WorldWideScience

Sample records for 140-ghz 1-kw confocal

  1. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  2. 140 GHz gyrotron development program. Quarterly report No. 4, January-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Felch, K.L.; Bier, R.E.; Craig, L.J.; Fox, L.J.; Hu, G.; Huey, H.E.; Ives, R.L.; Jory, H.R.; Lopez, N.C.; Reysner, P.I.

    1986-01-01

    The objective of this program is to develop a gyrotron oscillator capable of producing 100 kW CW at 140 GHz. Further analysis of the electron guns, interaction cavity, and beam tunnel designs for the first two experimental tubes, Experimental Tube 1 and preprototype Tube 1, is presented. A window deflection tester has been built and initial deflection test results are given. The first 140 GHz gyrotron magnet has successfully passed the major points in the acceptance test. The detailed results of the magnet acceptance test are discussed. Progress concerning the fabrication of 149 GHz gyrotron components, diagnostics, and protective devices, as well as the status of Experimental Tube 1, are summarized.

  3. On the origin of 140 GHz emission from the 4 July 2012 solar flare

    CERN Document Server

    Tsap, Yuriy T; Morgachev, Alexander S; Motorina, Galina G; Kontar, Eduard P; Nagnibeda, Valery G; Strekalova, Polina V

    2016-01-01

    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140~GHz as well as Kislovodsk and Mets\\"ahovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5~MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near $10$~GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1~MK.

  4. On the origin of 140 GHz emission from the 4 July 2012 solar flare

    Science.gov (United States)

    Tsap, Yuriy T.; Smirnova, Victoria V.; Morgachev, Alexander S.; Motorina, Galina G.; Kontar, Eduard P.; Nagnibeda, Valery G.; Strekalova, Polina V.

    2016-04-01

    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140 GHz as well as Kislovodsk and Metsähovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5 MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near 10 GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1 MK.

  5. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    Science.gov (United States)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  6. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.

    Science.gov (United States)

    Smith, Albert A; Corzilius, Björn; Bryant, Jeffrey A; DeRocher, Ronald; Woskov, Paul P; Temkin, Richard J; Griffin, Robert G

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H, (13)C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S=1/2 electron spins, 100 kHz on (1)H, and 50 kHz on (13)C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (≥3 T).

  7. Molecular attenuation and phase dispersion between 40 and 140-GHz for path models from different altitudes

    Science.gov (United States)

    Liebe, H. J.; Welch, W. M.

    1973-01-01

    Radio wave propagation in the 40 to 140 GHz band through the first hundred kilometers of the atmosphere is strongly influenced by the microwave spectrum of oxygen (O2-MS). A unified treatment of molecular attenuation and phase dispersion is formulated. Results of molecular physics are translated into frequency, temperature, pressure, and magnetic field dependencies of a complex refractive index. The intensity distribution of the O2-MS undergoes several changes with increasing altitude. The influence of water vapor is discussed. Examples of computer plots are given as a function of altitude for homogeneous, zenith, and tangential path geometries. Molecular resonances of minor atmospheric gases are discussed briefly.

  8. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    Directory of Open Access Journals (Sweden)

    Lechte C.

    2017-01-01

    Full Text Available For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  9. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    Science.gov (United States)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  10. Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X

    Science.gov (United States)

    Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.

    2003-02-01

    Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to

  11. Performance evaluation of 1 kw PEFC

    Energy Technology Data Exchange (ETDEWEB)

    Komaki, Hideaki [Ishikawajima-Harima Heavy Industries Co., Ltd. Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Minato-ky, Tokyo (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a PEFC Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns the effects brought on PEFC operating performance by conditions particular to shipboard operation. The performance characteristics were examined through tests performed on a 1 kw stack and on a single cell (Manufactured by Fuji Electric Co., Ltd.). The tests covered the items (1) to (4) cited in the headings of the sections that follow. Specifications of the stack and single cell are as given.

  12. THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV-ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, J.; Mroczkowski, T.; Czakon, N. G.; Golwala, S. R.; Downes, T. P.; Muchovej, S. J. C.; Siegel, S. [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Mantz, A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ameglio, S.; Pierpaoli, E.; Shitanishi, J. A. [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 (United States); Koch, P. M.; Lin, K.-Y.; Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Molnar, S. M. [LeCosPA Center, National Taiwan University, Taipei 10617, Taiwan (China); Moustakas, L., E-mail: jack@caltech.edu [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States)

    2013-02-20

    We describe in detail our characterization of the compact radio source population in 140 GHz Bolocam observations of a set of 45 massive galaxy clusters. We use a combination of 1.4 and 30 GHz data to select a total of 28 probable cluster-member radio galaxies and also to predict their 140 GHz flux densities. All of these galaxies are steep-spectrum radio sources and they are found preferentially in the cool-core clusters within our sample. In particular, 11 of the 12 brightest cluster-member radio sources are associated with cool-core systems. Although none of the individual galaxies are robustly detected in the Bolocam data, the ensemble-average flux density at 140 GHz is consistent with, but slightly lower than, the extrapolation from lower frequencies assuming a constant spectral index. In addition, our data indicate an intrinsic scatter of {approx_equal} 30% around the power-law extrapolated flux densities at 140 GHz, although our data do not tightly constrain this scatter. For our cluster sample, which is composed of high-mass and moderate-redshift systems, we find that the maximum fractional change in the Sunyaev-Zel'dovich signal integrated over any single cluster due to the presence of these radio sources is {approx_equal} 20%, and only {approx_equal} 1/4 of the clusters show a fractional change of more than 1%. The amount of contamination is strongly dependent on cluster morphology, and nearly all of the clusters with {>=}1% contamination are cool-core systems. This result indicates that radio contamination is not significant compared with current noise levels in 140 GHz images of massive clusters and is in good agreement with the level of radio contamination found in previous results based on lower frequency data or simulations.

  13. Components for transmission of very high power mm waves (200 kW at 28, 70 and 140 GHz) in overmoded circular waveguides

    Science.gov (United States)

    Thumm, M.; Erckmann, V.; Kasparek, W.; Kumric, H.; Mueller, G. A.; Schueller, P. G.; Wilhelm, R.

    1986-03-01

    Optimized overmoded circular waveguide components of transmission lines developed for high-power (200 kW) millimeter wave applications at 28, 70, and 140 GHz, as e.g., electron cyclotron resonance heating of plasmas for thermonuclear fusion research with gyrotrons, are described. Axisymmetric, narrow, pencil-like beams with well-defined polarization (HE11 hybrid mode) are used at open-ended corrugated waveguide antennas. The HE11 mode is generated from TE0n gyrotron modes by multistep mode conversion: TE0n yields T001 yields TE11 yields HE11 or TE0n yields TE01 yields TM11 yields HE11. Analyses and measurements on mode transducer systems of the first type at 28 and 70 GHz and of the second type at 140 GHz are reported. In all cases the overall efficiency of the complete mode conversion sequence in the desired mode is 92% to 95%. Mode purity in the transmission lines is conserved by using corrugated gradual waveguide bends with optimized curvature distribution and diameter tapers with nonlinear contours. Highly efficient corrugated-wall mode selective filters decouple the different waveguide sections. Mode content and reflected powere are determined by a k-spectrometer. Absolute power calibration is done with calorimetric loads using an organic absorbing fluid.

  14. [Artefacts of confocal microscopy].

    Science.gov (United States)

    Vekshin, N L; Frolov, M S

    2014-01-01

    Typical artefacts caused by using confocal fluorescent microscopy while studying living cells are considered. The role of light scattering, mobility, staining, local concentrations, etc. is discussed.

  15. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  16. Spectrally encoded confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  17. The Correlation Confocal Microscope

    CERN Document Server

    Simon, D S

    2010-01-01

    A new type of confocal microscope is described which makes use of intensity correlations between spatially correlated beams of light. It is shown that this apparatus leads to significantly improved transverse resolution.

  18. Basic confocal microscopy

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2012-03-01

    Full Text Available This is an eleven chapter’s effort done by a bunch of Authors coordinated by Prof. R.L. Price and W.G. Jerome (who have personally written almost half of the book that with great skills are revealing us the secrets of confocal microscopy. Considering the significant progresses in different fields of biology, confocal microscopy is extremely important to dynamically see all the different molecules involved in the controlling networks build up by gene expressions in time and space. Necessary prerequisites to accomplish such goals are some fundamental microscopic technologies well and clearly presented in the first chapters....

  19. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  20. Biological confocal microscopy

    Directory of Open Access Journals (Sweden)

    Guy Cox

    2002-04-01

    Full Text Available The first practical use of confocal optics was by Hiroto Naora1,1,2, who built a device based upon a theoretical concept devised by his supervisor Z. Koana3, over 50 years ago. His system did not form images, but was used in high resolution micro-spectrophotometry. Some 10 years later, Marvin Minsky4 added a scanning stage to construct a microscope capable of forming images. Despite these early advances, in was not until the 1970s that reasonably practical confocal microscopes were built, and the mid 1980s before commercial models became generally available.

  1. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  2. Molecular confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Klausen, Pia Helene; Saftoiu, Adrian

    2014-01-01

    While flexible endoscopy is essential for macroscopic evaluation, confocal laser endomicroscopy (CLE) has recently emerged as an endoscopic method enabling visualization at a cellular level. Two systems are currently available, one based on miniprobes that can be inserted via a conventional...

  3. Confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Saftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    Background and study aims: Confocal laser endomicroscopy (CLE) has been shown to predict relapse in ulcerative colitis in remission, but little is currently known about its role in Crohn's disease. The aim of this study was to identify reproducible CLE features in patients with Crohn's disease...

  4. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  5. Confocal Line Scanning Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chanbai, S; Wiora, G; Wewer, L [NanoFocus AG, Lindnerstr. 98, 46149 Oberhausen (Germany); Zafarullah, I [Applied Scientific Imaging Inc., Toronto (Canada); Roth, H, E-mail: chanbai@nanofocus.de, E-mail: wiora@nanofocus.de [Institute of Automatic Control Engineering, University of Siegen, Hoelderlinstr. 3, 57068 Siegen (Germany)

    2011-08-19

    We have developed a novel confocal-based imaging sensor for surface characterization. In this case, a tilted-plane technique is incorporated in a confocal imaging system to create a new parallel scanning scheme, enabling the sensor to be designed and developed as a robust and simple configuration. With a tilted disk consisting of in-line pinholes, a motionless parallel z scanning scheme is manifested when the specimen is transversely scanned through the stationary diffraction-foci projecting at different depths. This sensor uses a line scanning approach, so that it is entitled as a Confocal Line Scanning Sensor (CLSS). In this paper, the CLSS principle, the concept of data processing, and major calibration are described. The sensor was first developed as a two-dimensional profiler to cover the measurement ranges of up to 50 {mu}m in depth and up to 15 mm in lateral length. Experimental results were carried out using calibrated specimens for roughness measurement. In this system, the optical lateral resolution is 0.5 {mu}m, and the depth resolution, defined by noise-limited approach, is 15 nm.

  6. Hyperspectral confocal microscope.

    Science.gov (United States)

    Sinclair, Michael B; Haaland, David M; Timlin, Jerilyn A; Jones, Howland D T

    2006-08-20

    We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.

  7. [Confocal laser scanning microscopy].

    Science.gov (United States)

    Ulrich, M

    2015-07-01

    Reflectance confocal microscopy (RCM) allows the in vivo evaluation of melanocytic and nonmelanocytic skin tumours with high sensitivity and specificity. RCM represents an optical imaging technique, which enables us to examine the skin at high resolution. Today, RCM represents not only an interesting tool for dermatologic research but has also been introduced as a diagnostic tool in every day clinical practice. As such, RCM is applied for improvement of skin cancer diagnosis adjunct to clinical and dermatoscopic examination. In combination with dermatoscopy RCM has shown an increased specificity with similar sensitivity. In this regard RCM helps to decrease the rate of unnecessary biopsies of benign lesions. Despite its use in dermatooncology RCM may also be used for diagnosis and monitoring of inflammatory diseases. Future developments include technical improvements, teledermatology solutions and the application of ex vivo RCM in Moh's micrographic surgery.

  8. Confocal microscopy of colloids

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, V; Semwogerere, D; Weeks, Eric R [Department of Physics, Emory University, Atlanta, GA 30322 (United States)

    2007-03-21

    Colloids have increasingly been used to characterize or mimic many aspects of atomic and molecular systems. With confocal microscopy these colloidal particles can be tracked spatially in three dimensions with great precision over large time scales. This review discusses equilibrium phases such as crystals and liquids, and non-equilibrium phases such as glasses and gels. The phases that form depend strongly on the type of particle interaction that dominates. Hard-sphere-like colloids are the simplest, and interactions such as the attractive depletion force and electrostatic repulsion result in more non-trivial phases which can better model molecular materials. Furthermore, shearing or otherwise externally forcing these colloids while under microscopic observation helps connect the microscopic particle dynamics to the macroscopic flow behaviour. Finally, directions of future research in this field are discussed. (topical review)

  9. Confocal coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  10. Confocal microscopy and exfoliative cytology.

    Science.gov (United States)

    Reddy, Shyam Prasad; Ramani, Pratibha; Nainani, Purshotam

    2013-05-01

    Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Confocal microscope, acridine orange (AO) stain, PAP (Papanicolaou) stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected) oral squamous cell carcinoma as well as those of controls (normal people) were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. The study had shown nuclear changes (malignant cells) in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93%) in identifying malignant cells in exfoliative cytological smears. Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant) cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and screening a specimen resulted in saving of time. It added a certain amount of objectivity to the

  11. Confocal microscopy and exfoliative cytology

    Directory of Open Access Journals (Sweden)

    Shyam Prasad Reddy

    2013-01-01

    Full Text Available Context: Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. Aims: The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Settings and Design: Confocal microscope, acridine orange (AO stain, PAP (Papanicolaou stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected oral squamous cell carcinoma as well as those of controls (normal people were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Materials and Methods: Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. Results: The study had shown nuclear changes (malignant cells in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93% in identifying malignant cells in exfoliative cytological smears. Conclusion: Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and

  12. Twin-Photon Confocal Microscopy

    CERN Document Server

    Simon, D S

    2010-01-01

    A recently introduced two-channel confocal microscope with correlated detection promises up to 50% improvement in transverse spatial resolution [Simon, Sergienko, Optics Express {\\bf 18}, 9765 (2010)]. Here we move further by introducing a triple-confocal correlated microscope, exploiting the correlations present in optical parametric amplifiers. It is based on tight focusing of pump radiation onto a thin sample positioned in front of a nonlinear crystal, followed by coincidence detection of signal and idler photons, each focused onto a pinhole. This approach offers further resolution enhancement in microscopy.

  13. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  14. Confocal MXRF in environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane [University of Hamburg, Department of Chemistry, Hamburg (Germany); Falkenberg, Gerald [Deutsches Elektronen Synchrotron, Hamburg (Germany)

    2011-06-15

    In this review we highlight the performance of confocal micro X-ray fluorescence (CMXRF) for application in environmental science, citing contributions from recent studies (2008-2010). In CMXRF the use of focusing and collecting optics enables discrimination of the origin of fluorescence photons in three dimensions. It thereby enables simple and direct three dimensional imaging, and also the removal of unwanted signal contribution either from the depth of the sample or from its surface. By limiting the area of origin of fluorescence signal CMXRF can simplify quantitative approaches. (orig.)

  15. Design of a 75-140 GHz high-pass printed circuit board dichroic filter

    Science.gov (United States)

    Kim, Dong Hwi; Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook

    2017-03-01

    A new high-performing PCB (Printed Circuit Board) dichroic filter, which can be used for the KSTAR (Korea Superconducting Tokamak Advanced Research) electron cyclotron emission imaging system, is proposed. The current dichroic filter consists of a triangular lattice array of circular holes on the 6-mm thick metal plate, while circular hole spacing limitation caused relatively narrow passband (˜20 GHz). On the other hand, the proposed PCB dichroic filter utilizes the inexpensive commercial PCB fabrication process with a flexible adjustment of circular hole spacing. Therefore, the proposed PCB dichroic filter provides significantly wider passband (˜60 GHz with 0.84 dB insertion loss) with much reduced weight and expense. Also, it is shown that a steep skirt property can be obtained with the thick PCB filter substrate. The design process, fabrication, and measurement results of the new PCB dichroic filter are described.

  16. A Research of 140-GHz Folded Rectangular Gro ove Waveguide Traveling-Wave Tub e

    Institute of Scientific and Technical Information of China (English)

    ZHANG Minghao; WEI Yanyu; YUE Lingna; GUO Guo; WANG Yuanyuan; SHI Xianbao; WANG Wenxiang

    2015-01-01

    A two-section Folded rectangular groove waveguide (FRGWG) Slow wave structure (SWS) Travel-ing wave tube (TWT) with large dimension of beam tunnel is studied. Compared with the Folded waveguide (FWG) under the same size parameters conditions, the interac-tion impedance and center frequency of the FRGWG are higher. The advantage is that a beam tunnel with large dimension can be applied to the FRGWG without the influence caused by signal decrease, reflection and oscil-lation. The microwave amplification capability based on beam-wave interaction is obtained through the particle-in-cell method. This circuit structure can produce an output power of over 100W ranging from 136 to 142GHz when the operation voltage and beam current are set as 18.4kV and 150mA, respectively, for a 95mm long circuit.

  17. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    Science.gov (United States)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  18. Confocal imaging of butterfly tissue.

    Science.gov (United States)

    Brunetti, Craig R

    2014-01-01

    To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.

  19. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  20. Confocal endomicroscopy of the larynx

    Science.gov (United States)

    Just, T.; Wiechmann, T.; Stachs, O.; Stave, J.; Guthoff, R.; Hüttmann, G.; Pau, H. W.

    2012-02-01

    Beside the good image quality with the confocal laser scanning microscope (HRTII) and the Rostock Cornea Module (RCM), this technology can not be used to investigate the human larynx in vivo. To accomplish this, a rigid custom-made endoscope (KARL STORZ GmbH & Co. KG; Tuttlingen Germany) was developed. A connector was developed to connect the scanner head of the HRTII to the rigid endoscope. With the connector, the starting plane can be set manually. To achieve optical sectioning of the laryngeal tissue (80 μm per volume scan), the scanning mechanism of the HRTII needs to be activated using a foot switch. The devices consisting of the endoscope, HRTII, and the connector supply images of 400 x 400 μm and reach average penetration depths of 100-300 μm (λ/4 plate of the scanner head of the HRTII was removed). The lateral and axial resolutions are about 1-2 μm and 2 μm, respectively. In vivo rigid confocal endoscopy is demonstrated with an acquisition time for a volume scan of 6 s. The aim of this study was to differentiate pre-malignant laryngeal lesions from micro-invasive carcinoma of the larynx. 22 patients with suspicious lesions of the true vocal cords were included. This pilot study clearly demonstrates the possibility to detect dysplastic cells close to the basal cell layer and within the subepithelial space in lesions with small leukoplakia (thin keratin layer). These findings may have an impact on microlaryngoscopy to improve the precision for biopsy and on microlaryngoscopic laser surgery of the larynx to identify the margins of the pre-malignant lesion.

  1. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  2. Submillimeter Confocal Imaging Active Module

    Science.gov (United States)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  3. Optical tweezers for confocal microscopy

    Science.gov (United States)

    Hoffmann, A.; Meyer zu Hörste, G.; Pilarczyk, G.; Monajembashi, S.; Uhl, V.; Greulich, K. O.

    2000-11-01

    In confocal laser scanning microscopes (CLSMs), lasers can be used for image formation as well as tools for the manipulation of microscopic objects. In the latter case, in addition to the imaging lasers, the light of an extra laser has to be focused into the object plane of the CLSM, for example as optical tweezers. Imaging as well as trapping by optical tweezers can be done using the same objective lens. In this case, z-sectioning for 3D imaging shifts the optical tweezers with the focal plane of the objective along the optical axis, so that a trapped object remains positioned in the focal plane. Consequently, 3D imaging of trapped objects is impossible without further measures. We present an experimental set-up keeping the axial trapping position of the optical tweezers at its intended position whilst the focal plane can be axially shifted over a distance of about 15 μm. It is based on fast-moving correctional optics synchronized with the objective movement. First examples of application are the 3D imaging of chloroplasts of Elodea densa (Canadian waterweed) in a vigorous cytoplasmic streaming and the displacement of zymogen granules in pancreatic cancer cells (AR42 J).

  4. Confocal Endomicroscopy of Colorectal Polyps

    Directory of Open Access Journals (Sweden)

    Vivian M. Ussui

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micron scale via endoscopes. CLE has the potential to be a disruptive technology in that it can change the current algorithms that depend on biopsy to perform surveillance of high-risk conditions. Furthermore, it allows on-table decision making that has the potential to guide therapy in real time and reduce the need for repeated procedures. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. However, the imaging of living tissue allows more than just pragmatic convenience; it also allows imaging of living tissue such as active capillary circulation, cellular death, and vascular and endothelial translocation, thus extending beyond what is capable in traditional biopsy. Immediate potential applications of CLE are to guide biopsy sampling in Barrett's esophagus and inflammatory bowel disease surveillance, evaluation of colorectal polyps, and intraductal imaging of the pancreas and bile duct. Data on these applications is rapidly emerging, and more is needed to clearly demonstrate the optimal applications of CLE. In this paper, we will focus on the role of CLE as applied to colorectal polyps detected during colonoscopy.

  5. Confocal Annular Josephson Tunnel Junctions

    Science.gov (United States)

    Monaco, Roberto

    2016-09-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations and here we show that also tiny geometrical details play a determinant role. More specifically, we develop the theory of short and long annular Josephson tunnel junctions delimited by two confocal ellipses. The behavior of a circular annular Josephson tunnel junction is then seen to be simply a special case of the above result. For junctions having a normalized perimeter less than one, the threshold curves in the presence of an in-plane magnetic field of arbitrary orientations are derived and computed even in the case with trapped Josephson vortices. For longer junctions, a numerical analysis is carried out after the derivation of the appropriate motion equation for the Josephson phase. We found that the system is modeled by a modified and perturbed sine-Gordon equation with a space-dependent effective Josephson penetration length inversely proportional to the local junction width. Both the fluxon statics and dynamics are deeply affected by the non-uniform annulus width. Static zero-field multiple-fluxon solutions exist even in the presence of a large bias current. The tangential velocity of a traveling fluxon is not determined by the balance between the driving and drag forces due to the dissipative losses. Furthermore, the fluxon motion is characterized by a strong radial inward acceleration which causes electromagnetic radiation concentrated at the ellipse equatorial points.

  6. Pseudoexfoliation syndrome: in vivo confocal microscopy analysis.

    Science.gov (United States)

    Martone, Gianluca; Casprini, Fabrizio; Traversi, Claudio; Lepri, Francesca; Pichierri, Patrizia; Caporossi, Aldo

    2007-08-01

    Pseudoexfoliation (PEX) syndrome is a common ocular disease that also affects the cornea. A case of clinical PEX syndrome, studied by in vivo corneal confocal microscopy is reported. The morphological analysis of the confocal images demonstrated hyper-reflective deposits and several dendritic cells in the basal epithelial layer. A fibrillar subepithelial structure was also found. The endothelial layer showed cell anomalies (polymegathism and pleomorphism) and hyper-reflective small endothelial deposits. Confocal microscopy is an in vivo imaging method that may provide new information on corneal alterations in PEX, and detect early corneal features.

  7. Confocal Scanning Microscope for Nuclear Photoemulsion

    CERN Document Server

    Batusov, Yu A; Soroko, L M

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of {\\it single} silver grain is shown. The cross sections of the same particle track of diameter 1 $\\mu$m, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles.

  8. Confocal Laser Endomicroscopy in Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Rasmussen, Ditlev Nytoft; Karstensen, John Gásdal; Riis, Lene Buhl

    2015-01-01

    of histological features such as colonic crypts, epithelial gaps and epithelial leakiness to fluorescein. CONCLUSIONS: Confocal laser endomicroscopy remains an experimental but emerging tool for assessment of inflammatory bowel disease. It is the only method that enables in vivo functional assessment......BACKGROUND AND AIMS: Confocal laser endomicroscopy is an endoscopic method that provides in vivo real-time imaging of the mucosa at a cellular level, elucidating mucosal changes that are undetectable by white light endoscopy. This paper systematically reviews current indications and perspectives...... of confocal laser endomicroscopy for inflammatory bowel disease. METHODS: Available literature was searched systematically for studies applying confocal laser endomicroscopy in Crohn's disease or ulcerative colitis. Relevant literature was reviewed and only studies reporting original clinical data were...

  9. Diffractive elements performance in chromatic confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, J; Duque, D; Alean, A; Toledo, M [Grupo de Optica y EspectroscopIa, Centro de Ciencia Basica, Universidad Pontificia Bolivariana. Medellin (Colombia); Meneses, J [Laboratorio de Optica y Tratamiento de Senales, Instituto de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia); Gharbi, T, E-mail: jgarzonr10@une.net.co [Laboratoire d' Optique P. M. Duffieux, UMR-6603 CNR/Universite de Franche-Comte. 16 route de Gray, 25030 Besancon Cedex (France)

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  10. Analytical design of a confocal resonator

    CERN Document Server

    Ferrari, A; Ziemann, Volker; CERN. Geneva. AB Department

    2003-01-01

    A confocal resonator may be used as a pick-up for frequencies in the multi-GHz region, in order to monitor the bunch spacing and/or the bunch length in the CTF3 drive beam. In this note, we collect some formulae regarding the design of a confocal resonator in order to facilitate the estimation of relevant parameters in a later more careful numerical study

  11. Confocal microlaparoscope for imaging the fallopian tube

    Science.gov (United States)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  12. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin

    NARCIS (Netherlands)

    P.J. Caspers (Peter); G.W. Lucassen (Gerald); G.J. Puppels (Gerwin)

    2003-01-01

    textabstractIn vivo confocal Raman spectroscopy is a noninvasive optical method to obtain detailed information about the molecular composition of the skin with high spatial resolution. In vivo confocal scanning laser microscopy is an imaging modality that provides optical sections

  13. Confocal microlaparoscope for imaging the fallopian tube

    Science.gov (United States)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  14. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter [Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  15. Spatial heterodyne scanning laser confocal holographic microscopy

    CERN Document Server

    Liu, Changgeng

    2016-01-01

    Scanning laser confocal holographic microscopy using a spatial heterodyne detection method is presented. Spatial heterodyne detection technique employs a Mach-Zehnder interferometer with the reference beam frequency shifted by two acousto-optic modulators (AOM) relative to the object beam frequency. Different from the traditional temporal heterodyne detection technique in which hundreds temporal samples are taken at each scanning point to achieve the complex signal, the spatial heterodyne detection technique generates spatial interference fringes by use of a linear tempo-spatial relation provided by galvanometer scanning in a typical line-scanning confocal microscope or for the slow-scanning on one dimension in a point-scanning confocal microscope, thereby significantly reducing sampling rate and increasing the signal to noise ratio under the same illumination compared to the traditional temporal heterodyne counterpart. The proposed spatial heterodyne detection scheme applies to both line-scanning and point-s...

  16. Spectrally multiplexed chromatic confocal multipoint sensing.

    Science.gov (United States)

    Hillenbrand, Matthias; Lorenz, Lucia; Kleindienst, Roman; Grewe, Adrian; Sinzinger, Stefan

    2013-11-15

    We present a concept for chromatic confocal distance sensing that employs two levels of spectral multiplexing for the parallelized evaluation of multiple lateral measurement points; at the first level, the chromatic confocal principle is used to encode distance information within the spectral distribution of the sensor signal. For lateral multiplexing, the total spectral bandwidth of the sensor is split into bands. Each band is assigned to a different lateral measurement point by a segmented diffractive element. Based on this concept, we experimentally demonstrate a chromatic confocal three-point sensor that is suitable for harsh production environments, since it works with a single-point spectrometer and does not require scanning functionality. The experimental system has a working distance of more than 50 mm, a measurement range of 9 mm, and an axial resolution of 50 μm.

  17. Confocal multiview light-sheet microscopy

    Science.gov (United States)

    Medeiros, Gustavo de; Norlin, Nils; Gunther, Stefan; Albert, Marvin; Panavaite, Laura; Fiuza, Ulla-Maj; Peri, Francesca; Hiiragi, Takashi; Krzic, Uros; Hufnagel, Lars

    2015-01-01

    Selective-plane illumination microscopy has proven to be a powerful imaging technique due to its unsurpassed acquisition speed and gentle optical sectioning. However, even in the case of multiview imaging techniques that illuminate and image the sample from multiple directions, light scattering inside tissues often severely impairs image contrast. Here we combine multiview light-sheet imaging with electronic confocal slit detection implemented on modern camera sensors. In addition to improved imaging quality, the electronic confocal slit detection doubles the acquisition speed in multiview setups with two opposing illumination directions allowing simultaneous dual-sided illumination. Confocal multiview light-sheet microscopy eliminates the need for specimen-specific data fusion algorithms, streamlines image post-processing, easing data handling and storage. PMID:26602977

  18. Confocal Microscopy in Biopsy Proven Argyrosis

    Directory of Open Access Journals (Sweden)

    Melis Palamar

    2013-01-01

    Full Text Available Purpose. To evaluate the confocal microscopy findings of a 46-year-old male with bilateral biopsy proven argyrosis. Materials and Methods. Besides routine ophthalmologic examination, anterior segment photography and confocal microscopy with cornea Rostoch module attached to HRT II (Heidelberg Engineering GmbH, Heidelberg, Germany were performed. Findings. Squamous metaplastic changes on conjunctival epithelium and intense highly reflective extracellular punctiform deposits in conjunctival substantia propria were detected. Corneal epithelium was normal. Highly reflective punctiform deposits starting from anterior to mid-stroma and increasing through Descemet’s membrane were evident. Corneal endothelium could not be evaluated due to intense stromal deposits. Conclusion. Confocal microscopy not only supports diagnosis in ocular argyrosis, but also demonstrates the intensity of the deposition in these patients.

  19. Line scanning, stage scanning confocal microscope (LSSSCM).

    Science.gov (United States)

    Gareau, Daniel S; Krueger, James G; Hawkes, Jason E; Lish, Samantha R; Dietz, Michael P; Mülberger, Alba Guembe; Mu, Euphemia W; Stevenson, Mary L; Lewin, Jesse M; Meehan, Shane A; Carucci, John A

    2017-08-01

    For rapid pathological assessment of large surgical tissue excisions with cellular resolution, we present a line scanning, stage scanning confocal microscope (LSSSCM). LSSSCM uses no scanning mirrors. Laser light is focused with a single cylindrical lens to a line of diffraction-limited width directly into the (Z) sample focal plane, which is parallel to and near the flattened specimen surface. Semi-confocal optical sections are derived from the linear array distribution (Y) and a single mechanical drive that moves the sample parallel to the focal plane and perpendicular to the focused line (X). LSSSCM demonstrates cellular resolution in the conditions of high nuclear density within micronodular basal cell carcinoma.

  20. Confocal microscopy via multimode fibers: fluorescence bandwidth

    Science.gov (United States)

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    We recently described a method for confocal reflection imaging through fibers, as a way to increase contrast when imaging unstained biological specimens. Using a transmission matrix, focused spots can be created at the distal end of a fiber. The backscattered field coming back from the sample can be filtered using optical correlation to obtain spatial selectivity in the detection. In this proceedings article, we briefly review the working principle of this method, and we discuss how the scheme could be adapted to confocal fluorescence imaging. In particular, we show simulations of the achievable detection bandwidth when using step-index multimode fibers as imaging devices.

  1. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    Directory of Open Access Journals (Sweden)

    Aqib H Zehri

    2014-01-01

    Full Text Available Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM, two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery.

  2. A Confocal Endoscope for Cellular Imaging

    Directory of Open Access Journals (Sweden)

    Jiafu Wang

    2015-09-01

    Full Text Available Since its inception, endoscopy has aimed to establish an immediate diagnosis that is virtually consistent with a histologic diagnosis. In the past decade, confocal laser scanning microscopy has been brought into endoscopy, thus enabling in vivo microscopic tissue visualization with a magnification and resolution comparable to that obtained with the ex vivo microscopy of histological specimens. The major challenge in the development of instrumentation lies in the miniaturization of a fiber-optic probe for microscopic imaging with micron-scale resolution. Here, we present the design and construction of a confocal endoscope based on a fiber bundle with 1.4-μm lateral resolution and 8-frames per second (fps imaging speed. The fiber-optic probe has a diameter of 2.6 mm that is compatible with the biopsy channel of a conventional endoscope. The prototype of a confocal endoscope has been used to observe epithelial cells of the gastrointestinal tracts of mice and will be further demonstrated in clinical trials. In addition, the confocal endoscope can be used for translational studies of epithelial function in order to monitor how molecules work and how cells interact in their natural environment.

  3. Confocal microscopy imaging of solid tissue

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  4. Confocal Microscopy Imaging of the Biofilm Matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise

    2016-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  5. Confocal microscopy imaging of the biofilm matrix.

    Science.gov (United States)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-07-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Practical aspects of quantitative confocal microscopy.

    Science.gov (United States)

    Murray, John M

    2013-01-01

    Confocal microscopes are in principle well suited for quantitative imaging. The 3D fluorophore distribution in a specimen is transformed by the microscope optics and detector into the 2D intensity distribution of a digital image by a linear operation, a convolution. If multiple 2D images of the specimen at different focal planes are obtained, then the original 3D distribution in the specimen can be reconstructed. This reconstruction is a low-pass spatially filtered representation of the original, but quantitatively preserves relative fluorophore concentrations, with of course some limitations on accuracy and precision due to aberrations and noise. Given appropriate calibration, absolute fluorophore concentrations are accessible. A few simple guidelines are given for setting up confocal microscopes and checking their performance. With a little care, the images collected should be suitable for most types of quantitative analysis.

  7. Digital confocal microscopy through a multimode fiber

    CERN Document Server

    Loterie, Damien; Papadopoulos, Ioannis; Goy, Alexandre; Psaltis, Demetri; Moser, Christophe

    2015-01-01

    Acquiring high-contrast optical images deep inside biological tissues is still a challenging issue. Confocal microscopy is an important tool for biomedical imaging since it improves image quality by rejecting background signals. On the other hand, it suffers from low sensitivities in deep tissues due to light scattering. Recently, multimode fibers have provided a new paradigm for minimally invasive endoscopic imaging by controlling light propagation through them. Here we introduce a combined imaging technique where confocal images of a human epithelial cell are acquired through a multimode fiber. We achieve this by digitally engineering the excitation wavefront and then applying a virtual digital pinhole on the collected signal. In this way, we are able to acquire images through the fiber with significantly increased contrast.

  8. A near-infrared confocal scanner

    Science.gov (United States)

    Lee, Seungwoo; Yoo, Hongki

    2014-06-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface.

  9. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  10. Digital differential confocal microscopy based on spatial shift transformation.

    Science.gov (United States)

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen.

  11. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  12. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    Science.gov (United States)

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  13. ConfocalCheck--a software tool for the automated monitoring of confocal microscope performance.

    Directory of Open Access Journals (Sweden)

    Keng Imm Hng

    Full Text Available Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system's performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments.

  14. Confocal laser endomicroscopy in ulcerative colitis

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    was to correlate colonic confocal laser endomicroscopy (CLE) in ulcerative colitis with histopathology and macroscopic appearance before and after intensification of medical treatment. METHODS: Twenty-two patients with ulcerative colitis in clinical relapse and 7 control subjects referred for colonoscopy were...... colitis compared with inactive ulcerative colitis...... is an emerging endoscopic technique that reproducibly identifies mucosal changes in ulcerative colitis. With the exception of crypt changes, endomicroscopic features appear to improve slowly with time after medical treatment. ( CLINICAL TRIAL REGISTRATION NUMBER: NCT01684514.)....

  15. Quantifying metarefraction with confocal lenslet arrays

    CERN Document Server

    Maceina, Tautvydas; Courtial, Johannes

    2011-01-01

    METATOYs can change the direction of light in ways that appear to, but do not actually, contravene the laws of wave optics. This direction change applies only to part of the transmitted light beam; the remainder gets re-directed differently. For a specific example, namely confocal lenslet arrays, we calculate here the fractions of power of an incident uniform plane wave get re-directed in different ways. This will facilitate assessment of the suitability of METATOYs for applications such as solar concentration.

  16. Reflectance confocal microscopy features of facial angiofibromas

    Science.gov (United States)

    Millán-Cayetano, José-Francisco; Yélamos, Oriol; Rossi, Anthony M.; Marchetti, Michael A.; Jain, Manu

    2017-01-01

    Facial angiofibromas are benign tumors presenting as firm, dome-shaped, flesh-colored to pink papules, typically on the nose and adjoining central face. Clinically and dermoscopically they can mimic melanocytic nevi or basal cell carcinomas (BCC). Reflectance confocal microscopy (RCM) is a noninvasive imaging tool that is useful in diagnosing melanocytic and non-melanocytic facial lesions. To date no studies have described the RCM features of facial angiofibromas. Herein, we present two cases of facial angiofibromas that were imaged with RCM and revealed tumor island-like structures that mimicked BCC, leading to skin biopsy.

  17. Confocal Raman Imaging of Polymeric Materials

    Science.gov (United States)

    Schmidt, Ute; Müller, Jörg; Koenen, Joachim

    Polymers play an essential role in modern materials science. Due to the wide variety of mechanical and chemical properties of polymers, they are used in almost every field of application and are still a dynamic area in the development of new materials with demanding requirements. Raman spectroscopy is one of the standard characterization techniques used to uniquely determine the chemical composition of a polymer. Modern materials, however, are generally heterogeneous, in which various chemical components or polymorphs of the same chemical species can be present in a very small sample volume. For the analysis of such heterogeneous materials, the combination of Raman spectroscopy with confocal microscopy delivers information about the spatial distribution of the various chemical species with a resolution down to 200 nm. The aim of this contribution is to demonstrate the power of confocal Raman imaging for the characterization of heterogeneous polymeric materials. The first section will deal with polymorphs of polypropylene in polymer films, followed by the nondestructive analysis of polymer blends. A later section will deal with multi-layer polymer coatings and paints and finally various additives to polymer matrices will be discussed.

  18. Confocal Raman microspectroscopy of the skin.

    Science.gov (United States)

    Förster, Matthias; Bolzinger, Marie-Alexandrine; Montagnac, Gilles; Briançon, Stéphanie

    2011-01-01

    Confocal Raman spectroscopy is a technique with considerable potential for the non-invasive study of biological tissues and skin samples in vitro or in vivo. It can be used to study skin physiology and possible pathological conditions and to obtain data about molecular composition and the structure of skin, for example, water content, moisturization and changes in the skin barrier function can all be observed. In-depth measurements also allow biopharmaceutical studies, such as analyzing the rate of penetration of a drug and the biochemical changes that may be induced by an applied formulation. Confocal Raman microspectroscopy is now at such a stage of refinement that it opens up new vistas. The big leap forward in its ease of use enables this technology to be used as an analytical method by more and more non-specialist laboratories. This review gives an overview of the state of the art of this technology by presenting an update on the principles of Raman spectroscopy and then by looking at examples of new developments in in vivo and in vitro applications.

  19. Fungal Keratitis - Improving Diagnostics by Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Esben Nielsen

    2013-12-01

    Full Text Available Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12-69, 6 out of 17 (35% cultures were positive and a total of 6/7 (86% IVCM scans were positive. Three different categories of IVCM results for the grading of diagnostic certainty were formed. Conclusion: IVCM is a valuable tool for diagnosing filamentous fungal keratitis. In order to improve the reliability of IVCM, we suggest implementing a simple and clinically applicable grading system for aiding the interpretation of IVCM images of filamentous fungal keratitis.

  20. Reflectance Confocal Microscopy for Inflammatory Skin Diseases.

    Science.gov (United States)

    Agozzino, M; Gonzalez, S; Ardigò, M

    2016-10-01

    In vivo reflectance confocal microscopy (RCM) is a relatively novel non-invasive tool for microscopic evaluation of the skin used prevalently for diagnosis and management of skin tumour. Its axial resolution, its non-invasive and easy clinical application represents the goals for a large diffusion of this technique. During the last 15 years, RCM has been demonstrated to be able to increase the sensibility and sensitivity of dermoscopy in the diagnosis of skin tumours integrating in real time clinic, dermoscopic and microscopic information useful for the definition of malignancy. Despite to date, no large comparative studies on inflammatory skin diseases has been published in the literature, several papers already showed that RCM has a potential for the evaluation of the descriptive features of the most common inflammatory skin diseases as psoriasis, lupus erythematosus, contact dermatitis and others. The aim of the application of this technique in non-neoplastic skin diseases has been prevalently focused on the possibility of clinical diagnosis confirmation, as well as therapeutic management. Moreover, the use of RCM as driver for an optimised skin biopsy has been also followed in order to reduce the number of unsuccessful histopathological examination. In this review article we describe the confocal features of the major groups of inflammatory skin disorders focusing on psoriasiform dermatitis, interface dermatitis and spongiotic dermatitis.

  1. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  2. Biological applications of confocal fluorescence polarization microscopy

    Science.gov (United States)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  3. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high resolution. In rodent disease models, in vivo endomicroscopy with appropriate fluorescent agents allowed examination of thrombosis formation, tumour microvasculature and liver metastases, diagnosis and staging of ulcerative colitis, liver necrosis and glomerulonephritis. Miniaturised confocal endomicroscopy allows rapid in vivo molecular and subsurface microscopy of normal and pathologic tissue at high resolution in small and large whole animal models

  4. Near-infrared hyperspectral reflective confocal microscopy

    Science.gov (United States)

    Huang, Wei; Zhang, Yunhai; Miao, Xin; Xue, Xiaojun; Xiao, Yun

    2016-10-01

    A Near-Infrared HyperSpectral Reflective Confocal Microscopy (NIHS-RCM) is proposed in order to get high resolution images of deep biological tissues such as skin. The microscopy system uses a super-continuum laser for illumination, an acousto-optic tunable filter (AOTF) for rapid selection of near-infrared spectrum, a resonant galvanometer scanner for high speed imaging (15f/s) and near-infrared avalanche diode as detector. Porcine skin and other experiments show that the microscopy system could get deep tissue images (180 μm), and show the different ingredients of tissue with different wavelength of illumination. The system has the ability of selectively imaging of multiple ingredients at deep tissue which can be used in skin diseases diagnosis and other fields.

  5. Confocal Terahertz Imaging of Ancient Manuscripts

    Science.gov (United States)

    Flammini, Mariano; Bonsi, Claudia; Ciano, Chiara; Giliberti, Valeria; Pontecorvo, Emanuele; Italia, Paola; DelRe, Eugenio; Ortolani, Michele

    2016-11-01

    Terahertz imaging has the potential to identify and decipher portions of ancient manuscripts, which may be unreadable at infrared and visible wavelengths. We use a scanning confocal terahertz microscope to scan a medieval parchment with music notes and pentagrams written with different inks. The microscope is based on a continuous-wave solid-state source at 0.3 THz, emitting in the free space with a horn antenna, and a high numerical-aperture ellipsoidal reflector. We present terahertz images with diffraction-limited lateral resolution of approximately 0.5 mm, where the different inks all give similar high contrast. Symbols written on the "verso" side of the parchment, barely glimpsed in the near-infrared photograph, leave a clear imprint in the terahertz images. Artifacts due to imperfect flatness of the parchment are also briefly discussed.

  6. Imaging white adipose tissue with confocal microscopy.

    Science.gov (United States)

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents.

  7. Re-scan confocal microscopy: scanning twice for better resolution

    NARCIS (Netherlands)

    De Luca, G.M.R.; Breedijk, R.M.P.; Brandt, R.A.J.; Zeelenberg, C.H.C.; De Jong, B.E.; Timmermans, W.; Nahidi Azar, L.; Hoebe, R.A.; Stallinga, S.; Manders, E.M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity wh

  8. Re-scan confocal microscopy : scanning twice for better resolution

    NARCIS (Netherlands)

    De Luca, G.M.R.; Breedijk, R.M.P.; Brandt, R.A.J.; Zeelenberg, C.H.C.; de Jong, B.E.; Timmermans, W.; Azar, L.N.; Hoebe, R.A.; Stallinga, S.; Manders, E.M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity wh

  9. The First Olympus Confocal Micro Imaging Competition China Award Ceremony

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On January 20, 2010, the award ceremony for the First Olympus Confocal Micro Imaging Competition China was held in Beijing. After rounds of judging and competition, 16 photos finally won the prize.The First Olympus Confocal MicroImaging Competition China Award Ceremony was organized by Sciencenet.cn

  10. In Vivo Confocal Microscopy expanding horizons in corneal imaging

    NARCIS (Netherlands)

    T. Hillenaar (Toine)

    2012-01-01

    textabstractConfocal microscopy is an emerging optical technique that allows the living human cornea to be imaged on a cellular level. As such, confocal microscopy enables morphologic and quantitative analysis of corneal resident cells in health and disease and provides an exciting bridge between in

  11. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    Science.gov (United States)

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  12. Evaluation and purchase of confocal microscopes: Numerous factors to consider

    Science.gov (United States)

    The purchase of a confocal microscope can be a complex and difficult decision for an individual scientist, group or evaluation committee. This is true even for scientists that have used confocal technology for many years. The task of reaching the optimal decision becomes almost i...

  13. 4D confocal microscopy for visualisation of bone remodelling

    NARCIS (Netherlands)

    Konijn, GA; Vardaxis, NJ; Boon, ME; Kok, LP; Rietveld, DC; SCHUT, JJ

    1996-01-01

    Until recently it was very time consuming and difficult to make three-dimensional (3D) images of newly formed bone. With the advent of confocal technologies and increased computer power 3D imaging is greatly facilitated. In this paper we demonstrate that enhanced confocal visualisation of newly form

  14. In Vivo Confocal Microscopy expanding horizons in corneal imaging

    NARCIS (Netherlands)

    T. Hillenaar (Toine)

    2012-01-01

    textabstractConfocal microscopy is an emerging optical technique that allows the living human cornea to be imaged on a cellular level. As such, confocal microscopy enables morphologic and quantitative analysis of corneal resident cells in health and disease and provides an exciting bridge between in

  15. Confocal Raman Microspectroscopy of Oral Streptococci

    Science.gov (United States)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  16. Optimization of confocal scanning laser ophthalmoscope design.

    Science.gov (United States)

    LaRocca, Francesco; Dhalla, Al-Hafeez; Kelly, Michael P; Farsiu, Sina; Izatt, Joseph A

    2013-07-01

    Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution.

  17. Confocal Raman spectroscopy of whole hairs.

    Science.gov (United States)

    Pudney, Paul D A; Bonnist, Eleanor Y M; Mutch, Kevin J; Nicholls, Rachel; Rieley, Hugh; Stanfield, Samuel

    2013-12-01

    This paper describes the application of Raman spectroscopy to whole hair fibers. Previously this has proved difficult because the hairs are relatively opaque, and spatial resolution diminishes with depth because of the change in refractive index. A solution is to couple confocal Raman with multivariate curve resolution (MCR) data analysis, which separates spectral differences with depth despite this reduction in resolution. Initially, it is shown that the cuticle can be separated from the cortex, showing the differences in the proteins, which can then be plotted as a function of depth, with the cuticle factor being seen only at the surface as expected. Hairs that had been treated in different ways, e.g., by bleaching, treatment with the active molecule resorcinol followed by rinsing and treatment with a full hair care product, were also examined. In all cases, changes to the hair are identified and are associated with specific parts of the fiber. Since the hair fiber is kept intact, it can be repeatedly treated and measured, hence multistep treatment processes can be followed. This method expands the potential use of Raman spectroscopy in hair research.

  18. Confocal supercritical angle fluorescence microscopy for cell membrane imaging

    CERN Document Server

    Sivankutty, Siddharth; Mayet, Céline; Dupuis, Guillaume; Fort, Emmanuel; Lévêque-Fort, Sandrine

    2013-01-01

    We demonstrate sub-wavelength sectioning on biological samples with a conventional confocal microscope. This optical sectioning is achieved by the phenomenon of supercritical angle fuorescence, wherein only a fluorophore next to the interface of a refractive index discontinuity can emit propagating components of radiation into the so-called forbidden angles. The simplicity of this technique allows it to be integrated with a high numerical aperture confocal scanning microscope by only a simple modi?cation on the detection channel. Confocal-SAF microscopy would be a powerful tool to achieve high resolution surface imaging, especially for membrane imaging in biological samples

  19. Calculation of confocal microscope images of cholesteric blue phases

    Science.gov (United States)

    Fukuda, Jun-ichi; Okumura, Yasushi; Kikuchi, Hirotsugu

    2016-03-01

    Real-space images of bulk cholesteric blue phases (BPs) have been successfully obtained by confocal microscopy observations using structural color without doping fluorescent dye. However, theoretical interpretation of these images (for example, the understanding of the relation between intensity distribution and the ordering of BPs) remains challenging because typical lattice spacing of BPs is of the order of the wavelength of visible light, and therefore geometrical optics is entirely useless. In this work, we present a numerical approach to calculate the confocal images of BPs by solving the Maxwell equations. Calculated confocal images are consistent with experimental observations in terms of in-plane symmetry.

  20. Confocal laser endomicroscopy: in vivo endoscopic tissue analysis.

    Science.gov (United States)

    Smith, Christine; Ogilvie, Jeanette; McClelland, Laurie

    2008-01-01

    In today's fast-paced world of instant messaging, high-speed Internet, and cell phones, patients want results of procedures in the same high-speed fashion. The development of the new technique of confocal laser endomicroscopy and the restructuring of the endoscope may enable quick procedure results to be delivered. First used in Germany and Australia for research and now available for clinical use, confocal laser endomicroscopy has been approved by the Food and Drug Administration for marketing and clinical use in the United States. This article provides the gastroenterology nurse with information about how the confocal laser endomicroscope works, assisting with the procedure, and pre- and postprocedure patient instructions.

  1. Confocal Scanner for Vertical Particle Tracks in the Nuclear Photoemulsion

    CERN Document Server

    Soroko, L M

    2005-01-01

    A confocal scanner for selective observation of the vertical particle tracks in the nuclear photoemulsion is described. The particle track being searched for is imaging at an angle of 45$^\\circ$ with respect to the optical axis of the system. The confocal scanner is provided with a new optical element, an "image hogonalizator", by means of which the extended image of the inclined vertical particle track is rotated over an angle of 90$^\\circ$. The stereoscopic version of the confocal scanner is presented as well. The described systems will be used in the experiments for investigation of the neutrino oscillations in the accelerators experiments.

  2. Microelectrophoresis of Silica Rods Using Confocal Microscopy.

    Science.gov (United States)

    Bakker, Henriëtte E; Besseling, Thijs H; Wijnhoven, Judith E G J; Helfferich, Peter H; van Blaaderen, Alfons; Imhof, Arnout

    2017-01-31

    The electrophoretic mobility and the zeta potential (ζ) of fluorescently labeled colloidal silica rods, with an aspect ratio of 3.8 and 6.1, were determined with microelectrophoresis measurements using confocal microscopy. In the case where the colloidal particles all move at the same speed parallel to the direction of the electric field, we record a xyz-stack over the whole depth of the capillary. This method is faster and more robust compared to taking xyt-series at different depths inside the capillary to obtain the parabolic flow profile, as was done in previous work from our group. In some cases, rodlike particles do not move all at the same speed in the electric field, but exhibit a velocity that depends on the angle between the long axis of the rod and the electric field. We measured the orientation-dependent velocity of individual silica rods during electrophoresis as a function of κa, where κ(-1) is the double layer thickness and a is the radius of the rod associated with the diameter. Thus, we determined the anisotropic electrophoretic mobility of the silica rods with different sized double layers. The size of the double layer was tuned by suspending silica rods in different solvents at different electrolyte concentrations. We compared these results with theoretical predictions. We show that even at already relatively high κa when the Smoluchowski limiting law is assumed to be valid (κa > 10), an orientation dependent velocity was measured. Furthermore, we observed that at decreasing values of κa the anisotropy in the electrophoretic mobility of the rods increases. However, in low polar solvents with κa < 1, this trend was reversed: the anisotropy in the electrophoretic mobility of the rods decreased. We argue that this decrease is due to end effects, which was already predicted theoretically. When end effects are not taken into account, this will lead to strong underestimation of the experimentally determined zeta potential.

  3. Automated spherical aberration correction in scanning confocal microscopy

    NARCIS (Netherlands)

    Yoo, H.W.; Royen, M.E.; van Cappellen, W.A.; Houtsmuller, A.B.; Verhaegen, M.H.G.; Schitter, G.

    2014-01-01

    Mismatch between the refractive indexes of immersion media and glass coverslips introduces spherical aberrations in microscopes especially for high numerical aperture objectives. This contribution demonstrates an automated adjustment of the coverslip correction collar in scanning confocal microscopy

  4. THE PARALLEL CONFOCAL DETECTING SYSTEM USING OPTICAL FIBER PLATE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.

  5. Interference Confocal Microscope Integrated with Spatial Phase Shifter.

    Science.gov (United States)

    Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian

    2016-08-24

    We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.

  6. Law of refraction for generalised confocal lenslet arrays

    CERN Document Server

    Oxburgh, Stephen

    2013-01-01

    We derive the law of generalised refraction for generalised confocal lenslet arrays, which are arrays of misaligned telescopes. We have implemented this law of refraction in TIM, a custom open-source ray tracer.

  7. In vivo confocal microscopy in chloroquine-induced keratopathy

    Directory of Open Access Journals (Sweden)

    Iacopo Paladini

    2013-01-01

    Full Text Available In vivo confocal microscopy is becoming a mandatory examination to study corneal abnormalities such as drug deposits in systemic disease. A female diagnosed with fibromyalgia on systemic chloroquine for 9 months presented for an ophthalmic examination. Confocal microscopy was performed using the Confoscan 4 (Nidek Co. Ltd., Gamagori, Japan and multiple highly reflective deposits in the epithelial basal cells were found, that were consistent with choloquine. Deposits were also present in the wing cell layer. In the anterior stroma these deposits were rare. Atypically shaped and branched nerves were also present in the anterior stroma. Corneal deposits of chloroquine can be evaluated by confocal microscopy. Confocal microscopy provides information on corneal metabolism and physiology. Chloroquine keratopathy can affect the anterior stroma in addition to the epithelium.

  8. Divided-aperture differential confocal fast-imaging microscopy

    Science.gov (United States)

    Wang, Yun; Qiu, Lirong; Zhao, Xiangye; Zhao, Weiqian

    2017-03-01

    A new method, laser divided-aperture differential confocal microscopy (DDCM), is proposed to achieve high-resolution 3D imaging of microstructures of large-scale sample surfaces. This method uses a divided-aperture confocal structure to significantly improve the axial resolution of confocal microscopy and keep a long working distance simultaneously; uses two radically offset point detectors to achieve differential detection to further improve the axial response sensitivity and realize fast imaging of a large-scale sample surface with a big axial scan-step interval. Theoretical analyses and experimental results show that the DDCM can reach an axial resolution of 5 nm with a 3.1 mm working distance with a 3 times imaging speed of a confocal system with the same resolution.

  9. Confocal microscopy description of porosity defects in metallic composite alloys

    Directory of Open Access Journals (Sweden)

    K. Gawdzińska

    2008-03-01

    Full Text Available Possibilit ics of confocal microscopy applications for thc dcscripion of open porosity dcfccts in mctallic composirc alloys arcprcscntcd. This aniclc cbaractcrizcs rhc rncthnd and prcscnts its pssihle applications by describing a rcprcscntnr ivc nrcn of thc cxaminedvoid.

  10. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  11. Measuring Corneal Haze by Using Scheimpflug Photography and Confocal Microscopy

    Science.gov (United States)

    McLaren, Jay W.; Wacker, Katrin; Kane, Katrina M.; Patel, Sanjay V.

    2016-01-01

    Purpose We compared corneal backscatter estimated from a Scheimpflug camera with backscatter estimated from a clinical confocal microscope across a wide range of corneal haze. Methods A total of 59 corneas from 35 patients with a range of severity of Fuchs' endothelial corneal dystrophy and 15 corneas from 9 normal participants were examined using a Scheimpflug camera (Pentacam) and a confocal microscope (ConfoScan 4). The mean image brightness from the anterior 120 μm, midcornea, and posterior 60 μm of the cornea across the central 2 mm recorded by the Scheimpflug camera and analogous regions from the confocal microscope were measured and standardized. Differences between instruments and correlations between backscatter and disease severity were determined by using generalized estimating equation models. Results Backscatter measured by the two instruments in the anterior and midcornea were correlated (r = 0.67 and 0.43, respectively, P < 0.001), although in the posterior cornea they were not correlated (r = 0.13, P = 0.66). Measured with the Scheimpflug camera, mean backscatter from the anterior and midcornea were greater, whereas backscatter from the posterior cornea was lower (P < 0.001) than that measured by the confocal microscope. Backscatter from the anterior cornea was correlated with disease severity for both instruments (Scheimpflug, r = 0.55, P < 0.001; confocal, r = 0.49, P = 0.003). Conclusions The Scheimpflug camera and confocal microscope should not be used interchangeably to measure corneal haze. The ability to detect changes in backscatter with disease severity is superior with the Scheimpflug camera. However, the confocal microscope provides higher resolution of corneal structure. PMID:26803798

  12. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  13. Real-Time Confocal Imaging Of The Living Eye

    Science.gov (United States)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  14. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    Science.gov (United States)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  15. Confocal microscopy for visualization and characterization of porous silicon samples

    Science.gov (United States)

    Doia, Petronela; Petris, A.; Dancus, I.; Vlad, V. I.

    2007-08-01

    We have developed a scanning confocal microscopy (SCM) system which can be used to investigate micro-structural properties of samples with micro-geometry. We present advantages of this imaging technique for visualization and characterization of some periodic and non-periodic (porous silicon with an alveolar columnar structure (1.5 - 3 μm pores diameters)) samples. Using the confocal microscopy, we can obtain an enhancement of image resolution and contrast, in comparison with conventional optical microscopy. Therefore, it has particular advantages for the study of porous silicon. Confocal imaging method permit the "optical sectioning" of samples and lead to a sub-micron resolution both in lateral plane and axial plane.

  16. Image Restoration Phase-Filtering Lateral Superresolution Confocal Microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qian; QIU Li-Rong; CHEN Shan-Shan; FENG Zheng-De

    2006-01-01

    @@ Image restoration phase-filtering lateral superresolution confocal microscopy, a new approach, is proposed to achieve lateral superresolution using a confocal microscope. This approach uses a lateral superresolution pupil filter to preliminarily improve its lateral resolution and uses a single-image superresolution restoration technique based on a maximum likelihood estimate to further improve its lateral resolution. The new approach has the advantages of a low cost and the remarkable superresolution effect without excessive system complexity. Experiments indicate that the proposed approach can improve the lateral resolution of a confocal microscope from 0.3μm to less than 0.1 μm when λ = 632.8 nm and NA =0.85.

  17. Simple high-speed confocal line-scanning microscope.

    Science.gov (United States)

    Im, Kang-Bin; Han, Sumin; Park, Hwajoon; Kim, Dongsun; Kim, Beop-Min

    2005-06-27

    Using a line scan camera and an acousto-optic deflector (AOD), we constructed a high-speed confocal laser line-scanning microscope that can generate confocal images (512 x 512 pixels) with up to 191 frames/s without any mechanically moving parts. The line scanner consists of an AOD and a cylindrical lens, which creates a line focus sweeping over the sample. The measured resolutions in z (depth), x (perpendicular to line focus), and y (direction of line focus) directions are 3.3 mum, 0.7 mum and 0.9 mum, respectively, with a 50x objective lens. This confocal microscope may be useful for analyzing fast phenomena during biological and chemical interactions and for fast 3D image reconstruction.

  18. Second-harmonic patterned polarization-analyzed reflection confocal microscope

    Science.gov (United States)

    Okoro, Chukwuemeka; Toussaint, Kimani C.

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.

  19. Confocal volume in laser Raman microscopy depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yutaka; Kanematsu, Wataru [National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimo-Shidami, Moryama-ku, Nagoya 463-8560 (Japan)

    2011-11-15

    To clarify the degradation of confocality in laser Raman microscopy depth profiling (optical sectioning) and the influence of pinhole filtering on it, we investigate the confocal volume in detail based on Gaussian beam optics and scalar wave optics. Theoretical depth profiles of a homogeneous transparent sample for four different pinhole sizes, which are computed using the measured incident beam waist radius w{sub 0} and only a few optical system specific parameters such as a numerical aperture (NA) and a focal length, show a good agreement with the corresponding measured depth profiles. The computed confocal volume demonstrates that the pinhole size affects the actual probe depth as well as the axial resolution and the total intensity loss.

  20. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; ZHOU Lin; SI Li-Sheng; GONG Xiu-Fen

    2007-01-01

    @@ A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented.Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  1. Ex vivo laser confocal microscopy findings of cultured Acanthamoeba trophozoites

    Directory of Open Access Journals (Sweden)

    Yamazaki N

    2012-08-01

    Full Text Available Natsuko Yamazaki,1 Akira Kobayashi,1 Hideaki Yokogawa,1 Yasuhisa Ishibashi,2 Yosaburo Oikawa,3 Masaharu Tokoro,4 Kazuhisa Sugiyama11Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan; 2Department of Ophthalmology, East Washinomiya Hospital, Kuki, Japan; 3Department of Medical Zoology, Kanazawa Medical University, Kahoku, Japan; 4Department of Parasitology, Kanazawa University Graduate School of Medical Science, Kanazawa, JapanPurpose: The purpose of the current study was to investigate ex vivo laser confocal microscopic findings of cultured Acanthamoeba trophozoites obtained from Acanthamoeba keratitis patients.Methods: Eight cultured samples of Acanthamoeba trophozoites from eight eyes of seven patients (mean age, 26.9 years; age range, 18–52 years were used. Seven samples were from corneal scrapings of Acanthamoeba keratitis patients and one sample was from the solution in a soft contact lens case. Ex vivo laser confocal microscopy was performed to qualitatively evaluate the shape and degree of light reflection of the living Acanthamoeba trophozoites.Results: Ex vivo laser confocal microscopy demonstrated highly reflective, high-contrast Acanthamoeba trophozoites with no walls (mean size, 25.4 µm; range, 17.1–58.5 µm. The shapes of the trophozoites were highly pleomorphic, and some showed characteristic acanthopodia by laser confocal microscopy.Conclusion: Ex vivo laser confocal microscopy was effective in demonstrating cultured Acanthamoeba trophozoites of various shapes and sizes. The observations of the current study may be helpful when similar structures are identified under in vivo conditions.Keywords: Acanthamoeba, trophozoite, laser confocal microscopy

  2. Microscopia confocal in vivo na cistinose: relato de caso

    Directory of Open Access Journals (Sweden)

    Victor Gustavo

    2004-01-01

    Full Text Available A cistinose é doença autossômica recessiva rara caracterizada pelo acúmulo do aminoácido cistina livre dentro dos lisossomos e geralmente é fatal na primeira década de vida na ausência de transplante renal. O presente estudo tem por objetivo relatar os achados da microscopia confocal in vivo em paciente adulto com cistinose infantil. O exame de microscopia confocal in vivo revelou que há diferenças quanto à intensidade de acometimento, tamanho e forma dos depósitos nas diversas camadas corneanas.

  3. A Pico Projector Source for Confocal Fluorescence and Ophthalmic Imaging.

    Science.gov (United States)

    Muller, Matthew S

    2012-09-02

    A Pico digital light projector has been implemented as an integrated illumination source and spatial light modulator for confocal imaging. The target is illuminated with a series of rapidly projected lines or points to simulate scanning. Light returning from the target is imaged onto a 2D rolling shutter CMOS sensor. By controlling the spatio-temporal relationship between the rolling shutter and illumination pattern, light returning from the target is spatially filtered. Confocal retinal, fluorescence, and Fourier-domain optical coherence tomography implementations of this novel imaging technique are presented.

  4. Confocal shift interferometry of coherent emission from trapped dipolar excitons

    Energy Technology Data Exchange (ETDEWEB)

    Repp, J. [Walter Schottky Institut and Physik-Department, Am Coulombwall 4a, Technische Universität München, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München (Germany); Schinner, G. J.; Schubert, E. [Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München (Germany); Rai, A. K.; Wieck, A. D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Reuter, D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Department Physik, Universität Paderborn, 33098 Paderborn (Germany); Wurstbauer, U.; Holleitner, A. W. [Walter Schottky Institut and Physik-Department, Am Coulombwall 4a, Technische Universität München, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); and others

    2014-12-15

    We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.

  5. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  6. EUS-Guided Needle-Based Confocal Laser Endomicroscopy

    DEFF Research Database (Denmark)

    Bhutani, Manoop S; Koduru, Pramoda; Joshi, Virendra;

    2015-01-01

    the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure...... that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve...

  7. Laser differential fitting confocal microscopy with high imaging efficiency.

    Science.gov (United States)

    Sheng, Zhong; Wang, Yun; Zhao, Weiqian; Qiu, Lirong; Sun, Yingbin

    2016-09-01

    Based on the optical arrangement of a bipolar differential confocal microscopy (BDCM), laser differential fitting confocal microscopy (DFCM) is proposed in this paper using the feature of BDCM that a zero-crossing point (ZCP) of the axial response curve precisely corresponds to the focus of the system objective. A linear segment of the DFCM axial response around the ZCP is used to fit a straight line. Focus can be determined by solving the equations of the fitting lines, and then, the sample surface could be measured and reconstructed with a high resolution. Compared with the curve-fitting peak detection, which is an algorithm for focus detection widely used in conventional confocal microscopy, the line-fitting zero solution method used in DFCM has several advantages, such as high precision and sensitivity. Most importantly, precise focus detection can be realized using less data, i.e., DFCM has a high measurement efficiency. Furthermore, DFCM can effectively eliminate common-mode noise in a confocal microscopy system and has good noise suppression and disturbance resistance capability.

  8. Confocal raman microspectroscopy : a novel diagnostic tool in medical microbiology

    NARCIS (Netherlands)

    K. Maquelin (Kees)

    2002-01-01

    textabstractThe aim of the research described in this thesis was to develop confocal Raman microspectroscopy techniques for the rapid identification and characterisation of clinically relevant microorganisms. Chapter 2 describes a study in which the accuracy of the identification of Enterococcus spp

  9. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological proc

  10. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  11. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  12. Nonlinear Image Restoration in Confocal Microscopy : Stability under Noise

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1995-01-01

    In this paper we study the noise stability of iterative algorithms developed for attenuation correction in Fluorescence Confocal Microscopy using FT methods. In each iteration the convolution of the previous estimate is computed. It turns out that the estimators are robust to noise perturbation.

  13. Analysis of confocal microscopy under ultrashort light-pulse illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, M.; Rudolph, W. (Univ. of New Mexico, Albuquerque (United States))

    1993-02-01

    The resolution of confocal laser scanning microscopes is analyzed if they are used in measurements that are to combine high spatial and high temporal resoltuion. A generalized Fourier-optical treatment is developed in which the system characteristics contain all necessary information regarding the optical arrangement and the illuminating light pulses. Coherent and incoherent imaging are considered in detail. 10 refs., 8 figs.

  14. Nonlinear Image Restoration in Confocal Microscopy : Stability under Noise

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1995-01-01

    In this paper we study the noise stability of iterative algorithms developed for attenuation correction in Fluorescence Confocal Microscopy using FT methods. In each iteration the convolution of the previous estimate is computed. It turns out that the estimators are robust to noise perturbation.

  15. Nuclear area measurement on viable cells, using confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, K.M.S.; Marsden, S.J. (Medical Research Council, Harwell (United Kingdom). Radiobiological Research Unit)

    1992-04-01

    The authors describe a rapid procedure for the accurate measurement of nuclear areas on unperturbed living cells as used in radiobiological experiments, using the confocal laser scanning microscope. The microdosimetric interpretation of radiobiological data requires precise information on the nuclear area of cells as irradiated with high-LET radiation. (author).

  16. Comprehensive confocal endomicroscopy of the esophagus in vivo

    Science.gov (United States)

    Kang, Dongkyun; Schlachter, Simon C.; Carruth, Robert W.; Kim, Minkyu; Wu, Tao; Tabatabaei, Nima; Vacas-Jacques, Paulino; Shishkov, Milen; Woods, Kevin; Sauk, Jenny S.; Leung, John; Nishioka, Norman S.; Tearney, Guillermo J.

    2014-01-01

    Background and study aims: Biopsy sampling error can be a problem for the diagnosis of certain gastrointestinal tract diseases. Spectrally-encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has the potential to overcome sampling error by imaging large regions of gastrointestinal tract tissues. The aim of this study was to test a recently developed SECM endoscopic probe for comprehensively imaging large segments of the esophagus at the microscopic level in vivo. Methods: Topical acetic acid was endoscopically applied to the esophagus of a normal living swine. The 7 mm diameter SECM endoscopic probe was transorally introduced into the esophagus over a wire. Optics within the SECM probe were helically scanned over a 5 cm length of the esophagus. Confocal microscopy data was displayed and stored in real time. Results: Very large confocal microscopy images (length = 5 cm; circumference = 2.2 cm) of swine esophagus from three imaging depths, spanning a total area of 33 cm2, were obtained in about 2 minutes. SECM images enabled the visualization of cellular morphology of the swine esophagus, including stratified squamous cell nuclei, basal cells, and collagen within the lamina propria. Conclusions: The results from this study suggest that the SECM technology can rapidly provide large, contiguous confocal microscopy images of the esophagus in vivo. When applied to human subjects, the unique comprehensive, microscopic imaging capabilities of this technology may be utilized for improving the screening and surveillance of various esophageal diseases. PMID:26134959

  17. Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    Gun LiNa; TANG ZhiLie; XING Da

    2008-01-01

    The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than twophoton confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.

  18. Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.

  19. ERROR ANALYSIS OF 3D DETECTING SYSTEM BASED ON WHOLE-FIELD PARALLEL CONFOCAL MICROSCOPE

    Institute of Scientific and Technical Information of China (English)

    Wang Yonghong; Yu Xiaofen

    2005-01-01

    Compared with the traditional scanning confocal microscopy, the effect of various factors on characteristic in multi-beam parallel confocal system is discussed, the error factors in multi-beam parallel confocal system are analyzed. The factors influencing the characteristics of the multi-beam parallel confocal system are discussed. The construction and working principle of the non-scanning 3D detecting system is introduced, and some experiment results prove the effect of various factors on the detecting system.

  20. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    Science.gov (United States)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  1. Classification of billiard motions in domains bounded by confocal parabolas

    Energy Technology Data Exchange (ETDEWEB)

    Fokicheva, V V [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2014-08-01

    We consider the billiard dynamical system in a domain bounded by confocal parabolas. We describe such domains in which the billiard problem can be correctly stated. In each such domain we prove the integrability for the system, analyse the arising Liouville foliation, and calculate the invariant of Liouville equivalence--the so-called marked molecule. It turns out that billiard systems in certain parabolic domains have the same closures of solutions (integral trajectories) as the systems of Goryachev-Chaplygin-Sretenskii and Joukowski at suitable energy levels. We also describe the billiard motion in noncompact domains bounded by confocal parabolas, namely, we describe the topology of the Liouville foliation in terms of rough molecules. Bibliography: 16 titles.

  2. Anabaena cell ageing monitored with confocal fluorescence spectroscopy.

    Science.gov (United States)

    Ke, Shan; Bindokas, Vytas; Haselkorn, Robert

    2015-01-01

    Cyanobacteria use a sophisticated system of pigments to collect light energy across the visible spectrum for photosynthesis. The pigments are assembled in structures called phycobilisomes, composed of phycoerythrocyanin, phycocyanin and allophycocyanin, which absorb energy and transfer it to chlorophyll in photosystem II reaction centres. All of the components of this system are fluorescent, allowing sensitive measurements of energy transfer using single cell confocal fluorescence microscopy. The native pigments can be interrogated without the use of reporters. Here, we use confocal fluorescence microscopy to monitor changes in the efficiency of energy transfer as single cells age, between the time they are born at cell division until they are ready to divide again. Alteration of fluorescence was demonstrated to change with the age of the cyanobacterial cell.

  3. Laser differential confocal ultra-long focal length measurement.

    Science.gov (United States)

    Zhao, Weiqian; Sun, Ruoduan; Qiu, Lirong; Sha, Dingguo

    2009-10-26

    A new laser differential confocal focal-length measurement method is proposed for the measurement of an ultra-long focal-length. The approach proposed uses the property of an axial intensity curve that the absolute zero precisely corresponds to the focus of the objective in a differential confocal focusing system (DCFS) to measure the variation in position of DCFS focus with and without a measured ultra-long focal-length lens (UFL), uses the distance between the two focuses to obtain the UFL focal-length, and thereby achieving the precise measurement of ultra-long focal-length. The method has a high focusing precision, a strong anti-interference capability and a short measurement light-path. The theoretical analyses and preliminary experimental results indicate that the relative measurement error is about 0.01% when the method is used for the measurement of back-focus-distance (BFD).

  4. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    OpenAIRE

    Yoo, H W

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological processes and aberration-corrected imaging to localize the targeted biomolecule precisely through optical disturbances by specimen. In this thesis, optomechatronics design and control are discussed for...

  5. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  6. Enlightening the Pink: Use of Confocal Microscopy in Pink Lesions.

    Science.gov (United States)

    Gill, Melissa; González, Salvador

    2016-10-01

    Solitary pink lesions can pose a particular challenge to dermatologists because they may be almost or completely featureless clinically and dermoscopically, previously requiring biopsy to exclude malignancy. However, these lesions usually are not particularly challenging histopathologically. Thus, the incorporation of in vivo reflectance confocal microscopy into the clinical practice, which allows for noninvasive examination of the skin at the cellular level revealing features previously seen only on histopathology, is particularly useful for this subset of clinically difficult lesions.

  7. Corneal Cell Morphology in Keratoconus: A Confocal Microscopic Observation

    Science.gov (United States)

    Ghosh, Somnath; Mutalib, Haliza Abdul; Kaur, Sharanjeet; Ghoshal, Rituparna; Retnasabapathy, Shamala

    2017-01-01

    Purpose To evaluate corneal cell morphology in patients with keratoconus using an in vivo slit scanning confocal microscope. Methods A cross-sectional study was conducted to evaluate the corneal cell morphology of 47 keratoconus patients and 32 healthy eyes without any ocular disease. New keratoconus patients with different disease severities and without any other ocular co-morbidity were recruited from the ophthalmology department of a public hospital in Malaysia from June 2013 to May 2014. Corneal cell morphology was evaluated using an in vivo slit-scanning confocal microscope. Qualitative and quantitative data were analysed using a grading scale and the Nidek Advanced Visual Information System software, respectively. Results The corneal cell morphology of patients with keratoconus was significantly different from that of healthy eyes except in endothelial cell density (P = 0.072). In the keratoconus group, increased level of stromal haze, alterations such as the elongation of keratocyte nuclei and clustering of cells at the anterior stroma, and dark bands in the posterior stroma were observed with increased severity of the disease. The mean anterior and posterior stromal keratocyte densities and cell areas among the different stages of keratoconus were significantly different (P 0.05) among the three stages of keratoconus. Conclusion Confocal microscopy observation showed significant changes in corneal cell morphology in keratoconic cornea from normal healthy cornea. Analysis also showed significant changes in different severities of keratoconus. Understanding the corneal cell morphology changes in keratoconus may help in the long-term monitoring and management of keratoconus. PMID:28894403

  8. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Second-harmonic patterned polarization-analyzed reflection confocal microscope.

    Science.gov (United States)

    Okoro, Chukwuemeka; Toussaint, Kimani C

    2017-08-01

    We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Confocal Endomicroscopy Characteristics of Different Intraductal Papillary Mucinous Neoplasm Subtypes.

    Science.gov (United States)

    Kamboj, Amrit K; Dewitt, John M; Modi, Rohan M; Conwell, Darwin L; Krishna, Somashekar G

    2017-05-01

    Intraductal papillary mucinous neoplasms are classified into gastric, intestinal, pancreatobiliary, and oncocytic subtypes where morphology portends disease prognosis. The study aim was to demonstrate EUS-guided needle-based confocal laser endomicroscopy imaging features of intraductal papillary mucinous neoplasm subtypes. Four subjects, each with a specific intraductal papillary mucinous neoplasm subtype were enrolled. An EUS-guided needle-based confocal laser endomicroscopy miniprobe was utilized for image acquisition. The mean cyst size from the 4 subjects (2 females; mean age = 65.3±12 years) was 36.8±12 mm. All lesions demonstrated mural nodules and focal dilation of the main pancreatic duct. EUS-nCLE demonstrated characteristic finger-like papillae with inner vascular core for all subtypes. The image patterns of the papillae for the gastric, intestinal, and pancreatobiliary subtypes were similar. However, the papillae in the oncocytic subtype were thick and demonstrated a fine scale-like or honeycomb pattern with intraepithelial lumina correlating with histopathology. There was significant overlap in the needle-based confocal laser endomicroscopy findings for the different intraductal papillary mucinous neoplasm subtypes; however, the oncocytic subtype demonstrated distinct patterns. These findings need to be replicated in larger multicenter studies.

  11. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG; Zhilie; XING; Da; LIU; Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  12. In-vivo multi-spectral confocal microscopy

    Science.gov (United States)

    Rouse, Andrew R.; Udovich, Joshua A.; Gmitro, Arthur F.

    2005-03-01

    A multi-spectral confocal microendoscope (MCME) for in-vivo imaging has been developed. The MCME employs a flexible fiber-optic catheter coupled to a slit-scan confocal microscope with an imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The focus mechanism allows for imaging to a maximum tissue depth of 200 microns. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3 micron lateral resolution and 30 micron axial resolution. The system incorporates two laser sources and is therefore capable of simultaneous acquisition of spectra from multiple dyes using dual excitation. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 8nm to 16nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersion characteristics of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. In-vitro, and ex-vivo multi-spectral results are presented.

  13. Confocal epifluorescence detection for microspheres delivered on disposable microfluidic chip

    Institute of Scientific and Technical Information of China (English)

    Honghua Hu; Xiyun Hou; Guoguang Yang

    2006-01-01

    @@ The laser induced fluorescence (LIF) detection system for 5-μm microspheres delivered on microfluidic chip is presented employing confocal optical scheme. The parameters of the optical system are specifically optimized for single microsphere detection. With the excitation laser spot size of 4.6 μm and optical sectioning power of 27 μm, the lowest concentration detection limit is 0.45 nmol/L, corresponding to only 122 molecules in probe volume. The microsphere detection is carried on successfully with the maximum signal-to-noise ratio (SNR) of 55.7, which provides good detection sensitivity.

  14. Aerial wetting contact angle measurement using confocal microscopy

    OpenAIRE

    Chesna, Jacob W.; Wiedmaier, Bob F.; Wang, Jinlin; Samara, Ayman; Leach, Richard K.; Her, Tsing-Hua; Smith, Stuart T.

    2016-01-01

    A method is presented in which the wetting contact angle of a sessile drop is acquired aerially using confocal techniques to measure the radius and the height of a droplet deposited on a planar surface. The repeatability of this method is typically less than 0.25°, and often less than 0.1°, for droplet diameters less than 1 mm. To evaluate accuracy of this method, an instrument uncertainty budget is developed, which predicts a combined uncertainty of 0.91° for a 1 mm diameter water droplet wi...

  15. Quantification and confocal imaging of protein specific molecularly imprinted polymers

    OpenAIRE

    Hawkins, DM; Trache, A; Ellis, EA; Stevenson, D.; Holzenburg, A.; Meininger, GA; Reddy, Subrayal M

    2006-01-01

    We have employed FITC-albumin as the protein template molecule in an aqueous phase molecular imprinted polymer (HydroMIP) strategy. For the first time, the use of a fluorescently labelled template is reported, with subsequent characterisation of the smart material to show that the HydroMIP possess a significant molecular memory in comparison to that of the nonimprinted control polymer (HydroNIP). The imaging of the FITC-albumin imprinted HydroMIP using confocal microscopy is described, with t...

  16. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy.

  17. Conceptual Design of a Microwave Confocal Resonator Pick-up

    CERN Document Server

    Caspers, Friedhelm; Lofnes, T; Syratchev, I V; Ziemann, Volker

    2004-01-01

    A confocal resonator may be used as a pick-up for frequencies in the multi-GHz region. In this report we present the design, by analytical and numerical methods, of such a device. Furthermore, we discuss engineering issues, such as the damping of unwanted modes, shielding of image fields and manufacturing tolerances. Such a device can be used both as a pick-up and a kicker where the actual structure is several wavelengths away from the beam in the transverse direction. It is intended for highly relativistic beams and does not require changing the particle trajectory, as opposed to a diagnostic wiggler.

  18. Geometric and diffractive orbits in the scattering from confocal hyperbolae

    CERN Document Server

    Whelan, N D

    1994-01-01

    We study the scattering resonances between two confocal hyperbolae and show that the spectrum is dominated by the effect of a single periodic orbit. There are two distinct cases depending on whether the orbit is geometric or diffractive. A generalization of periodic orbit theory allows us to incorporate the second possibility. In both cases we also perform a WKB analysis. Although it is found that the semiclassical approximations work best for resonances with large energies and narrow widths, there is reasonable agreement even for resonances with large widths - unlike the two disk scatterer. We also find agreement with the next order correction to periodic orbit theory.

  19. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

    2000-03-06

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  20. UV laser mediated cell selective destruction by confocal microscopy

    Directory of Open Access Journals (Sweden)

    Giangrande Angela

    2008-04-01

    Full Text Available Abstract Analysis of cell-cell interactions, cell function and cell lineages greatly benefits selective destruction techniques, which, at present, rely on dedicated, high energy, pulsed lasers and are limited to cells that are detectable by conventional microscopy. We present here a high resolution/sensitivity technique based on confocal microscopy and relying on commonly used UV lasers. Coupling this technique with time-lapse enables the destruction and following of any cell(s in any pattern(s in living animals as well as in cell culture systems.

  1. Confocal microscopy through a multimode fiber using optical correlation

    CERN Document Server

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2015-01-01

    We report on a method to obtain confocal imaging through multimode fibers using optical correlation. First, we measure the fiber's transmission matrix in a calibration step. This allows us to create focused spots at one end of the fiber by shaping the wavefront sent into it from the opposite end. These spots are scanned over a sample, and the light coming back from the sample via the fiber is optically correlated with the input pattern. We show that this achieves spatial selectivity in the detection. The technique is demonstrated on microbeads, a dried epithelial cell, and a cover glass.

  2. Confocal Microscopy for Modeling Electron Microbeam Irradiation of Skin

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H.; Chrisler, William B.; Wang, Xihai; Sowa, Marianne B.

    2011-08-01

    For radiation exposures employing targeted sources such as particle microbeams, the deposition of energy and dose will depend on the spatial heterogeneity of the spample. Although cell structural variations are relatively minor for two-dimensional cell cultures, they can vary significantly for fully differential tissues. Employing high-resolution confocal microscopy, we have determined the spatial distribution, size, and shape of epidermal kerantinocyte nuclei for the full-thickness EpiDerm skin model (MatTek, Ashland, VA). Application of these data to claculate the microdosimetry and microdistribution of energy deposition by an electron microbeam is discussed.

  3. Confocal microscopy through a multimode fiber using optical correlation

    Science.gov (United States)

    Loterie, Damien; Goorden, Sebastianus A.; Psaltis, Demetri; Moser, Christophe

    2015-12-01

    We report on a method to obtain confocal imaging through multimode fibers using optical correlation. First, we measure the fiber's transmission matrix in a calibration step. This allows us to create focused spots at one end of the fiber by shaping the wavefront sent into it from the opposite end. These spots are scanned over a sample, and the light coming back from the sample via the fiber is optically correlated with the input pattern. We show that this achieves spatial selectivity in the detection. The technique is demonstrated on microbeads, a dried epithelial cell, and a cover glass.

  4. Synchrotron radiation as a light source in confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    van der Oord, C.J.R.; Gerritsen, H.C.; Levine, Y.K. (University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht (Netherlands)); Myring, W.J.; Jones, G.R.; Munro, I.H. (Daresbury Laboratory (United Kingdom))

    1992-01-01

    The optical properties of a confocal scanning microscope that was designed to utilize a synchrotron as light source are presented. The usable spectral range is from 200 nm up to 700 nm. Using 325-nm laser light, it is shown that the lateral resolution is about 125 nm, and the axial resolution better than 250 nm. After transport of the microscope from Utrecht to the Daresbury Synchrotron Source, 200-nm excitation can be applied, and the lateral resolution will drop to below 100 nm.

  5. [Confocal microscopy for the diagnostics of fungal keratitis].

    Science.gov (United States)

    Daas, L; Viestenz, A; Bischoff, M; Hasenfus, A; Seitz, B

    2016-09-01

    Fungal keratitis is a rare but very serious eye disease in industrial nations with a frequency of 1-5 % of all forms of keratitis from microbial causes. We present two patients with keratitis of primary unknown cause. Using confocal microscopy fungal filaments could be identified that partially showed a parallel configuration (like "railway tracks"). Thus, the correct diagnosis can often be made and suitable therapy can be non-invasively initiated even before the results of in vitro cultivation (fungal culture), polymerase chain reaction (PCR) and histological investigations are available.

  6. Microscopia confocal in vivo nos depósitos corneanos por amiodarona In vivo confocal microscopy in amiodarone corneal deposits

    Directory of Open Access Journals (Sweden)

    Gustavo Victor

    2007-02-01

    Full Text Available OBJETIVO: Descrever os achados da microscopia confocal in vivo em pacientes nos diversos estágios de ceratopatia induzida por amiodarona, e correlacionar o estadiamento biomicroscópico com o estadiamento confocal. MÉTODOS: Vinte olhos de 10 pacientes (6 homens e 4 mulheres em tratamento com amiodarona, que apresentavam ceratopatia induzida pela droga, foram selecionados para o estudo, com a microscopia confocal (MC. RESULTADOS: A média de idade foi 58 ± 6,2 anos (50-66 anos e o tempo de uso da droga foi de 6 ± 3,2 anos (2-11 anos. Todos pacientes tinham acuidade visual com correção melhor ou igual a 20/40. A biomicroscopia evidenciou ceratopatia por amiodarona: dois pacientes no estágio 1, quatro no estágio 2 e quatro no estágio 3. Todas as córneas apresentaram inclusões intracelulares brilhantes e de alta refletividade na camada epitelial basal. A partir dos estágios 2 e 3, foram encontrados microdepósitos em todas camadas corneanas. Foram observados afilamento e aumento da tortuosidade dos nervos corneanos nos estágios 2 e 3 da ceratopatia. A contagem endotelial média foi de 2.524 ± 150,3 células/mm². CONCLUSÃO: O epitélio basal foi o mais acometido nos diferentes estágios da ceratopatia. Nos pacientes do estágio 1 a biomicroscopia, os microdepósitos subepiteliais são restritos ao epitélio superficial e basal, ao passo que nos pacientes dos estágios 2 e 3, os microdepósitos afetam todas camadas corneanas. À medida que a ceratopatia avança, os nervos corneanos ficam mais afilados e tortuosos.PURPOSE: To describe in vivo confocal microscopy findings in patients with different stages of amiodarone-induced keratopathy, and correlate biomicroscopy stages with confocal stages. METHODS: Twenty eyes of 10 patients (6 men and 4 women, who receive treatment with amiodarone were selected for the study with confocal microscopy (MC. RESULTS: The average age was 58 ± 6.2 years (50-66 years and time of use of the drug was 6

  7. Use of confocal microscopy for nanoparticle drug delivery through skin

    Science.gov (United States)

    Zhang, Leshuai W.; Monteiro-Riviere, Nancy A.

    2013-06-01

    Confocal laser scanning microscopy (CLSM) is a well-used microscopic tool that provides valuable morphological and functional information within cells and tissues. The application of CLSM to skin and the topical penetration of nanoparticles (NP) will be addressed. First, we describe the advantages of confocal microscopy compared to other techniques and its use relative to skin research. Second, we discuss the ability of CLSM to detect single NP. Regarding their interaction with skin, the appropriate method to retain nanoparticle localization in the tissue with minimal fixation is critically important. Also, the interaction of several different types of NP (quantum dots, fullerene and dendrimers) and their interaction with skin detected by CLSM under various conditions (flexed, tape stripped and abraded skin) is reviewed. Finally, human epidermal keratinocytes and dendritic cells that serve as appropriate in vitro models for skin cell interactions and cellular uptake of NP are also discussed. In conclusion, the unique functions of CLSM such as the ability to detect fluorescence, optical sectioning, three dimensional remodeling, as well as its use in the reflection mode in tandem with other methods, provides great promise with broad applications regarding the interactions of nanomaterials with skin.

  8. Confocal endomicroscopy: Is it time to move on?

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Confocal laser endomicroscopy permits in-vivo microscopyevaluation during endoscopy procedures. Itcan be used in all the parts of the gastrointestinaltract and includes Esophagus, stomach, small bowel,colon, biliary tract through and endoscopic retrogradecholangiopancreatography and pancreas through needlesduring endoscopic ultrasound procedures. Many researchesdemonstrated a high correlation of results betweenconfocal laser endomicroscopy and histopathology inthe diagnosis of gastrointestinal lesions; with accuracyin about 86% to 96%. Moreover, in spite that histopathologyremains the gold-standard technique for finaldiagnosis of any diseases; a considerable number ofmisdiagnosis rate could be present due to many factorssuch as interpretation mistakes, biopsy site inaccuracy,or number of biopsies. Theoretically; with the diagnosticaccuracy rates of confocal laser endomicroscopycould help in a daily practice to improve diagnosis andtreatment management of the patients. However, it isstill not routinely used in the clinical practice due to manyfactors such as cost of the procedure, lack of codificationand reimbursement in some countries, absence ofstandard of care indications, availability, physician imageinterpretationtraining, medico-legal problems, and therole of the pathologist. These limitations are relative,and solutions could be found based on new researchesfocused to solve these barriers.

  9. Tilted Two-Dimensional Array Multifocus Confocal Raman Microspectroscopy.

    Science.gov (United States)

    Yabumoto, Sohshi; Hamaguchi, Hiro-O

    2017-07-18

    A simple and efficient two-dimensional multifocus confocal Raman microspectroscopy featuring the tilted-array technique is demonstrated. Raman scattering from a 4 × 4 square foci array passing through a 4 × 4 confocal pinhole array is tilted with a periscope. The tilted array of Raman scattering signals is dispersed by an imaging spectrograph onto a CCD detector, giving 16 independent Raman spectra formed as 16 bands with different heights on the sensor. Use of a state-of-the-art imaging spectrograph enables high-precision wavenumber duplicability of the 16 spectra. This high duplicability makes the simultaneously obtained spectra endurable for multivariate spectral analyses, which is demonstrated by a singular value decomposition analysis for Raman spectra of liquid indene. Although the present implementation attains only 16 measurement points, the number of points can be extended to larger than 100 without any technical leaps. Limit of parallelization depends on the interval of measurement points as well as the performance of the optical system. Criteria for finding the maximum feasible number are discussed.

  10. Corneal confocal sub-basal nerve plexus evaluation: a review.

    Science.gov (United States)

    Kokot, Joanna; Wylęgała, Adam; Wowra, Bogumił; Wójcik, Łukasz; Dobrowolski, Dariusz; Wylęgała, Edward

    2017-07-25

    The aim of this study was to review the most recent data about corneal sub-basal nerve plexus (SNP) evaluated with the use of corneal confocal microscopy (CCM). For this purpose, an electronic search was conducted based on PubMed and Google Scholar and Web of Science databases from 2008 up to the end of 2016. Ninety-eight articles in English were cited, as well as abstracts in other languages, concerning the morphology and function of corneal SNP in various diseases. Changes in corneal SNP as a result of local treatment were also introduced. Figures with scans from confocal microscopy from our Department were included. The main conclusion of this review was that both corneal SNP diminishment and high tortuosity as well as low sensitivity are in principle related to the presence or level of pathology. In addition, increased nerve tortuosity may represent a morphological determinant of nerve regeneration. However, the presented literature shows that SNP changes are not characteristic for one unified corneal pathology; rather, they reflect the non-specific pathological process present in many diseases. Future studies should use automatized biometric software and also examine the effects of new treatments on SNP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. The confocal plane grating spectrometer at BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Könnecke, R., E-mail: rene.koennecke@helmholtz-berlin.de [Institute for Methods and Instrumentation in Synchrotron Radiation Research (G-I2), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Follath, R., E-mail: rolf.follath@helmholtz-berlin.de [Institute Nanometre Optics and Technology (G-I5), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Pontius, N.; Schlappa, J. [Institute for Methods and Instrumentation in Synchrotron Radiation Research (G-I2), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Eggenstein, F.; Zeschke, T. [Institute Nanometre Optics and Technology (G-I5), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Bischoff, P. [Department Experiment Data Processing (NP-H22), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schmidt, J.-S. [Institute Nanometre Optics and Technology (G-I5), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Noll, T. [Institute for Methods and Instrumentation in Synchrotron Radiation Research (G-I2), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institute Nanometre Optics and Technology (G-I5), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); and others

    2013-06-15

    Highlights: ► At the electron storage ring BESSY II a confocal plane grating RIXS endstation with a spot size of 4 μm × 1 μm is presently being installed. ► A resolving power above 10,000 is expected for low energy excitations below 500 eV. ► The sample will be excited with a photon flux up to 10{sup 15} photons/(s 300 mA 0.1%bandwidth). ► Sample environments for solid, gaseous and liquid samples will be provided. ► A fast detecting system is being set up for future pump-probe experiments. -- Abstract: At BESSY II a confocal plane grating spectrometer for resonant inelastic X-ray scattering (RIXS) is currently under commissioning. The new endstation operates with a source size of 4 × 1 μm{sup 2} provided by its dedicated beamline. The RIXS-spectrometer covers an energy range from 50 eV to 1000 eV, providing a resolving power E/ΔE of 5000–15,000. The beamline allows full polarization control and gives a photon flux of up to 7 × 10{sup 14} photons/s/0.1 A/0.1%bandwidth by offering a resolving power E/ΔE of 4000–12,000.

  12. Measurement of steep edges and undercuts in confocal microscopy.

    Science.gov (United States)

    Mueller, T; Jordan, M; Schneider, T; Poesch, A; Reithmeier, E

    2016-05-01

    Confocal microscopy is widely used to measure the surface topography of specimen with a precision in the micrometer range. The measurement uncertainty and quality of the acquired data of confocal microscopy depends on various effects, such as optical aberrations, vibrations of the measurement setup and variations in the surface reflectivity. In this article, the influence of steep edges and undercuts on measurement results is examined. Steep edges on the specimen's surface lead to a reduced detector signal which influences the measurement accuracy and undercuts cause surface regions, which cannot be captured in a measurement. The article describes a method to overcome the negative effects of steep edges and undercuts by capturing several measurements of the surface with different angles between the surface and the optical axis of the objective. An algorithm is introduced which stitches different angle measurements together without knowledge of the exact position and orientation of the rotation axis. Thus, the measurement uncertainty due to steep edges and undercuts can be avoided without expensive high-precision rotation stages and time consuming adjustment of the measurement setup.

  13. Segmentation of skin strata in reflectance confocal microscopy depth stacks

    Science.gov (United States)

    Hames, Samuel C.; Ardigò, Marco; Soyer, H. Peter; Bradley, Andrew P.; Prow, Tarl W.

    2015-03-01

    Reflectance confocal microscopy is an emerging tool for imaging human skin, but currently requires expert human assessment. To overcome the need for human experts it is necessary to develop automated tools for automatically assessing reflectance confocal microscopy imagery. This work presents a novel approach to this task, using a bag of visual words approach to represent and classify en-face optical sections from four distinct strata of the skin. A dictionary of representative features is learned from whitened and normalised patches using hierarchical spherical k-means. Each image is then represented by extracting a dense array of patches and encoding each with the most similar element in the dictionary. Linear discriminant analysis is used as a simple linear classifier. The proposed framework was tested on 308 depth stacks from 54 volunteers. Parameters are tuned using 10 fold cross validation on a training sub-set of the data, and final evaluation was performed on a held out test set. The proposed method generated physically plausible profiles of the distinct strata of human skin, and correctly classified 81.4% of sections in the test set.

  14. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  15. Confocal Raman-AFM, A New Tool for Materials Research

    Science.gov (United States)

    Schmidt, Ute

    2005-03-01

    Characterization of heterogeneous systems, e.g. polymers, on the nanometer scale continues to grow in importance and to impact key applications in the field of materials science, nanotechnology and catalysis. The development of advanced polymeric materials for such applications requires detailed information about the physical and chemical properties of these materials on the nanometer scale. However, some details about the phase-separation process in polymers are difficult to study with conventional characterization techniques due to the inability of these methods to chemically differentiate materials with good spatial resolution, without damage, staining or preferential solvent washing. The CR-AFM is a breakthrough in microscopy. It combines three measuring techniques in one instrument: a high resolution confocal optical microscope, an extremely sensitive Raman spectroscopy system, and an Atomic Force Microscope. Using this instrument, the high spatial and topographical resolution obtained with an AFM can be directly linked to the chemical information gained by Confocal Raman spectroscopy. To demonstrate the capabilities of this unique combination of measuring techniques, polymer blend films, spin coated on glass substrates, have been characterized. AFM measurements reveal the structural and mechanical properties of the films, whereas Raman spectral images show the chemical composition of the blends.

  16. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  17. Emission characteristics of light-emitting diodes by confocal microscopy

    Science.gov (United States)

    Cheung, W. S.; Choi, H. W.

    2016-03-01

    The emission profiles of light-emitting diodes have typically be measured by goniophotometry. However this technique suffers from several drawbacks, including the inability to generate three-dimensional intensity profiles as well as poor spatial resolution. These limitations are particularly pronounced when the technique is used to compared devices whose emission patterns have been modified through surface texturing at the micrometer and nanometer scales,. In view of such limitations, confocal microscopy has been adopted for the study of emission characteristics of LEDs. This enables three-dimensional emission maps to be collected, from which two-dimensional cross-sectional emission profiles can be generated. Of course, there are limitations associated with confocal microscopy, including the range of emission angles that can be measured due to the limited acceptance angle of the objective. As an illustration, the technique has been adopted to compare the emission profiles of LEDs with different divergence angles using an objective with a numerical aperture of 0.8. It is found that the results are consistent with those obtained by goniophotometry when the divergence angle is less that the acceptance angle of the objective.

  18. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    Beaudet A.

    1998-01-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  19. Confocal/TEM overlay microscopy: a simple method for correlating confocal and electron microscopy of cells expressing GFP/YFP fusion proteins.

    Science.gov (United States)

    Keene, Douglas R; Tufa, Sara F; Lunstrum, Gregory P; Holden, Paul; Horton, William A

    2008-08-01

    Genetic manipulation allows simultaneous expression of green fluorescent protein (GFP) and its derivatives with a wide variety of cellular proteins in a variety of living systems. Epifluorescent and confocal laser scanning microscopy (confocal) localization of GFP constructs within living tissue and cell cultures has become routine, but correlation of light microscopy and high resolution transmission electron microscopy (TEM) on components within identical cells has been problematic. In this study, we describe an approach that specifically localizes the position of GFP/yellow fluorescent protein (YFP) constructs within the same cultured cell imaged in the confocal and transmission electron microscopes. We present a simplified method for delivering cell cultures expressing fluorescent fusion proteins into LR White embedding media, which allows excellent GFP/YFP detection and also high-resolution imaging in the TEM. Confocal images from 0.5-microm-thick sections are overlaid atop TEM images of the same cells collected from the next serial ultrathin section. The overlay is achieved in Adobe Photoshop by making the confocal image somewhat transparent, then carefully aligning features within the confocal image over the same features visible in the TEM image. The method requires no specialized specimen preparation equipment; specimens are taken from live cultures to embedding within 8 h, and confocal transmission overlay microscopy can be completed within a few hours.

  20. Low-power, Confocal Imaging of Protein Localization in Living Cells (7214-150) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed technology genetically labels intracellular structures and visualizes protein interactions in living cells using a compact, confocal microscope with...

  1. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    Science.gov (United States)

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  2. In vivo confocal microscopy in recurrent granular dystrophy in corneal graft after penetrating keratoplasty.

    Science.gov (United States)

    Traversi, Claudio; Martone, Gianluca; Malandrini, Alex; Tosi, Gian Marco; Caporossi, Aldo

    2006-11-01

    Two case reports of recurrent granular dystrophy in corneal grafts after penetrating keratoplasty are presented. Slit-lamp examination and confocal microscopy (HRT II) were performed in two patients with recurrent granular dystrophy. All confocal microscopic findings of granular dystrophy were evaluated in the graft. Dystrophic lesions of the donor cornea presented the same confocal microscopic aspects in both eyes, and were similar to granular dystrophy lesions. Confocal microscopy is an imaging method that may provide new information on corneal microanatomy in dystrophies. It may be particularly useful in improving the early diagnosis of dystrophic lesions in corneal grafts.

  3. Confocal Raman Microspectroscopy for Evaluating the Stratum Corneum Removal by 3 Standard Methods

    National Research Council Canada - National Science Library

    Förster, M; Bolzinger, M.A; Rovere, M.R; Damour, O; Montagnac, G; Briançon, S

    2011-01-01

    ...: The removal qualities of tape stripping, cyanoacrylate skin surface biopsy and trypsinization were estimated in vitro via histological imaging and confocal Raman microspectroscopy (CRM) and compared...

  4. High contrast, depth-resolved thermoreflectance imaging using a Nipkow disk confocal microscope.

    Science.gov (United States)

    Summers, J A; Yang, T; Tuominen, M T; Hudgings, J A

    2010-01-01

    We have developed a depth-resolved confocal thermal imaging technique that is capable of measuring the temperature distribution of an encapsulated or semi-obstructed device. The technique employs lock-in charge coupled device-based thermoreflectance imaging via a Nipkow disk confocal microscope, which is used to eliminate extraneous reflections from above or below the imaging plane. We use the confocal microscope to predict the decrease in contrast and dynamic range due to an obstruction for widefield thermoreflectance, and we demonstrate the ability of confocal thermoreflectance to maintain a high contrast and thermal sensitivity in the presence of large reflecting obstructions in the optical path.

  5. Mechanical scanner-less multi-beam confocal microscope with wavefront modulation

    Science.gov (United States)

    Takiguchi, Yu; Seo, Min-Woong; Kagawa, Keiichiro; Takamoto, Hisayoshi; Inoue, Takashi; Kawahito, Shoji; Terakawa, Susumu

    2016-04-01

    We propose a novel full-electronically controlled laser confocal microscope in which a liquid-crystal-on-silicon spatial light modulator and a custom CMOS imaging sensor are synchronized for performing multi-beam confocal imaging. Adaptive wavefront modulation for functional multi-beam excitation can be achieved by displaying appropriate computer generated holograms on the spatial light modulator, in consideration of the numerical aperture of the focusing objective. We also adopted a custom CMOS imaging sensor to realize multi-beam confocal microscopy without any physical pinhole. The confocality of this microscope was verified by improvements in transverse and axial resolutions of fluorescent micro-beads.

  6. 3D imaging of neutron tracks using confocal microscopy

    Science.gov (United States)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  7. Reflectance confocal microscopy for cutaneous infections and infestations.

    Science.gov (United States)

    Cinotti, E; Perrot, J L; Labeille, B; Cambazard, F

    2016-05-01

    Reflectance confocal microscopy (RCM) is a high-resolution emerging imaging technique that allows non-invasive diagnosis of several cutaneous disorders. A systematic review of the literature on the use of RCM for the study of infections and infestations has been performed to evaluate the current use of this technique and its possible future applications in this field. RCM is particularly suitable for the identification of Sarcoptes scabies, Demodex folliculorum, Ixodes, Dermatophytes and Candida species in the clinical practice and for the follow-up after treatment. The cytopathic effect of herpes simplex virus, varicella zoster virus and molluscipoxvirus is also detectable by this imaging technique even in a pre-vesicular stage. In addition, thanks to its non-invasiveness, RCM allows pathophysiological studies.

  8. Aerial wetting contact angle measurement using confocal microscopy

    Science.gov (United States)

    Chesna, Jacob W.; Wiedmaier, Bob F.; Wang, Jinlin; Samara, Ayman; Leach, Richard K.; Her, Tsing-Hua; Smith, Stuart T.

    2016-12-01

    A method is presented in which the wetting contact angle of a sessile drop is acquired aerially using confocal techniques to measure the radius and the height of a droplet deposited on a planar surface. The repeatability of this method is typically less than 0.25°, and often less than 0.1°, for droplet diameters less than 1 mm. To evaluate accuracy of this method, an instrument uncertainty budget is developed, which predicts a combined uncertainty of 0.91° for a 1 mm diameter water droplet with a contact angle of 110°. For droplets having diameters less than 1 mm and contact angles between 15° and 160°, these droplets approach spherical shape and their contact angles can be computed analytically with less than 1% error. For larger droplets, gravitational deformation needs to be considered.

  9. Confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    CERN Document Server

    Jun, Brian; Yang, Haisheng; Main, Russell; Vlachos, Pavlos

    2016-01-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC) based velocimetry are (1) the use of diffusion dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross correlation, and develop an SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nano...

  10. Error analysis for a laser differential confocal radius measurement system.

    Science.gov (United States)

    Wang, Xu; Qiu, Lirong; Zhao, Weiqian; Xiao, Yang; Wang, Zhongyu

    2015-02-10

    In order to further improve the measurement accuracy of the laser differential confocal radius measurement system (DCRMS) developed previously, a DCRMS error compensation model is established for the error sources, including laser source offset, test sphere position adjustment offset, test sphere figure, and motion error, based on analyzing the influences of these errors on the measurement accuracy of radius of curvature. Theoretical analyses and experiments indicate that the expanded uncertainty of the DCRMS is reduced to U=0.13  μm+0.9  ppm·R (k=2) through the error compensation model. The error analysis and compensation model established in this study can provide the theoretical foundation for improving the measurement accuracy of the DCRMS.

  11. Clinical results with acridine orange using a novel confocal laparoscope

    Science.gov (United States)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2009-02-01

    We previously reported on the development of a multi-spectral confocal laparoscope for clinical imaging. In this paper we present current results using the system to image ovaries with a new laparoscope design using the contrast agent acridine orange. This new laparoscope integrates computer controlled systems for focus, depth scans, and localized contrast agent delivery. Precise axial position control is accomplished with tiny stepper motors integrated inside the laparoscope handle. Ergonomic handle controls allow for data acquisition, deliver of contrast agents, and adjustment of imaging depth during procedures by the surgeon. We have approval to use acridine orange in our clinical trials to image ovaries in vivo during oophorectomies. We present in vivo results using both acridine orange and fluorescein as the topically administered contrast agent.

  12. Materials and corrosion characterization using the confocal resonator

    Energy Technology Data Exchange (ETDEWEB)

    Tigges, C.P.; Sorensen, N.R.; Hietala, V.M.; Plut, T.A. [and others

    1997-05-01

    Improved characterization and process control is important to many Sandia and DOE programs related to manufacturing. Many processes/structures are currently under-characterized including thin film growth, corrosion and semiconductor structures, such as implant profiles. A sensitive tool is required that is able to provide lateral and vertical imaging of the electromagnetic properties of a sample. The confocal resonator is able to characterize the surface and near-surface impedance of materials. This device may be applied to a broad range of applications including in situ evaluation of thin film processes, physical defect detection/characterization, the characterization of semiconductor devices and corrosion studies. In all of these cases, the technology should work as a real-time process diagnostic or as a feedback mechanism regarding the quality of a manufacturing process. This report summarizes the development and exploration of several diagnostic applications.

  13. Endocrine and metabolic disease: Confocal microscopy as a diagnostic aid

    Directory of Open Access Journals (Sweden)

    Jaikrit Bhutani

    2015-01-01

    Full Text Available Diabetes is a systemic disease associated with many complications. These can be prevented and managed effectively if detected promptly. Confocal microscopy (CFM is a diagnostic tool which has the potential to help in early detection of disease and timely management. CFM has the potential to serve as an excellent noninvasive modality for in vivo imaging and morphological analysis, which can aid us in assessing and monitoring various infectious and pathological diseases at the cellular level. Besides ophthalmological indications, CFM has shown good sensitivity and specificity for identifying those at risk of neuropathy and foot ulceration, monitoring evolution and therapeutic response in a wide range of neuropathies apart from diabetic neuropathy. Through this communication, we aim to sensitize the endocrinologists towards cerebral cavernous malformation as a biomarker to evaluate potential outcomes and therapies in human diabetic neuropathy.

  14. Characterization of Developing Cotton Fibers by Confocal Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Luis Cabrales

    2014-10-01

    Full Text Available Cellulose deposition in developing cotton fibers has been studied previously with analytical techniques, such as Fourier transform infrared spectroscopy (FTIR, High-performance liquid chromatography (HPLC and Thermogravimetric analysis (TGA. Recent technological developments in instrumentation have made Raman microscopy emerge as an extraordinary analytical tool in biological and plant research. The advantage of using confocal Raman microscopy (CRM resides in the lateral spatial resolution and in the fact that Raman spectroscopy provides not only chemical composition information, but also structural information. Cross-sections of cotton fibers harvested at different developmental stages were studied with CRM. The Raman bands assigned to cellulose were analyzed. The results of this study indicate that CRM can be used as a tool to study cellulose deposition in cotton fibers and could provide useful information on cellulose deposition during cotton fiber development.

  15. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  16. Confocal imaging of protein distributions in porous silicon optical structures

    Energy Technology Data Exchange (ETDEWEB)

    De Stefano, Luca [Institute for Microelectronics and Microsystems, Department of Naples, National Council of Research, Via P Castellino 111, 80131 Naples (Italy); D' Auria, Sabato [Institute of Protein Biochemistry, National Council of Research, Via P Castellino 111, 80131 Naples (Italy)

    2007-10-03

    The performances of porous silicon optical biosensors depend strongly on the arrangement of the biological probes into their sponge-like structures: it is well known that in this case the sensing species do not fill the pores but instead cover their internal surface. In this paper, the direct imaging of labelled proteins into different porous silicon structures by using a confocal laser microscope is reported. The distribution of the biological matter in the nanostructured material follows a Gaussian behaviour which is typical of the diffusion process in the porous media but with substantial differences between a porous silicon monolayer and a multilayer such as a Bragg mirror. Even if semi-quantitative, the results can be very useful in the design of the porous silicon based biosensing devices.

  17. ANALYSIS OF ENDOPLASMIC RETICULUM OF TOBACCO CELLS USING CONFOCAL MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Barbora Radochová

    2011-05-01

    Full Text Available Image analysis techniques for preprocessing, segmentation and estimation of geometrical characteristics of fiber-like structures from 2-D or 3-D images captured by a confocal microscope are presented. Methods are demonstrated on fiber-like biological structure: endoplasmic reticulum (ER of tobacco cells. In the presented analysis of 2-D images of ER before and after the treatment of latrunculin B, ER and ER tubules were segmented and the area density of ER as well as the length density of ER tubules in the cell cortical layer were estimated by automatic image analysis algorithms. Images of 3-D arrangement of ER were reconstructed and rendered by various visualization techniques.

  18. In vivo reflectance confocal microscopy in a typical case of melasma Microscopia confocal reflectante in vivo em um caso típico de melasma

    OpenAIRE

    Mariana Carvalho Costa; Hernando Vega Eljaiek; Leonardo Spagnol Abraham; Luna Azulay-Abulafia; Marco Ardigo

    2012-01-01

    Melasma is a common disorder of hypermelanosis that affects mainly young and middle-aged women of Fitzpatrick's phototypes III-V. The disease significantly impacts their lives. In vivo reflectance confocal microscopy, a spreading technology for the noninvasive evaluation of the skin up to the papillary dermis, provides real-time en face images with cellular resolution. We present a case of melasma with in vivo reflectance confocal microscopy findings closely correlated to the histopathologica...

  19. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  20. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2012-06-01

    Full Text Available Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. Se recopilaron un total de 50 casos sin afección corneal. Resultados: De los 100 ojos estudiados, 64 tenían paquimetrías por encima del valor medio. Estuvieron presentes los tres tipos de células epiteliales en casi la totalidad de los pacientes; así como los queratocitos en las diferentes profundidades del estroma corneal. La mayoría de los ojos tenían un conteo celular endotelial por encima de 2 500, cifra comprendida dentro de los valores normales. Se encontraron fibras nerviosas en cada una de sus capas. Conclusiones: La microscopia confocal se presenta como una nueva herramienta que permite observar en vivo la histología corneal y complementar las observaciones de la biomicroscopia convencional. Esto constituye un reto para el mejor entendimiento de la histopatología corneal. De esta manera podemos actuar de forma profiláctica y terapéutica, en el seguimiento y evolución de patologías corneales.Objective: This paper is aimed at analyzing the corneal cellular structures through Confoscan S4-aided confocal microscopy in apparently healthy corneas. Methods: A prospective longitudinal study of 100 healthy eyes from practicing doctors, and from patients who had attended the corneal service at “Ramón Pando Ferrer” Cuban Institute of Ophthalmology in Havana since May 2007 was conducted. Both eyes of participating doctors were examined whereas the non-affected eye was examined in the patients. A total of 50 cases with no corneal

  1. Confocal microscopy in a case of crystalline keratopathy in a patient with smouldering multiple myeloma.

    Science.gov (United States)

    Mazzotta, Cosimo; Caragiuli, Stefano; Caporossi, Aldo

    2014-06-01

    We report the clinical and confocal microscopic findings of the cornea in a patient with smouldering multiple myeloma (SMM) using in vivo scanning laser confocal microscopy. A 72-year-old female underwent a complete ophthalmological examination including slit-lamp biomicroscopy with digital photography, HRT II laser scanning in vivo confocal microscopy and haematological laboratory assessment. Corneal biomicroscopy revealed the presence of bilateral diffuse microgranular tiny grey opacities. In vivo confocal microscopy showed randomly oriented hyper-reflective needle-shaped crystals throughout all levels of the stroma, sparing epithelium and endothelium. In vivo confocal microscopy was very helpful in the differential diagnosis by allowing the nature of the corneal deposits to be established, revealing the typical aspect of the crystals, and excluding granular dystrophy, leading to a suspected diagnosis of SMM. Crystalline corneal deposits may easily be confused as crumb-like opacities typical of granular dystrophy on slit-lamp examination even by experienced ophthalmologists.

  2. Development of in vivo confocal microscope for reflection and fluorescence imaging simultaneously

    Science.gov (United States)

    Ahn, MyoungKi; Chun, ByungSeon; Song, Cheol; Gweon, DaeGab

    2010-02-01

    In-vivo confocal microscope technology can be applied to the medical imaging diagnosis and new drug development. We present an in-vivo confocal microscope that can acquire a reflection image and a fluorescence image simultaneously and independently. To obtain reflection confocal images, we used a linearly polarized diode laser with the wavelength of 830 nm. To acquire fluorescence confocal images, we used two diode lasers with the wavelength of 488 nm and 660 nm, respectively. Because of a broad wavelength bandwidth from visible (488 nm) to near-IR (830 nm), we designed and optimized the optical system to reduce various optical aberrations. With the developed in-vivo confocal microscope, we performed ex-vivo cell imaging and in-vivo imaging of the human skin.

  3. Development of a Confocal Optical System Design for Molecular Imaging Applications of Biochip

    Directory of Open Access Journals (Sweden)

    Guoliang Huang

    2007-01-01

    Full Text Available A novel confocal optical system design and a dual laser confocal scanner have been developed to meet the requirements of highly sensitive detection of biomolecules on microarray chips, which is characterized by a long working distance (wd>3.0 mm, high numerical aperture (NA=0.72, and only 3 materials and 7 lenses used. This confocal optical system has a high scanning resolution, an excellent contrast and signal-to-noise ratio, and an efficiency of collected fluorescence of more than 2-fold better than that of other commercial confocal biochip scanners. The scanner is as equally good for the molecular imaging detection of enclosed biochips as for the detection of biological samples on a slide surface covered with a cover-slip glass. Some applications of gene and protein imagings using the dual laser confocal scanner are described.

  4. The application of confocal technology based on polycapillary X-ray optics in surface topography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangcui, E-mail: zgcshirley@yahoo.cn [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences.

  5. Improving spatial resolution of confocal Raman microscopy by super-resolution image restoration.

    Science.gov (United States)

    Cui, Han; Zhao, Weiqian; Wang, Yun; Fan, Ying; Qiu, Lirong; Zhu, Ke

    2016-05-16

    A new super-resolution image restoration confocal Raman microscopy method (SRIR-RAMAN) is proposed for improving the spatial resolution of confocal Raman microscopy. This method can recover the lost high spatial frequency of the confocal Raman microscopy by using Poisson-MAP super-resolution imaging restoration, thereby improving the spatial resolution of confocal Raman microscopy and realizing its super-resolution imaging. Simulation analyses and experimental results indicate that the spatial resolution of SRIR-RAMAN can be improved by 65% to achieve 200 nm with the same confocal Raman microscopy system. This method can provide a new tool for high spatial resolution micro-probe structure detection in physical chemistry, materials science, biomedical science and other areas.

  6. Corneal Confocal Microscopy Anomalies Associated with Cowden Syndrome: A Case Report

    Directory of Open Access Journals (Sweden)

    Sandro Sbordone

    2013-08-01

    Full Text Available Purpose: To describe bilateral corneal alterations through confocal microscopy in a patient affected by Cowden syndrome (CS. Methods: Evaluation of Schirmer's, fluorescein, and lissamine green dye tests. Confocal microscopy was performed in both eyes to investigate corneal abnormalities. Results: Slit lamp observation showed the focal involvement of anterior stromal and epithelial layers. Schirmer's, fluorescein, and lissamine green dye test results were regular, while corneal confocal examination confirmed the disorganization of anterior stromal and epithelial layers in both eyes. Conclusion: CS is a rare autosomal-dominant systemic disorder. In our case, confocal analysis revealed predominance of alterations in the anterior stromal corneal layer, showing an increase of reflectivity, and a totally unstructured architecture in the epithelium layer. Even though the main purpose remains the prevention and the early diagnosis of different systemic tumors that could occur in affected patients, corneal confocal evaluation could play an important role in the early diagnosis of this rare disease.

  7. Adaptive optics in digital micromirror based confocal microscopy

    Science.gov (United States)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  8. Propagating Characteristics of Confocal Elliptical Waveguide Filled with Multilayered Dielectrics

    Institute of Scientific and Technical Information of China (English)

    熊天信; 杨儒贵

    2004-01-01

    Using the method of separation of variables in the elliptical coordinate system, a recursive formula for the electromagnetic fields in a confocal elliptical waveguide filled with multi-layered homogeneous isotropic media is derived; then the eigenequation for it is given. When an elliptical waveguide becomes a circular waveguide, the electromagnetic fields and the eigenequation of the circular waveguide can be obtained from the eigenequation of the elliptical waveguide using the asymptotic formulae of Mathieu and modified Mathieu functions for a large radial coordinate in the elliptical coordinate system, and the eigenequation of a circular waveguide filled with multilayered dielectrics can be treated as a special case of an elliptical waveguide.In addition, some numerical examples are presented to analyze the propagating characteristics influenced by the permittivity, permeability of dielectrics filled in the elliptical waveguide, etc. The results show that changing the permittivity or permeability of the dielectrics filled in the waveguide and the major semiaxis value of the i-th layer can change the propagating characteristics of an elliptical waveguide.

  9. Thermal safety of vibro-acoustography using a confocal transducer.

    Science.gov (United States)

    Chen, Shigao; Aquino, Wilkins; Alizad, Azra; Urban, Matthew W; Kinnick, Randall; Greenleaf, James F; Fatemi, Mostafa

    2010-02-01

    Vibro-acoustography (VA) is an imaging method that forms a two-dimensional (2-D) image by moving two cofocused ultrasound beams with slightly different frequencies over the object in a C-scan format and recording acoustic emission from the focal region at the difference frequency. This article studies tissue heating due to a VA scan using a concentric confocal transducer. The three-dimensional (3-D) ultrasound intensity field calculated by Field II is used with the bio-heat equation to estimate tissue heating due to ultrasound absorption. Results calculated with thermal conduction and with blood perfusion, with conduction and without perfusion and without conduction and without perfusion are compared. Maximum heating due to ultrasound absorption occurs in the transducer's near-field and maximum temperature rise in soft tissue during a single VA scan is below 0.05 degrees C for all three attenuation coefficients evaluated: 0.3, 0.5 and 0.7 dB/cm/MHz. Transducer self-heating during a single VA scan measured by a thermocouple is less than 0.27 degrees C. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Application of Reflectance Confocal Microscopy in Dermatology Practice

    Directory of Open Access Journals (Sweden)

    Ayşe Esra Koku Aksu

    2015-03-01

    Full Text Available In vivo reflectance confocal microscopy (RCM is a non-invasive method, imaging cellular structures in living skin at a level close to the histological resolution. It is easier to diagnose melanocytic and non-melanocytic skin tumors especially in difficult cases when RCM features have been identified. Determination of the cellular features, presence of cellular and structural atypia with RCM allows the discrimination of benign and malignant lesions. Preoperative differential diagnosis of malignant lesions, determining preoperative lesion borders in complicated cases, identification of local recurrence after excision of malignant lesions, monitoring the treatment efficacy in patients using topical treatment and who can not be operated, are the main areas of RCM in tumoral lesions. Besides, RCM is helpful in the establishing the diagnosis of inflammatory disease like psoriasis, contact dermatitis, lichen planus and in evaluation of therapeutic efficacy, detecting of infestation like tinea, skabiyes, demodicosis and determining the level of bullae in bullous disease. Due to being noninvasive, RCM is preferred in cosmetology, in clinical research and practice for the evaluation of the effectiveness of cosmetic products and cosmetic procedures.

  11. Quantitative analysis of in vivo confocal microscopy images: a review.

    Science.gov (United States)

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  12. Reflectance confocal microscopic evaluation of nonmelanocytic lip lesions.

    Science.gov (United States)

    Bağcı, Işın Sinem; Gürel, Mehmet Salih; Aksu, Ayşe Esra Koku; Erdemir, Aslı Turgut; Yüksel, Esma İnan; Başaran, Yeliz Karakoca

    2017-07-05

    Lips display various benign and malignant lesions. Considering their functional and cosmetic importance, noninvasive diagnostic methods are required. In vivo reflectance confocal microscopy (RCM) has already been reported to be useful in the evaluation of various skin lesions. The aim of this study was to define the RCM features of nonmelanocytic lip lesions, compare them with healthy lip, and demonstrate the applicability of RCM as a noninvasive diagnostic method for nonmelanocytic lip lesions. Sixty-seven patients with premalignant/malignant, inflammatory, and infectious lip lesions and twenty-one healthy volunteers were included in the study. Following clinical and RCM examination, histopathological confirmation was obtained in all lesions except herpes labialis, verrucae, and aphthae. RCM features of individual lesions and corresponding groups were evaluated and compared. Pleomorphism was the common feature of premalignant/malignant lesions. Dermal invasion of dyskeratotic keratinocytes was visualized in all squamous cell carcinoma lesions. Spongiosis and inflammatory cells were the common features of inflammatory lesions. Hypergranulosis and necrotic keratinocytes were highly specific for lichen planus. The most specific features for discoid lupus erythematosus were irregular pattern, follicular plugs, and perifollicular inflammatory cells. Virus-infected keratinocytes were visualized in herpes and verrucae. RCM features showed high sensitivity and specificity to detect nonmelanocytic lip lesions. Although the penetration is limited to the papillary dermis in nonmucosal skin, imaging down to the mid-dermis with satisfactory resolution was possible on the lips.

  13. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.

    Science.gov (United States)

    Han, Sang-Kuy; Colarusso, Pina; Herzog, Walter

    2009-10-01

    Chondrocytes synthesize extracellular matrix molecules, thus they are essential for the development, adaptation and maintenance of articular cartilage. Furthermore, it is well accepted that the biosynthetic activity of chondrocytes is influenced by the mechanical environment. Therefore, their response to mechanical stimuli has been studied extensively. Much of the knowledge in this area of research has been derived from testing of isolated cells, cartilage explants, and fixed cartilage specimens: systems that differ in important aspects from chondrocytes embedded in articular cartilage and observed during loading conditions. In this study, current model systems have been improved by working with the intact cartilage in real time. An indentation system was designed on a confocal microscope that allows for simultaneous loading and observation of chondrocytes in their native environment. Cell mechanics were then measured under precisely controlled loading conditions. The indentation system is based on a light transmissible cylindrical glass indentor of 0.17 mm thickness and 1.64 mm diameter that is aligned along the focal axis of the microscope and allows for real time observation of live cells in their native environment. The system can be used to study cell deformation and biological responses, such as calcium sparks, while applying prescribed loads on the cartilage surface. It can also provide novel information on the relationship between cell loading and cartilage adaptive/degenerative processes in the intact tissue.

  14. Axial scanning in confocal microscopy employing adaptive lenses (CAL).

    Science.gov (United States)

    Koukourakis, Nektarios; Finkeldey, Markus; Stürmer, Moritz; Leithold, Christoph; Gerhardt, Nils C; Hofmann, Martin R; Wallrabe, Ulrike; Czarske, Jürgen W; Fischer, Andreas

    2014-03-10

    In this paper we analyze the capability of adaptive lenses to replace mechanical axial scanning in confocal microscopy. The adaptive approach promises to achieve high scan rates in a rather simple implementation. This may open up new applications in biomedical imaging or surface analysis in micro- and nanoelectronics, where currently the axial scan rates and the flexibility at the scan process are the limiting factors. The results show that fast and adaptive axial scanning is possible using electrically tunable lenses but the performance degrades during the scan. This is due to defocus and spherical aberrations introduced to the system by tuning of the adaptive lens. These detune the observation plane away from the best focus which strongly deteriorates the axial resolution by a factor of ~2.4. Introducing balancing aberrations allows addressing these influences. The presented approach is based on the employment of a second adaptive lens, located in the detection path. It enables shifting the observation plane back to the best focus position and thus creating axial scans with homogeneous axial resolution. We present simulated and experimental proof-of-principle results.

  15. Backscattered light confocal imaging of intracellular MTT-formazan crystals.

    Science.gov (United States)

    Bernas, Tytus; Dobrucki, Jurek W

    2004-06-01

    Metabolically active animal and plant cells reduce MTT tetrazolium salt to a corresponding nonfluorescent formazan. Reduction of MTT by viable cells is exploited in a number of tests widely used in biological research. The aim of this study was to optimize a microscopy method of detecting small crystals of MTT-formazan formed in intact cells maintained in in vitro cultures. We examined scattering properties of small intracellular crystals of MTT formazan and found that the efficiency of light scattering was dependent on wavelength. Small (formazan, formed in viable cells, scattered red, but not blue, light. Large crystals, which are formed later at a stage when cells begin to lose viability, scattered both red and blue light. We conclude that optimal detection of early stages of crystallization of MTT-formazan in living cells is possible using confocal microscopy of red, but not blue, scattered light. High contrast and resolution of images can be achieved by filtering out interference effects in the frequency domain.

  16. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    Energy Technology Data Exchange (ETDEWEB)

    Deshko, Y. [The College of Staten Island and The Graduate Center of CUNY, 2800 Victory Blvd., Staten Island, NY 10314 (United States); Huang, Mengbing [The University at Albany, The State University of New York, 1400 Washington Avenue, Albany, NY 12222 (United States); Gorokhovsky, A.A., E-mail: Anshel.Gorokhovsky@csi.cuny.edu [The College of Staten Island and The Graduate Center of CUNY, 2800 Victory Blvd., Staten Island, NY 10314 (United States)

    2013-01-15

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: Black-Right-Pointing-Pointer Conversion efficiency of implanted ions into emitting centers - statistical approach. Black-Right-Pointing-Pointer Micro-luminescence mapping with open and narrow confocal aperture - comparison. Black-Right-Pointing-Pointer Advantages of the confocal micro-luminescence mapping. Black-Right-Pointing-Pointer Confocal micro-luminescence mapping has been applied to the Xe center in diamond. Black-Right-Pointing-Pointer The conversion efficiency has been found to be about 0.28.

  17. Improvement of spatial resolution in confocal microscope with shifted-focus phase filter

    Science.gov (United States)

    Huang, Xiangdong; Xiang, Xiaoyan; Wang, Chongyang

    2015-02-01

    A spatial super-resolution method is proposed based on the multiplicative character of confocal microscope's amplitude point-spread functions. The axial resolution can be greatly improved by introducing a shifted-focus phase filters in illumination part of a confocal microscope. However, this improvement is accompanied by a decrease of transversal resolution. Thus, a super-Gaussian phase filter is optimized to control the focal shift and transversal intensity distribution in a confocal microscope. Numerical simulation results indicate that the proposed method is useful to obtain a significant improvement in the optical sectioning capacity.

  18. Confocal X-ray fluorescence spectrometer for in-situ analyses of paintings

    Science.gov (United States)

    Trojek, Tomáš; Prokeš, Radek; Šefců, Radka; Bilavčíková, Hana; Čechák, Tomáš

    2017-08-01

    This paper describes the properties of the newly constructed device for confocal X-ray fluorescence analysis that was tested with a sample plate consisting of 19 combinations of two single pigment layers. The preparation of this experimental wooden board with layered systems was based on knowledge of the panel painting techniques of Bohemian collections from the National Gallery in Prague dating back to the 14th and 15th centuries. The design of the confocal setup allows its transport and the in-situ measurement of paintings in depositories or even in exhibition areas. The advantages of our confocal setup with movable collimating optics are also described.

  19. The use of laser scanning confocal microscopy (LSCM) in materials science.

    Science.gov (United States)

    Hovis, D B; Heuer, A H

    2010-12-01

    Laser scanning confocal microscopes are essential and ubiquitous tools in the biological, biochemical and biomedical sciences, and play a similar role to scanning electron microscopes in materials science. However, modern laser scanning confocal microscopes have a number of advantages for the study of materials, in addition to their obvious uses for high resolution reflected and transmitted light optical microscopy. In this paper, we provide several examples that exploit the laser scanning confocal microscope's capabilities of pseudo-infinite depth of field imaging, topographic imaging, photo-stimulated luminescence imaging and Raman spectroscopic imaging. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  20. Innovative confocal laser method for exact dioptric power measurement of intraocular lens implants Invited Paper

    Institute of Scientific and Technical Information of China (English)

    Ilko K. Ilev; Robert W. Faaland; Do-Hyun Kim; Robert H. James; Don Calogero

    2008-01-01

    We present a novel confocal laser method (CLM) for precise testing of the dioptric power of both positive and negative intraocular lens (IOL) implants. The CLM principle is based on a simple fiber-optic confocal laser design including a single-mode fiber coupler that serves simultaneously as a point light source used for formation of a collimated Gaussian laser beam, and as a highly sensitive confocal point receiver. The CLM approach provides an accurate, repeatable, objective, and fast method for IOL dioptric power measurement over the range from 0 D to greater than =t=30 D under both dry and in-situ simulated conditions.

  1. Confocal laser scanning microscopy in study of bone calcification

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tetsunari, E-mail: tetsu-n@cc.osaka-dent.ac.jp [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Kokubu, Mayu; Kato, Hirohito [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Imai, Koichi [Department of Biomaterials, Osaka Dental University, Osaka (Japan); Tanaka, Akio [Department of Oral Pathology, Osaka Dental University, Osaka (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer High-magnification images with depth selection, and thin sections were observed using CLSM. Black-Right-Pointing-Pointer The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. Black-Right-Pointing-Pointer In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. Black-Right-Pointing-Pointer Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 {mu}m/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  2. Technical feasibility of visualizing myenteric plexus using confocal laser endomicroscopy.

    Science.gov (United States)

    Kobayashi, Masakuni; Sumiyama, Kazuki; Shimojima, Naoki; Ieiri, Satoshi; Okano, Hideyuki; Kamba, Shunsuke; Fujimura, Takumi; Hirobe, Seiichi; Kuroda, Tatsuo; Takahashi-Fujigasaki, Junko

    2017-09-01

    In preceding studies, we identified that the myenteric plexus (MP) could be visualized with confocal laser endomicroscopy (CLE) by applying neural fluorescent probes lacking clinical safety profiling data from the submucosal side. In this study, we evaluated the technical feasibility of MP visualization using probe-based CLE (pCLE) from the serosal side with cresyl violet (CV), which has been used clinically for chromoendoscopy. The dye affinity of CV for MP was first explored in an in vivo transgenic mouse model using neural crest derivatives labeled with green fluorescent protein. We also tested the feasibility of CV-assisted visualization of MP in human surgical specimens, wherein the tissue dying and pCLE observation were performed from the serosal side. In the human study, rate of MP visualization by pCLE was evaluated as the primary outcome. We also evaluated the sensitivity and specificity of MP visualization by pCLE, using pathological presence/absence of MP as the gold standard. We confirmed the dye affinity of CV to MP in all tested models. The MP appeared as brightly stained ladder-like structures with pCLE, and in the human study, MP was visualized in 12/14 (85.7%) samples, with 92.3% sensitivity and 100% specificity. In positive cases showing the ladder-like structure of MP by pCLE, the mean maximum and minimum widths of nerve strands were 54.3 (± 23.6) and 19.7 (± 6.0) μm, respectively. A ganglion was detected by pCLE in 10 cases (10/12, 83.3%). This study demonstrated the technical feasibility of visualizing the MP in real time by CV-assisted pCLE (UMIN-CTR number, UMIN000015056). © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  3. A confocal scanning laser ophthalmoscope for retinal vessel oximetry

    Science.gov (United States)

    Lompado, Arthur

    Measurement of a person's blood oxygen saturation has long been recognized as a useful metric for the characterizing ailments ranging from chronic respiratory disorders to acute, potentially life threatening, traumas. The ubiquity of oxygen saturation monitors in the medical field, including portable pulse oximeters and laboratory based CO-oximeters, is a testament to the importance of this technique. The work presented here documents the design, fabrication and development of a unique type of oxygen saturation monitor, a confocal scanning retinal vessel oximeter, with the potential to expand the usefulness of the present devices. A large part of the knowledge base required to construct the instrument comes from the consideration of light scattering by red blood cells in a blood vessel. Therefore, a substantial portion of this work is devoted to the process of light scattering by whole human blood and its effects on the development of a more accurate oximeter. This light scattering effect has been both measured and modeled stochastically to determine its contribution to the measured oximeter signal. It is shown that, although well accepted in the published literature, the model only correlates marginally to the measurements due to inherent limitations imposed by the model assumptions. Nonetheless, enough material has been learned about the scattering to allow development of a mathematical model for the interaction of light with blood in a vessel, and this knowledge has been applied to the data reduction of the present oximeter. This data reduction technique has been tested in a controlled experiment employing a model eye with a blood filled mock retinal vessel. It will be shown that the presently developed technique exhibited strong correlation between the known blood oxygen saturation and that calculated by the new system.

  4. Optimum Combined Lenses for Confocal Biochip Scanning System

    Institute of Scientific and Technical Information of China (English)

    黄国亮; 程京; 周玉祥; 冯继宏; 刘诚迅; 金国藩; 邬敏贤; 严瑛白; 张腾飞; 李林

    2002-01-01

    Laboratory-on-a-chip technology has attracted wide interest in recent years, where the sample preparation, bio-chemical reaction, separation, detection and analysis are performed in a small biochip of the size of a fingernail. To obtain a high detection sensitivity of 1 fluors/μm2 (one fluorescence molecule per square micrometer) in biochip scanning systems, the scanning objective lens is required to have a high numerical aperture (>0.5), very small focal spot (3 mm). This study presents the design of optimum combined lenses including scanning objective and fluorescence focal lenses. The scanning objective had a high numerical aperture (NA) of 0.72, a very small focal spot of 1.67 μm, a long back focal length of 3.2 mm, and a high resolving power of 760 lines/mm. The fluorescence focal lenses had an NA of 0.3, a fluorescence focal spot of 16 μm, a long back focal length of 16.7 mm and a resolving power of 590 lines/mm. The phase aberrations of the combined lenses, including the aspherical aberration and the chromatic aberration corresponding to wavelengths of 532, 570, 635, and 670 nm, were well-corrected. The encircled energy diagram of the lenses was within the diffraction limit. The study also included the focal spot diagram, the optical path difference diagram, the transverse ray fan plot, and the modulation transfer function. A confocal biochip scanning system with designed combined lenses was developed and some experiments were conducted on a multi-channel biochip.

  5. Laser ablation of basal cell carcinomas guided by confocal microscopy

    Science.gov (United States)

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  6. High-speed confocal fluorescence lifetime imaging microscopy by analog mean-delay method

    Science.gov (United States)

    Won, Youngjae; Kim, Donguk; Yang, Wenzhong; Kim, Dug Y.

    2010-02-01

    We have demonstrated the high-speed confocal fluorescence lifetime imaging microscopy (FLIM) by analog mean-delay (AMD) method. The AMD method is a new signal processing technique for calculation of fluorescence lifetime and it is very suitable for the high-speed confocal FLIM with good accuracy and photon economy. We achieved the acquisition speed of 7.7 frames per second for confocal FLIM imaging. Here, the highest photon detection rate for one pixel was larger than 125 MHz and averaged photon detection rate was more than 62.5 MHz. Based on our system, we successfully obtained a sequence of confocal fluorescence lifetime images of RBL-2H3 cell labeled with Fluo-3/AM and excited by 4αPDD (TRPV channel agonist) within one second.

  7. Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy

    Science.gov (United States)

    Gareau, Daniel

    2014-03-01

    The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy

  8. Semi-automated confocal imaging of fungal pathogenesis on plants: microscopic analysis of macroscopic specimens

    Science.gov (United States)

    Contextualizing natural genetic variation in plant disease resistance in terms of pathogenesis can provide information about the function of causal genes. Cellular mechanisms associated with pathogenesis can be elucidated with confocal microscopy, but systematic phenotyping platforms—from sample pro...

  9. Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

    Science.gov (United States)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2012-03-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in fresh tissue, without the processing that is required for conventional pathology. Previously, basal cell carcinoma margins were detected by mosaicing of confocal images of 12 x 12 mm2 of excised tissue from Mohs surgery. This mosaicing took 9 minutes. Recently we reported the initial feasibility of a faster approach called "strip mosaicing" on 10 x 10 mm2 of tissue that was demonstrated in 3 minutes. In this paper we report further advances in instrumentation and software. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Thus, strip mosaicing confocal microscopy may serve as an adjunct to pathology for imaging tumor margins to guide surgery.

  10. Clinical usefulness of reflectance confocal microscopy in the management of facial lentigo maligna melanoma.

    Science.gov (United States)

    Alarcón, I; Carrera, C; Puig, S; Malvehy, J

    2014-04-01

    Facial lentigo maligna melanoma can be a diagnostic challenge in daily clinical practice as it has similar clinical and morphological features to other lesions such as solar lentigines and pigmented actinic keratoses. Confocal microscopy is a noninvasive technique that provides real-time images of the epidermis and superficial dermis with cellular-level resolution. We describe 3 cases of suspected facial lentigo maligna that were assessed using dermoscopy and confocal microscopy before histopathology study. In the first case, diagnosed as lentigo maligna melanoma, presurgical mapping by confocal microscopy was performed to define the margins more accurately. In the second and third cases, with a clinical and dermoscopic suspicion of lentigo maligna melanoma, confocal microscopy was used to identify the optimal site for biopsy. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  11. In vivo confocal microscopy in different types of posterior polymorphous dystrophy

    Directory of Open Access Journals (Sweden)

    Babu Kalpana

    2007-01-01

    Full Text Available Posterior polymorphous dystrophy is a rare corneal dystrophy, usually detected by chance. This case series describes the morphologic features in the three different types of posterior polymorphous dystrophy using confocal microscopy.

  12. Confocal Bioluminescence Imaging for Living Tissues with a Caged Substrate of Luciferin.

    Science.gov (United States)

    Hattori, Mitsuru; Kawamura, Genki; Kojima, Ryosuke; Kamiya, Mako; Urano, Yasuteru; Ozawa, Takeaki

    2016-06-21

    Fluorescence imaging can elucidate morphological organization and coordinal networks, but its background luminescence degrades the image contrast. Our confocal bioluminescence imaging system uses a luciferase caged substrate, with light passing through multipinhole arrays, causing bioluminescence at a focal plane. After a charge-coupled device camera captures luminescence, the imaging system acquires confocal images of multilayered cells with depth information, supporting quantitative analysis of spatial cellular localization in living tissues.

  13. Development of fibre-optic confocal microscopy for detection and diagnosis of dental caries.

    Science.gov (United States)

    Rousseau, C; Poland, S; Girkin, J M; Hall, A F; Whitters, C J

    2007-01-01

    We report on the development of a fibre-optics-based confocal imaging system for the detection and potential diagnosis of early dental caries. A novel optical instrument, capable of recording axial profiles through caries lesions using single-mode optical fibres, has been developed. The practical study illustrates that miniature confocal devices based around single-mode optical fibres may provide additional diagnostic information for the general dental practitioner.

  14. Laparoscopic manipulation of a probe-based confocal laser endomicroscope using a steerable intravascular catheter.

    Science.gov (United States)

    Schneider, Crispin; Desjardins, Adrien E; Gurusamy, Kurinchi; Hawkes, David J; Davidson, Brian R

    2015-04-01

    Probe-based confocal laser endomicroscopy is an emerging imaging modality that enables visualization of histologic details during endoscopy and surgery. A method of guiding the probe with millimeter accuracy is required to enable imaging in all regions of the abdomen accessed during laparoscopy. On the basis of a porcine model of laparoscopic liver resection, we report our experience of using a steerable intravascular catheter to guide a probe-based confocal laser endomicroscope.

  15. In vivo reflectance confocal microscopy in a typical case of melasma

    OpenAIRE

    Costa,Mariana Carvalho; Eljaiek,Hernando Vega; Abraham,Leonardo Spagnol; Azulay-Abulafia,Luna; Ardigo, Marco

    2012-01-01

    Melasma is a common disorder of hypermelanosis that affects mainly young and middle-aged women of Fitzpatrick's phototypes III-V. The disease significantly impacts their lives. In vivo reflectance confocal microscopy, a spreading technology for the noninvasive evaluation of the skin up to the papillary dermis, provides real-time en face images with cellular resolution. We present a case of melasma with in vivo reflectance confocal microscopy findings closely correlated to the histopathologica...

  16. Analysis of reactive oxygen species in the guard cell of wheat stoma with confocal microscope.

    Science.gov (United States)

    Liu, Dongwu; Chen, Zhiwei; Shi, Peiguo; Wang, Xue; Cai, Weiwei

    2011-09-01

    Recently, the laser-scanning confocal microscope has become a routine technique and indispensable tool for cell biological studies. Previous studies indicated that reactive oxygen species (ROS) were generated in tobacco epidermal cells with confocal microscope. In the present studies, the probe 2',7'-dichlorof luorescein diacetate (H₂DCF-DA) was used to research the change of ROS in the guard cell of wheat stoma, and catalase (CAT) was used to demonstrate that ROS had been labeled. The laser-scanning mode of confocal microscope was XYT, and the time interval between two sections was 1.6351 s. Sixty optical sections were acquired with the laser-scanning confocal microscope, and CAT (60,000 U mg⁻¹) was added after four optical sections were scanned. Furthermore, the region of interest (ROI) was circled and the fluorescence intensity of ROS was quantified with Leica Confocal Software. The quantitative data were exported and the trend chart was made with software Excell. The results indicated that ROS were produced intracellularly in stomatal guard cells, and the quantified fluorescence intensity of ROS was declined with CAT added. It is a good method to research the instantaneous change of ROS in plant cells with confocal microscope and fluorescence probe H₂DCF-DA. Copyright © 2010 Wiley-Liss, Inc.

  17. Optimizing the acquisition and analysis of confocal images for quantitative single-mobile-particle detection.

    Science.gov (United States)

    Friaa, Ouided; Furukawa, Melissa; Shamas-Din, Aisha; Leber, Brian; Andrews, David W; Fradin, Cécile

    2013-08-01

    Quantification of the fluorescence properties of diffusing particles in solution is an invaluable source of information for characterizing the interactions, stoichiometry, or conformation of molecules directly in their native environment. In the case of heterogeneous populations, single-particle detection should be the method of choice and it can, in principle, be achieved by using confocal imaging. However, the detection of single mobile particles in confocal images presents specific challenges. In particular, it requires an adapted set of imaging parameters for capturing the confocal images and an adapted event-detection scheme for analyzing the image. Herein, we report a theoretical framework that allows a prediction of the properties of a homogenous particle population. This model assumes that the particles have linear trajectories with reference to the confocal volume, which holds true for particles with moderate mobility. We compare the predictions of our model to the results as obtained by analyzing the confocal images of solutions of fluorescently labeled liposomes. Based on this comparison, we propose improvements to the simple line-by-line thresholding event-detection scheme, which is commonly used for single-mobile-particle detection. We show that an optimal combination of imaging and analysis parameters allows the reliable detection of fluorescent liposomes for concentrations between 1 and 100 pM. This result confirms the importance of confocal single-particle detection as a complementary technique to ensemble fluorescence-correlation techniques for the studies of mobile particle.

  18. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  19. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    Science.gov (United States)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  20. In vivo reflectance confocal microscopy in a typical case of melasma Microscopia confocal reflectante in vivo em um caso típico de melasma

    Directory of Open Access Journals (Sweden)

    Mariana Carvalho Costa

    2012-10-01

    Full Text Available Melasma is a common disorder of hypermelanosis that affects mainly young and middle-aged women of Fitzpatrick's phototypes III-V. The disease significantly impacts their lives. In vivo reflectance confocal microscopy, a spreading technology for the noninvasive evaluation of the skin up to the papillary dermis, provides real-time en face images with cellular resolution. We present a case of melasma with in vivo reflectance confocal microscopy findings closely correlated to the histopathological features described in the literature.O melasma é um distúrbio pigmentar caracterizado por hipermelanose, que afeta principalmente mulheres jovens e de meia-idade com fototipos III-V de Fitzpatrick e acarreta em impacto significativo na qualidade de vida das mesmas. A microscopia confocal reflectante in vivo, uma tecnologia em expansão voltada para análise da pele até a derme superior, proporciona imagens en face em tempo real com resolução celular. Apresentamos um caso de melasma com achados na microscopia confocal reflectante in vivo fortemente correlacionados com as características histopatológicas descritas na literatura.

  1. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  2. Improved sampling and analysis of images in corneal confocal microscopy.

    Science.gov (United States)

    Schaldemose, E L; Fontain, F I; Karlsson, P; Nyengaard, J R

    2017-05-26

    Corneal confocal microscopy (CCM) is a noninvasive clinical method to analyse and quantify corneal nerve fibres in vivo. Although the CCM technique is in constant progress, there are methodological limitations in terms of sampling of images and objectivity of the nerve quantification. The aim of this study was to present a randomized sampling method of the CCM images and to develop an adjusted area-dependent image analysis. Furthermore, a manual nerve fibre analysis method was compared to a fully automated method. 23 idiopathic small-fibre neuropathy patients were investigated using CCM. Corneal nerve fibre length density (CNFL) and corneal nerve fibre branch density (CNBD) were determined in both a manual and automatic manner. Differences in CNFL and CNBD between (1) the randomized and the most common sampling method, (2) the adjusted and the unadjusted area and (3) the manual and automated quantification method were investigated. The CNFL values were significantly lower when using the randomized sampling method compared to the most common method (p = 0.01). There was not a statistical significant difference in the CNBD values between the randomized and the most common sampling method (p = 0.85). CNFL and CNBD values were increased when using the adjusted area compared to the standard area. Additionally, the study found a significant increase in the CNFL and CNBD values when using the manual method compared to the automatic method (p ≤ 0.001). The study demonstrated a significant difference in the CNFL values between the randomized and common sampling method indicating the importance of clear guidelines for the image sampling. The increase in CNFL and CNBD values when using the adjusted cornea area is not surprising. The observed increases in both CNFL and CNBD values when using the manual method of nerve quantification compared to the automatic method are consistent with earlier findings. This study underlines the importance of improving the analysis of the

  3. In vivo corneal confocal microscopic analysis in patients with keratoconus

    Institute of Scientific and Technical Information of China (English)

    Gulfidan; Bitirgen; Ahmet; Ozkagnici; Banu; Bozkurt; Rayaz; A; Malik

    2015-01-01

    AIM: To quantify corneal ultrastructure using laser scanning in vivo confocal microscopy(IVCM) in patients with keratoconus and control subjects. METHODS: Unscarred corneas of 78 keratoconic subjects without a history of contact lens use and 36age-matched control subjects were evaluated with slit-lamp examination(SLE), corneal topography and laser scanning IVCM. One eye was randomly chosen for analysis. Anterior and posterior stromal keratocyte,endothelial cell and basal epithelial cell densities and sub-basal nerve structure were evaluated.RESULTS: IVCM qualitatively demonstrated enlarged basal epithelial cells, structural changes in sub-basal and stromal nerve fibers, abnormal stromal keratocytes and keratocyte nuclei, and pleomorphism and enlargement of endothelial cells. Compared with control subjects, significant reductions in basal epithelial cell density( 5817 ± 306 cells / mm2 vs 4802 ±508 cells/mm2,P < 0. 001), anterior stromal keratocyte density(800 ±111 cells/mm2 vs 555 ±115 cells/mm2, P <0.001),posterior stromal keratocyte density(333±34 cells/mm2vs270 ±47 cells/mm2, P <0.001), endothelial cell density(2875 ±223 cells/mm2 vs 2686 ±265 cells/mm2, P <0.001),sub-basal nerve fiber density(31.2 ±8.4 nerves/mm2vs18.1 ±9.2 nerves/mm2, P <0.001), sub-basal nerve fiber length(21.4±3.4 mm/mm2 vs 16.1±5.1 mm/mm2, P <0.001),and sub-basal nerve branch density(median 50.0(first quartile 31.2- third quartile 68.7) nerve branches/mm2 vs median 25.0(first quartile 6.2- third quartile 45.3) nerve branches/mm2, P <0.001) were observed in patients with keratoconus.CONCLUSION: Significant microstructural abnormalities were identified in all corneal layers in the eyes of subjects with keratoconus using IVCM. This non-invasive in vivo technique provides an important means to define and follow progress of microstructural changes in patients with keratoconus.

  4. In vivo confocal microscopy of meibomian glands in primary blepharospasm

    Science.gov (United States)

    Lin, Tong; Gong, Lan

    2016-01-01

    Abstract The aim of the study was to evaluate the morphological changes of meibomian glands (MGs) in primary blepharospasm (PBS) by in vivo laser scanning confocal microscopy (LSCM) and to investigate the correlations between clinical data of PBS and LSCM parameters of MGs. This prospective and case–control study recruited 30 consecutive PBS patients and 30 age- and gender-matched healthy controls. After questionnaire assessments of ocular surface disease index (OSDI), Jankovic rating scale, and blepharospasm disability index, all subjects underwent blink rate evaluation, tear film break-up time (TBUT), corneal fluorescein staining (CFS), Schirmer test, MG expressibility, meibum quality, MG dropout, and LSCM examination of the MGs. The main LSCM outcomes included the mean MG acinar area and density, orifice diameter, meibum secretion reflectivity, acinar irregularity, and inhomogeneity of interstice and acinar wall. The PBS patients had significantly higher blink rate, higher OSDI and CFS scores, lower TBUT and Schirmer test value, and worse MG expressibility than the controls (All P  0.05). The PBS patients showed lower values of MG acinar area, orifice diameter and meibum secretion reflectivity, and higher scores of acinar irregularity and inhomogeneity of interstices than the controls (All P JCR scale was strong correlated with MG acinar area (P < 0.001), orifice diameter (P = 0.002), meibum secretion reflectivity (P = 0.002), and MG acinar irregularity (P = 0.013). The MG expressibility was significantly correlated to MG acinar area (P = 0.039), orifice diameter (P < 0.001), and MG acinar irregularity (P = 0.014). The OSDI score was moderate correlated with MG acinar irregularity (P = 0.016), whereas the TBUT value was positively correlated with MG acinar area (P = 0.045) and negatively correlated to MG acinar irregularity (P = 0.016). The CFS score was negatively correlated to MG orifice diameter (P = 0.008). The LSCM provided a noninvasive

  5. Impression cytology and in vivo confocal microscopy in corneas with total limbal stem cell deficiency

    Directory of Open Access Journals (Sweden)

    Aline Lütz de Araújo

    2013-10-01

    Full Text Available PURPOSES: To describe corneal changes seen on in vivo confocal microscopy in patients with total limbal stem cell deficiency and to correlate them with cytological findings. METHODS: A prospective case series including 13 eyes (8 patients with total limbal deficiency was carried out. Stem cell deficiency was diagnosed clinically and by corneal impression cytology. Confocal images of the central cornea were taken with the Heidelberg Retina Tomograph II, Rostock Corneal Module (Heidelberg Engineering, Heidelberg, Germany. RESULTS: Impression cytology of the cornea revealed conjunctival epithelial cells and goblet cells in all cases. In vivo confocal microscopy showed disruption of normal layers of the corneal epithelium in all eyes. Confocal images showed cells with characteristics of conjunctival epithelium at the cornea in 76.9% of the total. These findings on confocal microscopy were compatible to limbal stem cell deficiency. Additionally, goblet cells, squamous metaplasia, inflammatory cells and dendritic cells were observed. The sub-basal nerve plexus was not identified in any of the corneas. Corneal neovessels were observed at the epithelium and stroma. All cases showed diffuse hyper-reflective images of the stroma corresponding to opacity of the tissue. CONCLUSIONS: Limbal stem cell deficiency had been confirmed by impression cytology in all cases, and 76.9% of the cases could also be diagnosed by in vivo confocal microscopy through the conjunctival epithelial cell visualization on the corneal surface. Frequent confocal microscopy findings were abnormal cells at the cornea (conjunctival epithelial, goblet and inflammatory cells, corneal neovessels and diffuse hyper-reflection of the stroma.

  6. Clinical applications of a real-time scanning-slit confocal microscope designed for real-time observations of the in-vivo human cornea

    Science.gov (United States)

    Masters, Barry R.

    1995-05-01

    We describe a new, real-time, flying slit confocal microscope, that has unique features and imaging characteristics for in vivo human ocular imaging. In vivo real-time confocal microscopy is currently used to investigate the tear film, renewal of the ocular surface, the role of epithelial innervation in epithelial cell proliferation, wound healing, kinetics of drug penetration, the effects of laser refractive surgery on the keratocyte activation and distribution in the stroma, and the nature of endothelial defects. The following clinical examples will be presented and discussed: confocal microscopy of normal human basal and wing cells in the epithelium, confocal microscopy of lamellar and penetrating corneal grafts, confocal microscopy of corneal ulcer, confocal microscopy of scar formation after herpes keratitis, and confocal microscopy of corneal innervation. The use of scanning slit confocal microscopes has unique advantages over other instrumental systems based on pinhole-containing Nipkow disks (tandem-scanning confocal microscopes) for clinical in vivo confocal microscopy.

  7. In situ protein expression in tumour spheres: development of an immunostaining protocol for confocal microscopy

    Directory of Open Access Journals (Sweden)

    Saubaméa Bruno

    2010-03-01

    Full Text Available Abstract Background Multicellular tumour sphere models have been shown to closely mimic phenotype characteristics of in vivo solid tumours, or to allow in vitro propagation of cancer stem cells (CSCs. CSCs are usually characterized by the expression of specific membrane markers using flow cytometry (FC after enzymatic dissociation. Consequently, the spatial location of positive cells within spheres is not documented. Confocal microscopy is the best technique for the imaging of thick biological specimens after multi-labelling but suffers from poor antibody penetration. Thus, we describe here a new protocol for in situ confocal imaging of protein expression in intact spheroids. Methods Protein expression in whole spheroids (150 μm in diameter from two human colon cancer cell lines, HT29 and CT320X6, has been investigated with confocal immunostaining, then compared with profiles obtained through paraffin immunohistochemistry (pIHC and FC. Target antigens, relevant for colon cancer and with different expression patterns, have been studied. Results We first demonstrate that our procedure overcomes the well-known problem of antibody penetration in compact structures by performing immunostaining of EpCAM, a membrane protein expressed by all cells within our spheroids. EpCAM expression is detected in all cells, even the deepest ones. Likewise, antibody access is confirmed with CK20 and CD44 immunostaining. Confocal imaging shows that 100% of cells express β-catenin, mainly present in the plasma membrane with also cytoplasmic and nuclear staining, in agreement with FC and pIHC data. pIHC and confocal imaging show similar CA 19-9 cytoplasmic and membranar expression profile in a cell subpopulation. CA 19-9+ cell count confirms confocal imaging as a highly sensitive method (75%, 62% and 51%, for FC, confocal imaging and pIHC, respectively. Finally, confocal imaging reveals that the weak expression of CD133, a putative colon CSC marker, is restricted to

  8. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Science.gov (United States)

    Beltran, Nohra E.; Garcia, Laura E.; Garcia-Lorenzana, Mario

    2013-01-01

    The gastric mucosa ischemic tissular damage plays an important role in critical care patients' outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine). The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10%) for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (P < 0.01). Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia. PMID:23841094

  9. Rifabutin corneal deposits in a patient with acquired immunodeficiency syndrome: in vivo confocal microscopy investigation.

    Science.gov (United States)

    Mazzotta, Cosimo; Traversi, Claudio; Nuti, Elisabetta; Sparano, Maria Caterina; Caporossi, Aldo

    2009-01-01

    To establish the real localization of rifabutin-related corneal deposits in a patient with human immunodeficiency virus (HIV) infection by in vivo HRT II confocal microscopy with related clinicopathologic implications. Observational case report. After Siena University Institutional Review Board approval in May 2008 and specific informed consent, a 54-year-old patient with HIV infection under rifabutin treatment for acquired immunodeficiency syndrome-related Mycobacterium avium complex prevention who developed diffuse corneal deposits was examined at the Department of Ophthalmology of Siena University. He underwent a complete clinical eye examination, biomicroscopy, and digital slit lamp photographs, endothelial specular microscopy, ultrasound pachymetry, and confocal microscopy by HRT II system. Confocal scans revealed the presence of deep stromal and pre descemetic hyperreflective polymorphous deposits. In vivo confocal examination excluded the presence of rifabutin-related deposits at endothelial level. Confocal microscopy enables establishment of the real localization of rifabutin deposits at deep stromal level, providing a better qualitative analysis of all corneal layers compared to biomicroscopic examination, with clinical and physiopathologic implications.

  10. Improving Resolution of Confocal Laser Induced Fluorescence in Argon Helicon Plasma

    Science.gov (United States)

    Soderholm, Mark; Vandervort, Robert; Scime, Earl; McKee, John; McCarren, Dustin

    2014-10-01

    Laser Induced Fluorescence (LIF) provides measurements of flow speed, temperature and when absolutely calibrated, density of ions or neutrals in a plasma. Traditionally, laser induced fluorescence requires two ports on a plasma device. One port is used for laser injection and the other is used for fluorescence emission collection. Traditional LIF is tedious and time consuming to align. These difficulties motivate the development of an optical configuration that requires a single port and remains fully aligned at all times; confocal LIF. Our confocal optical design employs a single two inch diameter lens to both inject the laser light and collect the stimulated emission from an argon plasma. A dichroic mirror is used to separate the injected laser light from the collected emission. The measurement location is scanned radially by manually adjusting the final focusing lens position. In the initial version of the confocal optical system, measurements were poorly resolved radially because they were integrated over a fairly large path length (~4 cm) centered at the focal point. Here we present collected data from a modified configuration that significantly improves the special resolution of confocal measurements. The confocal measurements are compared to traditional, two-port, LIF measurements over the same radial range.

  11. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  12. Extended Field Laser Confocal Microscopy (EFLCM: Combining automated Gigapixel image capture with in silico virtual microscopy

    Directory of Open Access Journals (Sweden)

    Strandh Christer

    2008-07-01

    Full Text Available Abstract Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM. Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA instrument for automated screening processes.

  13. Feasibility of confocal endomicroscopy in the diagnosis of pediatric gastrointestinal disorders

    Institute of Scientific and Technical Information of China (English)

    Krishnappa Venkatesh; Marta Cohen; Clair Evans; Peter Delaney; Steven Thomas; Christopher Taylor; Ashraf Abou-Taleb; Ralf Kiesslich; Mike Thomson

    2009-01-01

    AIM: To evaluate the feasibility and utility of confocal laser endomicroscopy (CLE) in the description of normal gastrointestinal (GI) mucosa and in the diagnosis of GI disorders in children, in comparison to histology. METHODS: Forty-four patients (19 female) median age 10.9 years (range 0.7-16.6 years) with suspected or known GI pathology underwent esophago-gastroduodenoscopy (OGD) ( n = 36) and/or ileocolonoscopy (IC) ( n = 31) with CLE using sodium fluorescein and acriflavine as contrast agents. Histological sections were compared with same site confocal images by two experienced pediatric and GI histopathologists and endoscopists, respectively. RESULTS: Duodenum and ileum were intubated in all but one patient undergoing OGD and IC. The median procedure time was 16.4 min (range 7-25 min) for OGD and 27.9 min (range 15-45 min) for IC. A total of 4798 confocal images were compared with 153 biopsies from the upper GI tract from 36 procedures, and 4661 confocal images were compared with 188 biopsies from the ileocolon from 31 procedures. Confocal images were comparable to conventional histology both in normal and in pathological conditions such as esophagitis, Helicobacter pylori gastritis, celiac disease, inflammatory bowel disease, colonic heterotopia, and graft versus host disease. CONCLUSION: CLE offers the prospect of targeting biopsies to abnormal mucosa, thereby increasing diagnostic yield, reducing the number of biopsies, decreasing the burden on the histopathological services, and reducing costs.

  14. Dermoscopic and reflectance confocal microscopic presentation of Hailey-Hailey disease: A case series.

    Science.gov (United States)

    Oliveira, A; Arzberger, E; Pimentel, B; de Sousa, V C; Leal-Filipe, P

    2017-08-07

    Hailey-Hailey disease is a rare inherited acantholytic skin disorder characterized by heterogeneous clinical presentation. Its differential diagnosis might be wide, including other genodermatoses, inflammatory, and infectious skin diseases. Although histopathology remains as diagnostic gold standard, noninvasive techniques such as dermoscopy and reflectance confocal microscopy may assist clinical examination. Herein, we aim to further characterize the dermoscopic and reflectance confocal microscopic presentation of Hailey-Hailey disease with histologic correlation. Eight patients with Hailey-Hailey disease were consecutively recruited. All patients were examined using dermoscopy and reflectance confocal microscopy. In all cases, dermoscopy enabled the visualization of polymorphous vessels, including glomerular and linear-looped vessels, within a pink-whitish background. Reflectance confocal microscopy revealed wide suprabasilar partial acantholysis and clefting, crusts, dilated papillae with tortuous vessels, and inflammatory cells. Dyskeratosis, uplocated papillae, and adnexal sparing were also observed. Although definite diagnosis was obtained by histopathology in all cases, dermoscopy and reflectance confocal microscopy allowed the identification of common features (even in cases with dissimilar clinical presentation) that may support an early diagnosis of Hailey-Hailey disease, and its differentiation from other more frequent skin disorders. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The value of reflectance confocal microscopy in diagnosis of flat pigmented facial lesions: a prospective study.

    Science.gov (United States)

    Wurm, E; Pellacani, G; Longo, C; Soyer, H P; Gonzalez, S; Hofmann-Wellenhof, R; Ahlgrimm-Siess, V; Guitera, P; Sinz, C; Kittler, H

    2017-08-01

    Flat pigmented facial lesions are difficult to diagnose even with dermatoscopy. It is controversial how additional information obtained by in vivo reflectance confocal microscopy (RCM) impacts the diagnosis and management. To examine what in vivo reflectance confocal microscopy of flat pigmented facial lesions adds to clinical examination using dermatoscopy including digital dermatoscopic monitoring. We prospectively collected 70 cases of flat pigmented facial lesions and recorded diagnoses and management decisions by experts based on direct clinical examination aided by dermatoscopy including digital dermatoscopic monitoring and by remote experts who reviewed the corresponding confocal images. The expert confocal readers were blinded to the clinical and dermatoscopic appearance of the lesion. The sensitivity of dermatoscopy plus digital dermatoscopic monitoring was 95.0% (95% CI 75.13% to 99.87%) and the specificity was 84.0% (95% CI 70.89% to 92.83%). The sensitivity of RCM was 95.0% (95% CI 75.13% to 99.87%) and the specificity was 82.0% (95% CI 68.56% to 91.42%). Although most flat pigmented facial lesions can be managed by clinical examination and dermatoscopy alone, confocal microscopy is a useful adjunct in selected lesions. If RCM is not correlated with clinical and dermatoscopic information, there is risk of overdiagnosis of actinic keratosis, however. © 2017 European Academy of Dermatology and Venereology.

  16. Adjustment of confocal configuration for capillary X-ray optics with a liquid secondary target

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Song; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Zhao, Weigang; He, Jialin; Zhao, Guangcui; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-11-21

    Adjustment of the confocal configuration of capillary X-ray optics using a solution of CuSO{sub 4} as a liquid secondary target is presented. Compared with the theoretical value of volume size, the relative error of the adjustment with a liquid secondary target was 9.8%, and this value was more accurate than that observed with a metal secondary target. The precision of the adjustment using a liquid secondary target was better than 7%. The adjustment process for confocal configuration with a liquid secondary target was more convenient and timesaving because there was no need for an extra electric stage to adjust the liquid secondary target. -- Highlights: •Adjustment of the confocal configuration of capillary X-ray optics using a liquid secondary target was proposed. •Performance of using the liquid secondary target to adjustment of the confocal configuration was studied. •The adjustment process for confocal configuration with a liquid secondary target was more convenient and timesaving.

  17. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  18. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  19. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  20. Reflectance confocal microscopy for scarring and non-scarring alopecia real-time assessment.

    Science.gov (United States)

    Ardigò, Marco; Agozzino, Marina; Franceschini, Chiara; Donadio, Carlo; Abraham, Leonardo Spagnol; Barbieri, Luca; Sperduti, Isabella; Berardesca, Enzo; González, Salvador

    2016-07-01

    Clinical management of alopecia represents one of the major issues in dermatology. Scalp biopsies are not easily accepted because of the high bleeding and sensitive anatomical area. Trichoscopy is routinely used for diagnosis of alopecia, but in several cases lack to provide sufficient information on the status of the disease. Recently, reflectance confocal microscopy demonstrated its usefulness for the evaluation of several inflammatory skin condition and preliminary reports about alopecia have been proposed in the literature. The aim was to identify the confocal features characterizing scarring and non-scarring alopecia. Reflectance confocal microscopy from 86 patients affected by scarring (28 lichen planopilaris and 9 lupus erythematosus) and non-scarring alopecia (30 androgenic alopecia and 19 alopecia areata), were retrospectively, blinded evaluated. Good concordance between different readers on the confocal criteria has been assessed. Statistical significant features, specific for scarring alopecia and non-scarring alopecia have been identified. In this study, data on reflectance confocal microscopy features useful for the differential diagnosis between scarring and non-scarring alopecia have been identified. Further studies focusing on the use of this non-invasive technique in the therapeutic follow-up and distinction of sub-entities of alopecia are still required.

  1. Improving contrast and sectioning power in confocal imaging by third harmonic generation in SiOx nanocrystallites

    Institute of Scientific and Technical Information of China (English)

    Gilbert Boyer; Karsten Plamann

    2007-01-01

    We present a new optical microscope in which the light transmitted by a sample-scanned transmission confocal microscope is frequency-tripled by SiOx nanocrystallites in lieu of being transmitted by a confocal pinhole. This imaging technique offers an increased contrast and a high scattered light rejection. It is demonstrated that the contrast close to the Sparrow resolution limit is enhanced and the sectioning power are increased with respect to the linear confocal detection mode. An experimental implementation is presented and compared with the conventional linear confocal mode.

  2. Fiber-optic confocal microscopy using a miniaturized needle-compatible imaging probe

    Science.gov (United States)

    Pillai, Rajesh S.; Lorenser, Dirk; Sampson, David D.

    2011-05-01

    We report on the design and implementation of a 350 μm-diameter confocal imaging probe based on gradient-index (GRIN) optics and a fiber-based scanning arrangement. The form factor of the probe is such that it can potentially be inserted into a 22-gauge hypodermic needle to perform high-resolution confocal fluorescence imaging in solid tissues. We introduce a simple scanning arrangement based on lensed fiber, which eliminates off-axis aberrations induced by conventional scanning optics and is suitable for integration into a compact hand-held unit. We present the details of the optical design and experimental verification of the performance of the optical system. The measured lateral resolution of ~700 nm is in agreement with the optical design and is the highest resolution reported for a confocal fluorescence imaging probe of this size. Further, we demonstrate the imaging capability of the probe by obtaining high-resolution images of fluorescently labeled muscle fibers.

  3. Agminated cellular blue naevi of the penis: dermoscopic, confocal and histopathological correlation of two cases.

    Science.gov (United States)

    Collgros, H; Vicente, A; Díaz, A M; Rodríguez-Carunchio, L; Malvehy, J; Puig, S

    2016-07-01

    Blue naevi may present rarely as multiple lesions grouped in a circumscribed area, described as agminated blue naevi. This clinical presentation may mimic metastatic malignant melanoma. We present two cases of agminated cellular blue naevi of the penis, with dermoscopy, reflectance confocal microscopy and histopathological correlation. Dermoscopy of the area showed multiple grouped lesions of homogeneous dark-brown to blue colour. Using reflectance confocal microscopy, focusing on the bluish areas, predominantly bright dendritic cells were visible at the dermoepidermal junction and papillary dermis, while in the brownish areas the presence of dendritic and bright cells predominated in the basal layer. Our patients are of special interest as they are the first cases, to our knowledge, reported of agminated blue naevi on the penis, studied by both dermoscopy and confocal microscopy, confirming the diagnosis with histopathological correlation. Moreover, one case represented a divided or 'kissing' blue naevus of the penis.

  4. Nonlocal Effects in the Confocal μ-Raman Characterization of Inhomogeneous Polymer Coatings

    Science.gov (United States)

    Rodriguez, R.; Vargas, S.; Estevez, M.

    2010-11-01

    The confocal μ-Raman technique was used to characterize the morphology of inhomogeneous anti-graffiti coatings; for these systems, the antiadherent molecules were segregated to the external (exposed) surface forming a layer whose thickness was determined. The confocal data from these inhomogeneous coatings contains nonlocal contributions because the light scattered from sources near the specific specimen under analysis (the focused region) could not be completely rejected by the spatial filter of the confocal device. These nonlocal contributions had important effects in the Raman spectra, modifying the bands height profiles of homogeneous and inhomogeneous materials allowing their identification. Taking into account these nonlocal effects, it was possible to interpret correctly the relative intensities of the Raman bands and characterize properly the inhomogeneous coatings.

  5. Super-resolution spinning-disk confocal microscopy using optical photon reassignment.

    Science.gov (United States)

    Azuma, Takuya; Kei, Takayuki

    2015-06-01

    Spinning-disk confocal microscopy is a proven technology for investigating 3D structures of biological specimens. Here we report a super-resolution method based on spinning-disk confocal microscopy that optically improves lateral resolution by a factor of 1.37 with a single exposure. Moreover, deconvolution yields twofold improvement over the diffraction limit. With the help of newly modified Nipkow disk which comprises pinholes and micro-lenses on the front and back respectively, emitted photons from specimen can be optically reassigned to the most probable locations they originate from. Consequently, the improvement in resolution is achieved preserving inherent sectioning capabilities of confocal microscopy. This extremely simple implementation will enable reliable observations at super high resolution in biomedical routine research.

  6. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Science.gov (United States)

    Hödemann, S.; Möls, P.; Kiisk, V.; Murata, T.; Saar, R.; Kikas, J.

    2015-12-01

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na+ ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  7. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-05

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range.

  8. Telecentric confocal optics for aberration correction of acousto-optic tunable filters.

    Science.gov (United States)

    Suhre, Dennis R; Denes, Louis J; Gupta, Neelam

    2004-02-20

    A telecentric confocal optical arrangement is presented that greatly reduces the diffraction aberrations of the acousto-optic tunable filter (AOTF). Analytical expressions for the aberrations were identified based on the fundamental properties of Bragg diffraction, and additional aberrations due to focusing through the AOTF were also included. The analysis was verified by use of a geometrical ray trace optical code, and an experimental AOTF system was analyzed. Considerable improvement in the potential spatial resolution is predicted with confocal optics, which could accommodate large pixel-limited image fields of greater than 10(6) pixels. When the image quality of the experimental system was assessed, the resolution was found to be improved by the confocal optics and was diffraction limited. Higher resolution could have been obtained with the use of larger optics to increase the throughput before being limited by the aberrations.

  9. Confocal laser endomicroscopy in the " in vivo" histological diagnosis of the gastrointestinal tract

    Institute of Scientific and Technical Information of China (English)

    Giovanni D De Palma

    2009-01-01

    Recent technological advances in miniaturization have allowed for a confocal scanning microscope to be integrated into a conventional flexible endoscope, or into trans-endoscopic probes, a technique now known as confocal endomicroscopy or confocal laser endomicroscopy. This newly-developed technology has enabled endoscopists to collect real-time in vivo histological images or "virtual biopsies" of the gastrointestinal mucosa during endoscopy, and has stimulated significant interest in the application of this technique in clinical gastroenterology. This review aims to evaluate the current data on the technical aspects and the utility of this new technology in clinical gastroenterology and its potential impact in the future, particularly in the screening or surveillance of gastrointestinal neoplasia.

  10. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  11. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  12. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  13. Imaging theory and resolution improvement of two-photon confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    唐志列; 杨初平; 裴红津; 梁瑞生; 刘颂豪

    2002-01-01

    The nonlinear effect of two-photon excitation on the imaging property of two-photonconfocal microscopy has been analyzed by the two-photon fluorescence intensity transfer functionderived in this paper. The two-photon fluorescence intensity transfer function in a confocal micros-copy is given. Furthermore the three-dimensional point spread function (3D-PSF) and thethree-dimensional optical transfer function (3D-OTF) of two-photon confocal microscopy are de-rived based on the nonlinear effect of two-photon excitation. The imaging property of two-photonconfocal microscopy is discussed in detail based on 3D-OTF. Finally the spatial resolution limit oftwo-photon confocal microscopy is discussed according to the uncertainty principle.

  14. Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nashat, A.H.; Ferrari, M. [Univ. of California, Berkeley, CA (United States); Moronne, M. [Lawrence Berkeley National Lab., CA (United States)

    1998-10-20

    Fluorescence confocal microscopy was used to characterize micron-sized microfabricated silicon particles and planar oxides surfaces after silanization and immobilization of IgG antibody. Surfaces treated with amino- and mercaptosilanes were tested by the presence of amine and sulfhydryl groups by labeling with specific fluorescein probes. In addition, human antibody (IgG) was immobilized to the thiol-coated microparticles using the heterobifunctional crosslinker succinimidyl 4-(N-maleimidolmthyl)-cyclohexane-1-carboxylate. Estimates of the surface density of IgG were consistent with 8.3% of a monolayer of covalently-bound antibody. Confocal images confirmed uniform layers of both silanes and antibodies on the microparticles. The sensitivity limit for the confocal measurements was determined to be as low as 1.5 x 10{sup {minus}5} fluors per nm{sup 2}.

  15. Use of confocal microscopy in the study of ischemia-induced hippocampal neuronal damage

    Directory of Open Access Journals (Sweden)

    Radenović Lidija

    2008-01-01

    Full Text Available The present study was undertaken to reveal by means of confocal laser microscopy the cytoarchitecture of hippocampal CA3 neurons in Mongolian gerbils before and after cerebral ischemia of different duration. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. On the 4th, 14th and 28th day after reperfusion, neuronal damage was examined by laser scanning confocal microscopy in the CA3 region of hippocampus (30 μm slices. Slices were stained with fluorescent Nissl staining and fluorescent membrane tracer DiI. Increased duration of cerebral ischemia resulted in a progressive loss of hippocampal CA3 neurons. Four days after the ischemic insult, neuronal damage in the hippocampal CA3 region was mild but visible. On the 28th day after reperfusion, neuronal damage in the observed brain structure was most severe. These results demonstrate the temporal profile of neuronal damage after an ischemic insult as observed using confocal microscopy.

  16. Automated Assessment of Keratocyte Density in Stromal Images from the ConfoScan 4 Confocal Microscope

    Science.gov (United States)

    Bourne, William M.; Patel, Sanjay V.

    2010-01-01

    Purpose. To develop a program to determine cell densities in images from the ConfoScan 4 (Nidek, Inc., Freemont, CA) confocal microscope and compare the densities with those determined in images obtained by the Tandem Scanning confocal microscope (Tandem Scanning Corp., Reston, VA). Methods. A program was developed that used image-processing routines to identify stromal cell nuclei in images from the ConfoScan 4 confocal microscope. Cell selection parameters were set to match cell densities from the program with those determined manually in 15 normal corneas of 15 volunteers. The program was tested on scans from 16 other normal volunteers and 17 volunteers 3 years after LASIK. Cell densities were compared to densities determined by manual assessment and to those in scans by the Tandem Scanning confocal microscope in the same corneas. Results. The difference in cell density between the automatic and manual assessment was −539 ± 3005 cells/mm3 (mean ± SD, P = 0.11) in the 16 test corneas. Densities estimated from the ConfoScan 4 agreed with those from the Tandem Scanning confocal microscope in all regions of the stroma except in the anterior 10%, where the ConfoScan 4 indicated a 30% lower density. Conclusions. Differences in anterior stromal cell density between the ConfoScan 4 and the Tandem Scanning confocal microscope can be explained by the different optical designs. The lower spatial resolution of the ConfoScan 4 limits its ability to resolve thin layers. The adaptation of our earlier cell-counting program to the ConfoScan 4 provides a timesaving, objective, and reproducible means of determining stromal cell densities in images from the ConfoScan 4. PMID:19892869

  17. Confocal microphotoluminescence of InGaN-based light-emitting diodes

    OpenAIRE

    Okamoto, K.; Kaneta, A; Kawakami, Y.; Fujita, S; Choi, J.; Terazima, M; Mukai, T

    2005-01-01

    Spatially resolved photoluminescence (PL) of InGaN/GaN/AlGaN-based quantum-well-structured light-emitting diodes (LEDs) with a yellow-green light (530 nm) and an amber light (600 nm) was measured by using confocal microscopy. Submicron-scale spatial inhomogeneities of both PL intensities and spectra were found in confocal micro-PL images. We also found clear correlations between PL intensities and peak wavelength for both LEDs. Such correlations for yellow-green and amber LEDs were differen...

  18. Comparison of Noncontact Specular and Confocal Microscopy for Evaluation of Corneal Endothelium.

    Science.gov (United States)

    Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Sadda, Srinivas R; Chopra, Vikas; Lee, Olivia L

    2017-03-24

    To compare endothelial cell analysis obtained by noncontact specular and confocal microscopy, using the Konan NSP-9900 and Nidek ConfoScan4 systems, respectively. Three groups including 70 healthy eyes, 49 eyes with Fuchs endothelial corneal dystrophy (FECD), and 78 eyes with glaucoma were examined with both the Konan NSP-9900 specular microscope and the Nidek ConfocScan4 confocal microscope. Certified graders at the Doheny Image Reading Center compared corneal endothelial images from both instruments side by side to assess image quality. Endothelial cell density (ECD) measurements were calculated and compared using three different modalities: (1) each instrument's fully automated analysis; (2) each instrument's semiautomatic analysis with grader input; and (3) manual grading methods by certified grader. All normal eyes yielded gradable endothelial images, and most but not all glaucomatous eyes yielded images with high enough image quality to allow grading. In addition, in corneas with severe FECD, poor image quality precluded ECD grading by specular microscopy in 20 eyes (40.8%) but in only 4 (8.2%) confocal images from the same eyes. For the gradable images, the ECD values obtained using the manual grading method from either device were comparable with no statistically significant difference (P>0.05) between specular and confocal devices. Machine-generated ECD values were significantly different from manual results, measuring greater in all cases with specular microscopy. Machine-generated ECD values from confocal microscopy also differed significantly from manual determinations, but not in a consistent direction. Semiautomatic methods for both instruments obtained clinically acceptable ECD values. Automatic machine-generated ECD measurements differed significantly from manual assessments of corneal endothelium by both specular and confocal microscopy, suggesting that automated results should be used with caution. But ECD values derived manually were comparable

  19. Numerical study of a confocal ultrasonic setup for creation of cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Mestas, Jean-Louis; Lafon, Cyril [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Caviskills SAS, Vaulx-En-Velin, F-69120 (France)

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  20. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wenjuan [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697 (United States); Li, Rui [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Ma, Teng; Kirk Shung, K.; Zhou, Qifa [Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089 (United States); Chen, Zhongping, E-mail: z2chen@uci.edu [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697 (United States)

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  1. Sub-micron imaging of buried integrated circuit structures using scanning confocal electron microscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, S. P.; Levine, Z.; Zaluzec, N. J.; Materials Science Division; Northern Arizona Univ.; NIST

    2002-09-09

    Two-dimensional images of model integrated circuit components were collected using the technique of scanning confocal electron microscopy. For structures embedded about 5 {mu}m below the surface of a silicon oxide dielectric, a lateral resolution of 76{+-}9 nm was measured. Elemental mapping via x-ray emission spectrometry is demonstrated. A parallax analysis of images taken for various tilt angles to the electron beam allowed determination of the spacing between two wiring planes. The results show that scanning confocal electron microscopy is capable of probing buried structures at resolutions that will be necessary for the inspection of next-generation integrated circuit technology.

  2. Measuring skin penetration by confocal Raman microscopy (CRM): correlation to results from conventional experiments

    Science.gov (United States)

    Lunter, Dominique; Daniels, Rolf

    2016-03-01

    Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.

  3. Comparison between optical techniques and confocal microscopy for defect detection on thin wires

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, Philip; Sanchez-Brea, Luis Miguel; Martinez-Anton, Juan Carlos; Bernabeu, Eusebio

    2004-11-15

    Conventional microscopy techniques, such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal microscopy (CM) are not suitable for on-line surface inspection of fine metallic wires. In the recent years, some optical techniques have been developed to be used for those tasks. However, they need a rigorous validation. In this work, we have used confocal microscopy to obtain the topography z(x,y) of wires with longitudinal defects, such as dielines. The topography has been used to predict the light scattered by the wire. These simulations have been compared with experimental results, showing a good agreement.

  4. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.

    Science.gov (United States)

    Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo; Oshima, Marie

    2007-03-01

    This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.

  5. Microscopia confocal in vivo no diagnóstico de ceratite fúngica: relato de caso In vivo confocal microscopy in the diagnosis of fungal keratitis: case report

    Directory of Open Access Journals (Sweden)

    Gustavo Victor

    2006-06-01

    Full Text Available Os autores relatam um caso em que a microscopia confocal in vivo ajudou no diagnóstico e acompanhamento de ceratite fúngica. Realizou-se a microscopia confocal in vivo em paciente com úlcera corneana, que há 30 dias estava sendo tratada, sem obter melhora com uso de diversos medicamentos tópicos. O paciente também tinha se submetido à coleta de material corneano para análise laboratorial, com resultado negativo e inconclusivo. Foi observado à microscopia confocal, hifas e coleções infecciosas fúngicas. Dez dias após o diagnóstico confocal, o resultado de nova coleta de material corneano revelou crescimento de Fusarium sp.The authors describe a case of fungal keratitis that the in vivo confocal microscopy helped in the diagnosis and follow-up. Confocal microscopy was done in a patient's ulcer that did not improve with several topical medicines. Corneal scrapings were obtained and culture results were without conclusion. We observed hyphae and infectious collections on confocal microscopy. New corneal culture showed Fusarium sp ten days after confocal diagnosis.

  6. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  7. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  8. Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques

    NARCIS (Netherlands)

    Velde, van de F.; Weinbreck, F.; Edelman, M.W.; Linden, van der E.; Tromp, R.H.

    2003-01-01

    Confocal scanning laser microscopy (CSLM) has been used to study the behaviour of mixtures of proteins, gelatine, whey proteins and ß-lactoglobulin, and polysaccharides, dextran, gellan gum, carrageenan, gum Arabic, and starch. CSLM proved to be a suitable technique to visualise the microstructure o

  9. In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles

    NARCIS (Netherlands)

    P.J. Caspers (Peter); G.W. Lucassen (Gerald); E.A. Carter (Elizabeth); H.A. Bruining (Hajo); G.J. Puppels (Gerwin)

    2001-01-01

    textabstractConfocal Raman spectroscopy is introduced as a noninvasive in vivo optical method to measure molecular concentration profiles in the skin. It is shown how it can be applied to determine the water concentration in the stratum corneum as a function of distance to the skin surface, with a

  10. CONFOCAL SCANNING LASER MICROSCOPY OF MITOCHONDRIA - A POSSIBLE TOOL IN THE DIAGNOSIS OF MITOCHONDRIAL DISORDERS

    NARCIS (Netherlands)

    RUITERS, MHJ; VANSPRONSEN, EA; SKJELDAL, OH; STROMME, P; SCHOLTE, HR; PZYREMBEL, H; SMIT, GPA; RUITENBEEK, W; AGSTERIBBE, E

    1991-01-01

    This paper describes a non-invasive method for the study of mitochondrial morphology in cultured human skin fibroblasts by confocal scanning laser microscopy after staining the mitochondria with 2-[4-(dimethyl-aminostyryl]-1-methylpyridinium iodide. This method is applied to compare mitochondria in

  11. Laser confocal microscope noise evaluation on injection compression moulded (ICM) transparent polymer Fresnel lenses

    DEFF Research Database (Denmark)

    Loaldi, D.; Calaon, Matteo; Quagliotti, Danilo

    The evaluation of an adequate and robust measuring strategy, for roughness assessment of polymer Fresnel lenses is put under assessment. An ‘on-sample’ measurement noise, is evaluated using a laser confocal microscope (OLYMPUS © Lext). Secondly, the lowest-noise roughness measuring procedure...

  12. Imaging inclusion complex formation in starch granules using confocal laser scanning microscopy

    NARCIS (Netherlands)

    Manca, Marianna; Woortman, Albert J. J.; Loos, Katja; Loi, Maria A.

    2015-01-01

    The tendency of amylose to form inclusion complexes with guest molecules has been an object of wide interest due to its fundamental role in food processing. Here we investigated the features of starch granules from several botanical sources using confocal laser scanning microscopy (CLSM) and uncover

  13. Handheld multispectral dual-axis confocal microscope for cervical cancer screening

    Science.gov (United States)

    Sarapukdee, Pongsak; Rattanavarin, Santi; Jarujareet, Ungkarn; Khemthongcharoen, Numfon; Jolivot, Romuald; Jung, Il Woong; López, Daniel; Mandella, Michael J.; Piyawattanametha, Wibool

    2013-03-01

    Our work demonstrates a MEMS based handheld dual-axis confocal microscope for cervical cancer screening. Imaging demonstration is performed with plant and animal tissue biopsies. The data is collected and displayed in real time with 2-5 Hz frame rates.

  14. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Ghita, Ovidiu; Whelan, Paul F.

    2015-01-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermente...

  15. Visualizing the Tumor Microenvironment of Liver Metastasis by Spinning Disk Confocal Microscopy.

    Science.gov (United States)

    Babes, Liane; Kubes, Paul

    2016-01-01

    Intravital microscopy has evolved into an invaluable technique to study the complexity of tumors by visualizing individual cells in live organisms. Here, we describe a method for employing intravital spinning disk confocal microscopy to picture high-resolution tumor-stroma interactions in real time. We depict in detail the surgical procedures to image various tumor microenvironments and different cellular components in the liver.

  16. Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoonjans, Tom, E-mail: Tom.Schoonjans@UGent.be [X-ray Microspectroscopy and Imaging Research Group (XMI), Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Ghent (Belgium); Silversmit, Geert; Vekemans, Bart [X-ray Microspectroscopy and Imaging Research Group (XMI), Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Ghent (Belgium); Schmitz, Sylvia [Geosciences Institute/Mineralogy, Goethe University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany); Burghammer, Manfred; Riekel, Christian [ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble Cedex (France); Brenker, Frank E. [Geosciences Institute/Mineralogy, Goethe University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany); Vincze, Laszlo, E-mail: Laszlo.Vincze@UGent.be [X-ray Microspectroscopy and Imaging Research Group (XMI), Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Ghent (Belgium)

    2012-01-15

    A new method for the quantification of X-ray fluorescence (XRF) was derived based on the fundamental parameter method (FPM). The FPM equations were adapted to accommodate the special case of confocal nano-XRF, i.e. X-ray nano-beam excitation coupled with confocal detection, taking into account the special characteristics of the detector channel polycapillary. A thorough error estimation algorithm based on the Monte Carlo method was applied, producing a detailed analysis of the uncertainties of the quantification results. The new FPM algorithm was applied on confocal nano-XRF data obtained from cometary dust returned by NASA's Stardust mission, recorded at beamline ID13 of the European Synchrotron Radiation Facility. - Highlights: Black-Right-Pointing-Pointer A new method for the quantification of confocal XRF is presented. Black-Right-Pointing-Pointer The quantification is based on the fundamental parameter method (FPM). Black-Right-Pointing-Pointer The new FPM algorithm was applied for the analysis of unique cometary dust particles. Black-Right-Pointing-Pointer The cometary particles were returned by NASA's Stardust mission in 2006. Black-Right-Pointing-Pointer Error estimation is based on the Monte Carlo method.

  17. A shaped annular beam tri-heterodyne confocal microscope with good anti-environmental interference capability

    Institute of Scientific and Technical Information of China (English)

    Zhao Wei-Qian; Feng Zheng-De; Qiu Li-Rong

    2007-01-01

    A shaped annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a confocal microscope. It simultaneously detects far-, on-, and near-focus signals with given phase differences by dividing the measured light path of the confocal microscope into three sub-paths (signals). Pair-wise real-time heterodyne subtraction of the three signals is used to improve the anti-environmental interference capability, axial resolution, and linearity; and a shaped annular beam super-resolution technique is used to improve lateral resolution. Theoretical analyses and preliminary experiments indicate that an axial resolution of about 1 nm can be achieved with a shaped annular beam tri-heterodyne confocal microscope and its lateral resolution can be better than 0.2μm for λ= 632.8 nm, the numerical aperture of the lens of the microscope is NA = 0.85, and the normalized radius ε= 0.5.

  18. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    Science.gov (United States)

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  19. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics.

    Science.gov (United States)

    Gatto Monticone, D; Katamadze, K; Traina, P; Moreva, E; Forneris, J; Ruo-Berchera, I; Olivero, P; Degiovanni, I P; Brida, G; Genovese, M

    2014-10-03

    We experimentally demonstrate quantum enhanced resolution in confocal fluorescence microscopy exploiting the nonclassical photon statistics of single nitrogen-vacancy color centers in diamond. By developing a general model of superresolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers.

  20. Dynamic experimentation on the confocal laser scanning microscope : application to soft-solid, composite food materials

    NARCIS (Netherlands)

    Plucknett, K.P.; Pomfret, S.J.; Normand, V.; Ferdinando, D.; Veerman, C.; Frith, W.J.; Norton, I.T.

    2001-01-01

    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like' struc

  1. Effects of photon reabsorption phenomena in confocal micro-photoluminescence measurements in crystalline silicon

    Science.gov (United States)

    Roigé, A.; Alvarez, J.; Jaffré, A.; Desrues, T.; Muñoz, D.; Martín, I.; Alcubilla, R.; Kleider, J.-P.

    2017-02-01

    Confocal micro-photoluminescence (PL) spectroscopy has become a powerful characterization technique for studying novel photovoltaic (PV) materials and structures at the micrometer level. In this work, we present a comprehensive study about the effects and implications of photon reabsorption phenomena on confocal micro-PL measurements in crystalline silicon (c-Si), the workhorse material of the PV industry. First, supported by theoretical calculations, we show that the level of reabsorption is intrinsically linked to the selected experimental parameters, i.e., focusing lens, pinhole aperture, and excitation wavelength, as they define the spatial extension of the confocal detection volume, and therefore, the effective photon traveling distance before collection. Second, we also show that certain sample properties such as the reflectance and/or the surface recombination velocity can also have a relevant impact on reabsorption. Due to the direct relationship between the reabsorption level and the spectral line shape of the resulting PL emission signal, reabsorption phenomena play a paramount role in certain types of micro-PL measurements. This is demonstrated by means of two practical and current examples studied using confocal PL, namely, the estimation of doping densities in c-Si and the study of back-surface and/or back-contacted Si devices such as interdigitated back contact solar cells, where reabsorption processes should be taken into account for the proper interpretation and quantification of the obtained PL data.

  2. Sensitive Skin: Assessment of the Skin Barrier Using Confocal Raman Microspectroscopy

    NARCIS (Netherlands)

    Richters, R.J.H.; Falcone, D.; Uzunbajakava, N.E.; Varghese, B.; Caspers, P.J.; Puppels, G.J.; Erp, P.E.J. van; Kerkhof, P.C.M. van de

    2017-01-01

    BACKGROUND/AIMS: Sensitive skin (SS), a frequently reported condition in the Western world, has been suggested to be underlined by an impaired skin barrier. The aim of this study was to investigate the skin barrier molecular composition in SS subjects using confocal Raman microspectroscopy (CRS),

  3. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    Science.gov (United States)

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  4. Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy.

    NARCIS (Netherlands)

    van Munster, E.B.; Goedhart, J.; Kremers, G.J.; Manders, E.M.M.; Gadella, Th.W.J.

    2007-01-01

    BACKGROUND: Wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM) is an established technique to determine fluorescence lifetimes. Disadvantage of wide-field imaging is that measurements are compromised by out-of-focus blur. Conventional scanning confocal typically means long

  5. Cellular features of psoriatic skin: imaging and quantification using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Wolberink, E.A.W.; Erp, P.E.J. van; Teussink, M.M.; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2011-01-01

    BACKGROUND: In vivo reflectance confocal microscopy (RCM) is a novel, exciting imaging technique. It provides images of cell-and tissue structures and dynamics in situ, in real time, without the need for ex vivo tissue samples. RCM visualizes the superficial part of human skin up to a depth of 250

  6. Confocal scanning laser microscopic study of the RDX defect structure in deformed polymer-bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Bouma, R.H.B.

    2016-01-01

    The influence of an explosion-driven deformation on the defect structure in RDX crystals embedded in a polymer-bonded explosive was investigated by means of confocal scanning laser microscopy. The images were compared to the defect structure in the as-received RDX grades, embedded

  7. Musculature of Notholca acuminata (Rotifera : Ploima : Brachionidae) revealed by confocal scanning laser microscopy

    DEFF Research Database (Denmark)

    Sørensen, M.V.; Funch, P.; Hooge, M.

    2003-01-01

    The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head...

  8. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  9. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    Science.gov (United States)

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  10. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  11. Musculature of Notholca acuminata (Rotifera: Ploima: Brachionidae) revealed by confocal scanning laser microscopy

    DEFF Research Database (Denmark)

    Sørensen, M.V.; Funch, P.; Hooge, M.

    2003-01-01

    he body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head...

  12. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    Science.gov (United States)

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  13. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  14. Imaging inclusion complex formation in starch granules using confocal laser scanning microscopy

    NARCIS (Netherlands)

    Manca, Marianna; Woortman, Albert J. J.; Loos, Katja; Loi, Maria A.

    The tendency of amylose to form inclusion complexes with guest molecules has been an object of wide interest due to its fundamental role in food processing. Here we investigated the features of starch granules from several botanical sources using confocal laser scanning microscopy (CLSM) and

  15. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    Science.gov (United States)

    Sensusiati, A. D.; Priya, T. K. S.; Dachlan, Y. P.

    2017-05-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (p<0.05). There was also significant correlation between calcium intensity with the evidence of necrosis and Hsp70 expression at 2 hours after infection. Apoptosis and necrosis were simultaneously shown with calcium contribution in this study. Confocal microscopy can be used to measure calcium changes in infected and uninfected neurons both in quantitatively and qualitatively.

  16. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field

    NARCIS (Netherlands)

    Sladkov, Maksym; Bakker, M. P.; Chaubal, A. U.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.

    2011-01-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aim

  17. New classification for probe-based confocal laser endomicroscopy in the colon

    NARCIS (Netherlands)

    T. Kuiper; F.J.C. van den Broek; S. van Eeden; M.B. Wallace; A.M. Buchner; A. Meining; K. van Hee; P. Fockens; E. Dekker

    2011-01-01

    Background and aims: Probe-based confocal laser endomicroscopy (pCLE; Cellvizio, Mauna Kea Technologies, Paris, France) enables in vivo histology during colonoscopy and may allow endoscopists to make real-time diagnoses. A collaboration of five experts proposed a new pCLE classification for colonic

  18. Dye-enhanced reflectance and fluorescence confocal microscopy as an optical pathology tool

    Science.gov (United States)

    Yaroslavsky, Anna N.; Salomatina, Elena; Novak, John; Amat-Roldan, Ivan; Castano, Ana; Hamblin, Michael

    2006-02-01

    Early detection and precise excision of neoplasms are imperative requirements for successful cancer treatment. In this study we evaluated the use of dye-enhanced confocal microscopy as an optical pathology tool in the ex vivo trial with fresh thick non-melanoma skin cancer excisions and in vivo trial with B16F10 melanoma cancer in mice. For the experiments the tumors were rapidly stained using aqueous solutions of either toluidine blue or methylene blue and imaged using multimodal confocal microscope. Reflectance images were acquired at the wavelengths of 630nm and 650 nm. Fluorescence was excited at 630 nm and 650 nm. Fluorescence emission was registered in the range between 680 nm and 710 nm. The images were compared to the corresponding en face frozen H&E sections. The results of the study indicate confocal images of stained cancerous tissue closely resemble corresponding H&E sections both in vivo and in vitro. This remarkable similarity enables interpretation of confocal images in a manner similar to that of histopathology. The developed technique may provide an efficient real-time optical tool for detecting skin pathology.

  19. The influence of different shavers on the skin quantified by non-invasive reflectance confocal microscopy

    NARCIS (Netherlands)

    Rodijk, F.M.; Zanelli, G.; Geerligs, M.; Erp, P.E.J. van; Peppelman, M.

    2016-01-01

    BACKGROUND: The impact of personal care devices on skin is mainly assessed using subjective tools. However, new objective, accurate non-invasive in vivo imaging techniques have been developed. The aim of this study was to evaluate the ability of reflectance confocal microscopy (RCM) in quantifying

  20. Confocal restricted-height imaging of suspension cells (CRISC) in a PDMS microdevice during apoptosis

    NARCIS (Netherlands)

    Munoz-Pinedo, Cristina; Green, Douglas R.; Berg, van den Albert

    2005-01-01

    We have monitored and imaged cell death induced in human leukemic U937 cells over time using three-color confocal imaging. Three different apoptotic inducers, anti-Fas, TNF- and Etoposide were used. Individual cascaded events such as loss of mitochondrial transmembrane potential, exposure of phospha

  1. FFT-Based Methods for Nonlinear Image Restoration in Confocal Microscopy

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1994-01-01

    Recently we developed a new method for attenuation correction in 3D imaging by a confocal scanning laser microscope (CSLM) in the (epi)fluorescence mode. The fundamental element in our approach consisted of multiplying the measured fluorescent intensity by a correction factor involving a convolution

  2. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  3. Experimental demonstration of ray-optical refraction with confocal lenslet arrays.

    Science.gov (United States)

    Courtial, Johannes; Kirkpatrick, Blair C; Logean, Eric; Scharf, Toralf

    2010-12-01

    We observe imaging through windows comprising pairs of confocal lenslet arrays that have different focal lengths but that are otherwise identical. Image space is stretched in the longitudinal direction only. Such windows are examples of METATOYs, optical components that can change light-ray direction in ways that appear wave-optically forbidden.

  4. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  5. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo...

  6. Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index

    NARCIS (Netherlands)

    Besseling, T. H.; Jose, J.; Blaaderen, A. Van

    2015-01-01

    Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive-index mismatch between the sample and immersion liquid, wh

  7. In vivo reflectance confocal microscopy features of a large cell acanthoma: report of a case.

    Science.gov (United States)

    Shahriari, Neda; Grant-Kels, Jane M; Rabinovitz, Harold S; Oliviero, Margaret; Scope, Alon

    2016-07-01

    Reflectance confocal microscopy (RCM) is an FDA approved noninvasive optical imaging technique that acquires cellular level-resolution skin images in vivo. Herein, we report a case of histopathologically proven large cell acanthoma (LCA) whose RCM features simulate those of squamous cell carcinoma in situ.

  8. Correlation of Biomicroscopic Findings with Confocal Microscopy in Eyes with Amiodarone-Induced Cornea Verticillata

    Directory of Open Access Journals (Sweden)

    Emine Kaya

    2014-01-01

    Full Text Available Objectives: To investigate the correlation between biomicroscopic and confocal microscopic findings in eyes with amiodarone-induced cornea verticillata. Materials and Methods: Sixteen eyes of 8 patients with amiodarone-induced cornea verticillata were evaluated. Eyes with keratopathy were staged according to Orlando slit-lamp microscopy classification. Confocal laser-scanning microscopy was performed by Rostock cornea modulated to HRT II (Heidelberg Engineering GmbH, Heidelberg, Germany, and staging was done according to Falke’s classification that is based on the degree of epithelial basal cell deposit accumulation. The relation between biomicroscopic staging and corneal involvement detected on confocal microscopy was assessed by Spearman correlation analysis. Results: The mean age of the 8 patients (5 male, 3 female was 63.1±7.2 (50 to 69 years. The mean duration of drug treatment was 12.1±11.8 (3 to 36 months, and the mean drug treatment dose was 312.5±223.2 (100 to 800 mg/day. At the time of examination, 50% of the patients had already given up the treatment at a mean of 29.5±15.8 (6 to 40 months ago, whereas the other 50% were still on amiodarone therapy. Hyper-reflecting deposits were observed in the basal epithelium, anterior-, mid-and deep-stroma, and in the endothelium on confocal microscopic examination. Correlation was detected between biomicroscopic and confocal microscopic stages (r=0.770, p<0.001. Frequency of detecting deposits in the stroma and endothelium was found to be increasing as the biomicroscopic stage increased (r=0.844; p<0.001 and r=0.551; p<0.01, respectively. Conclusion: In amiodarone-induced cornea verticillata, correlated results were detected between biomicroscopic and confocal microscopic staging. Therefore, in clinics where confocal microscopy is not available, biomicroscopic staging can be used as a guiding parameter in eyes with amiodarone-induced cornea verticillata. (Turk J Ophthalmol 2014; 44: 63-67

  9. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    Science.gov (United States)

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization.

  10. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Kobayashi A

    2014-02-01

    Full Text Available Akira Kobayashi, Tomomi Higashide, Hideaki Yokogawa, Natsuko Yamazaki, Toshinori Masaki, Kazuhisa Sugiyama Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan Objective: To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures. Patients and methods: Two patients (67-year-old male and his 26-year-old son with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results: Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 µm oculus dexter (OD (the right eye and 384 µm oculus sinister (OS (the left eye in the father and 430 µm OD and 425 µm OS in the son. In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion: The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients. Keywords: osteogenesis imperfecta, K-structure, confocal microscopy, Bowman's layer

  11. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    Science.gov (United States)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  12. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (pspectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  13. Learning reflectance confocal microscopy of melanocytic skin lesions through histopathologic transversal sections.

    Directory of Open Access Journals (Sweden)

    Juliana Casagrande Tavoloni Braga

    Full Text Available Histopathologic interpretation of dermoscopic and reflectance confocal microscopy (RCM features of cutaneous melanoma was timidly carried out using perpendicular histologic sections, which does not mimic the same plane of the image achieved at both techniques (horizontal plane. The aim of this study was to describe the transverse histologic sections research technique and correlate main dermoscopic features characteristic of cutaneous melanoma (atypical network, irregular globules and pseudopods with RCM and histopathology in perpendicular and transverse sections in order to offer a more precise interpretation of in vivo detectable features. Four melanomas and 2 nevi with different dermoscopic clues have been studied. Lesion areas that showed characteristic dermoscopic features were imaged by dermoscopy and confocal microscopy and directly correlated with histopathology in perpendicular and transverse sections. We presented the possibility to perform transverse sections as a new approach to understand RCM features. Atypical network showed different aspects in the 2 melanomas: in one case it was characterized by pleomorphic malignant melanocytes with tendency to form aggregates, whereas in the other elongated dendritic cells crowded around dermal papillae, some of them forming bridges that resembled the mitochondrial aspect at confocal and histopathology transversal sections. Pigment globules in melanomas and nevi differed for the presence of large atypical cells in the former, and pseudopods showed up as elongated nests protruded toward the periphery of the lesion. Transverse histologic research sections have a consistent dermoscopic and confocal correlate, and it may represent an help in confocal feature interpretation and an advance in improving melanoma diagnosis and knowledge of the biology of melanocytic lesions.

  14. Determination of sex by exfoliative cytology using acridine orange confocal microscopy: A short study.

    Science.gov (United States)

    Reddy, D Shyam Prasad; Sherlin, Herald J; Ramani, Pratibha; Prakash, P Ajay

    2012-07-01

    Establishing individuality is an imperative aspect in any investigation procedure. Sometimes, in identifying an individual, it becomes necessary to determine the sex of that particular individual. Combining rapidity with reliability, an innovative idea has been put forward using a confocal microscope in exfoliative cytology. In the present study, we have determined the sex of the individual from buccal mucosal scrapings. The exfoliative cells were observed for Barr bodies under a confocal microscope, and the percentage of Barr-body-positive cells was determined. The main objective of this study is to assess confocal microscopy for the determination of sex by observing Barr bodies in the exfoliative cells of both men and women. Samples of buccal mucosa smears were made followed by acridine orange staining. The stained slides were observed under a confocal microscope and the data obtained was subjected for statistical analysis, especially for mean and standard deviation. Samples of buccal mucosa smears from 20 men and 20 women were obtained by scraping with flat wooden sticks (exfoliative cytology). The smears were fixed in 100% alcohol for 15 min, followed by acridine orange (AO) staining as described by Von Bertalanffy et al. Smears stained with AO were examined under a confocal microscope and the percentage of Barr-body-positive cells was determined. Data obtained was subjected for statistical analysis, especially for mean and standard deviation. Two non-overlapping ranges for the percentage of Barr-body-positive cells have been obtained for men and women. It was observed that in the male samples, the percentage of Barr-body-positive cells ranged from 0-3%. In the female samples, the percentage of Barr-body-positive cells ranged from 18-72%, and all the females showed the presence of Barr bodies. The study showed that the presence of Barr body in buccal mucosal cells can be demonstrated with a fair degree of accuracy using acridine orange confocal microscopy. The

  15. Determination of sex by exfoliative cytology using acridine orange confocal microscopy: A short study

    Directory of Open Access Journals (Sweden)

    D Shyam Prasad Reddy

    2012-01-01

    Full Text Available Context: Establishing individuality is an imperative aspect in any investigation procedure. Sometimes, in identifying an individual, it becomes necessary to determine the sex of that particular individual. Combining rapidity with reliability, an innovative idea has been put forward using a confocal microscope in exfoliative cytology. In the present study, we have determined the sex of the individual from buccal mucosal scrapings. The exfoliative cells were observed for Barr bodies under a confocal microscope, and the percentage of Barr-body-positive cells was determined. Aims: The main objective of this study is to assess confocal microscopy for the determination of sex by observing Barr bodies in the exfoliative cells of both men and women. Settings and Design: Samples of buccal mucosa smears were made followed by acridine orange staining. The stained slides were observed under a confocal microscope and the data obtained was subjected for statistical analysis, especially for mean and standard deviation. Materials and Methods: Samples of buccal mucosa smears from 20 men and 20 women were obtained by scraping with flat wooden sticks (exfoliative cytology. The smears were fixed in 100% alcohol for 15 min, followed by acridine orange (AO staining as described by Von Bertalanffy et al. Smears stained with AO were examined under a confocal microscope and the percentage of Barr-body-positive cells was determined. Statistical Analysis Used: Data obtained was subjected for statistical analysis, especially for mean and standard deviation. Results: Two non-overlapping ranges for the percentage of Barr-body-positive cells have been obtained for men and women. It was observed that in the male samples, the percentage of Barr-body-positive cells ranged from 0-3%. In the female samples, the percentage of Barr-body-positive cells ranged from 18-72%, and all the females showed the presence of Barr bodies. Conclusion: The study showed that the presence of Barr

  16. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  17. Reflectance Confocal Microscopy as an Aid to Dermoscopy to Improve Diagnosis on Equivocal Lesions: Evaluation of Three Bluish Nodules

    Directory of Open Access Journals (Sweden)

    Sara Bassoli

    2010-01-01

    Full Text Available Nodular lesions can be difficult to diagnose under dermoscopy alone, since they often lack specific diagnostic features. Confocal microscopy can be used as an aid to dermoscopy, to increase the diagnostic accuracy on equivocal skin lesions. We report three cases of bluish nodular lesions, difficult to diagnose under dermoscopy alone. Confocal features were very useful in these cases to lead us to the correct diagnosis, recognizing benign versus malignant entities. Histopathology is also reported, with high correspondence compared to the confocal imaging.

  18. Confocal Microscopy for Process Monitoring and Wide-Area Height Determination of Vertically-Aligned Carbon Nanotube Forests

    Directory of Open Access Journals (Sweden)

    Markus Piwko

    2015-08-01

    Full Text Available Confocal microscopy is introduced as a new and generally applicable method for the characterization of the vertically-aligned carbon nanotubes (VACNT forest height. With this technique process control is significantly intensified. The topography of the substrate and VACNT can be mapped with a height resolution down to 15 nm. The advantages of confocal microscopy, compared to scanning electron microscopy (SEM, are demonstrated by investigating the growth kinetics of VACNT using Al2O3 buffer layers with varying thicknesses. A process optimization using confocal microscopy for fast VACNT forest height evaluation is presented.

  19. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    Science.gov (United States)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ν1 PO4 3- (first vibrational mode) at 960cm-1 and ν2 PO4 3- at 430cm-1 and ν4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  20. A confocal rheoscope to study bulk or thin-film material under uniaxial or biaxial shear

    CERN Document Server

    Lin, Neil Y C; Cheng, Xiang; Leahy, Brian; Cohen, Itai

    2016-01-01

    We present a new design of a confocal rheoscope that enables us to precisely impose a uniform uniaxial or biaxial shear. The design consists of two precisely-positioned parallel plates. Our design allows us to adjust the gap between the plates to be as small as 2$\\pm$0.1 $\\mu$m, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material 3D structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions.

  1. Probing intracellular mass density fluctuation through confocal microscopy: application in cancer diagnostics as a case study

    CERN Document Server

    Sahay, Peeyush; Ghimire, Hemendra M; Almabadi, Huda; Yallappu, Murali M; Skalli, Omar; Jaggi, Meena; Chauhan, Subhash C; Pradhan, Prabhakar

    2015-01-01

    Intracellular structural alterations are hallmark of several disease conditions and treatment modalities. However, robust methods to quantify these changes are scarce. In view of this, we introduce a new method to quantify structural alterations in biological cells through the widely used confocal microscopy. This novel method employs optical eigenfunctions localization properties of cells and quantifies the degree of structural alterations, in terms of nano- to micron scale intracellular mass density fluctuations, in one single parameter. Such approach allows a powerful way to compare changing structures in heterogeneous cellular media irrespective of the origin of the cause. As a case study, we demonstrate its applicability in cancer detection with breast and prostate cancer cases of different tumorigenicity levels. Adding new dimensions to the confocal based studies, this technique has potentially significant applications in areas ranging from disease diagnostics to therapeutic studies, such as patient pro...

  2. Fluorescence lifetime measurement with confocal endomicroscopy for direct analysis of tissue biochemistry in vivo

    Directory of Open Access Journals (Sweden)

    Youngjae Won

    2016-08-01

    Full Text Available Confocal endomicroscopy is a powerful tool for in vivo real-time imaging at cellular resolution inside a living body without tissue resection. Microscopic fluorescence lifetime measurement can provide information about localized biochemical conditions such as pH and the concentrations of oxygen and calcium. We hypothesized that combining these techniques could assist accurate cancer discrimination by providing both biochemical and morphological information. We designed a dual-mode experimental setup for confocal endomicroscopic imaging and fluorescence lifetime measurement and applied it to a mouse xenograft model of activated human pancreatic cancer generated by subcutaneous injection of AsPC-1 tumor cells. Using this method with pH-sensitive sodium fluorescein injection, we demonstrated discrimination between normal and cancerous tissues in a living mouse. With further development, this method may be useful for clinical cancer detection.

  3. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder;

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  4. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    Science.gov (United States)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  5. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.

    2014-03-01

    We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions. © 2014 AIP Publishing LLC.

  6. Confocal scanning laser microscopy and its application in biomedical health sciences

    Science.gov (United States)

    Vardaxis, Nicholas J.

    1999-07-01

    The confocal scanning laser microscope (CSLM) is an exciting new tool in microscopy. It offers improved rejection of out- of-focus `noise' and greater resolution than conventional imaging. By integrating a computer into the system and generating digital image data files, a rapid way of storing, processing, and analyzing images is available to the user. The production of 3D reconstruction representations is easy and effective. The technique of optical sectioning and confocal optics has revolutionized epifluorescence microscopy, the CSLM providing a highly desirable link between conventional light microscopy and electron microscopy. The use of the CSLM in biomedical health sciences is considered in this paper and the functional basics of the instrument are discussed with reference to several important applications in research and diagnostic work, with illustrations from the numerous and continually increasing publications in the area. It is veritably a `solution in search of problems' as this short review demonstrates.

  7. Confocal laser endomicroscopy and immunoendoscopy for real-time assessment of vascularization in gastrointestinal malignancies

    Institute of Scientific and Technical Information of China (English)

    Dan Ionu(t)Gheonea; Tatiana Car(ta)n(a); Tudorel Ciurea; Carmen Popescu; Anca B(a)d(a)r(a)u; Adrian S(a)ftoiu

    2011-01-01

    Gastrointestinal cancers represent a major cause of morbidity and mortality,with incomplete response to chemotherapy in the advanced stages and poor prognosis.Angiogenesis plays a crucial part in tumor growth and metastasis,with most gastrointestinal cancers depending strictly on the development of a new and devoted capillary network.Confocal laser endomicroscopy is a new technology which allows in vivo microscopic analysis of the gastrointestinal mucosa and its microvascularization during ongoing endoscopy by using topically or systemically administered contrast agents.Targeting markers of angiogenesis in association with confocal laser endomicroscopic examination(immunoendoscopy),as a future challenge,will add functional analysis to the morphological aspect of the neoplastic process.This review describes previous experience in endomicroscopic examination of the upper and lower digestive tract with emphasis on vascularization,resulting in a broad spectrum of potential clinical applications,and also preclinical research that could be translated to human studies.

  8. Feedback phase correction of Bessel beams in confocal line light-sheet microscopy: a simulation study.

    Science.gov (United States)

    Moosavi, S Hoda; Gohn-Kreuz, Cristian; Rohrbach, Alexander

    2013-08-10

    Confocal line detection has been shown to improve contrast in light-sheet-based microscopy especially when illuminating the sample by Bessel beams. Besides their self-reconstructing capability, the stability in propagation direction of Bessel beams allows to block the unwanted emission light from the Bessel beam's ring system. However, due to phase aberrations induced especially at the border of the specimen, Bessel beams may not propagate along lines parallel to the slit detector. Here we present a concept of how to correct the phase of each incident Bessel beam such that the efficiency of confocal line detection is improved by up to 200%-300%. The applicability of the method is verified by the results obtained from numerical simulations based on the beam propagation method.

  9. In vivo observation of papillae of the human tongue using confocal laser scanning microscopy.

    Science.gov (United States)

    Just, Tino; Stave, Joachim; Pau, Hans Wilhelm; Guthoff, Rudolf

    2005-01-01

    The aim of this investigation was to visualize the epithelial structures of the tongue using confocal laser scanning microscopy (LSM). The human tongue epithelium of 28 healthy subjects, aged 21-67 years, mean age 38 years, 14 women and 14 men, was examined in vivo by LSM. Using LSM, a combination of the Heidelberg Retina Tomograph HRT II and the Rostock Cornea Module, up to 800-fold magnifications were obtained. On the tongue surface both filiform and fungiform papillae and their taste pores were easily identified. The epithelium of the tongue with its subcellular structures could be observed up to a depth of 50 microm, cellular structures up to 150 microm and subepithelial vessels up to 300 microm. Additionally the papillary crests and blood flow were visible. Confocal LSM seems suitable for noninvasive in vivo examination of the tongue. The hydraulic z scan, the manual start setting and the measurement of the depth allow a clear classification of the observed structures.

  10. Spinning Disk Confocal Microscopy of Calcium Signalling in Blood Vessel Walls

    Science.gov (United States)

    Nelson, Mark; Ledoux, Jonathan; Taylor, Mark; Bonev, Adrian; Hannah, Rachael; Solodushko, Viktoriya; Shui, Bo; Tallini, Yvonne; Kotlikoff, Michael

    2010-01-01

    Spinning disk confocal laser microscopy systems can be used for observing fast events occurring in a small volume when they include a sensitive electron-multiplying CCD camera. Such a confocal system was recently used to capture the first pictures of intracellular calcium signalling within the projections of endothelial cells to the adjacent smooth muscle cells in the blood vessel wall. Detection of these calcium signals required high spatial and temporal resolution. A newly developed calcium ion (Ca2+) biosensor was also used. This exclusively expressed in the endothelium and fluoresced when Ca2+ concentrations increased during signalling. This work gives insights into blood vessel disease because Ca2+ signalling is critical for blood flow and pressure regulation. PMID:22506097

  11. OCT and in vivo confocal microscopy of a pigmented corneal tumor-like lesion.

    Science.gov (United States)

    Szaflik, Jacek P; Oldak, Monika; Ulinska, Magdalena; Ulnska, Magdalena; Tesla, Piotr; Szaflik, Jerzy

    2009-01-01

    A 43-year-old woman presented with a pigmented flat tumor situated at the posterior surface of the cornea nasally in her left eye. Anterior-segment optical coherence tomography revealed that the lesion was similar to the iris leaf, was limited to the cornea, and did not communicate with the iridocorneal angle. In vivo scanning slit confocal microscopy imaged dense hyperreflective tissue behind the endothelium and bright spots dispersed on the adjacent endothelial surface. Multiple hyporeflective formations resembling cell nuclei were visualized within the hyperreflective mass and the cell borders were distinguished. The diagnosis of pigmented nevus or retrocorneal membrane was suspected. The authors conclude that anterior-segment optical coherence tomography and in vivo scanning slit confocal microscopy are useful in assessing the microstructure and penetration of pigmented corneal lesions.

  12. Construction of a confocal PIXE set-up at the Jozef Stefan Institute and first results

    Energy Technology Data Exchange (ETDEWEB)

    Grlj, N., E-mail: natasa.grlj@ijs.si [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Pelicon, P.; Zitnik, M.; Vavpetic, P. [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Institute of Nuclear Physics, NCSR ' Demokritos' , GR-15310 Athens (Greece); Karydas, A.G. [Nuclear Spectrometry and Applications Laboratory, International Atomic Energy Agency, A-2444 Seibersdorf (Austria); Institute of Nuclear Physics, NCSR ' Demokritos' , GR-15310 Athens (Greece); Kanngiesser, B. [Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany)

    2011-10-15

    A new confocal PIXE set-up at the Jozef Stefan Institute in Ljubljana was recently designed and built. It consists of a silicon-drift detector, a specially designed polycapillary lens and a snout-alignment interface for precise positioning. It allows detector movement in all directions and therefore precise alignment during the creation of the probing volume and the possibility of simultaneous use of other complementary techniques, including standard {mu}-PIXE measurements with another X-ray detector. A description of the new set-up is given, as well as a short presentation of the method itself. Two custom-designed types of X-ray lenses were tailored and manufactured for this application, a standard semi-lens and a polycapillary conic collimator; both were characterized and compared within the scope of development of the confocal PIXE system. First results of depth profiling with the beam scanning mode are shown.

  13. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Science.gov (United States)

    Watson, Alan M; Rose, Annika H; Gibson, Gregory A; Gardner, Christina L; Sun, Chengqun; Reed, Douglas S; Lam, L K Metthew; St Croix, Claudette M; Strick, Peter L; Klimstra, William B; Watkins, Simon C

    2017-01-01

    Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  14. Confocal X-ray fluorescence micro-spectroscopy experiment in tilted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Czyzycki, Mateusz, E-mail: Mateusz.Czyzycki@desy.de [DESY Photon Science, Notkestr. 85, D-22607 Hamburg (Germany); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Wrobel, Pawel; Lankosz, Marek [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2014-07-01

    This paper provides a generalized mathematical model to describe the intensity of primary X-ray fluorescence radiation collected in the tilted confocal geometry mode, where the collimating optics is rotated over an angle relative to a horizontal plane. The influence of newly introduced terms, which take into account the tilted geometry mode, is discussed. The model is verified with a multi-layer test sample scanned in depth. It is proved that for low-Z matrices, the rotation of the detection channel does not induce any significant differences in a reconstruction of the thickness and chemical composition of layers, so that it may safely be ignored. - Highlights: • A mathematical model for confocal XRF spectroscopy in tilted geometry was derived. • Tilted geometry influenced the analytical capabilities of XRF instrument slightly. • Thickness and the chemical composition of multi-layers were determined.

  15. Measuring the lens focal length by laser reflection-confocal technology.

    Science.gov (United States)

    Yang, Jiamiao; Qiu, Lirong; Zhao, Weiqian; Shao, Rongjun; Li, Zhigang

    2013-06-01

    A laser reflection-confocal focal-length measurement (LRCFM) is proposed for the high-accuracy measurement of lens focal length. LRCFM uses the peak points of confocal response curves to precisely identify the lens focus and vertex of the lens last surface. LRCFM then accurately measures the distance between the two positions to determine the lens focal length. LRCFM uses conic fitting, which significantly enhances measurement accuracy by inhibiting the influence of environmental disturbance and system noise on the measurement results. The experimental results indicate that LRCFM has a relative expanded uncertainty of less than 0.0015%. Compared with existing measurement methods, LRCFM has high accuracy and a concise structure. Thus, LRCFM is a feasible method for high-accuracy focal-length measurements.

  16. [Confocal microscopy as an early relapse marker after keratoplasty due to Fusarium solani keratitis].

    Science.gov (United States)

    Daas, L; Bischoff-Jung, M; Viestenz, A; Seitz, B; Viestenz, A

    2017-01-01

    In the case of therapy-resistant keratitis an infection with Fusarium solani should be taken into consideration as a rare but very severe eye disease. In the majority of cases Fusarium solani keratitis will result in a protracted clinical course despite aggressive medicinal and surgical interventions. We describe the case of a referred patient after intensive topical, intracameral and systemic antibacterial and antimycotic therapy as well as surgical treatment with emergency keratoplasty à chaud because of Fusarium solani keratitis. The patient presented to our department with persistent discomfort for further therapeutic interventions. Using confocal microscopy we were able to demonstrate the presence of fungal hyphae in the host cornea and the graft, which was important for making further surgical decisions. Furthermore, this emphasizes the role of confocal microscopy as an early relapse marker during the clinical monitoring.

  17. Methylene-blue aided rapid confocal laser endomicroscopy of breast cancer

    Science.gov (United States)

    Vyas, Khushi; Hughes, Michael; Leff, Daniel Richard; Yang, Guang-Zhong

    2017-02-01

    Breast conserving surgery allows complete tumor resection while maintaining acceptable cosmesis for patients. Safe and rapid intraoperative margin assessment during the procedure is important to establish the completeness of tumor excision and minimizes the need for reoperation. Confocal laser endomicroscopy has demonstrated promise for real-time intraoperative margin assessment using acriflavine staining, but it is not approved for routine in-human use. We describe a custom high-speed line-scan confocal laser endomicroscopy (LS-CLE) system at 660 nm that enables high-resolution histomorphological imaging of breast tissue stained with methylene-blue, an alternative fluorescent stain for localizing sentinel nodes during breast surgery. Preliminary imaging results on freshly excised human breast tissue specimens are presented, demonstrating the potential of methylene-blue aided rapid LS-CLE to determine the oncological status of surgical margins in-vivo.

  18. Performance of line-scanning confocal microscopy in human skin: investigation of potential for clinical translation

    Science.gov (United States)

    Larson, Bjorg; Peterson, Gary; Abeytunge, Sanjeewa; Rajadhyaksha, Milind

    2011-03-01

    Line-scanning, using 8-10 optical components, linear-array detectors and custom-FPGA electronics, may enable smaller, simpler and lower-cost confocal microscopes to accelerate translation to the clinic. The adaptability of commercially available low-cost array detectors for confocal microscopy is being investigated. Measurements of optical sectioning and lateral resolution showed good agreement with theory, and are comparable to that of point-scanning systems. LSFs through full thickness of human epidermis show a two-fold degradation in sectioning performance. Imaging of human epidermis in vivo demonstrates nuclear and cellular detail down to the basal layer with a bench top setup and also a compact clinical prototype. Blood flow in oral mucosa can be imaged using the clinical prototype. However, speckle and background noise degrade contrast and resolution of the image.

  19. The role of confocal microscopy in the dermato-oncology practice.

    Science.gov (United States)

    Diaconeasa, A; Boda, D; Neagu, M; Constantin, C; Căruntu, C; Vlădău, L; Guţu, D

    2011-01-01

    Reflectance-mode confocal microscopy (RCM) is a new in vivo skin imaging technique. We present our one-year experience in RCM examinations in skin tumors and the retrospective analysis of patients enrolled in the Dermatological Department of 'N. Paulescu' Institute using the Fotofinder Dermoscope IIŴ for the dermatoscopy analysis and VivaScope 1500Ŵ for in vivo RCM. We established the rank of RCM in the complex algorithm of skin cancer diagnose, showing that the presented experience can open new possibilities to implement this automated image analyzing system in the routine practice. Our analyzed cases clearly showed that confocal microscopy, therefore, optical biopsy, could guide the clinician towards an accurate diagnosis before surgical removal. Moreover, we emphasized that the development of this technique increases the potential of future teledermatologic applications.

  20. Confocal Laser Endomicroscopy in the Study of Colonic Mucosa in IBD Patients: A Review

    Directory of Open Access Journals (Sweden)

    Francesca Salvatori

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micronscale via endoscopes. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. Recently, the use of CLE was reported in the study of colonic mucosa in patients with inflammatory bowel diseases and in particular in patients affected by ulcerative colitis. CLE has the potential to have an important role in management of IBD patients as it can be used to assess the grading of colitis and in detection of microscopic colitis in endoscopically silent segments. Moreover, CLE can be used in surveillance programs especially in high-risk patients. This report aims to evaluate the current data on the application of confocal endomicroscopy in clinical gastroenterology and particularly in the study of colonic mucosa in UC patients.

  1. Compensation of phase aberration by using a virtual confocal scheme in digital holographic microscopy.

    Science.gov (United States)

    Chew, Yang-Kun; Shiu, Min-Tzung; Wang, Je-Chung; Chang, Chi-Ching

    2014-09-20

    This work presents cost-effective, simple arbitrary phase-step digital holographic microscopy to suppress both zero-order and twin-image terms. A virtual confocal offset lens under in-line configuration is also used to compensate for the introduced quadratic phase by using a microscope objective lens. In addition to reducing the difficulties of physical confocal configurations, the proposed method significantly increases the magnification power, ultimately achieving the purposes of an optical zoom. An attempt is also made to reduce the noise interference of a high magnification system by developing a long focal lens to reduce light detection size, subsequently gaining an approximately plane wave light source to illuminate the object within the effective depth of focus. Experimental results indicate that the proposed high magnification system can be elevated with low noise interference, and image reconstruction without quadratic phase terms.

  2. A simple way to identify non-viable cells within living plant tissue using confocal microscopy

    Directory of Open Access Journals (Sweden)

    Truernit Elisabeth

    2008-06-01

    Full Text Available Abstract Background Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. Results Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy. The dyes were selective for non-viable cells and showed very little background staining in living cells. Simultaneous detection of SYTOX dye and fluorescent protein (e.g. GFP fluorescence was possible. Conclusion The fluorescent SYTOX dyes are useful for an easy and quick first assay of plant cell viability in living plant samples using fluorescence and confocal laser-scanning microscopy.

  3. 3-D Confocal microscopy track analysis: a promising tool for determining CR-39 response function

    Energy Technology Data Exchange (ETDEWEB)

    Vaginay, F. E-mail: francois.vaginay@univ-fcomte.fr; Fromm, M.; Pusset, D.; Meesen, G.; Chambaudet, A.; Poffijn, A

    2001-06-01

    A new method based on the use of the confocal microscope is described in order to evaluate the CR-39 response function for Li-7 ions with an incident energy of 10.77 MeV. This method uses the formulations developed by Fromm et al. and considers two etching velocities: V{sub B} represents the bulk etch rate and remains constant, and V{sub T} the track etch rate, which varies along the particle's path. The confocal microscope seems to bring big improvements for track analysis. The first results of V{sub T} versus the particle range are presented and compared with the curves obtained by the sequential etching method. The obtained V{sub T} are plotted and compared to LET, REL{sub 350} and the cumulative radial dose.

  4. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Science.gov (United States)

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  5. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Ramla Gary

    2016-02-01

    Full Text Available The gold nanoparticle (GNP aggregation growth induced by deoxyribonucleic acid (DNA is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA.

  6. A SENSITIVE AND STABLE CONFOCAL FABRY-PEROT INTERFEROMETER FOR SURFACE ULTRASONIC VIBRATION DETECTION

    Institute of Scientific and Technical Information of China (English)

    DING HONG-SHENG; TONG LI-GE; CHEN GENG-HUA

    2001-01-01

    A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays,the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.

  7. Histometric data obtained by in vivo confocal laser scanning microscopy in patients with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Altmeyer Peter

    2002-08-01

    Full Text Available Abstract Background It would be a benefit if time-saving, non-invasive methods could give hints for diagnosing systemic sclerosis. To investigate the skin of patients with systemic sclerosis using confocal laser scanning microscopy in vivo and to develop histometric parameters to describe characteristic cutaneous changes of systemic sclerosis observed by this new technique, we conducted an exploratory study. Materials and Methods Fifteen patients with systemic sclerosis treated with extracorporal photopheresis were compared with 15 healthy volunteers and 10 patients with other disorders also treated with extracorporal photopheresis. All subjects were investigated using confocal laser scanning microscopy in vivo. Results Micromorphologic characteristics of skin of patients with systemic sclerosis and measuring parameters for melanisation, epidermal hypotrophy, and fibrosis for dislocation of capillaries by collagen deposits in the papillary dermis were evaluated. An interesting finding was an increased thickness of the tissue in the dermal papillae superior to the first dermal papilla vessel. It was also possible to reproduce characteristic histologic features by confocal laser scanning microscopy in vivo. Histometric parameters for fibrosis and vascular features developed in this study showed significant differences in patients with systemic sclerosis compared to controls. Conclusions Although the predominant histopathological features in systemic sclerosis are findings of the reticular dermis and the subcutis, and in histopathological investigation the epidermis seems to remain unaffected by the disease, we have demonstrate some characteristic differences in the epidermis and papillary dermis by confocal laser scanning microscopy in vivo. Some of them have not been described so far. However, to use this technique as a tool for diagnosis and/or staging of systemic sclerosis, further studies are needed investigating the sensitivity and

  8. CONFOCAL MICROSCOPY STUDY OF BIOLOGICAL PECULIARITIES OF SCAFFOLD MADE FROM RECOMBINANT SPIDER SILK

    Directory of Open Access Journals (Sweden)

    O. L. Pustovalova

    2009-01-01

    Full Text Available We studied the viability and dynamic of cell distribution during long-term cultivation of broblasts 3T3 in spider silk spidroin 1-based scaffold. Laser scanning confocal microscopy is shown to have advantages for visualization of cells situated on the external and internal surfaces of scaffold. Fibroblasts maintain high proliferative ability and viability during long term cultivation. Spidroin 1-based scaffold are the perspective materials for bioengineering. 

  9. Errors in confocal fluorescence ratiometric imaging microscopy due to chromatic aberration.

    Science.gov (United States)

    Lin, Yuxiang; Gmitro, Arthur F

    2011-01-01

    Confocal fluorescence ratiometric imaging is an optical technique used to measure a variety of important biological parameters. A small amount of chromatic aberration in the microscope system can introduce a variation in the signal ratio dependent on the fluorophore concentration gradient along the optical axis and lead to bias in the measurement. We present a theoretical model of this effect. Experimental results and simulations clearly demonstrate that this error can be significant and should not be ignored.

  10. Classification of histological severity of Helicobacter pylori-associated gastritis by confocal laser endomicroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To classify the histological severity of Helicobacter pylori (H. pylori) infection-associated gastritis by confocal laser endomicroscopy (CLE). METHODS: Patients with upper gastrointestinal symptoms or individuals who were screened for gastric cancer were enrolled in this study. Histological severity of H. pylori infection-associated gastritis was graded according to the established CLE criteria. Diagnostic value of CLE for histo-logical gastritis was investigated and compared with that of white light ...

  11. Coherent confocal microscope with a phase-only filter in its extended source

    Institute of Scientific and Technical Information of China (English)

    YANG Chu-ping

    2006-01-01

    The phase information of an extended source is reconstructed by use of a two-zone (annular) phase-only filter in a coherent confocal scanning optical microscope.The dependence of its resolution on its source size is investigated theoretically by its three-dimensional optical transfer function (3D OTF).The results show that the resolution is improved, even though the source size is enlarged.

  12. Chondrocytes provide a model for in-situ confocal microscopy and 3D reconstructions

    Science.gov (United States)

    Hirsch, Michelle S.; Svoboda, Kathy K. H.

    1994-04-01

    Hyaline cartilage is composed of chondrocytes that reside in lacunae surrounded by extracellular matrix molecules. Microscopic and histochemical features of cartilage have been studied with many techniques. Many of these techniques can be time consuming and may alter natural cartilage characteristics. In addition, the orientation and order of sectioned tissue must be maintained to create 3D reconstructions. We show that confocal laser scanning microscopy may replace traditional methods for studying cartilage.

  13. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    Directory of Open Access Journals (Sweden)

    Franck P Martial

    Full Text Available Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded

  14. Confocal Raman studies in determining crystalline nature of PECVD grown Si nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nafis; Bhargav, P. Balaji; Ramasamy, P. [SSN Research Centre, Kalavakkam-603110, Tamilnadu (India); Department of Physics, SSN College of Engineering, Kalavakkam-603110, Tamilnadu (India); Sivadasan, A. K.; Tyagi, A. K.; Dhara, S., E-mail: dhara@igcar.gov.in [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amirthapandian, S.; Panigrahi, B. K. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Bhattacharya, S. [SSN Research Centre, Kalavakkam-603110, Tamilnadu (India)

    2015-06-24

    Silicon nanowires of diameter ∼200 nm and length of 2-4 µm are grown in the plasma enhanced chemical vapour deposition technique using nanoclustered Au catalyst assisted vapour-liquid-solid process. The crystallinity in the as-grown and annealed samples is studied using confocal Raman spectroscopic studies. Amorphous phase is formed in the as-grown samples. Structural studies using high resolution transmission electron microscopy confirm the polycrystalline nature in the annealed sample.

  15. Experimental study of the spatial distribution of quantum correlations in a confocal Optical Parametric Oscillator

    CERN Document Server

    Martinelli, M; Ducci, S; Gigan, S; Maitre, A; Fabre, C; Martinelli, Marcello; Treps, Nicolas; Ducci, Sara; Gigan, Sylvain; Maitre, Agnes; Fabre, Claude

    2003-01-01

    We study experimentally the spatial distribution of quantum noise in the twin beams produced by a type II Optical Parametric Oscillator operating in a confocal cavity above threshold. The measured intensity correlations are at the same time below the standard quantum limit and not uniformly distributed inside the beams. We show that this feature is an unambiguous evidence for the multimode and nonclassical character of the quantum state generated by the device.

  16. A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics

    Energy Technology Data Exchange (ETDEWEB)

    Fokicheva, V V [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2015-10-31

    A new class of integrable billiard systems, called generalized billiards, is discovered. These are billiards in domains formed by gluing classical billiard domains along pieces of their boundaries. (A classical billiard domain is a part of the plane bounded by arcs of confocal quadrics.) On the basis of the Fomenko-Zieschang theory of invariants of integrable systems, a full topological classification of generalized billiards is obtained, up to Liouville equivalence. Bibliography: 18 titles.

  17. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemin, P.B., E-mail: pbjacque@nps.edu [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada); Herring, R.A. [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada)

    2012-06-15

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as 'wily'. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: Black-Right-Pointing-Pointer Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. Black-Right-Pointing-Pointer Processing of multiple holograms containing the cumulative refractive index through the fluid. Black-Right-Pointing-Pointer Reconstruction issues due to restricting angular scanning to the numerical aperture of the

  18. Handheld reflectance confocal microscopy for the diagnosis of molluscum contagiosum: Histopathology and dermoscopy correlation.

    Science.gov (United States)

    Lacarrubba, Francesco; Verzì, Anna Elisa; Ardigò, Marco; Micali, Giuseppe

    2017-08-01

    Handheld reflectance confocal microscopy may represent an adjunctive, fast, non-invasive tool for the diagnosis of molluscum contagiosum, revealing microscopic details closely related to histopathology, as demonstrated by this study evaluating 19 molluscum lesions in 11 patients. It permits the rapid examination of one or multiple skin lesions in real time and it is perfectly suitable for children. © 2016 The Australasian College of Dermatologists.

  19. Template confined synthesis of amorphous carbon nanotubes and its confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Supratim [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata -700 032 (India); Roychowdhury, Tuhin [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata -700 032 (India); Chattopadhyay, Kalyan Kumar, E-mail: kalyan-chattopadhyay@yahoo.com [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata -700 032, India and School of Materials Science and Nanotechnology, Jadavpur University, Kolkata -700 032 (India)

    2014-04-24

    Amorphous carbon nanotubes (aCNTs) were synthesized by AAO (anodic aluminum oxide) template at a temperature 500 °C in nitrogen atmosphere using the citric acid as a carbon source without the help of any catalyst particles. Morphological analysis of the as prepared samples was carried out by field emission scanning electron microscopy (FESEM). Confocal Raman imaging has been studied and an attempt has been made to find out the graphitic (sp{sup 2}) and disordered phase of the CNTs.

  20. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics.

    Science.gov (United States)

    Sun, Tianxi; Macdonald, C A

    2013-02-07

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens.

  1. Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator

    Energy Technology Data Exchange (ETDEWEB)

    Goetzinger, S [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-10117 Berlin (Germany); Menezes, L de S [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-10117 Berlin (Germany); Benson, O [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-10117 Berlin (Germany); Talapin, D V [Institut fuer Physikalische Chemie, Universitaet Hamburg, D-20146 Hamburg (Germany); Gaponik, N [Institut fuer Physikalische Chemie, Universitaet Hamburg, D-20146 Hamburg (Germany); Weller, H [Institut fuer Physikalische Chemie, Universitaet Hamburg, D-20146 Hamburg (Germany); Rogach, A L [Sektion Physik und CeNS, LMU Muenchen, D-80799 Munich (Germany); Sandoghdar, V [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology (ETH), CH-8093 Zurich (Switzerland)

    2004-02-01

    We report on experiments where we used a home-made confocal microscope to excite single nanocrystals on a high-Q microsphere resonator. In that way spectra of an individual quantum emitter could be recorded. The Q factor of the microspheres coated with nanocrystals was still up to 10{sup 9}. We also demonstrate the use of a prism coupler as a well-defined output port to collect the fluorescence of an ensemble of nanocrystals coupled to whispering-gallery modes.

  2. UNDERSTANDING THE EFFECTS OF SURFACTANT ADDITION ON RHEOLOGY USING LASER SCANNING CONFOCAL MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    White, T

    2007-05-08

    The effectiveness of three dispersants to modify rheology was examined using rheology measurements and laser scanning confocal microscopy (LSCM) in simulated waste solutions. All of the dispersants lowered the yield stress of the slurries below the baseline samples. The rheology curves were fitted reasonably to a Bingham Plastic model. The three-dimensional LSCM images of simulants showed distinct aggregates were greatly reduced after the addition of dispersants leading to a lowering of the yield stress of the simulated waste slurry solutions.

  3. Application of chromatic confocal displacement sensor in measurement of tip clearance

    Science.gov (United States)

    Bi, Chao; Li, Di; Fang, Jianguo; Zhang, Bin

    2016-10-01

    In the field of aeronautics, the tip clearance of rotor exerts a crucial influence on the performance of the aero engine. As defined as the radial distance between the top of the blade and the inner wall of the casing, the tip clearance of too large or small size will adversely affect the normal running of the engine. In order to realize accurate measurement of the tip clearance in a simple way, a non-contact measuring method by the chromatic confocal displacement sensor is proposed in the paper. The sensor possesses the advantages such as small volume, good signal-to-noise ratio, high accuracy and response frequency etc., which make it be widely used in engineering and industry. For testing the performance and potential application of the sensor, a simulation testing platform is established. In the platform, a simulation blisk is installed on the air bearing spindle and a chromatic confocal displacement sensor is fixed on the platform to measure the displacement variation of the blade tip, which can be used to characterize the variation of the tip clearance. In the simulation experiments, both of single and continuous measurement of the tip clearance of the 36 blades on the blisk is executed. As the results of experiments show, the chromatic confocal displacement sensor can meet the requirements of measuring task, in which both of high measuring efficiency and accuracy could be achieved. Therefore, the measuring method proposed in the paper can be utilized in the actual assembling sites of the aero engine.

  4. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  5. Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples

    Science.gov (United States)

    Khan, Khan Mohammad; Ghosh, Nirmalya; Majumder, Shovan Kumar

    2016-09-01

    We report, for the first time, the development of a depth-sensitive Raman spectroscopy system for investigating subsurface depths in a layered turbid sample using the concept of varying Raman collection zones, while keeping the point of illumination fixed on the surface of the target sample. The system makes use of a conventional confocal Raman configuration and realizes the variation in Raman collection zones employing off-confocal detection. This is effected by moving the tip of the Raman detection fiber (acting as the pinhole aperture) from the focus of the Raman collection objective either by taking the point of detection away from the objective (along its axis) or bringing it closer to the objective (along the same axis), thereby essentially offering two ways of enabling subsurface interrogation at a given time. Another important attraction of the approach is that it can be used for analyzing layered turbid samples at depths beyond the reach of the conventional confocal Raman, though not at the cost of any further modifications in its instrumentation. Furthermore, the illumination point remains fixed on the sample surface and no adjustment is required in the sample arm, which indeed are significant advantages for depth-sensitive measurements in situ from layered turbid samples, particularly those having irregular surfaces (like biological tissues). The ability of the system to recover Raman spectra of the subsurface layer was demonstrated using a layered non-biological phantom and a biological tissue sample.

  6. Single beam optical trapping integrated in a confocal microscope for biological applications.

    Science.gov (United States)

    Visscher, K; Brakenhoff, G J

    1991-01-01

    Confocal microscopy is very useful in biology because of its three dimensional imaging capacities and has proven to be an excellent tool to study the 3D organization of, for instance, cell structures. This property of confocal microscopy makes it also very suitable for observation during guidance of the three dimensional manipulation of single cells or cell elements. Therefore we decided to integrate a confocal microscope and a single beam optical manipulator into a single instrument. The advantage of optical manipulation over mechanical techniques is that it is non-invasive and therefore may be applied on living (micro-) organisms and cells. The creation of an effective single beam optical trap requires the use of a high numerical aperture (N.A.) objective to focus the laser beam. In this paper we briefly discuss the vertical or axial force exerted on a sphere in a single beam trap. The axial force on a sphere placed on the optical axis, caused by reflection and refraction, is calculated applying a electromagnetic vector diffraction theory to determine the field distribution in the focal region. One of the results is that the particle also experiences a vertical trapping force towards the focusing lens when it is in the strongly convergent part of the field in addition to the known negative signed trapping force in the divergent part of the field. Further we describe an instrumental approach to realize optical trapping in which the optical trap position is controlled by moving the focusing objective only.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Laser confocal measurement system for curvature radius of lenses based on grating ruler

    Science.gov (United States)

    Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian

    2015-02-01

    In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.

  8. In vivo Confocal Microscopy Report after Lasik with Sequential Accelerated Corneal Collagen Cross-Linking Treatment.

    Science.gov (United States)

    Mazzotta, Cosimo; Balestrazzi, Angelo; Traversi, Claudio; Caragiuli, Stefano; Caporossi, Aldo

    2014-01-01

    We report the first pilot qualitative confocal microscopic analysis of a laser in situ keratomileusis (Lasik) treatment combined with sequential high-fluence accelerated corneal collagen cross-linking, denominated Lasik XTra, by means of HRT II laser scanning in vivo confocal microscopy after a 6-month follow-up. After obtaining approval from the Siena University Hospital Institutional Review Board, a 33-year-old female patient underwent a Lasik XTra procedure in her left eye. Confocal analysis demonstrated induced slight corneal microstructural changes by the interaction between UV-A, riboflavin and corneal stromal collagen, beyond the interface to a depth of 160 µm, without adverse events at the interface and endothelial levels. This application may be considered a prophylactic biomechanical treatment, stiffening the intermediate corneal stroma to prevent corneal ectasia and stabilizing the clinical results of refractive surgery. According to our preliminary experiences, this combined approach may be useful in higher-risk Lasik patients for hyperopic treatments, high myopia and lower corneal thicknesses.

  9. Tri-modal confocal mosaics detect residual invasive squamous cell carcinoma in Mohs surgical excisions

    Science.gov (United States)

    Gareau, Dan; Bar, Anna; Snaveley, Nicholas; Lee, Ken; Chen, Nathaniel; Swanson, Neil; Simpson, Eric; Jacques, Steve

    2012-06-01

    For rapid, intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaic scan image wide surgical margins (approximately 1 cm) with sub-cellular resolution and mimic the appearance of conventional hematoxylin and eosin histopathology (H&E). The goal of this work is to combine three confocal imaging modes: acridine orange fluorescence (AO) for labeling nuclei, eosin fluorescence (Eo) for labeling cytoplasm, and endogenous reflectance (R) for marking collagen and keratin. Absorption contrast is achieved by alternating the excitation wavelength: 488 nm (AO fluorescence) and 532 nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H&E, enabling detection of cutaneous squamous cell carcinomas (SCC). The sum of mosaic Eo+R is false-colored pink to mimic the appearance of eosin, while the AO mosaic is false-colored purple to mimic the appearance of hematoxylin in H&E. In this study, mosaics of 10 Mohs surgical excisions containing invasive SCC, and five containing only normal tissue were subdivided for digital presentation equivalent to 4× histology. Of the total 50 SCC and 25 normal sub-mosaics presented, two reviewers made two and three type-2 errors (false positives), respectively. Limitations to precisely mimic H&E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues.

  10. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kouichi Tsuji [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan); PRESTO-JST - Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Kazuhiko Nakano [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan)

    2007-05-15

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-{mu}m thick Au foil were approximately 90 {mu}m for the x-ray energy of Au L{alpha}. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  11. The Enhancement of Confocal Images of Tissues at Bulk Optical Immersion

    CERN Document Server

    Meglinski, I V; Bashkatov, A N; Genina, E A; Tuchin, V V

    2003-01-01

    The purpose of the present work is a theoretical examination of how localized skin-tissue dehydration affects the depth of the confocal probing and what depth of effective detection can be reached with the chemical administration of skin tissues. A semi-infinite multilayer Monte Carlo model is used to estimate spatial localization of the output signal offered by a confocal probe. A solution of glycerol is taken in the capacity of innocuous osmotic agent. Diffusion of this bio-compatible chemical agent into the skin temporarily pushes water out of the tissues and results in the matching of the refractive indices of skin structural elements. This temporarily decreases scattering and increases transparency of topical skin layers, which allows for unrestricted light to permeate deeper into the skin. The results of simulation show that signal spatial localization offered by a confocal probe in the skin tissues during their clearing is usable for the monitoring of deep reticular dermis and improving the image contr...

  12. Clinical features and confocal microscopic imaging characteristics of 466 cases with infectious keratitis

    Directory of Open Access Journals (Sweden)

    Hui Xiao

    2014-10-01

    Full Text Available AIM: To observe the role of confocal microscopy in infectious keratitis management. METHODS:Totally 466 patients(467 eyesdiagnosed as infectious keratitis from January 2010 to December 2013 were retrospectively studied. the corneas were examined early by in vivo confocal microscopy. The characteristics of their images and clinical features were studied and summarized.RESULTS:All patients were recorded, the average age was 54.4±13.0 years, in which 264 cases(56.7%were male, and 202 cases(43.3%were female. In the 466 patients, 190(40.8%were fungal keratitis, 148(31.8%were viral keratitis, 125(26.8%were bacterial keratitis and 3(0.6%were acanthamoeba keratitis. There were fungal hyphae in the images of fungal keratitis. Amebic cysts were found in acanthamoeba keratitis. CONCLUSION:Confocal microscope can help the early diagnose and treatment of infectious keratitis. It is a noninvasive imaging technique that provides high resolution images of ocular structures at a cellular level and infectious keratitis represents one of its most important clinical uses.

  13. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    Science.gov (United States)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  14. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. Copyright © 2014 John Wiley & Sons, Inc.

  15. Masked illumination scheme for a galvanometer scanning high-speed confocal fluorescence microscope.

    Science.gov (United States)

    Kim, Dong Uk; Moon, Sucbei; Song, Hoseong; Kwon, Hyuk-Sang; Kim, Dug Young

    2011-01-01

    High-speed beam scanning and data acquisition in a laser scanning confocal microscope system are normally implemented with a resonant galvanometer scanner and a frame grabber. However, the nonlinear scanning speed of a resonant galvanometer can generate nonuniform photobleaching in a fluorescence sample as well as image distortion near the edges of a galvanometer scanned fluorescence image. Besides, incompatibility of signal format between a frame grabber and a point detector can lead to digitization error during data acquisition. In this article, we introduce a masked illumination scheme which can effectively decrease drawbacks in fluorescence images taken by a laser scanning confocal microscope with a resonant galvanometer and a frame grabber. We have demonstrated that the difference of photobleaching between the center and the edge of a fluorescence image can be reduced from 26 to 5% in our confocal laser scanning microscope with a square illumination mask. Another advantage of our masked illumination scheme is that the zero level or the lowest input level of an analog signal in a frame grabber can be accurately set by the dark area of a mask in our masked illumination scheme. We have experimentally demonstrated the advantages of our masked illumination method in detail.

  16. Tracking protein dynamics with photoconvertible Dendra2 on spinning disk confocal systems.

    Science.gov (United States)

    Woods, Elena; Courtney, Jane; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2014-12-01

    Understanding the dynamic properties of cellular proteins in live cells and in real time is essential to delineate their function. In this context, we introduce the Fluorescence Recovery After Photobleaching-Photoactivation unit (Andor) combined with the Nikon Eclipse Ti E Spinning Disk (Andor) confocal microscope as an advantageous and robust platform to exploit the properties of the Dendra2 photoconvertible fluorescent protein (Evrogen) and analyse protein subcellular trafficking in living cells. A major advantage of the spinning disk confocal is the rapid acquisition speed, enabling high temporal resolution of cellular processes. Furthermore, photoconversion and imaging are less invasive on the spinning disk confocal as the cell exposition to illumination power is reduced, thereby minimizing photobleaching and increasing cell viability. We have tested this commercially available platform using experimental settings adapted to track the migration of fast trafficking proteins such as UBC9, Fibrillarin and have successfully characterized their differential motion between subnuclear structures. We describe here step-by-step procedures, with emphasis on cellular imaging parameters, to successfully perform the dynamic imaging and photoconversion of Dendra2-fused proteins at high spatial and temporal resolutions necessary to characterize the trafficking pathways of proteins. © 2014 The Authors. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of Royal Microscopical Society.

  17. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Confocal Laser Endomicroscopy in Neurosurgery: A New Technique with Much Potential

    Directory of Open Access Journals (Sweden)

    David Breuskin

    2013-01-01

    Full Text Available Technical innovations in brain tumour diagnostic and therapy have led to significant improvements of patient outcome and recurrence free interval. The use of technical devices such as surgical microscopes as well as neuronavigational systems have helped localising tumours as much as fluorescent agents, such as 5-aminolaevulinic acid, have helped visualizing pathologically altered tissue. Nonetheless, intraoperative instantaneous frozen sections and histological diagnosis remain the only method of gaining certainty of the nature of the resected tissue. This technique is time consuming and does not provide close-to-real-time information. In gastroenterology, confocal endoscopy closed the gap between tissue resection and histological examination, providing an almost real-time histological diagnosis. The potential of this technique using a confocal laser endoscope EndoMAG1 by Karl Storz Company was evaluated by our group on pig brains, tumour tissue cell cultures, and fresh human tumour specimen. Here, the authors report for the first time on the results of applying this new technique and provide first confocal endoscopic images of various brain and tumour structures. In all, the technique harbours a very promising potential to provide almost real-time intraoperative diagnosis, but further studies are needed to provide evidence for the technique’s potential.

  19. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    Science.gov (United States)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-06-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

  20. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    Science.gov (United States)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  1. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    Science.gov (United States)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  2. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  3. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations.

    Science.gov (United States)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H

    2015-01-01

    Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  4. A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia

    Directory of Open Access Journals (Sweden)

    Safak Korkmaz

    2014-01-01

    Full Text Available Purpose. To compare the clinical and confocal microscopic results of transepithelial PRK versus LASEK for correction of myopia. Materials and Methods. Twelve patients with myopia received transepithelial PRK in one eye and LASEK in the other. In transepithelial PRK-treated eyes, the corneal epithelium was removed with 40 microns of excimer laser ablation and in LASEK-treated eyes with 25-second application of 18% ethanol. Time to epithelial healing, ocular discomfort, uncorrected and best corrected visual acuities, manifest refraction, haze, greyscale value, and keratocyte apoptosis in confocal microscopy were recorded. Results. The mean time to epithelial healing was significantly longer after LASEK (4.00 ± 0.43 versus 3.17 ± 0.6 days. On day 1, ocular discomfort was significantly higher after transepithelial PRK. The grade of haze, keratocyte apoptosis, and greyscale value in confocal microscopy were significantly higher in transepithelial PRK-treated eyes at 1 month. All transepithelial PRK- and LASEK-treated eyes achieved 20/25 or better UCVA and were within ±1.00 D of emmetropia at final visits. Conclusions. Both transepithelial PRK and LASEK offer effective correction of myopia at 1 year. However, LASEK appeared to induce less discomfort and less intense wound healing in the early postoperative period.

  5. Observation of posterior corneal vesicles with in vivo confocal microscopy and anterior segment OCT

    Directory of Open Access Journals (Sweden)

    Ryou Watanabe

    2010-10-01

    Full Text Available Ryou Watanabe, Toru Nakazawa, Nobuo FuseDepartment of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, JapanAbstract: The histopathology of posterior corneal vesicles (PCV has not yet been revealed. A 15-year-old girl, who was diagnosed by slit-lamp microscopy as PCV, was examined using specular microscopy, in vivo confocal microscopy, and anterior segment OCT (optical coherence tomography. Anterior segment OCT showed that the thickness of both corneas was within normal limits. At the same time, in vivo confocal microscopy revealed endothelial cells in the rounded dark areas, acellular hyporeflective layers on the Descemet’s membrane, and hyperreflective linear lesions. These findings were not reported previously by slit-lamp and specular microscopy. The abnormal findings only existed at the Descemet’s membrane and corneal endothelial layer. Previous reports dealing with posterior polymorphous dystrophy (PPMD examined using in vivo confocal microscopy reported almost the same findings, suggesting that PCV and PPMD may be the same at the microstructural level.Keywords: cornea, Descemet’s membrane, imaging

  6. In Vivo Confocal Microscopy and Anterior Segment Optic Coherence Tomography Findings in Ocular Ochronosis

    Directory of Open Access Journals (Sweden)

    Elif Demirkilinc Biler

    2015-01-01

    Full Text Available Purpose. To report clinical and in vivo confocal microscopy (IVCM findings of two patients with ocular ochronosis secondary due to alkaptonuria. Materials and Methods. Complete ophthalmologic examinations, including IVCM (HRT II/Rostock Cornea Module, Heidelberg, Germany, anterior segment optical coherence tomography (AS-OCT (Topcon 3D spectral-domain OCT 2000, Topcon Medical Systems, Paramus, NJ, USA, corneal topography (Pentacam, OCULUS Optikgeräte GmbH, Wetzlar, Germany, and anterior segment photography, were performed. Results. Biomicroscopic examination showed bilateral darkly pigmented lesions of the nasal and temporal conjunctiva and episclera in both patients. In vivo confocal microscopy of the lesions revealed prominent degenerative changes, including vacuoles and fragmentation of collagen fibers in the affected conjunctival lamina propria and episclera. Hyperreflective pigment granules in different shapes were demonstrated in the substantia propria beneath the basement membrane. AS-OCT of Case 1 demonstrated hyporeflective areas. Fundus examination was within normal limits in both patients, except tilted optic discs with peripapillary atrophy in one of the patients. Corneal topography, thickness, and macular OCT were normal bilaterally in both cases. Conclusion. The degenerative and anatomic changes due to ochronotic pigment deposition in alkaptonuria can be demonstrated in detail with IVCM and AS-OCT. Confocal microscopic analysis in ocular ochronosis may serve as a useful adjunct in diagnosis and monitoring of the disease progression.

  7. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    Directory of Open Access Journals (Sweden)

    Cotarla Ion

    2008-01-01

    Full Text Available Abstract Background Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. Methods We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. Results In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. Conclusion In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary.

  8. In vivo Confocal Microscopy in Differentiating Ipilimumab-Induced Anterior Uveitis from Metastatic Uveal Melanoma

    Directory of Open Access Journals (Sweden)

    Hayyam Kiratli

    2016-09-01

    Full Text Available This report aims to describe the facilitating role of in vivo confocal microscopy in differentiating inflammatory cells from a metastatic process in a patient with uveal melanoma and multiple systemic metastases who developed anterior uveitis while under ipilimumab treatment. A 43-year-old woman developed systemic metastases 11 months after treatment of amelanotic choroidal melanoma in her right eye with 30 Gy fractionated stereotactic radiotherapy. She first received temozolomide and then 4 cycles of ipilimumab 3 mg/kg/day. After the third cycle, severe anterior uveitis with coarse pigment clumps on the lens was seen in the left eye. Her left visual acuity declined from 20/20 to 20/80. Confocal microscopy revealed globular keratic precipitates with hyperreflective inclusions and endothelial blebs all suggestive of granulomatous uveitis. The uveitic reaction subsided after a 3-week course of topical corticosteroids, and her visual acuity was 20/20 again. Although uveal melanoma metastatic to the intraocular structures of the fellow eye is exceedingly rare and metastasis masquerading uveitis without any identifiable uveal lesion is even more unusual, it was still mandatory to rule out this distant possibility in our particular patient who already had widespread systemic metastases. Confocal microscopy was a useful complementary tool by identifying the inflammatory features of the keratic precipitates.

  9. In vivo Confocal Microscopy Report after Lasik with Sequential Accelerated Corneal Collagen Cross-Linking Treatment

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-04-01

    Full Text Available We report the first pilot qualitative confocal microscopic analysis of a laser in situ keratomileusis (Lasik treatment combined with sequential high-fluence accelerated corneal collagen cross-linking, denominated Lasik XTra, by means of HRT II laser scanning in vivo confocal microscopy after a 6-month follow-up. After obtaining approval from the Siena University Hospital Institutional Review Board, a 33-year-old female patient underwent a Lasik XTra procedure in her left eye. Confocal analysis demonstrated induced slight corneal microstructural changes by the interaction between UV-A, riboflavin and corneal stromal collagen, beyond the interface to a depth of 160 µm, without adverse events at the interface and endothelial levels. This application may be considered a prophylactic biomechanical treatment, stiffening the intermediate corneal stroma to prevent corneal ectasia and stabilizing the clinical results of refractive surgery. According to our preliminary experiences, this combined approach may be useful in higher-risk Lasik patients for hyperopic treatments, high myopia and lower corneal thicknesses.

  10. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning

    Science.gov (United States)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki

    2016-03-01

    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  11. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Apedo, K.L., E-mail: apedo@unistra.fr [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Munzer, C.; He, H. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Montgomery, P. [ICube, Université de Strasbourg, CNRS, 23 rue du Loess, 67037 Strasbourg (France); Serres, N. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Fond, C. [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Feugeas, F. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France)

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  12. Histopathologic and Immunohistochemical Correlates of Confocal Descriptors in Pigmented Facial Macules on Photodamaged Skin.

    Science.gov (United States)

    Gómez-Martín, Ignacio; Moreno, Sara; Andrades-López, Evelyn; Hernández-Muñoz, Inma; Gallardo, Fernando; Barranco, Carlos; Pujol, Ramon M; Segura, Sonia

    2017-08-01

    Pigmented facial macules on photodamaged skin are a clinical, dermoscopic, and histopathologic challenge. To clinically and dermoscopically characterize, by means of reflectance confocal microscopy (RCM), ambiguous pigmented facial macules and establish a correlation between RCM, histopathologic, and immunohistochemical findings. A prospective study of ambiguous pigmented facial macules on photodamaged skin was conducted in a tertiary referral center for dermatology between January 1, 2009, and December 31, 2015. Sixty-one patients with 63 ambiguous pigmented facial macules and 12 control photodamaged facial areas were included in the study. Melanocyte density in 1-mm basal layers was determined in skin biopsy specimens from all lesions stained with hematoxylin-eosin and immunohistochemical markers (melan-A, microphthalmia-associated transcription factor, and SRY-related HMG-box gene 10). Dermoscopic, RCM images, and histopathologic preparations were systematically evaluated for the presence of lentigo maligna (LM) criteria. Confocal evaluation was blinded to clinical and dermoscopic diagnosis. Sensitivity and specificity of RCM for LM diagnosis and κ value to establish correlations between dermoscopy, RCM, and histopathology were performed. Sensitivity and specificity of RCM for LM diagnosis. Of the 61 patients included in the study, 31 (51%) were women; mean (SD) age was 71.8 (13.1) years. Twenty-four of the 63 (38%) lesions were diagnosed as LM or LM melanoma (LMM) and 39 (62%) as benign pigmented lesions. Reflectance confocal microscopy enhanced the diagnosis of pigmented facial macules with 91.7% sensitivity and 86.8% specificity. Multivariate analysis showed 2 dermoscopic and 2 confocal features associated with LM or LMM: (1) asymmetric follicular pigmentation and targetlike structures, and (2) round, large pagetoid cells and follicular localization of atypical cells, respectively. Continuous proliferation of atypical melanocytes was found in 21 (88%) LM or

  13. Quantifying light scattering with single-mode fiber -optic confocal microscopy

    Directory of Open Access Journals (Sweden)

    Haidekker Mark A

    2009-11-01

    Full Text Available Abstract Background Confocal microscopy has become an important option for examining tissues in vivo as a diagnostic tool and a quality control tool for tissue-engineered constructs. Collagen is one of the primary determinants of biomechanical stability. Since collagen is also the primary scattering element in skin and other soft tissues, we hypothesized that laser-optical imaging methods, particularly confocal scattered-light scanning, would allow us to quantify scattering intensity and determine collagen content in biological layers. Methods We built a fully automated confocal scattered-light scanner to examine how light scatters in Intralipid, a common tissue phantom, and three-dimensional collagen gels. Intralipid with 0.5%, 1.0%, 1.5%, and 2.0% concentration was filled between precisely spaced glass coverslips. Collagen gels at collagen concentrations from 0.30 mg/mL to 3.30 mg/mL were prepared, and all samples underwent A-mode scanning with multiple averaged scans. In Intralipid samples, light reflected from the upper fluid-glass interface was measured. In collagen gels, average scattering intensity inside the actual gel was measured. In both cases, intensity was correlated with concentration. Results By measuring light attenuation at interface reflections of various thicknesses using our device, we were able to determine that the scattering coefficient at 660 nm of Intralipid at increasing concentrations in water to be 39 cm-1 for each percent increase of Intralipid. We were also able to measure the amount of scattering of various concentrations of collagen in gels directly using backscattered light. The results show a highly linear relationship with an increase of 8.2 arbitrary units in backscattering intensity for every 1 mg increase of collagen within a 1 mL gel volume. Conclusion The confocal scattered-light scanner allows to accurately quantify scattering in Intralipid and collagen gels. Furthermore, a linear relationship between

  14. Label-free detection of tumor markers in a colon carcinoma tumor progression model by confocal Raman microspectroscopy

    Science.gov (United States)

    Scalfi-Happ, Claudia; Rück, Angelika; Udart, Martin; Hauser, Carmen; Dürr, Christine; Kriebel, Martin

    2013-06-01

    Living colon carcinoma cells were investigated by confocal Raman microspectroscopy. An in vitro model of tumor progression was established. Evaluation of data sets by cluster analysis reveals that lipid bodies might be a valuable diagnostic parameter for early carcinogenesis.

  15. Comparison of calcium imaging in dorsal root ganglion neurons by using laser scanning confocal and two-photon microscopy

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Chen, Jiangxu; Shen, Xiuqiu; Zheng, Liqin; Wang, Yuhua; Xie, Shusen

    2012-03-01

    As one of the most important second messengers, calcium in nerve cells plays a critical role in neuronal processes, including excitability, neurotransmitter release, synaptic plasticity. Modulation of the calcium concentration is an important means of regulating diverse neuronal functions. To evaluate the role of calcium, quantitative measurement of cytosolic free calcium concentrations is necessary. There are several optical techniques that are available for measurement of calcium in live cells. Laser scanning confocal microscopy and two-photon microscopy are two prevalent techniques for their advantage in spatial resolution. In this paper, calcium in dorsal root ganglion neurons was imaged by laser scanning confocal microscopy and two-photon microscopy with Fluo-3, a calcium specific fluorescence probe. Both of spatial resolution and photobleaching, two common limitations of optical image modality, were compared between laser scanning confocal microscopy and two-photon microscopy, respectively. Three dimension images showed that laser scanning confocal microscopy and two-photon microscopy had not only similar lateral resolution but also parallel vertical resolution. However, Laser scanning confocal microscopy had an advantage over the two-photon microcopy in photobleaching. These results indicated that laser scanning confocal microscopy was more suitable than two-photon microscopy to be applied in imaging calcium in dorsal root ganglion neurons with Fluo-3.

  16. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hehe; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Li, Yude; Lin, Xiaoyan; Zhao, Weigang; Zhao, Guangcui; Luo, Ping; Pan, Qiuli; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-21

    The confocal X-ray diffraction (XRD) technology based on a polycapillary slightly focusing X-ray lens (PSFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) with a long input focal distance in detection channel was developed. The output focal spot of the PSFXRL and the input focal spot of the PPXRL were adjusted in confocal configuration, and only the X-rays from the volume overlapped by these foci could be accordingly detected. This confocal configuration was helpful in decreasing background. The convergence of the beam focused by the PSFXRL and divergence of the beam which could be collected by the PPXRL with a long input focal distance were both about 9 mrad at 8 keV. This was helpful in improving the resolution of lattice spacing of this confocal XRD technology. The gain in power density of such PSFXRL and PPXRL was about 120 and 7 at 11 keV, respectively, which was helpful in using the low power source to perform XRD analysis efficiently. The performances of this confocal XRD technology were provided, and some common plastics were analyzed. The experimental results demonstrated that the confocal diffraction technology base on polycapillary slightly focusing X-ray optics had wide potential applications.

  17. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    Science.gov (United States)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  18. Mobile large area confocal scanner for imaging tumor margins: initial testing in the pathology department

    Science.gov (United States)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-03-01

    Surgical oncology is guided by examining pathology that is prepared during or after surgery. The preparation time for Mohs surgery in skin is 20-45 minutes, for head-and-neck and breast cancer surgery is hours to days. Often this results in incomplete tumor removal such that positive margins remain. However, high resolution images of excised tissue taken within few minutes can provide a way to assess the margins for residual tumor. Current high resolution imaging methods such as confocal microscopy are limited to small fields of view and require assembling a mosaic of images in two dimensions (2D) to cover a large area, which requires long acquisition times and produces artifacts. To overcome this limitation we developed a confocal microscope that scans strips of images with high aspect ratios and stitches the acquired strip-images in one dimension (1D). Our "Strip Scanner" can image a 10 x 10 mm2 area of excised tissue with sub-cellular detail in about one minute. The strip scanner was tested on 17 Mohs excisions and the mosaics were read by a Mohs surgeon blinded to the pathology. After this initial trial, we built a mobile strip scanner that can be moved into different surgical settings. A tissue fixture capable of scanning up to 6 x 6 cm2 of tissue was also built. Freshly excised breast and head-and-neck tissues were imaged in the pathology lab. The strip-images were registered and displayed simultaneously with image acquisition resulting in large, high-resolution confocal mosaics of fresh surgical tissue in a clinical setting.

  19. Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy

    Science.gov (United States)

    Chuchuen, Oranat; Henderson, Marcus H.; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D. M.; Katz, David F.

    2013-01-01

    Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data

  20. Fluorescence intensity and bright spot analyses using a confocal microscope for photodynamic diagnosis of brain tumors.

    Science.gov (United States)

    Yoneyama, Takeshi; Watanabe, Tetsuyo; Kagawa, Hiroyuki; Hayashi, Yutaka; Nakada, Mitsutoshi

    2017-03-01

    In photodynamic diagnosis using 5-aminolevulinic acid (5-ALA), discrimination between the tumor and normal tissue is very important for a precise resection. However, it is difficult to distinguish between infiltrating tumor and normal regions in the boundary area. In this study, fluorescent intensity and bright spot analyses using a confocal microscope is proposed for the precise discrimination between infiltrating tumor and normal regions. From the 5-ALA-resected brain tumor tissue, the red fluorescent and marginal regions were sliced for observation under a confocal microscope. Hematoxylin and eosin (H&E) staining were performed on serial slices of the same tissue. According to the pathological inspection of the H&E slides, the tumor and infiltrating and normal regions on confocal microscopy images were investigated. From the fluorescent intensity of the image pixels, a histogram of pixel number with the same fluorescent intensity was obtained. The fluorescent bright spot sizes and total number were compared between the marginal and normal regions. The fluorescence intensity distribution and average intensity in the tumor were different from those in the normal region. The probability of a difference from the dark enhanced the difference between the tumor and the normal region. The bright spot size and number in the infiltrating tumor were different from those in the normal region. Fluorescence intensity analysis is useful to distinguish a tumor region, and a bright spot analysis is useful to distinguish between infiltrating tumor and normal regions. These methods will be important for the precise resection or photodynamic therapy of brain tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Oranat Chuchuen

    Full Text Available Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold

  2. Cell death associated with abnormal mitosis observed by confocal imaging in live cancer cells.

    Science.gov (United States)

    Castiel, Asher; Visochek, Leonid; Mittelman, Leonid; Zilberstein, Yael; Dantzer, Francoise; Izraeli, Shai; Cohen-Armon, Malka

    2013-08-21

    Phenanthrene derivatives acting as potent PARP1 inhibitors prevented the bi-focal clustering of supernumerary centrosomes in multi-centrosomal human cancer cells in mitosis. The phenanthridine PJ-34 was the most potent molecule. Declustering of extra-centrosomes causes mitotic failure and cell death in multi-centrosomal cells. Most solid human cancers have high occurrence of extra-centrosomes. The activity of PJ-34 was documented in real-time by confocal imaging of live human breast cancer MDA-MB-231 cells transfected with vectors encoding for fluorescent γ-tubulin, which is highly abundant in the centrosomes and for fluorescent histone H2b present in the chromosomes. Aberrant chromosomes arrangements and de-clustered γ-tubulin foci representing declustered centrosomes were detected in the transfected MDA-MB-231 cells after treatment with PJ-34. Un-clustered extra-centrosomes in the two spindle poles preceded their cell death. These results linked for the first time the recently detected exclusive cytotoxic activity of PJ-34 in human cancer cells with extra-centrosomes de-clustering in mitosis, and mitotic failure leading to cell death. According to previous findings observed by confocal imaging of fixed cells, PJ-34 exclusively eradicated cancer cells with multi-centrosomes without impairing normal cells undergoing mitosis with two centrosomes and bi-focal spindles. This cytotoxic activity of PJ-34 was not shared by other potent PARP1 inhibitors, and was observed in PARP1 deficient MEF harboring extracentrosomes, suggesting its independency of PARP1 inhibition. Live confocal imaging offered a useful tool for identifying new molecules eradicating cells during mitosis.

  3. Semi-automated scoring of triple-probe FISH in human sperm using confocal microscopy.

    Science.gov (United States)

    Branch, Francesca; Nguyen, GiaLinh; Porter, Nicholas; Young, Heather A; Martenies, Sheena E; McCray, Nathan; Deloid, Glen; Popratiloff, Anastas; Perry, Melissa J

    2017-07-05

    Structural and numerical sperm chromosomal aberrations result from abnormal meiosis and are directly linked to infertility. Any live births that arise from aneuploid conceptuses can result in syndromes such as Kleinfelter, Turners, XYY and Edwards. Multi-probe fluorescence in situ hybridization (FISH) is commonly used to study sperm aneuploidy, however manual FISH scoring in sperm samples is labor-intensive and introduces errors. Automated scoring methods are continuously evolving. One challenging aspect for optimizing automated sperm FISH scoring has been the overlap in excitation and emission of the fluorescent probes used to enumerate the chromosomes of interest. Our objective was to demonstrate the feasibility of combining confocal microscopy and spectral imaging with high-throughput methods for accurately measuring sperm aneuploidy. Our approach used confocal microscopy to analyze numerical chromosomal abnormalities in human sperm using enhanced slide preparation and rigorous semi-automated scoring methods. FISH for chromosomes X, Y, and 18 was conducted to determine sex chromosome disomy in sperm nuclei. Application of online spectral linear unmixing was used for effective separation of four fluorochromes while decreasing data acquisition time. Semi-automated image processing, segmentation, classification, and scoring were performed on 10 slides using custom image processing and analysis software and results were compared with manual methods. No significant differences in disomy frequencies were seen between the semi automated and manual methods. Samples treated with pepsin were observed to have reduced background autofluorescence and more uniform distribution of cells. These results demonstrate that semi-automated methods using spectral imaging on a confocal platform are a feasible approach for analyzing numerical chromosomal aberrations in sperm, and are comparable to manual methods. © 2017 International Society for Advancement of Cytometry. © 2017

  4. Three-dimensional measurement of cAMP gradients using hyperspectral confocal microscopy

    Science.gov (United States)

    Rich, Thomas C.; Annamdevula, Naga; Britain, Andrea L.; Mayes, Samuel; Favreau, Peter F.; Leavesley, Silas J.

    2016-03-01

    Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions over a wide range of timescales. Several lines of evidence have suggested that the distribution of cAMP within cells is not uniform, and that cAMP compartmentalization is largely responsible for signaling specificity within the cAMP signaling pathway. However, to date, no studies have experimentally measured three dimensional (3D) cAMP distributions within cells. Here we use both 2D and 3D hyperspectral microscopy to visualize cAMP gradients in endothelial cells from the pulmonary microvasculature (PMVECs). cAMP levels were measured using a FRETbased cAMP sensor comprised of a cAMP binding domain from EPAC sandwiched between FRET donors and acceptors -- Turquoise and Venus fluorescent proteins. Data were acquired using either a Nikon A1R spectral confocal microscope or custom spectral microscopy system. Analysis of hyperspectral image stacks from a single confocal slice or from summed images of all slices (2D analysis) indicated little or no cAMP gradients were formed within PMVECs under basal conditions or following agonist treatment. However, analysis of hyperspectral image stacks from 3D cellular geometries (z stacks) demonstrate marked cAMP gradients from the apical to basolateral membrane of PMVECs. These results strongly suggest that 2D imaging studies of cAMP compartmentalization -- whether epifluorescence or confocal microscopy -- may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D studies are required to assess mechanisms of signaling specificity.

  5. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  6. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    Science.gov (United States)

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  7. A CMOS imager using focal-plane pinhole effect for confocal multibeam scanning microscopy

    Science.gov (United States)

    Seo, Min-Woong; Wang, An; Li, Zhuo; Yasutomi, Keita; Kagawa, Keiichiro; Kawahito, Shoji

    2012-03-01

    A CMOS imager for confocal multi-beam scanning microscopy, where the pixel itself works as a pinhole, is proposed. This CMOS imager is suitable for building compact, low-power, and confocal microscopes because the complex Nipkow disk with a precisely aligned pinhole array can be omitted. The CMOS imager is composed of an array of sub-imagers, and can detect multiple beams at the same time. To achieve a focal-plane pinhole effect, only one pixel in each subimager, which is at the conjugate position of a light spot, accumulates the photocurrent, and the other pixels are unread. This operation is achieved by 2-dimensional vertical and horizontal shift registers. The proposed CMOS imager for the confocal multi-beam scanning microscope system was fabricated in 0.18-μm standard CMOS technology with a pinned photodiode option. The total area of the chip is 5.0mm × 5.0mm. The number of effective pixels is 256(Horizontal) × 256(Vertical). The pixel array consists of 32(H) × 32(V) sub-imagers each of which has 8(H) × 8(V) pixels. The pixel is an ordinary 4-transistor active pixel sensor using a pinned photodiode and the pixel size is 7.5μm × 7.5μm with a fillfactor of 45%. The basic operations such as normal image acquisition and selective pixel readout were experimentally confirmed. The sensitivity and the pixel conversion gain were 25.9 ke-/lx•sec and 70 μV/e- respectively.

  8. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B.; Hitchcock, Robert W.; Kaza, Aditya K.

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2±0.3% and 98.0±0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2±0.3% and 94.0±2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease. PMID:26808149

  9. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Directory of Open Access Journals (Sweden)

    Chao Huang

    Full Text Available Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000. We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81 and nodal tissue (n = 81. In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively. Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  10. One shot confocal microscopy based on wavelength/space conversion by use of multichannel spectrometer

    Science.gov (United States)

    Miyamoto, Shuji; Hase, Eiji; Ichikawa, Ryuji; Mnamikawa, Takeo; Yasui, Takeshi; Yamamoto, Hirotugu

    2016-03-01

    Confocal laser microscope (CLM) has been widely used in the fields of the non-contact surface topography, biomedical imaging, and other applications, because of two-dimensional (2D) or three-dimensional (3D) imaging capability with the confocal effect and the stray light elimination. Although the conventional CLM has acquired the 2D image by mechanical scanning of the focused beam spot, further reduction of image acquisition time and the robustness to various disturbances are strongly required. To this end, it is essential to omit mechanical scanning for the image acquisition. In this article, we developed the scan-less, full-field CLM by combination of the line-focused CLM with the wavelength/1D-space conversion. This combination enables us to form the 2D focal array of a 2D rainbow beam on a sample and to encode the 2D image information of a sample on the 2D rainbow beam. The image-encoded 2D rainbow beam was decoded as a spectral line image by a multi-channel spectrometer equipped with a CMOS camera without the need for the mechanical scanning. The confocal full-field image was acquired during 0.23 ms with the lateral resolution of 26.3μm and 4.9μm for the horizontal and vertical directions, respectively, and the depth resolution of 34.9μm. We further applied this scan-less, full-field CLM for biomedical imaging of a sliced specimen and non-contact surface topography of an industry products. These demonstrations highlight a high potential of the proposed scan-less, full-field CLM.

  11. Role of Confocal Laser Endomicroscopy in Detection of Residual Barrett's Esophagus after Radiofrequency Ablation

    Directory of Open Access Journals (Sweden)

    Giorgio Diamantis

    2011-01-01

    Full Text Available Endoscopic endoluminal radiofrequency ablation (RFA is a novel and promising modality for Barrett's esophagus (BE treatment. Actually the only surveillance method after the ablation treatment is random biopsies throughout the whole treated area. Confocal laser endomicroscopy (CLE is a new endoscopic imaging tool that permits high-resolution microscopic examination of the gastrointestinal tract. The technology has garnered increasing attention because of its ability to provide real-time “optical” biopsy specimens, with a very high sensitivity and specificity. This paper summarize the potential application of CLE in the surveillance of the reepithelialization of BE, after endoscopic RFA.

  12. A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core

    Institute of Scientific and Technical Information of China (English)

    蒋纯志; 谢超; 刘又文

    2011-01-01

    The electro-elastic interaction between a piezoelectric screw dislocation and an elliptical piezoelectric inhomogeneity, which contains an electrically conductive confocal elliptical rigid core under remote anti-plane shear stresses and in-plane electrical load is dealt with. The anaJytical solutions to the elastic field and the electric field, the interracial stress fields of inhomogeneity and matrix under longitudinal shear and the image force acting on the dislocation are derived by means of complex method. The effect of material properties and geometric configurations of the rigid core on interracial stresses generated by a remote uniform load, rigid core and material electroelastic properties on the image force is discussed.

  13. Coupling to Modes of a Near-Confocal Optical Resonator Using a Digital Light Modulator

    CERN Document Server

    Papageorge, Alexander T; Lev, Benjamin L

    2016-01-01

    Digital Micromirror Devices (DMD) provide a robust platform with which to implement digital holography, in principle providing the means to rapidly generate propagating transverse electromagnetic fields with arbitrary mode profiles at visible and IR wavelengths. We use a DMD to probe a Fabry-P\\'{e}rot cavity in single-mode and near-degenerate confocal configurations. Pumping arbitrary modes of the cavity is possible with excellent specificity by virtue of the spatial overlap between the incident light field and the cavity mode.

  14. Insights into esophagus tissue architecture using two-photon confocal microscopy

    Science.gov (United States)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  15. Confocal microscopy findings in deep anterior lamellar keratoplasty performed after Descemet's stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Pang A

    2014-01-01

    Full Text Available Audrey Pang,1,2 Karim Mohamed-Noriega,1 Anita S Chan,1,3–5 Jodbhir S Mehta1,3 1Singapore National Eye Centre, 2Department of Ophthalmology, Tan Tock Seng Hospital, 3Singapore Eye Research Institute, 4Department of Histopathology, Pathology, Singapore General Hospital, 5Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Background: This study describes the in vivo confocal microscopy findings in two patients who had deep anterior lamellar keratoplasty (DALK following Descemet's stripping automated endothelial keratoplasty (DSAEK. Methods: The study reviewed the cases of two patients who first underwent DSAEK followed by DALK when their vision failed to improve due to residual stromal scarring. In the first case, a DSAEK was performed for a patient with pseudophakic bullous keratopathy. After surgery, the patient's vision failed to improve satisfactorily due to residual anterior stromal opacity and irregularity. Subsequently, the patient underwent a DALK. The same two consecutive operations were performed for a second patient with keratoconus whose previous penetrating keratoplasty had failed and had secondary graft ectasia. In vivo confocal microscopy was performed 2 months after the DALK surgery in both cases. Results: At 3 months after DALK, the best-corrected visual acuity was 6/30 in case 1 and 6/24 in case 2. In vivo confocal microscopy in both cases revealed the presence of quiescent keratocytes in the stroma layers of the DSAEK and DALK grafts, which was similar in the central and peripheral cornea. There was no activated keratocytes or haze noted in the interface between the grafts. Conclusion: Our short-term results show that performing a DALK after a DSAEK is an effective way of restoring cornea clarity in patients with residual anterior stromal opacity. In vivo confocal microscopy showed that there were no activated keratocytes seen in the interface of the grafts, which suggests

  16. Using laser confocal scanning microscope to study ischemia-hypoxia injury in rat brain slice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The level of lipid peroxidation and cellular necrosis in rat living brain slices during brain ischemia-hypoxia injury have been observed using a laser confocal scanning microscope (LCSM) with double labeling of fluorescent probes D-399 (2,7-dichlorofluorescin diacetate) and propidium iodide (PI).The hypoxia and/or reoxygenation injury in rat brain slices is markedly decreased by pretreatment with L-NG-nitro-arginine (L-NNA) and N-acetylcysteine (NAC),showing that the nitric oxide (NO) and other free radicals play an important role in brain ischemia-hypoxia injury.

  17. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  18. New method for lens thickness measurement by the frequency-shifted confocal feedback

    Science.gov (United States)

    Tan, Yidong; Zhu, Kaiyi; Zhang, Shulian

    2016-12-01

    We describe a new method for lens thickness and air gap measurement based on the frequency-shifted confocal feedback. The light intensity fluctuation is eliminated by the heterodyne modulation and the detection sensitivity is improved prominently by the frequency-shifted feedback effect. The measurement results for different materials and kinds of lenses are presented in the paper, including K9 plain glasses, fused silica plain glass, and K9 biconvex lens. The uncertainty of the axial positioning is better than 0.0005 mm and the accuracy reaches micron range. It is promising to be applied in the multi-layer interface positioning and measurement area.

  19. Acquired anhidrosis associated with systemic sarcoidosis: Quantification of nerve fibers around eccrine glands by confocal microscopy.

    Science.gov (United States)

    Nishida, M; Namiki, T; Sone, Y; Hashimoto, T; Tokoro, S; Hanafusa, T; Yokozeki, H

    2017-08-10

    Neurological disorders can cause hypohidrosis and/or anhidrosis by disturbing either the central or the peripheral nervous systems.(1-3) Although a syringotropic variant of cutaneous sarcoidosis causes dysfunction of sweating, systemic sarcoidosis rarely causes hypohidrosis or anhidrosis.(4,5) Here we present a novel case of an acquired anhidrosis in a patient with systemic sarcoidosis. Furthermore, we developed a novel methodology to quantify nerve fibers around eccrine glands using confocal microscopy and found that nerve fibers around eccrine glands in anhidrotic areas are significantly decreased compared to hidrotic areas. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. [Interest of confocal endomicroscopy for the management of chronic inflammatory bowel disease].

    Science.gov (United States)

    Loly, Jean-Philippe; Somja, Joan; Reenaers, Catherine; Van Kemseke, Catherine; Gast, Pierrette; Louis, Edouard

    2017-08-23

    Inflammatory bowel diseases are chronic diseases whose long-term evolution depends on the depth of remission. Their clinical and endoscopic evaluation is imperfect. The development of confocal endomicroscopy allows microscopic images to be obtained in vivo. These microscopic data are correlated with the activity of the disease. They predict a possible relapse of the disease and also predict the response to treatment with a biological agent, which allows to modify the therapy before the relapse or to make a rational choice between the different biological agents before introducing a new treatment.

  1. In vivo confocal microscopy of an apparent deep stroma corneal dystrophy: a case report

    Science.gov (United States)

    2009-01-01

    A 41-year-old white woman was referred to our Department to rule out the presence of a Fuch's corneal dystrophy. On slit-lamp biomicroscopy, small bilateral punctuate opacities appearing mostly in the posterior stroma were observed, suggesting a differential diagnosis of pre-Descemet's dystrophy as opposed to Cornea Farinata. Confocal microscopy in the central cornea of both eyes revealed the normal appearance of superficial and basal epithelial layers. However throughout the full thickness of the cornea fine highly refractive granules, localized both in the keratocytes cytoplasm and in the stroma matrix were noted. In both eyes abnormal polymegatism and pleomorphism was observed. PMID:20062640

  2. Structural and elemental X-ray microanalysis with synchrotron radiation in confocal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, Carlos M. [IFEG-CONICET, (X5016LAE) Ciudad Universitaria, Córdoba (Argentina); Sánchez, H. Jorge [IFEG-CONICET, (X5016LAE) Ciudad Universitaria, Córdoba (Argentina); FAMAF, Universidad Nacional de Córdoba, (X5016LAE) Ciudad Universitaria, Córdoba (Argentina); Pérez, Carlos A. [Laboratório Nacional de Luz Síncrotron – LNLS, POB 6192, 13084-971 Campinas, SP (Brazil); Perez, Roberto D., E-mail: danperez@famaf.unc.edu.ar [IFEG-CONICET, (X5016LAE) Ciudad Universitaria, Córdoba (Argentina); FAMAF, Universidad Nacional de Córdoba, (X5016LAE) Ciudad Universitaria, Córdoba (Argentina)

    2014-01-15

    A spectrometer for 3D structural and multielemental X-ray microanalysis with synchrotron radiation is presented in this work. It is based on the combination of the energy dispersive X-ray fluorescence and diffraction with polycapillary optics. The 3D spatial resolution was achieved by the superposition of the foci of two lenses arranged in confocal geometry. The parameters that affect the performance of the spectrometer were study in detail giving rise to a simplified calibration method for depth profile analysis. Two specific examples were included to illustrate the use of the spectrometer in order to identify their possible application fields.

  3. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO...

  4. Confocal and dermoscopic features of basal cell carcinoma in Gorlin-Goltz syndrome: A case report.

    Science.gov (United States)

    Casari, Alice; Argenziano, Giuseppe; Moscarella, Elvira; Lallas, Aimilios; Longo, Caterina

    2016-01-14

    Gorlin-Goltz (GS) syndrome is an autosomal dominant disease linked to a mutation in the PTCH gene. Major criteria include the onset of multiple basal cell carcinoma (BCC), keratocystic odontogenic tumours in the jaws and bifid ribs. Dermoscopy and reflectance confocal microscopy represent imaging tools that are able to increase the diagnostic accuracy of skin cancer in a totally noninvasive manner, without performing punch biopsies. Here we present a case of a young woman in whom the combined approach of dermoscopy and RCM led to the identification of multiple small inconspicuous lesions as BCC and thus to the diagnosis of GS syndrome.

  5. IMAGING WOOD PULP FIBRE SURFACE LIGNIN BY FLUORESCENCE CONFOCAL LASER SCANNING MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Kecheng Li; Douglas W. Reeve

    2004-01-01

    A novel methodology for imaging wood pulp fibre surface lignin by fluorescence confocal laser scanning microscopy was developed. Various imaging modes and imaging conditions were explored for quantitative analysis. Acridine Orange was used for labelling lignin and the orthochromatic labelling condition was developed. Withthe thusly established methodology, the distribution of lignin across the fibre wall was clearly imaged. It was found that surface lignin concentration is about 2-4 times higher than bulk lignin concentration, and that high concentration of lignin was also found on the fibre lumen surfaces and pit borders.

  6. IMAGING WOOD PULP FIBRE SURFACE LIGNIN BY FLUORESCENCE CONFOCAL LASER SCANNING MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    KechengLi; DouglasW.Reeve

    2004-01-01

    A novel methodology for imaging wood pulp fibre surface lignin by fluorescence confocal laser scanning microscopy was developed. Various imaging modes and imaging conditions were explored for quantitative analysis. Acridine Orange was used for labelling lignin and the orthochromatic labelling condition was developed. With the thusly established methodology, the distribution of lignin across the fibre wall was clearly imaged. It was found that surface lignin concentration is about 2-4 times higher than bulk lignin concentration and that high concentration of lignin was also found on the fibre lumen surfaces and pit borders.

  7. In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire

    Directory of Open Access Journals (Sweden)

    Gandhi Ashish

    2009-01-01

    Full Text Available Abstract In this work, we succeeded in preparing in-plane zinc oxide nanowires using a Ti-grid assisted by the chemical vapor deposition method. Optical spatial mapping of the Confocal Raman spectra was used to investigate the phonon and geometric properties of a single ZnO nanowire. The local optical results reveal a red shift in the non-polar E 2 high frequency mode and width broadening along the growth direction, reflecting quantum-confinement in the radial direction.

  8. Microstructural evaluation by confocal and electron microscopy in thrombi developed in central venous catheters.

    Science.gov (United States)

    Lucas, Thabata Coaglio; Silva, Eliata Ester da; Souza, Danilo Olzon Dionysio; Santos, Amanda Rodrigues Dos; Lara, Maristela Oliveira

    2017-08-28

    Evaluating thrombi microstructure developed in central venous catheters using confocal and electron microscopy. An experimental, descriptive study carrying out a microstructural evaluation of venous thrombi developed in central venous catheters using Scanning Electron Microscopy and Confocal Laser Scanning Microscopy. A total of 78 venous catheters were collected over a period of three months. Different fibrin structures were distinguished: fibrin plates, fibrin network, and fibrin fibers. It was observed that the thrombus had thick fibrin plates adhered to the catheter wall openings in both a catheter with three days of permanence as well as in a catheter with 20 days of insertion in the patient. However, a greater amount of erythrocytes and fibrin fibers were found in the central region of the thrombus. This study contributes to improving health care and can have a positive impact on clinical practice, as easy adherence of platelets and fibrins to the catheter wall demonstrated in this study makes it possible to adopt thrombus prevention strategies such as therapy discontinuation for an extended period, blood reflux by a catheter, slow infusion rate and hypercoagulo pathyclinical conditions. Avaliar a microestrutura por microscopia confocal e eletrônica em trombos desenvolvidos em cateteres venosos centrais. Pesquisa experimental, descritiva, em que foi feita uma avaliação microestrutural de trombos venosos desenvolvidos em cateteres venosos centrais por Microscopia Eletrônica de Varredura e Microscopia Confocal de Varredura a Laser. Foram coletados 78 cateteres venosos centrais num período de três meses. Distinguiram-se diferentes estruturas de fibrina: a placa de fibrina, a rede de fibrina e as fibras de fibrina. Observou-se que tanto em um cateter com três dias de permanência quanto em um cateter com 20 dias inserido no paciente o trombo apresentou placas de fibrina espessas aderidas às paredes dos orifícios dos cateteres. Na região central do

  9. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  10. Confocal microscopy using variable-focal-length microlenses and an optical fiber bundle

    OpenAIRE

    Yang, Lisong; Mac Raighne, Aaron; McCabe, Eithne M.; Dunbar, L. Andrea; Scharf, Toralf

    2008-01-01

    The use of variable-focal-length (VFL) microlenses can provide a way to axially scan the foci across a sample by electronic control. We demonstrate an approach to coupling VFL microlenses individually to a fiber bundle as a way to create a high-throughput aperture array with a controllable aperture pattern. It would potentially be applied in real-time confocal imaging in vivo for biological specimens. The VFL microlenses that we used consist of a liquid-crystal film sandwiched between a pair ...

  11. In vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy.

    Science.gov (United States)

    Tsujino, Takeshi; Yan-Lin Huang, Jason; Nakai, Yosuke; Samarasena, Jason B; Lee, John G; Chang, Kenneth J

    2015-08-01

    Pancreatic cystic lesions (PCLs) are increasingly identified with the widespread use of imaging modalities. The precise diagnosis of PCLs remains a challenge despite the use of CT, MRI, and EUS-FNA. Confocal laser endomicroscopy (CLE) is a new endoscopic imaging modality that provides real-time, very high magnification images. A smaller CLE probe, which can be passed through a 19-gauge FNA needle, is now available. Needle-based CLE during EUS has recently been examined to evaluate PLCs, and the specific criteria of nCLE for the diagnosis of PLCs have been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E., E-mail: eric.gauthier@cea.fr [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Languille, P. [PIIM, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille, Cedex 20 (France); Courtois, X.; Lallier, Y. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Salami, M. [AVANTIS CONCEPT, 75 Rue Marcelin Berthelot, 13858 Aix en Provence (France)

    2013-07-15

    A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002–2007.

  13. Single Fluorescent Molecule Confocal Microscopy: A New Tool for Molecular Biology Research and Biosensor Development

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, C.; Huser, T.; Campos, C.; Yan, M.; Lane, S.; Balhorn, R.

    2000-03-09

    Our original proposal was presented to the LDRD committee on February 18, 1999. The revised proposal that followed incorporated changes that addressed the issues, concerns, and suggestions put forth by the committee members both during the presentation and in subsequent discussions we've had with individual committee members. The goal of the proposal was to establish an SMD confocal microscopy capability and technology base at LLNL. Here we report on our progress during the 6-month period for which funding was available.

  14. Darkfield-Confocal Microscopy detection of nanoscale particle internalization by human lung cells

    Directory of Open Access Journals (Sweden)

    Samet James M

    2011-01-01

    Full Text Available Abstract Background Concerns over the health effects of nanomaterials in the environment have created a need for microscopy methods capable of examining the biological interactions of nanoparticles (NP. Unfortunately, NP are beyond the diffraction limit of resolution for conventional light microscopy (~200 nm. Fluorescence and electron microscopy techniques commonly used to examine NP interactions with biological substrates have drawbacks that limit their usefulness in toxicological investigation of NP. EM is labor intensive and slow, while fluorescence carries the risk of photobleaching the sample and has size resolution limits. In addition, many relevant particles lack intrinsic fluorescence and therefore can not be detected in this manner. To surmount these limitations, we evaluated the potential of a novel combination of darkfield and confocal laser scanning microscopy (DF-CLSM for the efficient 3D detection of NP in human lung cells. The DF-CLSM approach utilizes the contrast enhancements of darkfield microscopy to detect objects below the diffraction limit of 200 nm based on their light scattering properties and interfaces it with the power of confocal microscopy to resolve objects in the z-plane. Results Validation of the DF-CLSM method using fluorescent polystyrene beads demonstrated spatial colocalization of particle fluorescence (Confocal and scattered transmitted light (Darkfield along the X, Y, and Z axes. DF-CLSM imaging was able to detect and provide reasonable spatial locations of 27 nm TiO2 particles in relation to the stained nuclei of exposed BEAS 2B cells. Statistical analysis of particle proximity to cellular nuclei determined a significant difference between 5 min and 2 hr particle exposures suggesting a time-dependant internalization process. Conclusions DF-CLSM microscopy is an alternative to current conventional light and electron microscopy methods that does not rely on particle fluorescence or contrast in electron

  15. Network formation in colloid-liquid crystal mixtures studied by confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J; Poon, W C K [School of Physics and the Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), JCMB, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom)

    2004-05-19

    We studied the formation of particle networks in colloid + liquid crystal mixtures cooled below the isotropic-nematic transition temperature by time-resolved laser scanning confocal microscopy. Our observations confirm a recent suggestion that alkane impurities play a crucial role in slowing down the speed of the isotropic-nematic interface. This enables the growing nematic droplets to 'push' particles into increasingly concentrated regions, ultimately resulting in a cellular network solid. We also found that faster cooling rates resulted in increasingly hierarchical cellular structures.

  16. Microscopia confocal reflectante aplicada ao diagnóstico do melanoma cutâneo Reflectance confocal microscopy in the diagnosis of cutaneous melanoma

    Directory of Open Access Journals (Sweden)

    Cintia Rito

    2009-12-01

    Full Text Available O melanoma cutâneo é um problema de saúde pública a nível mundial. Sua incidência tem aumentado, de forma marcante, nos últimos anos, e o diagnóstico e excisão precoces são essenciais para o bom prognóstico dos pacientes. Neste contexto, a dermatoscopia ganhou grande importância, nas últimas duas décadas, melhorando, de forma significativa, a acurácia do diagnóstico do melanoma, em estágios iniciais. Porém, existem algumas lesões benignas que apresentam dermatoscopia duvidosa, levando à realização de cirurgias desnecessárias. Mais recentemente, a microscopia confocal reflectante vem sendo introduzida como método diagnóstico auxiliar promissor, por ser um exame não-invasivo, realizado in vivo, de forma simples, indolor e de rápida execução. É a única técnica capaz de identificar estruturas celulares e examinar a epiderme e a derme papilar, com resolução semelhante à da histopatologia, com uma sensibilidade de 97,3%, e especificidade de 72,3% para o diagnóstico do melanoma cutâneo. É uma importante ferramenta diagnóstica, visto que não substitui o exame histopatológico realizado no pós-operatório, mas permite a abordagem racional das lesões com dermatoscopia duvidosa, evitando procedimentos cirúrgicos desnecessários.Skin melanoma is an international public health issue, with a considerable increase in frequency over the past few years. Early diagnosis and excision are essential for good patient prognosis. Over the past two decades dermoscopy has gained significance due to a major improvement in the accuracy of skin melanoma diagnosis in its early stage. However, there are some benign lesions of questionable dermoscopy, which may lead to the performance of unnecessary surgery. Recently, reflectance confocal microscopy has been introduced as a promising supplementary diagnostic method. It is a noninvasive, in vivo, simple, painless and quick exam. It is the only technique capable of identifying cellular

  17. Reflectance confocal microscopy for the diagnosis of eosinophilic esophagitis: a pilot study conducted on biopsy specimens.

    Science.gov (United States)

    Yoo, Hongki; Kang, DongKyun; Katz, Aubrey J; Lauwers, Gregory Y; Nishioka, Norman S; Yagi, Yukako; Tanpowpong, Pornthep; Namati, Jacqueline; Bouma, Brett E; Tearney, Guillermo J

    2011-11-01

    Diagnosis of eosinophilic esophagitis (EoE) currently requires endoscopic biopsy and histopathologic analysis of the biopsy specimens to count intraepithelial eosinophils. Reflectance confocal microscopy (RCM) is an endomicroscopy technology that is capable of obtaining high-resolution, optically sectioned images of esophageal mucosa without the administration of exogenous contrast. In this study, we investigated the capability of a high-speed form of RCM, termed spectrally encoded confocal microscopy (SECM), to count intraepithelial esophageal eosinophils and characterize other microscopic findings of EoE. A total of 43 biopsy samples from 35 pediatric patients and 8 biopsy samples from 8 adult patients undergoing EGD for EoE were imaged by SECM immediately after their removal and then processed for routine histopathology. Two SECM readers, trained on adult cases, prospectively counted intraepithelial eosinophils and detected the presence of abscess, degranulation, and basal cell hyperplasia on SECM images from the pediatric patients. A pathologist blinded to the SECM data analyzed the same from corresponding slides. The Gastrointestinal Unit, Massachusetts General Hospital. Eosinophils by SECM demonstrated a higher reflectance than the surrounding cells and other inflammatory cells. There was good correlation between SECM and histology maximum eosinophil counts/high-power field (R = 0.76, P biopsy samples. These findings suggest that RCM may be developed into a tool for assessing eosinophilic infiltration in the esophagus in vivo. Copyright © 2011 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  18. Three-photon fluorescence imaging of melanin with a dual-wedge confocal scanning system

    Science.gov (United States)

    Mega, Yair; Kerimo, Joseph; Robinson, Joseph; Vakili, Ali; Johnson, Nicolette; DiMarzio, Charles

    2012-03-01

    Confocal microscopy can be used as a practical tool in non-invasive applications in medical diagnostics and evaluation. In particular, it is being used for the early detection of skin cancer to identify pathological cellular components and, potentially, replace conventional biopsies. The detection of melanin and its spatial location and distribution plays a crucial role in the detection and evaluation of skin cancer. Our previous work has shown that the visible emission from melanin is strong and can be easily observed with a near-infrared CW laser using low power. This is due to a unique step-wise, (SW) three-photon excitation of melanin. This paper shows that the same SW, 3-photon fluorescence can also be achieved with an inexpensive, continuous-wave laser using a dual-prism scanning system. This demonstrates that the technology could be integrated into a portable confocal microscope for clinical applications. The results presented here are in agreement with images obtained with the larger and more expensive femtosecond laser system used earlier.

  19. Demonstration of the Protein Involvement in Cell Electropermeabilization using Confocal Raman Microspectroscopy

    Science.gov (United States)

    Azan, Antoine; Untereiner, Valérie; Gobinet, Cyril; Sockalingum, Ganesh D.; Breton, Marie; Piot, Olivier; Mir, Lluis M.

    2017-01-01

    Confocal Raman microspectroscopy was used to study the interaction between pulsed electric fields and live cells from a molecular point of view in a non-invasive and label-free manner. Raman signatures of live human adipose-derived mesenchymal stem cells exposed or not to pulsed electric fields (8 pulses, 1 000 V/cm, 100 μs, 1 Hz) were acquired at two cellular locations (nucleus and cytoplasm) and two spectral bands (600–1 800 cm−1 and 2 800–3 100 cm−1). Vibrational modes of proteins (phenylalanine and amide I) and lipids were found to be modified by the electropermeabilization process with a statistically significant difference. The relative magnitude of four phenylalanine peaks decreased in the spectra of the pulsed group. On the contrary, the relative magnitude of the amide I band at 1658 cm−1 increased by 40% when comparing pulsed and control group. No difference was found between the control and the pulsed group in the high wavenumber spectral band. Our results reveal the modification of proteins in living cells exposed to pulsed electric fields by means of confocal Raman microspectroscopy. PMID:28102326

  20. Determination of nitric oxide mediating intracellular Ca2+ release on neurons based on confocal microscopy imaging

    Science.gov (United States)

    Zheng, Liqin; Wang, Yuhua; He, Yipeng; Zeng, Yixiu; Zhang, Yanding; Xie, Shusen

    2014-09-01

    The gas NO is a ubiquitous intercellular messenger that modulates a wide range of physiological and pathophysiological functions. But few studies were made to study the role of NO in the Ca2+ release in dorsal root ganglion (DRG) neurons by confocal microscopy. Thus the objective of this study was to assess if NO has a role in Ca2+ signaling in DRG neurons using confocal microscopy combined with special fluorescence probe Fluo-3/AM. A 100 μM concentration of the NO donors (Sodium Nitroprusside, Dihydrate, SNP) and NO synthase inhibitor (NG-Monomethyl-L-arginine, Monoacetate salt, L-NMMA) was used in the study. Results showed that the fluorescence intensity increased rapidly after injecting SNP, which indicated that SNP could enhance intracellular Ca2+ release. And the fluorescence intensity shrank gradually with time and kept at a low level for quite a long period after loading with L-NMMA which indicated that L-NMMA could block intracellular Ca2+ release. All these results demonstrated that NO was involved in the regulation of intracellular Ca2+ release in the DRG neurons.

  1. Analysis of the in vivo confocal Raman spectral variability in human skin

    Science.gov (United States)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  2. Combining microtomy and confocal laser scanning microscopy for structural analyses of plant-fungus associations.

    Science.gov (United States)

    Rath, Magnus; Grolig, Franz; Haueisen, Janine; Imhof, Stephan

    2014-05-01

    The serious problem of extended tissue thickness in the analysis of plant-fungus associations was overcome using a new method that combines physical and optical sectioning of the resin-embedded sample by microtomy and confocal microscopy. Improved tissue infiltration of the fungal-specific, high molecular weight fluorescent probe wheat germ agglutinin conjugated to Alexa Fluor® 633 resulted in high fungus-specific fluorescence even in deeper tissue sections. If autofluorescence was insufficient, additional counterstaining with Calcofluor White M2R or propidium iodide was applied in order to visualise the host plant tissues. Alternatively, the non-specific fluorochrome acid fuchsine was used for rapid staining of both, the plant and the fungal cells. The intricate spatial arrangements of the plant and fungal cells were preserved by immobilization in the hydrophilic resin Unicryl™. Microtomy was used to section the resin-embedded roots or leaves until the desired plane was reached. The data sets generated by confocal laser scanning microscopy of the remaining resin stubs allowed the precise spatial reconstruction of complex structures in the plant-fungus associations of interest. This approach was successfully tested on tissues from ectomycorrhiza (Betula pendula), arbuscular mycorrhiza (Galium aparine; Polygala paniculata, Polygala rupestris), ericoid mycorrhiza (Calluna vulgaris), orchid mycorrhiza (Limodorum abortivum, Serapias parviflora) and on one leaf-fungus association (Zymoseptoria tritici on Triticum aestivum). The method provides an efficient visualisation protocol applicable with a wide range of plant-fungus symbioses.

  3. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques.

    Science.gov (United States)

    Chakraborty, Nilay; Wang, Mian; Solocinski, Jason; Kim, Wonsuk; Argento, Alan

    2016-01-01

    This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera's collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.

  4. Novel Method for Differentiating Histological Types of Gastric Adenocarcinoma by Using Confocal Raman Microspectroscopy.

    Science.gov (United States)

    Hsu, Chih-Wei; Huang, Chia-Chi; Sheu, Jeng-Horng; Lin, Chia-Wen; Lin, Lien-Fu; Jin, Jong-Shiaw; Chau, Lai-Kwan; Chen, Wenlung

    2016-01-01

    Gastric adenocarcinoma, a single heterogeneous disease with multiple epidemiological and histopathological characteristics, accounts for approximately 10% of cancers worldwide. It is categorized into four histological types: papillary adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma (MAC), and signet ring cell adenocarcinoma (SRC). Effective differentiation of the four types of adenocarcinoma will greatly improve the treatment of gastric adenocarcinoma to increase its five-year survival rate. We reported here the differentiation of the four histological types of gastric adenocarcinoma from the molecularly structural viewpoint of confocal Raman microspectroscopy. In total, 79 patients underwent laparoscopic or open radical gastrectomy during 2008-2011: 21 for signet ring cell carcinoma, 21 for tubular adenocarcinoma, 14 for papillary adenocarcinoma, 6 for mucinous carcinoma, and 17 for normal gastric mucosas obtained from patients underwent operation for other benign lesions. Clinical data were retrospectively reviewed from medical charts, and Raman data were processed and analyzed by using principal component analysis (PCA) and linear discriminant analysis (LDA). Two-dimensional plots of PCA and LDA clearly demonstrated that the four histological types of gastric adenocarcinoma could be differentiated, and confocal Raman microspectroscopy provides potentially a rapid and effective method for differentiating SRC and MAC from TAC or PAC.

  5. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Kolos

    2015-06-01

    Full Text Available In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  6. Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy.

    Science.gov (United States)

    Crossman, David J; Ruygrok, Peter N; Hou, Yu Feng; Soeller, Christian

    2015-03-01

    Confocal laser scanning microscopy and super-resolution microscopy provide high-contrast and high-resolution fluorescent imaging, which has great potential to increase the diagnostic yield of endomyocardial biopsy (EMB). EMB is currently the gold standard for identification of cardiac allograft rejection, myocarditis, and infiltrative and storage diseases. However, standard analysis is dominated by low-contrast bright-field light and electron microscopy (EM); this lack of contrast makes quantification of pathological features difficult. For example, assessment of cardiac allograft rejection relies on subjective grading of H&E histology, which may lead to diagnostic variability between pathologists. This issue could be solved by utilising the high contrast provided by fluorescence methods such as confocal to quantitatively assess the degree of lymphocytic infiltrate. For infiltrative diseases such as amyloidosis, the nanometre resolution provided by EM can be diagnostic in identifying disease-causing fibrils. The recent advent of super-resolution imaging, particularly direct stochastic optical reconstruction microscopy (dSTORM), provides high-contrast imaging at resolution approaching that of EM. Moreover, dSTORM utilises conventional fluorescence dyes allowing for the same structures to be routinely imaged at the cellular scale and then at the nanoscale. The key benefit of these technologies is that the high contrast facilitates quantitative digital analysis and thereby provides a means to robustly assess critical pathological features. Ultimately, this technology has the ability to provide greater accuracy and precision to EMB assessment, which could result in better outcomes for patients.

  7. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy.

    Science.gov (United States)

    Han, Jason J; Kunde, Yuliya A; Hong-Geller, Elizabeth; Werner, James H

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  8. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  9. Two-photon fluorescence and confocal reflected light imaging of thick tissue structures

    Science.gov (United States)

    Kim, Ki H.; So, Peter T. C.; Kochevar, Irene E.; Masters, Barry R.; Gratton, Enrico

    1998-04-01

    The technology of two-photon excitation has opened a window of opportunity for developing non-invasive medical diagnostic tools capable of monitoring thick tissue biochemical states. Using cellular endogenous chromophores, (beta) -nicotinamide- adenine dinucleotide phosphate [NAD(P)H], the cellular metabolic rates in living human skin were determined. Although important functional information can be obtained from the fluorescence spectroscopy of endogenous chromophores, these chromophores are rather poor contrast enhancing agent for mapping cellular morphology. First, most endogenous chromophores are confined to the cellular cytoplasm which prevents the visualization of other cellular organelles. Second, there is significant variability in the distribution and the quantum yield of endogenous chromophores which depends on tissue biochemistry but prevents consistent comparison of cellular morphology. On the other hand, the deep tissue cellular morphology has been imaged with excellent resolution using reflected light confocal microscopy. In reflected light microscopy, the image contrast originates from the index of refraction differences of the cellular structures. The organelle boundaries with significant index differences such as the plasma membrane and the nucleus envelope can be consistently visualized. A combination of morphological and functional information is required for a thorough tissue study. This presentation describes the development of a new microscope which is capable of simultaneously collecting both two-photon fluorescence and confocal reflected light signals. Promising biomedical applications include the non-invasive diagnosis of skin cancer and the study of wound healing.

  10. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue.

    Science.gov (United States)

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E; Maitland, Kristen C

    2013-05-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue.

  11. Simultaneous OCT/confocal-OCT/ICG system for imaging the eye

    Science.gov (United States)

    Podoleanu, Adrian G.; Rosen, Richard B.; Dobre, George; Rogers, John A.; Garcia, Patricia; Pedro, Justin; Dunne, Shane; Jackson, David A.; Weitz, Rishard

    2004-10-01

    En-face OCT acquired simultaneously with paired confocal ophthalmoscopic (CO) images provides unprecedented point-to-point correlation between surface and subsurface anatomy of the retina. An advanced prototype of a dual channel OCT/CO instrument was developed in terms of signal to noise ratio and image size. The system can operate in A, B and C-scan regimes. The design is such that there is a strict pixel to pixel correspondence between the OCT and confocal images. An extensive array of clinic pathologies were studied including macular degeneration, central serous retinopathy (CSR), macular hole, macular pucker, cystoid macular edema (CME), diabetic maculopathy, and macular trauma. We report observation of reoccurring patterns in the en-face OCT images which could be identified with different diseases. The system can also simultaneously produce en-face OCT and indocyanine green (ICG) fluorescence images where the same source is used to produce the OCT image and excite the ICG. The system is compact and assembled on a chin rest and it enables the clinician to visualise the same area of the eye fundus in terms of both en face OCT slices and ICG angiograms, displayed side by side. The images are collected by fast en-face scanning (T-scan) followed by slower scanning along a transverse direction and depth scanning. The system is capable of providing chosen OCT B-scans at selected points from the ICG image.

  12. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    Science.gov (United States)

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring.

  13. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy

    Directory of Open Access Journals (Sweden)

    Massimiliano eCardinale

    2014-03-01

    Full Text Available No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology.

  14. [Clinical forms of acanthamoeba keratitis as viewed from the standpoint of biomicroscopy and confocal microscopy].

    Science.gov (United States)

    Maĭchuk, Iu F; Maĭchuk, D Iu

    2004-01-01

    Clinical cases of 60 patients with acanthamebic keratitis examined by biomicroscopy and of 22 patients largely examined by confocal microscopy are generalized. Acanthamebic keratitis is a slowly progressing infectious lesion of the cornea, which is caused by acanthamebas freely residing in soil and water. Contaminated contact lenses are the key risk factor. The main clinical features of acanthamebic keratitis are defined; they are presence of risk factors; a unilateral lesion in young, healthy and immune-competent persons; a typical clinical pattern of surface keratitis mainly of the ring shape; corneal neuritis without corneal neovascularization but with a severe pain in the eye; and a slow chronic clinical course, i.e. lasting for several weeks and months. Confocal microscopy is the most effective and fast diagnostic tool because it ensures the detection of acanthamebic cysts and trophozoids in all strata of the corneal stroma. The authors isolate, within the clinical course of acanthamebic keratitis, 5 stages; they are surface epithelial keratitis; surface epithelial punctate keratitis; stromal ring-shaped keratitis; ulcerous keratitis; and keratoscleritis.

  15. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  16. Correlated confocal and super-resolution imaging by VividSTORM.

    Science.gov (United States)

    Barna, László; Dudok, Barna; Miczán, Vivien; Horváth, András; László, Zsófia I; Katona, István

    2016-01-01

    Single-molecule localization microscopy (SMLM) is rapidly gaining popularity in the life sciences as an efficient approach to visualize molecular distribution with nanoscale precision. However, it has been challenging to obtain and analyze such data within a cellular context in tissue preparations. Here we describe a 5-d tissue processing and immunostaining procedure that is optimized for SMLM, and we provide example applications to fixed mouse brain, heart and kidney tissues. We then describe how to perform correlated confocal and 3D-superresolution imaging on these sections, which allows the visualization of nanoscale protein localization within labeled subcellular compartments of identified target cells in a few minutes. Finally, we describe the use of VividSTORM (http://katonalab.hu/index.php/vividstorm), an open-source software for correlated confocal and SMLM image analysis, which facilitates the measurement of molecular abundance, clustering, internalization, surface density and intermolecular distances in a cell-specific and subcellular compartment-restricted manner. The protocol requires only basic skills in tissue staining and microscopy.

  17. Design of 220 GHz electronically scanned reflectarrays for confocal imaging systems

    Science.gov (United States)

    Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.

    2012-09-01

    The authors analyze properties of a 220 GHz imaging system that uses a scanned reflectarray to perform electronic beam scanning of a confocal imager for applications including imaging meter-sized fields of view at 50 m standoff. Designs incorporating reflectarrays with confocal imagers have not been examined previously at these frequencies. We examine tradeoffs between array size, overall system size, and number of achievable image pixels resulting in a realistic architecture capable of meeting the needs of our application. Impacts to imaging performance are assessed through encircled energy calculations, beam pointing accuracy, and examining the number and intensity of quantization lobes that appear over the scan ranges of interest. Over the desired scan range, arrays with 1 and 2-bit phase quantization showed similar array main beam energy efficiencies. Two-bit phase quantization is advantageous in terms of pointing angle error, resulting in errors of at most 15% of the diffraction-limited beam size. However, both phase quantization cases considered resulted in spurious returns over the scan range of interest and other array layouts should be examined to eliminate potential imaging artifacts.

  18. Morphological study of adult male worms of Schistosoma mansoni Sambon, 1907 by confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    Machado-Silva José Roberto

    1998-01-01

    Full Text Available Aiming to detail data obtained through brightfield microscopy (BM on reproductive, excretory and digestive system, specimens of Schistosoma mansoni eight weeks old, were recovered from SW mice, stained with Langeron's carmine and analyzed under a confocal laser scanning microscope CLSM 410 (Carl Zeiss. The reproductive system presented a single and lobate testis, with intercommunications between the lobes without efferent duct. Supernumerary testicular lobe was amorphous and isolated from the normal ones. Collecting tubules (excretory ducts, followed by the excretory bladder, opening to the external media through the excretory pore, were observed at the posterior extremity of the body. In the digestive tract, a cecal swelling was noted at the junction that originates the single cecum. It was concluded that through confocal laser scanning microscopy, new interpretations of morphological structures of S. mansoni worms could be achieved, modifying adopted and current descriptions. The gonad consists of a single lobed testis, similar to that observed in some trematode species. Moreover, the same specimens can be observed either by BM or CLSM, considering that the latter causes only focal and limited damage in tissue structures.

  19. Meesmann Corneal Dystrophy; a Clinico-Pathologic, Ultrastructural and Confocal Scan Report

    Directory of Open Access Journals (Sweden)

    Mohammad-Ali Javadi

    2010-01-01

    Full Text Available Purpose: To report the microstructural features of Meesmann corneal dystrophy (MCD in two patients. Case Report: The first patient was a 10-year-old boy who presented with bilateral visual loss, diffuse corneal epithelial microcystic changes, high myopia and amblyopia. With a clinical impression of MCD, automated lamellar therapeutic keratoplasty was performed in his left eye. Histopathologic examination of the corneal button disclosed epithelial cell swelling and cyst-like intracytoplasmic inclusions. The cells contained moderate amounts of periodic acid-Schiff-positive and diastase-sensitive material (glycogen. Transmission electron microscopy revealed numerous vacuoles and moderate numbers of electron-dense membrane-bound bodies in the cytoplasm, similar to lysosomes, some engulfed by the vacuoles. The second patient was a 17-year-old female with a clinical diagnosis of MCD and episodes of recurrent corneal erosion. On confocal scan examination of both corneas, hyporeflective round-shaped areas measuring 6.8 to 41.4 μm were seen within the superficial epithelium together with irregular and ill-defined high-contrast areas in the sub-basal epithelial region. The subepithelial nervous plexus was not visible due to regional hyperreflectivity. Conclusion: This case report further adds to the microstructural features of Meesmann corneal dystrophy and suggests confocal scan as a non-invasive method for delineating the microstructural appearance of this rare dystrophy.

  20. Surgical imaging catheter for confocal microendoscopy with advanced contrast delivery and focus systems

    Science.gov (United States)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Udovich, Josh A.; Gmitro, Arthur F.

    2006-02-01

    We present a laparoscope for fluorescence confocal microendoscopy specifically designed for microscopic imaging during diagnostic laparoscopic surgery. The catheter consists of a disposable rigid distal tip which houses a flexible microendoscope and dye channel. The laparoscopic tip is a small disposable polycarbonate sheath containing two inner lumens with a glass window on the distal end. The sheath outer diameter suitable for use in a 5mm trocar. The smaller inner lumen provides a channel for delivering fluorescent contrast agents to the tissue through a 200um hole in the glass window. On the proximal end, the smaller lumen is coupled to a computer controlled fluid delivery system that controls the amount of contrast agent dispensed onto the tissue down to a fraction of a micro liter. The main lumen houses the microendoscope. The microendoscope incorporates a computer-controlled focus mechanism that can quickly and accurately focus while correcting for hysteresis. This fluorescence confocal micro-laparoscope will be tested in a small-scale clinical trial on women undergoing oophorectomy in the near future.

  1. Impression Cytology in Eyes with Clinical and Confocal Scan Features of Acanthamoeba Keratitis

    Directory of Open Access Journals (Sweden)

    Mozhgan Rezaei Kanavi

    2013-01-01

    Full Text Available Purpose: To report impression cytology findings in specimens obtained from eyes with clinical and confocal microscopic features of Acanthamoeba keratitis (AK. Methods: In this interventional case series, impression cytology was obtained from corneas of patients with clinical and confocal microscopic features indicative of AK. Specimens were stained with Periodic acid-Schiff/Papanicolaou (PAS/PAP and examined for the presence of PAS-reactive Acanthamoeba cysts and/or hyperchromatic pear-shaped trophozoites. All specimens were then decolorized and re-stained with calcofluor white (CFW for the presence of chemofluorescent cysts. Results: Fifty-six eyes of 50 patients with mean age of 25.5±9.3 (range, 17 to 78 years were evaluated. Forty-one (82% cases were female and 51 (91.1% eyes had history of contact lens wear. PAS-reactive Acanthamoeba cysts and/or hyperchromatic pear-shaped trophozoites were identified in 53 eyes (94.6%, 2 of which demonstrated only trophozoitelike structures. CFW staining was able to reveal the presence of chemofluorescent cysts in all 51 specimens (91.1% in which cysts had been demonstrated with PAS/PAP staining. Trophozoites were not detected with CFW due to background staining of the cellulose acetate strip used for impression cytology. Conclusion: Corneal impression cytology, stained with PAS/PAP or with CFW, successfully detects Acanthamoeba and can be employed for early noninvasive diagnosis of AK.

  2. Confocal laser scanning microscopic investigation of ultrasonic, sonic, and rotary sealer placement techniques

    Directory of Open Access Journals (Sweden)

    Vineeta Nikhil

    2013-01-01

    Full Text Available Background: Sealers are used to attain an impervious seal between the core material and root canal walls. Aim: To compare the depth and percentage of sealer penetration with three different placement techniques using confocal laser scanning microscopy as the evaluative tool. Materials and Methods: Root canals of 30 single-rooted teeth were prepared to a size of F3 and AH plus sealer with Rhodamine B was applied with Ultlrasonic file (Gr-1, lentulospiral (Gr-2, and Endoactivator (Gr-3. Canals were obturated with gutta-percha. The roots were sectioned at the 3 and 6-mm levels from the apical foramen and were examined on a confocal microscope. Results: A statistical significant differences among Gr-1, Gr-2, and Gr-3 were found at the 3 and 6-mm level (P < 0.05; ANOVA-Tukey tests for the depth and percentage of sealer penetration except for Gr-1 and Gr-2 at 3-mm level. Gr-1 showed maximum mean depth of penetration (810 μm and maximum mean percentage of sealer penetration (64.5 while Gr-3 showed minimum mean depth of penetration (112.7 μm and minimum mean percentage of sealer penetration (26.7. Conclusion: Depth and percentage of penetration of sealer is influenced by the type of placement technique and by the root canal level with penetration decreasing apically.

  3. Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy.

    Science.gov (United States)

    Silvestri, Ludovico; Bria, Alessandro; Costantini, Irene; Sacconi, Leonardo; Peng, Hanchuan; Iannello, Giulio; Pavone, Francesco Saverio

    2013-10-08

    Understanding the architecture of mammalian brain at single-cell resolution is one of the key issues of neuroscience. However, mapping neuronal soma and projections throughout the whole brain is still challenging for imaging and data management technologies. Indeed, macroscopic volumes need to be reconstructed with high resolution and contrast in a reasonable time, producing datasets in the TeraByte range. We recently demonstrated an optical method (confocal light sheet microscopy, CLSM) capable of obtaining micron-scale reconstruction of entire mouse brains labeled with enhanced green fluorescent protein (EGFP). Combining light sheet illumination and confocal detection, CLSM allows deep imaging inside macroscopic cleared specimens with high contrast and speed. Here we describe the complete experimental pipeline to obtain comprehensive and human-readable images of entire mouse brains labeled with fluorescent proteins. The clearing and the mounting procedures are described, together with the steps to perform an optical tomography on its whole volume by acquiring many parallel adjacent stacks. We showed the usage of open-source custom-made software tools enabling stitching of the multiple stacks and multi-resolution data navigation. Finally, we illustrated some example of brain maps: the cerebellum from an L7-GFP transgenic mouse, in which all Purkinje cells are selectively labeled, and the whole brain from a thy1-GFP-M mouse, characterized by a random sparse neuronal labeling.

  4. QUANTIFICATION OF BIOFILMS IN MULTI-SPECTRAL DIGITAL1 VOLUMES FROM CONFOCAL LASER-SCANNING MICROSCOPES

    Directory of Open Access Journals (Sweden)

    Karsten Rodenacker

    2011-05-01

    Full Text Available Populations of bacteria in sludge flocs and biofilm marked by fluorescence marked with fluorescent probes are digitised with a confocal laser scanning microscope. These data are used to analyse the microbial community structure, to obtain information on the localisation of specific bacterial groups and to examine gene expression. This information is urgently required for an in-depth understanding of the function and, more generally, the microbial ecology of biofilms. Methods derived from quantitative image analysis are applied to digitised data from confocal laser scanning microscopes to obtain quantitative descriptions of volumetric, topological (and topographical properties of different compartments of the components under research. In addition to free-moving flocs, also biofilms attached to a substratum in an experimental environment are analysed. Growth form as well as interaction of components are quantitatively described. Classical measurements of volume and intensity (shape, distribution and distance dependent interaction measurements using methods from mathematical morphology are performed. Mainly image (volume processing methods are outlined. Segmented volumes are globally and individually (in terms of 3Dconnected components measured and used for distance mapping transform as well as for estimation of geodesic distances from the substrate. All transformations are applied on the 3D data set. Resulting distance distributions are quantified and related to information on the identity and activity of the probe-identified bacteria.

  5. Multi-confocal Fluorescence Correlation Spectroscopy : experimental demonstration and potential applications for living cell measurements

    CERN Document Server

    Galland, Rémi; Kloster, Meike; Herbomel, Gaetan; Destaing, Olivier; Balland, Martial; Souchier, Catherine; Usson, Yves; Derouard, Jacques; Wang, Irène; Delon, Antoine; 10.2741/e263

    2011-01-01

    We report, for the first time, a multi-confocal Fluorescence Correlation Spectroscopy (mFCS) technique which allows parallel measurements at different locations, by combining a Spatial Light Modulator (SLM), with an Electron Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The phase map addressed to the SLM is calculated by using the spherical wave approximation and makes it possible to produce several diffraction limited laser spots, either aligned or spread over the field of view. To attain fast enough imaging rates, the camera has been used in different acquisition modes, the fastest of which leads to a time resolution of 100 $\\mu$s. We qualified the experimental set-up by using solutions of sulforhodamine G in glycerol and demonstrated that the observation volumes are similar to that of a standard confocal set-up. To demonstrate that our mFCS method is suitable for intracellular studies, experiments have...

  6. A preliminary assessment of using a white light confocal imaging profiler for cut mark analysis.

    Science.gov (United States)

    Schmidt, Christopher W; Moore, Christopher R; Leifheit, Randell

    2012-01-01

    White light confocal microscopy creates detailed 3D representations of microsurfaces that can be qualitatively and quantitatively analyzed. The study describes its application to the analysis of cut marks on bone, particularly when discerning cuts made by steel tools from those made by stone. The process described comes from a study where cuts were manually made on a cow rib with seven cutting tools, four stone (an unmodified chert flake, a chert biface, a bifacially ground slate fragment, and an unsharpened piece of slate), and three steel (a Swiss Army Knife, a serrate steak knife, and a serrate saw). Kerfs were magnified ×20 and 3D data clouds were generated using a Sensofar(®) White Light Confocal Profiler (WLCP). Kerf profiles and surface areas, volumes, mean depths, and maximum depths were calculated with proprietary software (SensoScan(®) and SolarMap(®)). For the most part, the stone tools make shallower and wider cuts. Kerf floors can be studied at higher magnifications; they were viewed at ×100. When comparing the kerf floors of the unsharpened slate and the serrate steak knife it was found that the slate floor was more uneven, but the serrate steak knife generated more overall relief. Although preliminary, the approach described here successfully distinguishes stone and steel tools; the authors conclude that the WLCP is a promising technology for cut mark analysis because of the very detailed 3D representations it creates and the numerous avenues of analysis it provides.

  7. Concurrent Imaging of Receptor Trafficking and Calcium Dynamics by Spinning Disk Confocal Microscopy.

    Science.gov (United States)

    Larsen, DeLaine D; Choy, Regina Wai-Yan; Park, Minjong

    2017-01-01

    Synaptic activity is modulated by the activation of neuromodulator receptors present in dendrites of neurons. The majority of neuromodulator receptors are G protein coupled receptors (GPCRs), in which membrane trafficking regulates their activities. Membrane trafficking of neuromodulator receptors and their signaling occurs on a rapid time scale and emerging studies indicate that neuromodulator receptors function not just from the plasma membrane but also from the endocytic compartments. Here, we describe a live cell imaging approach using spinning disk confocal microscopy to investigate the effect of neuromodulator receptor activation on synaptic activity by measuring calcium dynamics in primary rat striatal neurons. The advantages of spinning disk confocal microscopy and recent improvements in the genetically encoded calcium sensor, GCaMP6, provide an imaging approach to image both the receptor membrane trafficking to endocytic compartments, and calcium dynamics at a high spatial and temporal resolution. We believe this approach of imaging both the neuromodulator receptor membrane trafficking and synaptic activity using GCaMP6 is a powerful tool to address many questions regarding possible roles of membrane trafficking of neuromodulator receptors in synaptic activity.

  8. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction

    Science.gov (United States)

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.

  9. Confocal Raman spectroscopy to trace lipstick with their smudges on different surfaces.

    Science.gov (United States)

    López-López, Maria; Özbek, Nil; García-Ruiz, Carmen

    2014-06-01

    Lipsticks are very popular cosmetic products that can be transferred by contact to different surfaces, being important forensic evidence with an intricate analysis if they are found in a crime scene. This study evaluates the use of confocal Raman microscopy at 780 nm excitation wavelength for the nondestructive identification of 49 lipsticks of different brands and colors, overcoming the lipstick fluorescence problem reported by previous works using other laser wavelengths. Although the lipsticks samples showed some fluorescence, this effect was not so intense to completely overwhelm the Raman spectra. Lipsticks smudges on twelve different surfaces commonly stained with these samples were also analyzed. In the case of the surfaces, some of them provided several bands to the smudge spectra compromising the identification of the lipstick. For these samples spectral subtraction of the interfering bands from the surface was performed. Finally, five different red lipsticks with very similar color were measured on different surfaces to evaluate the lipstick traceability with their smudges even on interfering surfaces. Although previous spectral subtraction was needed in some cases, all the smudged were linked to their corresponding lipsticks even when they are smeared on the interfering surfaces. As a consequence, confocal Raman microscopy using the 780 nm excitation laser is presented as a nondestructive powerful tool for the identification of these tricky samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract

    Science.gov (United States)

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T. C.; Loewke, Kevin; Kino, Gordon S.; Solgaard, Olav; Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm2 and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  11. Confocal epifluorescence sensor with an arc-shaped aperture for slide-based PCR quantification.

    Science.gov (United States)

    Weng, Jui-Hong; Chen, Lin-Chi

    2017-08-24

    The increasing needs of point-of-care diagnostics, quarantine of epidemic pathogens, and prevention of terrorism's bio-attacks have promised the future of portable real-time quantitative polymerase chain reaction (qPCR) sensors. This work aims at developing a highly sensitive and low-cost light emitting diode (LED)-based epifluorescence sensor module for qPCR sensor development and relevant bioassay applications. Inspired by the light stop design and dark-field detection of microscopes, this paper first reports a compact confocal LED epifluorescence sensor using a light stop with an arc-shaped aperture for enhancing the flexibility of quick DNA and PCR detection. The sensor features the advantages of the dichroic mirror-free and confocal (shared-focus) characteristics, which benefits size reduction and minimal optics used. It also allows extension to integrate with in situ real-time PCR thermal cycling since the sample slide is placed apart from the epi-sensing module. The epifluorescence sensor can detect as low as sub-ng/μL standard DNA and 10(1) copies of Salmonella typhimurium InvA gene sequences (cloned in E. coli and after 30-cycle PCR) with SYBR(®) Green I from non-purified culture samples, having highly sensitive and specific signal responses comparable with that of a commercial qPCR instrument. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    Science.gov (United States)

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  13. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction.

    Science.gov (United States)

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J G; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660  cm-1 over 1690  cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960  cm-1, and the ratio of two Raman peaks of phosphate at 960/950  cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Laser multi-reflection differential confocal long focal-length measurement.

    Science.gov (United States)

    Li, Zhigang; Qiu, Lirong; Zhao, Weiqian; Zhao, Qi

    2016-06-20

    We propose a new laser multi-reflection differential confocal focal-length measurement (LDCFM) method to meet the requirements of high-precision measurements of long focal lengths. An optical flat and a reflector are placed behind a test lens for reflecting the measuring beam repeatedly. Then, LDCFM uses the property that the null points of differential confocal response curves precisely correspond to the convergence points of the multi-reflected measuring beam to exactly determine the positions of the convergence points accurately. Subsequently, the position variation of the reflector is measured with different reflection times by using a distance-measuring instrument, and thereby the long focal length is measured precisely. Theoretical analyses and preliminary experimental results indicate that the LDCFM method has a relative expanded standard uncertainty (k=2) of 0.04% for the test lens with a focal length of 9.76 m. The LDCFM method can provide a novel approach for high-precision focal-length measurements.

  15. Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study

    Directory of Open Access Journals (Sweden)

    S V Ravi

    2014-01-01

    Full Text Available Aims: The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM. Materials and Methods: A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA and laser scanning microscopy (LSM 5 image analyzer. Statistical Analysis Used: One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. Results: The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Conclusions: Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.

  16. Confocal Raman microspectroscopy: measuring the effects of topical moisturizers on stratum corneum water gradient in vivo

    Science.gov (United States)

    Sieg, Anke; Crowther, Jonathan; Blenkiron, Peter; Marcott, Curtis; Matts, Paul J.

    2006-02-01

    The stratum corneum (SC) water concentration gradient is fundamental to skin's role as a barrier, regulating its physical and biochemical properties. Standard instruments utilizing changes in SC electrical properties to estimate SC water concentration provide simple, rapid measurements but cannot provide true interval data as a function of depth. Confocal Raman spectroscopy (CRS) of human subjects provides non-invasive, real-time, in vivo measures of molecular concentration profiles. A state-of-the-art confocal Raman microspectrometer equipped with a fiber-coupled laser source operating at a wavelength of 671 nm was used to obtain measurements in the high wavenumber region (~2400-4000 cm -1). An aircooled, high-sensitivity back-illuminated, deep-depletion CCD camera captured radiation scattered inelastically from focal planes within the skin in vivo (a high-precision, computer-controlled piezo-electric stage and objective allowing depth resolutions of niacinamide on SC water concentration gradient, as measured by CRS, in vivo. The approach to compare SC water gradient effects will be discussed and the utility of this exciting new method will be compared and contrasted to existing methodology.

  17. Fluorescence imaging and time-resolved spectroscopy of steroid using confocal synchrotron radiation microscopy

    Science.gov (United States)

    Gerritsen, Hans C.; van der Oord, C. J. R.; Levine, Yehudi K.; Munro, Ian H.; Jones, Gareth R.; Shaw, D. A.; Rommerts, Fokko F.

    1994-08-01

    The Confocal Synchrotron Radiation Microscope at Daresbury was used in a study of the transport and distribution of the steroid Coumestrol in single Leydig cells. The broad spectrum of synchrotron radiation in combination with UV compatible microscope optics affords the extension of confocal microscopy from the visible to the UV region down to about 200 nm. Consequently fluorescent molecules with absorption bands in the UV can be imaged. In addition the pulsed nature of the light source allows us to perform time-resolved fluorescence spectroscopy experiments on microscopic volumes. Coumestrol is a naturally fluorescing plant steroid exhibiting estrogenic activity. In physiological environments it has an absorption peak in the UV at 340 nm and it emits around 440 nm. First results indicate that the Coumestrol transport through the cell membrane is diffusion limited. The weak fluorescence observed in the nuclei of the Leydig cells may be due to fluorescence quenching arising from the interaction of the Coumesterol with nuclear components. However, micro-volume time-resolved fluorescence spectroscopy experiments on cell nuclei have revealed the same decay behavior for Coumesterol in both the cytoplasm and nucleus of the cells.

  18. Stacking illumination of a confocal reflector light emitting diode automobile headlamp with an asymmetric triangular prism.

    Science.gov (United States)

    Chen, Hsi-Chao; Zhou, Jia-Hao; Zhou, Yang

    2017-02-01

    A confocal reflector lamp with an asymmetric triangular prism was designed for a stacking illumination of a light emitting diode (LED) automobile headlamp fitting ECE R112 asymmetrical regulation. The optical system includes three 1st elliptic reflectors, three 2nd parabolic reflectors, and one asymmetric triangular prism. Three elliptic and parabolic reflectors were assembled with three confocal reflector modules; two modules projected the cut-off line of a 0° angle, and the other module projected the cut-off line of a 15° angle using of an asymmetric triangular prism. The ray tracing, optical simulation, and mockup experiment results exhibited that the illumination distribution met the regulation of ECE R112 class B, and the ideal efficiency could reach 96.8% in theory. The tolerance analysis showed the efficiency remained above 98% under the error values of ±0.2  mm of the position of the LED light source, and the y direction of the up-down movement was more sensitive than the x and z directions. The measurement results of the mockup sample safety factor were all larger than 1.15 and supported the regulation of the ECE R112 Class B.

  19. Confocal laser scanning microscopic investigation of ultrasonic, sonic, and rotary sealer placement techniques

    Science.gov (United States)

    Nikhil, Vineeta; Singh, Renuka

    2013-01-01

    Background: Sealers are used to attain an impervious seal between the core material and root canal walls. Aim: To compare the depth and percentage of sealer penetration with three different placement techniques using confocal laser scanning microscopy as the evaluative tool. Materials and Methods: Root canals of 30 single-rooted teeth were prepared to a size of F3 and AH plus sealer with Rhodamine B was applied with Ultlrasonic file (Gr-1), lentulospiral (Gr-2), and Endoactivator (Gr-3). Canals were obturated with gutta-percha. The roots were sectioned at the 3 and 6-mm levels from the apical foramen and were examined on a confocal microscope. Results: A statistical significant differences among Gr-1, Gr-2, and Gr-3 were found at the 3 and 6-mm level (P < 0.05; ANOVA-Tukey tests) for the depth and percentage of sealer penetration except for Gr-1 and Gr-2 at 3-mm level. Gr-1 showed maximum mean depth of penetration (810 μm) and maximum mean percentage of sealer penetration (64.5) while Gr-3 showed minimum mean depth of penetration (112.7 μm) and minimum mean percentage of sealer penetration (26.7). Conclusion: Depth and percentage of penetration of sealer is influenced by the type of placement technique and by the root canal level with penetration decreasing apically. PMID:23956528

  20. Comparison of Three Different Sealer Placement Techniques: An In vitro Confocal Laser Microscopic Study

    Science.gov (United States)

    Dash, Avoy Kumar; Farista, Shanin; Dash, Abhilasha; Bendre, Ajinkya; Farista, Sana

    2017-01-01

    Introduction: Three-dimensional obturation of the root canal system is the final objective of root canal therapy. Greater penetration of sealer in root dentine lesser will be the voids at the dentine–sealer interface. Hence, analysis of the dentin/sealer interface allows the determination of a filling technique which could obturate the root canals with least gaps and voids. Therefore, the aim of this study is to compare the depth and percentage of sealer penetration into root dentin using three different root canal sealer placement techniques under confocal laser scanning microscope. Materials and Methods: Thirty single-rooted teeth were selected and prepared. Adseal sealer (Meta Biomed, South Korea) was mixed with Rhodamine B dye and applied using lentulo spiral (Dentsply Maillefer, USA) as Group 1, bidirectional spiral (EZ-Fill– EDS, USA) as Group 2, and ultrasonic endodontic tip (Sonofile– Dentsply Tulsa, USA) as Group 3. Canals were then obturated with gutta-percha. The roots were sectioned at the 3 and 6-mm levels from the apical foramen and examined under confocal laser microscope. Results: Maximum mean depth and percentage of sealer penetration were observed for Group 1 and minimum for Group 3. Furthermore, statistical significant differences among Group 1 and Group 3 were found at 6-mm level and among Group 2 and Group 3 were found at 3-mm level (P ultrasonics. PMID:28839420