WorldWideScience

Sample records for 140-ghz long-pulsed gyrotron

  1. Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X

    Science.gov (United States)

    Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.

    2003-02-01

    Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to

  2. 140 GHz gyrotron development program. Quarterly report No. 4, January-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Felch, K.L.; Bier, R.E.; Craig, L.J.; Fox, L.J.; Hu, G.; Huey, H.E.; Ives, R.L.; Jory, H.R.; Lopez, N.C.; Reysner, P.I.

    1986-01-01

    The objective of this program is to develop a gyrotron oscillator capable of producing 100 kW CW at 140 GHz. Further analysis of the electron guns, interaction cavity, and beam tunnel designs for the first two experimental tubes, Experimental Tube 1 and preprototype Tube 1, is presented. A window deflection tester has been built and initial deflection test results are given. The first 140 GHz gyrotron magnet has successfully passed the major points in the acceptance test. The detailed results of the magnet acceptance test are discussed. Progress concerning the fabrication of 149 GHz gyrotron components, diagnostics, and protective devices, as well as the status of Experimental Tube 1, are summarized.

  3. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  4. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    Science.gov (United States)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  5. Innovation on high-power long-pulse gyrotrons

    Science.gov (United States)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  6. Millimeter-wave, megawatt gyrotron development for ECR (electron cyclotron resonance) heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. (Varian Associates, Inc., Palo Alto, CA (USA))

    1990-09-17

    To address the electron cyclotron heating requirements of planned fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) and the Compact Ignition Tokamak (CIT), Varian is developing gyrotrons at frequencies ranging from 100--300 GHz with output power capabilities up to 1 MW CW. Experimental gyrotrons have been built at frequencies between 100--140 GHz, and a study program has addressed the critical elements of designing 280--300 GHz gyrotrons capable of generating CW power levels up to 1 MW. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 1040 kW at 38% efficiency have been obtained and average powers of 200 kW have been achieved. Long-pulse operation has been extended to pulse durations of 0.5 seconds at power levels of 400 kW. Gyrotron oscillators capable of generating output powers of 500 kW CW at a frequency of 110 GHz have recently been designed and a prototype is currently being tested. Design work for a 1 MW CW gyrotron at 110 GHz, is in progress. The 1 MW CW tube will employ an output coupling approach where the microwave output is separated from the microwave output. 15 refs., 10 figs., 3 tabs.

  7. Progress of high power and long pulse ECRH system in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojie, E-mail: xjiew@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Liu, Fukun; Shan, Jiafang; Xu, Handong; DajunWu; Li, Bo [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Wei, Wei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); HeFei University of Technology, Hefei, Anhui (China); Zhang, Jian; Huang, Yiyun; Tang, Yunying; Xu, Weiye; Hu, Huaichuan; Wang, Jian; Xu, Li; Zhang, Liyuan; Feng, Jianqiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2015-10-15

    Highlights: • The design and the status of the 140 GHz/4 MW/1000 s ECRH system on EAST tokamak is described in detail. • Two of the four gyrotrons are tested in factory. • The transmission line and the equatorial launcher for the first 2 MW system are ready for installation. • Series tests have been carried out for the most critical elements for the real-time launcher. • The auxiliary system includes the water cooling system, the HVPS system, the vacuum system have been installed and tested. - Abstract: In accordance with the long pulse objectives of the Experimental Advanced Superconducting Tokamak (EAST), an electron cyclotron resonance heating (ECRH) system with the feature of 4 MW power for a pulse length up to 1000 s at 140 GHz, using second harmonic of the extraordinary mode (X2) is presently under construction at the institute of plasma physics, Chinese academy of sciences (ASIPP). The missions of the system are to provide central heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. The continuous wave (CW) power is transmitted from the gyrotrons to EAST via low-loss evacuated waveguide transmission lines. Considering the diverse applications of the EC system, the front steering launcher is designed to inject four individually steered beams across nearly the entire plasma cross section. The beam's launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization will be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2 MW system will be commenced in the end of 2014.

  8. Research on long pulse ECRH system of EAST in support of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojie, E-mail: xjiew@ipp.ac.cn; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang [Institute of Plasma Physics Chinese Academy of Sciences, Shushan lake road 350, 230031, Hefei (China); Wei, Wei [Institute of Plasma Physics Chinese Academy of Sciences, Shushan lake road 350, 230031, Hefei (China); Hefei University of Technology, 230009, Hefei (China)

    2015-12-10

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam’s launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER

  9. Components for transmission of very high power mm waves (200 kW at 28, 70 and 140 GHz) in overmoded circular waveguides

    Science.gov (United States)

    Thumm, M.; Erckmann, V.; Kasparek, W.; Kumric, H.; Mueller, G. A.; Schueller, P. G.; Wilhelm, R.

    1986-03-01

    Optimized overmoded circular waveguide components of transmission lines developed for high-power (200 kW) millimeter wave applications at 28, 70, and 140 GHz, as e.g., electron cyclotron resonance heating of plasmas for thermonuclear fusion research with gyrotrons, are described. Axisymmetric, narrow, pencil-like beams with well-defined polarization (HE11 hybrid mode) are used at open-ended corrugated waveguide antennas. The HE11 mode is generated from TE0n gyrotron modes by multistep mode conversion: TE0n yields T001 yields TE11 yields HE11 or TE0n yields TE01 yields TM11 yields HE11. Analyses and measurements on mode transducer systems of the first type at 28 and 70 GHz and of the second type at 140 GHz are reported. In all cases the overall efficiency of the complete mode conversion sequence in the desired mode is 92% to 95%. Mode purity in the transmission lines is conserved by using corrugated gradual waveguide bends with optimized curvature distribution and diameter tapers with nonlinear contours. Highly efficient corrugated-wall mode selective filters decouple the different waveguide sections. Mode content and reflected powere are determined by a k-spectrometer. Absolute power calibration is done with calorimetric loads using an organic absorbing fluid.

  10. On the origin of 140 GHz emission from the 4 July 2012 solar flare

    CERN Document Server

    Tsap, Yuriy T; Morgachev, Alexander S; Motorina, Galina G; Kontar, Eduard P; Nagnibeda, Valery G; Strekalova, Polina V

    2016-01-01

    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140~GHz as well as Kislovodsk and Mets\\"ahovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5~MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near $10$~GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1~MK.

  11. On the origin of 140 GHz emission from the 4 July 2012 solar flare

    Science.gov (United States)

    Tsap, Yuriy T.; Smirnova, Victoria V.; Morgachev, Alexander S.; Motorina, Galina G.; Kontar, Eduard P.; Nagnibeda, Valery G.; Strekalova, Polina V.

    2016-04-01

    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140 GHz as well as Kislovodsk and Metsähovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5 MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near 10 GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1 MK.

  12. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    Science.gov (United States)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  13. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.

    Science.gov (United States)

    Smith, Albert A; Corzilius, Björn; Bryant, Jeffrey A; DeRocher, Ronald; Woskov, Paul P; Temkin, Richard J; Griffin, Robert G

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H, (13)C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S=1/2 electron spins, 100 kHz on (1)H, and 50 kHz on (13)C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (≥3 T).

  14. Molecular attenuation and phase dispersion between 40 and 140-GHz for path models from different altitudes

    Science.gov (United States)

    Liebe, H. J.; Welch, W. M.

    1973-01-01

    Radio wave propagation in the 40 to 140 GHz band through the first hundred kilometers of the atmosphere is strongly influenced by the microwave spectrum of oxygen (O2-MS). A unified treatment of molecular attenuation and phase dispersion is formulated. Results of molecular physics are translated into frequency, temperature, pressure, and magnetic field dependencies of a complex refractive index. The intensity distribution of the O2-MS undergoes several changes with increasing altitude. The influence of water vapor is discussed. Examples of computer plots are given as a function of altitude for homogeneous, zenith, and tangential path geometries. Molecular resonances of minor atmospheric gases are discussed briefly.

  15. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    Directory of Open Access Journals (Sweden)

    Lechte C.

    2017-01-01

    Full Text Available For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  16. Gyrotron development at KIT: FULGOR test facility and gyrotron concepts for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M., E-mail: martin.schmid@kit.edu [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Franck, J.; Kalaria, P.; Avramidis, K.A.; Gantenbein, G.; Illy, S. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Jelonnek, J. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute of High Frequency Techniques and Electronics (IHE), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Pagonakis, I. Gr.; Rzesnicki, T. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Thumm, M. [Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute of High Frequency Techniques and Electronics (IHE), Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2015-10-15

    Highlights: • Substantial extension of the KIT gyrotron test facility FULGOR has started. • FULGOR will be able to test gyrotrons with continuous RF output power up to 4 MW. • Design of 240 GHz gyrotrons for efficient electron cyclotron current drive is progressing. • Output power of 240 GHz gyrotrons with conventional cavity up to 830 kW, with coaxial cavity up to 2 MW is feasible. • Multi-frequency operation with gyrotrons is also possible (170–267 GHz). - Abstract: At the Karlsruhe Institute of Technology (KIT), theoretical and experimental foundations for the development of future gyrotrons for fusion applications are being laid down. This includes the construction of the new Fusion Long Pulse Gyrotron Laboratory (FULGOR) test facility as well as physical design studies towards DEMO-compatible gyrotrons. Initially FULGOR will comprise of a 10 MW CW power supply, a 5 MW water cooling system (upgradeable to 10 MW), a superconducting 10 T magnet, one or two 2 MW ECRH test loads and a new control and data acquisition system for all these elements. The test facility will then be equipped to test the conventional 1 MW or coaxial 2 MW gyrotrons for DEMO, currently under design, as well as possible upgraded gyrotrons for W7-X and ITER. The design of the new high voltage DC power supply (HVDCPS) is flexible enough to handle gyrotrons with 4 MW CW output power (conceivably up to 170 GHz), but also test gyrotrons with higher frequencies (>250 GHz) which, due to physical limitations in the gyrotron design, will require less power but have more stringent demands on voltage stability.

  17. Theory and Modeling of High-Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory Semeon [Univ. of Maryland, College Park, MD (United States)

    2016-04-29

    This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interaction in gyrotrons.

  18. Long Pulse ECH Plasma in LHD

    Science.gov (United States)

    Kubo, S.; Yoshimura, Y.; Shimozuma, T.; Igami, H.; Notake, T.; Kumazawa, R.; Seki, T.; Saito, K.; Nakamura, Y.; Mutoh, T.; LHD Experimental Group

    2005-09-01

    Demonstration of a long pulse or a steady state operation of ECH and sustainment of non-collapsed plasma only by ECH is important in LHD from both the confinement device and the heating system engineering points of view. A gyrotron with a diamond output window is introduced and operated at the power level of 150 kW for more than 1 hour after modification of the cooling and evacuation system of the ECH transmission line. The power of about 110 kW injected into LHD is used to sustain the plasma with the electron density of 1.5 × 1018 m-3 and central temperature of more than 1.0 keV for 3900 sec. The gas puffing rate is carefully controlled so that the plasma density does not exceed the critical value above which the plasma collapsed for given injection power, magnetic configuration and wall condition of LHD. The results of gyrotron operation, transmission system modification for long pulse and optimizations of the magnetic field configuration of LHD and gas puffing for a given injection condition are discussed.

  19. Recent result of gyrotron operation in NIFS

    Directory of Open Access Journals (Sweden)

    Ito Satoshi

    2015-01-01

    Full Text Available In the last Large Helical Device (LHD experimental campaign, a 154GHz gyrotron which had been conditioned to generate 1 MW/2 s, 0.5 MW/CW was installed for LHD experiments. Four high power gyrotrons (three-77 GHz/1~1.5 MW and one-154 GHz/1 MW and a CW gyrotron (84 GHz/0.2 MW are ready. Our experiment requires high energy and various injection patterns for Electron Cyclotron Resonance Heating (ECRH. Higher individual injection power and various injection patterns, we developed a power enhancement method by stepped anode acceleration voltage control and operated the gyrotron in the hard excitation region. These operations were realized by a remote controlled waveform generator. However the oscillation map of high power or long pulse operation in the hard excitation region were limited because in order to achieve the hard excitation region by the anode voltage control one must pass through the high anode current phase within a time short enough that the anode or the anode power supply is not overloaded. This limitation becomes more critical when the gyrotron beam current is increased in order to increase the output power. In the long pulse operation it was impossible to reach the hard excitation region in a low beam current (<10A.

  20. Recent result of gyrotron operation in NIFS

    Science.gov (United States)

    Ito, Satoshi; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Nishiura, Masaki; Kobayashi, Sakuji; Mizuno, Yoshinori; Okada, Kota; Kubo, Shin

    2015-03-01

    In the last Large Helical Device (LHD) experimental campaign, a 154GHz gyrotron which had been conditioned to generate 1 MW/2 s, 0.5 MW/CW was installed for LHD experiments. Four high power gyrotrons (three-77 GHz/1~1.5 MW and one-154 GHz/1 MW) and a CW gyrotron (84 GHz/0.2 MW) are ready. Our experiment requires high energy and various injection patterns for Electron Cyclotron Resonance Heating (ECRH). Higher individual injection power and various injection patterns, we developed a power enhancement method by stepped anode acceleration voltage control and operated the gyrotron in the hard excitation region. These operations were realized by a remote controlled waveform generator. However the oscillation map of high power or long pulse operation in the hard excitation region were limited because in order to achieve the hard excitation region by the anode voltage control one must pass through the high anode current phase within a time short enough that the anode or the anode power supply is not overloaded. This limitation becomes more critical when the gyrotron beam current is increased in order to increase the output power. In the long pulse operation it was impossible to reach the hard excitation region in a low beam current (<10A).

  1. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    Science.gov (United States)

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  2. THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV-ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, J.; Mroczkowski, T.; Czakon, N. G.; Golwala, S. R.; Downes, T. P.; Muchovej, S. J. C.; Siegel, S. [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Mantz, A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ameglio, S.; Pierpaoli, E.; Shitanishi, J. A. [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 (United States); Koch, P. M.; Lin, K.-Y.; Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Molnar, S. M. [LeCosPA Center, National Taiwan University, Taipei 10617, Taiwan (China); Moustakas, L., E-mail: jack@caltech.edu [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States)

    2013-02-20

    We describe in detail our characterization of the compact radio source population in 140 GHz Bolocam observations of a set of 45 massive galaxy clusters. We use a combination of 1.4 and 30 GHz data to select a total of 28 probable cluster-member radio galaxies and also to predict their 140 GHz flux densities. All of these galaxies are steep-spectrum radio sources and they are found preferentially in the cool-core clusters within our sample. In particular, 11 of the 12 brightest cluster-member radio sources are associated with cool-core systems. Although none of the individual galaxies are robustly detected in the Bolocam data, the ensemble-average flux density at 140 GHz is consistent with, but slightly lower than, the extrapolation from lower frequencies assuming a constant spectral index. In addition, our data indicate an intrinsic scatter of {approx_equal} 30% around the power-law extrapolated flux densities at 140 GHz, although our data do not tightly constrain this scatter. For our cluster sample, which is composed of high-mass and moderate-redshift systems, we find that the maximum fractional change in the Sunyaev-Zel'dovich signal integrated over any single cluster due to the presence of these radio sources is {approx_equal} 20%, and only {approx_equal} 1/4 of the clusters show a fractional change of more than 1%. The amount of contamination is strongly dependent on cluster morphology, and nearly all of the clusters with {>=}1% contamination are cool-core systems. This result indicates that radio contamination is not significant compared with current noise levels in 140 GHz images of massive clusters and is in good agreement with the level of radio contamination found in previous results based on lower frequency data or simulations.

  3. Low-voltage gyrotrons

    Science.gov (United States)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  4. Development of dual frequency gyrotron and high power test of EC components

    Directory of Open Access Journals (Sweden)

    Sakamoto K.

    2012-09-01

    Full Text Available In JAEA, development of high-power long-pulse gyrotrons is underway. The output power of the gyrotron was applied for high-power long-pulse tests of the transmission line (TL and the equatorial launcher (EL mock up for ITER. The feature of design in the dual frequency gyrotron is the simultaneously satisfying the matching of both frequencies at a window and the same radiation angle at an internal mode convertor for both frequencies. The dual frequency gyrotron was developed and high power operations at 170 GHz and 137 GHz were carried out. The 170 GHz high power experiment of 40 m length ITER relevant TL was carried out and transmission efficiency and mode purity change caused by long pulse operation were measured. The mock-up model of EL was also tested using 170 GHz gyrotron. The power transmission through the quasi-optical beam line in EL was demonstrated using the full scale mock up model. Furthermore, the high power test results of the transmission components will be summarized.

  5. Development program for a 200 kW, cw gyrotron. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeHope, W.J.; Ferguson, P.E.; Hart, S.L.; Matranga, V.A.; Sandoval, J.J.; Schmitt, M.J.; Tancredi, J.J.; Wozniak, M.A.

    1984-02-01

    Development of a millimeter-wave device to produce 200 kW of continuous wave power at 60 GHz is described. The device, a gyrotron oscillator, is intended for electron-cyclotron heating of fusion plasmas. The design philosophy is herein discussed and experimental results, both diagnostic and long pulse, are given.

  6. Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons

    Science.gov (United States)

    Manuilov, V. N.; Semenov, V. E.

    2016-06-01

    We solve analytically the problem about ion compensation for the space charge of a helical electron beam in a gyrotron operated in the long-pulse regime. Elementary processes, which take place during ionization of residual gas in the tube under typical pressures of 10-6-10-7 mm Hg, are considered. It is shown that distribution of the space charge is affected mainly by the electrons of the initial beam and slow-moving ions produced by ionization of the residual gas. Steady-state density of ions in the operating space of the gyrotron after the end of the transitional processes is found, as well as the electron density profile in the channel of electron beam transportation. The results obtained allow us to evaluate the pitch-factor variations caused by partial compensations for the potential "sagging" in the gyrotron cavity, thus being useful for analysis of starting currents, efficiency, and mode competition in high-power gyrotrons.

  7. Progress of long pulse discharges by ECH in LHD

    Science.gov (United States)

    Yoshimura, Y.; Kasahara, H.; Tokitani, M.; Sakamoto, R.; Ueda, Y.; Ito, S.; Okada, K.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.; Kobayashi, S.; Mizuno, Y.; Akiyama, T.; Ashikawa, N.; Masuzaki, S.; Motojima, G.; Shoji, M.; Suzuki, C.; Tanaka, H.; Tanaka, K.; Tokuzawa, T.; Tsuchiya, H.; Yamada, I.; Goto, Y.; Yamada, H.; Mutoh, T.; Komori, A.; Takeiri, Y.; the LHD Experiment Group

    2016-04-01

    Using ion cyclotron heating and electron cyclotron heating (ECH), or solo ECH, trials of steady state plasma sustainment have been conducted in the superconducting helical/stellarator, large helical device (LHD) (Ida K et al 2015 Nucl. Fusion 55 104018). In recent years, the ECH system has been upgraded by applying newly developed 77 and 154 GHz gyrotrons. A new gas fueling system applied to the steady state operations in the LHD realized precise feedback control of the line average electron density even when the wall condition varied during long pulse discharges. Owing to these improvements in the ECH and the gas fueling systems, a stable 39 min discharge with a line average electron density n e_ave of 1.1  ×  1019 m-3, a central electron temperature T e0 of over 2.5 keV, and a central ion temperature T i0 of 1.0 keV was successfully performed with ~350 kW EC-waves. The parameters are much improved from the previous 65 min discharge with n e_ave of 0.15  ×  1019 m-3 and T e0 of 1.7 keV, and the 30 min discharge with n e_ave of 0.7  ×  1019 m-3 and T e0 of 1.7 keV.

  8. Soviet Development of Gyrotrons

    Science.gov (United States)

    1986-05-01

    Relationship Type of Device Remarks V, - Vc, anomalous Doppler Capable of 100 percent efficiency, CRM but more cumbersome than Cheren- kov devices V...authors; and discusses inlividual Soviet reseaLc- groups, the basic organizational units responAiLle for the CRM and gyrotron research and development. The...maintained a cCnEistEnt iecord of significant achievements; it has managed to overcome the systenic yeaxness of the Soviet R&C systeg in teimg atle to

  9. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A

    Science.gov (United States)

    Xia, Donghui; Huang, Mei; Zhou, Jun; Bai, Xingyu; Zheng, Tieliu; Rao, Jun; Zhuang, Ge

    2014-04-01

    A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a compressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribution was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting the magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.

  10. From reactors to long pulse sources

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F. [Eotvos Univ., Budapest (Hungary)]|[Hahn-Meitner Institut, Berlin (Germany)

    1995-12-31

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are.

  11. Gyrotron oscillators for fusion heating

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Evans, S.; Felch, K.; Shively, J.; Spang, S.

    1982-01-01

    Recent experiments have been performed to determine the ultimate power capability of a 28 GHz 200 kW CW gyrotron design. A power output of 342 kW CW was measured in these tests with an efficiency of 37%. Progress in the development of 60 GHz 200 kW pulsed and CW gyrotrons is discussed. An output of 200 kW with 100 msec pulse length has been achieved with the pulsed design.

  12. Long pulse chemical laser. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R. [and others] [Boeing Aerospace Co., Seattle, WA (United States)

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  13. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    Directory of Open Access Journals (Sweden)

    Kern Stefan

    2012-09-01

    Full Text Available At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X and coaxial cavity (2 MW shortpulse at 170 GHz for ITER for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 – 12 to convert the signal from RF millimeter wave frequencies (full D-Band, 110 – 170 GHz to IF (0 – 3 GHz. For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation

  14. Free-electron masers vs. gyrotrons prospects for high-power sources at millimeter and submillimeter wavelengths

    CERN Document Server

    Thumm, M K

    2002-01-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in...

  15. Long-pulse-width narrow-bandwidth solid state laser

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  16. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  17. Narrow band tuning with small long pulse excimer lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sze, R.C.; Kurnit, N.; Watkins, D.; Bigio, I.

    1985-12-01

    We discuss frequency narrowing and tuning with simple dispersion elements with small long-pulse excimer lasers. The improved performance over short-pulse lasers is discussed and attributed to the increased number of round trips. A physical model of the dynamics of line narrowing is presented.

  18. Megawatt, 330 Hz PRF tunable gyrotron experiments

    Science.gov (United States)

    Spark, S. N.; Cross, A. W.; Phelps, A. D. R.; Ronald, K.

    1994-12-01

    Repetitively pulsed and cw gyrotrons have hitherto used thermionic cathodes, whereas cold cathode gyrotrons have normally operated as ‘single shot’ devices. The novel results presented here show that cold cathode gyrotrons can be successfully pulsed repetitively. A tunable gyrotron with a pulse repetition frequency (PRF) of 150Hz is demonstrated. This system developed >4MW mm-wave output pulses at 100GHz. The gyrotron is based on a two-electrode configuration comprising a field-immersed, field emission, cold cathode and a shaped anode cavity. A superconducting magnet was used to produce the homogeneous intra-cavity magnetic field and a cable pulser was used to drive the electron beam. This pulser produced up to a (200±20)kV pulse with 10ns rise time, a 100ns flat top, a 10ns decay with a characteristic impedance of 200Ω. The energy storage capacity of the cable pulser was 35J. The charging unit limited the maximum PRF to 330Hz. Due to spark gap switching limitations 330Hz was only obtainable in 5 to 10 pulse bursts. For substantial periods of the order of 30 seconds, 100Hz PRF was achieved over an oscillating range of 28 to 100GHz and 150Hz PRF was achieved at 80GHz. No degradation effects on the mm-wave output pulse was evident due to diode recovery time throughout this series of results. A subsequent conclusion is that the diode recovery time in our cold cathode gyrotron is less than 3ms.

  19. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  20. A study of a simple gyrotron equation

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Markus [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany); Meyer-Spasche, Rita [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany); Weitzner, Harold [New York University, Courant Institute of Mathematical Sciences, New York, NY 10012 (United States)

    2007-03-02

    A simple standard equation for the evolution of the electrons and electromagnetic fields in a gyrotron cavity is studied. A number of mathematical properties are shown: existence and uniqueness of solutions for a limited axial extent and existence and uniqueness for all axial lengths in one case of particular interest. A Poynting theorem is obtained directly from the model and the Hamiltonian character of the electron motion is demonstrated. The start-up and final state in the gyrotron cavity are also examined. The efficiency of energy flux transfer from the electron beam to the wave is estimated.

  1. 372-mJ long pulse pyrotechnically pumped laser

    Institute of Scientific and Technical Information of China (English)

    Nan Xiao; Zongfu Jiang; Weihong Hua; Shengfu Yuan

    2008-01-01

    A pyrotechnically pumped Nd glass laser is demonstrated by the use of pyrotechnic flashlamps composed of several chemical materials arranged in a stable plane concave resonator cavity. The flashlamp was made of chemical mixture with oxidant, fuel, and binder. The emission spectrum of pyrotechnic flame covered most of the absorption bands of Nd3+ in phosphate glass. Under 4.56-g chemical mixture pumping, long pulse output power of about 5.5 W was achieved.

  2. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  3. A review on the sub-THz/THz gyrotrons

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2016-05-01

    A review on the sub-THz/THz gyrotrons is performed in this manuscript. The present development status of gyrotrons can be divided into three streams for the sake of better understanding: 1. low frequency (industrial applications, 2. very high power (1 MW or more), medium frequency (100-200 GHz) gyrotrons for plasma fusion applications, 3. low power (few tens of watt to kW), high frequency (>200 GHz) gyrotrons for various innovative applications. In this manuscript, the third stream of gyrotron development is reviewed. In last few decades several innovative applications are searched in sub-THz/THz band where the gyrotrons could be used as an efficient source of RF radiation. The applications of sub-THz/THz gyrotrons including the futuristic scope of the device are also discussed in this article. Further, several criticalities arise in the design and development when the gyrotron operation shifts toward the high frequency band. Various such design and technological challenges are also discussed here. Finally the development status of sub-THz/THz gyrotrons as per the use in various scientific and technological applications is also discussed.

  4. Scaling Calculations for a Relativistic Gyrotron.

    Science.gov (United States)

    2014-09-26

    a relativistic gyrotron. The results of calculations are given in Section 3. The non- linear , slow-time-scale equations of motion used for these...corresponds to a cylindrical resonator and a thin annular electron beam ;, " with the beam radius chosen to coincide with a maximum of the resonator...entering the cavity. A tractable set of non- linear equations based on a slow-time-scale formulation developed previously was used. For this

  5. Continuously tunable, split-cavity gyrotrons

    Science.gov (United States)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  6. Treatment of rosacea with long-pulsed Nd: YAG laser

    Directory of Open Access Journals (Sweden)

    Ekin Meşe Say

    2013-03-01

    Full Text Available Background and Design: Rosacea is a chronic inflammatory disorder of the face. There is no curative treatment for the disease. Facial flushing and vascular lesions due to rosacea may significantly affect a patient’s quality of life. Topical and oral antibiotics are not effective for treating rosacea. Currently, laser treatment of vascular lesions has been reported in the literature. We aimed to investigate the efficacy of long-pulse 1064-nm neodymium: YAG (Nd: YAG laser in the treatment of vascular lesions (erythema and telangiectasia in rosacea patients. Materials and Methods: Thirty-nine patients (29 women, 10 men with erythematotelangiectatic rosacea (ETR were recruited into the study. Severity of the disease (ETR-score: 0-3 was assessed for all patients. We used long-pulsed Nd: YAG laser for vascular lesions at 3-4 weeks intervals. The face was divided into seven anatomic regions for evaluation. Assessment was made by comparing pretreatment and posttreatment photographs by using ETR-scores. For evaluating patient satisfaction, a scale of 0 to 3 was used. Results: The patients were divided into three groups according to the ETR scores [ETR-1 (n=12, ETR-2 (n=9, ETR-3 (n=18]. Following an average of 3.95 (2-8 sessions laser treatments, the clinical improvement was statistically significant in all groups (p<0.05. The mean reduction of ETR-score was 91.70% in patients with ETR-1 and. the clinical improvement was to be decreased in severe forms of ETR. The most common sites for the lesions were the malar region, ala nasi and the nasal dorsum, respectively. The lesions on the ala nasi were more recalcitrant to the treatment than those on the other areas. Regarding to physician assessment of treatment’s success, 97% of the patients was associated with moderate and excellent improvement. According to physicians’ assessment, excellent improvement was noticed in 43.58% and, 61.5% of patients reported a high degree of satisfaction with this

  7. Small angle slot divertor concept for long pulse advanced tokamaks

    Science.gov (United States)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  8. Long-pulse magnetic field facility at Zaragoza

    Science.gov (United States)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  9. Web Based System Architecture for Long Pulse Remote Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    De Las Heras, E.; Lastra, D. [INDRA Sistemas, S.A., Unidad de Sistemas de Control, Madrid (Spain); Vega, J.; Castro, R. [Association Euratom CIEMAT for Fusion, Madrid (Spain); Ruiz, M.; Barrera, E. [Universidad Politecnica de Madrid (Spain)

    2009-07-01

    INDRA is the first Information Technology company in Spain and it presents here, through a series of transparencies, its own approach for the remote experimentation architecture for long pulses (REAL). All the architecture is based on Java-2 platform standards and REAL is a totally open architecture. By itself REAL offers significant advantages: -) access authentication and authorization under multiple security implementations, -) local or remote network access: LAN, WAN, VPN..., -) on-line access to acquisition systems for monitoring and configuration, -) scalability, flexibility, robustness, platform independence,.... The BeansNet implementation of REAL gives additional good things such as: -) easy implementation, -) graphical tool for service composition and configuration, -) availability and hot-swap (no need of stopping or restarting services after update or remodeling, and -) INDRA support. The implementation of BeansNet at the TJ-2 stellarator at Ciemat is presented. This document is made of the presentation transparencies. (A.C.)

  10. A hybrid digital-analog long pulse integrator

    Science.gov (United States)

    Strait, E. J.; Broesch, J. D.; Snider, R. T.; Walker, M. L.

    1997-01-01

    A digital-analog integrator has been developed for use with inductive magnetic sensors in long-pulse tokamaks. Continuous compensation of input offsets is accomplished by alternating analog-to-digital convertor samples from the sensor and a dummy load, while a RC network provides passive integration between samples. Typically a sampling rate of 10 kHz is used. In operational tests on the DIII-D tokamak, digital and analog integration of tokamak data show good agreement. The output drift error during a 1200 s integration interval corresponds to a few percent of the anticipated signal for poloidal field probes in International Thermonuclear Experimental Reactor, and bench tests suggest that the error can be reduced further.

  11. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  12. Free-electron masers vs. gyrotrons: prospects for high-power sources at millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, Manfred E-mail: manfred.thumm@ihm.fzk.de

    2002-05-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in high-frequency broadband electron paramagnetic resonance and other types of spectroscopy. Future applications which await the development of novel high-power FEM amplifiers and gyro-amplifiers include high-resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of these recent applications of gyro-devices and FEMs and compares their specific advantages.

  13. Cryogenic pellet production developments for long-pulse plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A. [Oak Ridge National Laboratory, 1Bethel Valley Rd Oak Ridge, TN 37831 (United States)

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  14. A high-order particle-in-cell method for low density plasma flow and the simulation of gyrotron resonator devices

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Andreas

    2013-04-26

    of its huge computational demand and the thereby resulting long calculation time. Using the presented high-order discontinuous Galerkin Particle-in-Cell scheme on high-performance-computers, this thesis demonstrates for the first time that full-wave and transient research- and design-simulations of gyrotron resonators with high mode-indices can be efficiently performed. For benchmark issues the developed discontinuous Galerkin Particle-in-Cell scheme is verified with a 30 GHz resonant cavity and the results are compared to the SELFT code, which is a state-of-the-art design code for resonators. The discontinuous Galerkin Particle-in-Cell scheme is used to simulate the resonator of the 1 MW, 140 GHz, TE(28,8)-mode gyrotron, used for plasma heating of the Wendelstein 7-X fusion-reactor. Due to the huge number of degrees of freedom and particles, this type of simulation can only be performed on high-performance-computers with enough memory and computational power. Hence, the discontinuous Galerkin Particle-in-Cell code is improved by a new parallelization approach for the high-order shape-function deposition method on unstructured grids, allowing for a high-order coupling between the particles and the electromagnetic field. To further improve the discontinuous Galerkin Particle-in-Cell code, a multi-rate time-stepping method, based on an Adams-Bashforth approach, for the hyperbolic divergence cleaning is developed and verified. This new approach considers the different time scales occurring in the hyperbolic divergence cleaning allowing for a more efficient time-stepping-algorithm then standard time-stepping-schemes. A rule for the construction of arbitrary-order multi-rate time-stepping methods has been derived. The presented simulations provide new physical insights to the complex particle-field-interaction appearing in gyrotrons. The discontinuous Galerkin Particle-in-Cell scheme can be used to analyse transient phenomena, such as beam-miss-alignment, mode competition

  15. Gyrotrons for magnetic fusion applications at 110 GHz and 170 GHz

    Directory of Open Access Journals (Sweden)

    Cahalan P.

    2012-09-01

    Full Text Available Two megawatt-class gyrotrons at frequencies of 110 GHz and 170 GHz have recently been fabricated at CPI. The 110 GHz gyrotron is designed to produce 1.2 MW of output power for 10-second pulses, and will be used for electron cyclotron heating and current drive on the DIII-D tokamak at General Atomics. This gyrotron has completed factory testing and has been delivered to General Atomics for installation and additional testing. The 170 GHz gyrotron, though specified as a 500 kW CW system, has been designed with the goal of generating up to 1 MW CW. Oak Ridge National Laboratory will use this gyrotron in ITER ECH transmission line testing. This gyrotron has been fabricated and is awaiting factory testing, Design features of each gyrotron are described, and test data for the 110 GHz gyrotron are presented.

  16. Simulation calculation of 24kV long pulse TESLA modulator

    Institute of Scientific and Technical Information of China (English)

    TAO Xiao-Ping; Stefan CHOROBA

    2004-01-01

    A 24 kV long pulse modulator is designed for DESY's TESLA Test Facility (TIF). This modulator,with a 120 kV, 1.7 ms width pulse output, is used to drive a Thomson TH1801 multibeam klystron. In order to make waveform flatness of the klystron voltage less than ±0.5%, it is necessary to use a bouncer circuit. This paper gives the Pspice simulation results of the 24 kV long pulse TESLA modulator.

  17. Further studies of a simple gyrotron equation: nonlinear theory

    Energy Technology Data Exchange (ETDEWEB)

    Shi Meixuan, E-mail: meixuan@cims.nyu.ed [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185 (United States)

    2010-11-05

    A nonlinear version of a standard system of gyrotron model equations is studied using asymptotic analysis and variational methods. The condition for obtaining a high-amplitude wave is achieved in the study. A simple method for obtaining the patterns and amplitude of the wave based on the given free-space wave-number pattern is shown.

  18. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc......An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond......-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ∼8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows...

  19. New Edge Coherent Mode Providing Continuous Transport in Long-Pulse H-mode Plasmas

    Science.gov (United States)

    Wang, H. Q.; Xu, G. S.; Wan, B. N.; Ding, S. Y.; Guo, H. Y.; Shao, L. M.; Liu, S. C.; Xu, X. Q.; Wang, E.; Yan, N.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Candy, J.; Bravenec, R.; Sun, Y. W.; Shi, T. H.; Liang, Y. F.; Chen, R.; Zhang, W.; Wang, L.; Chen, L.; Zhao, N.; Li, Y. L.; Liu, Y. L.; Hu, G. H.; Gong, X. Z.

    2014-05-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ˜8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

  20. A novel vacuum window for megawatt gyrotrons

    Science.gov (United States)

    Haldeman, George Stephenson

    2001-08-01

    This thesis describes a new microwave output window for megawatt power level, 110 GHz gyrotrons. The window uses two spherically polished sapphire elements separated by a nearly uniform gap of about 1 mm. Pressurized, microwave transparent coolant flows through this gap and across the transmitting aperture, removing absorbed energy at the element face. The design differs from previous face- cooled windows because the sapphire elements have a modestly curved dome, rather than flat shape. This curved shape increases the element's capability to withstand coolant pressures without significantly increasing stresses from differential heating. Consequently, window power can be increased either through enhanced, high pressure cooling or by using thinner elements with reduced microwave absorption. A model was developed to predict window power capability as a function of design geometry. This model predicted an increase from 0.5 to 2.1 MW when flat elements were changed to curved. Both designs used full size, 100mm clear apertures, but the curved elements with 214 mm curvature radii were 1.3 rather than 1.75 mm thick. The model was also used to design a half size prototype experiment. This 50 mm clear aperture system used 60 mm OD x 0.47 mm thick x 107 mm surface radius elements. An initial piece was fabricated and statically tested to a pressure of 1.1 MPa well above the 0.5 MPa analytically predicted to be required for megawatt operation. The complete window structure was then fabricated, including instrumentation to simulate microwave heating and to measure induced temperatures and strains. Test results demonstrated an equivalent continuous Gaussian beam power capability of 700 kW using a coolant flow of 1.1 lps. Scaling from this measurement, fall size boiling limited power is expected to be 1.1 MW for a Gaussian microwave intensity profile, or 2.3 MW for a shaped profile typical of previous flat, face-cooled designs. (Copies available exclusively from MIT Libraries, Rm

  1. Recent Tests on 117.5 GHz and 170 GHz Gyrotrons

    Directory of Open Access Journals (Sweden)

    Felch K.

    2015-01-01

    Full Text Available Two megawatt-class gyrotrons at frequencies of 117.5 GHz and 170 GHz have recently been fabricated and tested at CPI. The 117.5 GHz gyrotron was designed to produce up to 1.8 MW for 10-second pulses, and will be used for electron cyclotron heating and current drive on the DIII-D tokamak at General Atomics. The 170 GHz gyrotron is specified as a 500 kW CW system, but has been designed with the goal of generating up to 1 MW CW. Oak Ridge National Laboratory will use the gyrotron in ITER ECH transmission line testing.

  2. High-speed drilling of metals with a long-pulse XeCl excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.; Phipps, Claude R.

    2002-01-01

    Studies of the influence of pulse length on material processing with different lasers have shown that a long pulse is beneficial for processing speed. In this paper a technique of pulse length variation is used in which the pulse length is the only varied parameter. Pulses between 5 and 150 ns lengt

  3. Design of the ITER Electron Cyclotron Heating and Current Drive Waveguide Transmission Line

    Science.gov (United States)

    Bigelow, T. S.; Rasmussen, D. A.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.; Grunloh, H.; Koliner, J.

    2007-11-01

    The ITER ECH transmission line system is designed to deliver the power, from twenty-four 1 MW 170 GHz gyrotrons and three 1 MW 127.5 GHz gyrotrons, to the equatorial and upper launchers. The performance requirements, initial design of components and layout between the gyrotrons and the launchers is underway. Similar 63.5 mm ID corrugated waveguide systems have been built and installed on several fusion experiments; however, none have operated at the high frequency and long-pulse required for ITER. Prototype components are being tested at low power to estimate ohmic and mode conversion losses. In order to develop and qualify the ITER components prior to procurement of the full set of 24 transmission lines, a 170 GHz high power test of a complete prototype transmission line is planned. Testing of the transmission line at 1-2 MW can be performed with a modest power (˜0.5 MW) tube with a low loss (10-20%) resonant ring configuration. A 140 GHz long pulse, 400 kW gyrotron will be used in the initial tests and a 170 GHz gyrotron will be used when it becomes available. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  4. Further studies of a simple gyrotron equation: linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Weitzner, Harold [New York University, Courant Institute of Mathematical Sciences New York, NY 10012 (United States)

    2009-07-03

    A linearized version of a standard system of gyrotron model equations is studied. The linearization allows the inclusion of some effects of particle bunching. The normal modes of the linearized system are given. It is shown that bunching effects couple incoming and outgoing waves. The waves near resonance duplicate well-known results. Without bunching and with a simple background profile function integral representations of solutions are given and discussed.

  5. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial

    DEFF Research Database (Denmark)

    Nymann, Peter; Hedelund, Lene; Haedersdal, M

    2010-01-01

    This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias.......This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias....

  6. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    Science.gov (United States)

    Avramidis, K. A.

    2015-12-01

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  7. Status of the new multi-frequency ECRH system for ASDEX Upgrade

    DEFF Research Database (Denmark)

    Wagner, D.; Grünwald, G.; Leuterer, F.

    2008-01-01

    Currently, a new multi-frequency ECRH system is under construction at the ASDEX Upgrade tokamak experiment. This system employs, for the first time in a fusion device, multi-frequency gyrotrons, step-tunable in the range 105-140 GHz. The first two gyrotrons, working at 105 and 140 GHz, were...

  8. Possibilities for Continuous Frequency Tuning in Terahertz Gyrotrons with Nontunable Electrodynamic Systems

    Science.gov (United States)

    Bratman, V. L.; Savilov, A. V.; Chang, T. H.

    2016-02-01

    Large ohmic losses in the cavities of terahertz gyrotrons may lead to the overlapping of the axial mode spectra. In a number of gyrotron experiments, this effect has been used to provide a fairly broadband frequency tuning by changing appropriately the operating magnetic field and/or accelerating voltage of the gyrotron. Similar to the systems with nonfixed axial structure of the RF electromagnetic field and low diffraction quality, which are due to weak reflections of the operating wave from the collector end of the electrodynamic system, this changing leads to a monotonic change in the axial index of the operating wave and transition from the gyrotron regime to the gyro-BWO regime. According to a theoretical comparison of these two methods performed on the basis of generalization of self-consistent gyrotron equations with allowance for variations in the axial electron momenta, low-reflection systems can provide a higher efficiency and monotonicity of the frequency tuning.

  9. Initial operation of high power ICRF system for long pulse in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  10. Non-Thermionic Cathode for High Power Long Pulse, Long Lifetime Magnetrons

    Science.gov (United States)

    2010-11-18

    switched with an SCR. The coil produces a 3 kG magnetic field with a 20mS critically damped waveform. This is sufficient to allow flux penetration...that the conventional thermionic cathode doses not provide acceptable electron emission for operation in the HPM power levels (> 100Mw). In this work...TECHNICAL REPORT AFOSR CONTRACT: FA9550-09-C-0127 “Non- Thermionic Cathode for High Power Long Pulse, Long Lifetime Magnetrons” Miles Collins Clark

  11. Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics

    Science.gov (United States)

    Slobodov, Ilia; Miller, Kenneth; Ziemba, Timothy; Prager, James; Carscadden, John; Hanson, Eric

    2016-10-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high-gain integrator for magnetic diagnostics that meets ITER specifications including integration time and integration error limits. EHT has conducted testing of this long-pulse integrator at DIII-D with existing DIII-D magnetic probes. The EHT long-pulse integrator was operated for several hours up to a full day. During a single period of EHT integrator operation, DIII-D was pulsed multiple times. The multiple pulses from the DIII-D magnetic diagnostics can be clearly resolved in the integrator signal output. The results are compared to DIII-D measurements. EHT also operated the long pulse integrator in High Dynamic Range Mode (HDRM), which effectively allows for a dramatic increase in measurement bit depth for higher resolution signal acquisition with the same diagnostic and digitizers presently available on DIII-D. Additionally, EHT has tested a new microprocessor and FPGA-based digitizer, which can be included on the integrator PCB, for a single board magnetic diagnostic solution.

  12. Long-pulsed dye laser versus long-pulsed dye laser-assisted photodynamic therapy for acne vulgaris: A randomized controlled trial

    DEFF Research Database (Denmark)

    Haedersdal, M.; Togsverd, K.; Wiegell, S.R.;

    2008-01-01

    Background: Long-pulsed dye laser (LPDL)-assisted photodynamic therapy has been suggested to be superior to laser alone for acne vulgaris but no evidence is available. Objective: To evaluate the efficacy and safety of LPDL alone versus LPDL in photodynamic therapy with methylaminolevulinic acid...... (MAL-LPDL) for acne vulgaris. Methods: Fifteen patients received a series of 3 full-face LPDL treatments and half-face prelaser MAL treatments; the latter being randomly assigned to the left or right side. Results: Inflammatory lesions were reduced more on MAL-LPDL-treated than on LPDL-treated sides...... to draw conclusions about the efficacy of the LPDL, only about the efficacy of MAL-LPDL compared with LPDL alone. Conclusions: MAL-LPDL is slightly superior to LPDL for the treatment of inflammatory acne Udgivelsesdato: 2008/3...

  13. High power 303 GHz gyrotron for CTS in LHD

    Science.gov (United States)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  14. Effects of electron-cyclotron instabilities on gyrotron beam quality

    Energy Technology Data Exchange (ETDEWEB)

    Jost, G.; Tran, T.M.; Appert, K. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Wuethrich, S. [CRAY Research, PATP/PSE, EPFL, Lausanne (Switzerland)

    1996-02-01

    A two-dimensional PIC code aimed at the investigation of electron-cyclotron beam instabilities in gyrotrons and their effects on the beam quality is presented. The code is based on recently developed techniques for handling charge conservation and open boundaries. It has been implemented on the massively parallel computer CRAY T3D. First results show an electromagnetic backward instability periodically growing and decaying to energy levels close to those obtained from the electrostatic Bernstein wave instability. On the average, the resulting beam degradation is 3 to 4 times larger than that predicted by electrostatic models. (author) 8 figs., 14 refs.

  15. Simulation study on thermal effect of long pulse laser interaction with CFRP material

    Science.gov (United States)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi

    2016-10-01

    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  16. Design of long-pulse fast wave current drive antennas for DIII-D

    Science.gov (United States)

    Baity, F. W.; Batchelor, D. B.; Bills, K. C.; Fogelman, C. H.; Jaeger, E. F.; Ping, J. L.; Riemer, B. W.; Ryan, P. M.; Stallings, D. C.; Taylor, D. J.; Yugo, J. J.

    1994-10-01

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90° phasing into a low-density plasma (˜4×1019m-3) with hot electrons (˜10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  17. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    Science.gov (United States)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  18. A Two Frequency 1.5 MW Gyrotron Experiment

    Science.gov (United States)

    Tax, David; Guss, William; Shapiro, Michael; Temkin, Richard; Rock, Ben; Vernon, Ronald; Neilson, Jeffrey

    2012-10-01

    Megawatt gyrotrons are an important microwave source for electron cyclotron heating and current drive (ECH/ECCD) in fusion plasmas due to their ability to produce megawatts of power at millimeter wave frequencies. The MIT gyrotron operates nominally at 96 kV and 40 A with 3 μs pulses and has previously demonstrated 1.5 MW of output power with > 50 % efficiency at 110 GHz with a depressed collector. A new cavity has been designed for 1.5 MW operation at two distinct frequencies: 110 GHz in the TE22,6 mode and 124.5 GHz in the TE24,7 mode. A new internal mode converter (IMC) consisting of a dimpled wall launcher and four smooth curved mirrors has also been designed and was optimized for both modes. Simulations of the IMC indicate that > 98 % Gaussian beam content could be achieved for each mode. Cold test results for the components will be presented as well as the current status of the hot test experiment.

  19. Temporary hair loss using the long-pulsed alexandrite laser at 20 milliseconds.

    Science.gov (United States)

    Raulin, C; Greve, B

    2000-03-01

    Facial hypertrichosis presents an enormous psychological burden for women. Temporary hair removal (waxing, plucking, etc.) and electrolysis are prolonged and unsatisfactory methods of treatment. For a few years several laser systems with varying wavelengths, pulse durations and energy fluences have been used successfully in laser epilation. In the retrospective study on hand, we report on results of 30 female patients with hypertrichosis in the facial area treated with the long pulse alexandrite laser at 20 msec (Cynosure PhotoGenica LPIR/Apogee; 755 nm; 20 msec; up to 30 J/cm2; 10 or 12.5 mm beam diameter) over an 18 month treatment period. After an average of 8 treatments, an average clearance rate of 75% could be achieved. Fair hair (white/blond/red) only showed a clearance rate of 10%. Hypo- and hyperpigmentation did not appear. The most frequent adverse effects were the occasional appearance of scattered crusting (17%), which healed without consequences, and folliculitis (13%). The average post-treatment observation time lasted 3.25 months. The long-pulsed alexandrite laser at a pulse duration of 20 msec is an effective and safe method of treatment of hypertrichosis in the facial region of women. Black hair responds considerably better to the laser treatment than fair hair. A longer post-treatment observation time is necessary, though, in order to provide evidence for the permanence of the success of the method.

  20. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    Science.gov (United States)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  1. Occlusion Effect of a Long-pulsed 532nm Laser on Veins

    Institute of Scientific and Technical Information of China (English)

    ZHANGLai-ming; YANGGui-long; LIDian-jun; LUQi-peng; GUHua-dong; ZHULin-lin; ZHAOZhen-wu; LIXin; WANGJing-ping; TANGYu-guo; GUOJin

    2005-01-01

    Laser treatment represents an attractive option to other methods of vessel diseases especially varicose veins. A long pulse (30-50ms) 532nm laser was used in our experiments, with the pulse duration matching the thermal relaxation time of the vessels and the green laser matching the absorption spectrum peak of the blood.Laser irradiates nude vein vessels directly or exterior skin to finish operation faster and to acquire the practical data for upper enteron varicose vein treatment in several animal experiments performed in vivo. The 5Jenergy pulse allows us to finely occlude rabbit or dog's vein vessels up to 2 mm in diameter when irradiating them off external skin. Blood vessels are occluded at once, and later biopsy specimens show the immediate and long-term lasting occlusion effect. While vessels are irradiated directly, they are usually irradiated to perforate, detailed causes are still under investigation. Animal experiments showed that the long pulse green laser therapy is a safe and effective solution to the vein's occlusion, which promises such laser with high energy of each pulse and 30-50 ms duration is an ideal candidate for vessel diseases treatment.

  2. Long-pulse Nd:YAG 1064-nm laser treatment for onychomycosis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-na; WANG Dong-kun; ZHUO Feng-lin; DUAN Xiao-han; ZHANG Xiao-yan; ZHAO Jun-ying

    2012-01-01

    Background Recent research shows that lasers can inhibit fungal growth and that Nd:YAG 1064-nm lasers can penetrate as deep as the lower nail plate.The aim of this study was to observe the effect of a long-pulse Nd:YAG 1064-nm laser on 154 nails of 33 patients with clinically and mycologically proven onychomycosis.Methods Thirty-three patients with 154 nails affected by onychomycosis were randomly assigned to two groups,with the 154 nails divided into three sub-groups (Ⅱ degree,Ⅲ degree,and Ⅳ degree) according to the Scoring Clinical Index of Onychomycosis.The 15 patients (78 nails) in group 1 were given eight sessions with a one-week interval,and the 18patients (76 nails) in group 2 were given four sessions with a one-week interval.Results In group 1,the effective rates at 8 weeks,16 weeks,and 24 weeks were 63%,62%,and 51%,respectively,and the effective rates in group 2 were 68%,67%,and 53% respectively.The treatment effect was not significantly different between any sub-group pair (P >0.05).Conclusions Long pulse Nd:YAG 1064-nm laser was effective for onychomycosis.It is a simple and effective method without significant complications or side effects and is expected to become an alternative or replacement therapy for onychomycosis.

  3. Long-Term Operating Experience with High-Power Gyrotron Oscillators

    Science.gov (United States)

    Felch, Kevin

    2005-10-01

    High-power, megawatt-class gyrotron oscillators have now been used in electron cyclotron heating (ECH) experiments for several years. The long periods of sustained operation have provided important information about the design limits that had initially been placed on the key elements of the gyrotron. In particular, observations made on recent 110 GHz, 1 MW gyrotrons used in ECH experiments on DIII-D at General Atomics indicate that several of the important components of the device, including the electron guns, interaction cavities and diamond output windows, have performed quite well, while analyses of the electron beam collectors on some of the devices indicate that design limits have often been exceeded. Observations made on these gyrotrons will be summarized and plans to address problem areas will be discussed.

  4. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    Science.gov (United States)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  5. Design of an electronically tunable millimeter wave Gyrotron Backward Wave Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M.

    1987-01-01

    A non-linear self-consistent computer simulation code is used to analyze the saturated output of the Gyrotron Backward Wave Oscillator (Gyro BWO) which can be used as a tunable driver for a 250 GHz FEL amplifier. Simulations show that the Gyrotron BWO using a Pierce/Wiggler gun configuration can produce at least 10 kW of microwave power over the range 249 GHz to 265 GHz by varying beam voltage alone.

  6. Design of an electronically tunable millimeter wave Gyrotron Backward Wave Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M.

    1987-01-01

    A non-linear self-consistent computer simulation code is used to analyze the saturated output of the Gyrotron Backward Wave Oscillator (Gyro BWO) which can be used as a tunable driver for a 250 GHz FEL amplifier. Simulations show that the Gyrotron BWO using a Pierce/Wiggler gun configuration can produce at least 10 kW of microwave power over the range 249 GHz to 265 GHz by varying beam voltage alone.

  7. Cold test of cylindrical open resonator for 42 GHz, 200 kW gyrotron

    Indian Academy of Sciences (India)

    Vivek Yadav; Sudeep Sharan; Hasina Khatun; Nitin Kumar; M K Alaria; B Jha; S C Deorani; A K Sinha; P K Jain

    2013-12-01

    This paper presents experimental results for cold testing of a gyrotron open resonator. Experiments were carried out to measure resonant frequency and their particular quality factor for TE mode at the frequency 42 GHz. The perturbation technique was used to determine the axial, radial and azimuthal electric field profile for identification of TE031 mode at operating frequency 42 GHz. The good agreement between experimental results and theoretical studies was found. The results verify the design and fabrication of the specific gyrotron cavity.

  8. Development of simulation tools for numerical investigation and computer-aided design (CAD) of gyrotrons

    Science.gov (United States)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-10-01

    As the most powerful CW sources of coherent radiation in the sub-terahertz to terahertz frequency range the gyrotrons have demonstrated a remarkable potential for numerous novel and prospective applications in the fundamental physical research and the technologies. Among them are powerful gyrotrons for electron cyclotron resonance heating (ECRH) and current drive (ECCD) of magnetically confined plasma in various reactors for controlled thermonuclear fusion (e.g., tokamaks and most notably ITER), high-frequency gyrotrons for sub-terahertz spectroscopy (for example NMR-DNP, XDMR, study of the hyperfine structure of positronium, etc.), gyrotrons for thermal processing and so on. Modelling and simulation are indispensable tools for numerical studies, computer-aided design (CAD) and optimization of such sophisticated vacuum tubes (fast-wave devices) operating on a physical principle known as electron cyclotron resonance maser (ECRM) instability. During the recent years, our research team has been involved in the development of physical models and problem-oriented software packages for numerical analysis and CAD of different gyrotrons in the framework of a broad international collaboration. In this paper we present the current status of our simulation tools (GYROSIM and GYREOSS packages) and illustrate their functionality by results of numerical experiments carried out recently. Finally, we provide an outlook on the envisaged further development of the computer codes and the computational modules belonging to these packages and specialized to different subsystems of the gyrotrons.

  9. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kharchev, Nikolay K.; Batanov, German M.; Kolik, Leonid V.; Malakhov, Dmitrii V.; Petrov, Aleksandr Ye.; Sarksyan, Karen A.; Skvortsova, Nina N.; Stepakhin, Vladimir D. [Prokhorov General Physics Institute, Vavilova ul. 38, Moscow 119991 (Russian Federation); Belousov, Vladimir I. [Institute of Applied Physics, Ul' yanova ul. 46, Nizhnii Novgorod 603950 (Russian Federation); Malygin, Sergei A.; Tai, Yevgenii M. [GYCOM Company, Ul' yanova ul. 46, Nizhnii Novgorod 603155 (Russian Federation)

    2013-01-15

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  10. Millimeter-wave gyrotron traveling-wave tube amplifiers

    CERN Document Server

    Du, Chao-Hai

    2014-01-01

    A gyrotron traveling-wave amplifier (gyro-TWT) with the high-power and broad-band capabilities is considered as a turn-on key for next generation high-resolution radar. The book presents comprehensive theory, methods, and physics related to gyro-TWT. The most challenging problem of instability competition has been for the first time addressed in a focused and systematic way, and reported via concise states and vivid pictures. The book is likely to meet the interest of researchers and engineers in radar and microwave technology, who would like to study the gyro-TWTs and to promote its application in millimeter-wave radars.   Chao-Hai Du is a research professor, and Pu-Kun Liu is a full professor, at Peking University, Beijing, P. R. China.

  11. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    Science.gov (United States)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  12. A Long-Pulse Modulator for the TESLA Test Facility (TTF)

    CERN Document Server

    Kaesler, W

    2004-01-01

    The long-pulse (1.6 ms) klystron modulator for TTF is a hardtube pulser using a Bouncer-circuit for droop compensation. It is built up with new advanced components representing industrial standards. The on-/off switch is a rugged 12 kV IGCT-stack with a fast 4kA turn-off capability. The 100 kJ storage capacitor bank contains only three capacitors with self-healing, segmented PP-foil technology. A new 100 kA solid-state switch based on light triggered thyristors (LTT) replaced the standard ignitrons as crowbar switches. The 300 kW high voltage power supply is based on modern switched mode technology.

  13. Development of a long pulse plasma gun discharge for magnetic turbulence studies

    Science.gov (United States)

    Schaffner, David

    2016-10-01

    A long pulse ( 300 μs) plasma gun discharge is in development at the Bryn Mawr College Plasma Laboratory for the production of sustained magnetized plasma injection for magnetohydrodynamic (MHD) turbulence studies. An array of eight 0.5mF parallel capacitors are used to create a pulse-forming-network (PFN) with a plateaued current output of 50kA for at least 200 of the 300 μs pulse. A 24cm inner diameter plasma gun provides stuffing flux fields at the stuffing threshold in order to allow for the continuous injection of magnetic helicity. Plasma is injected into a 24cm diameter flux-conserving aluminum chamber with a high density port array for fine spatial resolution diagnostic access. Fluctuations of magnetic field and saturation current are measured using pickup probes and Langmuir probes respectively.

  14. Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Philip Michael [ORNL; Baity Jr, F Wallace [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Greenough, Nevell [Princeton Plasma Physics Laboratory (PPPL); Nagy, Alex [Princeton Plasma Physics Laboratory (PPPL); Pinsker, R. [General Atomics; Rasmussen, David A [ORNL

    2009-01-01

    A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs.

  15. Long-pulse, single-frequency 1064 nm laser and frequency doubling

    Institute of Scientific and Technical Information of China (English)

    Xiafei Xu; Gang Xie; Yanhua Lu; Lei Zhang; Min Wan

    2015-01-01

    An all-solid-state single-frequency 1064 nm laser with a 100 μs pulse width, 500 Hz repetition rate and 700 m J single pulse energy is designed using seed injection and a three-stage master oscillator power amplifier(MOPA) construction.Using this as a basis, research on long-pulse laser frequency doubling is carried out. By designing and optimizing the lithium triborate(LBO) crystal, the theoretically calculated maximum conversion efficiency ηmax reaches 68% at M2=1, while ηminis 33% at M2=3. Generation of 212 m J pulses of green light with a repetition rate as high as500 Hz is obtained from a fundamental energy of 700 m J. The experimental conversion efficiency reaches 31% and the power stability is better than±1%.

  16. Design of long-pulse fast wave current drive antennas for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Baity, F.W.; Batchelor, D.B.; Bills, K.C.; Fogelman, C.H.; Jaeger, E.F.; Ping, J.L.; Riemer, B.W.; Ryan, P.M.; Stallings, D.C.; Taylor, D.J.; Yugo, J.J. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States))

    1994-10-15

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90[degree] phasing into a low-density plasma ([similar to]4[times]10[sup 19]m[sup [minus]3]) with hot electrons ([similar to]10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  17. Some general reflections on {open_quotes}long pulse{close_quotes} neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst., Villigen (Switzerland)

    1995-12-31

    A long pulse spallation neutron source (LPSS) having about 20 times more time average thermal flux than its short pulse counterpart (SPSS) at the same proton beam power and featuring a pronounced time structure not available on CW sources (CWNS) of equal time average flux can in principle host instruments typical for both classes of facilities. While the need for additional choppers introduces some restrictions on inverted time of flight techniques typical for SPSS and high incident neutron energies are not easier to use on LPSS than on CWNS, taking advantage of the pulsed nature of the neutron flux can enhance significantly the performance of direct time of flight instruments and of crystal spectrometers or diffractometers. In the paper some of the options are reviewed in a general manner and criteria are discussed which can be used to optimize the performance enhancement.

  18. Inelastic scattering research at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Carlile, C.J.

    1995-12-31

    The brief was, with respect to the LPSS bench mark design supplied (60 Hz, 1 MW, Imsec proton pulse, with a split, non-fissile target and 4 moderators in a flux trap geometry design), to identify a set of instruments, and to assess their performance with respect to existing spectrometers on other sources. Any modifications to the existing instruments which would make them more effective on the bench-mark source, or conversely, any modifications to the source bench-mark required by the proposed instruments were to be identified, as were any uncertainties in the estimated performances, or any R & D needed to make the proposed instruments viable. Any new instrument concepts specifically matched to the long pulse itself were to be identified and assessed. This process was to result in an indicative list of instruments for the source. A figure of around 10 spectrometers was to be aimed for.

  19. Counter-facing plasma focus system as an efficient and long-pulse EUV light source

    Science.gov (United States)

    Kuwabara, H.; Hayashi, K.; Kuroda, Y.; Nose, H.; Hotozuka, K.; Nakajima, M.; Horioka, K.

    2011-04-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and efficient EUV light source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrode. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time duration in at least ten microseconds for Xe plasma. Also, we confirmed operations of our system for Li plasma. We estimated the highest EUV energy in Li plasma operation at 93mJ/4π sr per 2% bandwidth per pulse.

  20. Operation and control of high power Gyrotrons for ECRH systems in SST-1 and Aditya

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, B.K., E-mail: shukla@ipr.res.in; Bora, D.; Jha, R.; Patel, Jatin; Patel, Harshida; Babu, Rajan; Dhorajiya, Pragnesh; Dalakoti, Shefali; Purohit, Dharmesh

    2016-11-15

    Highlights: • Operation and control of high power Gyrotrons. • Data acquisition and control (DAQ) for Gyrotron system. • Ignitron based crowbar protection. • VME and PXI based systems. - Abstract: The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42 GHz and 82.6 GHz ECRH systems are used in tokamaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotron is a delicate microwave tube, which deliver megawatt level power at very high voltage ∼40–50 kV with the current requirement ∼10 A–50 A. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies, cooling, interlocks and a dedicated data acquisition & control (DAC) system. There are two levels of interlocks used for the protection of Gyrotron: fast interlocks (arcing, beam over current, dI/dt, anode voltage and anode over current etc.) operate within 10 μs and slow interlocks (cooling, filament, silence of Gyrotron, ion pump and magnet currents) operate within 100 ms. Two Gyrotrons (42 GHz/500 kW/500 ms and 82.6 GHz/200 kW/1000 s) have been commissioned on dummy load for full parameters. The 42 GHz ECRH system has been integrated with SST-1 & Aditya tokamak and various experiments have been carried out related to ECRH assisted breakdown and start-up of tokamak at fundamental and second harmonic. These Gyrotrons are operated with VME based data acquisition and control (DAC) system. The DAC system is capable to acquire 64 digital and 32 analog signals. The system is used to monitor & acquire the data and also used for slow interlocks for the protection of Gyrotron. The data acquired from the system are stored online on VME system and after the shot stored in a file in binary format. The MDSPlus, a set of

  1. State-of-the-art of high power gyro-devices and free electron masers. Update 2015

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, Manfred [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Hochleistungsimpuls- und Mikrowellentechnik, Programm Fusion

    2016-07-01

    Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt- class gyrotrons employing synthetic diamond output windows is 30 minutes (CPI and European KIT-CRPP-TED collaboration). The world record parameters of the European megawatt-class 140 GHz gyrotron are: 0.92 MW output power at 30 min. pulse duration, 97.5% Gaussian mode purity and 44% efficiency, employing a single-stage depressed collector (SDC) for energy recovery. A maximum output power of 1.5 MW in 4.0 s pulses at 45% efficiency was generated with the JAEA-TOSHIBA 110 GHz gyrotron. The Japan 170 GHz ITER gyrotron achieved 1 MW, 800 s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min.) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW. The Russian 170 GHz ITER gyrotron achieved 0.99 (1.2) MW with a pulse duration of 1000 (100) s and 53 (53) % efficiency. The prototype tube of the European 2 MW, 170 GHz coaxial-cavity gyrotron achieved in short pulses the record power of 2.1 MW at 46% efficiency and 96% Gaussian mode purity. Gyrotrons with pulsed magnet for various short-pulse applications deliver P{sub out}=210 kW with τ=20 μs at frequencies up to 670 GHz (η≅20%), P{sub out}=5.3 kW at 1 THz (η=6.1%), and P{sub out}=0.5 kW at 1.3 THz (η=0.6%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f ≥ 24 GHz, P{sub out}=4-50 kW, CW, η≥30%. This paper gives an update of the experimental achievements related to the development of high power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for

  2. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M. [Fukui Univ., Research Center for Development of Far-Infrared Region (Japan); Hori, T. [National Institute of Information and Communications Technology, Basic and Advanced Research Division, Nukui-Kita, Koganei (Japan); Hatae, T. [Japan Atomic Energy Research Institute, Mukoyama, Naka (Japan)

    2004-07-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE{sub mn} mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE{sub 0n} and TE{sub 1n} modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level ({delta}P/P < 1 %, {delta}f< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  3. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, M., E-mail: kashiwagi.mieko@jaea.go.jp; Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka 311-0193 (Japan)

    2014-02-15

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  4. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    Science.gov (United States)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Guibo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  5. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier

    Science.gov (United States)

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Lei, Lurong; Zhu, Lei; Li, Lele; Li, Shifeng; Yan, Wenkang; He, Hu

    2016-09-01

    To realize coherent high power microwave combining, an X-band long pulse multibeam relativistic klystron amplifier is designed, and the relative phase stability is investigated by three dimensions particle in cell simulation and high power microwave experiment. The simulation shows that the relative phase difference can be stabilized at gigawatt level radiation power. But the relative phase jitter increases in the experiment, then some measures are proposed to improve the stability of relative phase difference and avoid pulse shortening. A 0.98 GW radiation power with pulse duration of 160 ns is obtained in the experiment, the pulse shortening is avoided. The relative phase difference fluctuation between output microwave and input RF signal is less than ±25° in a single shot with duration of 100 ns. Then, the experiment of pulse repetition is carried out, and an output microwave with 0.98 GW radiation power at 25 Hz repetition rate is obtained. The power conversion efficiency is about 35% with pulse duration of 160 ns. The relative phase difference is less than ±30° at 25 Hz repetition rate in 100 ns.

  6. First lasing of the Dutch fusion-FEM in the long-pulse configuration

    Energy Technology Data Exchange (ETDEWEB)

    Militsyn, B.L. E-mail: militsyn@rijnh.nl; Bongers, W.A.; Bratman, V.L.; Caplan, M.; Denisov, G.G.; Geer, C.A.J. van der; Manintveld, P.; Oomens, A.A.M.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Riet, M.; Savilov, A.V.; Smeets, P.H.M.; Tito, C.J.; Turk, G.H.B.; Varfolomeev, A.A.; Urbanus, W.H

    2002-05-01

    The Dutch Fusion-FEM is the prototype of a high-power, long-pulse, rapid-tunable free-electron maser. The target is to generate mm-wave power in a frequency range of 130-260 GHz, e.g. for tokamak heating and diagnostics experiments in fusion devices. For these applications a high system efficiency is needed. The electron beam is first DC-accelerated to the FEL interaction region. The unused electron beam energy is recovered by a DC-decelerator and a three-stage depressed collector. In short-pulse regime, without energy recovery system, 730 kW, 200 GHz of net output power was generated. Single-frequency operation and tunability have been demonstrated. In the present set-up, with the energy recovery system being operational, initial experiments showed a net output power of 110 kW on average and 140 kW peak power at a pulse length of 40 {mu}s. During the full-pulse length, a stable-frequency operation around 170 GHz has been observed.

  7. 1064 nm long-pulsed Nd:YAG laser treatment of basal cell carcinoma.

    Science.gov (United States)

    Ortiz, Arisa E; Anderson, R Rox; Avram, Mathew M

    2015-02-01

    Standard surgical and destructive treatments for basal cell carcinoma (BCC) can result in significant morbidity and scarring, stimulating the investigation of alternative non-surgical options. The objective of this study was to determine the safety, clinical, and histological efficacy of pulsed, high-fluence 1064 nm Nd:YAG laser therapy for the treatment of BCC on the trunk and extremities. This was a prospective, non-randomized, open-label clinical trial. Ten subjects with a biopsy-proven BCC less than 1.5 cm in diameter on the trunk or extremities received one treatment with a 10 milliseconds pulsed 1064 nm Nd:YAG laser. Standard excision was performed 1 month after laser treatment to confirm histologic clearance. The laser treatment was quick and well tolerated. There was complete histologic clearance after one treatment in 92% of the BCC tumors, overall. At higher fluences, there was 100% histologic clearance after one treatment. No significant adverse events were seen, including scarring. The 1064 nm long-pulsed Nd:YAG laser may offer a safe alternative for treating BCC off the face. A larger study is highly warranted to confirm these preliminary results. Lasers Surg. Med. 47:106-110, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media

    Energy Technology Data Exchange (ETDEWEB)

    Glyavin, M. Yu., E-mail: glyavin@appl.sci-nnov.ru; Denisov, G. G.; Zapevalov, V. E. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Gycom Ltd., Nizhny Novgorod (Russian Federation); Chirkov, A. V.; Fokin, A. P.; Kholoptsev, V. V.; Kuftin, A. N.; Luchinin, A. G.; Golubyatnikov, G. Yu.; Malygin, V. I.; Morozkin, M. V.; Manuilov, V. N.; Proyavin, M. D.; Sedov, A. S.; Tsvetkov, A. I. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Sokolov, E. V.; Tai, E. M. [Gycom Ltd., Nizhny Novgorod (Russian Federation)

    2015-05-15

    A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10{sup −6}.

  9. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF

    CERN Document Server

    Idehara, Toshitaka

    2016-01-01

    In this paper, we present the recent progress in the development of a series of gyrotrons at FIR UF that have opened the road to many novel applications in the high-power Terahertz science and technology. The current status of the research in this actively developing field is illustrated by the most representative examples in which the developed gyrotrons are used as powerful and frequency tunable sources of coherent radiation operating in a CW regime. Among them are high-precision spectroscopic techniques (most notably DNP-NMR, ESR, XDMR, and studies of the hyperfine splitting of the energy levels of positronium), treatment and characterization of advanced materials, new medical technologies.

  10. Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

    Science.gov (United States)

    Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd

    2017-07-01

    Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

  11. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    Science.gov (United States)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  12. A bright and long-pulse illumination for ultrahigh-speed microscopy of living specimens.

    Science.gov (United States)

    Nakano, Hitoshi; Yokoi, Sayoko; Yoshida, Shigeru; Yamada, Makoto; Takeuchi, Takeshi; Takehara, Kosei; Etoh, T Goji

    2010-01-01

    Ultrahigh-speed microscopy of living specimens requires ultrabright illumination. Moreover, the duration of illumination should be sufficiently long, on the order of at least several tens of milliseconds, in order to investigate the dynamic state of living specimens. However, specimens are exposed to a high risk of damage by the intense illumination. The brightness and pulse duration of illumination have to be continuously controlled for use in the ultrahigh-speed microscopy of living specimens. Commercial or laboratory-made illumination systems do not satisfy the abovementioned requirements. In this paper, the development of a bright and long-pulse illumination system for ultrahigh-speed microscopy of living specimens is presented. A xenon flashlamp with an arc length of 1.5 mm has been used as the light source. The electrical power supply consists of a voltage-regulated circuit, a capacitor bank, and a control circuit including an insulated-gate bipolar transistor as a gating device, which provides a large rectangular current pulse with the duration in the range to the order of several tens of milliseconds. The brightness, pulse duration, and repetition rate can be easily and continuously controlled. The illumination developed in the present study is installed in an inverted fluorescence microscope equipped with a high-speed camera in order to evaluate the performance as an illumination source. A fluorescent image of the living spermatozoa of a mouse obtained at a frame rate of 8 kHz shows good contrast. Such an image cannot be obtained using a commercial illumination system.

  13. Preliminary study on heat load using calorimetric measurement during long-pulse high-performance discharges on EAST

    Science.gov (United States)

    Liu, Y. K.; Hamada, N.; Hanada, K.; Gao, X.; Liu, H. Q.; Yu, Y. W.; Qian, J. P.; Yang, L.; Xu, T. J.; Jie, Y. X.; Yao, Y.; Wang, S. S.; Xu, J. C.; Yang, Z. D.; Li, G. S.; EAST Team

    2017-04-01

    Experimental Advanced Superconducting Tokamak (EAST) aims to demonstrate steady-state advanced high-performance H-mode plasmas with an ITER-like configuration, plasma control and heating schemes. The plasma-facing components in EAST are actively cooled, providing good conditions for researching long-pulse and high-energy discharges. A long-pulse high-performance plasma discharge (#59892 discharge) of up to 103 s with a core electron temperature of up to 4.5 keV was sustained with an injected energy exceeding 0.22 GJ in the 2015–2016 experimental campaign. A calorimetric measurement utilizing the temperature increment of cooling water is carried out to calculate the heat load on the strike point region of the lower divertor during long-pulse discharges in EAST. For the long-pulse and high-energy discharges, the comparison of the measurement results for the heat load measured by divertor Langmuir probes and the calorimetry diagnostic indicates that most of the heat load is delivered to the divertor panels as plasma, not radiation, and charge exchange neutrals. The ratio of the heat load on the strike point region of the lower divertor to the total injected energy is on average 42.5% per discharge with the lower single null divertor configuration. If the radiated energy loss measured by the fast bolometer diagnostic is taken into consideration, the ratio is found to be 61.6%. The experimental results and the analysis of the physics involved in these discharges are reported and discussed.

  14. SMALL VOLUME LONG PULSE X RAY PREIONISED XeCl LASER WITH DOUBLE DISCHARGE AND FAST FERRITE MAGNETIC SWITCH

    OpenAIRE

    J. Hueber; Kobhio, M.; Fontaine, B.; Delaporte, Ph.; Sentis, M.; Forestier, B.

    1991-01-01

    Experimental results obtained with a high efficiency small volume long pulse X-Ray preionised XeCl laser with double discharge and very fast ferrite magnetic switch are presented and compared with the results given by a new XeCl laser numerical self consistant model. The model takes into account most recent kinetic data and time variation of discharge impedence and switch inductance. There is a good agreement between experiment and model on electrical and laser parameters for typical conditions.

  15. Long-Pulsed Nd:YAG Laser Treatment of Warts: Report on a Series of 369 Cases

    Science.gov (United States)

    Han, Tae Young; Lee, Ji Ho; Lee, Chang Kyun; Ahn, Ji Young; Hong, Chang Kwun

    2009-01-01

    Various treatment methods have been adopted in the management of warts; however, there is still no consensus on first-line treatment. This study was designed to evaluate the efficacy of long-pulsed Nd:YAG laser in the treatment of warts. Over the course of 1 yr, 369 patients with recalcitrant or untreated warts were exposed to a long-pulsed Nd:YAG laser. The following parameters were used: spot size, 5 mm; pulse duration, 20 msec; and fluence, 200 J/cm2. No concomitant topical treatment was used. In all, 21 patients were lost during follow up; hence, the data for 348 patients were evaluated. The clearance rate was 96% (336 of the 348 treated warts were eradicated). The clearance rate of verruca vulgaris after the first treatment was very high (72.6%), whereas the clearance rate of deep palmopantar warts after the first treatment was low (44.1%). During a median follow-up period of 2.24 months (range, 2-10 months), 11 relapses were seen (recurrence rate, 3.27%). In conclusion, long-pulsed Nd:YAG laser is safe and effective for the removal or reduction of warts and is less dependent on patient compliance than are other treatment options. PMID:19794989

  16. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  17. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    Science.gov (United States)

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  18. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    Science.gov (United States)

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  19. Design of a second cyclotron harmonic gyrotron oscillator with photonic band-gap cavity

    Energy Technology Data Exchange (ETDEWEB)

    Liu Gaofeng; Chen Xiaoan; Tang Changjian, E-mail: angelchen765@163.com [College of Physical Science and Technology of Sichuan University, Chengdu 610065 (China)

    2011-07-27

    A photonic band-gap cavity (PBGC) gyrotron with a frequency of about 98 GHz is designed. Theoretical analyses and numerical calculations are made for the PBGC operating at fundamental and second cyclotron harmonic with a TE{sub 34} waveguide mode to demonstrate the beam-wave interaction. The results show that mode competition is successfully eliminated in the PBGC using mode selectivity and choosing the appropriate operating parameters. As a result, the second harmonic PBGC gyrotron operating at TE{sub 34} mode achieves a higher output efficiency than that of the fundamental. It is also demonstrated that, in the case of the chosen parameters for TE{sub 34} waveguide mode, the use of PBG structure in the second harmonic gyrotron brings about not only a lower operating B-field but also a weaker mode competition. The results show that the high-order electromagnetic mode can be developed to interact with the high cyclotron harmonic using the selectivity of the PBGC, which gives an encouraging outlook for the development of high-harmonic gyrotrons.

  20. Particle control in high power, high density long pulse operation on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, J.; Brosset, C.; Dufour, E.; Loarer, T.; Monier-Garbet, P.; Pegourie, B.; Tsitrone, E.; Basiuk, V.; Bremond, S.; Chantant, M.; Colas, L.; Commaux, N.; Geraud, A.; Guirlet, R.; Gunn, J.; Hertout, P.; Hoang, G. T.; Kazarian, F.; Mazon, D.; Maget, P.; Mitteau, R.; Moreau, P.; Saint-Laurent, F.; Schunke, B.; Vallet, J. C.

    2005-07-01

    Long pulse operation, and the related issues such as non inductive current drive, particle control and power exhaust, is a crucial point to investigate for next step machines. In the Tore Supra tokamak, equipped with superconducting magnets and actively cooled plasma facing components discharge up to 6 minutes, coupling 1 GJ of energy to the plasma, have already been obtained with 3 MW of LHCD at low density (%50 n{sub C}W). A new scenario has been recently developed combining ICRH and LHCD up to a total power of 8.5 MW at high density (90% n{sub G}W), limited in time to 60 s by the capability of the ICRH heating systems (500 MJ of injected/extracted energy). This paper describes the new operating conditions and compares the results obtained in both scenarios with a special focus on particle control. The density is still maintained by a feedback loop on the gas injection system and do not exhibit any uncontrolled excursions. The radiated power fraction is stable and remains below 30% all along the discharges. In comparison with the previous low density long duration discharges, the gas injection rate necessary to maintain the stationary plasma density is increased by a factor up to 3. The edge electron temperature and density measured by a reciprocating probes are also significantly different, signifying as expected a higher recycling flux. On the other hand, particle balance analyses based on pressure measurements show that the absolute in vessel retention rate is roughly equivalent in both scenarios. This indicates that the retention mechanisms could be dominated by wall processes such as diffusion in carbon porosities rather than plasma processes, dependent on edge conditions, such as codeposition. Moreover, analysis of carbon deposits originating from different locations inside the vessel reveal relatively low deuterium content, unable to account for the large deuterium in-vessel retention worked out from particle balance. Finally, particle control with more

  1. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh 225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  2. Fault-Protected Laser Diode Drivers for Improving the Performance and Lifetime of Multiple-Millisecond, Long-Pulse LDAs for NASA LIDAR Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project will develop and deliver revolutionary driver technology with intelligent fault protection for driving long-pulse (> 2msec), quasi-CW laser...

  3. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    Science.gov (United States)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  4. Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films.

    Science.gov (United States)

    Wang, Bin; Qin, Yuan; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2010-10-10

    In order to study the effect of defects on the laser-induced damage of different optical thin films, we carried out damage experiments on two kinds of thin films with a 1 ms long-pulse laser. Surface-defect and subsurface-defect damage models were used to explain the damage morphology. The two-dimensional finite element method was applied to calculate the temperature and thermal-stress fields of these two films. The results show that damages of the two films are due to surface and subsurface defects, respectively. Furthermore, the different dominant defects for thin films of different structures are discussed.

  5. Status of the development of the EU 170 GHz/1 MW/CW gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Pagonakis, Ioannis Gr., E-mail: ioannis.pagonakis@kit.edu [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Albajar, Ferran [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Alberti, Stefano [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Avramidis, Konstantinos [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Bonicelli, Tullio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Braunmueller, Falk [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Bruschi, Alex [Plasma Physics Institute, National Research Council of Italy, Milano (Italy); Chelis, Ioannis [School of Electrical and Computer Engineering, National Technical University of Athens (Greece); Cismondi, Fabio [The European Joint Undertaking for ITER and The Development of Fusion Energy, Barcelona (Spain); Gantenbein, Gerd [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hermann, Virgile [Thales Electron Devices (TED), Vélizy-Villacoublay (France); Hesch, Klaus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Hogge, Jean-Philippe [École Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Jelonnek, John; Jin, Jianbo; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Ioannidis, Zisis C. [Faculty of Physics, National and Kapodistrian University of Athens (Greece); Kobarg, Thorsten [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); and others

    2015-10-15

    The progress in the development of the European 170 GHz, 1 MW/CW gyrotron for electron cyclotron heating & current drive (ECH&CD) on ITER is reported. A continuous wave (CW) prototype is being manufactured by Thales Electron Devices (TED), France, while a short-pulse (SP) prototype gyrotron is in parallel under manufacture at Karlsruhe Institute of Technology (KIT), with the purpose of validating the design of the CW industrial prototype components. The fabrication of most of the sub-assemblies of the SP prototype has been completed. In a first step, an existing magnetron injection gun (MIG) available at KIT was used. Despite this non-ideal configuration, the experiments provided a validation of the design, substantiated by an excellent agreement with numerical simulations. The tube, operated without a depressed collector, is able to produce more than 1 MW of output power with efficiency in excess of 30%, as expected, and compatible with the ITER requirements.

  6. Development and simulation of RF components for high power millimeter wave gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereyaslavets, M.; Sato, M.; Shimozuma, T.; Takita, Y.; Idei, H.; Kubo, S.; Ohkubo, K.; Hayashi, K.

    1996-11-01

    To test gyrotron RF components, efficient low-power generators for rotating high-order modes of high purity are necessary. Designs of generators for the TE{sub 15,3} mode at 84 GHz and for the TE{sub 31,8} mode at 168 GHz are presented and some preliminary test results are discussed. In addition, Toshiba gyrotron cavities at 168 GHz were analyzed for leakage of RF power in the beam tunnel. To decrease RF power leakage, the declination angle of the cut-off cavity cross section has to be decreased. A TE{sub 15,3} waveguide nonlinear uptaper is analyzed at 84 GHz as well as 168 GHz uptapers. Since the calculated conversion losses are slightly higher than designed value, an optimization of those uptapers may be required. (author)

  7. 太赫兹回旋管研究进展%Development of Terahertz Gyrotrons

    Institute of Scientific and Technical Information of China (English)

    鄢扬; 傅文杰

    2013-01-01

    回旋管是一种基于电子回旋谐振受激辐射的快波器件,是目前太赫兹波段输出功率和效率最高的重要器件,本文给出了目前国内外太赫兹回旋管技术的发展状况,分析了太赫兹回旋管的特点和应用前景.%Gyrotrons are fast-wave vacuum electron devices based on the stimulated radiation, of electron cyclotron resonance. They are able to deliver powerful radiation in terahertz frequency bands with high efficiency. In this paper, the current status and development of terahertz gyrotrons are reviewed, the characteristics and prospective applications are discussed.

  8. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF

    Science.gov (United States)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2016-10-01

    In this review paper, we present the recent progress in the development of a series of gyrotrons at the Research Center for Development of Far-Infrared Region, University of Fukui, that have opened the road to many novel applications in the high-power terahertz science and technology. The current status of the research in this actively developing field is illustrated by the most representative examples in which the developed gyrotrons are used as powerful and frequency-tunable sources of coherent radiation operating in a continuous-wave regime. Among them are high-precision spectroscopic techniques (most notably dynamic nuclear polarization-nuclear magnetic resonance, electron spin resonance, X-ray detected magnetic resonance, and studies of the hyperfine splitting of the energy levels of positronium), treatment and characterization of advanced materials, and new medical technologies.

  9. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    Science.gov (United States)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-05-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed.

  10. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF

    Science.gov (United States)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2017-01-01

    In this review paper, we present the recent progress in the development of a series of gyrotrons at the Research Center for Development of Far-Infrared Region, University of Fukui, that have opened the road to many novel applications in the high-power terahertz science and technology. The current status of the research in this actively developing field is illustrated by the most representative examples in which the developed gyrotrons are used as powerful and frequency-tunable sources of coherent radiation operating in a continuous-wave regime. Among them are high-precision spectroscopic techniques (most notably dynamic nuclear polarization-nuclear magnetic resonance, electron spin resonance, X-ray detected magnetic resonance, and studies of the hyperfine splitting of the energy levels of positronium), treatment and characterization of advanced materials, and new medical technologies.

  11. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    Science.gov (United States)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  12. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, N., E-mail: umeda.naotaka@jaea.go.jp; Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki 311-0193 Japan (Japan)

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  13. Evaluation of a long pulsed 1064-nm Nd:YAG laser for improvement in appearance of cellulite.

    Science.gov (United States)

    Truitt, Anne; Elkeeb, Laila; Ortiz, Arisa; Saedi, Nazanin; Echague, Agustina; Kelly, Kristen M

    2012-06-01

    Cellulite is a common, unwanted condition, which is challenging to treat. The objective of this investigation was to evaluate safety and effectiveness of a long-pulsed 1064 Nd:YAG laser as a method for improvement in cellulite appearance and to evaluate parameter selection. Twenty-two female subjects with posterior leg cellulite were randomly assigned to treatment of left or right thigh with higher energy treatment with cryogen spray cooling (CSC) (10-mm spot size; 50 J/cm(2); 50-ms pulse duration and CSC settings of 30-ms duration with a 20-ms delay) or lower energy treatment with no CSC (10 mm; 20 J/cm(2); 50 ms). Subjects received three treatments at 4 weeks intervals. Digital photographs and circumference measurements were taken pre-treatment and up to 6 months post-treatment. Nineteen subjects completed three treatments and 16 subjects completed 6-month follow-up. Circumference measurements pre- and post-treatment were not significantly different. Blinded evaluators noted mild improvement in three of seven subjects in high energy group and moderate improvement in two of nine subjects in low energy group. Multiple passes with a long-pulsed 1064 Nd:YAG achieved mild or moderate improvement in some subjects as rated by blinded evaluators.

  14. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Kraus, W; Gahlaut, A; Bansal, G; Chakraborty, A

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  15. Efficacy, tolerability, and safety of a long-pulsed ruby laser system in the removal of unwanted hair.

    Science.gov (United States)

    Polderman, M C; Pavel, S; le Cessie, S; Grevelink, J M; van Leeuwen, R L

    2000-03-01

    Unwanted hair growth is a common, usually physiologic phenomenon. In this study the efficacy and tolerability of a long-pulsed ruby laser system was compared with needle electrolysis and hot wax on three parts of the body. Thirty volunteers were treated three times on the forearm (n = 10), on the face (n = 10), or in the pubic area (n = 10) with 25 J/cm2 laser, 40 J/cm2 laser, needle electrolysis, and hot wax therapy. The 25 J/cm2 and 40 J/cm2 laser treated sites showed a statistically significant decrease (38% and 49%, respectively) in the number of hairs at the first visit after the last treatment compared to the pretreatment hair counts. No significant decrease was observed in the needle electrolysis and hot wax treated sites. Laser therapy yielded better results on the forearm than on the face or pubic area and was scored as the least painful. The long-pulsed ruby laser is a promising, well-tolerated method of epilation.

  16. Fractional Carbon Dioxide, Long Pulse Nd:YAG and Pulsed Dye Laser in the Management of Keloids.

    Science.gov (United States)

    Annabathula, Ashwini; Sekar, C Shanmuga; Srinivas, C R

    2017-01-01

    Keloids are abnormal wound responses characterised by excessive deposition of collagen and glycoprotein. They are both aesthetically and symptomatically distressing for most of the patients. There are reports of keloid management with pulsed dye laser (PDL), fractional carbon dioxide (CO2) laser and neodymium-doped yttrium aluminium garnet (Nd:YAG) laser individually and also in combination of CO2 with PDL and CO2 with Nd:YAG. Here, we discuss a combination of all the 3 lasers as a therapy for keloids. This study aims to assess the efficacy of fractional CO2 laser, long pulse Nd:YAG laser and PDL in the management of keloids. Fifteen patients with keloids were treated by fractional CO2 laser, followed by PDL and long pulse Nd:YAG laser at monthly intervals. Four patients discontinued the study and were lost for follow-up. Photographs were taken at the beginning of the treatment and at the end of five sessions. Clinical improvement was analysed based on a visual analogue scale graded by three blinded observers after assessing the clinical photographs for the improvement in size, colour and aesthetic impression. Of the 11 patients, one patient had excellent improvement, one patient had good improvement, four patients had moderate improvement, two patients had mild improvement and three had no improvement. Lasers may have a synergistic effect when combined with other modalities of treatment but cannot be used as monotherapy in the treatment of keloids.

  17. Upgrade of a 30 kV/10 mA anode power supply for triode type gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Siravo, Ugo, E-mail: ugo.siravo@epfl.ch; Alberti, Stefano; Dubray, Jérémie; Fasel, Damien; Hogge, Jean-Philippe; Marlétaz, Blaise; Marmillod, Philippe; Perez, Albert; Silva, Miguel

    2015-10-15

    Highlights: • Triode type gyrotron is fed by 3 power supplies: the main, an anode PS(APS) and a heater. • This paper presents the upgrade of 3APS, supplied in 1999, that never fulfilled the specs. • The new working principle is very efficient, easy to implement, for a minimal cost. • Upgraded APS provides extended modulation capabilities, no overshoot and lowerripple. • This upgrade will allow exploring new operation regimes for the 3 TCV X3 gyrotrons. - The RF power of a gyrotron with a triode type magnetron-injection-gun (MIG) can be directly controlled via the voltage applied between its anode and its cathode. Hence, the performance of this type of gyrotron relies directly on the possibilities offered by the power supply controlling the anode to cathode voltage. For a system of gyrotrons connected to the same main high-voltage power supply, with a triode MIG one has the additional advantage of independently controlling each individual gyrotron. This paper presents the modifications brought to the three existing 30 kV/10 mA anode power supplies connected to the 500 kW/118 GHz/2s X3 gyrotrons operated on the TCV Tokamak. The new working principle based on phase-shift modulation (PSM) is described in detail. Experimental results obtained on dummy load are compared to simulations performed during the design phase. With respect to the initial working principle, the modulation frequency capability has been increased by a factor 10 reaching more than 5 kHz, whereas the output voltage ripple as well as the overshoot/undershoot have been significantly reduced.

  18. A 0.33-THz second-harmonic frequency-tunable gyrotron

    Science.gov (United States)

    Zheng-Di, Li; Chao-Hai, Du; Xiang-Bo, Qi; Li, Luo; Pu-Kun, Liu

    2016-02-01

    Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).

  19. Experimental Study Of A 1.5-mw, 110-ghz Gyrotron Oscillator

    CERN Document Server

    Anderson, J P

    2005-01-01

    This thesis reports the design, construction and testing of a 1.5 MW, 110 GHz gyrotron oscillator. This high power microwave tube has been proposed as the next evolutionary step for gyrotrons used to provide electron cyclotron heating required in fusion devices. A short pulse gyrotron based on the industrial tube design was built at MIT for experimental studies. The experiments are the first demonstration of such high powers at 110 GHz. Using a 96 kV, 40 A electron beam, over 1.4 MW was axially extracted in the design (TE22,6) mode in 3 μs pulses, corresponding to a microwave efficiency of 37%. The beam alpha, the ratio of transverse to axial velocity in the electron beam, was measured with a probe. At the high efficiency operating point the beam alpha was measured as 1.33. This value of alpha is less than the design value of 1.4, possibly accounting for the slightly reduced experimental efficiency. The output power and efficiency, as a function of magnetic field, beam voltage, and beam current, are in...

  20. Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge

    Science.gov (United States)

    Batanov, German M.; Borzosekov, Valentin D.; Golberg, Dmitri; Iskhakova, Ludmila D.; Kolik, Leonid V.; Konchekov, Evgeny M.; Kharchev, Nikolai K.; Letunov, Alexander A.; Malakhov, Dmitry V.; Milovich, Filipp O.; Obraztsova, Ekaterina A.; Petrov, Alexander E.; Ryabikina, Irina G.; Sarksian, Karen A.; Stepakhin, Vladimir D.; Skvortsova, Nina N.

    2016-01-01

    We introduce an approach toward the synthesis of micro- and nanostructures under nonequilibrium microwave discharges within metal-dielectric powder mixtures induced by powerful microwave gyrotron radiation. A new plasma-chemical reactor capable of sustaining a discharge regime with an afterglow phase of an order of magnitude longer than the gyrotron pulse duration was constructed for these experiments. In the nonequilibrium conditions of such a discharge, plasma-induced exothermic chemical reactions leading to the synthesis of various compounds were initiated. The synthesized structures were deposited on the reactor walls and on the impurity particles within the reactor. This method was tested under gyrotron-initiated discharges within various metal-dielectric powder mixtures of titanium-boron, molybdenum-boron, titanium-silicon-boron, molybdenum-boron nitride, molybdenum-tungsten-boron nitride, and so on. Depending on the powder mixture composition, reactor atmosphere, and other parameters, micro- and nanosized particles of boron nitride, titanium diboride, molybdenum boride, titanium boride, molybdenum, and molybdenum oxide, were synthesized, detected, and analyzed.

  1. Commissioning results of the 0.5 MW/68 GHz/1.0 s gyrotron on HL-2A electron cyclotron resonance heating system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He, E-mail: wangh@swip.ac.cn; Rao, Jun; Huang, Mei; Zhou, Jun; Wang, Chao; Kang, Zihua; Wang, Mingwei; Feng, Kun; Chen, Gangyu; Lu, Bo; Wang, Jieqiong

    2015-12-15

    Highlights: • A test stand for the test of gyrotron is introduced. • Test results show that the output power of gyrotron has a close relation to the high voltage, magnet current and heater power. • The measurement method of operation frequency and output power of gyrotron is introduced. - Abstract: To obtain the optimum operation status of gyrotrons, it is necessary to commissioning the gyrotrons before EC wave injected into plasma for ECRH system on HL-2A tokamak. A test stand has been set up for conditioning the 0.5 MW/68 GHz/1.0 s gyrotrons. The specific test results of gyrotrons are described and discussed in this paper, which include measuring the beam profile by using burn paper at the outlet of MOU and calorimetric dummy load, testing the maximum output power and pulse width on dummy load and getting the dependence between output power and magnetic field current, filament power and high voltage powers. Meanwhile, the operation frequency of gyrotron is also measured in the test.

  2. Experimental Research on a 1.5 MW, 110 GHz Gyrotron with a Smooth Mirror Internal Mode Converter

    Science.gov (United States)

    Tax, D. S.; Mastovsky, I.; Shapiro, M. A.; Temkin, R. J.; Torrezan, A. C.

    2010-11-01

    Megawatt gyrotrons are important for electron cyclotron heating (ECH) of fusion plasmas, including ITER. These gyrotrons should operate with high efficiency to reduce the prime power required and to ensure good reliability. The gyrotron efficiency is affected both by the physical principles that govern the device and the performance of components like the internal mode converter (IMC), which must convert the electromagnetic cavity mode into a Gaussian beam. An IMC consisting of a helically-cut launcher and three smooth curved mirrors, which is less susceptible to alignment errors than an IMC using mirrors with phase correcting surfaces, was recently tested on a 1.5 MW, 110 GHz, 3μs pulsed gyrotron operating in the TE22,6 mode, and an output beam with 95.8 ± 0.5 % Gaussian beam content was measured in both hot and cold tests. We are also examining the issue of mode competition in the gyrotron, which can limit the achievable output power and efficiency. The sequence of competing modes excited during the rise time of the voltage pulse has been measured and results are compared with the numerical simulation code MAGY. These results should provide a good test of the accuracy of the code.

  3. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    Science.gov (United States)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  4. Measurement of the composition change in Al5754 alloy during long pulsed Nd : YAG laser welding based on LIBS

    Science.gov (United States)

    Jandaghi, M.; Parvin, P.; Torkamany, M. J.; Sabbaghzadeh, J.

    2009-10-01

    Weld metal composition change in aluminium alloy 5754 in keyhole mode welding, using a long pulsed Nd : YAG laser, was investigated theoretically and supported with experimental measurements. A comprehensive model for the calculation of vaporization rates was developed based on the kinetic theory of gases and the thermodynamic laws. During the laser welding process, the significant variables were pulse duration and power density. It was predicted in the model and concurred experimentally that the concentration of magnesium in the weld metal decreases with an increase in the laser pulse duration, while the aluminium concentration increases. Moreover, the concentrations of aluminium and magnesium elements in the weld metal were determined by laser induced breakdown spectroscopy for different welding conditions.

  5. Recent progress in R&D for long pulse and ultra-high voltage components for the ITER HNB

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Mieko, E-mail: kashiwagi.mieko@jaea.go.jp; Umeda, Naotaka; Kojima, Atsushi; Yoshida, Masafumi; Tobari, Hiroyuki; Dairaku, Masayuki; Yamanaka, Haruhiko; Maejima, Tetsuya; Yamashita, Yasuo; Shibata, Naoki; Watanabe, Kazuhiro; Hanada, Masaya

    2015-10-15

    Highlights: • Long-pulse acceleration of MeV-class ion beams is demonstrated in JAEA. • The pulse length is extended from 0.4 s to 60 s, successfully. • R&D of 1 MV power supply is in progressed as scheduled. • Feasibility of 1 MV insulating transformer is confirmed in the mockup. - Abstract: Toward ITER, the long-pulse acceleration of MeV-class negative ion beams has been successfully demonstrated and R&Ds and the procurement of high-voltage components of 1 MV power supply system have been progressed. In the accelerator development after the production of 1 MeV beams, an extraction grid, where a water cooling is reinforced and the beam is steered by aperture offset to suppress grid heat loads, has been newly developed to extend the pulse duration of the MeV-class beams. As the result, a total grid heat load has been reduced from 20% to 10% of the total beam power. The beam pulse was successfully increased from 0.4 s to 60 s at 0.68 MeV, 100 A/m{sup 2} and 12 s at 0.89 MeV, 156 A/m{sup 2} beams. As for the procurement of the 1 MV power supply system, 1 MV insulating transformer as the critical component has been developed. In the mock-up, a dc 1.2 MV for 1 h with the margin of 20% was stably sustained. Through the R&Ds of the critical components, design of five power supplies procured by JAEA has been finalized, and out of which a testing power supply has been completed in June 2014.

  6. Long-pulsed Nd:YAG laser-assisted hair removal in Fitzpatrick skin types IV-VI.

    Science.gov (United States)

    Rao, Krishna; Sankar, Thangasamy K

    2011-09-01

    Unwanted hair is a common problem for which a variety of laser treatments is available. Laser treatment in dark-skinned individuals carries a higher risk of complications like hyperpigmentation and burn. The objective of this study was to evaluate efficacy and safety profile of laser-assisted hair removal in individuals with Fitzpatrick type IV-VI skin using long-pulsed Nd:YAG laser. Retrospective data was collected from 150 individuals with Fitzpatrick type IV-VI skin who underwent laser-assisted hair removal. This included area treated, fluence, number of treatments, and outcome. Data was also gathered on patient satisfaction and complications. The most common phototype was type IV (94%). The most frequently treated area was the face (84.7%) followed by the underarms and legs. Among the facial areas, the chin was the most frequently treated area followed by the upper lip and jaw line. The mean number of treatments was 8.9 (range 4-22). The maximum fluence averaged 26.8 Joules/cm(2) and was significantly higher for facial hair. Of the patients, 78.7% felt that their treatment was good or satisfactory. Mean hair reduction was 54.3%. Satisfaction from the treatment was significantly higher in individuals undergoing treatment of non-facial areas. Subsequent hair growth was slower and finer in 79.3% of the patients. There were no complications in 86% of the patients. All the complications were transient, with hyperpigmentation being the most frequent complication. Our results show that laser hair removal using the long-pulsed Nd:YAG laser is safe and effective in dark-skinned individuals with satisfactory results in most patients.

  7. Enhancement of p-polarized output power in long pulse single rod Nd:YAG laser using a tilted 90° quartz rotator

    Science.gov (United States)

    Choubey, Ambar; Mondal, Shyamal; Singh, Ravindra; Upadhyaya, B. N.; Datta, P. K.; Oak, S. M.

    2014-11-01

    We report a study on the enhancement of linearly p-polarized output power in long pulse (2-20 ms) multimode operation of single rod Nd:YAG laser. Laser resonator was designed using a simple optical scheme with a tilted 90° quartz rotator and a re-entering feedback mirror placed at appropriate location. A p-polarized average output power of 215 W has been achieved with a slope efficiency of 4.5%, which is on higher side for a typical long pulse single rod Nd:YAG laser system. It has been verified experimentally that the depolarization losses can be reduced significantly from a value of ~34% to ~9%. Further, this scheme has resulted in a significant enhancement (more than 80%) of p-polarized output power as compared to placing a polarizer in the resonator. This long pulse p-polarized laser will be useful in various material processing applications and nonlinear frequency conversions.

  8. 500-fold enhancement of in situ 13C liquid state NMR using gyrotron-driven temperature-jump DNP

    Science.gov (United States)

    Yoon, Dongyoung; Soundararajan, Murari; Caspers, Christian; Braunmueller, Falk; Genoud, Jérémy; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-09-01

    A 550-fold increase in the liquid state 13C NMR signal of a 50 μL sample was obtained by first hyperpolarizing the sample at 20 K using a gyrotron (260 GHz), then, switching its frequency in order to apply 100 W for 1.5 s so as to melt the sample, finally, turning off the gyrotron to acquire the 13C NMR signal. The sample stays in its NMR resonator, so the sequence can be repeated with rapid cooling as the entire cryostat stays cold. DNP and thawing of the sample are performed only by the switchable and tunable gyrotron without external devices. Rapid transition from DNP to thawing in one second time scale was necessary especially in order to enhance liquid 1H NMR signal.

  9. A double-beam magnetron-injection gun for third-harmonic continuous wave 1-THz gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Glyavin, M. [Faculty of Radiophysics, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), Nizhny Novgorod 603600 (Russian Federation); Research Center for Development of Far Infrared Region, University of Fukui (FIR FU), Fukui-shi 910-8507 (Japan); Manuilov, V. [Faculty of Radiophysics, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Research Center for Development of Far Infrared Region, University of Fukui (FIR FU), Fukui-shi 910-8507 (Japan); Idehara, T. [Research Center for Development of Far Infrared Region, University of Fukui (FIR FU), Fukui-shi 910-8507 (Japan)

    2013-12-15

    The concept of a continuous wave 1-kW/1-THz gyrotron operated at the third cyclotron harmonic of the transverse electric TE{sub 9,7} operating mode has been developed. To suppress the mode competition effects in a terahertz gyrotron, we propose a scheme with two generating helical electron beams (HEBs) formed in a double-beam triode magnetron-injection gun (MIG), where both emitters of the electron beams are located on a common cathode of the conventional MIG. An optimal geometry of the MIG electrodes is found. It is shown that in a proposed scheme two HEBs having close pitch factors and a moderate velocity spread can be formed. This makes them suitable for high-efficiency single-mode generation in the high frequency gyrotron at high harmonic.

  10. Design of the all solid high-voltage power supply for a gyrotron body

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yihua [School of Mathematics and Physics, University of South China, Hengyang, 421001 (China); Chen, Wenguang, E-mail: 430000485393@usc.edu.cn [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Hu, Bo [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Rao, Jun; Huang, Mei; Kang, Zihua; Feng, Kun [Southwestern Institute of Physics, Chengdu, 610041 (China); Huang, Jiaqi [School of Electrical Engineering, University of South China, Hengyang, 421001 (China)

    2017-04-15

    Highlights: • Completed design of all solid-state high-voltage power supply for gyrotron body on HL-2M ECRH. • Consist of 58 PSM modules and one BUCK module, controlled by DSP system. • Fabricated full voltage 35 kV, 200 mA BPS and tested in dummy load. • The BPS can operate in three modes: single pulse mode, multi-pulse modulation mode and the six-level preset mode. - Abstract: Gyrotron plays an important role in the research of electron cyclotron resonance heating (ECRH) on Tokomak. The high-frequency switched power supply technology and pulse step modulation (PSM) technology are used in the development of the all solid high-voltage body power supply (BPS) for 1 MW/105 GHz Gyrotron on ECRH system. Firstly, the basic structure of the BPS and its control system are introduced. Secondly, the software control algorithm of voltage stabilization and modulate method are developed. Finally, the design is verified by the experiments. The experimental results of the single pulse mode, the multi-pulse modulation mode and the six-level preset mode, are shown. The output voltage of the power supply can reach 35 kV and the current at about 200 mA, which are adjustable in the full range. The maximum modulation frequency can reach 1 kHz and the front edge of the pulse can be adjust from 0 to 3 ms and the accuracy of the output voltage is less than 100 V. The results show that the control method is feasible and can be applied to other high power microwave sources.

  11. Design of a system for conversion of gyrotron output into a gaussian beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, I. [Faculty of Engineering, Fukui Univ., Fukui (Japan); Idehara, T.; Sabchevski, S.; Glyavin, M.; Mitsudo, S. [Research Center for Development of Far-Infrared Region, Fukui Univ., Fukui (Japan); Sato, M.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Brand, G.F. [School of Physics, Univ. of Sydney, NSW (Australia)

    2000-03-01

    A quasi-optical system consisting of a quasi-optical antenna, two ellipsoidal mirrors and a filter to block sidelobes can convert four TE{sub 1n} mode outputs of the Gyrotron FU IVA into gaussian-like beams with waist size of 16.3 mm. This system can convert three TE{sub 0n} mode outputs into bigaussian-like beams with waist size of 23.5 mm in width and 16.4 mm in length. (author)

  12. Test of a two-dimensionally focusing quasi-optical antenna using a gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Tatsukawa, T.; Brand, G.F.; Fekete, P.W.; Moore, K.J.

    1989-05-01

    A quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for millimeter wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. This letter reports the first demonstration of the properties of such an antenna using a gyrotron millimeter wave source. Its advantages are (1) good two-dimensional focusing (along the major radius and the toroidal directions) and (2) easy movement of the focus across the diameter of the plasma by changing the orientation of the parabolic reflector.

  13. Particle simulation of a ka-band gyrotron traveling wave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shouxi; Liu Pukun; Zhang Shichang; Du Chaohai; Xue Qianzhong; Geng Zhihui; Su Yinong [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, P.O. Box 2652, Beijing 100190 (China)

    2011-08-15

    The design of a ka-band gyrotron traveling wave (gyro-TWT) amplifier is presented. The gyro-TWT amplifier with a severed structure operates in the fundamental harmonic TE{sub 01} circular electric mode. The beam-wave interaction is studied by using a particle-in-cell (PIC) code. The simulations predict that the amplifier can produce an output peak power of over 155 kW, 22% efficiency, 23 dB gain, and a 3 dB bandwidth of 2 GHz for a 70 kV, 10 A electron beam with an axial velocity spread {Delta}v{sub z}/v{sub z}=5%.

  14. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    Science.gov (United States)

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  15. Design of a 75-140 GHz high-pass printed circuit board dichroic filter

    Science.gov (United States)

    Kim, Dong Hwi; Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook

    2017-03-01

    A new high-performing PCB (Printed Circuit Board) dichroic filter, which can be used for the KSTAR (Korea Superconducting Tokamak Advanced Research) electron cyclotron emission imaging system, is proposed. The current dichroic filter consists of a triangular lattice array of circular holes on the 6-mm thick metal plate, while circular hole spacing limitation caused relatively narrow passband (˜20 GHz). On the other hand, the proposed PCB dichroic filter utilizes the inexpensive commercial PCB fabrication process with a flexible adjustment of circular hole spacing. Therefore, the proposed PCB dichroic filter provides significantly wider passband (˜60 GHz with 0.84 dB insertion loss) with much reduced weight and expense. Also, it is shown that a steep skirt property can be obtained with the thick PCB filter substrate. The design process, fabrication, and measurement results of the new PCB dichroic filter are described.

  16. A Research of 140-GHz Folded Rectangular Gro ove Waveguide Traveling-Wave Tub e

    Institute of Scientific and Technical Information of China (English)

    ZHANG Minghao; WEI Yanyu; YUE Lingna; GUO Guo; WANG Yuanyuan; SHI Xianbao; WANG Wenxiang

    2015-01-01

    A two-section Folded rectangular groove waveguide (FRGWG) Slow wave structure (SWS) Travel-ing wave tube (TWT) with large dimension of beam tunnel is studied. Compared with the Folded waveguide (FWG) under the same size parameters conditions, the interac-tion impedance and center frequency of the FRGWG are higher. The advantage is that a beam tunnel with large dimension can be applied to the FRGWG without the influence caused by signal decrease, reflection and oscil-lation. The microwave amplification capability based on beam-wave interaction is obtained through the particle-in-cell method. This circuit structure can produce an output power of over 100W ranging from 136 to 142GHz when the operation voltage and beam current are set as 18.4kV and 150mA, respectively, for a 95mm long circuit.

  17. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    Science.gov (United States)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  18. Intense pulsed light vs. long-pulsed dye laser treatment of telangiectasia after radiotherapy for breast cancer: a randomized split-lesion trial of two different treatments

    DEFF Research Database (Denmark)

    Nymann, P.; Hedelund, L.; Hædersdal, Merete

    2009-01-01

    Background Chronic radiodermatitis is a common sequela of treatment for breast cancer and potentially a psychologically distressing factor for the affected women. Objectives To evaluate the efficacy and adverse effects of treatments with a long-pulsed dye laser (LPDL) vs. intense pulsed light (IPL...

  19. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    Science.gov (United States)

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  20. Studies of craters' dimension for long-pulse laser ablation of metal targets at various experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Margarone, D. [Dipartimento di Fisica, Universita di Messina, Ctr. Papardo-Sperone, 31, 98166 S. Agata, Messina (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania (Italy)], E-mail: margarone@lns.infn.it; Laska, L. [Institute of Physics, A.S.C.R., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Torrisi, L. [Dipartimento di Fisica, Universita di Messina, Ctr. Papardo-Sperone, 31, 98166 S. Agata, Messina (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania (Italy); Gammino, S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania (Italy); Krasa, J.; Krousky, E. [Institute of Physics, A.S.C.R., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Parys, P. [Institute of Plasma Physics and Laser Microfusion, Hery St. 23, 00-908 Warsaw (Poland); Pfeifer, M.; Rohlena, K. [Institute of Physics, A.S.C.R., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Rosinski, M.; Ryc, L. [Institute of Plasma Physics and Laser Microfusion, Hery St. 23, 00-908 Warsaw (Poland); Skala, J.; Ullschmied, J.; Velyhan, A. [Institute of Physics, A.S.C.R., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Hery St. 23, 00-908 Warsaw (Poland)

    2008-02-28

    Long pulse laser shots of the PALS iodine laser in Prague have been used to obtain metal target ablation at various experimental conditions. Attention is paid mainly to the dependencies of the crater diameter on the position of minimum laser-focus spot with regard to the target surface, by using different laser wavelengths and laser energies. Not only a single one, but two minima, independently of the wavelength, of the target irradiation angle and of the target material, were recorded. Significant asymmetries, ascribed to the non-linear effects of intense laser beam with pre-formed plasma, were found, too. Estimations of ejected mass per laser pulse are reported and used to calculate the efficiency of laser-driven loading. Results on metal target ablation and crater formation at high intensities (from 2 x 10{sup 13} to 3 x 10{sup 16} W/cm{sup 2}) are presented and compared. Crater depth, crater diameter and etching yield are reported versus the laser energy, in order to evaluate the ablation threshold fluence.

  1. Demonstration of ITER relevant LHCD operation: large distance coupling in JET and long pulse operation in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A.; Basiuk, V.; Beaumont, B.; Bibet, Ph.; Delpech, L.; Goniche, M.; Imbeaux, F.; Joffrin, E.; Kazarian, F.; Litaudon, X.; Maget, P.; Martin, G.; Mazon, D.; Peysson, Y.; Prou, M.; Rimini, F.G.; VanHoutte, D. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Baranov, Y.; Erents, S.K.; Lomas, P.J.; Mailloux, J.; McDonald, D.C.; Stamp, M. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Granucci, G. [Association Euratom-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Silva, C. [Association Euratom-IST, Centro de Fusao Nuclear, Lisboa (Portugal)

    2004-07-01

    Lower hybrid current drive (LHCD) is one of the most efficient methods for off-axis non-inductive current drive in tokamaks and is therefore used for shaping the plasma current profile in advanced tokamak scenarios. Its usefulness has been demonstrated in the advanced scenario experiments in JET, but the question has remained about the possibility of coupling lower hybrid (LH) waves in ITER. This paper reports on recent results obtained in JET and Tore-Supra, that both demonstrate operation of LHCD systems in ITER relevant regimes: -) LH coupling on ELMs (edge localized mode) plasmas up to 11 cm distance between the launcher and the separatrix in JET, and -) steady state, full non-inductive LHCD operation during 6 minutes in Tore Supra. The foreseen upgrade of the Tore Supra LHCD system will allow the extension of operating domain to higher power and higher performance, and will demonstrate the long pulse and coupling capability of a passive multijunction (PAM) launcher, as foreseen for ITER.

  2. Service-oriented architecture of adaptive, intelligent data acquisition and processing systems for long-pulse fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Ruiz, M., E-mail: mariano.ruiz@upm.e [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Barrera, E.; Lopez, J.M.; Arcas, G. de [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    The data acquisition systems used in long-pulse fusion experiments need to implement data reduction and pattern recognition algorithms in real time. In order to accomplish these operations, it is essential to employ software tools that allow for hot swap capabilities throughout the temporal evolution of the experiments. This is very important because processing needs are not equal during different phases of the experiment. The intelligent test and measurement system (ITMS) developed by UPM and CIEMAT is an example of a technology for implementing scalable data acquisition and processing systems based on PXI and CompactPCI hardware. In the ITMS platform, a set of software tools allows the user to define the processing algorithms associated with the different experimental phases using state machines driven by software events. These state machines are specified using the State Chart XML (SCXML) language. The software tools are developed using JAVA, JINI, an SCXML engine and several LabVIEW applications. Within this schema, it is possible to execute data acquisition and processing applications in an adaptive way. The power of SCXML semantics and the ability to work with XML user-defined data types allow for very easy programming of the ITMS platform. With this approach, the ITMS platform is a suitable solution for implementing scalable data acquisition and processing systems based on a service-oriented model with the ability to easily implement remote participation applications.

  3. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  4. Development of problem-oriented software packages for numerical studies and computer-aided design (CAD) of gyrotrons

    Science.gov (United States)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-03-01

    Gyrotrons are the most powerful sources of coherent CW (continuous wave) radiation in the frequency range situated between the long-wavelength edge of the infrared light (far-infrared region) and the microwaves, i.e., in the region of the electromagnetic spectrum which is usually called the THz-gap (or T-gap), since the output power of other devices (e.g., solid-state oscillators) operating in this interval is by several orders of magnitude lower. In the recent years, the unique capabilities of the sub-THz and THz gyrotrons have opened the road to many novel and future prospective applications in various physical studies and advanced high-power terahertz technologies. In this paper, we present the current status and functionality of the problem-oriented software packages (most notably GYROSIM and GYREOSS) used for numerical studies, computer-aided design (CAD) and optimization of gyrotrons for diverse applications. They consist of a hierarchy of codes specialized to modelling and simulation of different subsystems of the gyrotrons (EOS, resonant cavity, etc.) and are based on adequate physical models, efficient numerical methods and algorithms.

  5. Operation experiences of the super conducting magnet for a gyrotron of the JT-60U ECH system

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Koichi; Seki, Masami; Shimono, Mitsugu; Terakado, Masayuki; Ishii, Kazuhiro; Takahashi, Masami [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    The JT-60U electron cyclotron heating (ECH) system can heat plasmas locally and drive a plasma current with four 1 MW-5 sec gyrotrons. The super conducting magnets (SCM) are required for oscillation of the gyrotron at a working frequency of 110 GHz. The SCM provides a high magnetic field of 4.5T at the cavity inside the gyrotron. This SCM system is characterized by 1) operation without liquid Helium owing to a 4K-refrigerator applied to the magnetic coils, 2) easy maintenance. Operational experiences about the SCM system through a long term experiment for a high power gyrotron are very valuable. According to those operational experiences, it is clarified the 4K-refrigerator should be renewed in order to keep low temperature of the SCM. It is also found that 200 hours or less are required for the super conducting condition (<5K) after long stopping time of the refrigerator up to 150 hours. This is useful information for making a plan about ECH experiments. (author)

  6. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    Science.gov (United States)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  7. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  8. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh-225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)

    2014-09-15

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  9. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    Science.gov (United States)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  10. Long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet laser treatment for refractory warts on hands and feet.

    Science.gov (United States)

    Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Suga, Yasushi

    2014-03-01

    Common warts (verruca vulgaris) are the most commonly seen benign cutaneous tumors. However, warts in the hands and feet regions often respond poorly to treatment, some are resistant to more than 6 months of treatment with currently available modalities, including cryotherapy, being defined as refractory warts. We investigated the usefulness of long-pulsed neodymium:yttrium-aluminum-garnet (LP-Nd:YAG) treatment for refractory warts. The clinical trial was conducted on 20 subjects (11 male, nine female) with a total of 34 lesions (periungual/subungual areas, plantar areas, fingers and/or toes). All the subjects suffered from refractory warts despite conventional treatments for more than 6 months. The patients were administrated up to six sessions of treatment, at intervals of 4 weeks between sessions, with an LP-Nd:YAG at a spot size of 5 mm, pulse duration of 15 msec and fluence of 150-185 J/cm(2) . Evaluation of the treatment results at 24 weeks after the initial treatment showed complete clearance of the refractory warts in 56% of the patients. Histological evaluation showed separation of the dermis and epidermis at the basement membrane with coagulated necrosis of the wart tissue in the lower epidermis, as well as coagulation and destruction of the blood vessels in the papillary dermis following the laser irradiation. No scarring, post-hyperpigmentary changes or serious adverse events were documented. Our preliminary results show that LP-Nd:YAG treatments are safe and effective for refractory warts of hands and feet, causing minimal discomfort, and is a viable treatment alternative. © 2014 Japanese Dermatological Association.

  11. Configuration and supervision of advanced distributed data acquisition and processing systems for long pulse experiments using JINI technology

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Joaquin; Ruiz, Mariano [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (UPM), Ctra. Valencia Km-7, 28031, Madrid (Spain); Barrera, Eduardo [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (UPM), Ctra. Valencia Km-7, 28031, Madrid (Spain)], E-mail: eduardo.barrera@upm.es; Lopez, Juan Manuel; de Arcas, Guillermo [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (UPM), Ctra. Valencia Km-7, 28031, Madrid (Spain); Vega, Jesus [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040, Madrid (Spain)

    2009-06-15

    The development of tools for managing the capabilities and functionalities of distributed data acquisition systems is essential in long pulse fusion experiments. The intelligent test and measurement system (ITMS) developed by UPM and CIEMAT is a technology that permits implementation of a scalable data acquisition and processing system based on PXI or CompactPCI hardware. Several applications based on JINI technology have been developed to enable use of this platform for extensive implementation of distributed data acquisition and processing systems. JINI provides a framework for developing service-oriented, distributed applications. The applications are based on the paradigm of a JINI federation that supports mechanisms for publication, discovering, subscription, and links to remote services. The model we implemented in the ITMS platform included services in the system CPU (SCPU) and peripheral CPUs (PCPUs). The resulting system demonstrated the following capabilities: (1) setup of the data acquisition and processing to apply to the signals, (2) information about the evolution of the data acquisition, (3) information about the applied data processing and (4) detection and distribution of the events detected by the ITMS software applications. With this approach, software applications running on the ITMS platform can be understood, from the perspective of their implementation details, as a set of dynamic, accessible, and transparent services. The search for services is performed using the publication and subscription mechanisms of the JINI specification. The configuration and supervision applications were developed using remotely accessible (LAN or WAN) objects. The consequence of this approach is a hardware and software architecture that provides a transparent model of remote configuration and supervision, and thereby a means to simplify the implementation of a distributed data acquisition system with scalable and dynamic local processing capability developed in a

  12. Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime

    Science.gov (United States)

    Prost, Amaury; Poisson, Florian; Bossy, Emmanuel

    2015-09-01

    We investigate theoretically the photoacoustic generation by a gold nanosphere in water in the thermoelastic regime. Specifically, we consider the long-pulse illumination regime, in which the time for electron-phonon thermalization can be neglected and photoacoustic wave generation arises solely from the thermoelastic stress caused by the temperature increase of the nanosphere or its liquid environment. Photoacoustic signals are predicted based on the successive resolution of a thermal diffusion problem and a thermoelastic problem, taking into account the finite size of the gold nanosphere, thermoelastic and elastic properties of both water and gold, and the temperature dependence of the thermal expansion coefficient of water. For sufficiently high illumination fluences, this temperature dependence yields a nonlinear relationship between the photoacoustic amplitude and the fluence. For nanosecond pulses in the linear regime, we show that more than 90 % of the emitted photoacoustic energy is generated in water, and the thickness of the generating layer around the particle scales close to the square root of the pulse duration. The amplitude of the photoacoustic wave in the linear regime is accurately predicted by the point-absorber model introduced by Calasso et al. [Phys. Rev. Lett. 86, 3550 (2001), 10.1103/PhysRevLett.86.3550], but our results demonstrate that this model significantly overestimates the amplitude of photoacoustic waves in the nonlinear regime. We therefore provide quantitative estimates of a critical energy, defined as the absorbed energy required such that the nonlinear contribution is equal to that of the linear contribution. Our results suggest that the critical energy scales as the volume of water over which heat diffuses during the illumination pulse. Moreover, thermal nonlinearity is shown to be expected only for sufficiently high ultrasound frequency. Finally, we show that the relationship between the photoacoustic amplitude and the

  13. Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser

    Science.gov (United States)

    Pan, Yunxiang; Wang, Bin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2013-04-01

    A model containing an inclusion matrix heated by a millisecond laser is proposed to calculate temperature and thermal stress fields of K9-glass using a finite element method. First, the evolution of temperature and thermal stress fields is analyzed. Results show that both the upper and lower surfaces are damaged. K9-glass is primarily damaged by the combination of radial and axial stresses. Calculated damage morphology is mainly determined by radial stress. Then damage morphology evolution with the increase of the incident laser energy is investigated, which shows that damage area spreads inward from both the front and rear surfaces. Finally, experimental results of long-pulse laser damage of K9-glass are analyzed. The comparison of numerical results with experimental observations shows a good correlation in damage morphology, which indicates that the built inclusion matrix model is applicable to long-pulse laser damage in K9-glass.

  14. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  15. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation%Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    G. Yu. YUSHKOV; K. P. SAVKIN; A. G. NIKOLAEV; E. M. OKS; A.V. VODOPYANOV; I. V. IZOTOV; D. A. MANSFELD

    2011-01-01

    A new method for the generation of high charged state metal ion beams is developed. This method is based on microwave heating of vacuum arc plasma in a magnetic trap under electron cyclotron resonance (ECR) conditions. Two gyrotrons for plasma heating were used, which were with the following parameters. The first is with a wave frequency of 37.5 GHz, a pulse duration of 1 ms and power of 100 kW, another is with 75 GHz, 0.15 ms and 400 kW. Two different magnetic traps were considered for vacuum arc plasma confinement. The first one is a simple mirror trap. Such system was already investigated and could provide high charge state ions. The second trap was with a cusp magnetic field configuration with native "minimum-B" field structure. Two different ways of metal plasma injection into the magnetic trap were used. The first one is an axial injection from an arc source located out of the trap, and the second is a radial injection from four arc sources mounted at the center of the trap. Both traps provide up to 200 eMA of ion beam current for platinum ions with highest charge state 10+. Ion beams were successfully extracted from the plasma and accelerated by a voltage of up to 20 kV.

  16. Demonstration of long-pulse acceleration of high power positive ion beam with JT-60 positive ion source in Japan–Korea joint experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Naka (Japan); Hanada, M. [Japan Atomic Energy Agency, Naka (Japan); Jeong, S.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chang, D.H.; Kim, T.S.; Lee, K.W.; Park, M.; Jung, B.K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mogaki, K.; Komata, M.; Dairaku, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, Naka (Japan)

    2016-01-15

    The long-pulse acceleration of the high-power positive ion beam has been demonstrated with the JT-60 positive ion source in the joint experiment among Japan Atomic Energy Agency (JAEA), Korea Atomic Energy Research Institute (KAERI) and National Fusion Research Institute (NFRI) under the collaboration program for the development of plasma heating and current drive systems. In this joint experiment, the increase of the heat load and the breakdowns induced by the degradation of the beam optics due to the gas accumulation was one of the critical issues for the long-pulse acceleration. As a result of development of the long-pulse operation techniques of the ion source and facilities of the neutral beam test stand in KAERI, 2 MW 100 s beam has been achieved for the first time. The achieved beam performance satisfies the JT-60SA requirement which is designed to be a 1.94 MW ion beam power from an ion source corresponding to total neutral beam power of 20 MW with 24 ion sources. Therefore, it was found that the JT-60 positive ion sources were applicable in the JT-60SA neutral beam injectors. Moreover, because this ion source is planned to be a backup ion source for KSTAR, the operational region and characteristic has been clarified to apply to the KSTAR neutral beam injector.

  17. Dynamics simulation on long pulse high power foilless diode%长脉冲高功率无箔二极管动力学模拟

    Institute of Scientific and Technical Information of China (English)

    向飞; 李春霞; 谭杰

    2011-01-01

    The dynamics behaviors of high power long pulse foilless diode were analyzed on the basis of diode design theory.The result indicated that the back flowing electrons must be cut off, and can not bombard the dielectric surface and the wall of the foil-less diode tube. In the experiment on the diode used on a long pulse linear transformer driver, through shielding design for the diode's cathode structure, a long pulse high power annular electron beam with power up to 5 GW was obtained with repetition frequency of 25 Hz and energy transmission efficiency over 95 %.%从二极管设计基础出发,对高功率无箔二极管动力学特征进行了模拟分析.结果表明:电子回轰必须被隔断,不仅不能让其轰击支撑绝缘体,也不能轰击二极管管壁.在直线变压器长脉冲功率源二极管实验研究中,通过合理设计阴极屏蔽座,获得了重复频率25 Hz、功率约5 GW、功率传输系数超过95%的环形电子束输出.

  18. Pulsed dye laser versus long pulsed Nd:YAG laser in the treatment of angiokeratoma of Fordyce: A randomized, comparative, observer-blinded study.

    Science.gov (United States)

    Ibrahim, S M

    2016-01-01

    Angiokeratoma of Fordyce is typically asymptomatic, blue-to-red papules with a scaly surface located on the scrotum, shaft of penis or labia majora. They can be treated with some locally destructive treatment modalities such as excision, electrocoagulation, cryotherapy and laser. To compare the effects of the pulsed dye laser versus long pulsed Nd:YAG laser in the treatment of angiokeratoma of Fordyce. Twenty tow patients with angiokeratoma of Fordyce were included in this study. All participants received three sessions of pulsed dye laser on the selected side or part of lesional area and long pulsed Nd:YAG laser on the other side or part of lesional area. Two dermatologists independently evaluated the photographs of the baseline and two-month follow-up after last session using a grade system in which treatment response was categorized into six grades. Both PDL and long pulsed Nd:YAG laser revealed statistically significant improvements in angiokeratoma of fordyce. Comparatively, there was a statistical difference between them (overall mean improvement with PDL, 61.8%, versus Nd:YAG, 77.63%; p laser are effective and safe in the treatment of angiokeratoma of Fordyce with better response in Nd:YAG laser than pulsed dye laser.

  19. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas;

    2016-01-01

    We propose a diagnostic capable of measuring 2D fast-ion velocity distribution functions 푓2퐷푣 in the MeV-range in magnetized fusion plasmas. Today velocity-space tomography based on fast-ion D훼 spectroscopy is regularly used to measure 푓2퐷푣 for ion energies below 100 keV. Unfortunately, the signal......-tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  20. J-TEXT WebScope: An efficient data access and visualization system for long pulse fusion experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei, E-mail: zhenghaku@gmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China); Wan, Kuanhong; Chen, Zhi; Hu, Feiran; Liu, Qiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology in Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering in Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    Highlights: • No matter how large the data is, the response time is always less than 500 milliseconds. • It is intelligent and just gives you the data you want. • It can be accessed directly over the Internet without installing special client software if you already have a browser. • Adopt scale and segment technology to organize data. • To support a new database for the WebScope is quite easy. • With the configuration stored in user’s profile, you have your own portable WebScope. - Abstract: Fusion research is an international collaboration work. To enable researchers across the world to visualize and analyze the experiment data, a web based data access and visualization tool is quite important [1]. Now, a new WebScope based on RIA (Rich Internet Application) is designed and implemented to meet these requirements. On the browser side, a fluent and intuitive interface is provided for researchers at J-TEXT laboratory and collaborators from all over the world to view experiment data and related metadata. The fusion experiments will feature long pulse and high sampling rate in the future. The data access and visualization system in this work has adopted segment and scale concept. Large data samples are re-sampled in different scales and then split into segments for instant response. It allows users to view extremely large data on the web browser efficiently, without worrying about the limitation on the size of the data. The HTML5 and JavaScript based web front-end can provide intuitive and fluent user experience. On the server side, a RESTful (Representational State Transfer) web API, which is based on ASP.NET MVC (Model View Controller), allows users to access the data and its metadata through HTTP (HyperText Transfer Protocol). An interface to the database has been designed to decouple the data access and visualization system from the data storage. It can be applied upon any data storage system like MDSplus or JTEXTDB, and this system is very easy to

  1. The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios

    Science.gov (United States)

    Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Darrow, D. S.; Efthimion, P. C.; Fredrickson, E. D.; Gates, D. A.; Gilmore, M.; Grisham, L. R.; Hosea, J. C.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Maingi, R.; Manickam, J.; Maqueda, R.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Ono, M.; Paoletti, F.; Park, H. K.; Paul, S. F.; Peng, Y.-K. M.; Phillips, C. K.; Ramakrishnan, S.; Raman, R.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Skinner, C. H.; Soukhanovskii, V.; Stevenson, T.; Stutman, D.; Swain, D. W.; Taylor, G.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Budny, R.; Carter, M. D.; Chang, C. S.; Chrzanowski, J.; Davis, W.; Deng, B.; Doyle, E. J.; Dudek, L.; Egedal, J.; Ellis, R.; Ferron, J. R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Goldston, R. J.; Harvey, R.; Hatcher, R. E.; Hawryluk, R. J.; Heidbrink, W.; Hill, K. W.; Houlberg, W.; Jarboe, T. R.; Jardin, S. C.; Ji, H.; Kalish, M.; Lawrance, J.; Lao, L. L.; Lee, K. C.; Levinton, F. M.; Luhmann, N. C.; Majeski, R.; Marsala, R.; Mastravito, D.; Mau, T. K.; McCormack, B.; Menon, M. M.; Mitarai, O.; Nagata, M.; Nishino, N.; Okabayashi, M.; Oliaro, G.; Pacella, D.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Pinsker, R.; Porter, G. D.; Ram, A. K.; Redi, M.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Schaffer, M.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Takase, Y.; Tang, X.; Vero, R.; Wampler, W. R.; Wurden, G. A.; Xu, X. Q.; Yang, J. G.; Zeng, L.; Zhu, W.

    2003-12-01

    A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with \\beta _T \\equiv \\langle p \\rangle /(B_{T0}^{2}/2\\mu_{0}) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparision of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m-2 has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique

  2. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior

    Science.gov (United States)

    Kalaria, P. C.; Avramidis, K. A.; Franck, J.; Gantenbein, G.; Illy, S.; Pagonakis, I. Gr.; Thumm, M.; Jelonnek, J.

    2016-09-01

    High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power with an interaction efficiency of 36% including the considerations of realistic beam parameters.

  3. Thermal and Structural Analysis and its Effect on Beam-Wave Interaction for 170-GHz, 1-MW Gyrotron Cavity

    Science.gov (United States)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Khatun, Hasina; Vyas, V.; Sinha, A. K.

    2012-04-01

    In this paper thermal and structural analysis for 170 GHz, 1 MW gyrotron interaction cavity and the effect of structural deformation on beam wave interaction is presented. Finite element analysis codes ANSYS has been used for the thermal and structural analysis. Electromagnetic simulator-MAGIC, a Particle-in-Cell (PIC) code, has been used to carry out the effect of the radial expansion of the interaction cavity on beam wave interaction. The change in output power and resonant frequency for operating mode TE34,10 due to thermal expansion is 10 kW and 0.07 GHz, respectively. These values are under the tolerance limit of power and frequency of the gyrotron. The major variation is found in the power growth stability time.

  4. Long pulsed Nd: YAG laser with inbuilt cool sapphire tip for long term hair reduction on type- IV and V skin: A prospective analysis of 200 patients

    Directory of Open Access Journals (Sweden)

    Nanda Soni

    2010-01-01

    Full Text Available Background: Laser hair reduction has become a very popular means to get rid of unwanted hair. Aims: We conducted the current study to evaluate the safety and efficacy of Nd: YAG laser on dark skin. We also evaluated the effect of increasing the gap between sessions on the long term efficacy of hair reduction achieved with long pulsed Nd: YAG laser. Methods: A prospective study was conducted on 200 consecutive female patients who underwent laser hair reduction for unwanted hair over the face, at Kaya skin clinic Delhi, with long pulsed Nd: YAG laser, from May 2006 to May 2009. The gap between sessions was increased from 2 nd session itself. Results were evaluated 6 months after 6 sessions. Also a note was made of worsening of hair growth or any side effects experienced the patient during any of the sessions. Results: A total of 200 female patients (160 skin type IV and 40 skin type V were followed up. Of these, 64 enrolled for lower face, 88 for chin or upper neck and 48 for upper lip. 6 months after 6 sessions, more than 50% improvement was seen in 68.7% of lower face, 89.69% cases of chin and 59% of upper lip cases. None of the patients had any worsening. Conclusions: The current study shows that long pulsed Nd: YAG is a very safe and effective means of hair reduction in skin types IV and V. Adequate fluences and increasing the gap between sessions from the 2 nd session could be the key to achieving long term hair reduction with Nd: YAG laser. Adequate cooling and proper shaving are the key factors determining the safety.

  5. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    DEFF Research Database (Denmark)

    Lefmann, Kim; Klenø, Kaspar H.; Birk, Jonas Okkels;

    2013-01-01

    between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information......We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies...

  6. The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-mode Discharges in the NSTX and EAST Devices

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, Rajesh [PPPL; Mansfield, D. K. [PPPL; Gong, X. Z. [IPPCAS; Sun, Z. [IPPCAS; Bell, M. G. [PPPL

    2014-10-01

    In this paper, the role of lithium wall conditioning on the achievement of high performance, long pulse discharges in the National Spherical Torus Experiment (NSTX) and the Experimental Advanced Superconducting Tokamak (EAST) is documented. Common observations include recycling reduction and elimination of ELMs. In NSTX, lithium conditioning typically resulted in ELM-free operation with impurity accumulation, which was ameliorated e.g. with pulsed 3D fields to trigger controlled ELMs. Active lithium conditioning in EAST discharges has overcome this problem, producing an ELM-free Hmode with controlled density and impurities.

  7. Towards the optimization of the thermal–hydraulic performance of gyrotron collectors

    Energy Technology Data Exchange (ETDEWEB)

    Savoldi, Laura; Bertani, Cristina [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy); Cau, Francesca; Cismondi, Fabio [F4E, Barcelona (Spain); Gantenbein, Gerd; Illy, Stefan [Karlsruhe Institute of Technology (KIT), Institute for Pulsed Power and Microwave Technology (IHM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Monni, Grazia [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy); Rozier, Yoann [Thales Electron Devices, 78141 Vélizy-Villacoublay (France); Zanino, Roberto, E-mail: roberto.zanino@polito.it [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)

    2015-11-15

    Different configurations of water-cooled Cu collector for gyrotrons are investigated using the StarCCM + CFD code, aimed at optimizing its thermal–hydraulic (TH) performance. Although the current collectors show a good performance, the collector can be subjected to transient heat loads, due to the spent electron beam, of up to several tens of MW/m{sup 2}, and there is an interest to increase the gyrotron output power in the future. Furthermore, an optimized cooling will lead to improved reliability and lifetime of the collector. Starting from a hypervapotron (HV)-like collector, characterized by 100+ deep rectangular cavities with aspect ratio (AR) = 3, we present in the first part of the paper a single-cavity steady-state parametric analysis of the effect of AR on the heat exhaust capabilities. The investigation is then extended to other collector designs, including circumferential ribs and dimples, in order to assess the options for further improvements of the TH performance. The peak Cu temperature is computed by the code and its minimization is the target of the present optimization exercise. A self-consistent estimate of the heat transfer coefficient between collector and coolant is also obtained, which could be useful for fatigue and lifetime assessments. In the second part of the paper the most promising collector geometries identified in the first part are analyzed in the case of a transient heat load (vertical sweeping), first at the level of a single spatial period of the collector structure, then at the full-collector level. The results of the TH transient analysis are compared with both the results of the first part and with the transient purely thermal analysis of the full collector, showing for all geometries considered in this study a room for cooling efficiency improvement with respect to the HV-like design with AR = 3, at least in the operating conditions considered for this study (V ∼ 4 m/s, almost 100 °C sub-cooling).

  8. Numerical investigation of collector cooling for a 1 MW ITER gyrotron operated with vertical sweeping

    Energy Technology Data Exchange (ETDEWEB)

    Savoldi, Laura; Bertani, Cristina [Dipartimento Energia, Politecnico di Torino (Italy); Cau, Francesca; Cismondi, Fabio [Fusion for Energy, Barcelona (Spain); Gantenbein, Gerd; Illy, Stefan [KIT, Karlsruhe (Germany); Monni, Grazia [Dipartimento Energia, Politecnico di Torino (Italy); Zanino, Roberto, E-mail: roberto.zanino@polito.it [Dipartimento Energia, Politecnico di Torino (Italy)

    2015-11-15

    The present gyrotron designs for EC plasma heating in nuclear fusion reactors require the safe exhaust of a power comparable to that injected into the plasma, in order to keep the maximum temperature below the acceptable value of 300 °C. In this paper, the commercial computational fluid dynamics (CFD) software STAR-CCM+{sup ®} is used to analyze the thermal performance of the annular copper collector of a 1 MW ITER gyrotron, equipped with a hypervapotron structure made of annular fins with rectangular cavities of aspect ratio (depth/width) = 3, cooled by highly subcooled (90–100 °C) pressurized water flowing at ∼4 m/s. It is assumed that the simple vertical sweeping strategy is used to reduce the very high peak heat flux on the collector (up to 30 MW/m{sup 2} transient, 5 MW/m{sup 2} time average), due to the spent electron beam. The 2D steady-state conjugate heat transfer problem is solved assuming azimuthal symmetry and accounting for 2-phase flow. The single-cavity flow and heat transfer problem is considered first, to optimize the mesh and the selection of the turbulence model. For the operating conditions considered in this paper, the full collector (100+ cavities) solution shows that boiling occurs only in a limited number of cavities close to the peaks of the heat flux, with the vapor remaining trapped in the bottom of the cavities, i.e. no full hypervapotron regime should be achieved in these operating conditions. The steady-state analysis allows the numerical evaluation of the heat transfer coefficients between Cu and water; these are then used as input for the simplified, purely thermal (solid only) analysis of the actual transient problem for the full collector. The results of the simplified model, which allows a huge reduction of the computational effort, are successfully benchmarked against those of a comprehensive thermal–hydraulic simulation. The computed peak Cu temperature is below the acceptable limit under the steady-state (time averaged

  9. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application.

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M

    2013-07-01

    We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.

  10. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: A randomized split-face trial with blinded response evaluation

    DEFF Research Database (Denmark)

    Jorgensen, G.F.; Hedelund, L.; Haedersdal, M.

    2008-01-01

    Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids, and symme......Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids...... assigned to left and right sides. Primary end-points were telangiectasias, irregular pigmentation and preferred treatment. Secondary end-points were skin texture, rhytids, pain, and adverse effects. Efficacy was evaluated by patient self-assessments and by blinded clinical on-site and photographic.......031, 3, 6 months). Irregular pigmentation and skin texture improved from both treatments with no significant side-to-side differences. No reduction was seen of rhytides on LPDL- or IPL-treated sides. Treatment-related pain scores were significantly higher after IPL (medians 7-8) than LPDL (4...

  11. Generation of 415 W of p-polarized output power in long pulse operation of Nd:YAG laser using z-fold resonator geometry

    Science.gov (United States)

    Choubey, Ambar; Mondal, Shyamal; Singh, Ravindra; Upadhyaya, B. N.; Datta, P. K.; Oak, S. M.

    2014-08-01

    We report on the generation of high average power linearly p-polarized beam in long pulse operation of dual rod Nd:YAG laser. A z-fold resonator configuration has been designed using simple optical scheme to provide effective birefringence compensation, compactness, and reduction of alignment criticality. Using this geometry, a maximum linearly p-polarized average output power of 415 W and a pulse energy of 150 J was achieved with a slope efficiency of 4.3%, which is on higher side for typical lamp pumped long pulse Nd:YAG lasers. For effective birefringence compensation, an intra-cavity concave mirror based imaging system, a 90° quartz rotator, and a re-entrant feedback mirror has been used. This scheme resulted in an enhancement of p-polarized output power of more than 80% as compared to the p-polarized output power without birefringence compensation. Depolarization loss in the resonator has also been reduced significantly from a value of 35% to a value of ~1.8% after birefringence compensation.

  12. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Misra, Pushkar; Jain, R. K.; Agrawal, D. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2013-07-01

    We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M2 ˜ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.

  13. Comparative study of efficacy of 30% Salicylic acid peel VsLong-pulsed 1064 nm Nd:YAG laser for treatment of Keratosis Pilaris

    Directory of Open Access Journals (Sweden)

    Zonunsanga

    2015-04-01

    Full Text Available Introduction: Keratosis pilaris(KP is a disorder of keratinization of hair follicles characterized by keratin plugs in the hair follicles with perifollicular erythema. It may be inherited with X-Linked Dominant, or may be sporadic. Aim of the study: to compare the efficacy of 30% Salicylic acid and Long pulsed 1064nm Nd:YAG laser for treatment of keratosis pilaris. Materials and Methods: Out of 20 patients, 10 patients were given 30% Salicylic acid peel (after washing their face every 15 days for 2 months. Another 15 patients were given the 1064 nm Nd:YAG Long pulse, Spot size: 10 mm, Pulse width: 30 ms every 4-6 weeks for 4 sitting. Results: Among salicylic acid treated group, only 2 out of 10 showed improvement between 50-75%, and were slightly satisfied; none showed >75% improvement, and 8 out of 10 failed to show >50% improvement and were considered as failure of the therapy. Among the Nd:YAG treated group, 3 out of 10 showed 50-75% improvement and were slightly satisfied;none showed > 75% improvement, 7 out 10 failed to show successful results i.e. >50% improvement. Conclusion: Both of the treatments are not much effective and do not give consistent and satisfactory results for treatment of keratosis pilaris.

  14. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    Science.gov (United States)

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  15. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  16. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  17. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod (Russian Federation); Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation)

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  18. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga.vadim@gmail.com [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Maslennikova, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005 Nizhny Novgorod (Russian Federation); Volovecky, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Tarvainen, O. [University of Jyvaskyla, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2014-12-21

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm{sup 2} is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·10{sup 10} cm{sup −2}/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  19. Suppression of the Oscillatory Modes of a Space Charge in the Magnetron Injection Guns of Technological Gyrotrons

    Science.gov (United States)

    Glyavin, M. Yu.; Kuntsevich, A. D.; Manuilov, V. N.

    2015-01-01

    We present the results of based on the PIC method numerical simulation of the dynamic processes of trapping of electrons into the adiabatic trap of a technological gyrotron for different configurations of the electric and magnetic fields in the electron beam formation region. The electrode geometry providing a low reflection coefficient of the magnetic mirror to suppress oscillatory modes in the space-charge cloud and ensure the stability of the electron beam with a high fraction of oscillatory energy in such a system has been found.

  20. Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Guilhem, D.; Adjeroud, B.; Balorin, C.; Buravand, Y.; Bertrand, B.; Bondil, J.L.; Desgranges, C.; Gauthier, E.; Lipa, M.; Messina, P.; Missirlian, M.; Mitteau, R.; Moulin, D.; Pocheau, C.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.; Vallet, S

    2004-07-01

    Tore-Supra has a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components for high performances long pulse plasma discharges. When not actively cooled, plasma-facing components can only accumulate a limited amount of energy since the temperature increase continuously (T proportional to {radical}(t)) during the discharge until radiation cooling is equal to the incoming heat flux (T > 1800 K). Such an environment is found in most today Tokamaks. In the present paper we report the recent results of Tore-Supra, especially the design of the new generation of infrared endoscopes to measure the surface temperature of the plasma facing components. The Tore-Supra infrared thermography system is composed of 7 infrared endoscopes, this system is described in details in the paper, the new JET infrared thermography system is presented and some insights of the ITER set of visible/infrared endoscope is given. (authors)

  1. Efficient delivery of 60 J pulse energy of long pulse Nd:YAG laser through 200 m core diameter optical fibre

    Indian Academy of Sciences (India)

    Ravindra Singh; Ambar Choubey; R K Jain; S C Vishwakarma; D K Agrawal; Sabir Ali; B N Upadhyaya; S M Oak

    2014-02-01

    Most of today’s industrial Nd:YAG lasers use fibre-optic beam delivery. In such lasers, fibre core diameter is an important consideration in deploying a beam delivery system. Using a smaller core diameter fibre allows higher irradiances at focus position, less degradation of beam quality, and a larger stand-off distance. In this work, we have put efforts to efficiently deliver the laser output of ‘ceramic reflector’-based long pulse Nd:YAG laser through a 200 m core diameter optical fibre and successfully delivered up to 60 J of pulse energy with 90% transmission efficiency, using a GRADIUM (axial gradient) plano-convex lens to sharply focus down the beam on the end face of the optical fibre and fibre end faces have been cleaved to achieve higher surface damage thresholds.

  2. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited)

    Science.gov (United States)

    Liu, H. Q.; Qian, J. P.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zou, Z. Y.; Li, W. M.; Lian, H.; Wang, S. X.; Yang, Y.; Zeng, L.; Lan, T.; Yao, Y.; Hu, L. Q.; Zhang, X. D.; Wan, B. N.

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  3. Novel Treatment Approach for Deep Palmoplantar Warts Using Long-Pulsed 1064-nm Nd:YAG Laser and a Moisturizing Cream Without Prior Paring of the Wart Surface.

    Science.gov (United States)

    Alshami, Mohammad Ali; Mohana, Mona Jameel

    2016-10-01

    The present study aimed to assess the safety and efficacy of palmoplantar wart removal using long-pulsed 1064-nm Nd:YAG laser after application of a moisturizing cream. Previously described laser treatments for wart removal are associated with negative side effects and need to pare the warts before laser treatment. Two hundred forty patients (142 males, 98 females) were treated for 1-40 palmoplantar warts by long-pulsed 1064-nm Nd:YAG laser (spot size 4-6 mm, pulse duration 20 msec, fluence 200 J/cm(2)) after covering the wart surface with a thin film of a moisturizing cream. The endpoint was lesion graying or whitening with or without development of a hemorrhagic bulla beneath the treated wart. Color photographs were taken before and immediately after each laser session and at 1, 4, and 16 weeks after the last session. The overall clearance rate was 97%, with 90% of treated patients cured after one session, 4% after two, and 3% after three. Clearance rate after three laser sessions decreased linearly with the number of warts from 100% to 95%. Less accessible wart location in interdigital spaces also decreased the cure rate after three sessions from 100% to 95%. Additionally, warts became more difficult to eradicate as they aged. Remission lasted up to 6 years, and complications were mild and infrequent (17.5%). This novel method is effective in removing palmoplantar warts. It is easier, time-saving, and safer than other methods described in previous studies conducted with ablative or nonablative lasers.

  4. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  5. Three-Dimensional Numerical Simulation of a 30-GHz Gyrotron Resonator With an Explicit High-Order Discontinuous-Galerkin-Based Parallel Particle-In-Cell Method

    DEFF Research Database (Denmark)

    Stock, Andreas; Neudorfer, Jonathan; Riedlinger, Marc;

    2012-01-01

    Fast design codes for the simulation of the particle–field interaction in the interior of gyrotron resonators are available. They procure their rapidity by making strong physical simplifications and approximations, which are not known to be valid for many variations of the geometry and the operat...

  6. Split lesion randomized comparative study between long pulsed Nd:YAG laser 532 and 1,064 nm in treatment of facial port-wine stain.

    Science.gov (United States)

    Al-Dhalimi, Muhsin A; Al-Janabi, Murtadha H

    2016-11-01

    Lasers have been the treatment of choice for Port-wine stain (PWS). However, only one type of laser is not a panacea for all PWS malformations. This is may be due to the great heterogeneity of phenotypic presentation of this congenital anomaly as color, depth, and the site of the lesion. For the treatment of PWS, flash lamp-pumped pulsed dye laser, carbon dioxide, argon, krypton, copper bromide, frequency-doubled neodymium:yttrium-aluminum-garnet (Nd:YAG), and also intense pulsed light sources can be used. To assess and compare the effectiveness of wavelength 532 and 1,064 nanometers (nm) long pulse Nd:YAG laser in the treatment of facial port-wine stain. This was a comparative therapeutic study for the treatment of facial port-wine stain. We divided the lesion into two halves, medial and lateral, and then each half was treated by 532 or 1,064 nm Nd:YAG. The sessions were done every 4 weeks for six sessions and follow-up after 3 months, then assess the response before and after the sessions and at the end follow-up period objectively (degree of improvement, Photo comparison) and subjectively (Patient satisfaction). Fourteen out of nineteen patients completed all sessions of the treatment, and the other five patients were defaulted from the study due to different causes, including marriage, poor compliance for treatment, and for unknown causes. They were 13 (92.85%) females and 1 (7.15%) male. The mean age of patients was 22.07 ± 9.003 years (range 8-44 years). Three patients (21.4%) were Fitzpatrick's skin type III and four patients (78.6%) were typed IV. There was no hypertrophy in any of the lesions. All facial PWSs lie along the distribution of the trigeminal nerve. Four patients (28.6%) have V1 (ophthalmic), 12 patients (85.7%) have V2 (maxillary), and 9 (64.3%) have V3 (mandibular). The color of PWSs was pink-red in eight patients (57.1%), dark-red in four patients (28.6%), and purple-dark two patients (14.3%). The improvement score for the halves of

  7. 60 GHz gyrotron development program. Final report, April 1979-June 1984

    Energy Technology Data Exchange (ETDEWEB)

    Shively, J.F.; Bier, R.E.; Caplan, M.; Cheng, M.K.; Choi, E.; Conner, C.C.; Craig, L.J.; Evans, S.J.; Evers, S.J.; Felch, K.L.

    1986-01-01

    The original objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW CW power output at 110 GHz. The use of cyclotron resonance interaction was pursued, and the design phases of this effort are discussed. Later, however, the program's objective was changed to develop a family of oscillators capable of producing 200 kw of peak output power at 60 GHz. Gyrotron behavior studies were performed at 28 GHz to obtain generic design information as quickly as possible. The first experimental device at 60 GHz produced over 200 kw of peak power at a pulse duration of 20 ..mu..s. Heating problems and mode interference were encountered. The second experimental tube incorporated an optimized gun location but also suffered from mode interference. The third experimental tube included modifications that reduced mode interference. It demonstrated 200 kw of peak output at 100 ms pulse duration. The fourth experimental tube, which used an older rf circuit design but in a CW configuration, produced 71.5 kW CW. The fifth experimental tube incorporated a thinner double-disc output window which improved window bandwidth and reduced window loss. This tube also incorporated modifications to the drift tunnel and cavity coupling, which had proven successful in the third experimental pulse tube tests. It produced 123 kW of CW output power at 60 GHz rf load coolant boiling and tube window failure terminated the tests. A new waterload was designed and constructed, and alternative window designs were explored. A secondary task of developing a 56 GHz CW tube produced in excess of 100 kW CW at this alternate frequency. Testing of the sixth experimental tube resulted in operation at CW output power in the range of 200 to 206 kW for an hour. Output mode purity of the seventh experimental tube was measured at 95% TE/sub 02/. The tube was operated for about forty-five minutes with CW power output over 200 kW.

  8. LGS adaptive optics system with long-pulsed sodium laser on Lijiang 1.8 meter telescope 2014-2016 observation campaign

    Science.gov (United States)

    Wei, Kai; Li, Min; Jiang, Changchun; Wei, Ling; Zheng, Wenjia; Li, Wenru; Ma, Xiaoyu; Zhou, Luchun; Jin, Kai; Bo, Yong; Zuo, Junwei; Wang, Pengyuan; Cheng, Feng; Zhang, Xiaojun; Chen, Donghong; Deng, Jijiang; Gao, Yang; Shen, Yu; Bian, Qi; Yao, Ji; Huang, Jiang; Dong, Ruoxi; Deng, Keran; Peng, Qinjun; Rao, Changhui; Xu, Zuyan; Zhang, Yudong

    2016-07-01

    During 2014-2016, the Laser guide star (LGS) adaptive optics (AO) system observation campaign has been carried out on Lijiang 1.8 meter telescope. During the campaign, two generation LGS AO systems have been developed and installed. In 2014, a long-pulsed solid Sodium prototype laser with 20W@400Hz, a beam transfer optical (BTO) system, and a laser launch telescope (LLT) with 300mm diameter were mounted onto the telescope and moved with telescope azimuth journal. At the same time, a 37-elements compact LGS AO system had been mounted on the Bent-Cassegrain focus and got its first light on observing HIP43963 (mV= 8.18mv) and reached Sr=0.27 in J Band after LGS AO compensation. In 2016, the solid Sodium laser has been upgrade to stable 32W@800Hz while D2a plus D2b repumping is used to increase the photon return, and a totally new LGS AO system with 164-elements Deformable Mirror, Linux Real Time Controller, inner closed loop Tip/tilt mirror, Multiple-PMT tracking detector is established and installed on the telescope. And the throughput for the BTO/LLT is improved nearly 20%. The campaign process, the performance of the two LGS AO systems especially the latter one, the characteristics of the BTO/LLT system and the result are present in this paper.

  9. Long-Pulsed 532-Nm Neodymium-Doped Yttrium Aluminium Garnet Laser for Treatment of Facial Plane Warts in 160 Yemeni Patients.

    Science.gov (United States)

    Alshami, Mohammad Ali; Mohana, Mona Jameel; Alshami, Ahlam Mohammad

    2016-11-01

    Warts in general and plane warts in particular pose a therapeutic challenge for dermatologists. Many treatment modalities exist, with variable success rates, side effect profiles, and precautions. The long-pulsed 532-nm neodymium-doped yttrium aluminium garnet (LP Nd:YAG) laser has not been previously used for this indication. This study was conducted to assess the efficacy and safety of the LP Nd:YAG laser for treating facial plane warts. A total of 160 Yemeni patients (62 women, 98 men; age range, 5-55 years) were exposed to 1 laser treatment session with the following parameters: wavelength, 532 nm; pulse duration, 20 millisecond; spot size, 2 to 3 mm; and fluence, 25 J/cm. The end point was graying or whitening of the lesion. Color photographs were taken before and immediately after treatment and at follow-up visits 1, 4, and 16 weeks after the laser session. An overall clearance rate of 92% after only one session was achieved, with minimal and transient side effects. The LP Nd:YAG laser is safe and effective for treating facial plane warts, with a success rate of 92% after only one session.

  10. Development of a long-pulse (30-s), high-energy (120-keV) ion source for neutral-beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Barber, G.C.; Blue, C.W.

    1983-01-01

    Multimegawatt neutral beams of hydrogen or deuterium atoms are needed for fusion machine applications such as MFTB-B, TFTR-U, DIII-U, and FED (INTOR or ETR). For these applications, a duoPIGatron ion source is being developed to produce high-brightness deuterium beams at a beam energy of approx. 120 keV for pulse lengths up to 30 s. A long-pulse plasma generator with active water cooling has been operated at an arc level of 1200 A with 30-s pulse durations. The plasma density and uniformity are sufficient for supplying a 60-A beam of hydrogen ions to a 13- by 43-cm accelerator. A 10- by 25-cm tetrode accelerator has been operated to form 120-keV hydrogen ion beams. Using the two-dimensional (2-D) ion extraction code developed at Oak Ridge National Laboratory (ORNL), a 13- by 43-cm tetrode accelerator has been designed and is being fabricated. The aperture shapes of accelerator grids are optimized for 120-keV beam energy.

  11. Comparative evaluation of long pulse alexandrite laser and intense pulsed light systems for pseudofolliculitis barbae treatment with one year of follow up

    Directory of Open Access Journals (Sweden)

    Leheta Tahra

    2009-01-01

    Full Text Available Background: Existing remedies for controlling pseudofolliculitis barbae (PFB are sometimes helpful; however the positive effects are often short lived. The only definitive cure for PFB is permanent removal of the hair follicle. Aims: Our aim was to compare the efficacy of the Alexandrite laser with the intense pulsed light system in the treatment of PFB and to follow up the recurrence. Methods: Twenty male patients seeking laser hair removal for the treatment of PFB were enrolled in this study. One half of the face was treated with the long-pulse Alexandrite laser and the other half was treated with the IPL system randomly. The treatment outcome and any complications were observed and followed up for one year. Results: All patients exhibited a statistically significant decrease in the numbers of papules. Our results showed that the Alexandrite-treated side needed seven sessions to reach about 80% improvement, while the IPL-treated side needed 10-12 sessions to reach about 50% improvement. During the one year follow up period, the Alexandrite-treated side showed recurrence in very minimal areas, while the IPL-treated side showed recurrence in bigger areas. Conclusions: Our results showed that both systems might improve PFB but Alexandrite laser was more effective at reducing PFB than IPL.

  12. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    Science.gov (United States)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  13. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    Science.gov (United States)

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Electron cyclotron resonance heating on TEXTOR

    NARCIS (Netherlands)

    Westerhof, E.; Hoekzema, J. A.; Hogeweij, G. M. D.; Jaspers, R. J. E.; Schüller, F. C.; Barth, C. J.; Bongers, W. A.; Donne, A. J. H.; Dumortier, P.; van der Grift, A. F.; van Gorkom, J. C.; Kalupin, D.; Koslowski, H. R.; Kramer-Flecken, A.; Kruijt, O. G.; Cardozo, N. J. L.; Mantica, P.; van der Meiden, H. J.; Merkulov, A.; Messiaen, A.; Oosterbeek, J. W.; Oyevaar, T.; Poelman, A. J.; Polman, R. W.; Prins, P. R.; Scholten, J.; Sterk, A. B.; Tito, C. J.; Udintsev, V.S.; Unterberg, B.; Vervier, M.; van Wassenhove, G.

    2003-01-01

    The 110 GHz and the new 140 GHz gyrotron systems for electron cyclotron resonance heating (ECRH) and ECCD on TEXTOR are described and results of ECRH experiments with the 110 GHz system are reported. Central ECRH on Ohmic plasmas shows the presence of an internal electron transport barrier near q =

  15. Study on the Before Cavity Interaction in a Second Harmonic Gyrotron Using 3D CFDTD PIC Simulations

    Science.gov (United States)

    Lin, M. C.; Illy, S.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on before cavity interaction (BCI) in a 28 GHz second harmonic (SH) gryotron for industrial applications has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. On the contrary to the after cavity interaction (ACI), i.e. beam wave interaction in the non-linear uptaper after the cavity, which has been widely investigated, the BCI, i.e. beam wave interaction in the non-linear downtaper before the cavity connected to the beam tunnel with an entrance, is less noticed and discussed. Usually the BCI might be considered easy to be eliminated. However, this is not always the case. As the SH gyrotron had been designed for SH TE12 mode operation, the first harmonic (FH) plays the main competition. In the 3-D CFDTD PIC simulations, a port boundary has been employed for the gyro-beam entrance of the gyrotron cavity instead of a metallic short one which is not reflecting a realistic situation as an FH backward wave oscillation (BWO) is competing with the desired SH generation. A numerical instability has been found and identified as a failure of the entrance port boundary caused by an evanescent wave or mode conversion. This indicates the entrance and downtaper are not fully cut-off for some oscillations. A further study shows that the undesired oscillation is the FH TE11 BWO mode concentrated around the beam tunnel entrance and downtaper. A mitigation strategy has been found to suppress this undesired BCI and avoid possible damage to the gun region.

  16. Intense Pulsed light Versus 1,064 Long-Pulsed Neodymium: Yttrium–Aluminum– Garnet Laser in the Treatment of Facial Acne Vulgaris

    Science.gov (United States)

    Mohamed, Essam Elden; Tawfik, Khaled

    2016-01-01

    Introduction Laser and light-based procedures provide a good and safe modality for treatment of active acne lesions when used properly. Aim To compare the clinical efficacy of intense pulsed light (IPL) versus 1,064 long-pulsed Neodymium:Yttrium–Aluminum– Garnet (Nd: YAG) in treatment of facial acne vulgaris. Materials and Methods Seventy four patients recruited between June 2013 and August 2014 was enrolled in this controlled, single-blind, split-face clinical trial. All participants received 3 sessions of IPL on the right side of the face and 1,064-nm Nd:YAG on the left side of the face at 4-weeks intervals. Final assessment was made by comparison of the changes in the count of inflammatory acne lesions (inflammatory papules, pustules, nodules and cyst) and non-inflammatory acne lesions (Comedones) and the acne severity score between both therapies, based on standardized photography. Results At the final visit, the inflammatory acne lesions were reduced on the IPL and 1,064-nm Nd:YAG treated sides by 67.1% and 70.2% respectively (p0.05 for each). For both therapies, there was significant difference in the improvement on inflammatory acne lesions in comparison to non-inflammatory lesions (p0.05 for each). Conclusion Both IPL and 1,064-nm Nd:YAG laser are effective in treatment of inflammatory facial acne vulgaris. There is no significant difference between the effects of both therapies on facial acne lesions. PMID:27630934

  17. Indocyanine green-augmented diode laser therapy vs. long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: a randomized controlled trial.

    Science.gov (United States)

    Klein, A; Buschmann, M; Babilas, P; Landthaler, M; Bäumler, W

    2013-08-01

    Telangiectatic leg veins (TLV) represent a common cosmetic problem. Near infrared lasers have been widely used in treatment because of their deeper penetration into the dermis, but with varying degrees of success, particularly because of different vessel diameters. Indocyanine green (ICG)-augmented diode laser treatment (ICG+DL) may present an alternative treatment option. This trial evaluates the efficacy of ICG+DL in the treatment of TLV and compares the safety and efficacy of therapy with the standard treatment, the long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser. In a prospective randomized controlled clinical trial, 29 study participants with TLV were treated with a Nd:YAG laser (λem = 1064 nm, 160-240 J cm(-2) , 65-ms pulse duration, 5-mm spot size) and ICG+DL (λem = 810 nm, 60-110 J cm(-2) , 48-87-ms pulse duration, 6-mm spot size; total ICG dose 4 mg kg(-1) ) in a side-by-side comparison in one single treatment setting that included histological examination in four participants. Two blinded investigators and the participants assessed clearance rate, cosmetic appearance and adverse events up to 3 months after treatment. According to both the investigators' and participants' assessment, clearance rates were significantly better after ICG+DL therapy than after Nd:YAG laser treatment (P treatment, participants rated ICG+DL therapy to be more painful (6·1 ± 2·0) than Nd:YAG laser (5·4 ± 2·0). ICG+DL therapy represents a new and promising treatment modality for TLV, with high clearance rates and a very good cosmetic outcome after one single treatment session. © 2013 British Association of Dermatologists.

  18. Histological and molecular analysis of the long-pulse 1,064-nm Nd:YAG laser irradiation on the ultraviolet-damaged skin of hairless mice: In association with pulse duration change.

    Science.gov (United States)

    Rhee, Do Young; Cho, Hong Il; Park, Gyeong-Hun; Moon, Hye-Rim; Chang, Sung Eun; Won, Chong Hyun; Jung, Joon Min; Park, Ki-Young; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Lee, Deug-Chan; Goo, Boncheol

    2016-01-01

    Nonablative lasers have been widely used to improve photodamaged skin, although the mechanism underlying dermal collagen remodeling remains unclear. To investigate the effects and the molecular mechanisms of long-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on dermal collagen remodeling in association with different pulse durations. Five hairless mice were pretreated with ultraviolet B irradiation for 8 weeks. The dorsal quadrant of each mouse was then irradiated twice at 1-week intervals at a pulse duration of 1 ms, 12 ms, or 50 ms, and a constant fluence of 20 J/cm(2). The levels of dermal collagen, mRNAs of procollagens, matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), and various growth factors were analyzed after 4 weeks. Long-pulse Nd:YAG treatment increased the dermal collagen level. A substantial increase in the level of procollagens, MMPs, TIMPs, and various growth factors was also observed irrespective of pulse duration, with a trend toward maximal increase at a pulse duration of 12 ms. Long-pulse 1,064-nm Nd:YAG laser irradiation promotes wound-healing process, which is characterized by the induction of growth factor expression and subsequent increase in MMPs and TIMPs, followed by matrix remodeling as confirmed by new procollagen production.

  19. Repetitive characteristics of solid state high power long pulse generator%固态化高功率长脉冲驱动源重频特性

    Institute of Scientific and Technical Information of China (English)

    高景明; 杨汉武; 李嵩; 晏龙波; 钱宝良; 张军

    2016-01-01

    A solid state high power long pulse generator has been designed and constructed based on the key technologies of magnetic switch,low impedance pulse forming line,and inductive voltage adder,which was verified by single mode operation for peak power of 2 GW.For repetitive operation,a repetitive primary power supply of moderate voltage level was developed,the two stage magnetic pulse compressor was improved from aspects of reset and insulation,the pulsed charging was optimized where the inductive voltage adder was utilized for pulsed voltage step-up as well as for pulse charging and on-line direct current (DC)re-set was achieved by reasonable design of reset current path.At present,the experimental results achieved on a dummy load are output pulsed power of 2.1 GW,pulse width of 1 70 ns,repetitive rate of 20 Hz,operation time of 1 s and good for repeatability. For further improvement,the pseudospark switch would be replaced by serial connected thyristors to accomplish all solid-state de-sign.%基于固态化磁开关、低阻抗脉冲形成网络和感应电压叠加等关键技术,提出并研制了一台固态化高功率长脉冲驱动源。在前期通过2 GW 单次实验验证技术方案的基础上,研制了中等电压等级的重复频率初级电源;改进了两级磁脉冲压缩系统的复位和绝缘特性;优化了系统整体电路结构,利用感应电压叠加器完成充电磁开关和脉冲升压的双重功能;设计了合理的复位路径,实现了各部分磁芯的在线直流复位;并开展了重频运行研究。在电阻负载上获得了输出功率2.1 GW、脉宽约170 ns、重复频率20 Hz 及运行时间1 s 的实验结果,脉冲波形的重叠一致性好。

  20. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons; Control de las Fuentes de Corriente de las Bobinas Superconductoras de los Girotrones del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Ros, A.; Fernandez, A.; Tolkachev, A.; Catalan, G.

    2006-07-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs.

  1. Comparative analysis of fourth-harmonic multiplying gyrotron traveling-wave amplifiers operating at different frequency multiplications

    Science.gov (United States)

    Yeh, Y. S.; Kao, W. J.; Li, L. J.; Guo, Y. W.

    2017-01-01

    The harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits magnetic field reduction and frequency multiplication. This study presents a comparative analysis of fourth-harmonic multiplying gyro-TWAs with three schemes of operation. An improved mode-selective circuit using circular waveguides with various radii provides the rejection points within the range of operating frequencies to suppress the competing modes of gyro-TWAs. The simulated results reveal that gyro-TWAs are the most susceptible to the fundamental-harmonic TE11 competing mode, regardless of the operating scheme, and that the mode-selective circuit can provide an attenuation of more than 20 dB to suppress the competing modes. The amplification of the waves in a gyro-TWA depends on the lengths of the sections, and the simulated results show that the gain increases for all schemes, as the length of the lossy section or the length of the copper section increases. All schemes exhibit nearly the same saturated output powers and bandwidths; however, the saturated gain of the scheme at a high frequency multiplication ratio is less than that of the scheme at a low frequency multiplication ratio. Extensive numerical calculations of power and gain scaling are conducted for all schemes.

  2. A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses

    Science.gov (United States)

    Hung, C. L.; Yeh, Y. S.; Chang, T. H.; Fang, R. S.

    2016-08-01

    For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating in a high-order waveguide mode is susceptible to spurious oscillations. To improve the device stability, in this study, we investigate the possibility of using a coaxial waveguide with distributed losses as the interaction structure. For the same required attenuation, all threatening oscillating modes can be suppressed using different combinations of losses of inner and outer cylinders. This provides flexibility in designing distributed losses when considering the ohmic loading of the interaction structure. We predict that the 0.2-THz gyro-TWT can stably produce a peak power of 14 kW with an efficiency of 23 %, a 3-dB bandwidth of 3.5 GHz, and a saturated gain of 50 dB for a 20-kV 3-A electron beam with a 5 % velocity spread and 1.0 velocity ratio.

  3. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Jeffrey M.

    2017-07-25

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  4. Prevention and treatment of the complications caused by long-pulsed alexandrite laser on hair removal%长脉冲翠绿宝石激光脱毛并发症的防治

    Institute of Scientific and Technical Information of China (English)

    郑群; 何葆华; 金珏; 俞锡娟

    2010-01-01

    目的 探讨长脉冲翠绿宝石激光脱毛并发症的发生原因及防治方法 .方法 使用长脉冲翠绿宝石激光,波长755 nm,脉宽20 ms,光斑直径12.5 mm,对2 562例(3 279部位)美容就医者进行脱毛,治疗能量12.0~16.5 J/cm2,两次间隔时间50~60 d.结果 治疗期出现红斑、皮疹、瘙痒、水疱、色素沉着或色素减退、瘢痕等并发症共236例(242部位),效果不佳6例.结论 长脉冲翠绿宝石激光脱毛是一种安全有效的脱毛方法 ,治疗中规范操作能减少并发症的发生率.%Objective To investigate the causes and treatment methods of complications induced by the long-pulsed alexandrite laser on hair removal. Methods A total of 2 562 patients (3 279 sites) with unwanted hairs were treated by the long-pulsed alexandrite laser. Wave length was 755 nm. With 20 msec pulse width. 12. 5 mm spot size, 12. 0-16. 5 J/cm2 treatment energy, and 50-60 days intermitted between each treatment. Results There were 242 patients with complications such as erythema, eruption, blister, bulla, hyperpigmentation, hypopigmentation, and scar. Conclusion The long-pulsed alexandrite laser on hair removal is effective and safe, and the correct procedures of treatment can reduce the complications.

  5. W波段三次谐波回旋管实验研究%Experimental study on W-band third-harmonic gyrotron

    Institute of Scientific and Technical Information of China (English)

    孙迪敏; 胡鹏; 马国武; 陈洪斌; 孟凡宝; 陈怀璧

    2013-01-01

    It is the first time that the W-band,third harmonic gyrotron radiation is observed in China.The operation mode of the third harmonic gyrotron is TE61.The magnetic field is 1.2 T and the frequency is 94.86 GHz.When beam current changes from 1.6 A to 4.4 A,keeping the anode voltage 45 kV,the third harmonic radiation can be observed.The largest output power is 4.9 kW,and the efficiency is about 3%.%国内首次成功进行W波段三次谐波回旋管实验.回旋管工作模式为TE61,磁场1.2T,采用拍频法测定工作频率为94.86 GHz.电子束电压为45 kV时,电流1.6~4.4A范围内都观测到了三次谐波振荡信号.采用焦热计测定最大输出功率4.9 kW,效率约3%.

  6. Occlusion Effect of a Long-pulsed 532nm Laser on Veins%长脉冲532nm激光器对静脉血管的封闭效应

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lai-ming; TANG Yu-guo; GUO Jin; YANG Gui-long; LI Dian-jun; LU Qi-peng; GU Hua-dong; ZHU Lin-lin; ZHAO Zhen-wu; LI Xin; WANG Jing-ping

    2005-01-01

    Laser treatment represents an attractive option to other methods of vessel diseases especially varicose veins. A long pulse (30~50ms) 532nm laser was used in our experiments, with the pulse duration matching the thermal relaxation time of the vessels and the green laser matching the absorption spectrum peak of the blood. Laser irradiates nude vein vessels directly or exterior skin to finish operation faster and to acquire the practical data for upper enteron varicose vein treatment in several animal experiments performed in vivo. The 5Jenergy pulse allows us to finely occlude rabbit or dog's vein vessels up to 2 mm in diameter when irradiating them off external skin. Blood vessels are occluded at once, and later biopsy specimens show the immediate and long-term lasting occlusion effect.While vessels are irradiated directly, they are usually irradiated to perforate, detailed causes are still under investigation. Animal experiments showed that the long pulse green laser therapy is a safe and effective solution to the vein's occlusion, which promises such laser with high energy of each pulse and 30~50 ms duration is an ideal candidate for vessel diseases treatment.

  7. Effectiveness and safety of two long-pulsed lasers for hair removal in different colour of skin%两种波长的激光对不同肤色脱毛的效果分析

    Institute of Scientific and Technical Information of China (English)

    谢晓明; 赵天兰; 张云涛; 余道江

    2009-01-01

    目的 评价长脉冲激光对不同肤色脱毛的疗效和安全性.方法 用波长755 nm和1 064 nm的激光对607例不同肤色患者脱毛4次后观察疗效及出现的不良反应.结果 两种激光对女性唇部体毛和男性胡须的有效率虽相差不大.但其所产生不良反应差别却很明显.还发现肤色分型为I型、Ⅱ型和Ⅳ型、Ⅴ型两种激光所产生的有效率和不良反应也差别很明显,其差异具有统计学意义(P<0.05).结论 波长755 nm的激光对肤色越浅的患者(Ⅰ型、Ⅱ型)治疗的效果好及所产生的不良反应发生率低;而波长1 064 nm的激光对肤色越深的患者(Ⅲ型以上)治疗效果好,所产生的不良反应发生率低.%Objective To evaluate the effectiveness and safety of long-pulsed laser for hair removal in different colour of skin. Methods Hair removal was performed in 607 hirsute patients with two long-pulsed lasers. Results Although the effectiveness rates of hair removal in upper lip and full bread were not different, their complications were different by using two long-pulsed lasers. Also there were signifi-cant decreases of effectiveness and complication in the lighter skin and thc darker skin (P<0.01). Con-clusion The 755 nm wavelength has more effectiveness and lower complication in the lighter skin. How-ever, the 1 064 nm wavelength has more effectiveness and lower complication in the darker skin.

  8. 三次谐波光子带隙谐振腔回旋管%Third-Harmonic of Photonic-Band-Gap Cavity Gyrotron

    Institute of Scientific and Technical Information of China (English)

    夏玉玺; 唐昌建

    2011-01-01

    Effective coupling of interaction between high-order electromagnetic mode gyrotron oscillator and high-effective electron cyclotron mode is achieved through the analysis of mode selection function of the photonic band gap cavity(PBGC).After band characteristics of the PBGC are investigated,TE34-mode is set as working mode and the mode competition is suppressed successfully.The concept of equivalent radius of PBGC gyrotron is established,self-consistent nonlinear theory and related computer simulation program are completed.Studies have shown that TE34-mode can interact with third electronic cyclotron harmonics effectively,the coupling frequency of which is 130.5GHz,and meanwhile it reduces the required magnetic field greatly.The parameters are optimized when many physical factors are taken into account,and a third-harmonic PBGC gyrotron oscillator with voltage 430KV,current 35A,output power 1.75MW and interaction efficiency 11.5% are obtained consequently.%分析了光子晶体谐振腔(PBGC)的模式选择功能,实现PBGC回旋管振荡器高阶电磁模与高次电子回旋模的有效耦合。通过对PBGC禁带特性的分析,定出了工作模式TE34模,并成功抑制了模式竞争。文中建立了PBGC回旋管的等效半径的概念,完成了自洽非线性理论和相关的计算机数值模拟程序。研究发现TE34模能有效地与电子的3次回旋谐波相互作用,其耦合频率为130.5GHz,并极大地降低了对工作磁场的要求。在考虑诸多物理因素影响的情况下,对该3次谐波PBGC回旋管振荡器进行了参数优化研究,得到了参数为:电压430kV、

  9. Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW

    Science.gov (United States)

    Glyavin, M. Yu.; Morozkin, M. V.; Tsvetkov, A. I.; Lubyako, L. V.; Golubiatnikov, G. Yu.; Kuftin, A. N.; Zapevalov, V. E.; V. Kholoptsev, V.; Eremeev, A. G.; Sedov, A. S.; Malygin, V. I.; Chirkov, A. V.; Fokin, A. P.; Sokolov, E. V.; Denisov, G. G.

    2016-02-01

    We study experimentally the automated microwave complex for microwave spectroscopy and diagnostics of various media, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences in cooperation with GYCOM Ltd. on the basis of a gyrotron with a frequency of 263 GHz and operated at the first gyrofrequency harmonic. In the process of the experiments, a controllable output power of 0 .1 -1 kW was achieved with an efficiency of up to 17 % in the continuous-wave generation regime. The measured radiation spectrum with a relative width of about 10 -6 and the frequency values measured at various parameters of the device are presented. The results of measuring the parameters of the wave beam, which was formed by a built-in quasioptical converter, as well as the data obtained by measuring the heat loss in the cavity and the vacuum output window are analyzed.

  10. Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron

    Science.gov (United States)

    Aripin, Haji; Mitsudo, Seitaro; Sudiana, I. Nyoman; Tani, Shinji; Sako, Katsuhide; Fujii, Yutaka; Saito, Teruo; Idehara, Toshitaka; Sabchevski, Sliven

    2011-06-01

    In this paper, we present and discuss experimental results from a microwave sintering of a silica-glass ceramic, produced from a silica xerogel extracted from a sago waste ash. As a radiation source for the microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of silica xerogel have been dry pressed and then sintered at temperatures ranging from 300°C to 1500°C. The influence of the sintering temperature on the technological properties such as porosity and bulk density was studied in detail. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy have been used in order to study the structure of the produced silica glass-ceramics. It has been found that the silica xerogel crystallizes at a temperature of 800°C, which is about 200°C lower than the one observed in the conventional process. The silica xerogel samples sintered by their irradiation with a sub-millimeter wave at 900°C for 18 minutes are fully crystallized into a silica glass-ceramic with a density of about 2.2 g/cm3 and cristobalite as a major crystalline phase. The results obtained in this study allow one to conclude that the microwave sintering with sub-millimeter waves is an appropriate technological process for production of silica glass-ceramics from a silica xerogel and is characterized with such advantages as shorter times of the thermal cycle, lower sintering temperatures and higher quality of the final product.

  11. Application of the long pulsed 1064nm Nd:YAG laser for the treatment of melasma%长脉宽1064nm Nd:YAG激光治疗黄褐斑疗效观察

    Institute of Scientific and Technical Information of China (English)

    杨鹏; 麦跃; 李娟; 孙林潮

    2011-01-01

    目的:探讨长脉宽1064nm Nd:YAG激光治疗黄褐斑的临床疗效和安全性.方法:选取12例面部黄褐斑患者,采用长脉宽1064nm Nd:YAG激光,光斑直径5mm,脉宽0.3-0.4ms,能量13~15J/cm2,频率7~10Hz,全面部每次扫描约6000~12000个脉冲,共治疗1 0次,每2周1次,术后严格防晒.每次治疗前采用MASI评分和前后照片比较改善效果.结果:12例经过10次治疗,黄褐斑患者均获得不同程度改善,其中3例的改善率达到了60%,5例达到50%以上的改善.无1例出现严重副反应,同时还有改善皮肤质地的作用,80%以上的患者表示满意.结论:长脉宽1064nm Nd:YAG激光治疗黄褐斑疗效确切,安全性高,无明显副作用,是一种治疗黄褐斑安全、有效的新方法.%Objective To evaluate the efficacy and safety of long pulsed 1064nm Nd:YAG laser for the treatment of melasma lesions. Methods 12 patients (Fitzpatrick skin types III -IV) with melasma lesions were enrolled. During each treatment, each zone received 6000-12000 pulses using the following laser parameters: 0.3-0.4 ms pulse duration, 13-15J/cm2, 7-10 Hz, 5 mm spot size. Ten treatment sessions were performed for each patient 2 weeks apart. After treatment.the clearance of melasma lesions was assessed by MASI scores and the satisfaction of treatment was recorded by patients. Based on the MASI scores of pretreatment and posttreatment, the improvement rate of melasma was calculated. Results 12 cases of melasma lesions obtained different degree of improvement were treated by 10 times , MASI scores declined significantly from the baseline to the follow up visits of each treatment. 3 (15%) patients obtained 60% improvements ,5 (41.6%) patients obtained 50% improvements, according to the over all evaluation by dermatologists . Over 80% patients considered their results satisfactory or very satisfactory. Conclusions long pulsed 1064nm Nd:YAG laser is effective and safe in the treatment of melasma lesions, the side

  12. Analysis of laser hair removal efficacy and safety of long pulsed alexandrite%翠绿宝石长脉冲激光脱毛临床疗效及安全性分析

    Institute of Scientific and Technical Information of China (English)

    李永红; 蔡良奇; 赵小燕; 张启国; 黄悦

    2016-01-01

    Objective To investigate the effect of long pulsed alexandrite laser hair removal efficacy and adverse reaction. Methods Using long pulse alexandrite laser, wavelength 755nm, spot diameter 10mm, 20ns pulse width and energy density 10-20J/cm2, hair removal treatment on 400 sites in 504 patients, explore its curative effect after 1-6 treatment and above and the number of treatment and the curative effect. Results 400 patients in the right spot, energy density, pulse width, and above 1-6 after treatment, respectively 8.1%, 20.3%, 39.7%, 70.3%, 88.7%, 96.6%, for 4 times and 4 times more effective than the 4 following the treatment efficiency the difference was statistically significant (P<0.05), revealed a positive effect and number of treatment related adverse reaction. The overall incidence of 4.0%. Conclusion Long pulsed alexandrite laser hair removal, obvious curative effect, less adverse reactions, it is a safe, can Methods of treatment.%目的:探讨翠绿宝石长脉冲激光脱毛的临床疗效和不良反应。方法:采用翠绿宝石长脉冲激光,波长755nm,光斑直径10mm,脉冲宽度20ns,能量密度10~20J/cm2,对400例患者504个部位进行脱毛治疗,探讨其经过1~6次及以上治疗的效果及治疗次数与疗效的关系。结果:400例患者在合适的能量密度、光斑、脉冲宽度下,经过1~6次及以上治疗,有效率分别为8.1%、20.3%、39.7%、70.3%、88.7%、96.6%,治疗4次及4次以上的有效率高于治疗4次以下者,差异具有统计学意义(P<0.05),显示疗效与治疗次数呈正相关。总体不良反应发生率4.0%。结论:翠绿宝石长脉冲激光脱毛,疗效显著,不良反应小,是一种安全、可靠的治疗方法。

  13. 长脉冲1064 nmNd:YAG激光治疗皮肤血管性疾病%Long pulsed 1064nm Nd: YAG Laser Treatment of Dermovascular Disease

    Institute of Scientific and Technical Information of China (English)

    黄伟

    2010-01-01

    目的 探讨应用长脉冲1064 nm Nd:YAG激光治疗皮肤血管性疾病的治疗效果.方法 自2005年2月至2009年2月,应用长脉冲1064 nm Nd:YAG激光治疗皮肤血管性疾病285例,对鲜红斑痣、草莓样血管瘤、混合性血管瘤、皮肤毛细血管扩张、血管痣及充血性增生瘢痕等皮肤血管性疾病,根据皮损的不同性质选定不同能量的光束进行照射,视情况重复治疗1~5次.治疗结束6个月后随访,评价治疗效果.结果 285例中,有效245例,有效率为85.9%,治愈153例,治愈率为53.7%,出现色素性改变52例(18.2%),均在数月至半年后恢复,遗留浅表性瘢痕10例(3.51%),增生性瘢痕2例(0.7%).结论 长脉冲长脉冲1064 nm Nd:YAG激光治疗皮肤血管性疾病具有起效快、疗效显著、不良反应小的优点,具有重要的临床应用价值.%Objective Evaluation Of long pulsed 1064nmNd: YAG laser treatment of dermovascular disease treatment effects. Methods A total of 285 cases of dermovascular disease were treated with long pulsed 1064nmNd: YAG laser including port wine stains, strawberry hemangiomas, expanded capillary and congested hypertrophic scar. from February 2005 to February 2009.During the management, different energy levels were decided on the basis of the reaction of each lesion and the treatment repeated 1 to 5 times. The treatment effect were evaluated after six months follow-up. Results 245 cases (85.9%) in 285 cases patients gained effective therapy. 153 cases (53.7%) obtained healing. There are 52 cases (18.2%) with temple pigment alteration after the courses of treatment which can recover in several months or haff a year, superficial depressed scar wereremained in 10 patients (3.51%),two patients (0.7%) showed hyperplastic scar. Conclusion Treatment of dermovascular disease with long pulsed 1064 nm Nd: YAG laser has the qualities of quick and remarkable action and few side effect. This method has important clinical application value.

  14. Research on Gyrotrons.

    Science.gov (United States)

    1985-04-15

    perpendicular to a magnetic field tics, radar, and far-infrared astronomy. One wit ’ loss in a collisionless plasma.4 It is * such mechanism is the...16 I -3.218 B13 B16 B17 B18 I Big 0.1283 x 10- 𔃻 9.623 I 0.1558 x 10- 11 -0.1431 x 10- ! 0.8756 x 10 - 20 64 Eq.(4.25), the corresponding...10- 1 -0.8546 x 10- 3 I B 15 B16 B17 I Big Big -0.8612 x 10’u j -. 1283 x 10 0.4692 x 10’ " -0.7586 x 10 0.4973 x 10- We may conclude that for

  15. SYL1500型长脉冲绿激光治疗蜘蛛痣的临床观察%Therapeutic effects of SYL1500 green long pulse laser in treatment of spider moles

    Institute of Scientific and Technical Information of China (English)

    宋洋; 张迪; 姜萍

    2013-01-01

    Objectives :To study the therapeutic effects of SYL1500 green long pulse laser intreating spider moles .Methods :Pulse laser penetrate the skin quickly ,arriving at the dermal layer .The hemoglobins of the blood vessels absorp selectively 532 nm pulse laser .Results :The cure rate was 100 percent at half -year follow - up resulting in blood vessels shrinks .Conclusions :This technique was proved to be effective safe ,quick ,easy to operate and little risk of scarring without recurrence .%目的:观察SYL1500型长脉冲绿激光治疗蜘蛛痣的疗效。方法:快速穿透表皮,到达真皮的病变血管,发生病变的血管中血红蛋白选择性吸收532nm的脉冲激光,病变的血管被急剧加热,使得病变血管收缩。结果:经1年随访,无复发,治愈率100%。结论:操作简单,瞄准精确,不易形成疤痕,治愈率高,疗程短,不复发,快速安全。

  16. Prospective Comparison of Dual Wavelength Long-Pulsed 755-nm Alexandrite/1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser versus 585-nm Pulsed Dye Laser Treatment for Rosacea

    Science.gov (United States)

    Seo, Hyun-Min; Kim, Jung-In; Kim, Han-Saem; Choi, Young-Jun

    2016-01-01

    Background Rosacea treatments including oral/topical medications and laser therapy are numerous but unsatisfactory. Objective To compare the effectiveness of the dual wavelength long-pulsed 755-nm alexandrite/1,064-nm neodymium: yttrium-aluminum-garnet laser (LPAN) with that of 585-nm pulsed dye laser (PDL) for rosacea. Methods This was a randomized, single-blinded, comparative study. Full face received four consecutive monthly treatments with LPAN or PDL, followed-up for 6 months after the last treatment. Erythema index was measured by spectrophotometer, and digital photographs were evaluated by consultant dermatologists for physician's global assessment. Subjective satisfaction surveys and adverse effects were recorded. Results Forty-nine subjects with rosacea enrolled and 12 dropped out. There were no significant differences between LPAN and PDL in the mean reduction of the erythema index (p=0.812; 3.6% vs. 2.8%), improvement of physician's global assessment (p=1.000; 88.9% vs. 89.5%), and subject-rated treatment satisfaction (p=0.842; 77.8% vs. 84.2%). PDL showed more adverse effects including vesicles than LPAN (p=0.046; 26.3% vs. 0.0%). No other serious or permanent adverse events were observed in both treatments. Conclusion Both LPAN and PDL may be effective and safe treatments for rosacea. PMID:27746641

  17. A 0.52THz third harmonic little-orbit gyrotron%小回旋三次谐波0.52THz回旋管

    Institute of Scientific and Technical Information of China (English)

    袁学松; 马春燕; 韩煜; 鄢扬

    2012-01-01

    A third harmonic little-orbit gyrotron oscillator is investigated theoretically in order to develop high power and efficiency terahertz (THz) radiation sources. Mode competition with different electron-beam parameters have been investigated in a 0.52 THz third harmonic TE37 mode gyrotron oscillator, which can generate 3.7kW of RF power at resonant magnetic field 6.98T. In addition, a high magnetic compression ratio magnetron injection gun (MIG) with 65 kV/2. 5 A has been developed. PIC simulation results show that the velocity ratio of electron beam is 1.24, the average beam radius in the cavity is 0.35 mm. The spread of perpendicular and parallel velocities are 6.1% and 6.6% , respectively.%为了发展大功率高效率太赫兹辐射源,对小回旋电子注激励三次谐波太赫兹电子回旋脉塞进行了研究,分析了不同参数情况下的模式竞争.研究结果表明,采用近轴小回旋电子注能够实现三次谐波单模振荡.在此基础上设计了一只0.52 THz、TE37模三次谐波回旋管,数值计算表明,该回旋管在工作磁场为6.98 T下输出功率可以达到3.7 kW.对产生近轴小回旋电子注的高磁压缩比磁控注入式电子光学系统进行的粒子模拟研究结果表明,该电子枪能够产生满足实验要求的65 kV/2.5 A,横纵速度比为1.24,引导中心半径0.35 mm的小回旋电子注,其纵向速度离散6.6%,横向速度离散6.1%.

  18. 170 GHz回旋管电子枪的设计%Design of the magnetron injection gun for 170 GHz gyrotron

    Institute of Scientific and Technical Information of China (English)

    曾旭; 王峨锋; 刘本田; 李志良; 冯进军

    2013-01-01

    A 170 GHz gryotron is an ideal power source for the Electron Cyclotron Resonance Heating (ECRH) in the plasma fusion. The required output power from a single gyrotron tube at 170 GHz operating frequency for ECRH application is 1 MW or more. For generating the high output power,a Magnetron Injection Gun(MIG) which can provide the electron beam with large enough transverse energy for interacting with the transverse filed of the electromagnetic wave is designed. Ideal parameters of the double-anode MIG are obtained according to the adiabatic compression theory and the correlative simulation software. The designed MIG can provide the necessary beams for the 170 GHz fundamental harmonic gyrotron under 80 kV of voltage and 40 A of current with the guidance center radius of 8.27 mm and the pitch factor of 1.5.%  170 GHz回旋管是等离子体核聚变中电子回旋谐振加热的理想功率源,在功率上要求具有1 MW以上的输出功率。要产生这么大的输出功率,就需要具有足够大横向能量的电子注与高频场的横向电场进行互作用,因此要对电子枪进行专门的设计。利用绝热压缩理论及相关的仿真软件对双阳极磁控注入电子枪进行了设计,得到了较好的电子注参数。所设计的电子枪能在工作电压80 kV、工作电流40 A 的条件下为170 GHz 基波回旋管提供所需的回旋电子注,其引导中心半径为8.27 mm,横纵速度比1.5。

  19. Long-pulse Supercontinuum Light Sources

    DEFF Research Database (Denmark)

    Moselund, Peter M.

    A Supercontinuum (SC) is a broad spectrum generated from a narrow light source through non-linear effects. This thesis describes SC generation based on 1064 nm ps pulses in PCF fibres. We investigate how the SC spectrum can be modified and intensity noise reduced by feeding back part of the SC...

  20. Physics issues in long pulse plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Toda, Shinichiro; Sanuki, Heiji [National Institute for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Department of Nuclear Engineering, Kyoto University, Kyoto (Japan)

    2000-07-01

    Physics in the steady-state or long time discharge are illustrated from the view point of generic toroidal plasmas. Issues include physics process with very long time scale, dynamical phenomena of various time scales, transition nature under very slow temporal variations of parameters, statistical occurrence of transition and life time and identification of minimum circulating power. Nonlinear dependencies of transport properties of density, temperature, current, electric field and poloidal magnetic field cause self-organized dynamics. A picture of stationary oscillatory states is presented from a unified picture of nonlinear limit cycle dynamics. It is emphasized that the long time asymptotics are determined by the structure formation mechanisms. The sustainment needs a circulating power, and the circulating power in steady state plasma is also discussed. (author)

  1. Qualifying plasma diagnostics for a high power microwave background of ECRH heated discharges

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Baldzuhn, J.; Endler, M.; Laux, M.; Zhang, D.; Laqua, H.P.; Noke, F.; Purps, F.; Ewert, K. [Max-Planck Institut fur Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Oosterbeek, J.W. [Technische Universiteit Eindhoven, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Associacion EURATOM/CIEMAT, av. Complutense 22, 28040, Madrid (Spain)

    2011-07-01

    Microwave background radiation resulting from multiple reflected unabsorbed ECRH / ECCD power may cause severe problems for microwave absorbing in-vessel components such as gaskets, bellows, windows, isolators and cable insulations in particular during long pulse operation. For qualifying in-vessel components of W7-X in the environment of an isotropic 140 GHz radiation the Microwave Stray Radiation Launch facility, MISTRAL is operated at IPP. Power flux densities of 10-40 kW/m{sup 2} are obtained with a pulsed power gyrotron launching the microwave via a corrugated transmission line and a vacuum window to the MISTRAL vessel. The focus of the program was on cable isolations as required e.g. for in-vessel magnetic diagnostics. Sufficient shielding is obtained in nearly closed metal pipes only. Cryo pumps require a temperature < 12 K where Hydrogen desorption starts. The cryo pumps are usually shielded from plasma radiation by so called chevron structures. It is investigated whether coating of these chevrons with a microwave absorbing layer yields a sufficient reduction of the stray radiation level to ensure cryo pump operation. Diagnostic windows have been tested also. Although the temperature rise even of uncooled ZnSe and quartz windows at 10 kW/m{sup 2} is uncritical with respect to damage the associated refractive index changes may be too high for some diagnostic purposes e.g. for interferometry. A possible shielding are meshes or {mu}W absorbing coatings. Integrated diagnostic mock-ups such as for the diamagnetic loop, the inner Rogowski coils, Mirnov coils and the bolometer head also have been tested

  2. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    Science.gov (United States)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  3. 片状石墨增强树脂基复合材料的耐激光烧蚀性能研究%Ablation Capability of Flake Graphite Reinforced Barium-phenolic Resin Composite under Long Pulse Laser Irradiation

    Institute of Scientific and Technical Information of China (English)

    于庆春; 万红

    2012-01-01

    The carbon fiber reinforced phenolic resin composite is widely used as a thermal protection material because of its excellent thermal ablation. A novel flake graphite reinforced barium-phenolic resin composite was made by roller coating technology and its thermal ablation capability under long pulse laser irradiation was studied. The results show that the thermal ablation rate of the flake graphite reinforced barium-resin composite is 32.8 ug/J at 1700 W/cm2 irradiation power density, which is much lower than that of the carbon fiber reinforced barium-resin composite or barium-phenolic resin obviously. The anti-ablative mechanism of the flake graphite reinforced barium-phenolic resin composite is investigated by the observation of its microstructure and the calculation of the laser en-. Ergy coupling with the material. It is found that the flake graphite is arrayed homogeneous alignment as sandwich among the composite. When the laser radiation gets on the composite, the flake graphite plays as a mirror and reflects part of the laser, and then the laser radiation energy deposition on the composite is reduced. It is also found that the size of the flake graphite also affects the ablation capability. The composite with the flake graphite diameter of about 0.5 mm has the lowest thermal ablation rate.%采用刷涂的方法制备了一种新型的片状石墨增强钡酚醛树脂基复合材料,并采用重频激光辐照的方法,对其耐烧蚀性能进行了研究.研究结果表明:片状石墨增强钡酚醛树脂基复合材料在平均功率密度为1700 J/cm2的重频激光辐照下的热烧蚀率为32.8 μg/J,耐激光烧蚀性能明显高于碳纤维增强的钡酚醛树脂基复合材料和钡酚醛树脂;片状石墨增强钡酚醛树脂基复合材料中的片状石墨呈近平行的层状分布方式,在激光辐照过程中能对入射激光起到平面反射作用,从而有效地降低激光辐照的能量沉积;片状石墨的片型对复合材料

  4. 170 GHz兆瓦级同轴回旋振荡管的分析计算%Analysis and calculation of a 170 GHz megawatt-level coaxial gyrotron

    Institute of Scientific and Technical Information of China (English)

    覃觅觅; 罗勇; 杨阔; 黄勇

    2014-01-01

    回旋管是最有希望应用于正在实施的国际热核实验反应堆计划的微波源器件,然而研究设计符合要求的回旋管还存在很多困难需要解决.对170 GHz兆瓦级光滑同轴回旋管的注-波互作用进行了研究.选取模式谱相对稀疏的TE31,12作为工作模式,利用Matlab编制源程序,计算了同轴回旋管的注-波耦合系数、起振电流.在考虑电子速度零散、腔壁电阻率和单模近似的基础上,对光滑同轴谐振腔的优化设计和注-波互作用进行了仿真,给出了磁场、电压、电流和内导体倾角等参量与回旋管效率的关系.结果表明,电压和磁场对回旋管效率影响较大,电子速度零散对回旋管效率影响较小,因而可降低电子枪的设计要求.此外,优化内导体倾角和同轴谐振腔结构参数可提高注-波互作用效率,降低电子速度零散对互作用效率的影响,获得了约50%的电子效率及1.7 MW输出功率.%Gyrotrons are the most promising microwave source devices that can be used in the International Thermonuclear Experimental Reactor, but there are many diffculties to be solved in study and design of gyrotrons to meet the require-ments. In this paper, the beam-wave interactions of a 170 GHz megawatt-level smooth-wall coaxial gyrotron are studied numerically. In order to attain high effciency and stable radiation, TE31,12 mode that lies in a relative sparse spectrum is selected as the operating mode, and the beam-wave coupling coeffcient and start oscillation current are calculated by a set of source codes developed by Matlab. Taking into account the electronic velocity spread and cavity wall resistivity, and based on a single-mode approximation, the optimization design and simulation of beam-wave interaction of a 170 GHz megawatt smooth-wall coaxial gyrotron have been fulfilled. The relationships between effciency and magnetic field, and the voltage, current, taper angle of insert, and other parameters are

  5. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    Science.gov (United States)

    Razin, S.; Zorin, V.; Izotov, I.; Sidorov, A.; Skalyga, V.

    2014-02-01

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  6. Design cusp electron gun for of 0.6 THz 3rd-harmonic large orbit gyrotron%0.6THz三次谐波大回旋电子枪设计

    Institute of Scientific and Technical Information of China (English)

    马春燕; 胡强; 袁学松; 韩煜; 鄢扬

    2012-01-01

    Large orbit axis-encircling electron beams can provide improved coupling and mode selectivity in a high harmonic terahertz gyrotron. For developing a 0. 6 THz 3rd-harmonic large orbit gyrotron, a cusp gun with a beam voltage of 55 kV and a beam current of 1 A has been designed based on a comparatively simple Pierce-type electron gun and cusp magnetic field. The optimized result shows that the velocity ratio, axial velocity spread and transverse velocity spread are 1. 53, 7. 10% and 3. 39% , respectively.%基于会切磁场的理论模型,采用粒子模拟软件对0.6 THz三次谐波的太赫兹回旋管所需的大回旋电子光学系统进行研究.文中通过大量的模拟计算,分析讨论了不同参数对电子注的横向速度离散、纵向速度离散及横纵速度比的影响,优化了电子光学系统的性能参量,得到符合设计要求且具有工程实际应用的电子枪,该电子枪能够产生55 kV,1A,横向速度离散为3.39%、纵向速度离散为7.10%、横纵速度比为1.53的大回旋电子注.

  7. 长脉冲激光对组成CCD图像传感器的MOS光敏单元的硬破坏机理研究%Mechanism for long pulse laser-induced hard damage to the MOS pixel of CCD image sensor

    Institute of Scientific and Technical Information of China (English)

    毕娟; 张喜和; 倪晓武

    2011-01-01

    The interaction process between 1.06μm wavelength Nd:YAG long pulse laser with a millisecond pulse width and the MOS pixel of frame transfer area CCD image sensor and its hard damage mechanism are studied by the finite element method.The thermal-mechanical coupled modeling for long pulse laser irradiation of a MOS pixel is established,and the distributions of temperature and stress are obtained.The results show that the spallations between O layer and S layer appear due to the S layer radial stress on the surface exceeding the compressive strength under the action of the long pulse laser,then it will extend to the entire layer before melting by radial stress,axial stress and hoop stress.Hard damage of pixel occurs as spallation,and one pixel or an array of pixels in the laser irradiation area of CCD sensor is completely in failure.This paper could provide foundation for both laser-induced damage and protection of CCD image sensor.%以帧转移型面阵CCD图像传感器为例,采用有限元法研究了波长1.06μm,脉宽ms量级长脉冲Nd:YAG激光与组成CCD传感器的MOS光敏单元的作用过程及硬破坏机理.建立了长脉冲激光辐照MOS光敏单元的热力耦合模型,模拟了MOS光敏单元的温度分布和应力分布.研究结果表明:在长脉冲激光作用下,由于S层表面径向压应力超过其抗压强度引起MOS光敏单元出现了OS层间分裂,进而受径向、环向和轴向压应力的共同作用下,在光敏单元还未熔融时,层间分裂就扩大至光敏单元的整个OS层间.OS层间完全分裂会使光敏单元发生硬破坏,并造成CCD传感器中激光照射区的单个或一列光敏单元的功能完全失效.文章的研究结果可为CCD图像传感器的激光损伤及防护提供必要的理论依据.

  8. 长脉冲可调脉宽Gentle-YAG 1064nm激光脱毛的长期疗效及安全性分析%Evaluation of the Long-term Therapeutic Effect and Safety of Long-pulsed Tunable Gentle-YAG Laser in Hair Removal

    Institute of Scientific and Technical Information of China (English)

    秦萍萍; 吕东; 曹丽华; 周洋

    2009-01-01

    目的:评价长脉冲可调脉宽Gentle-YAG 1064nm激光在Ⅲ~Ⅳ型皮肤脱毛者中的长期疗效和安全性.方法:用美国CANDELA公司生产的长脉冲可调脉宽Gentle-YAG 1064nm激光治疗仪对221例多毛患者进行多次治疗,治疗结束后随访半年到两年,回顾性评价治疗的效果和不良反应,每个部位根据治疗次数分两组:<6次组和≥6次组(腋窝为<4次组和≥4次组),比较不同部位两组治疗效果.结果:随访到并进行评价的多毛患者169例共273处,经过2~16次脱毛治疗后,有效数为224例,总有效率为82.05%.唇部、腋窝、四肢、面颈部、躯干部A组有效率均高于B组,结果差异有统计学意义,不同部位两个治疗次数组别疗效有差异.169例患者中有5例出现不良反应,包括疼痛、毛囊性丘疹、瘙痒、水疱.结论:长脉冲可调脉宽Gentle-YAG 1064nm激光对Ⅲ一Ⅳ型皮肤患者脱毛安全有效.疗效与脱毛部位、治疗次数相关.%Objective: To evaluate the long-term therapeutic effect and safety of long-pulsed tunable Gentle-YAG laser in hair removal. Method: A retrospective study was conducted. In this study,221 patients with hypertrichosis were treated by long-pulsed tunable Gentle-YAG laser system. Who were divided into two groups were treated based on the treatment sessions: group A receiving 6 (≥4 for axillae) or more treatments, group B less than 6 ( < 4 for axillae) treatments. The patients were followed up for 6 months to 2 years by return telephone. Evaluation of efficacy and side effects were performed. Result: Follow-up and evaluation were completed in 169 patients,and a total of 273 sites treated. After 2~16 times treatment,2 total effective rate of 82.05% (224/273) was achieved. Significant higher effective rates were observed in group B compared with group A at all sites ( P < 0.05 ). Side effects were noted in only 5 cases , including ache, follicular papules, itch and blisters. Conclusion: Long-pulsed

  9. 长脉冲1064nm Nd:YAG激光治疗婴幼儿皮肤血管瘤215例疗效分析%A clinical effect analysis of long-pulsed 1064 nm Nd:YAG laser in the treatment of 215 infancy hemangiomas

    Institute of Scientific and Technical Information of China (English)

    曹丽华; 张美华; 吕东; 秦萍萍; 周洋

    2012-01-01

    Objectives: To observe the clinical effects of long-pulsed 1 064 nm Nd:YAG laser in the treatment of heman-giomas of skin in infant and investigate its related factors. Methods: Total 215 cases were treated with long-pulsed 1 064 nm Nd:YAG laser according to different disease types, including 19 cases of port wine stains, 179 cases of strawberry heman-giomas and 17 cases of mixed hemangiomas. The association between clinical effect and types, size, location and times of treatment of hemangiomas was also analyzed. Results: Among 215 cases, 133 were cured, 67 gained marked effect, 8 gaining effective therapy and 7 ineffective. The cure rate and total efficacy rate were 61.9% and 93.1%, respectively. The effect was related with the type, size and treatment times of hemangiomas. However, the location of hemangiomas was not associated with the therapy effect. The side-effect rate was 48.8% with temporary hyper-pigmentation, 8.3% with temporary hypo-pigmentation, 4.6% with superficial scar and 3.7% with hair reduction or disappearance. Conclusion: The long-pulsed 1 064nm Nd:YAG laser is an effective, safe and low side-effect treatment for infancy hemangiomas.%目的:观察长脉冲1064nm Nd:YAG激光治疗婴幼儿皮肤血管瘤临床疗效,并探讨影响疗效的相关因素.方法:应用长脉冲1 064 nm Nd:YAG激光治疗婴幼儿皮肤血管瘤215例,其中鲜红斑痣19例,草莓状血管瘤179例,混合型血管瘤17例.分析其疗效与病变类型、瘤体大小、病变部位及治疗次数的关系.结果:215例患儿中治愈133例,显效67例,有效8例,无效7例,痊愈率和有效率分别为61.9%和93.1%.疗效与血管瘤的病变类型、瘤体的大小以及治疗次数有关,但与其病变部位无明显相关性.治疗后暂时性色素沉着、暂时性色素减退、浅表性瘢痕、头部毛发减少或消失的发生率分别为48.8%、8.3%、4.6%和3.7%.结论:长脉冲1064nm Nd:YAG激光治疗婴幼儿皮肤血管瘤疗效好,

  10. Efficacy of long-pulse Nd:YAG 1064 nm laser combined with occlusive dressing with salicylic acid in the treatment of onychomycosis%长脉宽Nd:YAG 1064 nm激光联合水杨酸封包治疗甲真菌病的疗效评价

    Institute of Scientific and Technical Information of China (English)

    陈梅; 张敬东; 董正邦

    2015-01-01

    Objective:To assess the efficacy of long-pulse Nd:YAG 1064 nm laser combined with occlu-sive dressing with salicylic acid in the treatment of onychomycosis. Methods: Sixty six patients with onycho-mycosis were randomly divided into the treatment group ( 34 patients, 68 disease nails) and control group ( 32 patients, 72 disease nails) . The disease nails in each group were divided into the SCIO≤9 group and the 90.05) . The effective rates of disease nails with a score of 90.05);对于9

  11. Ti:sapphire laser with long-pulse lamp pumping

    Science.gov (United States)

    Koselja, Michael P.; Kubelka, Jiri; Kvapil, Jiri

    1992-06-01

    Lamp pumping of Ti:Sapphire has some advantages over laser pumping and represents some interest due to possible applications. The paper will present laser behavior of Ti:Sapphire under very long lamp pulse pumping. Pulse lamp duration (FWHM) was more than 100 times greater than the lifetime of Ti3+. Output energy with no tuning element was achieved greater than 1.5 J with 0.12% electrical-to-optical efficiency. Dimensions of the rod used was 7 mm in diameter and 148 mm in length. The doping level of Ti3+ was 0.09% Ti2O3 in the rod. Tuning characteristics with different tuning elements are also presented. Further development to obtain CW lamp pumping operation will be discussed.

  12. Analysis of melt ejection during long pulsed laser drilling

    Science.gov (United States)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu

    2016-05-01

    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  13. Experimental studies towards long pulse steady state operation in LHD

    NARCIS (Netherlands)

    Noda, N.; Nakamura, Y.; Takeiri, Y.; Mutoh, T.; Kumazawa, R.; Sato, M.; Kawahata, K.; Yamada, S.; Shimozuma, T.; Oka, Y.; Iiyoshi, A.; Sakamoto, R.; Kubota, Y.; Masuzaki, S.; Inagaki, S.; Morisaki, T.; Suzuki, H.; Ohyabu, N.; Adachi, K.; Akaishi, K.; Ashikawa, N.; Chikaraishi, H.; de Vries, P. C.; Emoto, M.; Funaba, H.; Goto, M.; Hamaguchi, S.; Ida, K.; Idei, H.; Ikeda, K.; Imagawa, S.; Inoue, N.; Isobe, M.; Iwamoto, A.; Kado, S.; Kaneko, O.; Kitagawa, S.; Khlopenkov, K.; Kobuchi, T.; Komori, A.; Kubo, S.; Liang, Y.; Maekawa, R.; Minami, T.; Mito, T.; Miyazawa, J.; Morita, S.; Murai, K.; Murakami, S.; Muto, S.; Nagayama, Y.; Nakanishi, H.; Narihara, K.; Nishimura, A.; Nishimura, K.; Nishizawa, A.; Notake, T.; Ohdachi, S.; Okamoto, M.; Osakabe, M.; Ozaki, T.; Pavlichenko, R. O.; Peterson, B. J.; Sagara, A.; Saito, K.; Sakakibara, S.; Sasao, H.; Sasao, M.; Sato, K.; Seki, T.; Shoji, M.; Sugama, H.; Takahata, K.; Takechi, M.; Tamura, H.; Tamura, N.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Torii, Y.; Tsumori, K.; Watanabe, K. Y.; Watanabe, T.; Watari, T.; Yanagi, N.; Yamada, I.; Yamada, H.; Yamaguchi, S.; Yamamoto, S.; Yamamoto, T.; Yokoyama, M.; Yoshimura, Y.; Ohtake, I.; Akiyama, R.; Haba, K.; Iima, M.; Kodaira, J.; Tsuzuki, K.; Itoh, K.; Matsuoka, K.; Ohkubo, K.; Satoh, S.; Satow, T.; Sudo, S.; Tanahashi, S.; Yamazaki, K.; Motojima, O.; Hamada, Y.; Fujiwara, M.

    2001-01-01

    In the Large Helical Device, stable discharges lasting longer than one minute have been obtained using the complete heating scheme, including ECH. The plasma is sustained with NBI or ICRF of 0.5-1 MW. The central plasma temperature is higher than 1.5 keV with a density of (1-2) x 10(19) m(-3)

  14. Relaxation oscillations in long-pulsed random lasers

    NARCIS (Netherlands)

    Molen, van der Karen L.; Mosk, Allard P.; Lagendijk, Ad

    2009-01-01

    We have measured the evolution of the intensity emitted by a random laser during a pump pulse that is comparable in duration to the spontaneous emission decay time. The time traces of our random laser, consisting of titanium dioxide particles and sulforhodamine B dye, show clear relaxation oscillati

  15. Long Pulse EBW Start-up Experiments in MAST

    Directory of Open Access Journals (Sweden)

    Shevchenko V.F.

    2015-01-01

    Full Text Available Start-up technique reported here relies on a double mode conversion (MC for electron Bernstein wave (EBW excitation. It consists of MC of the ordinary (O mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR. Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  16. Beam dynamics in a long-pulse linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  17. DARHT-II Long-Pulse Beam-Dynamics Experiments

    CERN Document Server

    Ekdahl, Carl; Bartsch, Richard; Bender, Howard; Briggs, Richard J; Broste, William; Carlson, Carl; Caudill, Larry; Chan, Kwok-Chi D; Chen Yu Jiuan; Dalmas, Dale; Durtschi, Grant; Eversole, Steven; Eylon, Shmuel; Fawley, William M; Frayer, Daniel; Gallegos, Robert J; Harrison, James; Henestroza, Enrique; Holzscheiter, M H; Houck, Timothy L; Hughes, Thomas P; Jacquez, Edward; Johnson, Douglas; Johnson, Jeffrey; Jones, Kenneth; McCuistian, Brian T; Meidinger, Alfred; Montoya, Nicholas; Mostrom, Chris; Moy, Kenneth; Nath, Subrata; Nielsen, Kurt; Oro, David; Rodriguez, Leroy; Rodriguez, Patrick; Rowton, Larry J; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin; Schulze, Martin E; Simmons, David; Studebaker, Jan; Sturgess, Ronald; Sullivan, Gary; Swinney, Charles; Tang, Yan; Temple, Rodney; Tipton, Angela; Tom, C Y; Vernon Smith, H; Yu, Simon

    2005-01-01

    When completed, the DARHT-II linear induction accelerator (LIA) will produce a 2-kA, 18-MeV electron beam with more than 1500-ns current/energy "flat-top." In initial tests DARHT-II has already accelerated beams with current pulse lengths from 500-ns to 1200-ns full-width at half maximum (FWHM) with more than1.2-kA, 12.5-MeV peak current and energy. Experiments are now underway with a ~2000-ns pulse length, but reduced current and energy. These pulse lengths are all significantly longer than any other multi-MeV LIA, and they define a novel regime for high-current beam dynamics, especially with regard to beam stability. Although the initial tests demonstrated absence of BBU, the pulse lengths were too short to test the predicted protection against ion-hose instability. The present experiments are designed to resolve these and other beam-dynamics issues with a ~2000-ns pulse length beam.

  18. Event recognition using signal spectrograms in long pulse experiments.

    Science.gov (United States)

    González, J; Ruiz, M; Vega, J; Barrera, E; Arcas, G; López, J M

    2010-10-01

    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced by the Alfvén cascades using morphological patterns. The need to apply different algorithms to the signals and to address different processing algorithms using the previous results necessitates the use of an event-based experiment. The Intelligent Test and Measurement System platform is an example of architecture designed to implement distributed data acquisition and real-time processing systems. The processing algorithm sequence is modeled using an event-based paradigm. The adaptive capacity of this model is based on the logic defined by the use of state machines in SCXML. The Intelligent Test and Measurement System platform mixes a local multiprocessing model with a distributed deployment of services based on Jini.

  19. Experimental studies towards long pulse steady state operation in LHD

    NARCIS (Netherlands)

    Noda, N.; Nakamura, Y.; Takeiri, Y.; Mutoh, T.; Kumazawa, R.; Sato, M.; Kawahata, K.; Yamada, S.; Shimozuma, T.; Oka, Y.; Iiyoshi, A.; Sakamoto, R.; Kubota, Y.; Masuzaki, S.; Inagaki, S.; Morisaki, T.; Suzuki, H.; Ohyabu, N.; Adachi, K.; Akaishi, K.; Ashikawa, N.; Chikaraishi, H.; de Vries, P. C.; Emoto, M.; Funaba, H.; Goto, M.; Hamaguchi, S.; Ida, K.; Idei, H.; Ikeda, K.; Imagawa, S.; Inoue, N.; Isobe, M.; Iwamoto, A.; Kado, S.; Kaneko, O.; Kitagawa, S.; Khlopenkov, K.; Kobuchi, T.; Komori, A.; Kubo, S.; Liang, Y.; Maekawa, R.; Minami, T.; Mito, T.; Miyazawa, J.; Morita, S.; Murai, K.; Murakami, S.; Muto, S.; Nagayama, Y.; Nakanishi, H.; Narihara, K.; Nishimura, A.; Nishimura, K.; Nishizawa, A.; Notake, T.; Ohdachi, S.; Okamoto, M.; Osakabe, M.; Ozaki, T.; Pavlichenko, R. O.; Peterson, B. J.; Sagara, A.; Saito, K.; Sakakibara, S.; Sasao, H.; Sasao, M.; Sato, K.; Seki, T.; Shoji, M.; Sugama, H.; Takahata, K.; Takechi, M.; Tamura, H.; Tamura, N.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Torii, Y.; Tsumori, K.; Watanabe, K. Y.; Watanabe, T.; Watari, T.; Yanagi, N.; Yamada, I.; Yamada, H.; Yamaguchi, S.; Yamamoto, S.; Yamamoto, T.; Yokoyama, M.; Yoshimura, Y.; Ohtake, I.; Akiyama, R.; Haba, K.; Iima, M.; Kodaira, J.; Tsuzuki, K.; Itoh, K.; Matsuoka, K.; Ohkubo, K.; Satoh, S.; Satow, T.; Sudo, S.; Tanahashi, S.; Yamazaki, K.; Motojima, O.; Hamada, Y.; Fujiwara, M.

    2001-01-01

    In the Large Helical Device, stable discharges lasting longer than one minute have been obtained using the complete heating scheme, including ECH. The plasma is sustained with NBI or ICRF of 0.5-1 MW. The central plasma temperature is higher than 1.5 keV with a density of (1-2) x 10(19) m(-3) mainta

  20. 长脉冲1064nm Nd:YAG激光治疗兔耳增生性瘢痕的实验研究%Therapeutic efficacy of long-pulsed 1064 mn Nd:YAG laser on hyperplastic scar in rabbit ear model

    Institute of Scientific and Technical Information of China (English)

    尹冬云; 曹莫; 刘柳

    2011-01-01

    Objective To evaluate the therapeutic effect of long-pulsed Nd:YAG 1064 laser on hyperplastic scars by using a rabbit ear model.Methods Five female and five male New Zealand long-ear white rabbits weighting 2.0-2.5 kg were used in this experiment.Four square full-thickness skin wounds sized 1.5 cm x1.5 cm were created on the ventral surface of each ear to develop a model of hyperplastic scar.Finally,a total of 74 hyperplastic scars developed on the 80 wounds,and the scars on the left and right ears served as the control (unirradiated) and treatment (irradiated with long-pulsed 1064 nm Nd:YAG laser) group,respectively.After 30 days of irradiation,the color and texture of scars were observed and the scar thickness was measured by color Doppler ultrasonogTaphy.Then,the scars were harvested followed by the analysis of density of fibroblasts and microvessels as well as the changes in collagen fibers in scars by HE staining,CD31 staining and Masson staining,respectively.Results A decrease was observed in the color,hardness and thickness of scars in the irradiated ears compared with the unirradiated ears.The average thickness of scars,microvessel density and fibroblast density in scars were significantly lower in the treatment group than in the control group(2.137vs.3.089 am,t=5.72,P<0.01;38.333/mm2vs.68.056/mm2,t=4.93,P<0.01;166.940/mm2vs.355.000/mm2,t=13.36.P<0.01).Masson staining revealed a disorganized arrangement of collagen fibers in the control group but a sparse and regular alignment in the treatment group.Conclusion Long-pulsed 1064 nm Nd:YAG laser may promote the shrinkage and suppress the hyperplasia of scars.%目的 通过建立兔耳增生性瘢痕模型,评价长脉冲1064 nm激光治疗增生性瘢痕的疗效.方法 选用新西兰长耳白兔10只,雌雄各半,体质量2.0~2.5 kg.在所有兔耳腹侧面建立增生性瘢痕模型,每只兔耳4处1.5 cm x 1.5 cm正方形造模.10只兔子共80个创面形成增生性瘢痕74处,将左侧和右侧兔耳

  1. Comparative study on the clinical effect of venular malformation treated by intense pulsed light, long-pulse Nd:YAG laser and combined therapy with low energy%单用强脉冲光、长脉宽Nd:YAG激光以及低能量下两者联合使用治疗微静脉畸形的临床疗效比较

    Institute of Scientific and Technical Information of China (English)

    吴迪; 鲁严; 周炳荣; 李巍; 曹筱冬; 骆丹

    2013-01-01

    目的:观察单用强脉冲光、长脉宽1064nm Nd:YAG激光以及低能量下两者联合使用治疗微静脉畸形的临床疗效和不良反应.方法:联合应用590~ 1200nm强脉冲光(能量密度12 ~ 16J/cm2,脉宽3.0 ~ 5.0ms)以及长脉宽1064nm Nd:YAG激光(能量密度80 ~ 90J/cm2,脉宽10~ 20ms)治疗51例微静脉畸形患者;并与单独应用强脉冲光(能量密度13~ 20J/cm2)及长脉宽Nd∶ YAG激光(能量密度120 ~ 145J/cm2)治疗结果比较.结果:强脉冲光、长脉宽1064nmNd:YAG激光及低能量下联合使用治疗微静脉畸形的有效率分别为33.1%、40.3%和56.9%,瘢痕发生率分别为0%、10.7%和5.9%.结论:低能量下联合使用强脉冲光及长脉宽1064nm Nd:YAG激光提高了微静脉畸形的有效率,且不良反应小.%Objective To investigate the clinical efficacy and adverse effect of intense pulsed light(IPL),long-pulse 1064nm Nd:YAG laser and combined therapy with low energy for the treatment of venular malformation.Methods Fifty-one patients with venular malformation were treated by combined therapy (590~1200 nm IPL and long-pulse 1064nm Nd:YAG laser).The treatment parameters of IPL were as follows∶12~16 J/cm2 energy density,3.0~5.0ms pulse duration.The treatment parameters of Nd∶YAG laser∶ 80~90 J/cm2 energy density,10~20ms pulse duration.The clinical efficacy and side effect of IPL and Nd:YAG laser were also observed separately.Results The effective rates were 33.1%,40.3% and 56.9% in venular malformation treated only with IPL,Nd:YAG laser and combined therapy respectively.While the incidences of scar were 0%,10.7% and 5.9% respectively.Conclusion IPL combined with long-pulse 1064nm Nd∶YAG laser in low energy is more effective and less adverse effect in the treatment of venular malformation.

  2. 喷吹压力与喷吹距离对长滤袋清灰效果的研究%Effect of the pulse pressure and the jet distance on the cleaning performance of the long pulse-jet filter bag

    Institute of Scientific and Technical Information of China (English)

    吕娟; 颜翠平; 袁彩云; 付瑜; 李雪; 陈海焱

    2016-01-01

    The present paper is aimed at introducing its investigation results on the effects of the pulse pressure and the jet distance on the cleaning performance of the long pulse-jet filter bag in order to promote the optimistic design for a semi-industrial pulse-jet filter bag.For the aforementioned purpose,we have adopted the peak pressure and the speed to arrive at the peak pressure as the idealistic indexes for the evaluation of the pulse cleaning effects.In doing so,we have adopted 8 high precision piezoelectric pressure transducers (according to Model QSY8135)to examine and measure the peak pressure and the time for reaching the peak pressure to be shown on the internal surface of the filter bag (160 mm ×6 000 mm),which is made of the polyester needle-felt.The evaluation results have shown that it would be possible to realize the optimum design in a semi-industrial pulsejet filter bag when the pulse pressure is set on 0.1-0.3 MPa in a distance of 200 mm.Our investigation has also proven that the peak pressure tends to increase from the top opening and then reach the maximum value at the location of 1 m in the length of the filter bag.And then,the peak pressure would like to drop gradually,and later to rise again at the bottom of the filter bag on its surface.Thus,the peak pressure distribution tends to be uneven along its surface and it would take 0 to 4 000 mm to reach its peak pressure in its length and decrease from 4 000 mm to 6 000mm,with the average peak pressure values along its length being 2.076 8 kPa,3.292 1 kPa and 4.325 2 kPa,on the condition that the pulse pressure keeps at 0.1-0.3 MPa and the distance stays at 200 mm,respectively.What is more,with the average peak pressures obtained under the optimum parameter design condition,the pulse cleaning results prove to be suitable for practical applications.Thus,it can be concluded that the investigation and experiments we have done can not only be expected to lay a theoretical basis for the study of the

  3. ECH Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  4. Rapid frequency step-switching in submillimeter wave gyrotrons (Gyrotrons FU III and FU IV)

    OpenAIRE

    Idehara, T.; Shimizu, Y; Ogawa, I.; Tatsukawa, T.; BRAND, G.F.

    1999-01-01

    The rapid frequency step-switching between two nearby cyclotron fundamental modes achieved by switching beam energy is analyzed by a computer simulation and demonstrated experimentally. More dramatic frequency switching between a fundamental mode and a second harmonic mode is analyzed and demonstrated experimentally.

  5. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  6. The Physics of Long-Pulse Wire Array Z-Pinch Implosions

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; PETERSON,D.L.

    1999-12-14

    Recent improvements in z-pinch wire array load design at Sandia National Laboratories have led to a substantial increase in pinch performance as measured by radiated powers of up to 280 TW in 4 ns and 1.8 MJ of total radiated energy. Next generation, higher current machines will allow for larger mass arrays and comparable or higher velocity implosions to be reached, possibly extending these result.dis the current is pushed above 20 MA, conventional machine design based on a 100 ns implosion time results in higher voltages, hence higher cost and power flow risk. Another approach, which shifts the risk to the load configuration, is to increase the implosion time to minimize the voltage. This approach is being investigated in a series of experimental campaigns on the Saturn and Z machines. In this paper, both experimental and two dimensional computational modeling of the fist long implosion Z experiments will be presented. The experimental data shows broader pulses, lower powers, and larger pinch diameters compared to the corresponding short pulse data. By employing a nested array configuration, the pinch diameter was reduced by 50% with a corresponding increase in power of > 30%. Numerical simulations suggest load velocity is the dominating mechanism behind these results.

  7. Shadowgraphic imaging of metal drilling with a long pulse excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, Aart; Biesheuvel, Cornelis A.; Hofstra, Ramon M.; Boller, Klaus-J.; Meijer, Johan; Miyamoto, Isamu; Ostendorf, Andreas; Sugioka, Koji; Helvajian, Henry

    2003-01-01

    A shadowgraphic imaging technique is used for studying the interaction between the laser beam and the material during laser drilling. The used laser is a XeCl excimer laser with a nearly diffraction limited beam and 175 ns pulse length. We studied how and when the material is removed. Holes are dril

  8. On the operation of a long-pulse KrCl excimer laser

    NARCIS (Netherlands)

    Casper, Lars Christian

    2007-01-01

    High-power lasers pumped by a gas discharge are extensively used in industrial applications. Of particular importance are lasers pumped by an electric discharge in excimer gas mixtures because this allows the generation of powerful ultraviolet radiation (UV), with wavelengths below 350 nm. Due to th

  9. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    Science.gov (United States)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-02-01

    In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  10. Shadowgraphic imaging of material removal during laser drilling with a long pulse eximer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.

    2005-01-01

    After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process

  11. Shadowgraphic imaging of metal drilling with a long pulse excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.; Miyamoto, Isamu; Ostendorf, Andreas; Sugioka, Koji; Helvajian, Henry

    2003-01-01

    A shadowgraphic imaging technique is used for studying the interaction between the laser beam and the material during laser drilling. The used laser is a XeCl excimer laser with a nearly diffraction limited beam and 175 ns pulse length. We studied how and when the material is removed. Holes are dril

  12. Particle control in high power, high density long pulses on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, J.; Brosset, C.; Dufour, E.; Loarer, T.; Pegourie, B.; Tsitrone, E.; Basiuk, V.; Bremond, S.; Chantant, M.; Colas, L.; Commaux, N.; Geraud, A.; Grosman, A.; Guirlet, R.; Gunn, J.; Hertout, P.; Hoang, G.T.; Kazarian, F.; Mazon, D.; Maget, P.; Mitteau, R.; Monier-Garbet, P.; Moreau, P.; Saint-Laurent, F.; Schunke, B.; Vallet, J.C

    2005-07-01

    The plasma density and impurity level (Z(eff) {approx} 2) are perfectly controlled all along the 6 minute long discharges, the main limitation coming from the LH (lower hybrid) power source. After 60 s, the particle injection rate and the particle exhaust rate are constant. Therefore the retention rate, defined as the difference between these 2 quantities, is also constant at about 3.10{sup 20} D/s. These discharges were performed at low density and with LHCD (lower hybrid current drive). A new scenario has been recently developed combining ICRH (ion cyclotron resonance heating) and LHCD up to a total power of 10 MW at higher density and limited in time to 60 s by the capability of the ICRH heating systems. The infrared imaging protection system reveals lots of hot spots on the plasma facing components. These localized heat loads are attributed mainly to the fast particles which are accelerated in the near field generated by the IC and LH launchers. The gas injection rate necessary to maintain the plasma density in the high power high density scenarios (LHCD + ICRH) is substantially increased (up to a factor 3). Particle balance analysis based on pressure measurements shows that the absolute in-vessel retention rate, computed after 30 s of plasma is roughly equivalent in both scenarios (3.10{sup 20} D/s), whatever the ICRH power (from 0 to 4 MW) and the line integrated plasma density (from 2.5 to 4.10{sup 19} m{sup -2}) are. This result could indicate that the retention mechanisms could be dominated by wall processes such as diffusion in carbon porosities rather than plasma processes such as co-deposition, dependent on edge conditions. (A.C.)

  13. On the operation of a long-pulse KrCl excimer laser

    NARCIS (Netherlands)

    Casper, L.C.

    2007-01-01

    High-power lasers pumped by a gas discharge are extensively used in industrial applications. Of particular importance are lasers pumped by an electric discharge in excimer gas mixtures because this allows the generation of powerful ultraviolet radiation (UV), with wavelengths below 350 nm. Due to

  14. Use of Helical Fields to Allow a Long Pulse Reversed Field Pinch

    Energy Technology Data Exchange (ETDEWEB)

    A. Boozer and N. Pomphrey

    2008-11-20

    The maintenance of the magnetic configuration of a Reversed Field Pinch (RFP) is an unsolved problem. Even a toroidal loop voltage does not suffice to maintain the magnetic configuration in axisymmetry but could if the plasma had helical shaping. The theoretical tools for plasma optimization using helical shaping have advanced, so an RFP could be relatively easily designed for optimal performance with a spatially constant toroidal loop voltage. A demonstration that interesting solutions exist is given.

  15. Demonstration of a long pulse X-ray source at the National Ignition Facility

    Science.gov (United States)

    May, M. J.; Opachich, Y. P.; Kemp, G. E.; Colvin, J. D.; Barrios, M. A.; Widmann, K. W.; Fournier, K. B.; Hohenberger, M.; Albert, F.; Regan, S. P.

    2017-04-01

    A long duration high fluence x-ray source has been developed at the National Ignition Facility (NIF). The target was a 14.4 mm tall, 4.1 mm diameter, epoxy walled, gas filled pipe. Approximately 1.34 MJ from the NIF laser was used to heat the mixture of (55:45) Kr:Xe at 1.2 atm (˜5.59 mg/cm3) to emit in a fairly isotropic radiant intensity of 400-600 GW/sr from the Ephoton = 3-7 keV spectral range for a duration of ≈ 14 ns. The HYDRA simulated radiant intensities were in reasonable agreement with experiments but deviated at late times.

  16. Simulations of the Ion-Hose Instability for DARHT-II Long-Pulse Experiments

    CERN Document Server

    Chan, K C D

    2004-01-01

    Ion-hose effect has been described extensively in literatures. Computer simulations of the effect typically use particle-in-cell (PIC) computer codes or codes using the spread-mass formulation [1]. PIC simulations, though offering more reliable results, will require extended running time in large computers To support commissioning experiments in the DARHT-II induction linac in Los Alamos National Laboratory, we have modified a spread-mass code so that we can survey quickly the parameter space for the experiment. It can also be used to provide quick answers during experiment. The code was originally written by Genoni from Mission Research Corporation (MRC) for constant linac parameters. We have modified it so that parameters can have dependence along the length of the linac. In this paper, we will describe simulation results using this code for the DARHT-II commissioning experiment and also our benchmarking results comparing to LSP, a PIC code from MRC.

  17. Polarization extinction ratio and polarization dependent intensity noise in long-pulse supercontinuum generation (Conference Presentation)

    DEFF Research Database (Denmark)

    Chin, Catherine; Engelsholm, Rasmus Dybbro; Moselund, Peter Morten

    2017-01-01

    the experimental conditions. Subsequently, a single-shot pulse-to-pulse polarization dependent relative intensity noise (PD-RIN) was measured and the noise characteristics were analyzed using long-tailed and rogue wave statistics. To do this, we used a range of 10 nm narrow bandpass filters (BPF) between 550 nm...... to 2200 nm, and fast photo detectors, to record 800 consecutive pulses. Peaks from these pulses are first extracted, then distribution of their pulse height histogram (PHH) is constructed. Analysis using higher-order moments about the mean (variance, skewness and kurtosis) showed that: (1) around the pump...

  18. Cloud hole-boring with long pulse CO sub 2 lasers

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, G.P.; Webster, R.B.; York, G.W.

    1990-01-01

    Chemically generated CO{sub 2} laser pulses at 10.6 {mu}m have been used to clear a 5 cm diameter hole through a stratus-like cloud in a laboratory cloud chamber. The results show that 100% clearing can be achieved. The mechanism is shown to be droplet shattering followed by evaporation. Under the conditions of the experiment, the channel closure is dominated by turbulent mixing and not droplet recondensation. 14 refs., 9 figs.

  19. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  20. Elastic scattering research at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.

    1995-12-31

    The elastic scattering working group investigated instrumentation for powder diffraction, single-crystal diffraction, small-angle diffraction, and reflectometry. For this purpose, three subgroups were formed; one for powder diffraction and single-crystal diffraction, one for small-angle diffraction, and one for reflectometry. For the most part these subgroups worked separately, but for part of the time the reflectometry and small-angle diffraction subgroups met together to discuss areas of common interest. Contributors in each of these subgroups are indicated below along with the discussion of these subgroup deliberations.

  1. LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK

    Energy Technology Data Exchange (ETDEWEB)

    T.C. LUCE; M.R. WADE; P.A. POLITZER; S.L. ALLEN; M E. AUSTIN; D.R. BAKER; B.D. BRAY; D.P. BRENNAN; K.H. BURRELL; T.A. CASPER; M.S. CHU; J.D. De BOO; E.J. DOYLE; J.R. FERRON; A.M. GAROFALO; P.GOHIL; I.A. GORELOV; C.M. GREENFIELD; R.J. GROEBNER; W.W. HEIBRINK; C.-L. HSIEH; A.W. HYATT; R.JAYAKUMAR; J.E.KINSEY; R.J. LA HAYE; L.L.LAO; C.J.LASNIER; E.A. LAZARUS; A.W. LEONARD; Y.R.LIN-LIU; J.LOHR; M.A. MAKOWSKI; M.MURAKAMI; C.C.PETTY; R.I. PINSKER; R.PRATER; C.L. RETTIG; T.L. RHODES; B.W. RICE; E.J. STRAIT; T.S. TAYLOR; D.M. THOMAS; A.D. TURNBULL; J.G. WATKINS; W.P.WEST; K.-L. WONG

    2000-10-01

    Significant progress in obtaining high performance discharges for many energy confinement times in the DIII-D tokamak has been realized since the previous IAEA meeting. In relation to previous discharges, normalized performance {approx}10 has been sustained for >5 {tau}{sub E} with q{sub min} >1.5. (The normalized performance is measured by the product {beta}{sub N} H{sub 89} indicating the proximity to the conventional {beta} limits and energy confinement quality, respectively.) These H-mode discharges have an ELMing edge and {beta} {approx}{le} 5%. The limit to increasing {beta} is a resistive wall mode, rather than the tearing modes previously observed. Confinement remains good despite the increase in q. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility in the next two years. Measurement of the current density and loop voltage profiles indicate {approx}75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and {beta} control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H-mode discharges with {beta}{sub N}H{sub 89} {approx} 7 for up to 6.3 s or {approx} 34 {tau}{sub E}. These discharges appear to be in resistive equilibrium with q{sub min} {approx} 1.05, in agreement with the current profile relaxation time of 1.8 s.

  2. A Case Report of Telangiectatic Rosacea Treated with Long Pulsed Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Can Ergin

    2016-02-01

    Full Text Available Rosacea is a chronic enflammatory skin disease characterized by facial erythema, telangiectasia, papules and pustules. A variety of topical and systemic medications are used in the treatment of the disease. Recently, erythema and telangiectasia in rosacea patients have been frequently treated with laser applications. Herein, we present a case of rosacea whose telangiectasia were successfully treated with Nd-YAG laser treatment. 

  3. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  4. Investigations of Cavity Designs for a High Power Gyrotron.

    Science.gov (United States)

    1982-05-20

    WGM in a coaxial resonator, one has to work with very small annulus spacing, thus making electron beam alignment difficult and, more importantly...are shown in Table 1. In order to operate with a low order mode, one has to work with a small annulus spacing (making beam alignment critical) and

  5. Research and Development of 2-frequency (110/138 GHz FADIS for JT-60SA ECHCD system

    Directory of Open Access Journals (Sweden)

    Idei H.

    2015-01-01

    Full Text Available A FAst DIrectional Switch (FADIS of 2-frequency (2-ƒ gyrotron system for the JT-60SA project is being developed under collaboration between Japan Atomic Energy Agency (JAEA and Kyushu University. At first, the frequency drift and dip in the gyrotron operation were measured to consider which kind of FADIS is preferred for application in the Electron Cyclotron Heating and Current Drive (ECHCD system for the JT- 60SA. Various types of the FADIS have been considered. A square corrugated waveguide diplexer system with double resonant rings was considered as one of the most attractive FADIS systems for stable high-power and long-pulse operations in the 2-ƒ JT-60SA ECHCD system.

  6. Using Adaptive Discrete-Time Gas Supply Control for Long Pulse Arc Discharge of Ion Source on NBI

    Institute of Scientific and Technical Information of China (English)

    SHENG Peng; HU Chundong; SONG Shihua; LIU Sheng; LIU Zhimin

    2008-01-01

    A control model of gas supply system is introduced for ion source and an adaptive discrete-time control algorithm to regulate the hydrogen injection.A real-time feedback control system (RFCS) is designed to control the gas supply for ion source based on the control model and the discrete-time control algorithm.The experimental results have proved that RFCS could regulate the gas supply smoothly,suppress the arc's abrupt over-current at the end of the ion source discharging,prolong the discharge pulse and stabilize the ion concentration.With RFCS,the ion source for neutral beam injection has reached its longest pulse with a length of 4.5 seconds in a stable status.

  7. Single-Grain Si TFTs Fabricated by Liquid-Si and Long-Pulse Excimer-Laser

    NARCIS (Netherlands)

    Ishihara, R.; Zhang, J.; Trifunovic, M.; Van der Zwan, M.; Takagishi, H.; Kawajiri, R.; Shimoda, T.; Beenakker, C.I.M.

    2012-01-01

    Solution process of silicon using liquid-Si is attractive for fabrication of high-speed flexible electronics. We have fabricated single-grain Si TFTs on location-controlled Si grains with longpulse excimer laser crystallization of spin-coated liquid Si film. The maximum grain diameter is 3.5μm, and

  8. Long-pulsed Nd:YAG laser in the treatment of facial hypertrichosis during topical minoxidil therapy.

    Science.gov (United States)

    Benmously Mlika, Rym; Ben Hamida, Myriam; Hammami, Houda; Dorbani Ben Thabet, Imen; Rouatbi, Mondher; Mokhtar, Inçaf

    2013-08-01

    Hypertrichosis is a well-recognized adverse effect of therapy with either oral or topical minoxidil. We report a case of fronto-temporal hypertrichosis occurring in an 8-year-old girl treated for patchy alopecia areata of the frontal area of the scalp with 2% minoxidil solution. After failure of 5-months minoxidil-discontinuation, hair removal with Nd:YAG laser (1064 nm line) (Smartepil II, Deka) was tested leading to complete resolution within 2 sessions.

  9. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  10. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron

    Science.gov (United States)

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  11. Self-controlled Study of Onychomycosis Treated with Long-pulsed Nd:YAG 1064-nm Laser Combined with Itraconazole

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Conclusions: For patients with mild or moderate onychomycosis, we recommended a pure medication treatment or combination treatment with medication and laser. For those patients with severe onychomycosis, we recommended a combination of medication and laser therapy.

  12. Efficacy and safety of long-pulse pulsed dye laser delivered with compression versus cryotherapy for treatment of solar lentigines

    Directory of Open Access Journals (Sweden)

    Hassan Seirafi

    2011-01-01

    Full Text Available Background: Although cryotherapy is still the first-line therapy for solar lentigines, because of the side effects such as post-inflammatory hyperpigmentation (PIH, especially in patients with darker skin types, pigment-specific lasers should be considered as a therapy for initial treatment. Aim: The aim of this study is to evaluate the efficacy and safety of cryotherapy compared with 595-nm pulsed dye laser (PDL with cutaneous compression in the treatment of solar lentigines. Materials and Methods: Twenty-two patients (skin type II−IV with facial or hand lentigines participated in this study. Lesions of one side of the face or each hand were randomly assigned and treated with either cryotherapy or PDL. Treatments were performed with radiant exposures of 10 J/cm 2 , 7-mm spot size and 1.5 ms pulse duration with no epidermal cooling. Photographs were taken before treatment and 1-month later. The response rate and side effects were compared. Results: PDL was more likely to produce substantial lightening of the solar lentigines than cryotherapy, especially in skin type III and IV (n = 8, n = 9; P 0.05. PIH was seen only in cryotherapy group. PDL group had only minimal erythema. No purpura was observed. Conclusion: PDL with compression is superior to cryotherapy in the treatment of solar lentigines in darker skin types.

  13. Experiment Study of High-Speed Aluminum Flyers Driven by Long Pulse KrF Excimer Laser

    Institute of Scientific and Technical Information of China (English)

    TIAN; Bao-xian; LIANG; Jing; LI; Ye-jun; WANG; Zhao; HAN; Mao-lan

    2012-01-01

    <正>Laser ablation is an important method to drive high-speed flyers. In the flyer experiments, the technology of side-on shadowgraph was developed to measure the velocities of aluminum flyers. Experimental results of Al flyer track for 50 J and 100 J are shown in Fig. 1.

  14. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  15. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    Science.gov (United States)

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  16. Recent progress of high-power millimeter wavelength gyrodevices

    Science.gov (United States)

    Goldenberg, A. L.; Litvak, A. G.

    1995-06-01

    This presentation reviews recent progress of Russian physicists in developing electronic devices of the gyroresonance type, which are so far the most advanced sources of millimeter microwaves. It deals with the concept of the gyrotron as a device operating at higher volume resonator modes with a built-in quasioptical converter of the output radiation into a wave beam. That concept made it possible to create comparatively simple and reliable long-pulse and quasicontinuous devices with a power level of 0.5 MW in the frequency band 30-160 GHz. Analysis of the principal problems of projects for continuous-wave (CW) gyrotrons of near 1 MW output power (choice of an operating mode, requirements to an electron beam, peculiarities of built-in converters) is included, as well as the results of model experiments. For amplifying millimeter wavelength gyroklystrons, a level of several hundreds of kW at the frequency 35 GHz, and up to 65 kW at frequency 94 GHz were also achieved. Some modifications of gyrotrons for material processing and special research are described.

  17. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST

    Science.gov (United States)

    Qian, Jinping; Gong, Xianzu; Wan, Baonian; Liu, Fukun; Wang, Mao; Xu, Handong; Hu, Chundong; Wang, Liang; Li, Erzhong; Zeng, Long; Ti, Ang; Shen, Biao; Lin, Shiyao; Shao, Linming; Zang, Qing; Liu, Haiqing; Zhang, Bin; Sun, Youwen; Xu, Guosheng; Liang, Yunfeng; Xiao, Bingjia; Hu, Liqun; Li, Jiangang; EAST Team

    2016-05-01

    Stationary long pulse plasma of high electron temperature was produced on EAST for the first time through an integrated control of plasma shape, divertor heat flux, particle exhaust, wall conditioning, impurity management, and the coupling of multiple heating and current drive power. A discharge with a lower single null divertor configuration was maintained for 103 s at a plasma current of 0.4 MA, q95 ≈7.0, a peak electron temperature of >4.5 keV, and a central density ne(0)˜2.5×1019 m-3. The plasma current was nearly non-inductive (Vloop heating at 140 GHz, and 0.4 MW modulated neutral deuterium beam injected at 60 kV. This progress demonstrated strong synergy of electron cyclotron and lower hybrid electron heating, current drive, and energy confinement of stationary plasma on EAST. It further introduced an example of integrated “hybrid” operating scenario of interest to ITER and CFETR. supported by the National Magnetic Confinement Fusion Science Foundation of China (Nos. 2015GB102000 and 2014GB103000)

  18. Third harmonic generation of high power far infrared radiation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Urban, M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-04-01

    We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.

  19. New Radiation Input/Output Systems for Millimeter-Wave Gyrotron Traveling-Wave Tubes

    Science.gov (United States)

    Denisov, G. G.; Bogdashov, A. A.; Gachev, I. G.; Mishakin, S. V.; Samsonov, S. V.

    2016-03-01

    We consider in detail the method allowing one to input and output the microwave radiation produced by an elecrovacuum amplifier through the same barrier window, which was proposed earlier, in the context of its application in a traveling-wave tube based on a waveguide with a helically corrugated surface. Special attention is given to the splitter of differently polarized radiation, and the results of studying this splitter at wavelengths of about 6 and 1 mm theoretically and experimentally are presented.

  20. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons

    CERN Document Server

    Gilmour, A S

    2011-01-01

    Microwave tubes are vacuum electron devices used for the generation and amplification of radio frequencies in the microwave range. An established technology area, the use of tubes remains essential in the field today for high-power applications. The culmination of the author's 50 years of industry experience, this authoritative resource offers you a thorough understanding of the operations and major classes of microwave tubes.Minimizing the use of advanced mathematics, the book places emphasis on clear qualitative explanations of phenomena. This practical reference serves as an excellent intro

  1. On a Wide-Band Fast Wave Gyrotron Travelling Wave Amplifier.

    Science.gov (United States)

    1980-12-10

    Laboratory Attn: Dr. Paul Tallerico P.O. Box 1663 Los Alamos, New Mexico 87545 (1) Massachusetts Institute of Technology Research Laboratory of...Addressee (1) TFR Group DPH - PFC Attn: Dr. A. Cavallo 92260 Fontenay-auix Roses France (1 ) Thompson C.S.F./DET/ TDH Attn: Dr. G. Mourier 2 Rue

  2. Experimental Examination of the Enhancement of Gyrotron Efficiencies by use of Profiled Magnetic Fields.

    Science.gov (United States)

    1981-02-04

    Alamos, New Mexico 87545 (1) Massachusetts Institute of Technology Research Laboratory of Electronics Attn: Dr. G. Bekefi Bldg. 36, Rm. 36-225 Cambridge...92260 Fontenay-auix Roses France (1) Thompson C.S.F./DET/ TDH Attn: Dr. G. Mourier 2 Rue Latecoere 78140 Velizy Villa conblay France (1) UKAEA Culham Laboratory Attn: Dr. A.C. Riviere Abingdon Oxfordshire United Kingdom 20

  3. Generation and Improvement of the Gyrotron Electron Beam in a Biased Cusp Magnetic Field.

    Science.gov (United States)

    1981-04-23

    3100 Lomita Boulevard Torrance, California 90509 (1) Los Alamos Scientific Laboratory Attn: Dr. Paul Tallerico P.O. Box 1663 Los Alamos, New Mexico ...Roses France (1) Thompson C.S.F./DET/ TDH Attn: Dr. G. Mourier 2 Rue Latecoere 78140 Velizy Villa conblay France (1) UKAEA Cuiham Laboratory Attn: Dr. A.C. Riviere Abingdon Oxfordshire United Kingdom 20

  4. Particle-in-cell (PIC) simulations of beam instabilities in gyrotron beam tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.M.; Jost, G.; Appert, K.; Sauter, O. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Wuthrich, S. [CRAY Research, PATP/PSE, Ecole Polytechnique Federale, Lausanne (Switzerland)

    1995-10-01

    Experimental observations seem to indicate that the beam velocity and energy spreads are larger than those calculated from the electron trajectory codes which do not take into account the effects of beam instabilities. On the other hand, parasitic oscillations of the beam with frequencies close to the electron cyclotron frequency {omega}{sub ce} have been observed experimentally, suggesting the possibility that instabilities can be excited in the beam tunnels and are responsible for the beam degradation. 2D electrostatic and electromagnetic time-dependent PIC codes have been developed to simulate the beam transport in the beam tunnel. The results of extensive parametric runs, using these codes (which were ported on the Cray T3D massively parallel computer), together with the role of the beam instabilities around {omega}{sub ce} on the beam degradation will be reported. (author) 2 figs., 9 refs.

  5. Basic concept for an accelerator-driven subcritical system to be used as a long-pulse neutron source for Condensed Matter research

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, R., E-mail: raul.vivanco.sanchez@gmail.com [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Ghiglino, A.; Vicente, J.P. de; Sordo, F.; Terrón, S.; Magán, M. [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)

    2014-12-11

    A model for an accelerator-driven subcritical system to be operated as a source of cold neutrons for Condensed Matter research is developed at the conceptual level. Its baseline layout relies upon proven accelerator, spalattion target and fuel array technologies, and consists in a proton accelerator able to deliver some 67.5 mA of proton beam with kinetic energy 0.6 GeV, a pulse length of 2.86 ms, and repetition rate of 14 Hz. The particle beam hits a target of conventional design that is surrounded by a multiplicative core made of fissile/fertile material, composed by a subcritical array of fuel bars made of aluminium Cermet cooled by light water poisoned with boric acid. Relatively low enriched uranium is chosen as fissile material. An optimisation of several parameters is carried out, using as components of the objective function several characteristics pertaining the cold neutron pulse. The results show that the optimal device will deliver up to 80% of the cold neutron flux expected for some of the ongoing projects using a significantly lower proton beam power than that managed in such projects. The total power developed within the core rises up to 22.8 MW, and the criticality range shifts to a final k{sub eff} value of around 0.9 after the 50 days cycle.

  6. Fault-Protected Laser Diode Drivers for Improving the Performance and Lifetime of Multiple-Millisecond, Long-Pulse LDAs for NASA LIDAR Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project will develop and deliver to NASA revolutionary laser diode driver technology with intelligent fault protection for driving high power laser diode...

  7. Laser-induced breakdown spectroscopy analysis of solids using a long-pulse (150 ns) Q-switched Nd:YAG laser.

    Science.gov (United States)

    Yamamoto, Karen Y; Cremers, David A; Foster, Leeann E; Davies, Mathew P; Harris, Ronny D

    2005-09-01

    Laser-induced breakdown spectroscopy (LIBS) measurements are typically carried out using pulses (50 mJ) from a flashlamp-pumped electro-optically Q-switched Nd:YAG laser (EO-laser) or excimer laser. Here we report LIBS analyses of solids using an acousto-optically Q-switched Nd:YAG laser (AO-laser) producing 150 ns pulses of lower energy (10 mJ) at repetition rates up to 6 kHz. The high repetition rate allows increased spatial or depth sampling over a given time period compared to the EO-laser. Results of AO-laser based LIBS analysis of (1) steels, (2) soils, and (3) surface stains and dusts are described. Detection limits for Cr, Cu, Mn, Ni, and Si in steel ranged from 0.11 to 0.24% using a commercial polychromator-based detection system with limits 4--30 times lower achieved using a laboratory-based detection system. The minimum detectable masses of Ba, Cr, Mn, and Sr on a metal surface were estimated with 1.2 pg/shot achieved for Sr. Detection limits for Ba and Sr in soil were 296 and 52 ppm, respectively. The temperatures, spectra, and emission decay curves from plasmas generated by the AO- and EO-lasers are compared and some characteristics of particles ablated by the AO-laser are described.

  8. Hair removal in hirsute women with normal testosterone levels: a randomized controlled trial of long-pulsed diode laser vs. intense pulsed light

    DEFF Research Database (Denmark)

    Haak, C S; Jensen, Pernille Nymann; Pedersen, A T

    2010-01-01

    Hirsutism is a common disorder in women of reproductive age, and androgen disturbances may aggravate the condition. Limited evidence exists regarding efficacy of hair removal in this specific population and no data are available for patients with verified normal testosterone levels....

  9. Design and Implementation of a 200kW, 28GHz gyrotron system for the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Hartwell, G. J.; Knowlton, S. F.; Ennis, D. A.; Maurer, D. A.; Bigelow, T.

    2016-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | supplement the existing 15 kW klystron system operating at the fundamental frequency; the latter will be used to initially generate the plasma. Ray-tracing calculations that guide the selection of launching position, antenna focal length, and beam-steering characteristics of the ECRH have been performed with the TRAVIS code [ 1 ] . The calculated absorption is up to 95.7% for vertically propagating rays, however, the absorption is more sensitive to magnetic field variations than for a side launch where the field gradient is tokamak-like. The design of the waveguide path and components for the top-launch scenario will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  10. Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron

    Science.gov (United States)

    Kim, Dongsung; Kim, Sung Gug; Sawant, Ashwini; Yu, Dongho; Choe, MunSeok; Choi, EunMi

    2016-04-01

    In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J. P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].

  11. Effects of Velocity Spread and Wall Resistivity on the Gain and Bandwidth of the Gyrotron Travelling-Wave Amplifier.

    Science.gov (United States)

    1980-11-12

    Scientific Laboratory Attn: Dr. Paul Tallerico P.O. Box 1663 Los Alamos, New Mexico 87545 (1) Massachusetts Institute of Technology Research Laboratory of...No. of Copies Addressee (1) TFR Group DPH - PFC’ Attn: Dr. A. Cavallo 92260 Fontenay-auix Roses France (1) Thompson C.S.F./DET/ TDH Attn: Dr. G

  12. Absorbing coatings for high power millimeter-wave devices and matched loads

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Bruschi, A.; Cirant, S. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Muzzini, V. [Istituto di Biologia Agro-ambientale e Forestale, Consiglio Nazionale delle Ricerche, Area di Ricerca di Roma 1, Monterotondo, Rome (Italy); Simonetto, A.; Spinicchia, N. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Angella, G. [Istituto per l’Energetica e le Interfasi, Consiglio Nazionale delle Ricerche, Milano (Italy); Dell’Era, F. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Gantenbein, G.; Leonhardt, W. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Nardone, A. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Samartsev, A.; Schmid, M. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2013-10-15

    Highlights: ► An overview of the activity at IFP-CNR concerning the absorbing coatings is presented. ► The application of the absorbing ceramics to the IFP-CNR matched loads is described. ► B{sub 4}C is presented as a promising material for power absorption in the EC frequency range. ► The most important high power validation tests performed on coatings are described. ► Some results from simulations of the absorption capability of a double layer coating are shown. -- Abstract: In the electron cyclotron frequency range the handling of high power is critical. In some cases an unpredictable amount of stray radiation can reach some components or accumulate in localized regions, with risk of damages caused by thermal overloads, and any uncontrolled reflection represents a danger for the sources. A possibility to mitigate the problem consists in covering some regions exposed to radiation with absorbers. Enhanced absorption of stray radiation lowers requirements on active protection systems in microwave diagnostics. The released heat can be extracted by dedicated cooling systems. The chromium oxide (Cr{sub 2}O{sub 3}), largely tested at IFP-CNR, has been routinely used as internal coating for matched loads. The performances of a variable thickness coating has been tested at high power at Karlsruhe Institute of Technology (KIT), with a 140 GHz gyrotron of the W7-X ECRH system and an averaged power density absorbed at the coating surface higher than 1 MW/m{sup 2} for 3 min. Also boron carbide (B{sub 4}C) has been tested at low power and patented as a millimeter-wave absorber. In the paper, the results of some tests performed on these coatings are given, together with some simulations of the absorption capability based on low power measurements on samples. Finally, some calculations are presented for a coating obtained combining together Cr{sub 2}O{sub 3} and B{sub 4}C.

  13. Microwave receivers for fast-ion detection in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Furtula, V.

    2012-02-15

    strong probing radiation coming from a gyrotron. The newly designed notch filters within the scope of this thesis are superior to their predecessors and are installed in the CTS receiver. A filter was subsequently designed, built, and tested by the CTS group and installed by the German ECE group at AUG. Our filter enables the ECE group to make measurements in the frequency range corresponding to the gyrotron operation. The second component is the mixer. The conversion loss of the mixer, together with loss in waveguide components and quasi-optic parts, is the main contributor to the noise and thereby degrades the signal to-noise ratio. The architecture of the mixer is a subharmonic type, optimized to be driven by a double local oscillator (LO) frequency in order to downshift the RF to intermediate frequency (IF). The simulated results are presented for the case of 140 GHz, which is relevant for a number of fusion plasma diagnostics such as ECE and interrogation of neo-classical tearing modes (NTM). Finally, conclusions are drawn and future aspects presented. This study seeks to give insights towards new solutions and improvements of the existing CTS receiver architecture. (Author)

  14. Cosmetology and Hair Removal Using High energy Long pulse Semiconductor Laser and Their Characteristics%用高能量、长脉宽半导体激光器进行美容脱毛治疗的特点

    Institute of Scientific and Technical Information of China (English)

    刘津

    2004-01-01

    激光脱毛(laser hair removal)是一种新式脱毛方法,和传统的拔毛术、腊脱毛术、药膏脱毛术或电解脱毛术等相比较,操作更加迅速方便,副作用更小,更安全,并且具有永久性脱毛的特点。随着社会生活水平的提高、科技的发展,激光脱毛的应用在我国也更加普遍。从世界范围来看,在激光美容的应用方面,激光脱毛要占有很大的份额,目前已有许多厂家,生产的多种系列脱毛激光器应用于皮肤的脱毛治疗中。

  15. X波段长脉冲高功率微波产生的实验研究%Experimental investigation of X-band long pulse high-power microwave generation

    Institute of Scientific and Technical Information of China (English)

    张军; 钟辉煌; 舒挺; 刘振祥; 黄科

    2008-01-01

    获得长脉冲高功率微波(HPM)输出是HPM源技术追求的重要目标之一.从物理机理上分析了影响慢波结构HPM器件实现长脉冲HPM输出的因素,并利用长脉冲脉冲功率源和过模慢波结构HPM器件,开展了X波段长脉冲HPM产生实验.实验中,采用介质-铜阴极,并在慢波结构表面镀Cr,在导引磁场约0.7 T、二极管电压约400 kV、电流约10 kA、束流脉宽200 ns的条件下,获得了功率500 MW、脉宽约100 ns、主模为TM01的X波段长脉冲HPM输出.对实验结果的分析表明,脉冲功率源与HPM器件的阻抗不匹配,是导致HPM器件输出微波脉宽比电子束脉宽短、以及HPM器件输出微波功率效率较低的主要原因.

  16. 翼形上进风长袋脉冲袋式除尘器气流特性研究%Airflow Distribution Characteristics in Wing-upper-inlet-wind Long Pulse-jet Bag Filter

    Institute of Scientific and Technical Information of China (English)

    李珊红; 唐奇; 李彩亭; 方鑫; 曾光明; 宋七棣; 徐天平; 陈安琪

    2014-01-01

    袋式除尘器对超细颗粒物的净化效果较好.增加袋长是提高过滤面积的有效方法,但随滤袋加长,气流均匀性变差,滤袋容易破损,局部积灰严重,滤袋不能得到充分的利用文章对翼形上进风长袋脉冲袋式除尘器建立几何模型并进行网格划分,基于计算流体动力学(CFD)理论,选取过滤速度为0.5~1.3 m/min和压力出口为-350~-2 000 Pa为边界条件,采用压力-速度耦合的SIMPLE算法,模拟包含Φ130 mm和Φ150 mm,长10m滤袋的翼形上进风长袋脉冲袋式除尘器的气流分布,考察气流在滤袋空间分布的均匀性.结果表明:翼形上进风方式使得长袋脉冲袋式除尘器内气流分布较均匀;通过Φ150滤袋的气流速度大于Φ30;靠近壁面的滤袋的气流速度大于相应中心滤袋的.该研究可为上进风袋式除尘器的优化设计提供指导和依据.

  17. Experiment Study of Long Pulse Laser-Driven Flyer to High Velocity%长脉冲KrF激光驱动高速飞片实验研究

    Institute of Scientific and Technical Information of China (English)

    田宝贤; 梁晶; 王钊; 李业军; 汤秀章

    2012-01-01

    利用侧向阴影成像技术开展了激光驱动高速金属飞片实验研究,并介绍了飞片实验系统与条纹相机时空标定结果.实验在辐照激光波长248 nm、脉宽28 ns、能量100 J、功率密度1.8×1012 W/cm2的条件下加速带有50 μm烧蚀层的5 μm铝飞片至10 km/s左右.讨论了不同条件下加速过程的区别,分析了冲击波对飞片加速过程的影响,并从铝、钽飞片实验对比中发现激光烧蚀不同材料的能量转化效率是不同的.%The technology of side-on shadowgraph was developed to study the velocity of metal flyer driven by laser. The system of flyer experiment,the calibration of time and space axis of streak camera were introduced in the paper. With the laser of 248 nm wavelength, 28 ns pulse duration at laser energy of 100 J and laser intensity of 1. 8 × 1012 W/cm2, the 5 μm aluminum flyer with 50 μm ablation layer was accelerated to 10 km/s. The difference of accelerated process in different conditions was discussed and the effect of shock wave in flyer accelerated process was also analyzed in the paper. Through the comparison of Al and Ta experiment results, it is revealed that the energy conversion efficiency of laser material interaction is different for different materials.

  18. Initial result of collective Thomson scattering using 77 GHz gyrotron for bulk and tail ion diagnostics in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Nishiura, M; Kubo, S; Tanaka, K; Shimozuma, T; Mutoh, T; Kawahata, K; Watari, T [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Tamura, N [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Saito, T; Tatematsu, Y [FIR FU, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507 (Japan); Notake, T, E-mail: nishiura@nifs.ac.j [RIKEN, 519-1399 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845 (Japan)

    2010-05-01

    The collective Thomson scattering (CTS) technique has been utilized with the backscattering configuration in the collective scattering regime to diagnose the velocity distribution functions in the Large Helical Device (LHD). The receiver was equipped with 16 channels and the first test has been carried out using the eight channels for scattered radiation and these channels cover a few GHz frequency shift from the 76.95 GHz probe beam. During the discharge, the electron density and temperature at the central region of the LHD are 1x10{sup 19}m{sup -3}, and 1.0 keV, respectively. The probing beam with rectangular wave modulation is injected by 50 Hz in order to be distinct from the background electron cyclotron emission (ECE). The scattered radiation is resolved successfully at each channel of CTS receiver system. The detected signals of bulk ion and electron components are by a factor of 10 {approx} 10{sup 2} larger than the background ECE signal. We found that the measured spectra are in reasonably agreement with the theoretical spectra calculated by using the reliable measured electron temperature and density for input parameters. The CTS receiver system will be improved to obtain more accurate velocity distributions in high temperature plasmas.

  19. Korea Superconducting tokamak advanced research project - Development of heating system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The heating and current drive systems for KSTAR based on multiple technologies (neutral beam, ion cyclotron, lower hybrid and electron cyclotron) have been designed to provide heating and current drive capabilities as well as flexibility in the control of current density and pressure profiles needed to meet the mission and research objectives of the machine. They are designed to operate for long-pulse lengths of up to 300 s. The NBI system initially delivers 8 MW of neutral beam power to the plasma from one co-directed beam line and shall be upgraded to provide 20 MW of neutral beam power with two co-directed beam lines plus one counter-directed beam line. It will be capable of being reconfigured such that the source arrangement is changed from horizontal to vertical stacking, with 6 MW beam power to the plasmas per beam line, in order to facilitate profile control. The RF system initially delivers 6 MW of rf power to the plasma, using a single four-strap antenna mounted in a midplane port. The system will be upgraded to proved 12 MW of rf power through 2 adjacent ports. In the first phase, we completed the basic design of RF system and the system have the capabilities to be operationable for pulse length up to 300 sec and in the 25-60 MHz frequency range. Lower hybrid system initially provides 1.5 MW LH rf power to the plasma at 3.7 GHz through a horizontal port, which has a capability to be operated for pulse length up to 300 sec, and shall be upgraded to provide 4.5 MW of LH rf power to the plasma. In the first phase, we completed the basic design of LHCD system which incorporate the TPX-type launcher and independently phase-changeable transmission system for the fully phased coupler. The ECH system will deliver up to 0.5 MW of power to the plasma for up to 0.5 sec. In the first phase, we completed the basic design of ECH system which includes an 84 GHz gyrotron system, a transmission system, and a launcher. The basic design of the low loss transmission system

  20. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  1. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more...

  2. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  3. Novel aspects of plasma control in ITER

    Science.gov (United States)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  4. Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers%长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究

    Institute of Scientific and Technical Information of China (English)

    王彦斌; 熊春乐; 侯静; 陆启生; 彭杨; 陈子伦

    2011-01-01

    本文数值研究了长脉冲抽运光子晶体光纤四波混频和超连续谱的产生.依据准连续波近似下的相位匹配条件和能量守恒定律,能够理论上确定在光子晶体光纤正常色散区抽运时,四波混频效应产生的信号光和空闲光波长;以及在光纤反常色散区抽运时,调制不稳现象产生的两个对称旁瓣波长.利用自适应分步傅里叶法,定量地模拟了利用波长为1064 nm的亚纳秒激光器抽运两种不同色散特性的光子晶体光纤四波混频效应和超连续谱的产生,模拟结果与实验结果符合非常好.%we numerically investigated four-wave mixing (FWM) and supercontinuum generation in photonic crystal fibers (PCFs) in the long pump pulse scheme for the first time. We showed that simply based on phase-matching condition and energy conservation with quasi-continuous-wave approximation, one can theoretically determine the FWM signal and idler wavelengths with pump in the normal-dispersion regime, and the two symmetrical modulation instability sidebands with pump in the anomalous-dispersion regime. Using adaptive split-step Fourier method, we quantitatively simulated FWM and supercontinuum generation in PCFs with different dispersion profiles when pumping with a 1064 nm sub-nanosecond laser. Our simulation results agree with the experimental results very well.

  5. GaAs single-drift flat-profile IMPATT diodes for CW operation at D band

    Science.gov (United States)

    Eisele, H.; Haddad, G. I.

    1992-01-01

    Single-drift flat-profile GaAs IMPATT diodes were designed for CW operation in the 140 GHz range. The diodes were fabricated from MBE grown material, mounted on diamond heatsinks, and tested in a radial line full height waveguide cavity. An RF output power of 15 mW with a corresponding DC to RF conversion efficiency of 1.5 percent was obtained at 135.3 GHz.

  6. Millimeter Wave Attenuation in Moist Air: Laboratory Measurements and Analysis.

    Science.gov (United States)

    1984-03-01

    san-filled the vapor source. Electropolished stainless steel was used tesonator is excisively as construction aterial. Various hydrophobc coatings...stainless steel vessel, which houses a temperature-controlled mini-lake (10 cm across) and the radio test path. MMW signals around 35 and 140 GHz have...conversion,. sulphur dioxide. for example, nuciratee with wsar vapor to form sulfuric acid primary, particles in large numbers (am high me 1015 0,3

  7. Planar Antenna Technology for mm-Wave Automotive Radar, Sensing, and Communications

    OpenAIRE

    2010-01-01

    We have presented a selection of different planar antenna designs with different properties suitable for a multitude of applications in the higher mm-wave range. Beamforming with power dividers or Rotman lenses was discussed in detail. We investigated the focusing properties of the Rotman lens and concluded with a new design concept for the positioning and orientation of the beam ports. Smaller arrays and monopole and dipole elements were demonstrated in the 122 and 140 GHz ranges, which are ...

  8. MMIC Amplifiers for 90 to 130 GHz

    Science.gov (United States)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  9. Development of Mode Conversion Waveguides at KIT

    Directory of Open Access Journals (Sweden)

    Jin Jianbo

    2015-01-01

    Full Text Available The development of mode conversion waveguides (launchers for high power gyrotrons has gone through three stages at KIT. Formerly, harmonically deformed launchers have been used in the series gyrotrons developed for the stellarator W7-X. In 2009, a numerical method for the analysis and synthesis of mirror-line launchers was developed at KIT. Such a launcher with adapted mode-converting mirrors for a 2 MW TE34,19-mode, 170GHz coaxial-cavity gyrotron has been designed and tested, and also a mirror-line launcher for the 1MW EU ITER gyrotron has been designed. Recently, based on the Helmholtz-Kirchhoff integral theorem, a novel numerical method for the synthesis of hybrid-type gyrotron launchers has been developed. As an example, TE32,9 mode launchers operating at 170GHz that have been designed using the three different methods are being compared.

  10. 大功率微波真空电子器件的应用%Application of high power microwave vacuum electron devices

    Institute of Scientific and Technical Information of China (English)

    丁耀根; 刘濮鲲; 张兆传; 王勇; 沈斌

    2011-01-01

    大功率微波真空电子器件具有工作频率高、峰值和平均功率大等特点,已广泛应用于微波电子系统,在科学研究和国民经济方面的应用越来越广泛.在科学研究方面,它主要应用在高能粒子加速器和可控热核聚变加热装置等大型科学装置上,主要包括高峰值功率速调管、连续波和长脉冲高功率速调管和高功率回旋管等器件.在国民经济方面,则主要应用于天气雷达、导航雷达、医用和工业辐照加速器、电视广播和通信等微波电子系统,主要包括大功率脉冲和连续波速调管、分布作用速调管、行波管、磁控管和感应输出管等.为此,介绍了这些微波真空电子器件的技术现状、共性技术问题和发展趋势.%High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication, countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron, and high power gy-rotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube(TWT), magnetron and induced output tube(IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper.

  11. High order mode beam waveguide for technological medium power millimeter wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Rio, C. del; Gonzalo, R.; Marin, M.; Sorolla, M.; Moebius, A.; Thumm, M. [Universidad Publica de Navarra, Pamplona (Spain)

    1995-12-31

    The use of medium power millimeter CW gyrotrons (10-30 kW and 30-100 GHz) has several potential applications in advanced materials processing. Since a stochastic field distribution in the applicator is desirable no pencil beam is necessary. Then the possibility to couple the circular symmetric gyrotron output to a higher order free space mode can be considered. Beam waveguides based on iterative reflection of such high order beams on properly disigned mirrors opens the possibility to increase the efficiency and to reduce costs of present compact transmission lines in gyrotron technological systems.

  12. Design and operation of the power installation for the TCV ECR additional heating

    Energy Technology Data Exchange (ETDEWEB)

    Fasel, D.; Favre, A.; Goodman, T.; Henderson, M.; Isoz, P.F.; Perez, A.; Tran, M.Q. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Alex, J. [Thomcast AG, Turgi (Switzerland)

    1996-10-01

    Following a brief introduction to the TCV project, this paper concentrates on the Regulated High Voltage Power Supply (RHVPS) system chosen to supply the nine gyrotrons, distributed in three clusters, that will deliver 4.5 MW of Electron Cyclotron Resonance Heating (ECRH) to TCV plasmas. The configuration of these clusters is described in some detail, including the results of site test both with dummy load (80 kV, 85 A, 2 sec) and the gyrotrons themselves (70 kV, 25 A, 2 sec). Some details are also given of gyrotron auxiliaries, interlock circuitry, control and data acquisition, and integration into TCV control environment. (author) 4 figs., 1 tab., 4 refs.

  13. Plane gyroklinotron at first and third harmonics of cyclotron frequency

    Energy Technology Data Exchange (ETDEWEB)

    Kurayev, A.A.; Lukashonok, D.V.; Sinitsyn, A.K., E-mail: kurayev@bsuir.by, E-mail: timka86@gmail.com [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2011-07-01

    The results of gyroklinotron's parameters optimization for efficiency at f = 100 GHz with interaction on first and third harmonics of the cyclotron frequency are presented. The predicted electron gyroklinotron's efficiency reaches 70% on first harmonic and 40% on third harmonic. This is more than in usual gyrotron. Besides in contrast to usual gyrotron the width electron beam on radius of guiding centers of electron orbits in gyroklinotron may considerable exceed working wave length {lambda}. This allows to use in it considerable more power of electron beams EB then in usual gyrotron. (author)

  14. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Prater, R.; Lohr, J. [eds.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  15. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study

    Science.gov (United States)

    Burt, G.; Samsonov, S. V.; Ronald, K.; Denisov, G. G.; Young, A. R.; Bratman, V. L.; Phelps, A. D.; Cross, A. W.; Konoplev, I. V.; He, W.; Thomson, J.; Whyte, C. G.

    2004-10-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared.

  16. Instrumentation and control system architecture of ECRH SST1

    Science.gov (United States)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  17. A selective pyroelectric detector of millimeter-wave radiation with an ultrathin resonant meta-absorber

    Science.gov (United States)

    Paulish, A. G.; Kuznetsov, S. A.

    2016-11-01

    The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.

  18. Critical components in 0.14 THz communication systems

    CERN Document Server

    Shan, Guangcun; Zhu, Haoshen; Shek, Chan-Hung

    2012-01-01

    In the super-heterodyne terahertz communication system, the proper design of the critical components like mixers and filters are of great importance for enhancing its performance. In this work, some issues on our newly developed system setup design for 0.14 THz wireless communications and the key components subharmonic mixer (SHM) based on Schottky diode, as well as silicon micromachined bandpass rectangular waveguide filters are presented. According to ADS simulation, the optimum conversion loss of the 140 GHz SHM is 26 dB. And the silicon-micromachined rectangular waveguide filters have been fabricated and the measured lowset insertion losses are lower than 0.5 dB.

  19. Millimeter-Wave Broadband Anti-Reflection Coatings Using Laser Ablation of Sub-Wavelength Structures

    CERN Document Server

    Matsumura, Tomotake; Wen, Qi; Hanany, Shaul; Koch, Jürgen; Suttman, Oliver; Schütz, Viktor

    2016-01-01

    We report on the first use of laser ablation to make sub-millimeter, broad-band, anti-reflection coatings (ARC) based on sub-wavelength structures (SWS) on alumina and sapphire. We used a 515 nm laser to produce pyramid-shaped structures with pitch of about 320 \\mu m and total height of near 800 \\mu m. Transmission measurements between 70 and 140 GHz are in agreement with simulations using electromagnetic propagation software. The simulations indicate that SWS ARC with the fabricated shape should have a fractional bandwidth response of $\\Delta \

  20. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

    Science.gov (United States)

    Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J

    2012-01-16

    We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).

  1. The Real-Time system for MHD activity control in the FTU tokamak

    Directory of Open Access Journals (Sweden)

    Minelli D.

    2012-09-01

    Full Text Available The Real-Time system for the control of the magnetohydrodynamics instabilities in FTU tokamak is presented. It is based on both a-priori information derived from statistical treatment of a database and Real-Time elaboration of live diagnostics data. The analysis codes are executed in different time threads based on multi-processors machines. The actuator is the 2×0.4MW 140 GHz ECRH system equipped with the new fast quasi-optical steerable launcher.

  2. ECE diagnostic of high temperature ECRH heated plasmas on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Zerbini, M; Buratti, P; Tudisco, O; Giruzzi, G; Bruschi, A; Cirant, S; Granucci, G; Simonetto, A; Sozzi, C; Gandini, F; Pacella, D; Fournier, K B; Finkenthal, M

    2000-01-31

    The Electron Cyclotron Emission (ECE) diagnostic on FTU tokamak is routinely performed with a Michelson interferometer with spectral range extending up to 1300 GHz. The diagnostic allowed accurate electron temperature measurements during the recent 140 Ghz Electron Cyclotron Resonance Heating (ECRH) experiments on FTU. Very accurate measurements have been performed on a wide range of electron temperatures and profile peaking. The ECE measurements have been compared with Thomson Scattering and with observations of X-ray spectra from highly stripped molybdenum ions. The suprathermal emission in these conditions has been studied.

  3. GaN based transfer electron and avalanche transit time devices

    Institute of Scientific and Technical Information of China (English)

    R.K.Parida; A.K.Panda

    2012-01-01

    A new model is developed to study the microwave/mm wave characteristics of two-terminal GaN- based transfer electron devices (TEDs),namely a Gunn diode and an impact avalanche transit time (IMPATT) device.Microwave characteristics such as device efficiency and the microwave power generated are computed and compared at D-band (140 GHz center frequency) to see the potentiality of each device under the same operating conditions.It is seen that GaN-based IMPATT devices surpass the Gunn diode in the said frequency region.

  4. GaN based transfer electron and avalanche transit time devices

    Science.gov (United States)

    Parida, R. K.; Panda, A. K.

    2012-05-01

    A new model is developed to study the microwave/mm wave characteristics of two-terminal GaN-based transfer electron devices (TEDs), namely a Gunn diode and an impact avalanche transit time (IMPATT) device. Microwave characteristics such as device efficiency and the microwave power generated are computed and compared at D-band (140 GHz center frequency) to see the potentiality of each device under the same operating conditions. It is seen that GaN-based IMPATT devices surpass the Gunn diode in the said frequency region.

  5. Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation

    Science.gov (United States)

    Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G.

    2013-10-01

    We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before.

  6. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank;

    2010-01-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  7. Determination of electromagnetic modes in oversized corrugated waveguides on the electron cyclotron resonance heating installation at the tokamak Tore Supra; Determination de modes electromagnetiques de guides d'ondes corrugues surdimensionnes sur l'installation de chauffage des electrons de tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, L

    2001-03-09

    Electron cyclotron resonance heating (ECRH) in the Tore Supra tokamak constitutes an important step in the research aimed at obtaining thermonuclear fusion reactions. Electron heating is achieved by transmitting an electromagnetic wave from the oscillators (gyrotrons) to the plasma via the fundamental mode, propagating in oversized corrugated waveguides. Maximizing the proportion of the gyrotron power coupled to the fundamental waveguide mode is essential for the good functioning of the transmission line and for maximizing the effect on the plasma. This thesis gives all necessary tools for finding the proportion of the fundamental mode and all other modes present in passive components and at the output of the gyrotron as installed in the Tore Supra ECRH plant. This characterisation is based on obtaining amplitude and phase diagrams of the electric field on a plane transverse to the propagation axis. The most difficult part of obtaining these diagrams is measuring the phase which, despite the very short wavelength, is measured directly at low power levels. At high power levels the phase is numerically reconstructed from amplitude measurements for gyrotron characterisation. A complete theoretical study of the phase reconstruction code is given including its validation with theoretical diagrams. This study allows the realisation of a modal characterisation unit electromagnetic for measurement of radiated beams and usable in each part of the ECRH installation. At the end, the complete modal characterisation is given at low level for a mode converter and also at high level for the first series gyrotron installed at TORE SUPRA. (author)

  8. Initial results for a 170 GHz high power ITER waveguide component test stand

    Science.gov (United States)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  9. Progress report 1998/1999; Rapport d'activite 1998/1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Among the significant technological achievements of 1998-99, we will note in particular the manufacture of a lower hybrid antenna. This has large size and is shielded from the plasma by side protection incorporating the same technology that is used in the limiter of the CIEL project. This antenna was tested successfully in the autumn 1999; its capacity is 4 MW steady state. Substantial progress was achieved in testing the 118 GHz gyrotrons that are intended to deliver 400 kW with a pulse length of 210 seconds. Pulses lasting some 15.5 seconds were obtained on load during the summer 1999 and were limited only by the performance of the load and by out-gassing. At these pulse lengths, the parameters of the tube are already quasi-stationary. The tests will begin again in the Spring of 2000 with a more suitable load. The very first tests on plasma took place in the Autumn of 1999 showing a strong absorption of the waves by the plasma. Work in the field of the high frequency heating systems focused on problems of local power deposition close to the antenna. This problem is exacerbated, both at the lower hybrid and at the ion cyclotron frequencies, by the need to carry out long pulse discharges. Modelling the localised effects that have been observed contributes to the evolution of the design of both types of antenna and holds out the prospect of fully-validated solutions for the 'next step'. Using the technology developed for the CIEL project in the field of the high heat flux components also made it possible to implement side protections for the antennas that can withstand the temperature rise related to these local effects. Studies in various modes of heating or current drive were continued, in order to explore the corresponding scenarios but also to make progress in modelling the phenomena of wave propagation and absorption. In the field of ion cyclotron waves, the implementation of {sup 3}He minority heating made it possible to identify the conversion of

  10. A two-dimensionally focusing, quasi-optical antenna for millimeter-wave scattering in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Tatsukawa, T. (Faculty of Engineering, Fukui University, Fukui 910, Japan (JP)); Brand, G.F.; Fekete, P.W.; Moore, K.J. (School of Physics, University of Sydney, NSW 2006 (Australia))

    1990-06-01

    A two-dimensionally focusing, quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for use with a tunable gyrotron in order to carry out millimeter-wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. The advantages of this antenna are the following: (1) The elliptical reflector focuses the radiation beam in the toroidal direction, while the parabolic reflector focuses in the direction of major radius. This gives excellent two-dimensional focusing in the plasma region, and consequently excellent spatial resolution. (2) The focal point can be easily swept along the direction of major radius in the whole plasma region, simply by changing the angle of the parabolic reflector by a small amount. These features have been demonstrated experimentally using the tunable gyrotron source, GYROTRON III, and in computations of the radiated fields.

  11. Remote Control System of the TJ-II Microwave Transmission Lines Mirrors; Sistema de Control Remoto de los Espejos de las Lineas de Transmision de Microondas del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Sanchez, A.; Fernandez, A.; Cappa, A.; Gama, J. de la; Olivares, J.; Garcia, R.; Chamorro, M.

    2007-09-27

    The ECRH system of the TJ-II stellarator has two gyrotrons, which deliver a maximum power of 300 kW each at a frequency of 53.2 GHz. Another 28 GHz gyrotron will be used to heat the plasma by electron Bernstein waves (EBWH). The microwave power is transmitted from the gyrotrons to the vacuum chamber by two quasi-optical transmission lines for ECRH and a corrugated waveguide for EBWH. All transmission lines have an internal movable mirror inside the vacuum chamber to focus the beam and to be able to change the launching angle. The control of the beam polarization is very important and the lines have two corrugated mirrors, which actuate as polarizers. In this report the control system of the position of these three internal mirrors and the polarizers of the EBWH transmission line is described. (Author) 20 refs.

  12. Investigation of first mirror heating for the collective Thomson scattering diagnostic in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Bindslev, Henrik

    2008-01-01

    Collective Thomson scattering (CTS) has the capabilities to measure phase space densities of fast ion populations in ITER resolved in configuration space, in velocity space, and in time. In the CTS system proposed for ITER, probing radiation at 60 GHz generated by two 1 MW gyrotrons is scattered...... in the plasma and collected by arrays of receivers. The transmission lines from the gyrotrons to the plasma and from the plasma to the receivers contain several quasioptical mirrors among other components. These are designed to produce astigmatic beam patterns in the plasma where the beam shapes will have...

  13. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  14. Antenna system analysis and design for automatic detection and real-time tracking of electron Bernstein waves in FTU

    Science.gov (United States)

    Bin, W.; Alessi, E.; Bruschi, A.; D'Arcangelo, O.; Figini, L.; Galperti, C.; Garavaglia, S.; Granucci, G.; Moro, A.

    2014-05-01

    The algorithm for the automatic control of the new front steering antenna of the Frascati Tokamak Upgrade device has been improved, in view of forthcoming experiments aimed at testing the mode conversion of electron cyclotron waves at a frequency of 140 GHz. The existing antenna system has been prepared to provide two-point real-time measurements of electron Bernstein waves and to allow real-time tracking of the optimal conversion region. This required an accurate analysis of the antenna to minimize the risk of a mechanical damage of the movable launching mirrors, when accessing the high toroidal launching angles needed for this kind of experiment. A detailed description is presented of the work carried out to safely reach and validate the desired range of steering angles, which include the region of interest, and a technique is proposed to track and chase the correct line of sight for electron Bernstein waves detection during the shot.

  15. Dual-Array Electron Cyclotron Emission Imaging (ECEI): a New Millimeter Wave Imaging System for Electron Temperature Fluctuation on the DIII-D Tokamak

    Science.gov (United States)

    Luhmann, N. C., Jr.; Tobias, B. J.; Domier, C. W.; Kong, X.; Liang, T.; Jaspers, R.; Donne, A. J. H.; Smith, M.; Nazikian, R.; Park, H. K.

    2009-11-01

    A new diagnostic tool has been developed for simultaneous real-time imaging of electron temperature fluctuations at both the high and low field sides. Separate imaging arrays spanning 75 to 110 and 90 to 140 GHz, respectively consist of 160 channels (20 vertical by 8 radial) with ˜1 cm^2 resolution, providing up to 55 cm of vertical plasma coverage. Fluctuations of 1% are measurable on μs time-scales. The technical capabilities of this diagnostic, as well as potential physics issues to be investigated, are discussed. The details of the constituent technologies, including advanced antennas and substrate lenses, quasi-optical planar filter components, and double down-conversion heterodyne signal detection will be addressed.

  16. Processing and analysis of radiometer measurements for airborne reconnaissance

    Science.gov (United States)

    Suess, Helmut

    1990-11-01

    Thi8 paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1 degree high quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is dicussed.

  17. Evaluation of cross-connected waveguides as transfer standards of transmission at high millimetre-wave frequencies

    Science.gov (United States)

    Ridler, Nick; Clarke, Roland; Huang, Hui; Zinal, Sherko

    2016-08-01

    At the present time, transfer and verification standards of transmission coefficient (or, equivalently, transmission loss) are not readily available at high millimetre-wave frequencies (i.e. at frequencies ranging typically from 100 GHz to 300 GHz). In recent years, cross-connected waveguide devices have been proposed to provide calculable standards of transmission loss at these frequencies. This paper investigates the viability of these cross-connected waveguides as transfer standards of transmission for inter-laboratory measurement comparison exercises. This relates to their potential use in activities such as international key comparison exercises and measurement audit programmes. A trial inter-laboratory comparison involving four laboratories using two cross-connected waveguides in the WR-05 waveguide size (covering frequencies from 140 GHz to 220 GHz) is described and includes an analysis of the measurement results obtained during the comparison exercise.

  18. Comparative Monte Carlo analysis of InP- and GaN-based Gunn diodes

    Science.gov (United States)

    García, S.; Pérez, S.; Íñiguez-de-la-Torre, I.; Mateos, J.; González, T.

    2014-01-01

    In this work, we report on Monte Carlo simulations to study the capability to generate Gunn oscillations of diodes based on InP and GaN with around 1 μm active region length. We compare the power spectral density of current sequences in diodes with and without notch for different lengths and two doping profiles. It is found that InP structures provide 400 GHz current oscillations for the fundamental harmonic in structures without notch and around 140 GHz in notched diodes. On the other hand, GaN diodes can operate up to 300 GHz for the fundamental harmonic, and when the notch is effective, a larger number of harmonics, reaching the Terahertz range, with higher spectral purity than in InP diodes are generated. Therefore, GaN-based diodes offer a high power alternative for sub-millimeter wave Gunn oscillations.

  19. Comments on ferrite phase shifter configurations for the millimeter wave region

    Science.gov (United States)

    Reuss, M. L., Jr.

    1982-09-01

    In the microwave region of the electromagnetic spectrum, electronically controllable ferrite phase shifters have demonstrated their value as components and as control elements for switches and attenuators. As the need for control components operating in the lower millimeter wave region increases, it is a reasonable approach to scale successful microwave ferrite configurations into the lower millimeter wave region (30 GHz to 140 GHz). However, many problems are encountered when attempting to scale efficient microwave ferrite configurations, particularly latching ferrite configurations, into the millimeter wave region. It is the objective of this report to review several ferrite configurations with the intent that consideration of these configurations may stimulate development of practical millimeter wave configurations. Ferrite phase shifter configurations that will be the subject of comment include the toroidal (dual slab), dual mode, Bush-Reggia-Spencer, and single slab configurations. Comments are also presented on a circulator used as a phase shifter.

  20. Fast ion millimeter wave collective Thomson scattering diagnostics on TEXTOR and ASDEX upgrades

    DEFF Research Database (Denmark)

    Michelsen, S.; Korsholm, Søren Bang; Bindslev, H.

    2004-01-01

    Collective Thomson scattering (CTS) diagnostic systems for measuring fast ions in TEXTOR and ASDEX Upgrade are described in this article. Both systems use millimeter waves generated by gyrotrons as probing radiation and the scattered radiation is detected with heterodyne receivers having 40...

  1. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited)

    DEFF Research Database (Denmark)

    Meo, Fernando; Bindslev, Henrik; Korsholm, Søren Bang

    2008-01-01

    The collective Thomson scattering (CTS) diagnostic installed on ASDEX Upgrade uses millimeter waves generated by the newly installed 1 MW dual frequency gyrotron as probing radiation at 105 GHz. It measures backscattered radiation with a heterodyne receiver having 50 channels (between 100 and 110...

  2. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.;

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injecti...

  3. EC power sources: European technological developments towards ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bonicelli, T. [EFDA Close Support Unit Garching, Boltzmannstr 2, 85748 Garching (Germany)], E-mail: tullio.bonicelli@tech.efda.org; Alberti, S. [EPFL-CRPP, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland); Cirant, S. [Istituto di Fisica del Plasma EURATOM-ENEA-CNR Association, Milan (Italy); Dormicchi, O. [Ansaldo Superconduttori SpA, C.so Perrone, Genoa (Italy); Fasel, D.; Hogge, J.P. [EPFL-CRPP, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland); Illy, S.; Jin, J. [Forschungszentrum Karlsruhe, Association EURATOM FZK, IHM, 76344 Eggenstein-Leopoldshafen (Germany); Lievin, C. [Thales Electron Devices (TED), 2 Rue de Latecoere, F-78141 Velizy-Villacoublay (France); Mondino, P.L. [EFDA Close Support Unit Garching, Boltzmannstr 2, 85748 Garching (Germany); Piosczyk, B.; Rzesnicki, T. [Forschungszentrum Karlsruhe, Association EURATOM FZK, IHM, 76344 Eggenstein-Leopoldshafen (Germany); Santinelli, M. [ENEA Frascati, Via E Fermi 45, 00044 Frascati, Rome (Italy); Taddia, G. [OCEM, Via 2 Agosto 1980 11, 40016 San Giorgio di Piano (Italy); Thumm, M. [Forschungszentrum Karlsruhe, Association EURATOM FZK, IHM, 76344 Eggenstein-Leopoldshafen (Germany); Tran, M.Q. [EPFL-CRPP, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland)

    2007-10-15

    The activities in Europe towards the development of the EC power sources for ITER are centered on the development of a 170 GHz, 2 MW, CW coaxial cavity gyrotron of collector potential depressed (CPD) type. A gyrotron with a higher unit power than the ITER reference (1 MW) would yield a reduction of the installation costs, a more compact launcher design and, if required, an increase of the power delivered through one port. Tests proving the principle were successfully performed on a short-pulse experimental gyrotron delivering up to 2.2 MW in single mode. Following this success, a coordinated and fully consistent programme of development has been launched. The first industrial 2 MW prototype is now at an advanced stage of construction. The associated superconductive magnet producing 6.86 T on the cavity axis is also being procured. Dummy loads suitable for short and CW operation are also part of the development effort. Finally, a new EC test facility, with the features necessary for the testing of the gyrotron up to full power in CW, has been established and includes a fully solid-state power supply system.0.

  4. Review of Negative Hydrogen Ion Sources

    Science.gov (United States)

    1990-09-01

    is v -senritiv-t-t-ih- -tliffe•p- asma -sffi-ei onverter surface which is biased negative -dfikensions and confitiioS in thigregion.0 ]t ihe-extitifoin...National Laboratory, Accelerator Technology Division, MS H85 1, Los Alamos, New Mexico , 87545 ABSTRACT The Large Orbit Gyrotron Los Alamos is investigating

  5. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...

  6. Annual Industrial Capabilities Report to Congress

    Science.gov (United States)

    2009-03-01

    The System Development and Demonstration Phase of the Joint Tactical Radio System Airborne Maritime/Fixed (JTRS AMF ) Cluster continues through FY11...that will use HTS coated conductor include: gyrotron magnets, power generators, power converters and 98 transformers, motors, primary power cabling

  7. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2014-01-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclot...

  8. Contributions to resolving issues impeding the operation of high power microwave devices

    Science.gov (United States)

    Kashyn, Dmytro

    This thesis reports an experimental study aimed at extending high power, high efficiency gyrotron operation to submillimeter wavelengths. A series of experiments carried out both at the University of Maryland and the Institute of Applied Physics of the Russian Academy of Science, succeeded in demonstrating output power at 670 GHz of 180 kilowatts with 20% efficiency (gyrotron voltage was 57 kV and beam current was 16 amperes). The maximum output power achieved in the experiments was 210kW at somewhat higher voltage and current (viz. 58kV and 22A). The achieved output power and efficiency are twice as large as achieved in previous experiments in this frequency range with pulse duration in the range of tens of microseconds. These performance parameters are relevant to a previously proposed application of detecting concealed radioactive materials by air breakdown in a focused beam of sub-millimeter radiation. The 670 GHz gyrotron combined features of two lines of previous experiments: (a) to operate at the required frequency, pulsed solenoids producing 28T magnetic were employed and (b) to obtain high efficiency a very high order mode was used in the gyrotron cavity, as in the experiments with gyrotrons for plasma heating. Evidence of multimode beating was observed in submillimeter output envelope. The excitation of spurious modes, especially during the rise of the gyrotron voltage pulse, was analyzed and the method of avoiding this was proposed which also allows to reduce collector loading in gyrotrons operating in modulated regimes. The present study also includes theoretical analysis of the processes that deepens the understanding of microwave breakdown (arcing) in high power microwave devices. The effect of the dust particles microprotrusions on the device operation was analyzed. These microprotrusions were observed and their negative effects were remedied by careful polishing and machining of the resonator surface. Finally, the generated 670 GHz radiation was

  9. The upgraded Collective Thomson Scattering diagnostics of FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma – CNR, Milano (Italy); Bruschi, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); D’Arcangelo, O. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy); Grosso, G. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Lubiako, L. [Institute of Applied Physics – RAS, Nizhny Novgorod (Russian Federation); Tartari, U.; Figini, L.; Garavaglia, S. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Grossetti, G. [Institute for Applied Materials – KIT, Karlsruhe (Germany); Moro, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Orsitto, F.; Centioli, C. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy); Galperti, C.; Granucci, G.; Mellera, V.; Minelli, D.; Nardone, A.; Simonetto, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Vellucci, M. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy)

    2015-10-15

    Highlights: • The new 140 GHz CTS diagnostics recently installed on the FTU device is presented. • The CTS transmission line is described in detail. • The potential of the new CTS configuration is shown with the aid of simulations. • The radiometric and data acquisition systems are described. • The new code TCSC is described for the first time. - Abstract: The 140 GHz Collective Thomson Scattering (CTS) diagnostics installed on the Frascati Tokamak Upgrade (FTU) has been upgraded. The new system now is ready both to detect the thermal CTS radiation (for the first time with the probe frequency below the 1st harmonic electron cyclotron resonance) and to study the impact of possible parametric decay instability (PDI) processes on the received signals. The EC front-steering antenna and transmission system have been complemented with a receiving line that matches a quasi-optical line feeding the homodyne multi-channel radiometer. The scattering volume can be placed in a wide range of locations by means of fast poloidal and toroidal rotations of the two plasma-facing mirrors that have an up–down symmetry with respect to the equatorial plane of the torus. The data acquisition system has been improved adding a new digitizer, with a bandwidth of 5 GHz and a maximum sampling rate of 12.5 GS/s. The possibility of directly sampling and Fourier transforming the down-converted signals greatly improves the suitability of the new diagnostics to carry out thermal ion temperature measurements and to study the competing PDI processes whenever present.

  10. Vacuum Ultraviolet Xenon Excimer Light Source Excited by a Pulsed Jet Discharge

    National Research Council Canada - National Science Library

    Eiji FUTAGAMI; Toshiaki TAKADA; Junji KAWANAKA; Shoichi KUBODERA; Wataru SASAKI; Kou KUROSAWA; Kenichi MITSUHASHI; Tatsushi IGARASHI

    1995-01-01

      We have developed a new xenon excimer light source in vacuum ultraviolet (VUV). The use of a pulsed gas jet discharge realized efficient cluster excitation and spatially localized emission in VUV with an extremely long pulse duration...

  11. High Gradient Multilayer Insulator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S E; Caporaso, G J; Nunnally, W C; Sanders, D M; Watson, J A; Krogh, M L; Anderson, H U

    2004-06-03

    We are investigating a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. These structures perform 1.5 to 4 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We survey our ongoing studies investigating the performance under long pulse electron beam, short pulse, and full reversing conditions.

  12. Cascaded Soliton Compression of Energetic Femtosecond Pulses at 1030 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin

    2012-01-01

    We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved.......We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved....

  13. Observation of harmonic gyro-backward-wave oscillation in a 100 GHz CARM oscillator experiment

    Science.gov (United States)

    McCowan, Robert B.; Sullivan, Carol A.; Gold, Steven H.; Fliflet, Arne W.

    1991-02-01

    A cyclotron autoresonance maser (CARM) oscillator experiment is reported, using a 600 keV, 200 A electron beam, and a whispering gallery-mode rippled-wall Bragg cavity. This device was designed to produce tens of megawatts of radiation at 100 GHz from a CARM interaction, but instead has produced only moderate powers (tens of kWs) in fundamental gyrotron modes near 35 GHz, in third-harmonic-gyro-BWO modes, and possible third-harmonic gyrotron modes at frequencies near the expected CARM frequency, with no discernable CARM radiation. The lack of observable CARM radiation is attributed to excessive ripple on the voltage waveform and to mode competition. Calculations of the spectrum and growth rate of the backward-wave oscillations are consistent with the experimental observation.

  14. Development of the fast arcing protection for ECRH system on the HL-2A tokamak

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-juan; RAO Jun; WANG Ming-wei; WANG Xue-yun; LI Bo

    2007-01-01

    The fast arcing protection of the electron cyclotron resonance heating(ECRH)is very important in the heating experiment of the HL-2A tokamak.ECRH has the ability of 1MW using two gyrotrons (each about 500kW).The states of the protected objects must been detect then deal with effectively arcing-events in order to accomplish the protection function.The fast arcing protection includes two parts such as some arcing detectors and one arcing protector for the one gyrotron and one waveguide line.The ECRH arcing protection system must be fast enough and very reliable,and the total response time is less than 25μs.

  15. Steady-State Fully Noninductive Current Driven by Electron Cyclotron Waves in a Magnetically Confined Plasma

    Science.gov (United States)

    Sauter, O.; Henderson, M. A.; Hofmann, F.; Goodman, T.; Alberti, S.; Angioni, C.; Appert, K.; Behn, R.; Blanchard, P.; Bosshard, P.; Chavan, R.; Coda, S.; Duval, B. P.; Fasel, D.; Favre, A.; Furno, I.; Gorgerat, P.; Hogge, J.-P.; Isoz, P.-F.; Joye, B.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Mandrin, P.; Manini, A.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Mayor, J.-M.; Martynov, A. A.; Mlynar, J.; Moret, J.-M.; Nieswand, C.; Nikkola, P.; Paris, P.; Perez, A.; Pietrzyk, Z. A.; Pitts, R. A.; Pochelon, A.; Pochon, G.; Refke, A.; Reimerdes, H.; Rommers, J.; Scavino, E.; Tonetti, G.; Tran, M. Q.; Troyon, F.; Weisen, H.

    2000-04-01

    A steady-state, fully noninductive plasma current has been sustained for the first time in a tokamak using electron cyclotron current drive only. In this discharge, 123 kA of current have been sustained for the entire gyrotron pulse duration of 2 s. Careful distribution across the plasma minor radius of the power deposited from three 0.5-MW gyrotrons was essential for reaching steady-state conditions. With central current drive, up to 153 kA of current have been fully replaced transiently for 100 ms. The noninductive scenario is confirmed by the ability to recharge the Ohmic transformer. The dependence of the current drive efficiency on the minor radius is also demonstrated.

  16. Multistage depressed collector conceptual design for thin magnetically confined electron beams

    Science.gov (United States)

    Pagonakis, Ioannis Gr.; Wu, Chuanren; Illy, Stefan; Jelonnek, John

    2016-04-01

    The requirement of higher efficiency in high power microwave devices, such as traveling wave tubes and gyrotrons, guides scientific research to more advanced types of collector systems. First, a conceptual design approach of a multistage depressed collector for a sheet electron beam confined by a magnetic field is presented. The sorting of the electron trajectories, according to their initial kinetic energy, is based on the E × B drift concept. The optimization of the geometrical parameters is based on the analytical equations under several general assumptions. The analysis predicts very high levels of efficiency. Then, a design approach for the application of this type of collector to a gyrotron cylindrical hollow electron beam is also presented with very high levels of efficiency more than 80%.

  17. Propagation of gamma rays and production of free electrons in air

    CERN Document Server

    Dimant, Y S; Sprangle, P; Penano, J; Romero-Talamas, C A; Granatstein, V L

    2012-01-01

    A new concept of remote detection of concealed radioactive materials has been recently proposed \\cite{Gr.Nusin.2010}-\\cite{NusinSprangle}. It is based on the breakdown in air at the focal point of a high-power beam of electromagnetic waves produced by a THz gyrotron. To initiate the avalanche breakdown, seed free electrons should be present in this focal region during the electromagnetic pulse. This paper is devoted to the analysis of production of free electrons by gamma rays leaking from radioactive materials. Within a hundred meters from the radiation source, the fluctuating free electrons appear with the rate that may exceed significantly the natural background ionization rate. During the gyrotron pulse of about 10 microsecond length, such electrons may seed the electric breakdown and create sufficiently dense plasma at the focal region to be detected as an unambiguous effect of the concealed radioactive material.

  18. Development of a Propagating Millimeter-Wave Beam Position and Profile Monitor in the Oversize Corrugated Waveguide Used in an ECRH System

    Science.gov (United States)

    Shimozuma, Takashi; Kobayashi, Sakuji; Ito, Satoshi; Ito, Yasuhiko; Kubo, Shin; Yoshimura, Yasuo; Nishiura, Masaki; Igami, Hiroe; Takahashi, Hiromi; Mizuno, Yoshinori; Okada, Kohta; Mutoh, Takashi

    2016-01-01

    In a high-power electron cyclotron resonance heating (ECRH) system for plasma heating, a long-distance and low-loss transmission system of the millimeter wave is required. A real-time monitor of the millimeter-wave beam position and its intensity profile, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam-position and profile monitor (BPM) consists of a reflector, Peltier-device array, and a heat-sink, which is installed in the reflector-plate of a miterbend. The BPM was tested using both simulated electric heater power and high-power gyrotron output power. The profile obtained from the monitor using the gyrotron output was well agreed with the burn patter on a thermal sensitive paper. Methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated waveguide are proposed.

  19. High power testing of water-cooled waveguide for ITER-like ECH transmission lines

    Science.gov (United States)

    Anderson, J. P.; Doane, J. L.; Grunloh, H. J.; O'Neill, R. C.; Ikeda, R.; Oda, Y.; Takahashi, K.; Sakamoto, K.

    2017-05-01

    The results of high power testing of new water-cooled ECH waveguide components for ITER are presented. The components are a precision-coupled 4.2 m waveguide assembly, a short expansion joint, and water-cooled waveguide for gyrotron commissioning. The testing was conducted at the QST Naka Fusion Institute using gyrotron pulses of 450 kW at 170 GHz for 300 s. Analysis shows that the power absorbed per unit length for the various waveguide components are dependent on location in the transmission line with respect to high order mode generators, such as miter bends. Additionally, larger-than-expected reflections from the load led to high absorption levels in the transmission line.

  20. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  1. Fusion development and technology. Technical progress report, October 15, 1990--October 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D.B.

    1992-06-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R&D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  2. Fusion development and technology

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  3. Study of Mode Coupling on Coaxial Resonators

    Institute of Scientific and Technical Information of China (English)

    Rui Liu; Hong-Fu Li

    2011-01-01

    A study of mode coupling phenomenon of coaxial resonators has been conducted with theories.Through establishing the source-free transmission line equation,boundary conditions of the coaxial resonators with a corrugated inner conductor are analyzed.In the end,calculations are performed in a wide range of corrugation parameters for the resonator of the Karisruhe Institute of Technology (KIT) relevant coaxial gyrotron.

  4. Program status 3. quarter -- FY 1994: ITER and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-19

    During this quarter all technical work and documentation of the PULSAR design was completed. They also assisted UCLA in the planning of the DEMO program.In the area of RF technology, a decision was made to fabricate 4in x 4in gyrotron distributed window. An finally, they obtained good agreement between code predictions and measured data for the up and down field redeposition of tungsten in the DIMES-8 experiment.

  5. Preliminary conceptual design of DEMO EC system

    Energy Technology Data Exchange (ETDEWEB)

    Garavaglia, S., E-mail: garavaglia@ifp.cnr.it; Bin, W.; Bruschi, A.; Granucci, G.; Moro, A.; Rispoli, N. [Institute of Plasma Physics “P.Caldirola”, National Research Council of Italy, Milan (Italy); Grossetti, G.; Strauss, D. [IAM-AWP, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Jelonnek, J. [IHM, KIT, Kaiserstr. 12, D-76131 Karlsruhe (Germany); Tran, Q. M. [CRPP, EPFL, EURATOM Association, CH-1015 Lausanne (Switzerland); Franke, T. [EUROfusion Consortium, Boltzmannstr. 2, D-85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

  6. Operational performance and plans for the ECH system on DIII-D

    Science.gov (United States)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Torrezan, A.; Ives, L.; Read, M.; Leviness, A.

    2016-10-01

    The ECH system on the DIII-D tokamak currently comprises 6 gyrotrons operating at 110 GHz and injecting 3.5 MW for administratively limited pulse lengths up to 5 sec. A 7th gyrotron generating 1.5 MW at 117.5 GHz is planned for installation late in 2016. Production of this tube was delayed due to issues related to reflected electrons resulting in internal arcs during initial testing. Performance reliability of the individual gyrotrons in the DIII-D complex has exceeded 90% for a wide variety of operational modes, including fast modulation and rapid poloidal sweeping of the rf beams using high speed dc motors and magnetic position encoders. Measures have been taken to reduce the risk of damage to launcher hardware and diagnostics from inadvertent operation of the tokamak at densities such that the right hand cutoff frequency is present in the plasma. The system has occasionally been used in non-fusion applications. The most recent of these has been testing a CVD diamond waveguide blocking window at the Brewster angle. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.

  7. NTM stabilization by alternating O-point EC current drive using a high-power diplexer

    Science.gov (United States)

    Kasparek, W.; Doelman, N.; Stober, J.; Maraschek, M.; Zohm, H.; Monaco, F.; Eixenberger, H.; Klop, W.; Wagner, D.; Schubert, M.; Schütz, H.; Grünwald, G.; Plaum, B.; Munk, R.; Schlüter, K. H.; ASDEX Upgrade Team

    2016-12-01

    At the tokamak ASDEX Upgrade, experiments to stabilize neoclassical tearing modes (NTMs) by electron cyclotron (EC) heating and current drive in the O-points of the magnetic islands were performed. For the first time, injection into the O-points of the revolving islands was performed via a fast directional switch, which toggled the EC power between two launchers synchronously to the island rotation. The switching was performed by a resonant diplexer employing a sharp resonance in the transfer function, and a small frequency modulation of the feeding gyrotron around the slope of the resonance. Thus, toggling of the power between the two outputs of the diplexer connected to two articulating launchers was possible. Phasing and control of the modulation were performed via a set of Mirnov coils and appropriate signal processing. In the paper, technological issues, the design of the diplexer, the tracking of the diplexer resonance to the gyrotron frequency, the generation and processing of control signals for the gyrotron, and the typical performance concerning switching contrast and efficiency are discussed. The plasma scenario is described, and plasma experiments are presented, where the launchers scanned the region of the resonant surface continuously and also where the launchers were at a fixed position near to the q  =  1.5-surface. In the second case, complete stabilization of a 3/2 NTM could be reached. These experiments are also seen as a technical demonstration for the applicability of diplexers in large-scale ECRH systems.

  8. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    Science.gov (United States)

    Huang, Y. J.; Chu, K. R.; Thumm, M.

    2015-01-01

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at optical frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.

  9. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  10. Experimental Verification on Remote Detectability of Concealed Radioactive Material Based on the Plasma Discharge Delay Time using High-Power Millimeter-Wave

    Science.gov (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Choi, Eunmi

    2016-10-01

    We experimentally demonstrate a remote detection method of a radioactive source by plasma breakdown using high-power millimeter-wave source, gyrotron. A number of free electrons near the radioactive source are much higher than those of without the radioactive source (roughly 10 particles/cm3) owing to the interaction of air molecules and strong gamma rays generated by radioactive material. The RF wave beam is focused in ambient air, and the plasmas discharge occurs involving random delay time which means a time interval between the RF wave and a fluorescent light caused by the plasma. We observed that the delay time decreased significantly due to the high density of free electrons in Ar plasma with an existence of Co60 radioactive material. This technique of delay time measurement shows 1000 times more sensitive than a method of detectable mass equation to identify the existence of radioactive source remotely. It is the first experimental verification of radioactive material detection using a high power gyrotron. This study shows that a remote detection of radioactive material based on analysis of precise delay time measurement could be feasible by using a high power millimeter/THz wave gyrotron. NRF-2013R1A1A2061062, NRF-2012-Global Ph.D. Fellowship Program.

  11. A Multifrequency Notch Filter for Millimeter Wave Plasma Diagnostics based on Photonic Bandgaps in Corrugated Circular Waveguides

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2015-01-01

    Full Text Available Sensitive millimeter wave diagnostics need often to be protected against unwanted radiation like, for example, stray radiation from high power Electron Cyclotron Heating applied in nuclear fusion plasmas. A notch filter based on a waveguide Bragg reflector (photonic band-gap may provide several stop bands of defined width within up to two standard waveguide frequency bands. A Bragg reflector that reflects an incident fundamental TE11 into a TM1n mode close to cutoff is combined with two waveguide tapers to fundamental waveguide diameter. Here the fundamental TE11 mode is the only propagating mode at both ends of the reflector. The incident TE11 mode couples through the taper and is converted to the high order TM1n mode by the Bragg structure at the specific Bragg resonances. The TM1n mode is trapped in the oversized waveguide section by the tapers. Once reflected at the input taper it will be converted back into the TE11 mode which then can pass through the taper. Therefore at higher order Bragg resonances, the filter acts as a reflector for the incoming TE11 mode. Outside of the Bragg resonances the TE11 mode can propagate through the oversized waveguide structure with only very small Ohmic attenuation compared to propagating in a fundamental waveguide. Coupling to other modes is negligible in the non-resonant case due to the small corrugation amplitude (typically 0.05·λ0, where λ0 is the free space wavelength. A Bragg reflector for 105 and 140 GHz was optimized by mode matching (scattering matrix simulations and manufactured by SWISSto12 SA, where the required mechanical accuracy of ± 5 μm could be achieved by stacking stainless steel rings, manufactured by micro-machining, in a high precision guiding pipe. The two smooth-wall tapers were fabricated by electroforming. Several measurements were performed using vector network analyzers from Agilent (E8362B, ABmm (MVNA 8-350 and Rohde&Schwarz (ZVA24 together with frequency multipliers. The

  12. Concepts of magnetic filter fields in powerful negative ion sources for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W., E-mail: kraus@ipp.mpg.de; Fantz, U.; Heinemann, B.; Wünderlich, D. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-02-15

    The performance of large negative ion sources used in neutral beam injection systems is in long pulses mainly determined by the increase of the currents of co-extracted electrons. This is in particular a problem in deuterium and limits the ion currents which are for long pulses below the requirements for the ITER source. In the source of the ELISE test facility, the magnetic field in front of the first grid, which is essential to reduce the electron current, is generated by a current of several kA flowing through the plasma facing grid. Weakening of this field by the addition of permanent magnets placed close to the lateral walls has led to a reduction of the electron current by a factor three without loss of ion current when source was operated in volume production. If this effect can be validated for the cesiated source, it would be a large step towards achieving the ITER parameter in long pulses.

  13. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  14. Detection of the tSZ effect with the NIKA camera

    CERN Document Server

    Comis, B; Macías-Pérez, J F; Adane, A; Ade, P; André, P; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Boudou, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pointecouteau, E; Ponthieu, N; Revéret, V; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Tucker, C; Zylka, R

    2013-01-01

    We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Background) spectrum produced by the inverse Compton interaction of CMB photons with the hot electrons of the ionized intra-cluster medium. The massive, intermediate redshift cluster RX J1347.5-1145 has been observed using NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies of the superconducting resonators are shifted by mm-wave photons absorption. This tSZ cluster observation demonstrates the potential of the next generation NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta (Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at 240GHz, providing in that band also a measurement of the linear polarization. NIKA2 will ...

  15. Galaxy Cluster Scaling Relations between Bolocam Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements

    CERN Document Server

    Czakon, N G; Mantz, A; Golwala, S R; Downes, T P; Koch, P M; Lin, K -Y; Molnar, S M; Moustakas, L A; Mroczkowski, T; Pierpaoli, E; Shitanishi, J A; Siegel, S; Umetsu, K

    2014-01-01

    We present scaling relations between the integrated Sunyaev-Zel'dovich Effect (SZE) signal, $Y_{\\rm SZ}$, its X-ray analogue, $Y_{\\rm X}$$\\equiv$$M_{\\rm gas}$$T_{\\rm X}$, and total mass, $M_{\\rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) sample. All parameters are integrated within $r_{2500}$. $Y_{2500}$ values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, $T_{\\rm X}$, and mass, $M_{\\rm gas,2500}$, of the intracluster medium are determined using X-ray data collected with \\emph{Chandra}, and $M_{\\rm tot}$ is derived from $M_{\\rm gas}$ using a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the $Y_{2500}$-$Y_{\\rm X}$ scaling to have a logarithmic slope of $0.84\\pm0.07$, and a fractional intrinsic scatt...

  16. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    Science.gov (United States)

    Ou-Peng, Li; Yong, Zhang; Rui-Min, Xu; Wei, Cheng; Yuan, Wang; Bing, Niu; Hai-Yan, Lu

    2016-05-01

    Design and characterization of a G-band (140-220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140-190 GHz respectively. The saturation output powers are -2.688 dBm at 210 GHz and -2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501091) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2014J003 and ZYGX2013J020).

  17. Al/CdSe/GaSe/C resonant tunneling thin film transistors

    Science.gov (United States)

    Qasrawi, A. F.; Kayed, T. S.; Elsayed, Khaled A.

    2017-02-01

    An Al/CdSe/GaSe/C thin film transistor device was prepared by the physical vapor deposition technique at a vacuum pressure of 10-5 mbar. The x-ray diffraction measurements demonstrated the polycrystalline nature of the surface of the device. The dc current-voltage characteristics recorded for the Al/CdSe/C and Al/CdSe/GaSe/C channels displayed a resonant tunneling diode features during the forward and reverse voltage biasing, respectively. In addition, the switching current ratio of the Al/CdSe/C increased from 18.6 to 9.62×103 as a result of the GaSe deposition on the CdSe surface. Moreover, the alternating electrical signal analyses in the frequency range of 1.0 MHz to 1.8 GHz, showed some remarkable properties of negative resistance and negative capacitance spectra of the Al/CdSe/GaSe/C thin film transistors. Two distinct resonance-antiresonance phenomena in the resistance spectra and one in the capacitance spectra were observed at 0.53, 1.04 and 1.40 GHz for the Al/CdSe/C channel, respectively. The respective resonating peak positions of the resistance spectra shift to 0.38 and 0.95 GHz when GaSe is interfaced with CdSe. These features of the thin film transistors are promising for use in high quality microwave filtering circuits and also for use as ultrafast switches.

  18. Review on High Gain Conical Horn Antenna for Short-Range Communications

    Directory of Open Access Journals (Sweden)

    Priyanka Bhagwat

    2013-11-01

    Full Text Available Horn antennas are very popular at UHF (300 MHz-3 GHz and higher frequencies ( as high as 140 GHz. Horn antennas often have a directional radiation pattern with a high antenna gain, which can range up to 25 dB in some cases, with 10-20 dB being typical. Horn antennas have a wide impedance bandwidth, implying that the input impedance is slowly varying over a wide frequency range. The bandwidth for practical horn antennas can be of the order of 20:1 (for instance, operating from 1 GHz-20 GHz, with a 10:1 bandwidth being common. The gain of horn antennas often increases as the frequency of operation is increased. This is because the size of the horn aperture is measured in wavelengths; at higher frequencies the horn antenna is "electrically larger" because high frequency has a smaller wavelength. Horn antennas have very little loss, so the directivity of a horn is roughly equal to its gain. In this paper, we will present review about conical horn antenna which uses hybrid technique and provides high gain at frequencies ranging 3GHz keeping its size within limits. Also, literature survey will demostrate other reference papers will includes horn antennas using different techniques and used for various applications.

  19. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    Science.gov (United States)

    Pan, X. M.; Yang, Z. J.; Ma, X. D.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.; Ruan, B. W.; Zhuang, G.

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  20. 93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology

    Science.gov (United States)

    Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki

    2013-04-01

    In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.

  1. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.; Ruan, B. W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhu, Y. L. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Luhmann, N. C.; Domier, C. W. [Davis Millimeter Wave Research Center, University of California, Davis, California 95616 (United States)

    2016-11-15

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  2. Design and fabrication of a sub-millimeter multi-beam folded waveguide structure

    Science.gov (United States)

    Yan, Sheng-mei; Su, Wei; Zhang, Guo-liang

    2017-01-01

    A novel multi-beam folded waveguide (MBFW) circuit, which can enhance the output power and interaction efficiency of sub-terahertz (THz) traveling wave tube (TWT), is presented in the paper. Operating with fundamental mode and multiple electron beams means that a larger beam current can be used for a higher output power. The characteristics of the MBFW structure are analyzed and optimized. Compared with the single-beam folded waveguide (SBFW) TWT, the output power of the MBFW TWT increases from 3.64 W to 25.45 W at 140 GHz and its electronic efficiency increases from 1.06% to 7.4% under the conditions of an input peak power of 10 mW, a beam voltage of 9.55 kV and a current of 12 mA. The optimized MBFW structure can be successfully fabricated by micro milling, with dimension errors below expectation, and the measured transmission characteristics are in good agreement with the design.

  3. ECE Measurements of Helical Plasmas in LHD

    Science.gov (United States)

    Nagayama, Y.; Inagaki, S.; Ito, Y.; Kawahata, K.; Sasao, H.; de Vries, P.

    1999-11-01

    This paper presents ECE measurements on LHD, which is the l=2, n=10 heriotron with the major radius of 3.8 m, with the averaged minor radius of 60 cm and with the helical field of up to 3 T. The ECE is collected from both inner and outer sides, since the magnetic field has a peaked profile. ECE is detcted with Michelson, GPC and 70 GHz and 140 GHz radiometers. The LHD plasma is generated using ECH of up to 1 MW and is heated using NBI of up to 8 GW. Notch filters reduce the ECH leakage. The polarization of ECE is theoretically and experimentally investigated in the heriotoron system, where the field angle rotates -30 to 30^o. The polarization follows as the field angle changes. Since the density profile is flat, ECE is cut off in the edge region in the high density LHD plasma. An interesting observation is the breathing phenomena, which is as follows: the electron temperature and other plasma parameters oscillate with frequency of 0.5-1Hz like a sine-wave when the NBI power is about 1 MW.

  4. Measurements of the Sunyaev-Zel'dovich Effect in MACS J0647.7+7015 and MACS J1206.2-0847 at High Angular Resolution with MUSTANG

    CERN Document Server

    Young, Alexander H; Romero, Charles; Sayers, Jack; Balestra, Italo; Clarke, Tracy E; Czakon, Nicole; Devlin, Mark; Dicker, Simon R; Ferrari, Chiara; Girardi, Marisa; Golwala, Sunil; Intema, Huib; Korngut, Phillip M; Mason, Brian S; Mercurio, Amata; Nonino, Mario; Reese, Erik D; Rosati, Piero; Sarazin, Craig; Umetsu, Keiichi

    2014-01-01

    We present high resolution (9$^{\\prime \\prime}$) imaging of the Sunyaev-Zel'dovich Effect (SZE) toward two massive galaxy clusters, MACS J0647.7+7015 ($z=0.591$) and MACS J1206.2-0847 ($z=0.439$). We compare these 90 GHz measurements, taken with the MUSTANG receiver on the Green Bank Telescope, with generalized Navarro-Frenk-White (gNFW) models derived from Bolocam 140 GHz SZE data as well as maps of the thermal gas derived from {\\it Chandra} X-ray observations. For MACS J0647.7+7015, we find a gNFW profile with core slope parameter $\\gamma= 0.9$ fits the MUSTANG image with $\\chi^{2}_{red}=1.005$ and probability to exceed (PTE) = 0.34. For MACS J1206.2-0847, we find $\\gamma=0.7$, $\\chi^{2}_{red}=0.993$, and PTE = 0.70. In addition, we find a significant ($>$3-$\\sigma$) residual SZE feature in MACS J1206.2-0847 coincident with a group of galaxies identified in VLT data and filamentary structure found in a weak-lensing mass reconstruction. We suggest the detected sub-structure may be the SZE decrement from a lo...

  5. Characterization of a 20 kW helicon source for fusion relevant plasma-surface interactions using microwave and electrostic diagnostics

    Science.gov (United States)

    Caneses, Juan Francisco; Blackwell, Boyd; Guenette, Mathew; Corr, Cormac

    2013-10-01

    The MAGnetized Plasma Interaction Experiment (MAGPIE) is a non-uniform axial magnetic field helicon source built to study fusion relevant plasma-surface interactions. In this work we describe its operation with a new 20 kW pulsed RF source in H2 and He under various discharge configurations. Diagnostics such as RF double probes and a 140 GHz heterodyne Michelson microwave interferometer are used to characterize the performance of the device over a wide range of operational regimes. During initial characterization we have measured plasma densities in excess of 1 × 1019 m-3 in H2 at 12 kW of RF power. Finally, we report on recent work conducted in MAGPIE in close collaboration with the Australian Nuclear Science and Technology Organisation (ANSTO) and the Plasma Research Laboratory (PRL) where biased material samples are subjected to H2 plasma. These samples are then analyzed ex-suti using a variety of material characterization techniques. Materials being investigated include graphite, diamond and tungsten.

  6. Ion Beam Nanostructuring of HgCdTe Ternary Compound

    Science.gov (United States)

    Smirnov, Aleksey B.; Savkina, Rada K.; Udovytska, Ruslana S.; Gudymenko, Oleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.

    2017-05-01

    Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te ( x 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound ( x 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

  7. Composite left-handed meta-atom for tri-band operation

    Science.gov (United States)

    Mehedi Hasan, Md; Faruque, Mohammad Rashed Iqbal; Tariqul Islam, Mohammad

    2017-09-01

    This paper introduces a compact composite meta-atom for S-, C-, and Ku-band applications, which shows left-handed characteristics at 0°, 90°, 180° and 270° structural rotations. The proposed structure provides wide bandwidth when the operating frequency is between 2.0 and 14.0 GHz. Additionly, the proposed meta-atom is designed by creating splits in the outer and inner square shape ring resonators, and a metal arm is placed at the middle of the inner ring resonator. The arm is also connected with the upper and lower portion of the inner ring resonator, and later, the design appears as an I-shaped split ring resonator. FIT based computer simulation technology electromagnetic simulatortool is utilized for the design, simulation, and numerical analysis. The measured results comply well with the simulated results of the meta-atom for every rotation angle. Owing to the effective medium ratio of 8.50 at 0° and 180° rotational angles and the figure of merit grater than 1.0, the designed meta-atom is compact in size and practically implementable.

  8. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C. [Association EURATOM-FOM, Trilateral Euregio Cluster, FOM-Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Oosterbeek, J. W.; Buerger, A. [Association EURATOM-FZJ, Institut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GMBH, 52425 Juelich (Germany); Hennen, B. A. [Association EURATOM-FOM, Trilateral Euregio Cluster, FOM-Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Control Systems Technology Group, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2009-10-15

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  9. Synthesis, characterization and electromagnetic properties of SnO-coated FeNi alloy nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingling; Li, Honglin; Xu, Taotao; Nie, Yu, E-mail: lml771212@163.com [College of Chemistry and Material Engineering, Chaohu University (China)

    2016-11-15

    SnO-coated FeNi alloy nanocapsules have been synthesized by an arc-discharge method. High resolution transmission electron microscopy and x-ray photoelectron spectroscopy analysis show that the nanocapsules have a shell/core structure with FeNi alloy nanoparticles as the core and amorphous SnO as the shell. Dielectric relaxation of SnO shell and the interfacial relaxation between SnO shell and FeNi core lead to the dual nonlinear dielectric resonance. The natural resonance in the SnO coated FeNi nanocapsules shifts to 14.0 GHz. Reflection loss (RL) reaches -46.1 dB at 14.8 GHz for a matching thickness of 1.95 mm, while it exceeds-20 dB over the 13.6 -16.7 GHz range and it exceeds -10 dB in the whole Ku-band (12.4-18 GHz). In addition, the optimal RL values at 5.0-7.6 GHz with the absorbing thickness of 3.4-5.0 mm just exhibit a slight fluctuation. (author)

  10. BXO mode-converted electron Bernstein emission diagnostic (invited)

    Science.gov (United States)

    Volpe, F.; Laqua, H. P.

    2003-03-01

    Electron temperature profiles at densities above the electron cyclotron emission (ECE) cutoff are measured at the W7-AS stellarator by a novel diagnostic based on black body emission and Bernstein-extraordinary-ordinary mode conversion of electron Bernstein waves (EBWs). The radiation is collected along a special oblique line of sight by an antenna with gaussian optics. This was optimized for maximal conversion efficiency and minimal Doppler broadening by means of EBW ray tracing calculations in full stellarator geometry. The elliptical O-mode polarization detected along the oblique line of sight is changed into a linear polarization by a broadband quarter wave shifter, namely an elliptical waveguide. The signal is spectrum analyzed by an heterodyne radiometer and temperature profiles are derived from spectra by means of ray tracing. The diagnostic was applied to measurements of edge-localized modes to illustrate its advantages in terms of spatial and temporal resolution. Moreover, for the first time, the heat wave propagation method for the determination of local heat transport coefficients was extended beyond the ECE cutoff density by combining EBW emission measurements at the first harmonic (f=66-78 GHz) with modulated EBW heating at the second harmonic (140 GHz).

  11. Peculiar Velocity Constraints from Five-Band SZ Effect Measurements Towards RX J1347.5-1145 with MUSIC and Bolocam from the CSO

    CERN Document Server

    Sayers, Jack; Glenn, Jason; Golwala, Sunil R; Maloney, Philip R; Siegel, Seth R; Wheeler, Jordan; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G; Day, Peter K; Downes, Thomas P; Duan, Ran P; Gao, Jiansong; Hollister, Matthew I; Lam, Albert; LeDuc, Henry G; Mazin, Benjamin A; McHugh, Sean G; Miller, David A; Mroczkowski, Tony K; Noroozian, Omid; Nguyen, Hien T; Radford, Simon J; Schlaerth, James A; Vayonakis, Anastasios; Wilson, Philip R; Zmuidzinas, Jonas

    2015-01-01

    We present Sunyaev-Zel'dovich (SZ) effect measurements from wide-field images towards the galaxy cluster RX J1347.5-1145 obtained from the Caltech Submillimeter Observatory with the Multiwavelength Submillimeter Inductance Camera (MUSIC) at 147, 213, 281, and 337 GHz and with Bolocam at 140 GHz. As part of our analysis, we have used higher frequency data from Herschel-SPIRE and previously published lower frequency radio data to subtract the signal from the brightest dusty star-forming galaxies behind RX J1347.5-1145 and from the AGN in RX J1347.5-1145's BCG. Using these five-band SZ effect images, combined with previously published X-ray spectroscopic measurements of the temperature of the intra-cluster medium (ICM) from Chandra, we constrain the ICM optical depth to be $\\tau_e = 2.73^{+0.38}_{-0.39} \\times 10^{-3}$ and the ICM line of sight peculiar velocity to be $v_{pec} = -1260^{+760}_{-530}$ km s$^{-1}$. The errors for both quantities are limited by measurement noise rather than calibration uncertainties...

  12. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  13. Overview of recent AWE fusion-related studies, experiments and facilities

    Directory of Open Access Journals (Sweden)

    Roberts P.D.

    2013-11-01

    Full Text Available The presentation will describe the current status of modelling short and long pulse laser irradiation and its application to inertial fusion designs. Recent results will be described which give confidence in the modelling in specific regimes. An update will be given of the AWE ORION laser facility and the availability planned for academic access.

  14. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  15. Development and Investigation of Two Optimized Soft Switching Pulsed Power Resonant Converters for RF Applications

    Science.gov (United States)

    2013-06-01

    Conference (19th). Held in San Francisco , CA on 16-21 June 2013., The original document contains color images. 14. ABSTRACT This paper focuses on the...K. Bourkland, C. Jensen, Q. Kerns, P. Prieto , G. Saewert, and D. Wolff, “A Second Long Pulse Modulator For TESLA Using IGBTs,” in 5th European

  16. Features of gallstone and kidney stone fragmentation by IR pulsed YAG:Nd laser radiation

    Science.gov (United States)

    Batishche, Sergei A.

    1995-01-01

    It is shown that infra-red ((lambda) equals 1064 nm) long pulse (approximately 100 microsecond(s) ) radiation of YAG:Nd laser, operating in free generation regime, effectively fragments gallstones, urinary calculus and kidney stones. The features of the mechanism of this process are investigated.

  17. Diagnostics for plasma control on DEMO: challenges of implementation

    NARCIS (Netherlands)

    Donne, A. J. H.; Costley, A. E.; Morris, A. W.

    2012-01-01

    As a test fusion power plant, DEMO will have to demonstrate reliability and very long pulse/steady-state operation, which calls for unprecedented robustness and reliability of all diagnostic systems (also requiring adequate redundancy). But DEMO will have higher levels of neutron and gamma fluxes, a

  18. Diagnostics for plasma control on DEMO: challenges of implementation

    NARCIS (Netherlands)

    Donne, A. J. H.; Costley, A. E.; Morris, A. W.

    2012-01-01

    As a test fusion power plant, DEMO will have to demonstrate reliability and very long pulse/steady-state operation, which calls for unprecedented robustness and reliability of all diagnostic systems (also requiring adequate redundancy). But DEMO will have higher levels of neutron and gamma fluxes,

  19. Fission, spallation or fusion-based neutron sources

    Indian Academy of Sciences (India)

    Kurt N Clausen

    2008-10-01

    In this paper the most promising technology for high power neutron sources is briefly discussed. The conclusion is that the route to high power neutron sources in the foreseeable future is spallation – short or long pulse or even CW – all of these sources will have areas in which they excel.

  20. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    2016-01-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  1. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  2. Comparison of the echolocation behavior in Rhinolophus ferrum-equinum and Chilonycteris rubiginosa

    NARCIS (Netherlands)

    Schnitzler, Hans-Ulrich

    1970-01-01

    The results of Novick (1958), Griffin (1962), Kay & Pickvance (1963), A. Pye (1966), Schnitzler (1967, 1968), Ajrapetjanz & Konstantinov (1967), and Konstantinov & Sokolov (1969) show that Rhinolophus ferrum-equinum Schreber, 1774 (RF) produces long pulses of constant frequency with a slight upward

  3. PPPL Laboratory Program Development Activities for fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report discusses the following topics: Advanced Tokamak Studies; Princeton Spherical Tokamak Experiment; Medium-Scale Long-Pulse Device Study; Collaborations Planning and Exploration; Divertor Simulator Studies; Gyrofluid Simulation; Feedback Kink Study; Stellarator Studies; High-Field Magnet Studies; Analysis of Helically Wound Solenoids; X-Ray Lithography with Tokamak Radiation; Magnetospheric Plasma Circulation; and Projection Lithography with X-Ray Laser.

  4. Demonstration of low-loss electron beam transport and mm-wave experiments of the fusion-FEM

    NARCIS (Netherlands)

    Urbanus, W. H.; Bongers, W. A.; van Dijk, G.; van der Geer, C. A. J.; de Kruif, R.; Manintveld, P.; Pluygers, J.; Poelman, A. J.; Schüller, F. C.; Smeets, P. H. M.; Sterk, A. B.; Verhoeven, A. G. A.; Valentini, M.; van der Wiel, M. J.

    1998-01-01

    In the Fusion-FEM electrostatic Free Electron Maser, an electron beam loss current of less than 0.2% is essential for long-pulse operation. At reduced beam current, 3 A instead of the nominal 12 A, we have demonstrated electron beam acceleration and transport through the undulator at current losses

  5. Study of deuterium retention on lithiated tungsten exposed to high-flux deuterium plasma using laser-induced breakdown spectroscopy

    NARCIS (Netherlands)

    Li, C.; Wu, X.; Zhang, C.; Ding, H.; De Temmerman, G.; van der Meiden, H. J.

    2014-01-01

    Tungsten is under consideration for use as a plasma-facing material in the divertor region of ITER. Lithiation can significantly improve plasma performance in long-pulse tokamaks like EAST. The investigation of lithiated tungsten is important for understanding the lithium conditioning effects for

  6. A new principle of cell sorting by using selective electroporation in a modified flow cytometer

    NARCIS (Netherlands)

    Bakker Schut, Tom C.; Grooth, de Bart G.; Greve, Jan

    1990-01-01

    When a strong electric field pulse of a few microseconds is applied to biological cells, small pores are formed in the cell membranes; this process is called electroporation. At high field strengths and/or long pulse durations the membranes will be damaged permanently. This eventually leads to cell

  7. CAMEA ESS

    DEFF Research Database (Denmark)

    Freeman, P.G.; Birk, J.O.; Marko, M.;

    2014-01-01

    The CAMEA ESS neutron spectrometer is designed to achieve a high detection efficiency in the horizontal scattering plane, and to maximize the use of the long pulse European Spallation Source. It is an indirect geometry time-of-flight spectrometer that uses crystal analysers to determine the final...

  8. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched Y

  9. Simulations of the Performance of the Fem Oscillator for Fusion at 130-250 Ghz

    NARCIS (Netherlands)

    Tulupov, A. V.; van der Wiel, M. J.; Urbanus, W. H.; Caplan, M.

    1994-01-01

    The performance of a 1 MW, long pulse, 130-250 GHz free-electron maser being designed in the FOM-Institute of Plasmaphysics for fusion applications has been simulated by a fully 3-D, AC and DC space charge included, non-wiggle averaged, particle-pusher code. In comparison with previous designs a new

  10. New developments in the McStas neutron instrument simulation package

    DEFF Research Database (Denmark)

    Willendrup, Peter Kjær; Bergbäck Knudsen, Erik; Klinkby, Esben Bryndt

    2014-01-01

    The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments...

  11. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.;

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  12. Development of high voltage power supply for the KSTAR 170 GHz ECH and CD system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J.H., E-mail: jhjeong@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Bae, Y.S.; Joung, M.; Kim, H.J.; Park, S.I.; Han, W.S.; Kim, J.S.; Yang, H.L.; Kwak, J.G. [National Fusion Research Institute, Daejeon (Korea, Republic of); Sakamoto, K.; Kajiwara, K.; Oda, Y.; Hayashi, K. [Japan Atomic Energy Agency, Naka (Japan)

    2013-06-15

    Highlights: • A 3.6 MW (−66 kV/55 A) gyrotron power supply system was developed for the 170 GHz ECH system in KSTAR. • The main power supply includes a total of 32 PSM based HV power supply modules. • The voltage regulation of individual HV power module and LV power module is 3 kV and 0.5 kV, respectively. • The gyrotron is protected by means of a fast solid-state switch (MOS-FET). • The HV switching system can turn off the 60 kV to the cathode within 3 μs in the event of gyrotron faults. -- Abstract: A 3.6 MW (66 kV/55 A) DC power supply system was developed for the 170 GHz EC H and CD system in KSTAR. The power supply system consists of a cathode power supply (CPS), an anode power supply (APS) and a body power supply (BPS). The cathode power supply is capable of supplying a maximum voltage of −66 kV and a current of 55 A to the cathode with respect to the collector using pulse step modulation (PSM). The high voltage switching system for the cathode is made by a fast MOS-FET solid-state switch which can turn off the high voltage to the cathode within 3 μs in the occurrence of gyrotron faults. The APS is a voltage divider system consisting of a fixed resistor and zener diode units with the capability of 60 kV stand-off voltage. The anode voltage with respect to the cathode is controlled in a range of 0–60 kV by turning the MOS-FET switches connected in parallel to each zener diode on and off. For high frequency current modulation of the gyrotron, the parallel discharge switch is introduced between the cathode and anode in order to clamp the charged voltage in the stray capacitance. The BPS is a DC power supply with the capability of 50 kV/160 mA. The nominal operation parameter of BPS was 23 kV and 10 mA, respectively, and the voltage output is regulated with a stability of 0.025% of the rated voltage. The series MOS-FET solid-state switch is used for on/off modulation in the body voltage sychronizing with anode voltage. The parallel discharge

  13. Compact sources for the generation of high-peak power wavelength-stabilized laser pulses in the picoseconds and nanoseconds ranges

    Science.gov (United States)

    Wenzel, H.; Klehr, A.; Schwertfeger, S.; Liero, A.; Hoffmann, Th.; Brox, O.; Thomas, M.; Erbert, G.; Tränkle, G.

    2012-03-01

    Diode lasers are ideally suited for the generation of optical pulses in the nanoseconds and picoseconds ranges by gainswitching, Q-switching or mode-locking. We have developed diode-laser based light sources where the pulses are spectrally stabilized and nearly-diffraction limited as required by many applications. Diffraction limited emission is achieved by a several microns wide ridge waveguide (RW), so that only the fundamental lateral mode should lase. Spectral stabilization is realized with a Bragg grating integrated into the semiconductor chip, resulting in distributed feedback (DFB) or distributed Bragg reflector (DBR) lasers. We obtained a peak power of 3.8W for 4ns long pulses using a gain-switched DFB laser and a peak power of more than 4W for 65ps long pulses using a three-section DBR laser. Higher peak powers of several tens of Watts can be reached by an amplification of the pulses with semiconductor optical amplifiers, which can be either monolithically or hybrid integrated with the master oscillators. We developed compact modules with a footprint of 4×5cm2 combining master oscillator, tapered power amplifier, beam-shaping optical elements and high-frequency electronics. In order to diminish the generation of amplified spontaneous emission between the pulses, the amplifier is modulated with short-pulses of high amplitude, too. Beyond the amplifier, we obtained a peak power of more than 10W for 4ns long pulses, a peak power of about 35W for 80ps long pulses and a peak power of 70W for 10ps long pulses at emission wavelengths around 1064nm.

  14. Design and Analysis of Steerable ECRH Launcher for SST-1 Tokamak

    Science.gov (United States)

    Mistry, Hardik; Shukla, B. K.

    2017-07-01

    In the tokamaks ECRH system is used for pre-ionization, start up, heating, current drive and suppression of NTMs (Neo Classical Tearing Modes). A Standard ECRH system consists of high power microwave source Gyrotron, circular corrugated waveguide based transmission line and launcher. The Focused ECH power is launched into plasma through launcher. The microwave beam emerges out from circular corrugated waveguide and propagates freely in air with finite divergence. So focusing and plane mirror combination is used to launch focused beam in plasma. Thus an ECRH launcher consists of metallic profiled and plane mirror, UHV compatible vacuum barrier window and a UHV gate valve. One 42 GHz gyrotron capable of delivering 500 kW of power for 500 ms and other 82 GHz gyrotron capable of delivering 200 kW of power for 1000s are used for SST-1 ECRH system. The launcher design consists of mirror design, design of supports and design of steering mechanism to provide suitable movements with minimum backless error. The whole assembly is UHV compatible. The launcher is capable of steering the beams by ±20° in both toroidal and poloidal directions. Mirrors are given motion by means of one rotary and one linear feedthrough. For 82 GHz launcher active cooling is provided, whereas for 42 GHz launcher no active cooling is provided. A detailed analysis is carried out for the mirrors of the high power launcher. The heat load for the 82 GHz launcher is 2 kW ( 1% absorption) and for 42 GHz launcher it is 5 kW. For 82 GHz launcher, the maximum steady state surface temperatures of focusing and reflecting mirrors are 315K and 323K and von-mises stresses are within 10 MPa. Similarly for 42 GHz launcher maximum temperatures observed during 500 ms pulse are 301K and 303K for focusing and reflecting mirrors respectively. This paper explains the mechanical and thermal design and analysis of the launcher for the ECRH system.

  15. Investigation of first mirror heating for the collective Thomson scattering diagnostic in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Bindslev, Henrik;

    2008-01-01

    Collective Thomson scattering (CTS) has the capabilities to measure phase space densities of fast ion populations in ITER resolved in configuration space, in velocity space, and in time. In the CTS system proposed for ITER, probing radiation at 60 GHz generated by two 1 MW gyrotrons is scattered...... modeling of a first mirror on the high field side indicates that the mirror curvature may warp due to heating. This may alter the beam quality, and therefore, thermal effects have to be accounted for during the design of the mirror. The modeling further demonstrates that thin mirrors are superior to thick...

  16. RF power generation

    CERN Document Server

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  17. STAX. An Axion-like Particle Search with Microwave Photons

    CERN Document Server

    Ferretti, J

    2016-01-01

    We discuss an improved detection scheme for a light-shining-through-wall (LSW) experiment for axion-like particle searches. We propose to use: gyrotrons or klystrons, which can provide extremely intense photon fluxes at frequencies around 30 GHz; transition-edge-sensors (TES) single photon detectors in this frequency domain, with efficiency $\\approx1$; high quality factor Fabry-Perot cavities in the microwave domain, both on the photon-axion conversion and photon regeneration sides. We compute that present laboratory exclusion limits on axion-like particles might be improved by at least four orders of magnitude for axion masses $\\lesssim 0.02$ meV.

  18. A preliminary study of the electron cyclotron resonance ion source for the RAON injector

    Science.gov (United States)

    Hong, I. S.; Kim, Y.; Choi, S. J.; Heo, J. I.; Jin, H. C.; Park, B. S.

    2016-09-01

    We have built and tested an electron cyclotron resonance (ECR) ion source for the Rare Isotope Accelerator of Newness (RAON) injector. Fully superconducting magnets were developed for the ECR ion source. First, an oxygen plasma was ignited, and a preliminary highly-charged oxygen beam was extracted. Next, a 100 μA beam current of oxygen 5+ was extracted when a 1 kW microwave power was injected using a 28 GHz gyrotron. Finally, an off-site test facility was proposed to test the components of the injector by using heavy-ion beams generated by the ECR ion source.

  19. Destabilization of fast particle stabilized sawteeth in ASDEX Upgrade with electron cyclotron current drive

    DEFF Research Database (Denmark)

    Igochine, V.; Chapman, I.T.; Bobkov, V.

    2011-01-01

    It is often observed that large sawteeth trigger the neoclassical tearing mode well below the usual threshold for this instability. At the same time, fast particles in the plasma core stabilize sawteeth and provide these large crashes. The paper presents results of first experiments in ASDEX...... Upgrade for destabilization of fast particle stabilized sawteeth with electron cyclotron current drive (ECCD). It is shown that moderate ECCD from a single gyrotron is able to destabilize the fast particle stabilized sawteeth. A reduction in sawtooth period by about 40% was achieved in first experiments...

  20. Alpha particle collective Thomson scattering in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  1. Noise Studies on Injected-Beam Crossed-Field Devices.

    Science.gov (United States)

    1980-11-01

    In the gyrotron, where l magnetron injection guns are used, noise under crossed-field conditions is a limiting factor in the performance of the gun...charge I affected the behavior of the beam. Two factors which seemed to give rise to these effects appeared to be in the noise generated near the cathode...circuit I bars, or 0.270". The essential electrical properties of the meander circuit, the delay ratio (C/ vph ) and coupling impedance at the level of the

  2. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  3. A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy

    CERN Document Server

    Sabchevski, Svilen; Ishiyama, Shintaro; Miyoshi, Norio; Tatsukawa, Toshiaki

    2012-01-01

    In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.

  4. G2DEM: a parallel two-dimensional electromagnetic PIC code for the study of electron-cyclotron instabilities of relativistic electron beams in cylindrical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jost, G.; Tran, T.M.; Appert, K. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Wuethrich, S. [CRAY Research, PATP/PSE, EPFL, Lausanne (Switzerland)

    1996-12-01

    A two-dimensional PIC code aimed at the investigation of electron-cyclotron beam instabilities in gyrotrons and their effects on the beam quality is presented. The code is based on recently developed techniques for handling charge conservation and open boundaries and uses an electromagnetic field which is decomposed in its transverse magnetic (TM) and electric (TE) components. The code has been implemented on the massively parallel computer CRAY T3D, and on the CRAY Y-MP. (author) figs., tabs., refs.

  5. Infrared and millimeter waves v.14 millimeter components and techniques, pt.V

    CERN Document Server

    Button, Kenneth J

    1985-01-01

    Infrared and Millimeter Waves, Volume 14: Millimeter Components and Techniques, Part V is concerned with millimeter-wave guided propagation and integrated circuits. In addition to millimeter-wave planar integrated circuits and subsystems, this book covers transducer configurations and integrated-circuit techniques, antenna arrays, optoelectronic devices, and tunable gyrotrons. Millimeter-wave gallium arsenide (GaAs) IMPATT diodes are also discussed. This monograph is comprised of six chapters and begins with a description of millimeter-wave integrated-circuit transducers, focusing on vario

  6. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission.

    Science.gov (United States)

    Pike, Kevin J; Kemp, Thomas F; Takahashi, Hiroki; Day, Robert; Howes, Andrew P; Kryukov, Eugeny V; MacDonald, James F; Collis, Alana E C; Bolton, David R; Wylde, Richard J; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M; Newton, Mark E; Dupree, Ray; Smith, Mark E

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.

  7. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    Science.gov (United States)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  8. High power microwave diagnostic for the fusion energy experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Goncalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments....... The ITER CTS diagnostic will inject a 1 MW 60 GHz gyrotron beam into the ITER plasma and observe the scattering off fluctuations in the plasma — to monitor the dynamics of the fast ions generated in the fusion reactions....

  9. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  10. Advanced ceramics sintering using high-power millimeter-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setsuhara, Y.; Kamai, M.; Kinoshita, S.; Abe, N.; Miyake, S. [Osaka Univ. (Japan). Welding Research Inst.; Saji, T. [Fujidempa Kogyo Co., Ltd., Ibaraki (Japan)

    1996-12-31

    The results of ceramics sintering experiments using high-power millimeter-wave radiation are reported. Sintering of silicon nitride with 5% Al{sub 2}O{sub 3} and 5% Y{sub 2}O{sub 3} was performed in a multi-mode applicator using a 10-kW 28-GHz gyrotron in CW operation. It was found that the silicon nitride samples sintered with 28 GHz radiation at 1,650 C for 30 min reached to as high as theoretical density (TD), while the conventionally sintered samples at 1700 C for 60 min resulted in the density as low as 90% TD. Focusing experiments of millimeter-wave radiation from the high-power pulsed 60-GHz gyrotron have been performed using a quasi-optical antenna system (two-dimensional ellipso-parabolic focusing antenna system) to demonstrate the feasibility of the power density of as high as 100 kW/cm{sup 2}. Typical heating characteristics using the focused beam were made clear for this system. It was found that the densification of yttria-stabilized zirconia (ZrO{sub 2}-8mol%Y{sub 2}O{sub 3}) samples to as high as 97% TD was obtained from the sintering with focused 60 GHz beam in pulse operation with a 10-ms pulse duration at a 0.5Hz repetition. The densification temperature for the zirconia could be lowered by 200 C than that expected conventionally.

  11. Development of Resonant Diplexers for high-power ECRH – Status, Applications, Plans

    Directory of Open Access Journals (Sweden)

    Kasparek W.

    2015-01-01

    Full Text Available The development of diplexers for ECRH has been pursued at a number of institutes because of their attractive variety of applications: Power combination, non-mechanical, electrically controlled switching (of combined beams between launchers with tens of kHz, and discrimination of low-power ECE signals from high-power ECRH is feasible. In a first part, this paper reports on plasma experiments with a ring resonator (Mk IIa at ASDEX Upgrade. Commissioning experiments on fast switching between two launchers for synchronous stabilization of neoclassical tearing modes, as well as in-line ECE measurements have been performed, and experimental issues and first results are discussed. A clear influence of the switching phase on the amplitude of the 3/2 NTM mode was measured, complete stabilization could, however, not be demonstrated yet mainly due to imperfect resonator control. Concepts for improved tracking of the diplexers to the gyrotron frequency are presented. In a second part, the design of diplexers with ring resonators matched to HE11 fields is briefly discussed; these devices can be connected to corrugated waveguides without any mode converters. A compact version (MQ IV is under investigation, which is compatible with the ITER ECRH system (170 GHz, 63.5 mm waveguide, vacuum tight casing, with the final goal of high-power tests at the 170 GHz gyrotron facility at JAEA in Naka, Japan. First low-power test results are presented.

  12. High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated waveguides

    Science.gov (United States)

    Bratman, V. L.; Denisov, G. G.; Samsonov, S. V.; Cross, A. W.; Phelps, A. D. R.; Xe, W.

    2007-02-01

    We review the studies of gyrotron-type microwave devices whose electrodynamic system has the form of an oversized metal waveguide with a helically corrugated internal surface. For certain parameters, such a corrugation changes radically the waveguide dispersion ensuring an almost constant group velocity of the eigenmode for a small (close to zero) longitudinal wave number in a wide frequency band. The use of “helical” waveguides along with electron optical systems which form near-axis electron beams makes it possible to create high-efficiency amplifiers based on gyro-traveling-wave tubes (gyro-TWTs) with a wide instantaneous frequency band of amplification and gyro-backward-wave oscillators (gyro-BWOs) with continuous wideband tuning of the oscillation frequency. The studied devices are superior to the well-studied microwave sources of this type (gyroklystrons and gyrotrons) in frequency band, by more than an order of magnitude, and are not inferior to them in efficiency even for a wide spread of electron velocities.

  13. Linear Analysis of a Cyclotron Autoresonance Maser (CARM) Operating in a Transverse Magnetic Mode

    Science.gov (United States)

    Yang, Na; Zhang, Shi-Chang

    2009-04-01

    In the fast-wave devices like gyrotron, gyro-peniotron and cyclotron autoresonance maser (CARM) that generate millimeter and sub-millimeter waves, the transverse dimensions of the resonator and the output cylindrical waveguide become small. In order to prevent loss of electrons and thermal loading of the rf structure, the electron beam must be kept relatively far from the walls. The latter requirement demands smaller transverse dimensions of the helical electron beam as well. In this paper linear formulation of a CARM operating in a general transverse-magnetic (TM) mode is derived, and a detailed analysis of the influences of the parameters is presented for the TM1,1 mode CARM. It is found that, compared to the TE1,1 mode which is often employed in gyrotron traveling wave tube (gyro-TWT) and CARM experiments, the TM1,1 mode has a greater eigen value and consequently leads to a greater waveguide radius for a given cutoff wave number, and also, allows the electron beam to be settled close to the waveguide axis to have a small transverse dimension. Results show that a TM-mode CARM can reach high power and ultrahigh gain, just as a TE-mode CARM or a TE-mode gyro-TWT does.

  14. First experiments with gasdynamic ion source in CW mode

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod 603950 (Russian Federation); Izotov, I.; Golubev, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., Nizhny Novgorod 603950 (Russian Federation); Tarvainen, O. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    A new type of ECR ion source—a gasdynamic ECR ion source—has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600–700 emA/cm{sup 2} in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation.

  15. Final Report Advanced Quasioptical Launcher System

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  16. New developments in RF power and polarization measurements on the ECH System on DIII-D

    Science.gov (United States)

    Cengher, M.; Lohr, J.; Gorelov, Y.; Moeller, C. P.; Ponce, D.; Torrezan, A.

    2016-10-01

    The rf power injected at the tokamak by the electron cyclotron heating (ECH) system is measured and calibrated on a shot to shot basis for the six 110 GHz, 1 MW class gyrotrons. A new technique for ECH power measurement at the tokamak using a 4-port rf monitor was tested. Polarization scans for each system show H-plane and E-plane rf waveforms can be combined to provide a reliable calibrated power signal at the closest access point near the tokamak. Previous attempts to calibrate the power at this end were limited by the pickup of only one polarization angle at the last miter bend. Calorimetric measurements in the relevant gyrotron cooling circuits in conjunction with the 4-port RF monitors with orthomode transducers can be used to calibrate the rf power. Other alternative approaches showing proportionality with the input power like the inline power monitor and in-vessel measurements are discussed. Future plans include mode content measurements at the tokamak end of the transmission line using the 4-port RF monitors and mode sensitive directional couplers. Work supported by the US DOE under DE-FC02-04ER54698.

  17. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    Science.gov (United States)

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Heating and confinement studies with ECRH in the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pochelon, A.; Goodman, T.P.; Henderson, M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)] [and others

    1997-06-01

    ECRH experiments have recently started on the TCV tokamak with the use of 1 MW, X2 heating. The ECW system installations is continuing and will eventually provide 3 MW X2 and 1.5 MW X3. The study of the effects of different heating localizations is possible using 1) the mobile mirrors of the launcher, 2) the large vertical room for displacing the plasma in the TCV vessel and 3) the radial displacement of the cyclotron resonance with magnetic field. Initial studies of heating and confinement have concentrated mostly on close-to-circular plasmas to allow the largest variation of beam-plasma geometry and to allow comparison with earlier results on other machines - a necessary first step before investigating more strongly shaped plasmas. For TCV parameters, the nominal field of B = 1.44 T and the frequency of 82.7 GHz of X2 gyrotrons places the resonance position on the high-field side (HFS) of the magnetic axis; while the frequency of 118 GHz of X3 gyrotrons results in a slightly low-field side (LFS) resonance position. (author) 6 figs., 4 refs.

  19. Development of a high power wideband polarizer for electron cyclotron current drive system in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio, E-mail: saigusa@mx.ibaraki.ac.jp [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Oyama, Gaku; Matsubara, Fumiaki; Takii, Keita; Sai, Takuma [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Kobayashi, Takayuki; Moriyama, Shinichi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2015-10-15

    Highlights: • We developed a new wideband polarizer for JT-60SA ECCD system. • The wideband polarizer is optimized for dual frequency gyrotrons (110 and 138 GHz) in JT-60SA. • The wideband polarization properties were verified at cold tests. • The preliminary high power tests have been carried out at 0.25 MW, 3 s at 110 GHz. - Abstract: A wideband polarizer consisting of a polarization twister and a circular polarizer has been developed for an electron cyclotron current driving system in JT-60SA, where the output frequencies of a dual frequency gyrotron for JT-60SA are 110 and 138 GHz. The groove depths are optimized for the dual frequencies by numerical simulations using a FDTD method and cold test results. The polarization properties of a mock-up polarizer are measured at the dual frequencies in cold tests. The cold test results suggest that all practical polarizations for ECCD experiments can be achieved at the dual frequencies. The prototype polarization twister has been tested up to 0.25 MW during 3 s at the frequency of 110 GHz.

  20. User requirements and conceptual design of the ITER Electron Cyclotron Control System

    Energy Technology Data Exchange (ETDEWEB)

    Carannante, Giuseppe, E-mail: Giuseppe.Carannante@F4E.europa.eu [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Cavinato, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Gandini, Franco [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Granucci, Gustavo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy); Henderson, Mark; Purohit, Dharmesh [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, Gabriella; Sartori, Filippo [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Sozzi, Carlo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy)

    2015-10-15

    The ITER Electron Cyclotron (EC) plant is a complex system, essential for plasma operation. The system is being designed to supply up to 20 MW of power at 170 GHz; it consists of 24 RF sources (or Gyrotrons) connected by switchable transmission lines to four upper and one equatorial launcher. The complexity of the EC plant requires a Plant Controller, which provides the functional and operational interface with CODAC and the Plasma Control System and coordinates the various Subsystem Control Units, i.e. the local controllers of power supplies, Gyrotrons, transmission lines and launchers. A conceptual design of the Electron Cyclotron Control System (ECCS) was developed, starting from the collection of the user requirements, which have then been organized as a set of operational scenarios exploiting the EC system. The design consists in a thorough functional analysis, including also protection functions, and in the development of a conceptual I&C architecture. The main aim of the work was to identify the physics requirements and to translate them into control system requirements, in order to define the interfaces within the components of the ECCS. The definition of these interfaces is urgent because some of the subsystems are already in an advanced design phase. The present paper describes both the methodology used and the resulting design.

  1. Status of Europe’s contribution to the ITER EC system

    Directory of Open Access Journals (Sweden)

    Albajar F.

    2015-01-01

    Full Text Available The electron cyclotron (EC system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO. F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS, 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe’s contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems.

  2. ECRH on ASDEX Upgrade - System Status, Feed-Back Control, Plasma Physics Results -

    Directory of Open Access Journals (Sweden)

    Flamm J.

    2012-09-01

    Full Text Available The ASDEX Upgrade (AUG ECRH system now delivers a total of 3.9 MW to the plasma at 140 GHz. Three new units are capable of 2-frequency operation and may heat the plasma alternatively with 2.1 MW at 105 GHz. The system is routinely used with X2, O2, and X3 schemes. For Bt = 3.2 T also an ITER-like O1-scheme can be run using 105 GHz. The new launchers are capable of fast poloidal movements necessary for real-time control of the location of power deposition. Here real-time control of NTMs is summarized, which requires a fast analysis of massive data streams (ECE and Mirnov correlation and extensive calculations (equilibria, ray-tracing. These were implemented at AUG using a modular concept of standardized real-time diagnostics. The new realtime capabilities have also been used during O2 heating to keep the first reflection of the non-absorbed beam fraction on the holographic reflector tile which ensures a well defined second pass of the beam through the central plasma. Sensors for the beam position are fast thermocouples at the edge of the reflector tile. The enhanced ECRH power was used for several physics studies related to the unique feature of pure electron heating without fueling and without momentum input. As an example the effect of the variation of the heating mix in moderately heated H-modes is demonstrated using the three available heating systems, i.e. ECRH, ICRH and NBI. Keeping the total input power constant, strong effects are seen on the rotation, but none on the pedestal parameters. Also global quantities as the stored energy are hardly modified. Still it is found that the central ion temperature drops as the ECRH fraction exceeds a certain threshold.

  3. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  4. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X. [University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  5. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Science.gov (United States)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  6. Peculiar Velocity Constraints from Five-band SZ Effect Measurements toward RX J1347.5-1145 with MUSIC and Bolocam from the CSO

    Science.gov (United States)

    Sayers, Jack; Zemcov, Michael; Glenn, Jason; Golwala, Sunil R.; Maloney, Philip R.; Siegel, Seth R.; Wheeler, Jordan; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Hollister, Matthew I.; Lam, Albert; LeDuc, Henry G.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David A.; Mroczkowski, Tony K.; Noroozian, Omid; Nguyen, Hien T.; Radford, Simon J. E.; Schlaerth, James A.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2016-04-01

    We present Sunyaev-Zel’dovich (SZ) effect measurements from wide-field images toward the galaxy cluster RX J1347.5-1145 obtained from the Caltech Submillimeter Observatory with the Multiwavelength Submillimeter Inductance Camera at 147, 213, 281, and 337 GHz and with Bolocam at 140 GHz. As part of our analysis, we have used higher frequency data from Herschel-SPIRE and previously published lower frequency radio data to subtract the signal from the brightest dusty star-forming galaxies behind RX J1347.5-1145 and from the AGN in RX J1347.5-1145’s BCG. Using these five-band SZ effect images, combined with X-ray spectroscopic measurements of the temperature of the intra-cluster medium (ICM) from Chandra, we constrain the ICM optical depth to be {τ }{{e}}={7.33}-0.97+0.96× {10}-3 and the ICM line of sight peculiar velocity to be {v}{pec}=-{1040}-840+870 km s-1. The errors for both quantities are limited by measurement noise rather than calibration uncertainties or astrophysical contamination, and significant improvements are possible with deeper observations. Our best-fit velocity is in good agreement with one previously published SZ effect analysis and in mild tension with the other, although some or all of that tension may be because that measurement samples a much smaller cluster volume. Furthermore, our best-fit optical depth implies a gas mass slightly larger than the Chandra-derived value, implying the cluster is elongated along the line of sight.

  7. DIII-D Advanced Tokamak Research Overview

    Energy Technology Data Exchange (ETDEWEB)

    V.S. Chan; C.M. Greenfield; L.L. Lao; T.C. Luce; C.C. Petty; G.M. Staebler

    1999-12-01

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously {beta}{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.

  8. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki-ken 319-0913 (Japan); Yamano, Y. [Saitama University, Saitama, Saitama-ken 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-02-15

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  9. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    Science.gov (United States)

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  10. The Overlapped Triple Circle Pulse Technique with Nd:YAG Laser for Refractory Hand Warts.

    Science.gov (United States)

    Bingol, Ugur Anil; Cömert, Asuman; Cinar, Can

    2015-06-01

    Inadvertent superficial treatment of hand warts causes recurrence, whereas aggressive treatment can lead to tissue defects resulting in hand dysfunction. This study aimed to determine the effectiveness of a novel laser treatment modality for recalcitrant hand warts. The study included 51 patients who were treated for 146 recalcitrant hand warts using 1064 nm long-pulsed Nd:YAG laser between 2011 and 2014. The laser treatment method is novel because each treated wart was aligned at the intersection point of the circles of 3 laser pulses per session. Among the 146 hand warts, 88.35% were successfully treated with one session and 100% of those that required a second treatment session were treated successfully, based on the 12 month follow-up examination. Long-pulsed Nd:YAG laser treatment was observed to be a safe, rapid, and effective method for treating recalcitrant hand warts.

  11. WEST Physics Basis

    Science.gov (United States)

    Bourdelle, C.; Artaud, J. F.; Basiuk, V.; Bécoulet, M.; Brémond, S.; Bucalossi, J.; Bufferand, H.; Ciraolo, G.; Colas, L.; Corre, Y.; Courtois, X.; Decker, J.; Delpech, L.; Devynck, P.; Dif-Pradalier, G.; Doerner, R. P.; Douai, D.; Dumont, R.; Ekedahl, A.; Fedorczak, N.; Fenzi, C.; Firdaouss, M.; Garcia, J.; Ghendrih, P.; Gil, C.; Giruzzi, G.; Goniche, M.; Grisolia, C.; Grosman, A.; Guilhem, D.; Guirlet, R.; Gunn, J.; Hennequin, P.; Hillairet, J.; Hoang, T.; Imbeaux, F.; Ivanova-Stanik, I.; Joffrin, E.; Kallenbach, A.; Linke, J.; Loarer, T.; Lotte, P.; Maget, P.; Marandet, Y.; Mayoral, M. L.; Meyer, O.; Missirlian, M.; Mollard, P.; Monier-Garbet, P.; Moreau, P.; Nardon, E.; Pégourié, B.; Peysson, Y.; Sabot, R.; Saint-Laurent, F.; Schneider, M.; Travère, J. M.; Tsitrone, E.; Vartanian, S.; Vermare, L.; Yoshida, M.; Zagorski, R.; Contributors, JET

    2015-06-01

    With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 907-12), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 075020) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L-H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.

  12. Dual sub-picosecond and sub-nanosecond laser system

    Institute of Scientific and Technical Information of China (English)

    Xinglong Xie (谢兴龙); Guanlong Huang (黄关龙); Yifei Zhuang (庄亦飞); Aimei Han (韩爱妹); Zunqi Lin (林尊琪); Fengqiao Liu (刘凤翘); Jingxin Yang (杨镜新); Xin Yang (杨鑫); Meirong Li (李美荣); Zhiling Xue (薛之玲); Qi Gao (高奇); Fuyi Guan (管富义); Weiqing Zhang (张伟清)

    2003-01-01

    A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 105: 1, filling factor ~>52.7%.Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.

  13. ZnO nanorods prepared via ablation of Zn with millisecond laser in liquid media.

    Science.gov (United States)

    Honda, Mitsuhiro; Goto, Taku; Owashi, Tatsuki; Rozhin, Alex G; Yamaguchi, Shigeru; Ito, Tsuyohito; Kulinich, Sergei A

    2016-09-14

    ZnO nanomaterials with controlled size, shape and surface chemistry are required for applications in diverse areas, such as optoelectronics, photocatalysis, biomedicine and so on. Here, we report on ZnO nanostructures with rod-like and spherical shapes prepared via laser ablation in liquid using a laser with millisecond-long pulses. By changing laser parameters (such as pulse width and peak power), the size or aspect ratio of such nanostructures could be tuned. The surface chemistry and defects of the products were also strongly affected by applied laser conditions. The preparation of different structures is explained by the intense heating of liquid media caused by millisecond-long pulses and secondary irradiation of already-formed nanostructures.

  14. The incidence of side effects after laser hair removal

    Science.gov (United States)

    Lanigan, Sean W.

    2004-09-01

    Despite the widespread use of lasers for hair removal there is little data published on the incidence of side effects from this treatment. We aimed to generate data on a large number of patients receiving laser hair removal to obtain an accurate assessment of the incidence and type of side effects resulting from treatment. A multicentre prospective study of patients attending for laser hair removal was conducted to determine incidence of side effects in relation to skin type and laser(s) used. Laser hair removal is associated with a low incidence of side effects which are self-limiting in the majority of cases. Highest incidence of side effects was seen in darker skinned patients treated with the long pulsed ruby laser. Laser hair removal is inherently safe. For darker Fitzpatrick skin types the long pulsed Nd:YAG laser is preferred to the ruby laser.

  15. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    and chromophore. Longer wavelengths and cooling are safer for patients with darker skin types. Hair removal with lasers and IPL sources are generally safe treatment procedures when performed by properly educated operators. However, safety issues must be addressed since burns and adverse events do occur. New...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair...... systems. Evidence has been found for long-term hair removal efficacy beyond 6 months after repetitive treatments with alexandrite, diode, and long-pulse Nd:YAG lasers, whereas the current long-term evidence is sparse for IPL devices. Treatment parameters must be adjusted to patient skin type...

  16. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    and chromophore. Longer wavelengths and cooling are safer for patients with darker skin types. Hair removal with lasers and IPL sources are generally safe treatment procedures when performed by properly educated operators. However, safety issues must be addressed since burns and adverse events do occur. New...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair...... systems. Evidence has been found for long-term hair removal efficacy beyond 6 months after repetitive treatments with alexandrite, diode, and long-pulse Nd:YAG lasers, whereas the current long-term evidence is sparse for IPL devices. Treatment parameters must be adjusted to patient skin type...

  17. The use of lasers and intense pulsed light sources for the treatment of pigmentary lesions.

    Science.gov (United States)

    Chan, H H L; Kono, T

    2004-10-01

    Lasers and intense pulsed light sources are frequently used for the treatment of pigmented lesions, and the appropriate selection of devices for different lesions is vital to achieving satisfactory clinical outcomes. In dark-skinned patients, the risk of post-inflammatory hyperpigmentation is of particular importance. In general, long-pulse laser and intense pulsed light sources can be effective with a low risk of post-inflammatory hyperpigmentation (PIH) when used for the treatment of lentigines. However, for dermal pigmentation and tattoo, Q-switched lasers are effective, with a lower risk of complications. In the removal of melanocytic nevi, a combined approach with a long-pulse pigmented laser and a Q-switched laser is particularly applicable.

  18. Ion source choices - an h- source for the high intensity neutrino source

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, Douglas P.; /Fermilab; Welton, Robert F.; /SNS Project, Oak Ridge; Stockli, Martin P.; Peters, Jens; /DESY; Alessi, James; /Brookhaven

    2006-08-01

    The High Intensity Neutrino Source (HINS) program at Fermilab (formerly the Proton Driver) aims to develop a multi-mission linear accelerator (LINAC) capable of accelerate H{sup -} ions to 8 GeV. This paper touches on the ion source requirements for the HINS and discusses long pulse length testing of three ion sources which appear to have the capability of meeting these requirements.

  19. Phase dependent interference effects on atomic excitation

    CERN Document Server

    Jha, Pankaj K; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Scully, Marlan O

    2011-01-01

    We present an experimental and theoretical study of phase-dependent interference effects in multi-photon excitation under bichromatic radio-frequency (rf) field. Using an intense rf pulse, we study the interference between the three-photon and one-photon transition between the Zeeman sub-levels of the ground state of $^{87}$Rb that allows us to determine the carrier-envelope phase of the fields even for long pulses.

  20. Temperature of the Limiter Surface Measured by IR Camera in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    SHI Bo; LIN Hui; HUANG Juan; LUO Nanchang; GONG Xianzu; ZHANG Xiaodong; LUO Guangnan; YANG Zhongshi; LI Qiang

    2008-01-01

    Temperature measurement by IR (infrared) camera was performed on HT-7 tokamak, particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device.

  1. Extremely long hard bursts observed by Konus-Wind

    CERN Document Server

    Pal'shin, V; Frederiks, D; Golenetskii, S; Il'Inskii, V; Mazets, E; Yamaoka, K; Ohno, M; Hurley, K; Sakamoto, T; Oleynik, P; Ulanov, M; Mitrofanov, I G; Golovin, D; Litvak, M L; Sanin, A B; Boynton, W; Fellows, C; Harshman, K; Shinohara, C; Starr, R; 10.1063/1.2943422

    2013-01-01

    We report the observations of the prompt emission of the extremely long hard burst, GRB 060814B, discovered by Konus-Wind and localized by the IPN. The observations reveal a smooth, hard, ~40-min long pulse followed by weaker emission seen several hours after the burst onset. We also present the Konus-Wind data on similar burst, GRB 971208, localized by BATSE/IPN. And finally we discuss the different possible origins of these unusual events.

  2. High RF power test of a lower hybrid module mock-up in carbon fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Bibet, P.; Brossaud, J.; Cano, V.; Froissard, P.; Kazarian, F.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Maebara, S.; Kiyono, K.; Seki, M.; Suganuma, K.; Ikeda, Y.; Imai, T. [Japan Atomic Energy Research Inst., Tokyo (Japan). Dept. of Fusion Facility

    1999-02-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns. During these tests, the module temperaturewas increasing from 100-200 deg. C to 400-500 deg. C. It was also checked that high power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H{sub 2} at a pressure of 5 x 10{sup -2} Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8% to 1.3%. It is concluded that the outgassing rate of Cu-plated CFC is about 6 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300 deg. C. No significant increase of the global outgassing of the CFC module was measured after hydrogen pre-filling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm{sup 2}). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (authors)

  3. High RF power test of a CFC antenna module for lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1998-07-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10{sup -2} Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  4. Alexandrite Laser for the Treatment of Resistant and Hypertrophic Port Wine Stains: A Clinical, Histological and Histochemical Study.

    Science.gov (United States)

    Grillo, E; González-Muñoz, P; Boixeda, P; Cuevas, A; Vañó, S; Jaén, P

    2016-09-01

    Port wine stains (PWSs) are commonly treated by the pulsed dye laser. However, treatment of hypertrophic or resistant PWSs is a major therapeutic challenge. The long-pulsed Alexandrite laser could be a safe and effective treatment for resistant PWSs, due to an increase depth of penetration of 50-75% over PDL. The aim of this study was to assess the efficacy and safety of a long-pulsed Alexandrite laser in patients with hypertrophic, dark and/or resistant PWSs. Pink pale resistant PWS were excluded from the study. Twenty-one patients (age 20-75 years), phototypes I-IV on the Fitzpatrick scale, with PDL dark resistant PWSs were treated with long-pulsed Alexandrite laser. We excluded high phototypes and PDL pink resistant PWSs. All patients were treated with 3 laser sessions at settings of 3-ms pulse duration, 10-mm spot, 35-55J/cm(2), with cooling (Dynamic Cooling Device 50ms with delay 30ms). Laser sessions were repeated approximately every 2 months. Three dermatologists evaluated treatment effectiveness by means of photographs of the patients before and after laser treatment (scale from 0 to 4). Adverse events were registered. Patient satisfaction was also assessed (scale from 0 to 10). Mean global improvement was rated as 2.28. Long-lasting side effects included minimal scarring after blistering in 1 patient. Mean patient satisfaction was 8.5. Our study concludes that long-pulsed Alexandrite laser was effective for treatment of resistant PWSs, although the therapeutical window is narrow with this treatment. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. A Theoretical Strategy to Generate an Isolated 80-Attosecond Pulse

    Institute of Scientific and Technical Information of China (English)

    GUO Fu-Ming; YANG Yu-Jun; JIN Ming-Xing; DING Da-Jun; ZHU Qi-Ren

    2009-01-01

    Using a linearly polarized, phase-stabilized 2.66-femtcsecond driving pulse of 400 nm central wavelength orthogonally combined with another linearly polarized long pulse of 800nm central wavelength irradiating jointly on the helium atom, we demonstrate theoretically the generation of a clean isolated 80-attosecond pulse in the spectral region of 93-155 electron volts in a two-dimensional model.

  6. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  7. Ionization-induced asymmetric self-phase modulation and universal modulational instability in gas-filled hollow-core photonic crystal fibers

    CERN Document Server

    Saleh, Mohammed F; Travers, John C; Russell, Philip St J; Biancalana, Fabio

    2012-01-01

    We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-core photonic crystal fiber filled with a Raman-inactive gas. Due to photoionization, previously unknown types of asymmetric self-phase modulation and `universal' modulational instabilities existing in both normal and anomalous dispersion regions appear. We also show that it is possible to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths.

  8. Fast electron dynamics in lower hybrid current drive experiment on HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    Shi Yue-Jiang; Kuang Gang-Li; Li Jian-Gang; HT-7 Team; Wan Bao-Nian; Chen Zhong-Yong; Hu Li-Qun; Lin Shi-Yao; Ruan Huai-Lin; Qian Jin-Ping; Zhen Xiang-Jun; Ding Bo-Jiang

    2005-01-01

    The dynamic behaviour of fast electron in lower hybrid current drive (LHCD) experiments is a crucial issue in the sense of enhancing plasma performance. A new hard x-ray diagnostic system on HT-7 allows the investigation of the lower hybrid wave dynamics. The behaviour of fast electron is studied in several kinds of LHCD experiments, including long pulse discharges, high performance discharges and counter-LHCD experiments.

  9. Medical Management of Cutaneous Sulfur Mustard Injuries

    Science.gov (United States)

    2009-01-01

    mild iron deficiency , common in weanling igs, which caused no clinical effects. The leukogram revealed that 1 animals had a mild monocytosis, and in half... powered dual ode long pulse Er:YAG laser, offers independent control of both depth of coagula- ion (to control blood loss) and depth of ablation (for...not clinically significant. Eight pigs displayed a mild anemia (hematocrit, HCT, of less han 30%) that did not change when measured after exposure. One

  10. Commissioning the DARHT-II accelerator

    OpenAIRE

    Ekdahl, Carl

    2017-01-01

    The 74-cell DARHT-II long-pulse linear induction accelerator (LIA) was commissioned in its final configuration in 2007-2008. The final accelerated beam parameters were 2 kA, and greater than 17 MeV in a pulse flat to better than +/- 1% for more than 1.6 micro-s. This report details the tuning of the LIA, diagnostics used, and measurements of the beam parameters.

  11. High Power Lasing in the IR Upgrade FEL at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Vincent Benson; Kevin Beard; Chris Behre; George Herman Biallas; James Boyce; David Douglas; Fred Dylla; Richard Evans; Al Grippo; Joe Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; Lia Merminga; George Neil; Joe Preble; Michelle D. Shinn; Tim Siggins; Richard Walker; Gwyn Williams; Byung Yunn; Shukui Zhang

    2004-08-01

    We report on progress in commissioning the IR Upgrade facility at Jefferson Lab. Operation at high power has been demonstrated at 5.7 microns with over 8.5 kW of continuous power output, 10 kW for 1 second long pulses, and CW recirculated electron beam power of over 1.1 MW. We report on the features and limitations of the present design and report on the path to getting even higher powers.

  12. Near-infrared/optical identification of five low-luminosity X-ray pulsators

    NARCIS (Netherlands)

    Kaur, R.; Wijnands, R.; Paul, B.; Patruno, A.; Degenaar, N.

    2010-01-01

    We present the identification of the most likely near-infrared (NIR)/optical counterparts of five low-luminosity X-ray pulsators (AX J1700.1−4157, AX J1740.1−2847, AX J1749.2−2725, AX J1820.5−1434 and AX J1832.3−0840) which have long pulse periods (>150 s). The X-ray properties of these systems sugg

  13. Development of the C{sup 6+} laser ablation ion source for the KEK digital accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Munemoto, Naoya, E-mail: munemoto.n.ad@m.titech.ac.jp [Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503 (Japan); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takayama, Ken [Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503 (Japan); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Hayama, Miura, Kanagawa 240-8550 (Japan); Takano, Susumu [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kumaki, Masahumi [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-0072 (Japan)

    2014-02-15

    A laser ion source that provides a fully ionized carbon ion beam is under joint development at the High Energy Accelerator Research Organization and Brookhaven National Laboratory. Long-pulse (6 ns) and short-pulse (500 ps) laser systems were tested by using them to irradiate a graphite target. Notable differences between the systems were observed in these experiments. Preliminary experimental results, such as the charge-state spectrum, beam intensity, and stability, are discussed.

  14. Diagnostic ultrasound induced inertial cavitation to non-invasively restore coronary and microvascular flow in acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Feng Xie

    Full Text Available Ultrasound induced cavitation has been explored as a method of dissolving intravascular and microvascular thrombi in acute myocardial infarction. The purpose of this study was to determine the type of cavitation required for success, and whether longer pulse duration therapeutic impulses (sustaining the duration of cavitation could restore both microvascular and epicardial flow with this technique. Accordingly, in 36 hyperlipidemic atherosclerotic pigs, thrombotic occlusions were induced in the mid-left anterior descending artery. Pigs were then randomized to either a ½ dose tissue plasminogen activator (0.5 mg/kg alone; or same dose plasminogen activator and an intravenous microbubble infusion with either b guided high mechanical index short pulse (2.0 MI; 5 usec therapeutic ultrasound impulses; or c guided 1.0 mechanical index long pulse (20 usec impulses. Passive cavitation detectors indicated the high mechanical index impulses (both long and short pulse duration induced inertial cavitation within the microvasculature. Epicardial recanalization rates following randomized treatments were highest in pigs treated with the long pulse duration therapeutic impulses (83% versus 59% for short pulse, and 49% for tissue plasminogen activator alone; p<0.05. Even without epicardial recanalization, however, early microvascular recovery occurred with both short and long pulse therapeutic impulses (p<0.005 compared to tissue plasminogen activator alone, and wall thickening improved within the risk area only in pigs treated with ultrasound and microbubbles. We conclude that although short pulse duration guided therapeutic impulses from a diagnostic transducer transiently improve microvascular flow, long pulse duration therapeutic impulses produce sustained epicardial and microvascular re-flow in acute myocardial infarction.

  15. The high-power X-band planetary radar at Goldstone - Design, development, and early results

    Science.gov (United States)

    Hartop, R.; Bathker, D. A.

    1976-01-01

    Selected critical microwave components for a 400-kW very-long-pulse (several hours) X-band radar system are discussed from theoretical and practical viewpoints. Included are the special-sized waveguide and flanges, hybrid power combiner, couplers, switches, polarizer, rotary joints, feedhorn, and radome. The system is installed on the National Aeronautics and Space Administration/Jet Propulsion Laboratory 64-m-diam reflector antenna at Goldstone, CA.

  16. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  17. Feedback control of plasma density and heating power for steady state operation in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi

    2015-12-15

    Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.

  18. Use of lasers for the management of refractory cases of hidradenitis suppurativa and pilonidal sinus

    Directory of Open Access Journals (Sweden)

    Vivek Jain

    2012-01-01

    Full Text Available Background: Hidradinitis suppurativa (HS and pilonidal sinus (PNS are chronic inflamatory skin diseases, often refractory to treatment and search for a new treatment is on. We tried deroofing with the help of carbon dioxide laser in patients of HS and PNS, however there was recurrence. Aim: To evaluate a technique combining the use of CO 2 laser and long pulse 1064 nm Neodymium-doped Yttrium Aluminium Garnet (Nd:YAG laser for the treatment of HS and PNS. Materials and Methods: In 4 patients with HS and 5 patients with PNS, we performed procedure in two steps: first destroying the hair follicles with long pulse Nd yag 1064 laserfollowed by deroofing with carbon di oxide laser. Follow up was done upto 3 years. Results: All patients with HS were females in the age group of 30-40 years. In PNS, 2 male patients were of age less than 20, two male patients of age more than 20 and one females of age less than 20. None of the HS or PNS patients showed recurrence. Conclusion: The deroofing with CO 2 laser along with hair follicle removal with long pulse Nd:YAG laser is an effective minimally invasive tissue saving surgical intervention for the treatment of refractory HS and PNS lesions.

  19. Progress of the ELISE test facility: towards one hour pulses in hydrogen

    Science.gov (United States)

    Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team

    2016-10-01

    In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.

  20. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    Directory of Open Access Journals (Sweden)

    Shimozuma T.

    2015-01-01

    Full Text Available In a high power Electron Cyclotron Resonance Heating (ECRH system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.