization of liver alcohol dehydrogenase (ADH) by hydrophobic adsorption onto a supporting membrane of polyvinylidene difluoride (PVDF) was performed. Simultaneously, a physicochemical characterization of the immobilized enzyme regarding its kinetic behaviour was performed. The activity/pH profile observed points to an effect of pH on activity that is completely different from the case of ADH in solution. The disturbance in the typical bell-shaped profile owing to the fact that the enzyme was immobilized is explained on the basis of a potent limitation to the diffusion of the protons in the support. The findings of the present work also reveal the existence of an effect that limits free external diffusion of the substrate towards and/or the product from the support; this effect seems to be the determinant of the overall rate of the enzymatic reaction and is thus of great importance in the effective kinetic behaviour (v([S])) of immobilized ADH, whose kinetic behaviour is complex (non-Michaelian), as may be seen from the lack of linearity observed in the corresponding double reciprocal and Eadie-Hofstee plots. By non-linear regression numerical analysis of the v([S]) data and application of the F-test for model discrimination, the minimum rate equation necessary to describe the intrinsic kinetic behaviour of PVDF-immobilized ADH proved to be one of the polynomial quotient type of degree 2:2 (in substrate concentration).

  5. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology.

    Science.gov (United States)

    Toyama, Hirohide; Mathews, F Scott; Adachi, Osao; Matsushita, Kazunobu

    2004-08-01

    Quino(hemo)protein alcohol dehydrogenases (ADH) that have pyrroloquinoline quinone (PQQ) as the prosthetic group are classified into 3 groups, types I, II, and III. Type I ADH is a simple quinoprotein having PQQ as the only prosthetic group, while type II and type III ADHs are quinohemoprotein having heme c as well as PQQ in the catalytic polypeptide. Type II ADH is a soluble periplasmic enzyme and is widely distributed in Proteobacteria such as Pseudomonas, Ralstonia, Comamonas, etc. In contrast, type III ADH is a membrane-bound enzyme working on the periplasmic surface solely in acetic acid bacteria. It consists of three subunits that comprise a quinohemoprotein catalytic subunit, a triheme cytochrome c subunit, and a third subunit of unknown function. The catalytic subunits of all the quino(hemo)protein ADHs have a common structural motif, a quinoprotein-specific superbarrel domain, where PQQ is deeply embedded in the center. In addition, in the type II and type III ADHs this subunit contains a unique heme c domain. Various type II ADHs each have a unique substrate specificity, accepting a wide variety of alcohols, as is discussed on the basis of recent X-ray crystallographic analyses. Electron transfer within both type II and III ADHs is discussed in terms of the intramolecular reaction from PQQ to heme c and also from heme to heme, and in terms of the intermolecular reaction with azurin and ubiquinone, respectively. Unique physiological functions of both types of quinohemoprotein ADHs are also discussed.

  6. [Alcohol dehydrogenase and aldehyde dehydrogenase as tumour markers and factors intensifying carcinogenesis in colorectal cancer].

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Kedra, Bogusław; Szmitkowski, Maciej

    2008-06-01

    Numerous experiments have shown that alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in cells of various cancers and play role in carcinogenesis. The aim of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity, between colorectal cancer and normal colonic mucosa. We have also investigated the serum activity of these enzymes in colorectal cancer patients as potential tumour markers. The activities of ADH isoenzymes and ALDH were measured in the: cancer tissue, healthy colonic mucosa and serum of 42 patients with colorectal cancer. For the measurement of the activity of class I ADH isoenzyme and ALDH activity the fluorometric methods was employed. The total ADH activity and activity of class III and IV isoenzymes was measured by the photometric method. The activity of total alcohol dehydrogenase and class I of ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH had higher activities in cancer tissue but the differences were not statistically significant. The activity of ALDH was significantly lower in the cancer cells. The activities of all tested enzymes and isoenzymes in colorectal cancer tissue were not significantly higher in drinkers than in non-drinkers. Additionally we observed statistically significant increasing activity of class I ADH isoenzymes in the sera of patients with colorectal cancer. For this reason the total ADH activity was also significantly increased. The activities of ADH III and ADH IV isoenzymes and ALDH were unchanged in the sera of patients. There were no marked differences in activities of all tested enzymes and isoenzymes between drinkers and non-drinkers (with colorectal cancer). The differences in activities of total ADH and class I ADH isoenzymes between colorectal cancer tissues and healthy mucosa might be a factor of ethanol metabolism disorders, which can intensify carcinogenesis. The increased total

  7. Dehydrogenase isoenzyme polymorphism in genus Prunus, subgenus Cerasus

    Directory of Open Access Journals (Sweden)

    Čolić Slavica

    2012-01-01

    Full Text Available Dehydrogenase polymorphism was studied in 36 sour cherry (Prunus cerasus L., sweet cherry (Prunus avuim L., mahaleb (Prunus mahaleb L., ground cherry (Prunus fruticosa Pall., duke cherry (Prunus gondounii Redh., Japanese flowering cherry (Prunus serrulata Lindl. and four iterspecific hybrids (standard cherry rootstocks ‘Gisela 5’, ‘Gisela 6’, ‘Max Ma’ and ‘Colt’. Inner bark of one-year-old shoots, in dormant stage, was used for enzyme extraction. Vertical PAGE was used for isoenzyme analysis: alcohol dehydrogenase (ADH, formate dehydrogenase (FDH, glutamate dehydrogenase (GDH, isocitrate dehydrogenaze (IDH, malate dehydrogenase (MDH, phosphogluconate dehydrogenase (PGD, and shikimate dehydrogenase (SDH. All studied systems were polymorphic at 10 loci: Adh -1 (3 genotypes and Adh-2 (5 genotypes, Fdh-1 (2 genotypes, Gdh-1 (3 genotypes, Idh-1 (4 genotypes i Idh -2 (5 genotypes, Mdh-1 (3 genotypes, Pgd-1 (4 genotypes, Sdh-1 (1 genotype i Sdh-2 (3 genotypes. Cluster analysis was used to construct dendrogram on which four groups of similar genotypes were separated. Obtained results indicate that studied enzyme systems can be used for determination of genus Prunus, subgenus Cerasus. Among studied enzyme systems ADH, IDH and SDH were the most polymorphic and most useful to identify genetic variability. Polymorphism of FDH and GDH in genus Prunus, subgenus Cerasus was described first time in this work. First results for dehydrogenase variability of Oblačinska indicate that polymorphism of loci Idh-2 and Sdh-2 can be useful for discrimination of different clones.

  8. Malate dehydrogenase activity in human seminal plasma and spermatozoa homogenates

    Directory of Open Access Journals (Sweden)

    Hulya Leventerler

    2013-08-01

    Full Text Available Purpose: Malate Dehydrogenase is an important enzyme of the Krebs cycle, most cells require this enzyme for their metabolic activity. We evaluated the Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates in normozoospermic, fertile and infertile males. Also glucose and fructose concentrations were determined in the seminal plasma samples. Material and Methods: Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates of normozoospermic and infertile males was determined by spectrophotometric method. Semen analysis was considered according to the WHO Criteria. Results: Malat Dehydrogenase-NAD value in seminal plasma (the mean ± SD, mU/ml of asthenoteratospermic (40.0±25.7 and azospermic (38.0±43.6 groups were significantly lower than normozoospermic, (93.9±52.1 males. Malat Dehydrogenase-NAD value in sperm homogenates (the mean ± SD, mU/ 20x106 sperm of teratospermic group (136.8±61.8 was significantly higher compared to the normozoospermic (87.3±26.5 males. Glucose concentration (mg/dl in asthenoteratospermic (4.0±1.4 and azospermic (15.4±6.4 groups were significantly higher than fertile (2.0±2.1 males. Also fructose concentration (mg/dl in asthenoteratospermic (706.6±143.3 and azospermic (338.1±228.2 groups were significantly high compared to the normozoospermic (184.7±124.8 group. Conclusion: Sperm may be some part of the source of Malat Dehydrogenase activity in semen. Malat Dehydrogenase activity in seminal plasma has an important role on energy metabolism of sperm. Intermediate substrates of Krebs cycle might have been produced under the control of Malat Dehydrogenase and these substrates may be important for sperm motility and male infertility. [Cukurova Med J 2013; 38(4.000: 648-658

  9. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  10. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    Science.gov (United States)

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  11. Association between common alcohol dehydrogenase gene (ADH) variants and schizophrenia and autism

    OpenAIRE

    Zuo, Lingjun; Wang,Kesheng; Zhang, Xiang-Yang; Pan, Xinghua; Wang, Guilin; Tan, Yunlong; ZHONG, CHUNLONG; Krystal, John H.; State, Matthew; Zhang, Heping; Luo, Xingguang

    2013-01-01

    Humans express at least seven alcohol dehydrogenase (ADH) isoforms that are encoded by ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5) at chromosome 4. ADHs are key catabolic enzymes for retinol and ethanol. The functional ADH variants (mostly rare) have been implicated in alcoholism risk. In addition to catalyzing the oxidation of retinol and ethanol, ADHs may be involved in the metabolic pathways of several neurotransmitters that are implicated in the neurobiology of neuropsychiatr...

  12. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-01-01

    Full Text Available Testis-specific lactate dehydrogenase (LDH-C4 is one of the lactate dehydrogenase (LDH isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4, Lactate Dehydrogenase B4 (LDH-B4, and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and native polyacrylamide gel electrophoresis (PAGE. The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L, LDH-B4 (Ki = 23.800 mmol/L, and LDH-C4 (Ki = 65.500 mmol/L. These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4.

  13. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.

    OpenAIRE

    Melo-Oliveira, R; I.C. Oliveira; Coruzzi, G M

    1996-01-01

    Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH...

  14. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein.

    Science.gov (United States)

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Kim, Suk

    2016-03-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis.

  15. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae)

    Science.gov (United States)

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4), Lactate Dehydrogenase B4 (LDH-B4), and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L), LDH-B4 (Ki = 23.800 mmol/L), and LDH-C4 (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4. PMID:26751442

  16. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast.

    Science.gov (United States)

    Sheibani, Sara; Jones, Natalie K; Eid, Rawan; Gharib, Nada; Arab, Nagla T T; Titorenko, Vladimir; Vali, Hojatollah; Young, Paul A; Greenwood, Michael T

    2015-08-01

    We report the identification of human L- lactate dehydrogenase B (LDHB) as a novel Bax suppressor. Yeast heterologously expressing LDHB is also resistant to the lethal effects of copper indicating that it is a general suppressor of stress mediated cell death. To identify potential LDHB targets, LDHB was expressed in yeast mutants defective in apoptosis, necrosis and autophagy. The absence of functional PCD regulators including MCA1, YBH3, cyclophilin (CPR3) and VMA3, as well as the absence of the pro-survival autophagic pathway (ATG1,7) did not interfere with the LDHB mediated protection against copper indicating that LDHB functions independently of known PCD regulators or by simply blocking or stimulating a common PCD promoting or inhibitory pathway. Measurements of lactate levels revealed that short-term copper stress (1.6 mM, 4 h), does not increase intracellular levels of lactate, instead a three-fold increase in extracellular lactate was observed. Thus, yeast cells resemble mammalian cells where different stresses are known to lead to increased lactate production leading to lactic acidosis. In agreement with this, we found that the addition of exogenous lactic acid to growth media was sufficient to induce cell death that could be inhibited by the expression of LDHB. Taken together our results suggest that lactate dehydrogenase is a general suppressor of PCD in yeast. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.

    Science.gov (United States)

    Song, Kibbeum; Kim, Sokho; Na, Ji-Young; Park, Jong-Heum; Kim, Jae-Kyung; Kim, Jae-Hun; Kwon, Jungkee

    2014-10-01

    Rutin is derived from buckwheat, apples, and black tea. It has been shown to have beneficial anti-inflammatory and antioxidant effects. Ethanol is a central nervous system depressant and neurotoxin. Its metabolite, acetaldehyde, is critically toxic. Aldehyde dehydrogenase 2 (ALDH2) metabolizes acetaldehyde into nontoxic acetate. This study examined rutin's effects on ALDH2 activity in hippocampal neuronal cells (HT22 cells). Rutin's protective effects against acetaldehyde-based ethanol neurotoxicity were confirmed. Daidzin, an ALDH2 inhibitor, was used to clarify the mechanisms of rutin's protective effects. Cell viability was significantly increased after rutin treatment. Rutin significantly reversed ethanol-increased Bax, cytochrome c expression and caspase 3 activity, and decreased Bcl-2 and Bcl-xL protein expression in HT22 cells. Interestingly, rutin increased ALDH2 expression, while daidzin reversed this beneficial effect. Thus, this study demonstrates rutin protects HT22 cells against ethanol-induced neurotoxicity by increasing ALDH2 activity.

  18. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  19. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  20. Properties and subunit structure of pig heart pyruvate dehydrogenase.

    Science.gov (United States)

    Hamada, M; Hiraoka, T; Koike, K; Ogasahara, K; Kanzaki, T

    1976-06-01

    Pyruvate dehydrogenase [EC 1.2.4.1] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.

  1. Characterization of alcohol dehydrogenase 3 of the thermotolerant methylotrophic yeast Hansenula polymorpha.

    Science.gov (United States)

    Suwannarangsee, Surisa; Kim, Seonghun; Kim, Oh-Cheol; Oh, Doo-Byoung; Seo, Jeong-Woo; Kim, Chul Ho; Rhee, Sang Ki; Kang, Hyun Ah; Chulalaksananukul, Warawut; Kwon, Ohsuk

    2012-11-01

    In this study, we identified and characterized mitochondrial alcohol dehydrogenase 3 from the thermotolerant methylotrophic yeast Hansenula polymorpha (HpADH3). The amino acid sequence of HpADH3 shares over 70% of its identity with the alcohol dehydrogenases of other yeasts and exhibits the highest similarity of 91% with the alcohol dehydrogenase 1 of H. polymorpha. However, unlike the cytosolic HpADH1, HpADH3 appears to be a mitochondrial enzyme, as a mitochondrial targeting extension exists at its N terminus. The recombinant HpADH3 overexpressed in Escherichia coli showed similar catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The HpADH3 displayed substrate specificities with clear preferences for medium chain length primary alcohols and acetaldehyde for an oxidation reaction and a reduction reaction, respectively. Although the H. polymorpha ADH3 gene was induced by ethanol in the culture medium, both an ADH isozyme pattern analysis and an ADH activity assay indicated that HpADH3 is not the major ADH in H. polymorpha DL-1. Moreover, HpADH3 deletion did not affect the cell growth on different carbon sources. However, when the HpADH3 mutant was complemented by an HpADH3 expression cassette fused to a strong constitutive promoter, the resulting strain produced a significantly increased amount of ethanol compared to the wild-type strain in a glucose medium. In contrast, in a xylose medium, the ethanol production was dramatically reduced in an HpADH3 overproduction strain compared to that in the wild-type strain. Taken together, our results suggest that the expression of HpADH3 would be an ideal engineering target to develop H. polymorpha as a substrate specific bioethanol production strain.

  2. Retinol dehydrogenase, RDH1l, is essential for the heart development and cardiac performance in zebrafish

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; ZHANG Li-feng; GUI Yong-hao; SONG Hou-yan

    2013-01-01

    Background Retinoic acid (RA) is a potent signaling molecule that plays pleiotropic roles in patterning,morphogenesis,and organogenesis during embryonic development.The synthesis from retinol (vitamin A) to retinoic acid requires two sequential oxidative steps.The first step involves the oxidation of retinol to retinal through the action of retinol dehydrogenases.Retinol dehydrogenases1l (RDH1l) is a novel zebrafish retinol dehydrogenase.Herein we investigated the role of zebrafish RDH1l in heart development and cardiac performance in detail.Methods RDH1l specific morpholino was used to reduce the function of RDH1l in zebrafish.The gene expressions were observed by using whole mount in situ hybridization.Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf).The cardiac performance was analyzed by measuring ventricular shortening fraction (VSF).Results The knock-down of RDH1l led to abnormal neural crest cells migration and reduced numbers of neural crest cells in RDH1l morphant embryos.The reduced numbers of cardiac neural crest cells also can be seen in RDH1l morphant embryos.Furthermore,the morpholino-mediated knock-down of RDH1l resulted in the abnormal heart loop.The left-right determining genes expression pattern was altered in RDH1l morphant embryos.The impaired cardiac performance was observed in RDH1l morphant embryos.Taken together,these data demonstrate that RDH1l is essential for the heart development and cardiac performance in zebrafish.Conclusions RDH1l plays a important role in the neural crest cells development,and then ultimately affects the heart loop and cardiac performance.These results show for the first time that an enzyme involved in the retinol to retinaldehyde conversion participate in the heart development and cardiac performance in zebrafish.

  3. Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation.

    Science.gov (United States)

    Gerardo Valadez, J; Grover, Vandana K; Carter, Melissa D; Calcutt, M Wade; Abiria, Sunday A; Lundberg, Christopher J; Williams, Thomas V; Cooper, Michael K

    2013-01-28

    The Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions. To evaluate this possibility and to better define the molecular and histopathological glioma subtypes that are Hh-responsive, IDH genes were sequenced in adult glioma specimens assayed for an operant Hh pathway. The proportions of grades II-IV specimens with IDH mutations correlated with the proportions that expressed elevated levels of the Hh gene target PTCH1. Indices of an operational Hh pathway were measured in all primary cultures and xenografts derived from IDH-mutant glioma specimens, including IDH-mutant glioblastomas. In contrast, the Hh pathway was not operational in glioblastomas that lacked IDH mutation or history of antecedent lower-grade disease. IDH mutation is not required for an operant pathway however, as significant Hh pathway modulation was also measured in grade III gliomas with wild-type IDH sequences. These results indicate that the Hh pathway is operational in grades II and III gliomas and glioblastomas with molecular or histopathological evidence for evolvement from lower-grade gliomas. Lastly, these findings suggest that gliomas sharing this molecularly defined route of progression arise in Hh-responsive cell types.

  4. Suppression of cellulase and polygalacturonase and induction of alcohol dehydrogenase isoenzymes in avocado fruit mesocarp subjected to low oxygen stress.

    Science.gov (United States)

    Kanellis, A K; Solomos, T; Roubelakis-Angelakis, K A

    1991-05-01

    Expression of polygalacturonase and cellulase, two hydrolytic enzymes of avocado (Persea americana, cv Hass) fruit which are synthesized de novo during ripening, and alcohol dehydrogenase, a known anaerobic protein, were studied under different O(2) regimes. Low O(2) concentrations (2.5-5.5%) diminished the accumulation of polygalacturonase and cellulase proteins and the expression of their isoenzymes. This pattern of change in cellulase protein was also reflected in the steady-state amount of its mRNA. In contrast, 7.5 and 10% O(2) did not alter the changes observed in fruits ripened in air. On the other hand, alcohol dehydrogenase was induced in 2.5, 3.5, and 5.5% O(2) but not in 7.5 or 10% O(2). The recovery from the hypoxic stress upon returning the fruits back to air for 24 hours, was also a function of O(2) tensions under which the fruits were kept. Thus, the synthesis of polygalacturonase and cellulase was directly related to O(2) levels, while the activity of the isoenzymes of alcohol dehydrogenase was inversely related to O(2) levels. The results indicate that hypoxia exerts both negative and positive effects on the expression of certain genes and that these effects are initiated at the same levels of O(2).

  5. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme

    DEFF Research Database (Denmark)

    Bross, P; Jespersen, C; Jensen, T G

    1995-01-01

    We have used expression of human medium chain acyl-CoA dehydrogenase (MCAD) in Escherichia coli as a model system for dissecting the molecular effects of two mutations detected in patients with MCAD deficiency. We demonstrate that the R28C mutation predominantly affects polypeptide folding...

  6. 5´AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Annemarie; Jeppesen, Jacob

    2015-01-01

    in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 -deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators, HDAC4 and SIRT1. Interestingly, PDK4 protein content...

  7. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: mspatel@buffalo.edu [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  8. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  9. Biochemical and structural characterization of the apicoplast dihydrolipoamide dehydrogenase of Plasmodium falciparum.

    Science.gov (United States)

    Laine, Larissa M; Biddau, Marco; Byron, Olwyn; Müller, Sylke

    2015-01-14

    PDC (pyruvate dehydrogenase complex) is a multi-enzyme complex comprising an E1 (pyruvate decarboxylase), an E2 (dihydrolipomide acetyltransferase) and an E3 (dihydrolipoamide dehydrogenase). PDC catalyses the decarboxylation of pyruvate and forms acetyl-CoA and NADH. In the human malaria parasite Plasmodium falciparum, the single PDC is located exclusively in the apicoplast. Plasmodium PDC is essential for parasite survival in the mosquito vector and for late liver stage development in the human host, suggesting its suitability as a target for intervention strategies against malaria. Here, PfaE3 (P. falciparum apicoplast E3) was recombinantly expressed and characterized. Biochemical parameters were comparable with those determined for E3 from other organisms. A homology model for PfaE3 reveals an extra anti-parallel β-strand at the position where human E3BP (E3-binding protein) interacts with E3; a parasite-specific feature that may be exploitable for drug discovery against PDC. To assess the biological role of Pfae3, it was deleted from P. falciparum and although the mutants are viable, they displayed a highly synchronous growth phenotype during intra-erythrocytic development. The mutants also showed changes in the expression of some mitochondrial and antioxidant proteins suggesting that deletion of Pfae3 impacts on the parasite's metabolic function with downstream effects on the parasite's redox homoeostasis and cell cycle.

  10. Characterization and dietary regulation of glutamate dehydrogenase in different ploidy fishes.

    Science.gov (United States)

    Liu, Zhen; Zhou, Yi; Liu, Shaojun; Zhong, Huan; Zhang, Chun; kang, Xuewei; Liu, Yun

    2012-12-01

    Glutamate dehydrogenase (GDH) plays a crucial role in amino acid deamination and has been used as an inductor of nutrients metabolism. In this study, we cloned and analyzed the GDH cDNAs in diploids (red crucian carp), triploids and tetraploids and characterized their expression profiles upon dietary treatments. Results showed a high sequence similarity of GDH among the three kinds of ploidy fishes and other vertebrates. Expression analysis revealed that GDH exhibited a distinct spatial pattern of expression in different types of fishes. The triploids and tetraploids had higher levels of expression than diploids in heart, liver, gill, muscle, fore-gut and mid-gut. The GDH expression was also developmentally regulated with a stronger expression around blastula stage. The maternal GDH transcripts were first detected from eggs and their expression dropped down from the gastrula stage to heart beat stage. Adult triploids showed the highest levels of GDH expression in liver during breeding season which may contribute to the good appetite and fast growth. In addition, triploids exhibited high growth rates and excess GDH expression compared with other two types of fishes. The liver GDH enzyme activities were also higher in triploids than red crucian carp and tetraploids. Moreover, GDH expression is regulated by dietary protein levels. Fish fed with either high or low protein diets showed higher levels of GDH expression. In summary, our results demonstrated for the first time that the different ploidy fishes had different patterns of GDH mRNA expression during development, breeding and non-breeding seasons, and as well dietary effects from different protein levels in diet. These data indicate that abundant GDH expression may play an important role in growth rates in triploids.

  11. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  12. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  13. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    Science.gov (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  14. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  15. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans.

    Science.gov (United States)

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H

    2000-01-01

    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  16. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration.

    Science.gov (United States)

    Gauer, Sabrina; Wang, Zhijie; Otten, Harm; Etienne, Mathieu; Bjerrum, Morten Jannik; Lo Leggio, Leila; Walcarius, Alain; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2014-04-01

    A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with D-glucitol oxidation to D-fructose but also converted L-glucitol to D-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for L-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a D-sorbitol dehydrogenase (EC 1.1.1.14).

  17. Characterization of an Arxula adeninivorans alcohol dehydrogenase involved in the metabolism of ethanol and 1-butanol.

    Science.gov (United States)

    Kasprzak, Jakub; Rauter, Marion; Riechen, Jan; Worch, Sebastian; Baronian, Kim; Bode, Rüdiger; Schauer, Frieder; Kunze, Gotthard

    2016-05-01

    In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    Science.gov (United States)

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-07-15

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production.

  19. NADP-dependent mannitol dehydrogenase, a major allergen of Cladosporium herbarum.

    Science.gov (United States)

    Simon-Nobbe, Birgit; Denk, Ursula; Schneider, Peter Bernhard; Radauer, Christian; Teige, Markus; Crameri, Reto; Hawranek, Thomas; Lang, Roland; Richter, Klaus; Schmid-Grendelmeier, Peter; Nobbe, Stephan; Hartl, Arnulf; Breitenbach, Michael

    2006-06-16

    Cladosporium herbarum is an important allergenic fungal species that has been reported to cause allergic diseases in nearly all climatic zones. 5-30% of the allergic population displays IgE antibodies against molds. Sensitization to Cladosporium has often been associated with severe asthma and less frequently with chronic urticaria and atopic eczema. However, no dominant major allergen of this species has been found so far. We present cloning, production, and characterization of NADP-dependent mannitol dehydrogenase of C. herbarum (Cla h 8) and show that this protein is a major allergen that is recognized by IgE antibodies of approximately 57% of all Cladosporium allergic patients. This is the highest percentage of patients reacting with any Cladosporium allergen characterized so far. Cla h 8 was purified to homogeneity by standard chromatographic methods, and both N-terminal and internal amino acid sequences of protein fragments were determined. Enzymatic analysis of the purified natural protein revealed that this allergen represents a NADP-dependent mannitol dehydrogenase that interconverts mannitol and d-fructose. It is a soluble, non-glycosylated cytoplasmic protein. Two-dimensional protein analysis indicated that mannitol dehydrogenase is present as a single isoform. The cDNA encoding Cla h 8 was cloned from a lambda-ZAP library constructed from hyphae and spores. The recombinant non-fusion protein was expressed in Escherichia coli and purified to homogeneity. Its immunological and biochemical identity with the natural protein was shown by enzyme activity tests, CD spectroscopy, IgE immunoblots with sera of patients, and by skin prick testing of Cladosporium allergic patients. This protein therefore is a new major allergen of C. herbarum.

  20. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  1. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao

    2008-01-01

    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  2. In vitro effects of metals and pesticides on dehydrogenase activity in ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... Key words: Dehydrogenase activity, rhizosplane bacteria, atrazine, cypermethrin, ... resources for improved and sustainable agriculture ... Growth of cowpea and source of microbial community. The cowpea plant (Vigna unguiculata) was grown to maturity in an ..... stimulation of dehydrogenase activity.

  3. Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure.

    OpenAIRE

    1987-01-01

    The citric acid cycle enzyme malate dehydrogenase was purified to homogeneity from the nonsulfur purple bacteria Rhodobacter capsulatus, Rhodospirillum rubrum, Rhodomicrobium vannielii, and Rhodocyclus purpureus. Malate dehydrogenase was purified from each species by either a single- or a two-step protocol: triazine dye affinity chromatography was the key step in purification of malate dehydrogenase in all cases. Purification of malate dehydrogenase resulted in a 130- to 240-fold increase in ...

  4. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnologica

  5. Red Algal Bromophenols as Glucose 6-Phosphate Dehydrogenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Koretaro Takahashi

    2013-10-01

    Full Text Available Five bromophenols isolated from three Rhodomelaceae algae (Laurencia nipponica, Polysiphonia morrowii, Odonthalia corymbifera showed inhibitory effects against glucose 6-phosphate dehydrogenase (G6PD. Among them, the symmetric bromophenol dimer (5 showed the highest inhibitory activity against G6PD.

  6. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Travis Hartman

    2014-11-01

    Full Text Available In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2; we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.

  7. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    DEFF Research Database (Denmark)

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...

  8. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  9. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  10. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    Science.gov (United States)

    2003-08-01

    Effect of macromolecula r crowding upon the st ructure and funct ion of an enzyme: Glycera ldehyde-3-phospha te dehydrogenase. Biochem- istry 20:4821...Leit ing B, Ruel R, Nicholson DW, and Thornber ry NA (1998) Inhibit ion of human caspases by pept ide-based and macromolecula r inh ib- itors. J Biol

  11. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  12. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  13. Mutations associated with succinate dehydrogenase D-related malignant paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Bertherat, J.; Lenders, J.W.M.; Duet, M.; Eisenhofer, G.; Stratakis, C.A.; Niccoli-Sire, P.; Tran, B.H.; Burnichon, N.; Gimenez-Roqueplo, A.P.

    2008-01-01

    OBJECTIVE: Hereditary paraganglioma (PGL) syndromes result from germline mutations in genes encoding subunits B, C and D of the mitochondrial enzyme succinate dehydrogenase (SDHB, SDHC and SDHD). SDHB-related PGLs are known in particular for their high malignant potential. Recently, however, maligna

  14. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  15. Lactate dehydrogenase in the cyanobacterium Microcystis PCC7806

    NARCIS (Netherlands)

    Moezelaar, R.; Teixeira, de M.J.; Stal, L.J.

    1995-01-01

    The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not

  16. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien

    2013-01-01

    cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...

  17. Ethanol metabolism by HeLa cells transduced with human alcohol dehydrogenase isoenzymes: control of the pathway by acetaldehyde concentration.

    Science.gov (United States)

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W

    2011-01-01

    Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low K(m) aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I alcohol dehydrogenase (ADH) (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs was constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady-state acetaldehyde concentration in hepatocytes during ethanol metabolism. Copyright © 2010 by the Research Society on Alcoholism.

  18. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase.

    Science.gov (United States)

    Aoshima, Miho; Igarashi, Yasuo

    2008-03-01

    Isocitrate dehydrogenase (ICDH) from Hydrogenobacter thermophilus catalyzes the reduction of oxalosuccinate, which corresponds to the second step of the reductive carboxylation of 2-oxoglutarate in the reductive tricarboxylic acid cycle. In this study, the oxidation reaction catalyzed by H. thermophilus ICDH was kinetically analyzed. As a result, a rapid equilibrium random-order mechanism was suggested. The affinities of both substrates (isocitrate and NAD+) toward the enzyme were extremely low compared to other known ICDHs. The binding activities of isocitrate and NAD+ were not independent; rather, the binding of one substrate considerably promoted the binding of the other. A product inhibition assay demonstrated that NADH is a potent inhibitor, although 2-oxoglutarate did not exhibit an inhibitory effect. Further chromatographic analysis demonstrated that oxalosuccinate, rather than 2-oxoglutarate, is the reaction product. Thus, it was shown that H. thermophilus ICDH is a nondecarboxylating ICDH that catalyzes the conversion between isocitrate and oxalosuccinate by oxidation and reduction. This nondecarboxylating ICDH is distinct from well-known decarboxylating ICDHs and should be categorized as a new enzyme. Oxalosuccinate-reducing enzyme may be the ancestral form of ICDH, which evolved to the extant isocitrate oxidative decarboxylating enzyme by acquiring higher substrate affinities.

  19. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  20. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J

    2012-10-30

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.

  1. Molecular cloning, purification, and biochemical characterization of recombinant isocitrate dehydrogenase from Streptomyces coelicolor M-145.

    Science.gov (United States)

    Takahashi-Iñiguez, Tóshiko; Cruz-Rabadán, Saul; Burciaga-Cifuentes, Luis Miguel; Flores, María Elena

    2014-01-01

    Isocitrate dehydrogenase is a key enzyme in carbon metabolism. In this study we demonstrated that SCO7000 of Streptomyces coelicolor M-145 codes for the isocitrate dehydrogenase. Recombinant enzyme expressed in Escherichia coli had a specific activity of 25.3 μmoles/mg/min using NADP(+) and Mn(2+) as a cofactor, 40-times higher than that obtained in cell-free extract. Pure IDH showed a single band with an apparent Mr of 84 KDa in SDS-PAGE, which was also recognized as His-tag protein in the Western blot. Unexpectedly, in ND-PAGE conditions showed a predominant band of ~168 KDa that corresponded to the dimeric form of ScIDH. Also, zymogram assay and analytical gel filtration reveal that dimer was the active form. Kinetic parameters were 1.38, 0.11, and 0.109 mM for isocitrate, NADP, and Mn(2+), respectively. ATP, ADP, AMP, and their mixtures were the main ScIDH activity inhibitors. Zn(2+), Mg(2+), Ca(2+), and Cu(+) had inhibitory effect on enzyme activity.

  2. Characterization of the immunogenicity and pathogenicity of malate dehydrogenase in Brucella abortus.

    Science.gov (United States)

    Han, Xiangan; Tong, Yongliang; Tian, Mingxing; Sun, Xiaoqing; Wang, Shaohui; Ding, Chan; Yu, Shengqing

    2014-07-01

    Brucella abortus is a gram-negative, facultative intracellular pathogen that causes brucellosis, a chronic zoonotic disease resulting in abortion in pregnant cattle and undulant fever in humans. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, plays important metabolic roles in aerobic energy producing pathways and in malate shuttle. In this study, the MDH-encoding gene for malate dehydrogenase mdh of B. abortus S2308 was cloned, sequenced and expressed. Western blot analysis demonstrated that MDH is an immunogenic membrane-associated protein. In addition, recombinant MDH showed sero-reactivity with 30 individual bovine B. abortus-positive sera by enzyme-linked immunosorbent assay, indicates that MDH may be used as a candidate marker for sero-diagnosis of brucellosis. Furthermore, MDH exhibits fibronectin and plasminogen-binding ability in immunoblotting assay. Inhibition assays on HeLa cells demonstrated that rabbit anti-serum against MDH significantly reduced both bacterial adherence and invasion abilities (p < 0.05), suggesting that MDH play a role in B. abortus colonization. Our results indicated that MDH is not only an immunogenic protein, but is also related to bacterial pathogenesis and may act as a new virulent factor, which will benefit for further understanding the MDH's roles in B. abortus metabolism, pathogenesis and immunity.

  3. Analysis of lactate and malate dehydrogenase enzyme profiles of selected major carps of wetland of Calcutta.

    Science.gov (United States)

    Manna, Madhumita; Chakraborty, Priyanka

    2012-07-01

    The East Calcutta Wetland (ECW), a Ramsar site in India, acts as the only sink for both city sewages as well as effluents from the surrounding small-scale industries and is alarmingly polluted with heavy metals. The three best edible major carp species rohu (Labeo rohita,), catla (Catla catla,) and mrigala (Cirrhinus mrigala) were undertaken to monitor lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) by cellulose acetate electrophoresis (CAE) to assess the effects of pollutants, if any. Crude tissue extracts were prepared from brain, eye, heart, skeletal muscle and kidney tissue respectively from each type of fish. No differences were not found in MDH of catla from both sites for all tissues analyzed in this study. Rohu also showed similar mobility for all tissues except for heart tissue which was distinctly different in fishes from ECW site than that of its counterpart from non ECW site. On the other hand, MDH of two tissues of mrigala, eye and muscle respectively showed different migration patterns. LDH profiles for all tissues of three fish species from both the sites were consistently similar, only the expression levels of muscle LDH of mrigala and kidney LDH of rohu varied little.

  4. Refolding of a thermostable glyceraldehyde dehydrogenase for application in synthetic cascade biomanufacturing.

    Directory of Open Access Journals (Sweden)

    Fabian Steffler

    Full Text Available The production of chemicals from renewable resources is gaining importance in the light of limited fossil resources. One promising alternative to widespread fermentation based methods used here is Synthetic Cascade Biomanufacturing, the application of minimized biocatalytic reaction cascades in cell free processes. One recent example is the development of the phosphorylation independent conversion of glucose to ethanol and isobutanol using only 6 and 8 enzymes, respectively. A key enzyme for this pathway is aldehyde dehydrogenase from Thermoplasma acidophilum, which catalyzes the highly substrate specific oxidation of d-glyceraldehyde to d-glycerate. In this work the enzyme was recombinantly expressed in Escherichia coli. Using matrix-assisted refolding of inclusion bodies the yield of enzyme production was enhanced 43-fold and thus for the first time the enzyme was provided in substantial amounts. Characterization of structural stability verified correct refolding of the protein. The stability of the enzyme was determined by guanidinium chloride as well as isobutanol induced denaturation to be ca. -8 kJ/mol both at 25°C and 40°C. The aldehyde dehydrogenase is active at high temperatures and in the presence of small amounts of organic solvents. In contrast to previous publications, the enzyme was found to accept NAD(+ as cofactor making it suitable for application in the artificial glycolysis.

  5. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles.

    Science.gov (United States)

    DeLuna, A; Avendano, A; Riego, L; Gonzalez, A

    2001-11-23

    In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenases (NADP-GDHs) encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. The GDH2-encoded NAD(+)-dependent glutamate dehydrogenase degrades glutamate producing ammonium and alpha-ketoglutarate. Until very recently, it was considered that only one biosynthetic NADP-GDH was present in S. cerevisiae. This fact hindered understanding the physiological role of each isoenzyme and the mechanisms involved in alpha-ketoglutarate channeling for glutamate biosynthesis. In this study, we purified and characterized the GDH1- and GDH3-encoded NADP-GDHs; they showed different allosteric properties and rates of alpha-ketoglutarate utilization. Analysis of the relative levels of these proteins revealed that the expression of GDH1 and GDH3 is differentially regulated and depends on the nature of the carbon source. Moreover, the physiological study of mutants lacking or overexpressing GDH1 or GDH3 suggested that these genes play nonredundant physiological roles. Our results indicate that the coordinated regulation of GDH1-, GDH3-, and GDH2-encoded enzymes results in glutamate biosynthesis and balanced utilization of alpha-ketoglutarate under fermentative and respiratory conditions. The possible relevance of the duplicated NADP-GDH pathway in the adaptation to facultative metabolism is discussed.

  6. Identification of Small-Molecule Inhibitors against Meso-2, 6-Diaminopimelate Dehydrogenase from Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Victoria N Stone

    Full Text Available Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a "druggable" essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivalis was first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials.

  7. Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway.

    Directory of Open Access Journals (Sweden)

    Nicholas A Stover

    Full Text Available Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD and 6-phosphogluconolactonase (6PGL, have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms.

  8. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations.

    Science.gov (United States)

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W

    2017-03-01

    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH.The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers.To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.

  9. Hexose-6-phosphate dehydrogenase modulates 11beta-hydroxysteroid dehydrogenase type 1-dependent metabolism of 7-keto- and 7beta-hydroxy-neurosteroids.

    Directory of Open Access Journals (Sweden)

    Lyubomir G Nashev

    Full Text Available BACKGROUND: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH, which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY: We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS: We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS: Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly

  10. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates

    NARCIS (Netherlands)

    Rozeboom, Henriette J.; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J.; Dijkstra, Bauke W.

    2015-01-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The

  11. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.

    Science.gov (United States)

    Gai, Pan-Pan; Zhao, Cui-E; Wang, Ying; Abdel-Halim, E S; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-12-15

    A novel electrochemical biosensing platform for nicotinamide adenine dinucleotide (NAD(+))-dependent dehydrogenase catalysis was designed using the nitrogen-doped graphene (NG), which had properties similar to NADH dehydrogenase (CoI). NG mimicked flavin mononucleotide (FMN) in CoI and efficiently catalyzed NADH oxidation. NG also acted as an electron transport "bridge" from NADH to the electrode due to its excellent conductivity. In comparison with a bare gold electrode, an 800 mV decrease in the overpotential for NADH oxidation and CoI-like behavior were observed at NG-modified electrode, which is the largest decrease in overpotential for NADH oxidation reported to date. The catalytic rate constant (k) for the CoI-like behavior of NG was estimated to be 2.3×10(5) M(-1) s(-1), which is much higher than that of other previously reported FMN analogs. The Michaelis-Menten constant (Km) of NG was 26 μM, which is comparable to the Km of CoI (10 μM). Electrodes modified with NG and NG/gold nanoparticals/formate dehydrogenase (NG/AuNPs/FDH) showed excellent analytical performance for the detection of NADH and formate. This electrode fabrication strategy could be used to create a universal biosensing platform for developing NAD(+)-dependent dehydrogenase biosensors and biofuel cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.

    Science.gov (United States)

    Meyer, Maria; Schweiger, Paul; Deppenmeier, Uwe

    2013-04-01

    The acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources as a natural part of its metabolism, and this feature has been exploited for many biotechnological applications. The most important enzymes used to harness the biocatalytic oxidative capacity of G. oxydans are the pyrroloquinoline quinone (PQQ)-dependent dehydrogenases. The membrane-bound PQQ-dependent glucose dehydrogenase (mGDH), encoded by gox0265, was used as model protein for homologous membrane protein production using the previously described Gluconobacter expression vector pBBR1p452. The mgdh gene had ninefold higher expression in the overproduction strain compared to the parental strain. Furthermore, membranes from the overexpression strain had a five- and threefold increase of mGDH activity and oxygen consumption rates, respectively. Oxygen consumption rate of the membrane fraction could not be increased by the addition of a substrate combination of glucose and ethanol in the overproduction strain, indicating that the terminal quinol oxidases of the respiratory chain were rate limiting. In contrast, addition of glucose and ethanol to membranes of the control strain increased oxygen consumption rates approaching the observed rates with G. oxydans overproducing mGDH. The higher glucose oxidation rates of the mGDH overproduction strain corresponded to a 70 % increase of the gluconate production rate compared to the control strain. The high rate of glucose oxidation may be useful in the industrial production of gluconates and ketogluconates, or as whole-cell biosensors. Furthermore, mGDH was purified to homogeneity by one-step strep-tactin affinity chromatography and characterized. To our knowledge, this is the first report of a membrane integral quinoprotein being purified by affinity chromatography and serves as a proof-of-principle for using G. oxydans as a host for membrane protein expression and purification.

  13. 殊异韦荣菌苹果酸脱氢酶的基因克隆及其重组蛋白的表达和活性测定%Cloning, the Recombinant Protein Expressing and the Activity of Malate Dehydrogenase Gene of Veillonella Dispar

    Institute of Scientific and Technical Information of China (English)

    刘晓红; 何钟勤; 孙晓宇; 高心; 薛莹; 李倪娜

    2013-01-01

    目的:对殊异韦荣菌(V·dispar)苹果酸脱氢酶(malate dehydrogenase,MDH)基因进行克隆和重组表达,并对其重组蛋白进行纯化和活性测定.方法:提取殊异韦荣菌基因组DNA,PCR扩增MDH同源区序列片段,克隆入pET-28a载体并转化至大肠杆菌DH5α,酶切及PCR鉴定,测序.将重组质粒转入BL21 (DE3)中,选择最佳表达条件,提纯及测定活性.结果:PCR扩增产物特异,全长1139 bp.测序结果包含MDH基因,并与GenBank中所报道的大肠杆菌MDH基因序列进行对比分析,其同源性为99%.MDH纯化后的蛋白活性值为0.4403 U/mL.结论:成功克隆殊异韦荣菌MDH基因,并通过基因序列和氨基酸分析证明其具有完整的阅读框架.还获得了重组表达MDH蛋白的最适表达条件,并测出韦荣菌苹果酸脱氢酶的活性.

  14. 亚洲牛带绦虫36kDa胞浆型苹果酸脱氢酶基因的表达、纯化及免疫学分析%The expression and purification of the 36 kDa cytoplasmic malate dehydrogenase gene in Taenia saginata asiatica and the immunologic analysis of the recombinant proteins

    Institute of Scientific and Technical Information of China (English)

    黄江; 胡旭初; 徐劲; 余新炳; 包怀恩; 郎书源; 廖兴江

    2008-01-01

    目的 对亚洲牛带绦虫胞浆型苹果酸脱氢酶基因(malate dehydrogenase,MDH)进行克隆、表达和免疫学研究.方法 将亚洲牛带绦虫成虫MDH克隆到原核表达质粒pET-30a(+)中.在大肠埃希菌BL-21/DE3中用IPTG诱导表达,表达产物通过十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)进行鉴定.用镍离子金属螯合剂亲和层析柱进行纯化,纯化的重组蛋白用蛋白印迹(Western Blotting)进行免疫学分析.结果 PCR、双酶切及DNA测序结果均表明pET-30a(+)-TaMDH重组质粒构建成功.SDS-PAGE结果表明目的基因在大肠埃希菌BL-21/DE3中获得高效表达,经亲和层析获得了商纯度蛋白.重组蛋白可被其免疫的SD大鼠血清识别,表明其具有免疫原性;并且能识别感染了亚洲牛带绦虫的猪血清.表明其具有免疫反应性.结论 亚洲牛带绦虫苹果酸脱氢酶基因可在原核表达系统中获得具有免疫学活性的高效表达,为进一步研究该蛋白的功能奠定了基础.

  15. Effect of glucocorticoid on promoter of 11β-hydroxysteroid dehydrogenase I gene

    Institute of Scientific and Technical Information of China (English)

    何平; 孙刚

    2003-01-01

    Objective: To study the effect of glucocorticoid on the promoter of the pre-receptor glucocorticoid metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) gene. Methods: The 1.2 kb length sequence upstream to the transcription start site of the 11β-HSD1 gene was amplified with polymerase chain reaction (PCR) and then was cloned into pBLCAT6 plasmid carrying chloramphenicol acetyltransferase (CAT) reporter gene. The plasmid pBLCAT6 carrying the promoter and reporter gene was used to transfect HeLa cells to study the regulation of 11β-HSD1 gene expression by glucocorticoids in terms of reporter gene expression. Results: PCR showed that there was a complete alignment of the amplified sequence with the sequence 1.2 kb upstream to the transcription start site of 11β-HSD1 gene. When cloned into pBLCAT6 plasmid carrying the reporter gene, this part of the promoter is functional in terms of regulation of reporter gene expression upon transfection into HeLa cells. The synthetic glucocorticoid-dexamethasone induced the reporter gene expression in the system described above, which was blocked by glucocorticoid receptor antagonist RU486. Conclusion: Glucocorticoids can modulate the expression of 11β-HSD1 through a mechanism involving activation of GR and interaction of the promoter of 11β-HSD1 gene.

  16. Selective modification of the pyruvate dehydrogenase kinase isoform profile in skeletal muscle in hyperthyroidism: implications for the regulatory impact of glucose on fatty acid oxidation.

    Science.gov (United States)

    Sugden, M C; Lall, H S; Harris, R A; Holness, M J

    2000-11-01

    The pyruvate dehydrogenase kinases (PDK1-4) regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Immunoblot analysis with antibodies raised against recombinant PDK isoforms demonstrated changes in PDK isoform expression in response to experimental hyperthyroidism (100 microg/100 g body weight; 3 days) that was selective for fast-twitch vs slow-twitch skeletal muscle in that PDK2 expression was increased in the fast-twitch skeletal muscle (the anterior tibialis) (by 1. 6-fold; P lactate --> glucose (Cori) and glucose --> alanine --> glucose cycles. We also propose that enhanced relative expression of the pyruvate-insensitive PDK isoform (PDK4) in skeletal muscle in hyperthyroidism uncouples glycolytic flux from pyruvate oxidation, sparing pyruvate for non-oxidative entry into the tricarboxylic acid (TCA) cycle, and thereby supporting entry of acetyl-CoA (derived from fatty acid oxidation) into the TCA cycle.

  17. Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes.

    Science.gov (United States)

    Ciullini, Ilaria; Tilli, Silvia; Scozzafava, Andrea; Briganti, Fabrizio

    2008-10-01

    Dyes belonging to the mono-, di-, tri- and poly-azo as well as anthraquinonic and mono-azo Cr-complexed classes, chosen among the most utilized in textile applications, were employed for a comparative enzymatic decolorization study using the extracellular crude culture extracts from the white rot fungus Funalia (Trametes) trogii grown on different culture media and activators able to trigger different levels of expression of oxidizing enzymes: laccase and cellobiose dehydrogenase. Laccase containing extracts were capable to decolorize some dyes from all the different classes analyzed, whereas the recalcitrant dyes were subjected to the combined action of laccase and the chemical mediator HBT, or laccase plus cellobiose dehydrogenase. Correlations among the decolorization degree of the various dyes and their electronic and structural diversities were rationalized and discussed. The utilization of cellobiose dehydrogenase in support to the activity of laccase for the decolorization of azo textile dyes resulted in substantial increases in decolorization for all the refractory dyes proving to be a valid alternative to more expensive and less environmentally friendly chemical treatments of textile dyes wastes.

  18. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    Science.gov (United States)

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  19. Investigation of XoxF methanol dehydrogenases reveals new methylotrophic bacteria in pelagic marine and freshwater ecosystems.

    Science.gov (United States)

    Ramachandran, Arthi; Walsh, David A

    2015-10-01

    The diversity and distribution of methylotrophic bacteria have been investigated in the oceans and lakes using the methanol dehydrogenase mxaF gene as a functional marker. However, pelagic marine (OM43) and freshwater (LD28 and PRD01a001B) methylotrophs within the Betaproteobacteria lack mxaF, instead possessing a related xoxF4-encoded methanol dehydrogenase. Here, we developed and employed xoxF4 as a complementary functional gene marker to mxaF for studying methylotrophs in aquatic environment. Using xoxF4, we detected OM43-related and LD28-related methylotrophs in the ocean and freshwaters of North America, respectively, and showed the coexistence of these two lineages in a large estuarine system (St Lawrence Estuary). Gene expression patterns of xoxF4 supported a positive relationship between xoxF4-containing methylotroph activity and spring time productivity, suggesting phytoplankton blooms are a source of methylotrophic substrates. Further investigation of methanol dehydrogenase diversity in pelagic ecosystems using comparative metagenomics provided strong support for a widespread distribution of xoxF4 (as well as several distinct xoxF5) containing methylotrophs in marine and freshwater surface waters. In total, these results demonstrate a geographical distribution of OM43/LD28-related methylotrophs that includes marine and freshwaters and suggest that methylotrophy occurring in the water column is an important component of lake and estuary carbon cycling and biogeochemistry.

  20. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.

    Science.gov (United States)

    Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2016-12-01

    Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor.

  1. Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer.

    Science.gov (United States)

    Clark, Owen; Yen, Katharine; Mellinghoff, Ingo K

    2016-04-15

    IDH1 and IDH2 are homodimeric enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG) and concomitantly produce reduced NADPH from NADP(+) Mutations in the genes encoding IDH1 and IDH2 have recently been found in a variety of human cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. The mutant protein loses its normal enzymatic activity and gains a new ability to produce the "oncometabolite" R(-)-2-hydroxyglutarate (R-2-HG). R-2-HG competitively inhibits α-KG-dependent enzymes which play crucial roles in gene regulation and tissue homeostasis. Expression of mutant IDH impairs cellular differentiation in various cell lineages and promotes tumor development in cooperation with other cancer genes. First-generation inhibitors of mutant IDH have entered clinical trials, and have shown encouraging results in patients with IDH-mutant AML. This article summarizes recent progress in our understanding of the role of mutant IDH in tumorigenesis.Clin Cancer Res; 22(8); 1837-42. ©2016 AACR.

  2. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2008-11-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants.

  3. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    Science.gov (United States)

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  4. Characterization of Arabidopsis Lines Deficient in GAPC-1, a Cytosolic NAD-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase1[C

    Science.gov (United States)

    Rius, Sebastián P.; Casati, Paula; Iglesias, Alberto A.; Gomez-Casati, Diego F.

    2008-01-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants. PMID:18820081

  5. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi.

    Science.gov (United States)

    Leroux, Alejandro E; Maugeri, Dante A; Cazzulo, Juan J; Nowicki, Cristina

    2011-05-01

    Trypanosoma cruzi exhibits two putative isocitrate dehydrogenases (IDHs). Both idh genes were cloned and the recombinant enzymes expressed in Escherichia coli. Our results showed that T. cruzi IDHs are strictly dependent on NADP(+) and display apparent affinities towards isocitrate and the coenzyme in the low micromolar range. In T. cruzi, IDHs are cytosolic and mitochondrial enzymes, and there is no evidence for the typical Krebs cycle-related NAD-dependent IDH. Hence, like in Trypanosoma brucei, the Krebs cycle is not a canonical route in T. cruzi. However, the citrate produced in the mitochondrion could be isomerized into isocitrate in the cytosol and the mitochondrion by means of the putative aconitase, which would provide the substrate for both IDHs. The cytosolic IDH is significantly more abundant in amastigotes, cell-derived and metacyclic trypomastigotes than in epimastigotes. This observation fits in well with the expected oxidative burst this pathogen has to face when infecting the mammalian host.

  6. Phosphorylation controls the functioning of Staphylococcus aureus isocitrate dehydrogenase--favours biofilm formation.

    Science.gov (United States)

    Prasad, U Venkateswara; Vasu, D; Yeswanth, S; Swarupa, V; Sunitha, M M; Choudhary, A; Sarma, P V G K

    2015-01-01

    Isocitrate dehydrogenase (IDH) gene from Staphylococcus aureus ATCC12600 was cloned, sequenced and characterized (HM067707). PknB site was observed in the active site of IDH; thus, it was predicted as IDH may be regulated by phosphorylation. Therefore, in this study, PknB, alkaline phosphatase III (SAOV 2675) and IDH genes (JN695616, JN645811 and HM067707) of S. aureus ATCC12600 were over expressed from clones PV 1, UVPALP-3 and UVIDH 1. On passing the cytosloic fractions through nickel metal chelate column, pure enzymes were obtained. Phosphorylation of pure IDH by PknB resulted in the complete loss of activity and was restored upon dephosphorylation with SAOV 2675 which indicated that phosphorylation and dephosphorylation regulate IDH activity in S. aureus. Further, when S. aureus ATCC12600 was grown in BHI broth, decreased IDH activity and increased biofilm units were observed; therefore, this regulation of IDH alters redox status in this pathogen favouring biofilm formation.

  7. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H;

    2015-01-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  8. Effect of radiation in utero on mouse testes lactate dehydrogenase-X

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, N.; Prasad, R.; Bushong, S.C.

    1976-01-01

    Lactate dehydrogenase-X(LDH-X), a sperm specific isozyme of mammals, can be used as a marker for active spermatogenesis. LDH-X electrophoretic patterns may also be affected in radiation-induced sterility following in utero irradiation. To investigate this relationship pregnant female mice were given 100 rad x radiation on day 10, 13, and 17 following gestation. All male offspring were sacrificed 20 days after birth and testes tissues obtained. The testes were homogenized to obtain crude extracts for starch gel electrophoresis and zymogram staining for LDH-X. Results to date show that the LDH-X is not expressed in the testis when fetal irradiation occurred at 10 and 13 days following gestation. Faint bands of LDH-X were observed in testes homogenates of mice whose mothers were irradiated 17 days following gestation. Pronounced LDH-X bands were present in all control preparations.

  9. Novel inhibitors of 17beta-hydroxysteroid dehydrogenase type 1: templates for design.

    Science.gov (United States)

    Allan, Gillian M; Vicker, Nigel; Lawrence, Harshani R; Tutill, Helena J; Day, Joanna M; Huchet, Marion; Ferrandis, Eric; Reed, Michael J; Purohit, Atul; Potter, Barry V L

    2008-04-15

    The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the interconversion between the oxidized and reduced forms of androgens and estrogens at the 17 position. The 17beta-HSD type 1 enzyme (17beta-HSD1) catalyzes the reduction of estrone (E1) to estradiol and is expressed in malignant breast cells. Inhibitors of this enzyme thus have potential as treatments for hormone dependent breast cancer. Syntheses and biological evaluation of novel non-steroidal inhibitors designed to mimic the E1 template are reported using information from potent steroidal inhibitors. Of the templates investigated biphenyl ethanone was promising and led to inhibitors with IC(50) values in the low micromolar range.

  10. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    DEFF Research Database (Denmark)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we...... developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter...... TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions...

  11. Role of lactate dehydrogenase in metmyoglobin reduction and color stability of different bovine muscles.

    Science.gov (United States)

    Kim, Y H; Keeton, J T; Smith, S B; Berghman, L R; Savell, J W

    2009-11-01

    The role of lactate dehydrogenase (LDH) in metmyoglobin reducing activity (MRA) and color stability of different bovine muscles was studied in two consecutive experiments. In experiment 1, three different bovine muscles -M. longissimus lumborum (LL), M. semimembranosus (SM), and M. psoas major (PM) - were obtained (n=7, respectively), cut into steaks, PVC packaged, and then displayed for 7days at 1°C. The LL was the most red over display time and had more (PLDH-B activity (catalyzing toward NADH generation), LDH1 isoform expression, NADH, and higher (PLDH-B activity, NADH, and a* values after 10days display at 1°C. These results suggest that variation in color stability of physiologically different muscles is regulated by different replenishment rates of NADH via different LDH isozymes.

  12. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

    DEFF Research Database (Denmark)

    Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen

    2014-01-01

    prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered...... hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense...... oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production...

  13. Substrate specificity and stereospecificity of nicotinamide adenine dinucleotide-linked alcohol dehydrogenases from methanol-grown yeasts.

    OpenAIRE

    Hou, C T; Patel, R; Laskin, A I; Barnabe, N; Marczak, I

    1981-01-01

    Nicotine adenine dinucleotide-linked primary alcohol dehydrogenase and a newly discovered secondary alcohol dehydrogenase coexist in most strains of methanol-grown yeasts. Alcohol dehydrogenases from methanol-grown yeasts oxidize (--)-2-butanol preferentially over its (+) enantiomorph. This is substantially different from alcohol dehydrogenases from bakers' yeast and horse liver.

  14. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    OpenAIRE

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency...

  15. Recent advances in biotechnological applications of alcohol dehydrogenases.

    Science.gov (United States)

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  16. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  17. GLUTAMATE DEHYDROGENASE 1 AND SIRT4 REGULATE GLIAL DEVELOPMENT

    OpenAIRE

    Komlos, Daniel; Mann, Kara D.; Zhuo, Yue; Ricupero, Christopher L.; Hart, Ronald P.; Liu, Alice Y.-C.; Firestein, Bonnie L.

    2012-01-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and a frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological de...

  18. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    OpenAIRE

    Hirokazu Shiga; Hiromi Joreau; Tze Loon Neoh; Takeshi Furuta; Hidefumi Yoshii

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably...

  19. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.

  20. SERUM LACTATE DEHYDROGENASE AS A PROGNOSTIC MARKER IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Hardik

    2015-11-01

    Full Text Available : BACKGROUND: Breast cancer a multifactorial disease and one of the most dreaded of human diseases that claims the lives of thousands of women all over the globe every year. This may probably due to the fact that it remains undiagnosed at an early stage perhaps due to lack of awareness amongst the females and the fact that most cancers do not produce any symptoms until the tumour are too large to be removed surgically. Hence there is need to detect cancer at an early stage. AIM: Estimation of diagnostic importance and prognostication of serum Lactate dehydrogenase in cases on breast cancer. SETTINGS AND DESIGN: An observational study was conducted in Acharya Vinoba Bhave Rural Hospital, Sawangi (Meghe, Wardha which included 44 confirmed cases of carcinoma breast and 44 normal healthy females admitted in AVBRH in a span of 2 years. METHODS AND MATERIAL: Determination of serum LDH was done using TC matrix analyser. The values of LDH were obtained on presentation, 21 days after intervention, 2 months after intervention and 6 months after intervention. The values of LDH on presentation in both the groups were compared. The decline in the values of LDH were observed with the due course of treatment. Chisquare test and Student’s Unpaired and paired t test were used for statistical analysis. RESULT: The mean Lactate dehydrogenase on presentation was in study group and control group was 564.38±219.41 IU/L and 404.18±101.32 IU/L respectively (p<0.05. The levels of Lactate dehydrogenase decreased with due course of treatment. The levels of LDH were proportionate to the stage of disease. CONCLUSION: The results of the study concludes cost effective usefulness of serum Lactate dehydrogenase in early detection of breast cancer and to assess its prognostic importance which can be done in smaller laboratories. The traditional model of DS-

  1. The 6-phosphogluconate Dehydrogenase Genes Are Responsive to Abiotic Stresses in Rice

    Institute of Scientific and Technical Information of China (English)

    Fu-Yun Hou; Ji Huang; Shan-Lin Yu; Hong-Sheng Zhang

    2007-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) are both key enzymes of the pentose phosphate pathway (PPP). The OsG6PDH1 and Os6PGDH1 genes encoding cytosolic G6PDH and cytosolic 6PGDH were isoiated from rice (Oryza satlva L.). We have shown that Os6PGDH1 gene was up-regulated by salt stress. Here we reported the isolation and characterization of Os6PGDH2 from rice, which encode the plastidic counterpart of 6PGDH. Genomic organization analysis indicated that OsG6PDH1 and OsG6PDH2 genes contain multiple introns, whereas two Os6PGDH1 and Os6PGDH2 genes have no introns in their translated regions. In a step towards understanding the functions of the pentose phosphate pathway in plants in response to various abiotic stresses, the expressions of four genes in the rice seedlings treated by drought, cold, high salinity and abscisic acid (ABA) were investigated. The results show that OsG6PDH1 and OsG6PDH2 are not markedly regulated by the abiotic stresses detected. However, the transcript levels of both Os6PGDH1 and Os6PGDH2 are up-regulated in rice seedlings under drought, cold, high salinity and ABA treatments. Meanwhile,the enzyme activities of G6PDH and 6PGDH in the rice seedlings treated by various ablotlc stresses were investigated.Like the mRNA expression patterns, G6PDH activity remains constant but the 6PGDH increases steadily during the treatments. Taken together, we suggest that the pentose phosphate pathway may play an important role in rice responses to abiotlc stresses and the second key enzyme of PPP, 6PGDH, may function as a regulator controlling the efficiency of the pathway under abiotic stresses.

  2. Sperm-Specific Glyceraldehyde-3-Phosphate Dehydrogenase - An Evolutionary Acquisition of Mammals.

    Science.gov (United States)

    Muronetz, V I; Kuravsky, M L; Barinova, K V; Schmalhausen, E V

    2015-12-01

    This review is focused on the mammalian sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). GAPDS plays the major role in the production of energy required for sperm cell movement and does not perform non-glycolytic functions that are characteristic of the somatic isoenzyme of glyceraldehyde-3-phosphate dehydrogenase. The GAPDS sequence is composed of 408 amino acid residues and includes an additional N-terminal region of 72 a.a. that binds the protein to the sperm tail cytoskeleton. GAPDS is present only in the sperm cells of mammals and lizards, possibly providing them with certain evolutionary advantages in reproduction. In this review, studies concerning the problems of GAPDS isolation, its catalytic properties, and its structural features are described in detail. GAPDS is much more stable compared to the somatic isoenzyme, perhaps due to the necessity of maintaining the enzyme function in the absence of protein expression. The site-directed mutagenesis approach revealed the two GAPDS-specific proline residues, as well as three salt bridges, which seem to be the basis of the increased stability of this protein. As distinct from the somatic isoenzyme, GAPDS exhibits positive cooperativity in binding of the coenzyme NAD+. The key role in transduction of structural changes induced by NAD+ is played by the salt bridge D311-H124. Disruption of this salt bridge cancels GAPDS cooperativity and twofold increases its enzymatic activity instead. The expression of GAPDS was detected in some melanoma cells as well. Its role in the development of certain pathologies, such as cancer and neurodegenerative diseases, is discussed.

  3. Xanthine dehydrogenase-1 silencing in Aedes aegypti mosquitoes promotes a blood feeding-induced adulticidal activity.

    Science.gov (United States)

    Isoe, Jun; Petchampai, Natthida; Isoe, Yurika E; Co, Katrina; Mazzalupo, Stacy; Scaraffia, Patricia Y

    2017-02-08

    Aedesaegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real-time quantitative PCR in tissues from sugar- and blood-fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We next exposed females to blood meals supplemented with allopurinol, a well-characterized XDH inhibitor. We also tested the effects of injecting double-stranded RNA (dsRNA) against XDH1, XDH2, or both. Disruption of XDH by allopurinol or XDH1 by RNA interference significantly affected mosquito survival, causing a disruption in blood digestion, excretion, oviposition, and reproduction. XDH1-deficient mosquitoes showed a persistence of serine proteases in the midgut at 48 h after blood feeding and a reduction in the uptake of vitellogenin by the ovaries. Surprisingly, analysis of the fat body from dsRNA-XDH1-injected mosquitoes fell into 2 groups: one group was characterized by a reduction of the XDH1 transcript, whereas the other group was characterized by an up-regulation of several transcripts including XDH1, glutamine synthetase, alanine aminotransferase, catalase, superoxide dismutase, ornithine decarboxylase, glutamate receptor, and ammonia transporter. Our data demonstrate that XDH1 plays an essential role and that XDH1 has the potential to be used as a metabolic target for Ae.aegypti vector control.-Isoe, J., Petchampai, N., Isoe, Y. E., Co, K., Mazzalupo, S., Scaraffia, P. Y. Xanthine dehydrogenase-1 silencing in Aedes aegypti mosquitoes promotes a blood feeding-induced adulticidal activity.

  4. Telomerase prevents accelerated senescence in glucose-6-phosphate dehydrogenase (G6PD-deficient human fibroblasts

    Directory of Open Access Journals (Sweden)

    Wu Yi-Hsuan

    2009-02-01

    Full Text Available Abstract Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction.

  5. Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity.

    Science.gov (United States)

    Huang, R; Li, M; Gregory, R L

    2015-08-01

    Several epidemiology studies have reported a positive relationship between smoking and dental caries. Nicotine, an alkaloid component of tobacco, has been demonstrated to stimulate biofilm formation and metabolic activity of Streptococcus mutans, one of the most important pathogens of dental caries. The first aim of the present study was to explore the possible mechanisms leading to increased biofilm by nicotine treatment from three aspects, extracellular polysaccharides (EPS) synthesis, glucosyltransferase (Gtf) synthesis and glucan-binding protein (Gbp) synthesis at the mRNA and protein levels. The second aim was to investigate how nicotine affects S. mutans virulence, particular in lactate dehydrogenase (LDH) activity. Confocal laser scanning microscopy results demonstrated that both biofilm bacterial cell numbers and EPS were increased by nicotine. Gtf and GbpA protein expression of S. mutans planktonic cells were upregulated while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression trends of those genes were mostly consistent with results on protein level but not statistically significant, and gtfD and gbpD of biofilm cells were inhibited. Nicotine was not directly involved in S. mutans LDH activity. However, since it increases the total number of bacterial cells in biofilm, the overall LDH activity of S. mutans biofilm is increased. In conclusion, nicotine stimulates S. mutans planktonic cell Gtf and Gbp expression. This leads to more planktonic cells attaching to the dental biofilm. Increased cell numbers within biofilm results in higher overall LDH activity. This contributes to caries development in smokers.

  6. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity.

    Science.gov (United States)

    Park, Jiyoung; Rho, Ho Kyung; Kim, Kang Ho; Choe, Sung Sik; Lee, Yun Sok; Kim, Jae Bum

    2005-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) produces cellular NADPH, which is required for the biosynthesis of fatty acids and cholesterol. Although G6PD is required for lipogenesis, it is poorly understood whether G6PD in adipocytes is involved in energy homeostasis, such as lipid and glucose metabolism. We report here that G6PD plays a role in adipogenesis and that its increase is tightly associated with the dysregulation of lipid metabolism and insulin resistance in obesity. We observed that the enzymatic activity and expression levels of G6PD were significantly elevated in white adipose tissues of obese models, including db/db, ob/ob, and diet-induced obesity mice. In 3T3-L1 cells, G6PD overexpression stimulated the expression of most adipocyte marker genes and elevated the levels of cellular free fatty acids, triglyceride, and FFA release. Consistently, G6PD knockdown via small interfering RNA attenuated adipocyte differentiation with less lipid droplet accumulation. Surprisingly, the expression of certain adipocytokines such as tumor necrosis factor alpha and resistin was increased, whereas that of adiponectin was decreased in G6PD overexpressed adipocytes. In accordance with these results, overexpression of G6PD impaired insulin signaling and suppressed insulin-dependent glucose uptake in adipocytes. Taken together, these data strongly suggest that aberrant increase of G6PD in obese and/or diabetic subjects would alter lipid metabolism and adipocytokine expression, thereby resulting in failure of lipid homeostasis and insulin resistance in adipocytes.

  7. Glyceraldehyde-3-phosphate dehydrogenase: a universal internal control for Western blots in prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Wu, Yonghong; Wu, Min; He, Guowei; Zhang, Xiao; Li, Weiguang; Gao, Yan; Li, Zhihui; Wang, Zhaoyan; Zhang, Chenggang

    2012-04-01

    In the current study, we examined the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in a number of organisms and the stability of GAPDH under various conditions. Our results revealed that GAPDH is present in multiple Escherichia coli strains, the yeast strain GS115, Caenorhabditis elegans, rat PC12 cells, and both mouse and rat brain. Furthermore, GAPDH was stably expressed under different concentrations of inducer and at different times of induction in E. coli (BL21) cells and yeast GS115 cells. Stable expression of GAPDH protein was also observed in C.elegans and PC12 cells that were treated with different concentrations of paraquat or sodium sulfite, respectively. In addition, we were able to detect and identify the endogenous gapA protein in E.coli via immunoprecipitation and MALDI-TOF-MS analysis. Endogenous gapA protein and exogenously expressed (subcloned) GAPDH proteins were detected in E. coli BL21 but not for gapC. With the exception of gapC in E. coli, the various isoforms of GAPDH possessed enzymatic activity. Finally, sequence analysis revealed that the GAPDH proteins were 76% identical, with the exception of E. coli gapC. Taken together, our results indicate that GAPDH could be universally used as an internal control for the Western blot analysis of prokaryotic and eukaryotic samples.

  8. Identification of Tumor Endothelial Cells with High Aldehyde Dehydrogenase Activity and a Highly Angiogenic Phenotype

    Science.gov (United States)

    Maishi, Nako; Ohga, Noritaka; Hida, Yasuhiro; Kawamoto, Taisuke; Iida, Junichiro; Shindoh, Masanobu; Tsuchiya, Kunihiko; Shinohara, Nobuo; Hida, Kyoko

    2014-01-01

    Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs) exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs). TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH) in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis. PMID:25437864

  9. Identification of tumor endothelial cells with high aldehyde dehydrogenase activity and a highly angiogenic phenotype.

    Directory of Open Access Journals (Sweden)

    Hitomi Ohmura-Kakutani

    Full Text Available Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs. TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2. Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis.

  10. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  11. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    Science.gov (United States)

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  12. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli

    OpenAIRE

    2009-01-01

    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  13. A quantitative histochemical study of lactate dehydrogenase and succinate dehydrogenase activities in the membrana granulosa of the ovulatory follicle of the rat.

    Science.gov (United States)

    Zoller, L C; Enelow, R

    1983-11-01

    Using a microdensitometer, lactate dehydrogenase and succinate dehydrogenase activities were measured in the membrana granulosa of the rat ovulatory follicle. Ovaries were removed on each day of the oestrous cycle; oestrus, dioestrus-1, dioestrus-2, and proestrus; and enzyme activities measured in the membrana granulosa as a whole and in four regions within it: peripheral (PR), antral (AR), cumulus oophorus (CO) and corona radiata (CR). Throughout the cycle, lactate dehydrogenase activity was greatest in PR. On oestrus, lactate dehydrogenase activity was progressively less in AR, CO and CR. On dioestrus-1, activity was identical in AR and CO and less in CR. On dioestrus-2, activity was greater in AR than in CO or CR. By proestrus, activity was equal in AR, CO and CR. In the membrana granulosa as a whole, and in each region, lactate dehydrogenase activity declined as ovulation approached. In contrast, succinate dehydrogenase activity in the membrana granulosa as a whole and in PR was constant throughout the cycle. Activity fluctuated in the other regions. Succinate dehydrogenase activity on oestrus was greatest in PR, less in AR and CO and least in CR. On the remaining days, succinate dehydrogenase activity was greatest in PR and less but equal in the remainder of the membrana granulosa.

  14. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    NARCIS (Netherlands)

    Ferrari, P.; McKay, J.D.; Jenab, M.; Brennan, P.; Canzian, F.; Vogel, U.; Tjonneland, A.; Overvad, K.; Tolstrup, J.S.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Morois, S.; Kaaks, R.; Boeing, H.; Bergmann, M.; Trichopoulou, A.; Katsoulis, M.; Trichopoulos, D.; Krogh, V.; Panico, S.; Sacerdote, C.; Palli, D.; Tumino, R.; Peeters, P.H.M.; Gils, C.H. van; Bueno-de-Mesquita, B.; Vrieling, A.; Lund, E.; Hjartaker, A.; Agudo, A.; Suarez, L.R.; Arriola, L.; Chirlaque, M.D.; Ardanaz, E.; Sanchez, M.J.; Manjer, J.; Lindkvist, B.; Hallmans, G.; Palmqvist, R.; Allen, N.; Key, T.; Khaw, K.T.; Slimani, N.; Rinaldi, S.; Romieu, I.; Boffetta, P.; Romaguera, D.; Norat, T.; Riboli, E.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian

  15. Use of a modified alcohol dehydrogenase, ADH1, promoter in construction of diacetyl non-producing brewer's yeast.

    Science.gov (United States)

    Onnela, M L; Suihko, M L; Penttilä, M; Keränen, S

    1996-08-20

    The bacterial gene, encoding alpha-acetolactate decarboxylase (alpha-ALDC), was expressed in a bottom-fermenting brewer's yeast under the control of a modified Saccharomyces cerevisiae alcohol dehydrogenase (ADH1) promoter which lacks the upstream regions from -800 bp to -1500 bp. In pilot scale brewing conditions, the level of alpha-ALDC produced was high enough to reduce the concentration of diacetyl so that lagering was not required. alpha-ALDC active brewer's yeast strains were also shown to be suitable for high gravity brewing.

  16. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Li

    Full Text Available Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017 and TP53 mutation (p < 0.001, but not 1p/19q loss (p = 0.834, occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041 and frontal lobe location (p = 0.010 were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an inde